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Chapter 1

Basic concepts and equations

Plasma means a partially or completely ionized gas, which is electrically neutral as a whole, and
which consists of electrons, ions and neutral atoms. Furthermore the plasma, in the sense used
here, is characterized by so called collective behavior of its particles. This aspect is used to be
expressed by the following conditions:

a) The mean force of near interactions is much less than that of distant collective interactions
of particles

Fnear < Fdista

b) the number of particles in the so called Debye sphere is large
— < 1,
ni}

where n is the plasma particle density and Ap is the Debye length,

c) the thermal kinetic energy K E is much greater than potential energy PE
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It means that the plasma is a sufficiently diluted and hot gas, which characteristic length L is
much greater than the Debye length (L > Ap).

Debye shielding

Let us assume a charge gg at zero point of the reference system at ro = 0. The potential of this
charge in free space is
do
r)=—— 1.1
POl = (11)
where €j is the permittivity of the free space.
Now, let us consider a test charge ¢p surrounded by a neutral plasma (electrons with the electron
density n. and temperature T, and heavy protons of the same density n. = n,). Then the
potential ¢ can be determined from Poisson equation
e
V2o(r) = —L§(r) + = < pe >, (1.2)
€0 €0

where the mean charge density is

) . (1.3)

4
< Pe >= Ne €XP knT,
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Here kp is the Boltzmann constant, and for electrons the Maxwell-Boltzmann statistics (~
exp(—qp/(kpT))) is used. As mentioned above, in a plasma the kinetic energy of electrons
is much greater than their potential energy, and that is why the exponential function can be
expanded in a Taylor series and only two first terms can be used. Thus, the charge density in
the form of < p. >~ n.ep/(kpT.) can be put into Poisson equation which can be written as

2
R v 2 Ne€ go(’r’) _ 9
Vepo(r) + 7EUkBTe = d(r). (1.4)

Solving this equation in polar coordinates (i.e. V2 — g—; + %%) the solution is
4q0 r
_ - 1.5
por) = g exp(=3—), (1.5)
where
kT
>\D = (60 BQ >, (1 6)
Nee

is the Debye radius. As seen the electric field at distances L > Ap is effectively shielded.
Plasma oscillations

In a quasi-neutral electron-ion plasma a relative displacement of electrons in comparison with
ions causes the electric field:

B = et (1.7)

€0
where £ is the displacement. Then the Newton force equation gives the equation for oscillations
of electrons
d? Ne o
mewf = —eF = —ge f, (]_8)
(where m, is the electron mass) with the characteristic frequency called electron plasma fre-
quency

2
w2, = e (1.9)

pe €0TMe .

Similarly, we can define the proton plasma frequency as

2
) npe
= 1.10
“rp eomy’ ( )

where m,, is the proton mass, and so on.
Equations describing plasma processes
a) Kinetic description

Plasma is fully described by a distribution function f(r,v,t). The distribution gives the number
of particles which are present in a unit volume of the 6-dimensional phase space located in
coordinates r,v at time ¢. The distribution function is a solution of the Boltzmann equation

Bf(r,v,t) F 8f(r7v7t) _ 8f(r7v7t)
or TV ViVt o=l _< ot >wu’

(1.11)
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where m is the particle mass, F is the general force, and in our case usually in the form
F =¢(E+v xB), (1.12)

where E and B are the electric field and magnetic induction.

The term on the right side of the equation (1.11) expresses effects of particle collisions.
Because plasma can have many different components (electrons, protons, neutrals, ions of dif-
ferent chemical elements), the Boltzmann equation should be solved for every single plasma
component and the interactions between components should appear in the collisional terms on
the right side of the individual Boltzmann equations. But, for many tasks some simplifications
are made, and e.g. only the Boltzmann equation for electrons is solved.

Furthermore, if the collisional term is very low (e.g. if the plasma frequency is much greater
than the collision one; wpe > v.) then such a plasma is called collisionless and for its description
the Vlasov equation is used

Of(r,v,1) F 0f(r,v,t) _
T-I—v-Vf(r,v,t)-I-E-T—O, (1.13)
For a full set of equations describing a plasma behaviour the Maxwell equations need to be
added

0B 1
VxE=-—  V-E=—p,
X ot 80'0
(1.14)
1 OE
B = joj + —— ‘B =
V x Hoj + > v 0

where j is the electric current density and p. is the charge density, which can be expressed as
follows

j= Zea/vfad?’v, (1.15)

Pe = Zea/fad?’v, (1.16)

where the index a corresponds to individual plasma components.
Fokker-Planck equation

If the particle collisions are dominant then an evolution of the particle distribution function is
described by the Fokker-Planck equation. Let P(v,Av) be the probability that a test particle
changes its velocity v to v + Awv in the time interval At. Provided that the particle number is
conserved, the velocity distribution at time ¢ can be written as

F(v,t) = /f(v ~ Av,t— A)P(v — Av, Av)d* Aw, (1.17)

Noting that for small-angle deflections | Av |<| v |, the product fP in Equation (1.17) can be
expanded into a Taylor series,
of

F(v,t) = /(fP — AP — Av[v,fP]+ %Auimj[

0 0

- 3
o aujfp] +.)d*Av. (1.18)



The Einstein convection has been introduced that the sums over the indices ¢ and 5 have to be
used if they appear together in the numerator and denominator, or as subscripts and superscripts.
Since the probability that some transition takes place is unity, P is normalized to

/Pd3Av = 1. (1.19)

We define the average velocity change per time interval At:
/Ade3Av —< Av >, (1.20)
/AviAijd?’Av =< Av;Av; > . (1.21)

Exchanging integration and differentiation, the integral in Eq. (1.18) can be evaluated. The
first term in the integrant cancels with the left hand side of the equation. The remaining terms
form the important Fokker-Planck equation,

M) _ 52 < < Av;Av; >>_i< ﬂ)
( ot cotl O0iOv; f 2At Ov; f At : (1.22)

The possibility of neglecting the higher-order terms in the expansion (1.18) is a property of
inverse-square law particles having multiple collisions. Equation (1.22) shows that the motion
of particles in velocity space then can be visualized as a diffusion process. Its right hand side
describes the temporal change of a distribution of test particles by multiple, small-angle collision
processes. It corresponds to the right hand side of the Boltzmann equation (1.11). The first
term in Equation (1.22) represents the three-dimensional diffusion of the test particle in velocity
space; the second term is a friction, slowing down the test particle and moving it radially toward
the origin of velocity space.

b) Magnetohydrodynamic description

For many tasks in astrophysical plasmas the kinetic approach is too complex, in reality we do not
need to know distribution functions of plasma particles. In these cases the description using the
macroscopic quantities as e.g. the mean plasma velocity and so on is sufficient. Mathematically
it means that the integration of kinetic equations in velocity space is justifiable. Thus, the
equations with the macroscopic quantities (called the magnetohydrodynamic equations , MHD
equations for short) can be obtained as the moments of the Boltzmann equation [BK E|:

/ [BK E]d*v, (1.23)
/ mv[BK E]d*v, (1.24)
/ %mv2[BKE]d3v. (1.25)

Example of derivation of the first moment - first MHD equation

Let us integrate the first moment

%/fd?’er%/vfd%Jr%/(EJrv xB)gfd% =/<%>wu dv, (1.26)

\%



6 Chapter 1: BASIC CONCEPTS

where V - v = 0 was used in the second term. Due to the particle number conservation the
integral of the collisional term is zero. Furthermore, using the Gauss theorem and per partes
integration, the force term can be expressed as
of d(v x B);
E +v x B)~d* :E/ ds —/ —— 1.27
/ (B+v )Bv ! fdSy ! dv; v (1.27)
where dSy is the surface element in the velocity space. The first part is zero because f — 0
for | v | oo, and the second one is zero because the (v x B); do not consist of v;. Thus, the
relation (1.26) can be written as

9 3., 9 3
&/fdv-l-a/vfd v, (1.28)
or
dp . .
5 +div pu =0, (1.29)

where the density is p = [ fd3v and the mean plasma velocity u = [vfd3v/ [ fd*v. This last
equation is known as the continuity equation or the mass conservation equation.

MHD equations

Mass conservation:

dp _ 0Op _
= T Vp=—pV-v, (1.30)

where d/dt is the convective derivative.

Momentum conservation:
dv .
paz—Vp—l—JxB—i—V-S—l—Fg, (1.31)

where p is the plasma pressure, j is the current density, B is the magnetic induction, S is the
viscous stress tensor, and F is the gravitation force.

Internal energy conservation:

de o .
p%erV-v:V-(ﬁ-VT)Jr(ne-J)-J+QU—QT, (1.32)

where

p
(y=1p

e =

is the internal energy per unit mass, x is the thermal conductivity tensor, T is the temperature,
Q, is the heating by viscous dissipation, v is the ratio of specific heats, and Qr = p?Q(T) is the
radiative energy loss, Q(7T) is a function describing the temperature variation of the radiative
loss in the optically thin approximation.

Faraday’s equation:

0B



Ampére’s law:
V x B = puj. (1.34)

In comparison with Maxwell equations the displacement current term (~ OE/0t) is negligible
in the MHD approximation.

Gauss’s law:
V-B=0. (1.35)
Ohm’s law:
E=E+vxB=r,-j (1.36)

Here E' = E+v x B gives the Lorentz transformation from the electric field (E) in a laboratory
frame of reference to the electric field (E,) in a frame moving with the plasma. This Ohm’s law
states that it is the electric field (E,) in the moving frame which is proportional to the current.

Equation of state:
p = RpT = nkgT, (1.37)

where R is the universal gas constant, n is the particle density, and kg is Boltzmann’s constant.
The density can be expressed as

p =nm,
where 2 is the mean particle mass. For a hydrogen plasma the pressure becomes
p=2nc.kT
and the plasma density is
P = NeMp,

where m,, is the proton mass.

The above system of MHD equations constitutes a set of 16 coupled equations for 15 unknown
variables (v, B, j,E, p,p, and T'). Tt seems that the system is over-determined. However, from
Faraday’s law follows that if we take a divergence-free initial state, Gauss’s law follows from
Faraday’s equation(9/9(V -B) = =V - (V x E) = 0). In this sense Gauss’s law is not necessary.
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Induction equation

If we put E = —v X B 4 7,j from Ohm’s law and j = V x B/uy (where up is the magnetic
permeability of free space) from Ampére’s law into Faraday’s law we can write

B
8—=VX(VXB)—&VX(VXB). (1.38)
ot Ho

Now, using the vector formula
VxVxB=V(V-B)-V’B
and Gauss’s law the induction equation can be written as

aa_? =V x (v x B) +V’B, (1.39)

where n = 1. /uo is the magnetic diffusivity.

Approximations of the induction equation

Now, let us compare terms on the right side of the induction equation by defining so called
magnetic Reynolds number:

Vx(vxB) %5 1o
R — ~ 0 — y 140
" nV’B _n%o n (1.40)

where vq is the characteristic plasma velocity and Ly is the characteristic length scale.
As can be seen, two extreme regime of the induction equation can be considered. For processes
with small characteristic velocities, i.e. vg — 0 and R,,, — 0, the induction equations gives a
form of the diffusion equation

0B

— =nV’B. 1.41

5 = (1.41)
On the other hand, in a collisionless plasma with 1, = 0, i.e. for R,, > 1, the induction equation
becomes

0B
W_VX (v x B). (1.42)



Chapter 2

Magnetic field structures

The B and j descriptions of plasma processes

Considering Ampere’s law
V x B = puj. (2.1)

it looks that the descriptions using the magnetic field B or the electric current j as basic variables
are equivalent. But in reality only B is directly measured on the Sun. Therefore, the description
with B is preferred in solar circumstances, and the electric current is a variable derived from
the magnetic field.

Based on magnetic measurements at the photosphere the magnetic field in the corona can be
extrapolated (see Fig. 2.1). In model situation the magnetic field was extrapolated even between
two stars (see Fig. 2.2). Commonly used methods are so-called potential (j = 0 everywhere above
the photosphere) and linear force-free field extrapolations. But there are attempts to make so-
called non-linear extrapolations. One a rough method is described in the file non-extra.pdf.

Reference:

Karlicky, M.: 1997, Evolution of force-free electric currents in the solar atmosphere, Astron.
Astrophys. 318, 289-292.

Basic structures
a) Gravitational stratification

A comparison of the sizes of terms in the equation of motion

dv
dt
shows that the inertial term on the left-hand side may be neglected when the flow speed is much
smaller than both the sound speed (ypg/po)'/?, the Alfven speed By/(upo)'/? and the gravita-
tional free-fall speed (29l0)1/ 2 for a vertical scale-length ly. The result is a magnetohydrostatic
balance

p— =—-Vp+jxB+pg

O=-Vp+jxB+pg (2.2)

between the pressure gradient, the Lorentz force and the gravitational force. The full set of
equation is given by adding

i=VxB/u (2.3)
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Fig. 2.1: The so-called magnetic carpet’ showing observed photospheric magnetic field and extrapolated
overlying magnetic field lines.

Fig. 2.2: Model magnetic field for an RS CVn binary system in which the two stars are tidally locked into
rapid synchronous rotation.

VB =0, (2.4)
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mp
= —. 2.5

P = T (2.5)
If gravity acts along the negative z-axis and s measures the distance along magnetic field lines
inclined at the angle 6 to the vertical, the component of Eq. (2.2) parallel to B is

d
0= _d_i — pg cosb. (2.6)

Since ds cos @ = 0z this becomes

dp

__9p _ 2.
0 5, P9 (2.7)

where p and p are functions of z along a particular field line. After substituting for p from
Eq.(2.5) in Eq. (2.7) and integrating, we find

2 1
== —_— 2'
P = poexp /0 A7) dz, (2.8)

where pg is the base pressure (at z = 0) which may vary from one field line to another; also

A(z) = kBL(z) (2.9)
mg
is the pressure scale-height, which represents the vertical distance over which the pressure falls
by a factor e.
For the particular case when the temperature is uniform along a field line (due to, for instance,
the dominance of thermal conduction), A is constant and Eq. (2.8) reduces to

p = poe */*. (2.10)

c) Structure of magnetic flux tubes

Consider a cylindrically symmetric flux tube whose magnetic field components

in cylindrical polar coordinates are functions of R alone. The field lines are then helical and lie
on cylindrical surfaces, as indicated in Fig. 2.3, while the electric current components are, from
Eq. (2.3)

<0, - M—}zﬁ(RB(ﬁ)) . (2.12)

Under the neglect of gravity the force-balance equation then reduces to (see the matrix with
rows: (i,j,k),2.12,2.11)

d d (B?+ B2 B?
_p+—(7¢ >+—¢—o, (213)

dR  dR 20 uR

the second term representing the magnetic pressure and the third term the magnetic tension
due to the azimuthal component (By) that encircles the axis.
On each cylindrical surface the field lines have a constant inclination, but this may vary from
one radius to another. The field lines are given by

Rd¢  dz

— 2.14
B = 5 (214)
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2L R8¢

Fig. 2.3: The notation for a cylindrically symmetric flux tube of length 2L.

and the amount by which a given line is twisted in going from one end of the tube (length 2L)
to the other is

P = /dqu /QL Bo 4. (2.15)
®(R) = %"’((g)), (2.16)

(4w L/® is called sometimes the pitch of the field and gives the axial length of a field line that
encircles the axis once, i.e. for ® = 27 this length is 2L).

Purely azxial field

When no azimuthal component (By) is present, Eq. (2.13) reduces to

d B2
_— ) = 2.1

with solution p+B2/(2u1) = constant, so that the total pressure (gas plus magnetic) is conserved.

Purely azimuthal field



13

When the axial component vanishes, equation Eq. (2.13) becomes

dp d (B}\ B}
Bt T S B4 _?® _ 2.1
dR + dR (2,u + uR 0, (2.18)

where, according to Eq. (2.3), By is related to the current by (2.12)

1 d

- M—Rﬁ(RBd)). (2.19)

Jz

If, in particular, the current flows with uniform total value I within a cylinder of radius a, an
integration of Eq. (2.19) yields

" jzdS:/VdeS,

R2
pl— = 2mRBy(R),

UWIR
B, — R 2.20
1) 2mal’ <a, ( )
ul
B —
® 271'R’R > a,

assuming By to be finite and continuous. The corresponding plasma pressure results from
integrating Eq. (2.18). Assuming that it takes the value py, outside the current column, we find

b __d (1PPRY L pPR
dR dR \ 2p 4m2a* pR 4m2q* "7
1
D= poo + ZM(I/(WQ2))2(a2 —R%,R < a, (2.21)
P = Poo, B > a.

The magnetic field lines are shown in Fig. 2.4. Within the cylinder of radius a By increases
linearly with R, while the gas pressure decreases, so that the outwards gas pressure is balanced
by inwards magnetic pressure and tension forces. Outside the cylinder the pressure is uniform
and the magnetic field is potential, so that the outwards magnetic pressure and inwards tension
balance one another.

In the laboratory, a plasma configuration in which the current is axial and the magnetic field
azimuthal is known as a linear pinch. A simple relation may be derived in this case between the
current

Ro
IE/ Jj2TRAR (2.22)
0
flowing through the plasma column (of radius Ry) and the number

Rg
N = / n2r RdR (2.23)
0

of particles per unit length of the column. Eq. (2.18) may first be multiplied by R? and
integrated to give

B,dB, B2R
R%p = —dR | R222%7¢ | 707
dR 7
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RBj

RB
R2dp = —T¢(RdB¢ + BydR) = ——=2d(RBy),

Ro Ro
R?%dp = — / RBy/pud(RBy). (2.24)
0 0

Then, assuming that the plasma pressure vanishes at Ry and the temperature (T' = p/(nkp)) is
uniform across the column, an integration by parts of the left-hand side together with the use
of Eq. (2.19) on the right-hand side yields the expression

(RB¢)2 |0Ro= R(%B(Zﬁ

)

Rl — [ 2RpdR = -
| Bplo® — | 2RpdR = —|

2u 2u
Ro kgTN
/ 9RnkpTdR = ~2~—"
0 ™

Ro 1 d(RBy) Ro 2 21
I =/ 2tR— ———dR =/ —d(RBg) = —RyBy,
; R R 0 (RBy) . FoBs

I? = (87/p)kpTN, (2.25)

known as Bennett’s relation.

““
=

s s
Nl

Fig. 2.4: The ourely azimuthal magnetic field lines in a section across a column of uniform current and radius
a.

Force-free fields
1. Linear field

In the absence of pressure, Eq.(2.13) reduces to

B2+ B2\ B?
d (M> +—2—o. (2.26)

dR\ 2u LR~
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Here, either By or B, may be prescribed and the other deduced. For the so-called ’constant-a’
field one assumes that pj = aB, where « is uniform. After using Eq. (2.3), the ¢-component of
this becomes

: dB,
pis = aBg, — Fi aBy. (2.27)

Finally, an elimination of By between Eqs. (2.26) and (2.27) yields Bessel’s equation whose
solution subject to B, = By and dB,/dR =0 at R=0is

d 1 dB,, 1 2) (dBZ>2 1
— (— —B — =0
dR <2ua2( dR )+ 2u* + dR ) pRa?

R’B” + RB. + R?a*B, =0, Bessel's equation

B¢ = B()Jl (ozR),BZ = B()Jg(OtR), (2.28)

where Jy, J; are Bessel functions.
1I. Nonlinear fields

An easy way to generate solution to Eq. (2.26) is to choose

B2 = f(R), (2.29)
and then Eq. (2.26) gives
1 _df
B?=——R— 2.
i 2RdR (2.30)
and
B = B* - Bj. (2.31)

The restrictions that Bz and B? be positive imply that df /dR is negative and that f approaches
zero slower than R™2 as R — co. The limiting case f = R™? gives the purely azimuthal field
R 1¢.

Another simple example of a force-free field is the 'uniform-twist’ field, for which @ is (given by
Eq. (2.16)) is constant and the field components are

_ By®R/(2L) B By
¢ T 14+ ®2R%/(2L)2° 7 1+ ®2R?/(2L)?°

(2.32)

They have the property that field lines at different radii are twisted through the same angle, so
that the whole tube is twisted like a rigid body.

Basic topology of twisted magnetic configurations

Let us construct a simple magnetic loop as presented in Fig. 2.5. Such a configuration resembles
to that in the solar atmosphere. The z-axis points in the vertical direction and the plane z = 0
represents the photosphere.

The whole magnetic field is obtained here by superimposing three components denoted by By, B,
and By. The first component By is the field created by a ring current I uniformly distributed
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Fig. 2.5: The magnetic field under study is modelled by a force-free circular flux tube with the total current
I, a pair of magnetic charges —q, ¢ and a line current Ip. Below the photospheric plane z = 0 this configuration

has no real physical meaning: it is used only to construct the proper magnetic field in corona.

over its circular cross section of radius a. The plane of symmetry of the ring coincides with
the plane z = 0, while its axis of symmetry is parallel to the z-axis and submerged under the
photosphere by a depth d, so that in corona only an arc of the ring with major radius R is present.
The second component B, is created by the leading and following spots of the modelling active
region, which are represented here by two charges —g and ¢ lying on the axis of symmetry of the
ring from both sides of the plane z = 0 on the distance L. The third component By is created
by a line current Iy flowing exactly along the axis of symmetry of the ring. In this model, of
course, only the field above the photospheric plane z = 0 has a real physical meaning, while the
sub-photospheric currents and sources play an auxiliary role in constructing the configuration.
One can ignore its sub-photospheric part and regard that the coronal force-free field is in fact
determined by the vertical components of the field B, + B; + By and current density on the
photosphere. The region occupied by the ring current is further assumed to be thin, so that the
equilibrium of this current can be investigated by using appropriate asymptotic expansions in
small parameters a/R and a/L. The external equilibrium here corresponds to the equilibrium
of a ring current in an axisymmetric potential field. Due to the present axial symmetry, the
respective equilibrium condition is the same for each element of the flux tube and, is reduced to
the balance of only two forces: the Lorentz force F, caused by interaction of the current I with
the field B, and the Lorentz self-force Fr resulting from the curvature of the tube axis. Both
forces act along the normal n to thin axis and can be written as

2¢LIn

Fg=— (R? + L2)3/2’ (2.33)

F —Mo—p<ln§+ln8—3/2+l~/2>n (2.34)
""4xr \a ‘ ’ '

where [; is the internal self-inductance per unit length of the tube (I; = 1/2 in our case).
From the force balance F; + F; = 0 we obtain the total equilibrium current

8mqLR(R? 4 L?)~3/?

I= wolln(8R/a) — 3/2 + 1;/2]’ (2:35)

which flows in the corona.
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Now, let us construct approximate analytical expressions for the magnetic field. We use the
tubal system of coordinates (p, ¢, 6),p is the distance from the axis of the tube and ¢ is the angle
between radius p and the plane symmetry x = 0, while § measures the angular arc length of the
tube from the positive direction of y-axis. Since the flux tube in our model is assumed to be thin
in configuration with its radius of curvature R and the characteristic size L, the corresponding
force-free condition in zero order approximation by small parameters a/R and a/L is the same
as for the straight tube. So in the above tubal coordinates the force-free condition can be written
at 0 < p < a as follows

0

where the azimuthal magnetic field component

(2.37)

corresponds to the uniformly distributed toroidal current I. These equations give the toroidal
field inside the tube (when we put Eq. 2.37 into Eq. 2.36)

1/2
Byin = sign(Ip) (BHQR + %(GQ - 102)> ; (2.38)

where the toroidal field on the surface of the tube

oo
Bypr ~ —— 2.39
o~ B0 (239)
is followed from the appropriate approximation of the external toroidal field
I
Bea = 52 + (24 )77, (2.40)
which is produced by the sub-photospheric line current Ij.
Both internal and external toroidal fields can be sewed by using the following formula:
polo, 1 2x(a—p) I? P> 1)
By = — —(1—= 0 2.41
0 o [RQ a2 Ig ( a2 )] + ( )
I
Bl + (z+d)’) 2 = R 16,
2
where
d
- <0,—z+ ,i>, (2.42)
TLTL
p=[2"+(r.— R/’ (2.43)
ri= [y + (z +d)*"2 (2.44)

and x(X) stands for the Heaviside function such that y =1 if X > 0 and x = 0 otherwise. The
equation describes the toroidal magnetic field inside the flux tube only in zero order approxima-
tion by small parameters a/R and a/L, which is sufficient for determination of the topology in
our configuration.
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Remark: Thus, outside the loop (x = 0)

Iy 1
By =0 4 2+ (2 + )22 = R0,
27 "R

I
By = B2y + (24 d)*) /%0,

and inside the loop (x = 1)

_ ,u()[g 1 2 I2

2
P \11/2
By = —+ —=—=(1 -
o 2m [R2 a2I§( aQ)] 9,

polo. 1, 2 I’ P> 12
By==—lm+ 5 7mrr 21— 3770,
2r "R?  a?An’R2Bj,/ud a?

2 M%IQ 2 2\11/2
BGZ[B()R'I'W(G — pH)]"%,

which corresponds to previous formulae.
We also determine with the same accuracy, the poloidal magnetic field everywhere in the coronal

volume. Inside the flux tube Eq. (2.37) yields it with the desired accuracy, outside the tube it
is approximately a superposition of the point sources field

ry r_
B, = — 2.4
=i(Fmw) (24
ry = (zFL,y,z+d), (2.46)

and of the field By., produced by the line current [ in the ring of radius R. In order to derive
Bie; and the proper sewing function By, it is helpful to represent the magnetic field in terms
of the vector potential, which due to the symmetry of our configuration about z-axis can be
reduced to only one non-vanishing -component A;(r,,x), so that

814] r| (814] A[)
B =Vx(A4)=—— —+ — | x. 2.47
! x (410) 8x7q_+ 87"J_+m_x ( )
Remark: Generally,
B = By0 + By, = + B,x.
ot
Due to cylindrical symmetry
r
B, = B, — + B,x,
rL
and thus B; can be express as
B[ =V x (A[Q)
Coordinate vectors are:
d d
B0, L2 =0, 2% Y x = (2,0,0). (2.48)

ry ryo ri ry i
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Then using standard vector operation V x (A;0) in cylindrical coordinates we obtain the above
mentioned Eq. (2.47).

From here and equation (2.37) one can derive Ay inside the tube

7 2
Arin = % <const — %) . (2.49)
I 2¢ r 2(r; — R
B 0 (g = g ) et s0 Arjri 20

ol
[ Brin |= 5 (22 + (r,. — R)*)'/2.

Outside the flux tube, A; is well approximated by the potential of the ring determined as:
Generally we can write

IR [ 0'de/
Arer = 2 R/ o (2.50)
0

(R?+r% — 2Rrpsinfcos')!/2’

where R is the radius of the ring current, rp is the distance from the centrum of the ring to

the position, where the vector potential is calculated. Thus, rp = \/ri + 22 and rpsinf =r .
Then we may write

polR /2” cos 0'do’
Afex = : 2.51
! 4r(R2 +1% +22)1/2 Jo (1 —wvcos)1/2 (2:51)
where
27"J_R
SR (2.52)

The above integral can be expressed in terms of the complete elliptic integrals of the first and
second kinds, K (k) and E(k), as follows: First, in denominator of Eq. 2.51 we add 2Rr; —2Rr

pwolR /27r cos 0'd6’
AIe:r ~
)1/2 0 (1

4 2 2 2 2 _ 2-2Rm_ 1+4cos @’ 1/2’
m(R? +r] +a* +2Rr) R24+7r2 +a242Rr; 2 )

Then we designate

R?+ 12 + 22+ 2Rr,’
and use
50 1+cost
cos® — = ——,
2 2

and /2 = H, so the vector potential is

Alex ~

pol R /7f/2 4cos 2HdH
4r(R2 413 + 22+ 2Rr )Y/2 Jo (1 —k2cos? H)1/2’
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where the multiplication factor 4 in integration is due to a change of integration limits. Now,
using cos 2H = cos? H — sin? H and definitions of the complete elliptical integrals

w/2
K = / __da (2.53)
0 1—k2sin?«

/2
E= / \/1 — k2sin® ada,
0

we have

pol R <1 1 ) )
Afes = 4 (K —-E)- =(E-(1-k)K
"= 4n(R? + 12 + a2 + 2Rr|)\/? k2( ) k2( ( K),

(in integrations we can replace v/1 — k2sin? a by v/1 — k2 cos? o), and after a simple manipula-
tion the final formula for the vector potential is

Afez(z,7m1) = ’%I\/EA(M, (2.54)
in which
A(k) = k72 — K*)K (k) — 2E(k)] (2.55)
and
k= 2\/ ﬁ. (2.56)

There is a small mismatch at p = a between Ar., and Ap;,, which can be eliminated by using,
instead of Ay;,, the following expression:

Ain ~ ‘%E Aka) + A (ko) (k — ko), (2.57)
where
A = Ay = D 220 KD (2.5%)
and
o B K) L BoK
and

r R
ko =24 ——— 2.
V 4r | R+ a? (2.59)

is the value such that & = k, at p = a and always k, < 1, so A(k,) and A’(k,) are regular
functions of r;. One can show that in zero order approximation by a/R Eq. (2.57) reduces
to Eq. (2.49), while Arin and Aj.p at p = a are equal to each other together with their first
derivatives, so the corresponding sewing function is

Ar = x(a — p)Arin + Xx(p — a) Areq- (2.60)
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By using this and Eq. (2.47) one can derive now an explicit formula for By and so for the whole
magnetic field.
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Chapter 3

Magnetic field reconnection

Diffusion in the current sheet

s
B .=- -
0 !"‘ -
1 -"'
t=0| t=t; .~t=t
-
I f-*‘
! ‘_.-'
"'"l i }I
- ) &
Jf !
z’ /
#’ /
.-*’ !
. ="- —
BD

Fig. 3.1: The magnetic field (B) as a function of distance (x) in a 1-D current sheet that is diffusing from sheet

of zero thickness initially, for times t = 0, ¢1,t2, where 0 < ¢ < 2.

Let us consider a current sheet described as
B(2,0) = Bo, s > 0, (3.1)
B(-z,0) = —B(z,0).

and the plasma velocity v = 0 everywhere in the system. Then the induction equation is reduced
to the diffusion one:

0B 0’B

E = HW7 (3-2)

whose solution is

B(z,t) = — e " du. (3.3)

22
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Solution (3.3) has the form shown in Fig. 3.1 and may be verified a posteriori by substituting it
back into Eq. (3.2).

Remark:

o [o2(a) p2(a) 9
so [ swae = [© 7 e (o)) — S e) 5

The magnetic field diffuses away in time at a speed n/l, where the width (I) of the sheet is of
the order of (nt)l/ 2 and so increases in time. The resulting magnetic field strength at a fixed
position decreases with time, so the field is annihilated. The total magnetic flux (/% Bdxz)
remains constant (namely zero) and the total current

0o OB 2B,
J—[wjdx —/ %dx . (3.5)

is conserved, since it simply spreads out in space. However, the magnetic energy decreases in
time at a rate

0 B 0B
— —dr = ——d .
ot / / o Ot (36)
Substituting for 0B/dt from Eq. 3.2 and integrating by parts, we find that this becomes
< Bno’B 1 0B OB ,
— —dr=— 1| B— |%, — dz | . .
/700 p 0x? v o <| or > / (ax) az) (3.7)

Since dB/dz remains equal to zero at infinity, the first term on the right vanishes, and, since
the electric current is j = u~'0B/0x, we finally have

o © B2 oo j2

In other words, magnetic energy is converted entirely into heat by ohmic dissipation (j2/o per
unit volume).

Concept of frozen flux and field-line motion

The term ”"magnetic reconnection” is intimately lined to the concept of field-line motion. In a
plasma with a very small resistivity the Ohm law becomes E + v x B = 0, and the induction
equation reduces to

%—?zvX (v x B). (3.9)

Then, if we consider a curve C' (bounding a surface S) which is moving with the plasma, in
a time dt an element ds of C sweeps out an element of area v x dsdt. The rate of change of
magnetic flux through C' is

d OB
Z[B-ds= [ = B- . 1
dt/s ds /5815 dS+/C v x ds (3.10)

As C moves, so the flux changes, both because the magnetic field changes with time and because
the boundary moves in space. By setting B-v x ds = —v x B -ds and applying Stokes theorem
we obtain

dt/B ds — /(——Vx(va))-dS, (3.11)
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plasma
C 1 motion C2

Fig. 3.2: Magnetic flux conservation: if a curve C is distorted into Cs by plasma motion, the flux through C;

<

at t1 equals the flux through C> at ¢».

-

Pi X
) plasma
A motion

Py X —_—

" rix s

Fig. 3.3: Magnetic field-line conservation: if plasma elements P; and P lie on a field line at time ¢1, then they

will lie on the same line at a later time ¢».

which vanishes in the ideal limit. Thus, the total magnetic flux through C remains constant as
it moves with the plasma. In other words, we have proved magnetic flux conservation, namely
the plasma elements that initially form a flux tube continue to do so at all later times (Fig. 3.2).

There is also magnetic field line conservation, namely that, if two plasma elements lie on a field
line initially, then they will always do so (Fig. 3.3).

Line conservation can be proved as follows. Applying the vector identity (V x (a x b) =
(b-V)a—(a-V)b+a(V-b)—b(V-a)) to the ideal induction equation gives

38_? — (B-V)v—(v-V)B=—B(V.v). (3.12)
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Using the mass continuity equation to eliminate V - v, we then obtain

dp _ Op B
dt_8t+v Vp=—pV . v,

0B
E_l_(v.v)B:(B-V)v—B(V-v),

TONCR

where d/dt = 0/0t + v - V is the total or convective derivative. To see how this result leads to
the conclusion that the field lines are "frozen” to the plasma, consider an element segment 41
along a line moving with the plasma. If v is the plasma velocity at one end of the element and
v + dv is the velocity at the other end, then the differential velocity between the two ends is
dv = (01 - V)v. During the time interval d¢, the segment 01 changes at the rate

Since this equation has exactly the same form as Eq. (3.13) for the vector B/p, it necessarily
follows that, if 61 and B/p are initially parallel, then they will remain parallel for all time.
Advection of magnetic field lines

If R,, > 1, plasma can move freely along magnetic field lines, but in motion perpendicular to
them they are dragged with the plasma or vice versa.
As an example (Fig.3.4), consider the effect of a flow

Vo VoY

Vyp = —T,Uy == a (3].5)
on a field that is initially
x
B =Bycos—y, t=0 (3.16)
a
between z = —%Wa and z = %Wa. The equations of the streamlines (namely, xy=constant)

are obtained from dy/dx = vy/v, = —y/z (Remark: dy/y = —dz/z,Iny = —Inz+ C, zy =
constant). These are rectangular hyperbolae (Fig. 3.4) with inflow along the X-axis and outflow
along the y-axis when vy > 0.

The velocity field corresponds to a hydrodynamic stagnation-point flow. The effect of this flow
on the magnetic field is to carry the field lines inwards from the sides and accumulate them near
z = 0, increasing the field strength there. Since the component (v;) of the velocity perpendicular
to the field lines is constant along a particular field line (x= constant), the field lines are not
distorted but remain straight as they come in.

Now, the y-component of the induction equation is 0B /0t = (V x (v x B)), = —0(v,B)/0x or

% e 0r - o (3.17)
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Fig. 3.4: A sketch of the magnetic lines (thin-headed arrows) and streamlines (thick-headed arrows) at t = 0
for | z |< ma/2.

|
SRS

Fig. 3.5: (a) Characteristic curves = z* exp(—wvot/a); (b) the solution for B as a function of & for several

times.

and this determines B(z,t). In order to solve such a partial differential equation, we consider

characteristic curves in the zt-plane, which are defined as
dx VX

Vg = ——,

& _ 1
dt a (3.18)
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with solution
z = zre 0t (3.19)

where x = z* at ¢ = 0. We wish to determine B(z,t) at every point of the xt-plane, and the
elegance of considering characteristic curves, x = z(t) given by Eq. (3.19) (Fig. 3.5a), is that on
such curves B(z(t),t) has the derivative

dB 0B dx0B 0B gz 0B

oy T 3.20

@ "ol T dtor ot a O’ (3.20)
by Eq. (3.18), or, from Eq. (3.17), dB/dt = voB/a. In other words, on the characteristic curves
we have a simple ordinary differential equation to solve in place of Eq. (3.17): the solution is
B = constant e”"/® or, since z = z* and B = By cos(z*/a) at t = 0, we have

B(z,t) = By cos(z* /a)e??. (3.21)

However, in this solution x* is a constant which we have introduced for convenience and which
was not present in the initial statement of the problem, so we should eliminate it by Eq. (3.19),
with the final result

B(z,t) = By cos <fe”0t/“) evot/, (3.22)
a
This solution is plotted in Fig. 3.5b against x for several times. It can be seen that the field does
indeed, as expected, concentrate near x = 0 as time proceeds. The field strength at the origin
is B(0,t) = Bye"/%, which grows exponentially in time (or decreases if the flow is reversed by
taking vy < 0).

Stagnation-point flow model

W
-

(2) ! (b)

Fig. 3.6: (a) Stagnation-point flow creating a steady current sheet (shaded). (b) Magnetic field profile, with

small-z and large-z approximations shown as dashed curves.

The standard equations for 2-D steady-state incompressible flow are

E+vxB=nVxB, (3.23)
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2
p(v-V)v=-V (p—i— %) + (B V)%, (3.24)
where
V.-B=0,V:-v=0, jxB=(VxB)xB/u=(B-V)B/u— V(BQ/(2/J,)), (3.25)

and the components v, vy, By, By depend on z and y alone. Faraday’s law (V x E = 0) implies
that OF /0y = 0E/0x = 0, so that E = E'z is uniform.
Considering a steady-state flow

VX v
Uy = —%,vy = %y, (3.26)
for which V-v = 0. The steady-state continuity equation (v-V)p+ p(V-v) = 0 then reduces to
(v-V)p =0, which implies that the density p is uniform if it is constant at the inflowing sides.
The flow vanishes at the origin and therefore represents an incompressible, stagnation-point
flow.
Suppose now that the magnetic field lines are straight with B = B(z)y and they reverse sign at
2 = 0. Then in Ohm law (Eq. 3.23), both v x B,V x B, and therefore E are directed purely in
the z-direction and in the present case it reduces to

B
g-rp_ 98
a dr

From this equation the magnetic field B can be estimated in two extreme cases as (see also
Fig.3.6):

(3.27)

E
Br2 o> 1, (3.28)
Vo
E
B = —w,x < 1. (3.29)
n

Steady reconnection: classical solutions

A

(a) (b) ()

Fig. 3.7: Breaking and reconnection of magnetic field lines.

In most of the universe the magnetic Reynolds number is very much larger than unity and so
the magnetic field is frozen to the plasma, but in very small singular regions it can slip (diffuse)
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through the plasma (Fig. 3.7). There are several important effects of this local process:

a) Changes of global topology and connectivity of field lines, which affect the paths of fast par-
ticles and heat, since these travel mainly along field lines.

b) Conversion of magnetic energy to heat, kinetic energy and fast particle energy.

c¢) Creation of large electric currents, large electric fields, shocks, all of which may help to accel-
erate fast particles.

a) Formation of a current sheet

X-type collapse

Y,.P

N

B
A\

(a) (b)

Fig. 3.8: Collapse of the field near an X-point.

There are several ways of forming current sheets. One is through the collapse of the field near
an X-type neutral point such as

By =vy,B, ==, (3.30)

which has field lines y*> — z? = constant (dy/dz = By/B, = z/y). The field is in equilibrium
since the electric current p~ (8B, /0z — B, /dy) vanishes and so there is a balance everywhere
between the magnetic pressure force (P) acting inwards and the magnetic tension force (T')
acting outwards (Fig. 3.8a).
Suppose now the field is distorted to B, = y, B, = o’x, where o > 1, with field lines y?> —a?2? =
constant, as sketched in Fig. ( 3.8b), and electric current j = (o — 1) /p.
Physically, we expect an inwards force on the z-axis since the tension force is smaller and the
magnetic pressure force larger, whereas along the y-axis we expect an outwards force since
the tension force is increased by the larger curvature. Mathematically, the magnetic force has
components

(a? — 1)’z (a® — 1)y

jxB=— x + y. (3.31)
7 7
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These act in such a sense as to increase the perturbation and so the initial equilibrium is unstable.

Current sheet formation: description by complex variables

YA y
< > X > > X
(a) (b)

Fig. 3.9: Creation of a current sheet from an X-point configuration.

Suppose the sources of the magnetic field move slowly together and drive the formation of a series
of equilibria containing a current sheet (Fig. 3.9a). Initially B, =y, By = . Then the question
is how to describe the resulting equilibrium containing a current sheet as in Fig. 3.9b. Outside
the sheet, where the current vanishes, the magnetic field satisfies V.x B =0 and V-B =0 or,
in two dimensions,

0B, 0B, 0B, 0B,
=Y _ = ¥ . 3.32
ox oy " Ox + oy ( )
Now, it may be shown as follows that if
By +iB,; = f(z) (3.33)

is any analytic function of the complex variable z = = + iy, then Eq. (3.32) is automatically
satisfied. We are familiar with the fact that the derivative f'(z) of a function of z exists if the
gradient at = has the same value whether x is approached from the left or the right. In a similar
way if f(z) is analytic the gradient has the same value when z is approached from any direction,
in particular keeping y constant (so that z = x) and keeping z constant (so that z = iy). In
other words

0 , 1 .

a(By +iBy) = @(By +1iBy), (3.34)
or, by equating real and imaginary parts, we obtain Eq. 3.32 as required. Thus, we can treat
the current sheet as a cut in the complex plane and the object is to find a function f(z) which
has such a cut.

Now the initial state (3.33) has By +iB, = z and when a sheet stretches from z = —iL to z = iL
we may use

By +iB, = (22 + L?)'/2, (3.35)
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which behaves like z when z > L and reduces to z when L = 0 (for z = 0, B, = L, B; = 0). Thus
the evolution through a series of equilibria with a slowly growing sheet may simply be modelled
by letting L slowly increase in value in (3.35). The field has limiting field lines (separatrices)
through the ends of the sheet, field lines which are inclined to one another at the ends of the
sheet by 27/3. This may be shown by noting that near the upper end of the sheet at z = iL,
(3.35) becomes approximately B, + iB, = /(iL + Z)2 + L? ~ V2iLZ'? where Z = z — iL.
This may be written as
da

By +iBs = -, (3.36)

where
2 2 . ,
a= \/27JL§Z3/2 = \/2L§e”/4R3/Qe3l@/2, (3.37)

and the complex number Z has been written in polar form as Z = Re®©, (Vi = (e/7/2)1/2).
However, if A is the real part of a, then (3.36) implies that B, = 0A/0X, B, = —0A/dY, where
X and Y are the real and imaginary parts of Z and the magnetic field lines are given by

dY B,  0A/0X 0A 0A

In other words dA = 0 and so A = constant.
By taking the real part of (3.37) we can see that

A= \/2L§R3/2 cos (? + %) . (3.39)

Thus the particular field lines A = 0 are given by

30 T m 3w 5w

S r_ T om o 4

2 + 4 27 27 2 ) 2 ) (3 0)
and so © = —7/2,7/6,57/6 or 37/2. In other words the current sheet (at —m/2 or 37/2) is
inclined to the separatrices (7/6 and 57/6) by 2m/3, as required.

b) Sweet-Parker model

b

I 5 f
Jr v, B, Jv
2|${_-_____ﬁéééééfééééézz22222222222222/;/1/ 77 bV, BU

ra
N

—
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£
N

+ - ——— = 2 == - -

Fig. 3.10: Sweet-Parker reconnection.

This model consists of a simple diffusion region of length 2L and width 2] between oppositely
directed fields. Let us suppose the input flow speed and magnetic field are v;, B;. (Fig.3.10).
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The electric current is about j =~ B;/(ul) and so the Lorentz force along the sheet is (j x B), ~
jBo = B;By/(ul). This force accelerates the plasma from rest at the neutral point to vy over
distance L and so, by equating the magnitude of p(v - V)v, to the above Lorentz force, we have

2
) BzBO
-~ —. 3.41
P i (3.41)
From V - B = 0 follows
By B;
— 3.42
l L Y ( )
and so the right-hand side of Eq.3.41 may be written as B?/(uL) and we have
B2
v = e viis (3.43)

where v4; is the Alfven speed at the inflow.

Now a question is: how fast can field lines and plasma enter the diffusion region. Note that for
a steady state the plasma must carry the field lines in the same speed that they are trying to
diffuse outward, so that

Vi = VDif fuse = ? (3.44)

Conservation of mass implies that the rate (4pLv;) at which mass is entering the sheet must
equal the rate(4plvg) at which it is leaving, so that

Lv; = lv ;. (3.45)

The width [ may be eliminated between these two equations to give v? = nva;/L, or in dimen-
sionless form

M; = —— (3.46)
in terms of the Alfven Mach number
M=— (3.47)
and the magnetic Reynolds number
R, = —2 (3.48)
based on the Alfven speed.
Now, let us consider the energetics of this model. Because | <« L then v; < v4;. The rate of

inflow of electromagnetic energy is the Pointing flux E X H per unit area, or, since £ = v;B; in
magnitude,

B; B?
EHL =E—L=v,—L. (3.49)
1 1

Therefore by Eq. 3.47 the ratio of the inflow of kinetic to electromagnetic energy is

InflowK.E.  v;1/2pv2L  1/2pv?  v?
InflowE.M.  v,LB?/u — B?/u 203,

< 1. (3.50)
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In other words, most of the inflowing energy is magnetic.
Next consider the energy outflow. By conservation of flux

UoBU == UiBZ', (351)

(which is consistent with Eq. 3.42 and 3.45) and so By < B;. Outflow of electromagnetic energy
is EByl/u, which is much less than the inflow of electromagnetic energy since both By < B;
and [ < L. So what has happened to the inflowing magnetic energy? The ratio of outflowing
kinetic to inflowing magnetic energy is

outflowK.E.  1/2pv3(vol) _ 1/2v§ 1

= = = _. 3.52
inflowE.M. v; B*L/ 1 v, 2 (3:52)

Thus half of the inflowing magnetic energy is converted to kinetic energy, while the remaining
half is converted to thermal energy. In other words, the effect of the reconnection is to create
hot fast streams of plasma. In this connection it is useful to remember, that by substituting for
V x H from Ampere law and for V x E from Faraday law, we can write

V- (ExH)=E-VxH-H-VXE (3.53)
V.(ExH)=E-j+2 B (3.54)
R Y T )

which implies that an inflow of electromagnetic energy can produce electrical energy (E - j) for
the plasma and a rise in the magnetic energy. Furthermore, by taking the scalar product of j
with Ohm law E = j/o — v X B, we obtain
2

E-j=%+v-j><B, (3.55)
so that the electrical energy appears partly as ohmic heat and partly as the work done by the
Lorentz force (accelerating plasma). In our case the inflow of electromagnetic energy goes into
electrical energy, half of which appears as heat and half as kinetic energy.
There is also fast regime of the Sweet-Parker reconnection (see Fig. 3.11). The flow speed and
magnetic field at large distances L. from X-point are denoted by v, and B.. The properties
of reconnection models depend on two dimensionless parameters: the reconnection rate (M, =
ve/v4e) and global magnetic Reynolds number (R, = Levae/n)-
Reconnection is ”fast” when the reconnection rate (M,) is much greater than the rate expressed
in Eq. (3.46). Properties at the inflow to the diffusion to the diffusion region (denoted by ”i”)
may be related to the external values at large distances (denoted by ”e”). Thus flux conservation
(v;B; = veBe, through the same length, a part of flux is going out of diffusion region) may be
written as

M; B?
Then the relations (3.44) and (3.45) may by rewritten into
L 1 1 1
I =R IVIEIYIEh (3.57)
i e
l 1 1 1
L (3.58)

&~
®
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Fig. 3.11: The notation for fast regimes.

Thus, once B;/ B, is determined from a model of the external region outside the diffusion region
last tree equations determine M;/M, and the dimensions of the diffusion region in terms of M,
and Re.

c) Petschek model

In this model, most of the energy conversion takes place at standing slow-mode shocks (Fig. 3.12).
These shocks accelerate and heat the plasma, with 2/5 of the inflowing magnetic energy being
changed to heat and 3/5 to kinetic energy.

The inflow region consists of slightly curved field lines and the magnetic field is a uniform
horizontal field (B.x), plus a solution of Laplace equation which vanishes at large distances and
which has a normal component By at the shock waves and zero at the diffusion region. To
lowest order, the inclination of the shocks may be neglected, and so the problem is to find a
solution in the upper half-plane which vanishes at infinity and which equals 2By between L
and L, on the x-axis and, by symmetry —2By between —L, and —L. Now, we may regard the
normal component on the x-axis as being produced by a continuous series of poles. If each pole
produces a field m/r at distance r, then the flux produced in the upper half plane by that pole
will be mm: if the pole occupies a distance dx of the x-axis, the flux is also 2Bydz, so that
m = 2By /7 and integrating along the x-axis gives the field at the origin produced by the poles
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slow-mode shock
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Fig. 3.12: (a) Petschek model, (b) notation for the inflow region.

as

1 —L Le
—/ Mld:}: - l/ Mldm. (3.59)

T LT
Adding this to the uniform field (B,) at infinity gives

4BN L,

B; = B, — log — 7 (3.60)

But at the shock waves (slow shocks travel at the Alfven speed based on the normal field,
By /+/1p, so that (3.60) becomes

4M,

L
B; = B, (1 ~ log —e> : (3.61)

L

which is the expression for B; that we have been seeking.
Since M, < 1 and B; = B,, the scalings (3.57) and (3.58) become

L 1 ! 1
— R o, TR 5, (3.62)
L. Rpy.M? L. Rp.M,

which show that the dimensions of the central region decrease as the magnetic Reynolds number
(Rpme) or reconnection rate (M) increase. Petschek suggests that the mechanism chokes itself
off when B; becomes too small, and so he estimates a maximum reconnection rate (MJ) by
putting B; = 1/2B, in (3.61) to give

1 4M, L. L.

= log —, — ~ .
5 - ogL, T Ry, (3.63)

M~ —mM . 3.64
¢ 8log Rime ( )
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o "]

Fig. 3.13: Coordinate system used in the derivation of the tearing-mode instability condition for a sheet

current.

Unsteady reconnection: tearing mode

Let us consider instability in the sufficiently long current sheet (Fig. 3.13); J; and B; are
perturbations. This type of instability is that with finite resistivity, so Ohm law may be written
as

E{ +vy xBgy— neJl =0. (365)

We can see that the effect of finite resistivity becomes important at the neutral layers at = ~ 0,
where the z-directed magnetic field By ~ 0. On the other hand, at distances sufficiently far from
the neutral layer, the v x B term can dominate, and the plasma can be regarded as lossless.
Thus, the current sheet can be divided into two regions:

a) In the first region | z |< € the diffusion equation is valid

8B1 _ %VQB

= (3.66)

If the solution in the form Bj, ~ exp(ikz + ~vt) is assumed then the equation may be rewritten
into

d*Big 9 | Y
—(2+ ) B, =0 3.67
(Pl B -, (3.67)
where
1/2
~Acosh<k2 7“) 2. (3.68)
e

is the solution of this equation.
b) Similarly in the lossless region a >| = |> € this equation has a form

d’B, 1
Dz (ﬁ - k2> Bi, =0, (3.69)
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which solution can be expressed as

1 1/2
By, = C'sin <ﬁ — k2> . (3.70)

If we now connect the solutions from both these regions at = €, then we can derive the growth
rate as

y=e. (3.71)
e
Namely, for small z
coshz~ 14z, sinz =z, (3.72)
v\ 1
1+ <k2+—) €= (ﬁ—kQ)l/QezO, k — 0. (3.73)
Te

Reference:
Hasegawa, A.: 1975, Plasma instabilities and non-linear effects, Springer-Verlag, Berlin.

Reconnection in three dimensions

B = (z — gy, g% + Py, joy — (p+1) 2)
Potential Nulls Non-potential Nulls

(a) . _ (c} - .
p=l,_]'"=ﬂ,_n_=[:l p=025 jy=105 j, =0

. : () )
P=D.5,J||=1. _J‘j_"—_'] p=—ﬂ.5,3"=—2,jl=0.25

Fig. 3.14: Linear three-dimensional nulls. Potential nulls: (a) radial and (b) improper. Non-potential nulls:
(c¢) improper and (d) spiral, both with only parallel current; (e) radial and (f) spiral, both with perpendicular

current.

Reconnection in three dimension differs essentially from that of in two dimensions. For a 3-D
neutral point, the structure consists of two main features (Fig. 3.14a): a spine and fan surface.
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The spine is made up of two field lines that are directed into (or out of) the null. The fan
consists of a surface of field lines that are pointing away from (or into) the null. Other flux
surfaces in the vicinity of the null consist of field lines that run almost parallel to the spine
before spreading out below the fan plane. In a positive null the field along the spine is directed
into the null and the fan field lines spread out from the null; similarly, a negative null has field
lines pointing towards the null in the fan and directed out along the spine.

The structure of any null is defined by four parameters (p, g, 5, j1); the current is equal to

so the parameters j; and j, represent components of current parallel and perpendicular to the
spine, respectively, while p and ¢ are associated with the potential part of the field. We define
Jthresh, called the threshold current, to be equal to

jthresh =1/ (p - 1)2 + q2. (375)

To investigate the different types of 3-D null points we first consider potential null points, which
have a general form

B = (z,py, —(p + 1)2). (3.76)

They can either be radial (p = 1) or improper nulls (p > 0 and p # 0) (see Fig. 3.14a and
Fig. 3.14b).
Non-potential nulls, however, have the form

B = (z+(¢—34)y/2 (a+7)=/2 +py,jry — (p + 1)2). (3.77)

These nulls may be divided into two categories: those that only have current parallel to the spine
and those that have a component of current perpendicular to the spine. For example, two types
of null with only parallel current are illustrated in (Fig. 3.14c and Fig. 3.14d); an improper null
where j| < jinhresh and a spiral null where jy > jipresn, respectively. Two examples of nulls with
the perpendicular current are radial null (jH = 0) and a spiral null (jH > Jihresh) (Fig. 3.14e and
Fig. 3.14f).

Reference:

Parnell, C.E.: 1996, Proceedings of YOHKOH Conference, Bath, England, p. 19.



39

Kinetic reconnection
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Fig. 3.15: Structure of the x-line: (a) in-plane magnetic field, (b) in-plane velocity, (c) out-of-plane ion current,

(d) out-of-plane electron current, out-of-plane magnetic field.

There are attempts to simulate the magnetic reconnection not only in the MHD approximation,
but in a more general kinetic approach. In Fig. 3.15 the results of the hybrid modelling with
2048 x 512 grid points and 20 million particles are shown. Here, differences between electron
and ion currents can be seen, which it is not possible to simulate in the MHD models.

Reference:

Shay, M.A., Drake, J.F, Rogers, B.N., Denton, R.E.: 1999, Geophys. Research Letters, Vol. 26
(14), 2163.

Connectivity and quasi-separatrix layers

As seen in Fig. 3.16 magnetic field lines form domains in which they connect the photosphere.
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Fig. 3.16: The model of the magnetic field of four sunspots of pairwise opposite polarity. The boundary
surfaces D; and Ds cross in the corona at a topologically singular magnetic field line, the separator, which
connects the points X; and X» in the photosphere. The contour f is an example of a field line connecting the

distant sunspots N and S.

Fig. 3.17: Flaring AR 2779 on November 12, 1980: example of quadrupolar region formed by two extended
bipoles. (a) Observational data: hatched regions - Ha flare kernels and longitudinal magnetic field. (b) Intersection
of the QSLs with the photosphere for a linear force-free extrapolation (a= -0.019 Mm™"') with field lines and

current-density regions. (c,d) Perspective views of (b), with field lines drawn as surfaces.

These domains are separated by separatrices, which can cross in the separators. The separator
can be formed by null magnetic field line. If there is non-zero component of the magnetic field
along these separatrices then it is useful to define so called quasi-separatrix layers (QSL). These
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QSL are regions where a drastic change in field-line connectivity occurs, i.e. where field lines
initially close separate widely over a short distance. Let us integrate over a distance s in both
directions the field line passing at a point P(z,y, z) of the corona. The end points of coordinates
(',y',7') and (z",4",2") define a vector D(z,y,2) = X1, X9, X5 =z — 2’y — 4/, 2" = 2. A
drastic change in field-line connectivity means that for a slight shift of the point P(x,y, z),
D(z,y, z) varies greatly.

The function N, defined by

N(a,y) = J S (50 + (50 (3.78)

i=1,2

N(z,y) is defined only at the photospheric boundary and is the norm of the displacement gra-
dient tensor defined when mapping, by field lines, points from one section to another of the
photosphere. The locations where N (z,y) takes its highest values define the field lines involved
in the QSLs. By following these lines we can locate the coronal portion of the QSLs - see Fig. 3.17.

Reference:

Demoulin, P., Bagala, L.G., Mandrini, C.H., Henoux, J.C., Rovira, M.G.: 1997, Astron. Astro-
phys. 325, 305-317.

Triggering of reconnection by a passage of the shock wave through
the current sheet

See file trigger.pdf
Reference:

Odstréil, D., Karlicky, M.: 1997, Triggering of magnetic reconnection in the current sheet by
shock waves, Astron. Astrophys. 326, 1252-1258.

Shear magnetic field reconnection near the the 3-D null point
Numerical Model

Computations are performed in the 3-D numerical box with 41 x 41 x 41 grid points (800 X
800 x 800 km). The numerical code which solves the set of MHD equations is based on the
FCT algorithm.

In the initial state the magnetic configuration corresponding to the 3-D null point is generated
(Fig. 3.18).

B(G) = (x_xo;y_yo;—Q(z_zO)>, (3.79)
00 Yoo 200

where g = 4 x 10° m, zgp = 4 x 10* m, yo = 4 x 10° m and zgp = 4 x 10* m. The layer near the

plane Z =1 is called the fan, and the central vertical line in the structure is called the spine.

The initial temperature of 106 K and the plasma density of 10~ kg m~3 is put constant through

the system (coronal conditions). The plasma parameter [ is thus everywhere 5 > 1.

The shear plasma flow which continuously deforms the initial magnetic field lines is used in the

following form:

v = vp tanh (z — z”) , (3.80)

Zy
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where vy = —10° ms™!, 2y = 4x10° and 2z, = 10° m. Free boundaries around the computational
box are considered.

For a modelling of reconnections the anomalous resistivity was assumed in the X — Y layer
between 320 and 480 km, and its value was chosen to be 7, = 2 x 1076 s.

Results

We made two types of computations: with and without the anomalous resistivity at the fan layer.
Namely, at this layer where the electric current density is increasing during the shear plasma
flow the anomalous resistivity can be naturally generated. The case without this resistivity is
considered for comparison.

First, the current density in the central box point for both cases are compared (Fig. 3.19).
While in the case without the resistivity the current density is linearly increasing as expected
from theoretical estimations, in the case with the resistivity the current density increases more
slowly up to the saturated value corresponding to the steady-state of reconnection.

The results of computations are shown in Figs 3.20 and 3.21. Figure 3.20 shows a deformation
of magnetic field lines due to the shear plasma flow without taking into account the resistivity;
on the other hand Figure 3.21 shows this deformation simultaneously with the flipping of lines
due to the anomalous resistivity. Comparing the magnetic field lines in these figures we can
see that the magnetic field lines reconnect in the fan layer. Thus, the magnetic field lines from
one side of the fan connect magnetic lines on the opposite side and crossing the plane Z = 1.
Simultaneously, their connections in the fan layer are changed over a broad range of angles: the
maximum is near the spine (180°); this angle is decreasing with the distance increase from the
spine.

Fig. 3.18: The initial state of the magnetic field configuration.

Reference
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Fig. 3.19: Evolution of the normalized electric current density at the central box point for the case without

(full line) and with (dashed line) the anomalous resistivity in the fan layer.

Karlicky, M.: 1997, Shear magnetic field reconnection near the 3-D null point, Hvar Obs. Bull.
21, 1, 91-96.

Priest, E., Forbes, T.: 2000, Magnetic reconnection: MHD theory and applications, Cambridge
University Press, Cambridge, UK.
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Fig. 3.20: Magnetic field lines at 2 s for the case without the anomalous resistivity. X,Y, and Z scale units
are 400km.

A
~N =
— NS
<o
> - = 2z
PN -y NS
SS= D7 ~~

Fig. 3.21: Magnetic field lines at 2 s for the case with the anomalous resistivity. X,Y, and Z scale units are
400km.



Chapter 4

Helicity

An evolution of some energy integrals of physical systems is commonly used for a system de-
scription. In the solar corona for a description of e.g. flares or prominences we can use the
volume integral of the magnetic field energy:

B2

—dV. 4.1
vV 20 (4.1

Emag =

A disadvantage of this approach is that the coronal magnetic field consists of a strong component
of the potential magnetic field which is produced by sub-photospheric electric currents. This
part of magnetic energy remains constant during active processes in the solar atmosphere. On
the other hand, only a small part of the magnetic field energy, corresponding to electric currents
in the solar atmosphere, can be transformed into other energy forms and can be dissipated.
For these reasons an another volume integral, called helicity, was proposed for a physical de-
scription of these phenomena

H =/ A -BdV, (4.2)
14
where
B=VxA,
where A is the vector potential.
It can be shown that the helicity is directly connected with twists and linkings of magnetic field
lines, which simultaneously expresses electric currents in the system. Thus, the helicity describes
a part of the magnetic field energy which can be released during solar flares, and therefore the
helicity is useful tool for active phenomena description.
Helicity conservation
Let us calculate a time change of the helicity:
0 0B 0A
— A-BdV:/A-—dV /—-BdV.
i | a® T o

Now, using the induction equation

%—?ZVX(VXB),

45
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iavai?A:VX(va),
ana—?=V><(v><B),
88? (vxB)=-E,

(where the last equation expresses Ohm law) we can continue in the helicity conservation cal-
culations

/A VxAdV-l—/ BdV:/A-ana—?dV-l-/aa—?-VxAdV. (4.3)

The right side of this equation can be rewritten using the vector identity

0A 0A U x A AvxaA

v'(AXat)_at ot

as

—/V Ax—dV-l-/2 -V x AdV.

The last term is zero, because 0A /0t = v x B and V x A = B, and thus their scalar product
is zero.

It means that for time change of helicity we can write
0 0A
— A-BdV:—/V-A —)dV,
ot / (A x50
and using Gauss theorem
/ A-BdV = / A x —dS (4.4)
Then, if 0A /0t = —E = 0 at the system boundary then the helicity in the system is conserved.

Now, let us show that the helicity is invariant to a gauge transformation. Performing this
transformation A’ = A + Vy (namelyV x Vy = 0) we can write

H'—H:/Vx-BdV,
and using
V-xB)=Vx-B+xV-B, V-B=0,
the helicity difference is
- "= /V(XB)dV — /SXBdS, (4.5)

which vanishes only if B, = 0 at the system boundary, since x is arbitrary. Thus, in infinite or
closed system the helicity is conserved and it is gauge-invariant. But this general statement is
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not very useful for practical purposes. Therefore other forms of the helicity integrals need to be
constructed.
Let us define the so called relative helicity in a finite system as

= [ (A+A0)-(B-Bo)aV, (4.6)
1%

where Ay and By correspond to the potential magnetic field with the same boundary conditions
as A and B.

Now, let us calculate the time derivative of this helicity: (The auxiliary relations are Ey =
0; Vxo = 0;0A(/0t = 0;0B( /0t =0;0A /0t = —E — Vx;0B/0t = -V x E.)

%:/(W-(B—BOH(AjLAU)-a(Ba_tBO))dV,
%—?:/(%—?-(B—Bo)-l-(A-l-Ag)-%—]?)dW
O [(-B -9 (B~ Bo) (A + A (V x B))V,
88—7:/(—E-B-I-E'BO—VX'(B—BO)—(A'i‘AO)'(VXE))dV-

In the following the vector identity

V- (x(B—Bg)+Ex(A+Ay) = (4.7)
xXV-(B—-By)+Vx-(B—By)+(A+A) -VXxE—-E-B-E-B,,

where E-VxA=E-B, E-VxA;j=E:-Bj, V:-(B—-Bg) =0, is used. After a manipulation
and using Gauss theorem we can write
oH
97 _ —2/ E.BdV — / (x(B=Bo) +E x (A + Ag))dS. (4.8)
ot 1% s
The first term on the right side of this relation expresses the Ohm dissipation as can be seen
replacing the electric field as E = B x v + 1,j, where j is the electric current density. Thus the
relative helicity is conserved in the spatially limited system when the Ohm dissipation is low (in
coronal conditions it is usually fulfilled) and B,, = By,; E = 0.
If the Ohm dissipation is neglected and A = A, then the change of the relative helicity in the
system is given by two term:
OH
97 _ —2/ Ao x EdS = —2/ Ao(B x v)dS = (4.9)
ot s s

= —2/ (A - v)BdS + 2/(A0 -B)vdS,
S s

the first term expresses a change of the relative helicity due to shearing motions at the system
boundary and the second one represents a direct ’inflow’ of the helicity.
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In the solar physics studies there are attempts to evaluate the helicity change caused by photo-
spheric shearing motions. For simplicity, let us assume that the photosphere is locally planar at
the scale size of the active region. Then a change of the helicity can be written as

on _ 2/ (Ag - v)BndS = 1/ / RXVE) | g 0B, (')dsds’, (4.10)
ot S 7 Js s R2

where R = r — r’ is the difference between two spatial positions on the photospheric plane, and
By, is the magnetic field component perpendicular to the photosphere. This equation involves
a double integration on the boundary. Since the integrations are done on the same surfaces,
S = 8', we can exchange r and r’. This yields a new equation that summed up with previous
equation gives:

L[ RO VO
97 _ F/S/ = I Bn(r)Bn(r')dSdS'. (4.11)

Let us define # as the angle between R and a fixed direction (e.g. the east-west direction) with
trigonometric convection (counterclockwise), then:

dd R x dR/dt

A
(with dR/dt = v(r) — v(r’)) the equation (1.11) is transformed to:

at =5 / / , (r')dSdS'. (4.13)

This equation shows that the helicity injection rate can be understood as the summation of the
rotation rate of all the pairs of elementary fluxes weighted with their magnetic flux.

(4.12)
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Simple numerical schemes for a
solution of MHD equations

Using a simple equation

ou ou

— =V 5.1

ot V0w (5.1)
as an example, let us show some numerical methods which may be used for a solution of gen-
eral MHD equations. Namely, du/dt + v0u/0x.... is a part of these equations. A numerical

approximation of Eq. 5.1 may be

ntl _ . n no_gn
U U] u]+1 u]_l (5 2)

J :—1)7’

At 2Az

where At and Ax are the time step and grid step, respectively. Rearranging this equation we
have

“?H = uj — %(U?ﬂ —uj_q). (5.3)
Let u vary like uj ~ eilkzj—wndt) where xj is the j-th grid point coordinate jAz. From Eq.5.3
we obtain
cilkiAr—w(nt1)At) _ i(kjAz—wnAt) _ % (ei(k(j—l-l)Ax—wnAt) . ei(k(j—l)Ax—wnAt)) : (5.4)
and after dividing by e!(kidz—wnA?)
pmiwAt _q _ %(eikAx _ eikATy, (5.5)
The amplification factor g = u;-""l / uy = e @A is then according to the previous equation
g=1- i%sin(lﬂAaz), (5.6)
and its modulus
lg|>P=1+ (%)2 sin?(kAz) > 1, (5.7)

which shows that this scheme is always numerically unstable.

49
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Lax scheme

In this approach we write Eq. 5.1 as

1 VAN
u;.’-i-l - §(u?+1 +uj_q) — E(“?ﬂ —uj_q). (5.8)
Then it can be rewritten into
piltkide—wmnan _ 1 (ei(k(j-l-l)Ax—wnAt) n ez’(k(j—l)A:z:—wnAt)) (5.9)
2

’

VAL [ s k(i
- i(k(j+1)Az—wnAt) _ i(k(j—1)Az—wnAt)
2Ax (e ¢ )

kjAz—wnAt)

and after dividing by el the amplification factor is

v At

g = cos(kA) —i—sin(kAx), (5.10)
Ax
and its modulus is
g 2= 1 — sin2(kAx) (1 o). (5.11)

The scheme is stable when | g |2< 1. This condition is fulfilled if

At < Az/v. (5.12)
Lax-Wendroff scheme
Let us consider a simple equation
ou OF
e T, 1
5 + o 0, (5.13)

where F' = uv (v is constant), as an example. The Lax-Wendroff scheme consists of two steps:
The first one is according to Lax scheme over a half time step

At/2

UT}+1/2 _
2Ax

i 1/2(uj_y +ujiq) = (Fi = Fioy), (5.14)

J

and the second one over a full time step follows as

Uu u

At
n+l _ n+1/2 n+1/2
i = ;?—E(Fj+1 —F70). (5.15)

There are many further explicit as well as implicit schemes. The leap-frog scheme was described
in details in the above mentioned particle code. Further important approach is so called ”flux
corrected transport method”, which is successfully used in MHD tasks with shock waves.
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Plasma emission processes

In this chapter, only a general approach is presented. For more details and applications see:

Melrose, D.B.: 1980, Plasma Astrophysics, Gordon and Breach, New York.

6.1 Waves in plasmas

6.1.1 Wave equation

Due to many types of particle motions, in plasmas (especially in plasmas with the magnetic
field) many types of waves can exist. This broad variety follows from a high complexity of the
plasma response to electric or magnetic field perturbations. The electric (E) and magnetic (B)
fields in plasmas are described by the system of Maxwell equations:

0B 1
VXE=—— V-E=—
X ot Eop
(6.1)
1 OE
B = i [ .B =
v x ol T2 5 v 0

where j is the electric current density and p the charge density. These two quantities satisfy the
charge continuity equation

dp
—+V-j=0, 6.2
5 TV (6.2)
what implies from the set (6.1) as follows
OE 10
v. oo
ot €0 ot
1 0p
2 2.
: B -
V.- (e°V x 1oc’j) "

Another useful equation is that for energy conservation, which can be derived as

0B
B- E+B—=0
V X E+ BN ;
.1 OE

o1
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Using now the vector identity
V- (ExB)=B-VXE-E-V xB,

we can write

ot +€0

o (1Bl _|EP
2,&0 2

>+V-(E><H):—E-j. (6.3)

This equation expresses the conservation of electromagnetic energy; its change is due to Poynting
vector flux E x B/pug and Ohm dissipation E - j.

For the purpose of formal theory of waves it is convenient to express Maxwell equations in
natural basis of harmonic functions. Thus Fourier transforming the set (6.1) one obtains:

k x E=wB (6.4)

k x B = —iugj — — - E 6.5
C .

k-E=——p (6.6)
€0

k-B=0. (6.7)

It is clear that the equation (6.7) is redundant since it follows directly from eq. (6.4), but
with one exception — in the case of w = 0, i.e. in the case of static fields, the reduction of the
system of equations does not apply. Thus, static fields have to be treated explicitly in further
considerations. This is closely related to the well known problem of the fourth Maxwell equation
(V-B = 0), which should be considered as the initial condition rather than independent relation.

From the set of three remaining equations the general wave equation in the form

k x (k x E(k,w)) + i—;E(k,w) = —iwpoj(k,w) (6.8)

can be derived, where equations (6.4) and
wp(ka w) =k j(ka w)a

which is just the Fourier transform of continuity equation (6.2), should be considered as defini-
tions of auxiliary quantities B and p in terms of basic quantities E and j, respectively.

The current density j at the right-hand side of the general wave equation can consist of two
parts:

1. The current caused by induced motion of particles in plasmas under influence of electro-
magnetic field j¢.

2. The extraneous current j***.

In the first approximation the induced part of the current is linearly related to electric field
according to generalized Ohms law (in usual tensor notation):

3 (k,w) = 045k, w) - Bj(k,w) (6.9)

where 0;;(k,w) is the generalized conductivity tensor and usual Einstein’s summation law was
applied. For the formal purposes it is much more convenient to use another tensor describing
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the linear plasma response to electric field perturbation. The dielectric tensor €;;(k, w) is defined
as:

)
gij(k,w) = 055 + — - 0y (k,w) (6.10)
wEeo

with ¢;; being the Kronecker delta (the unit tensor). Separating the current density into induced
and extraneous parts and using Ohms law (6.9) and dielectric tensor definition (6.10) the wave
equation (6.8) may be re-written into the form:

A B | e
w? ; b weg”! wegt
’k x (k x E) i iy
(T i+ (05 + w—goaij)Ej - i
Ak, w) - Bj(k,w) = ——— i (k, w) (6.11)
wEe(
where the dispersion tensor A;;(k,w) is defined as
k2c? (kik;
Aij(k,w) = 2 < ;CQJ — 5z’j> +€i]‘(k,w). (6.12)

The equation (6.11) represents a set of three linear equations with components of the extraneous

current density j°*!(k,w) as explicit source terms.

Except of this explicit source term there is also an implicit one hidden in the dielectric tensor.
The dielectric tensor can be separated into two parts — hermitian and anti-hermitian

a

__.h
€ij = €ij T Eij>

sﬁlj =1/2(ei5 +€3;),

ey = 1/2(ei5 — €5:),
whose describe different kinds of plasma response to an electric field perturbation. While the her-
mitian part of €;;(k,w) describes time-reversible component of the response, the anti-hermitian
part causes wave energy changes, either negative (damping of waves) or positive (amplification
or by other words negative damping/negative absorption of waves).

6.1.2 The dispersion equation of linear waves

The question arises what is behaviour of the electric field perturbation in the case without
dissipation and extraneous sources. One has to solve homogeneous form of the equation (6.11)
in which also the implicit source term in the dielectric tensor (the anti-hermitian part) is omitted,
ie.

Ali(k,w) - Ej(k,w) =0, (6.13)

where A?j(k,w) is the hermitian part of the dispersion tensor. Solution of such a system of
equations exist only if the relation

A(k,w) = detA}(k,w) =0 (6.14)



54 Chapter 6: PLASMA EMISSION PROCESSES

is fulfilled. The condition (6.14) represents the general dispersion equation for linear non-damped
waves in plasmas. To rewrite it to the usual form of the dispersion relation for a specific wave
mode one has to express the frequency w as a function of the wave vector k. This is not unique
operation in general, however, many branches of waves with different dispersion relations

w" = w"(k) (6.15)

can be obtained. Each branch w™ (k) represents one wave mode m.

6.1.3 Polarisation vectors

Inserting relation (6.15) into the homogeneous equation (6.13) a solution for specific wave mode
can be found. According to known rules of linear algebra the vector that solves (6.13) has to be
the eigen-vector corresponding to the zero eigen-value of the tensor

Ali(k) = A} (k,w™ (k).

Namely, one eigen-value of the matrix representing a homogenous set of equations is zero. The
corresponding eigen-vector is not determined uniquely since in the homogenous set of equations,
with its determinant equals to zero, the number of linearly independent equations is less than
the number of vector components. Therefore it is convenient to choose an unimodular complex
vector €™ (k) as a representative of all solutions of the equation (6.13) for given wave mode.
Such vector is called the polarisation vector and besides the dispersion relation (6.15) it is one
of the basic characteristics of the specific wave mode. For example, from the polarization vector
the magnetic and induced current vectors can be derived; using Eq. (6.4) and (6.9).

6.1.4 Energetics in the waves

The electric perturbation in plasma waves induces also the perturbation of magnetic field and,
due to medium response, also variations of plasma velocity, stresses and pressure. All these
perturbations raise the total amount of energy contained in plasmas and the difference over the
equilibrium state can be ascribed to the waves. Thus, for the total wave energy of the mode m
we can write

wr (k) = wif (k) + wiz (k) + wy' (k).

It is straightforward to compute the electric or magnetic field energy in waves knowing the
electric field amplitude:

E™(k)|?
win (i) = DET (6.16)
v
and using Eq. (6.4)
iy = (50) 0 Koo s

On the other hand, mechanical energy connected with plasma motions and stresses is hard to
be identified in general. Nevertheless, the total amount of energy contained in particular wave
mode can be, fortunately, related to the electric field energy in this mode independently. The
first is to include the anti-hermitian part of the dielectric tensor €j; as a small correction in the
dispersion equation. To first order one can write

det(A}s +ef;) = A+ Nijel. (6.17)



6.1. Waves in plasmas 95

Now damping of the waves is taken into account by allowing w to have a small imaginary part
—i7/2, such that the wave energy damps as e~7!. Then, to lowest order in the terms associated
with wave damping, Eq. (6.17) gives

1y OA
2 Ow

which is evaluated at A = 0. Similarly we can allow k to have a small imaginary part —ip/2
Then Eq. (6.18) has a form:

+ Aijels = 0, (6.18)

D At et WP (6.19)

On the other hand, for the energy w™ damped as e 7" and the energy flux F™ damped as e "
we can write

ow™
Fm_ m
ot V- @,

yw™ + pF" = -Q™, (6.20)

where Q™ is the source or damping wave term.

Now, comparing Eqgs. (6.19) and (6.20) one has

Fm <8A 8A> o™
w=wm

_ m
_v'g

wn — \ 9k’ dw ok
The result implies that the velocity of energy propagation is the group velocity.

Moreover, the term

m 2t ;€2
yo QT ZNG (6.21)

wm (@)
0w ) y=gym
is the absorption coefficient. Besides this relation there is a theoretical procedure in which
the ratio between Q™ and wf can be derived. Then by a comparison of these ratios the

quantity R% = wi /w™, expressing the ratio between the electric and total wave energies, can
be determined.

6.1.5 Specific wave modes

As an illustration of determination of particular wave mode and its characteristics from the gen-
eral dispersion equation (6.14) one may choose well known Langmuir, transverse and ion-sound
waves in plasmas without ambient magnetic field. The first thing has to be done is calculation
of the dielectric tensor. The kinetic approach gives for unmagnetized plasmas following result
(Melrose, 1980, p. 40):

El]( = (51] + Z qOL

80(4)

/ (w =k -v)ds; + ksv; _v._afa(p)

d3 6.22
w—k-v+i0 Y Ops P (6:22)

the sum is performed over each particle species a and small imaginary part in the denominator
indicates that correct integration path according to Landau prescription has to be used. For
isotropic medium the dielectric tensor can be separated into longitudinal(e') and transversal ()
parts as:

il ) = €l(k,0) - gl (k) (51-].— k;) (6.23)



56 Chapter 6: PLASMA EMISSION PROCESSES

and explicit calculation for Maxwellian distribution function gives (Melrose, 1980, p. 50):

£l ) = 14 Y iy [ 9lm) + 1V exp(—17)

(6.24)
t Wha . 2
e'(kw) = 14 30~ [~$(ya) +iv/7ya exp(—42)] -
«
Here, wpq and Ap, are appropriate plasma frequencies and Debye lengths, respectively:
2
2 — In’Oan _ Va
= , ADa = —, 6.25
wpa Mago Da Wpa ( )

and the following dispersion function (V,, = kT /m, designates thermal velocity of particles of
species a) was used:

w

d(y) = 2y exp(—y?) /Oy exp(t*)dt, Ya = v

dly) =2¢y* —4/3y* + ... for |y?|< 1, (6.26)
d(y) =14+1/(2°) +3/(4y*) + ... for |52 > 1.
Inserting the hermitian part of the dielectric tensor (i.e. retaining real parts of longitudinal

and transversal components only) in the form of (6.23) into the equation (6.14) the dispersion
equation

Re{e(k,w)t) - (n? —Reqel(k,w) g 0 (6.27)
(Re{e'(kw)}) - (0" = Re {/ () })

is obtained with the refractive index n defined as

ck

—

n

Now, expanding the function ¢(y) into series for the high-frequency limit (y > 1) and retaining
only first few terms of electronic contribution to this function (the contribution of ions is reduced
by factor of m./m, relatively to that of electrons) the transversal part of the equation (6.27)
becomes )
Woe
w2

n?=1-
or using the refractive index definition, it can be written in more familiar form
wi(k) = wge + k% (6.28)

The just derived equation (6.28) represents the dispersion equation for transversal (electromag-
netic) mode. Additional relations for this mode are:

k 1
e- A =0, RtE = 9
expressing transverse character of this mode and the ratio between electric and total wave energy.

The longitudinal part of Eq. (6.27) gives two wave modes depending on the frequency limit
used. For w > kV,, i.e. y. > 1 the expansion of the function ¢ yields dispersion equation

1 12k2V2  34k4VH4 1%
1+2—2<1_1__ 7 | =0 whe =15
k2%, 2 w 4 w Abe
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w (k) = wy, +3K°V?, e=—, Rip=—— (6.29)

2
2wg,

k o

k

which describes well known Langmuir waves.

On the other hand, expanding formulae for longitudinal part of the dielectric tensor in the limit
kV € w < EV,

the ion-sound mode with the dispersion equation is

2

Wy 1
Reeln~1 -2 ,

w2+k2)\2De

k2c? k w?

2 S s

w (k) ~ 5.9 » €= —, RE = —5, (630)
1+ kQA%e k ngi

is found. Here, the ion-sound wave speed c; is defined by

Cs = Wp; * >\De-

6.2 Spontaneous emission

If wave emission processes are taken into account then, in general case, the inhomogeneous wave
equation
i
A?j(k,w) Ej(k,w) = —w—gojfa’t(k,w) (6.31)

with the source term, needs to be solved. Specifically, j*** is assumed to include the the term
with the anti-hermitian part of the dielectric tensor

5 (ke w) = —iweoed (k,w) By (k) + o (6.32)

which includes not only the normal absorption of waves, but in specific situations also negative
absorption (amplification) of waves. But in the source term can be also further contributions.

Remark: Analyzing the equation of continuity for electromagnetic waves

o (|B]*? |EP B .
m(% + |V (ExH) =B (6.33)

it is important to see a difference in methods used in calculation of power radiated in plasma and
in vacuo. In the plasma this power is calculated as a volume integral of the work done by the
extraneous current against the electric field which it generates (the right-hand side of Eq. (6.33).
In vacuo the power escaping is found by integrating the radial component of the Poynting vector
E x H over the surface of an infinite sphere. In the plasma this method makes problem be-
cause in this case the Poynting vector does not give the total energy flux in the waves, in general.
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6.2.1 Energy radiated by extraneous current

The extraneous current on the R.H. side of the expression (6.11) represents a source term in the
wave equation. The wave energy U radiated (or absorbed) by this source is given by the work
of the extraneous current against the consistent electric field of the wave, i.e.:

+o0
U—/ /f“ "E(r,t) d®c dt =

- _/_;OO/Re {jezt(k,w) -E(k,w)} 8371){33—:,

(6.34)

where the Parcevals power theorem was used. Solution of the wave equation (6.31) can be
expressed as

Ei(k,w) = ——Azk (k,w) - j£% (k,w), (6.35)

wEeo

where the matrix A,' (k, w) is the inversion operator to the dispersion tensor (6.12) and according
to the tensor algebra rules it is written down using its co-factors (sub-determinants of transposed
matrix) A\ as:
Air (K, w)
Ak, w)

Now, inserting the particular solution (6.35) into the formula (6.34), the wave energy generated
by the extraneous current density j**! can be computed. Contributions to integral over w are zero
(because the integral is from the real part of apparently imaginary quantity) with exceptions of
the poles of function in integrand. Such residues have to be treated carefully, and the integration
has to be performed over the path in the complex plane according to Landau prescription, i.e.
near the zeros we approximate A as

A1;€1 (ka w) =

Ak, w) ~ (w — w™(K) + i0) <g£>w e

Each residue is connected with one zero of A(k,w), and thus each pole represents the energy
radiated in one specific wave mode. Explicit calculation gives for energy radiated by extraneous
current in wave mode m the expressions:

+oo A A’k dw
- _9 ext exti} aw
/ /Re{ )J’“ A S @m)eon
_ ‘0) (2A 2m)3 21
(w — wn (k) + i0) (&u)w:wm(k) (2)

Now using the Plemelj formula,

1 1
=P 70 (w —
w — wpy 40 w—wosz (w = w),

where P denotes the Cauchy principal value:

1 . 1
P— =limy_,y — for |w|>|n]|,
w w

1
P— =limy, 0 for |w |<| 7|,
w
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we can write

oo ) A; d’k dw
-9 -ext b emt ik oo — o™ aw
v=-2 /m{h(w%m i (Cimd(o —w™) | G

o0 ) Aggeel d*’k dw

- _9 ext _L cext 7\$8Yy “k (- 5 _,m haad

v=-2 /m{n(umnk—%?4zww W) T3
R7 (k) 2 d%k

where the bar over the polarisation vector €™ (k) means complex conjugation as usual. Appar-
ently, the quantity

_ Rp(K)

u™ (k)
£0

[em(k) -5 (i, ™ ()|

(6.36)

that represents the wave energy generated by current density j*** (k,w™(k)) in the mode m per
unit cube of k-space, or its time derivative — the radiated power

p"(k) = lim u™ (k)

T—00 T

(6.37)

will be more relevant ones for computation of radiation in particular emission processes.

6.3 Plasma emission mechanism

Standard radiative mechanisms — the bremsstrahlung and gyrosynchrotron radiation are consid-
ered also for solar corona radio emission, particularly for quiet sun radiation and slowly-varying
solar radio component. Nevertheless, solar radio bursts that often consist of intense narrow-band
fine structures hardly could be explained in terms of these processes since they have by their
nature broad-band emission spectrum. Moreover, there is quantitative disagreement in values
of radio flux predicted considering these mechanisms.

On the other hand, very hot and sparse coronal plasmas may, due to lack of collisions, easily
be in the state of thermodynamic non-equilibrium with non-Maxwellian distribution function,
particularly during solar transient events (e.g. flares or CMEs). Under such circumstances the
anti-hermitian part £f;(k,w) of the dielectric tensor (6.22) can result in negative values of the
absorption coefficient (6.21) in some range of wave-vectors for the specific wave mode m. One
then says, that distribution function is unstable with respect to generation of wave mode m
within some range of k-space. The negative absorption is also often called stimulated or induced
emission.

Such self-generation of waves in unstable plasmas, similar to light amplification in lasers as will
be seen further, represents the basis of so called plasma emission mechanism. Since there are
many types of distribution functions unstable to large amount of wave modes the term “plasma
emission” should be regarded as generic name for all radiative processes based primarily on the
negative absorption of particular wave modes.

For the electromagnetic mode which only can escape from the coronal plasmas and reach Earth
radiotelescopes the absorption coefficient (6.21) is always positive with one exception of so
called electron-cyclotron maser radiation. Thus, some mechanism of conversion between unsta-
ble plasma modes and the electromagnetic one is required. Such mechanism is possible due to



60 Chapter 6: PLASMA EMISSION PROCESSES

non-linear coupling among variations of plasma parameters (e.g. electric and magnetic field,
electron density etc.) in different wave modes.

To sum up, plasma emission mechanism is generic name for class of radiative processes working
usually in the following two stages:

1. the wave mode m unstable in some range of k-space is generated due to deviation of
distribution function from equilibrium Maxwellian distribution.

2. this mode m is converted via non-linear coupling into the electromagnetic one that escapes
solar corona and can be detected on Earth.

Since the region of unstable waves in k-space is usually limited to small extent and also the
wave mode conversion is strongly resonant process as will be seen later, resulting radio emission
is narrowband and possibly with fine structures as usually observed during solar radio bursts.

Due to mentioned similarity with radiation amplification in lasers it is convenient to adopt
principle of detailed balance between emission and absorption processes used in radiative transfer
elementary physics and quantitatively expressed using the Einstein coefficients. The theory built
on these axioms will be in usual quantum notation briefly reviewed in the following.

6.4 Weak turbulence theory

Stimulated emission and other induced processes such as wave-particle or wave-wave scattering
can be under some assumptions described consistently within the weak turbulence theory. It is
based on semi-classical formalism — the particles in states with momentum p are described by
distribution function f(p) while the waves in mode m with wave-vector k is described by the
occupation number N™(k) (number of quanta of wave mode m in state with momentum hk)
defined as: -
N — 20

= 7m0 (6.38)

Such description brings not only the advantage of uniform treatment of various induced processes
from the wave generation point of view, but also it enables consistent estimation of back-reaction
of particles to wave radiation or absorption since the principle of energetic balance is imposed
on microscopic level here. On the other hand, approach (6.38) to wave distribution disables
correct description of coherent processes since the phase information about mode depicted by
occupation number is lost. Thus, the assumption that phases of waves are unimportant — so
called random phase approzimation — plays key role in the weak turbulence theory. Coherent
processes will be discussed in the next section 6.5, however such general theory as in case of
incoherent emission has not been available yet.

One may start with subset of this general description applied to stimulated emission of waves
due to unstable particle distribution function and its back-reaction to wave generation — so called
quasi-linear theory.

6.4.1 Quasi-linear theory

Transferring wave generation and/or absorption processes onto microscopic level one has to use,
according to quantum physics, probabilistic description of each elementary emission/absorption
action. This is usually done introducing the Einstein coefficients.
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Einstein coefficients Consider two states described by particle momenta p and p~. Let the
total number of particles in state p is N, and N,- for the state p~, respectively. According
to quantum theory the transition of one particle between states p and p~ is accompanied by
emission or absorption of quantum of waves with frequency given by condition

hw = | E(p) — E(p)]. (6.39)

Here, E(p~) and E(p) are particle energies in the states p~ and p, respectively. In case of free
particles the energy of the state p reads in non-relativistic limit

Bp) = 2 (6.40)

with m being the particle mass, components of state vector p are simply Cartesian components
of particle momentum.

hoo (K)

Fig. 6.1: Absorption and emission processes due to p* <+ p and p <> p~ state transitions.

Now suppose that E(p~) < E(p) (see Fig. 6.1) and consider probabilities (transition rates)
W:T_’st(k), WZ;’fp (k) and wZ;’fnd(k) of transitions between the states p and p~ due to absorption,
spontaneous and induced emission of quantum of mode m with wave-vector k (referred as (m, k)

quantum further) per unit time, respectively. The rates WZL’ZbS(k), w™P(k) and w™"(k)

- pp— pp~

represents Einstein coefficients for transitions p = p~. The total rate of transitions p~ — p
due to absorption is
_ dN™ (k) m,abs

= = Wt (k)N N (k) (6.41)

while total rate of transitions p — p~ as consequence of spontaneous or induced emission reads

de(k) — Wm,sp

dt pp~ (k)Np + Wm’fnd(k)Nme(k)- (6.42)

Pp

The relations between the Einstein coefficients can be obtained in the state of thermodynamic
equilibrium but it should be noted, that resulting relations are valid regardless of macroscopic
state of plasma-waves system as they are fundamental characteristics of the p = p~ transitions.
In the state of thermodynamic equilibrium adopted principle of detailed balance applies implying
that rate of change of occupation number N™ (k) of (m, k) quanta due to absorption and emission
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processes during p = p~ transitions together is zero. Thus combining equations (6.41) and
(6.42) one obtain
de(k) _ Wm sp

(k)N +

=, w4 (k) N, N™ (k) — w™* (k) N,,- N™ (k) = 0. (6.43)

pp pp

In the state of thermodynamic equilibrium the distribution of wave quanta is given by Planck
law

1
hw™ (k ’
exp (M) 1
Inserting the Planck law into the eq. (6.43), considering

Ny _ E(p)—E(P7))\ _ hw
= (AT < e ().

N™(k) =

and taking into account that (6.43) has to apply for arbitrarily high temperature T the relation
among three Einsteins coefficients is found:
m,abs _..m,sp _ _mynd — m
W (k) = W (k) = W (k) = w,,- (k). (6.44)
Quasi-linear equations Using the relations (6.44) the rate the (m, k) quanta are emitted at

in the general (non-equilibrium) state due to all transitions that can be taken into account is

(see eq. 6.43):

dN i Z wr (k) [N, + N™(k)(N, — N,-)] . (6.45)

However, the actual number of p0531ble transitions is much less than it seems from eq. (6.45)
since the quantum condition
p—p =hk

selects only allowed ones. In particular, the transition rate wl’;’;_ (k) can be expressed as:

w,— (k) =w"(p,k)-6(p —p~ — hk). (6.46)

Now, one would like to change from discrete notation used hitherto to the continuous one. Thus,
the number of particles N, in the state p should be replaced by distribution function f(p) and
double sum in the equation (6.45) by integration over p and p~. Using the expression (6.46) for
the transition rate w(p, p~, k) , which is now re-interpreted as probability of quantum emission
per unit cube of k-space, the integration over p~ is performed trivially due to J-function. The
expression f(p — hk) appeared in the result can be for hk < p expanded in Taylor series

0f(p) 2, 9°f(p)
+hk) = + hk; -I- h kik; +.
f(p ) f(p) ? api J aplapj
When only the terms that are meaningful in classical limit & +— 0 (see the paragraph Transition
rates calculation) are retained, the first quasi-linear equation describing wave generation (or
absorption) in plasmas described by distribution function f(p) is finally found:

de /w (p k ( (p) + N™ (k)k - afi))) d’p (6.47)

As was already mentioned, the advantage of this semi-classical approach consist besides other
in possibility of homogeneous description of back-reaction of particle distribution to wave emis-
sion/absorption processes. On the microscopic level, each emission or absorption of quantum of
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waves is connected with transition of particle between two states. Consequently, the time change
of number N,, of particles in state p is given by the difference between net rate the quanta (m, k)
are emitted at due to transition (p™ = p +%ik) — p and net rate the quanta (m, k) are emitted
at due to transition p — (p~ = p — hk), i.e. (see Fig. 6.1):

k k

(6.48)
Transferring from the discrete notation to the continuous one again and expressing the difference
of the two sums in the previous relation as a derivative times the interval k, the second quasi-
linear equation describing back-reaction of particles distribution to the wave emission/absorption
processes reads

IV P

I®)_ [ % o) (£ + N0 k- L S
Transition rates calculation To make equations (6.47) and (6.49) meaningful for practical
computation one has to calculate the emission rate w”(p,k) . It can be done when one re-
interprets the power radiated p™ (k) considered in the section 6.2.1 as continuous process to be
— according to quantum physics ideas — the series of quanta emissions with emission probability
per unit time w(p, k), i.e.:

p"(k) = ha™ (k) w™(p, k)

Thus, using relations (6.36) and (6.37) the emission rate can be expressed as:

w"(p,k) = Tli)ngoé (hwﬂll(k) R%;Ek) ‘e_m(k) 'jext(k,wm(k))r) (6.50)

In the force-free collision-less plasmas particle moves on rectilinear trajectory. Consequently, the
extraneous current density in the equation (6.50) is to be identified with that given by equation
with rectilinear trajectory

r(t) =ro+ vt

inserted. Now using

kW) =g /: dt / dPrexp [—i(k - 1) — wiv(£)5 (r —r(t)) = g / " dtv(t) exp [—i(k - £(£)) — w],

oo

o.¢]
j(k,w) = gvexp (—ik - ry) / dtexp [i(w — k- v)t] = 2mgvexp (—ik - rg)d(w — k - v),

2 _ o T
)" = lim —d(w),
calculation gives
m _ 27Tq2R%1(k) ~ 2 m
w"(p, k) T (k) 2o le™(k)-v|” 6 (w™(k) —k-v) (6.51)

Absorption coefficient As was already mentioned, the first quasi-linear equation (6.47) ex-
presses the emission or absorption of wave quanta due to medium described by distribution
function. The rate of occupation number change can be separated to two parts — one indepen-
dent of the occupation number itself

[de(k) ] 5

| = ek s dp
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and one linearly proportional to it

T g ag
where v (k) reads
m) = — [ wm 9fP) 1
(k) = / W (p.K) - “5 P dp. (6.52)

As the superscripts over each part indicate the former part describes spontaneous or thermal
wave emission whereas the latter belongs to induced processes. The quantity v™ (k) is absorp-
tion coefficient by definition and its sign depend on what process prevails — whether absorption
or stimulated emission of waves. In case of negative values also the term growth rate is often used.

It is clear from expression (6.52) that in case of positive slope of distribution function f(p) in the
direction of wave-vector k the absorption coefficient 4™ (k) can reach negative values implying
so self-amplification or instability of waves. The positive slope corresponds to inequality

Npink > Np

in the formula (6.45), which is only discrete form of the first quasi-linear equation (6.47), and thus
inverse population of energetic levels is required (in unmagnetised plasmas) for self-amplification
to work. This feature of the theory of induced processes in plasmas makes it very close to, now
already classical, physics of lasers as was already mentioned in the introduction to this section.
Probably the most known examples of amplification of waves due to such inverse population of
energetic levels in the field of plasma physics are the “Bump-in-Tail” or “T'wo-stream” instabil-
ities of Langmuir waves. The positive slope of the particle distribution function is reached by
energetic particle stream propagating through the thermal background plasmas in this case.

Then, the resonant condition contained implicitly due to d-function in the relation (6.51) can
be fulfilled only if
v > v, (6.53)

where v, = w(k)/k is the wave phase velocity. Since refractive index for electromagnetic waves
nT (k) < 1 for all k-vectors, negative absorption of this mode is forbidden in the case of unmag-
netized plasmas as a consequence of apparent inequality

v<c

Hence, the mode conversion between waves that can satisfy the condition (6.53), and their
amplification is therefore possible, and the electromagnetic ones is required for plasma emission
process to work.

6.5 Coherent processes

The weak-turbulence theory just reviewed in the previous section is capable to describe many
types of particle-wave or wave-wave interactions, provided that wave field is sufficiently described
by occupation numbers —i.e. that wave phases are unimportant. As was shown, such a condition
is fulfilled in case of broad-band wave distributions as after the coherence time 7. the phases of
waves are completely mixed. Nevertheless, sometimes the region of unstable waves in the k-space
is so narrow, that before the phase mixing state is reached the waves have grown up substantially.

For such cases the weak-turbulence theory is inapplicable and its departure from the reality can
be separated into two kinds of problems:
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e the theory predicts qualitatively some process (e.g. instability) to be running, but further
quantitative analysis gives wrong results — usually predicted growth rates of unstable waves
are lower than in reality.

e the weak-turbulence version of coherent process does not exist at all.

Hence, processes where also wave phases are important have to be treated another way. Un-
fortunately, the general theory of coherent processes — as a counterpart of the weak-turbulence
theory — has not been established yet. One particular case is discussed in the following.

6.5.1 Strong wave turbulence

Strong wave turbulence is term for non-linear wave-wave interactions that can not be sufficiently
described within the weak-turbulence theory just due to great importance of wave phases for
processes involved. The first description of coherent wave-wave interactions is that by Zakharov
who treated the non-linear interaction between Langmuir and ion-sound waves. His approach
was roughly as follows:

Firstly, let us consider linear Langmuir and ion-sound waves in homogeneous plasmas. The time
evolution of plasma parameters variations in these waves can be derived most simply within the
plasma two-fluid theory or alternatively they can be guessed Fourier transforming the dispersion
relations (6.29) and (6.30) for relevant waves into the coordinate space. Hence, the electric field
variation in Langmuir waves is governed by equation

O’E

Vo 3VIAE + wl E =0 (6.54)

and similarly the electron density variation n in the ion-sound waves fulfils (for wavelengths
A < Ape) relation
?’n

Now suppose that both wave modes propagate through plasma simultaneously. Due to ion-sound
wave the electron density is now distributed non-uniformly and as a consequence of the plasma
frequency definition (6.25) the last term w2 E in the eq. (6.54) depends explicitly on time and
space. Hence, the equation (6.54) can be rewritten in the form

O’E
Ot2

t
_ 3‘/62AE + wgeE — _w2 n(r7 )

2, E (6.56)

where the plasma frequency wy,. is now re-interpreted as that connected with the background
average density ng. Equation (6.56) describes Langmuir wave electric field evolution under the
influence of ion-sound density perturbation. The effect of density distribution can be estimated
qualitatively even without solving it by analogy with the Schrédinger wave equation describing
an electron inside the crystal lattice (c.f. equation 6.59). Identifying the total density ng+n with
crystal single-electron potential one finds, that the Langmuir electric field tends to concentrate
itself in the density holes, similarly as electron probability density in the crystal is high in places
of low potential (in the vicinity of ions locations).

On the other hand, non-homogeneous (averaged over wavelength) electric field influences density
distribution due to non-linear ponderomotive force Fy, whose volume density is (e.g. ?7?):

wz%e 50<E2>

fnr = ) grad 5 (6.57)
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where ( ) denotes the fast-time (on scales of several plasma period) averaging. As a consequence,
a source term has to appear on the R.H. side of equation (6.55), i.e.

?’n 1
— —c:An=— div fy. 6.58

ot? 5 m; NI (6.58)
Since changes of electric field amplitude and ion-sound density variations are slow in comparison
with plasma frequency it is convenient to separate the instantaneous Langmuir electric field
time evolution into the fast (on plasma frequency) variations and the slowly varying complex
amplitude

1 _
B(r,1) = ; [g(r, t) - exp(—iwpet) + E(r, 1) - exp(—i—iwpet)]
Using this separation and relation (6.57) for ponderomotive force, further omitting the second

derivative of slowly changing complex amplitude £(r,t) the equations (6.56) and (6.58) can be
rewritten in the form:

0 3V2 n

i AE = wye—— :
p s B = g€ (6.59)
Pn_ ap, - S0 N (6.60)
ot? 5 4m;

The relations (6.59, 6.60) are known as set of Zakharov equations and describe coherent non-
linear interactions of Langmuir and ion-sound waves.



Chapter 7

Beams and two-stream instability

a) Beams in the solar atmosphere
See file beams.ps

Doplnit obrazky do SPA3.tex
Reference

Karlicky, M: 1997, Effects of particle beams in the solar atmosphere, Space Sci. Rev. 81, 143-172.
b) Two-stream instability

Here the CGS unit system is used.

Dispersion equation

Let at times ¢ < 0 a plasma exists in a stationary state, i.e. the plasma density, plasma velocity,
magnetic and electric fields are:

n=ngv=vy;B=DByE=E,. (7.1)
Then at times ¢ > 0 small perturbations appear:
n=ny+n;v=vog+v;B=By+B;E=E;+E. (7.2)
Let us assume that these perturbations have periodic form in time as:
X'(t,r) = X'(r) exp(—iwt), (7.3)

where r is the position and w is the frequency.
Then the mass conservation, momentum and Maxwell equations can be linearized. Thus, a set
of equations for variables of zero-, first- and higher-orders of magnitude can be derived. The set
of equations with first-order variables follows:

—iwn’ + V- (n'vg +ngv’) = 0,

L'+ (VoV)V 4 (VV)vg = (B + S(v' x Bo) + S (vo x B')),
m C C

4 :
VxB = —ﬂe(n'vo +nov') — g )
c c
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)

VxE = =B,
c
V -E = 4ren’
V-B' =0, (7.4)

where the Fourier transform in time (0/0t — —iw) was done.

Oscillations of homogenous plasma
Let us assume a 1-D case with By = 0,vg = 0,Vng = 0 and the spatial perturbation in the
form: X'(r) ~ exp(ikr). Then from the above mentioned equations follow:

—iwn' 4+ ngikv’ =0,

) e
—iwv' = —F',
m

ikE' = 4men’,

Now, from these equations the dispersion equation for so called plasma oscillations can be written
as:
9 4re?ng

W= (7.5)

Electromagnetic waves in homogenous plasma
Furthermore we can write
4 , 10E 0

VxB =" - i
X vt ot’ /at

OB’ _4r ' 10°F

V x = —eng— 4+ ——--,
ot = M T

4 1 9°E’

—cVxVxE = —WenUEE' + —a—,
c m c O0t?

2
B )
c c
w? = wg + k22, (7.6)

which is the dispersion equation for the electromagnetic waves in the plasma without static
magnetic field.

Dispersion equation for plasma with moving components
Let us consider a potential perturbation of the electric field

E=-Vy; E=—iky,
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and let us look what a perturbation of the electric charge density p. causes the electric field
perturbation, i.e. let us look for the function y in the relation p, = x.
In this case the linearized MHD equation has a following form:

—iwn' + V- (n'vg +ngv') = 0,

—iwv' + (voV)V' + (V'V)vy = ‘g,
m

Using Vvy = 0 and E' = —V1)' the equation can be rewritten into

—iwn' + in'kvy + ingkv’' =0,

. . . €
—iwv' + voikv' = —i—ke)',
m

Now, we can express the density and plasma velocity perturbations as

, nokv’ , eky)’
= —: V = ——m—
w—kvg’ m(w — kvy)’

Combining these equations the perturbation of charge density is

eZngk?
pe =n'e =y = 0 )2¢', (7.7)

m(w — kvy
i.e. the function y for some specific plasma component o can be expressed as

o e ngk?
Xt=— (7.8)

m®(w — kv§)?
Let us put these results into the Poisson equation. Then
K =4 Y pf,
«
K =4m Y X",
«
(12X =0 (79)
o

In the last relation the term in brackets is the dispersion equation which can be formally written
as

€ = 1—EZX°‘, (7.10)

where contributions of moving components of plasma into the dispersion equation are

4r (wp)?
a _ a _ P’ A1
€0 2 X (w—kv§)? (7.11)
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Beam instabilities
a) Instability of two counter-streaming beams

Let us consider two counter-streaming beams of the same density, i.e.
np1r = Np2 = No; Vo1 = —Vp2 = V. (712)

in this case the dispersion equation is

w? w?

1= (w — kHU)Q B (w + kHU)Q =0 (7-13)

This equation leads ti the bi-quadratic equation with the following solutions:

w= j:\/(k”v)? + wp + wy (w2 + 4kF0?)1/2, (7.14)

If
(lz:Hv)2 + wf, < wp(wf, + 4kﬁv2)1/2,
ie. if
(k‘|v)4 + Z(kHv)wa, + wf; < w]g(w]?J + 4kﬁ1)2),

and i.e. if k| < ﬁwp/v then there is one solution with I'm w > 0, which for the perturbation in
the form X (t) ~ exp~™* means an instability. Furthermore, if kj < wy/v then the term under
the root can be written as

2k2v?
(ko) + wf = w1+ —=) = (kyv)” — 2(ky0)?,
p

which gives the growth rate of the instability as
Imw=|kp|. (7.15)

On the other hand, the maximum growth rate can be derived as follows:

d
d—k”((k”v)2 +w) — wp(wy + 4kfv?)1/?) =0,

8k||v2
(w2 + 4]~1:ﬁv?)1/2

W
20%k — £ =0
v 2 ’

2 2,2 2
wp, + 4kHv = dwy,

V3w
Klimaz = 77;0 (7.16)

Now, putting this k|4, into the relation for w (Eq.7.14), the maximum growth rate is

Ymaz = wp/2- (717)
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Let us assume a beam which density is much lower than that of background plasma (n; < ny).

Then the dispersion equation is

2 2
w ow
1 — —Pe S L —

w?  (w—kyv)?

where w2, = 4me?ng/me, a = n1/ng < 1, v is the beam velocity.

pe

Solutions:
a) The non-resonant case, i.e. the case with wpe # k).

The solution can be derived as follows:

2

w
(w — kHU)Z — (w — kHU)Zﬁ — ozwge = 0,

(w— k‘|v)2(1 — ) = aw?

(w = ky)* = awpe——s,

1
w— k= :I:\/awf,eiw?,
V1

w =k =+ Ja&,

2
wpe

(kjv)?

where, in the last equation, the approximate relation w ~ kjv was used.
As can be seen, if kv < wp, the solution is complex and the growth rate is

v=Va e ,
(cupe/k”v)2 -1

b) The resonant case, i.e the case with w ~ kv ~ wpe.
Let us assume that the frequency correction is

| w(l) |>>| Wpe — kHU |,

Then the dispersion equation can be written as

2 O4('()2

Wpe pe 2
_ Zpe =0,/
w2 (wpe + w(l) - kH’U)Q / @

(7.18)

(7.19)

(7.20)
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Using now

2

w? = (wpe + w2 = 2o+ 2wV wpe,

we can continue in the simplification of the dispersion equation as follows

4
1 aw,,
2(4)( )wpe - ﬁ = 0,
2
((w(l))?) O“’;;De _ 0,

which solution is

1/3
T1,2,3 = %(Comb + 4 sin ¢)1/3, ¢ =0,2m, 47

Thus the correction of real frequency and growth rate of the instability (¢/3 = 47/3) are

ol/3
Rew® = e S (7.21)
V3al/3
Y= Wpe g (7.22)

¢) Buneman instability

In this case the electron plasma component is in a relative motion to the proton component. In
this case the dispersion equation is

2 2

e e (729

where wf,p/wge < 1. Using the same procedure as in the previous case for & = m./m, (the

electron-proton mass ratio) the resonant growth rate can be obtained as

\/g Me /MMy 1/3

d) Kinetic beam instability

If a beam has some dispersion in velocities vy which is greater than al/ 3u, where a = n /no is
the ratio of beam and plasma densities and v is the beam velocity, then the results for the above
mentioned beam-plasma instability are not valid and the kinetic approach to this instability is
necessary. In this case the instability has a maximum for k =~ wy./v with the growth rate

2
R L (L> . (7.25)
UT1

Comparing the relations (1.22) and (1.25) we can see that the growth rate of the kinetic insta-
bility is lower than that of the MHD one, and the both growth rates are equal if v7; = al/3y.
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Numerical particle code

At the end of fifties and at the beginning of sixties of the 20-century John Dawson and Oscar
Buneman started to simulate a plasma by a big amount of numerical particles which were
electromagnetically interacting. While at the beginning many scientists expressed scepticism to
this approach, now it is well developed research field.

To fulfill basic characteristics of the plasma it is necessary to have a system which is large enough
(its length L > Ap) and the number of numerical particles in the Debye sphere is much greater
than 1. It needs enormous amount of particles, especially in 3-dimensional case. Much better
situation is in 1-D case and that is why all studies in this field started with the 1-D system
where the number of particles in the Debye sphere is Np = nAp only; n is the plasma particle
density. But generally, a relatively small number of particles in the system generates high level
of noise.

In principle, it is possible to build a numerical piece of plasma considering particles which interact
with all other particles, but this numerical approach is very time and memory consuming.
Therefore a. modified method called as particle-in-cell is used.

As an example, in the following, let us present a simple 1-D electrostatic code. A scheme of this
numerical code is shown in Fig. 8.1. Particles are distributed in the system of the length L which
is much greater than Ap; usually L = 100\p. In each Debye length is as minimum 100 electrons
and 100 protons forming thus a quasi-neutral plasma. As known from numerical experiments
these numbers are sufficient to fulfilled the condition about a big number of particles in the
Debye sphere. Thus in our system simulating plasma we have about 10000410000 numerical
particles. Although, the electron-proton ratio is 1836, in numerical simulations this ratio is
usually smaller in order to accelerate some plasma processes. On the other hand, this fact needs
to be taken into account when we interpret results of numerical simulations.

First in the code, the initial state of the system needs to be generated; every particle needs
to have initial position and velocity. Positions of particles can be regular or by some way
modified, e.g. by the presence of initial electrostatic wave in some tasks. In the case of cold
plasma all velocities are zero, otherwise Maxwell distribution of particles corresponding to some
temperature is generated. Then we need to compute electrostatic forces among particles. As
mentioned above a direct method through the Coulomb law is not used in such a model. Here,
electrostatic forces are computed as a difference of the electrostatic potential computed from
Poisson equation. For this purpose the charge density is calculated on the grids (hundreds
grids per system) using some weighting procedure. Knowing the electric charge distribution
in the system the Fourier transform is applied and the Poisson equation is solved in k-space.
Then the inverse Fourier transform is made, and from the electrostatic potential the electric
field is computed. Because the fast Fourier transform is used then it is useful to use powers
of 2" (128, 256, 512 ..) for the number of system grids. Furthermore, usually the periodic
boundary conditions are used. Using now further weighting procedure the force on every particle

73
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Integration of equations

— of motion, moving particles _——

I':i—_.‘\'i N

Weighting At Weighting
(E,B)j —=Fj (x,v )i =(p,J)j

Integration of field

L equations on grid -

(E,B)jd—(P, J)j

Fig. 8.1: One time step in a particle simulation program. The particles are numbered i = 1,2,...., NP; the grid

indices are j.

is calculated from the electric field computed on grids. Then solving Newton equation we obtain
new positions and new velocities of all particles, and the full time step At is finished and further
step can start. During computations it is important to record some important variables for
diagnostic purposes.

Now let us describe the 1-D electrostatic code in more details.

Integration of the equations of motion

One commonly used integration is the leap-frog method. The use of high-order methods (e.g.
Runge-Kutta) is possible, but they multiply the operations taken for each particle.
The two first-order differential equations to be integrated separately for each particle are

dv

— =F 8.1
m —F, (8.1)
dx

= _ 8.2
v (82

where F is the force. These equations are replaced by the finite-difference equations

Vinew — Vold

—F .
A7 olds (8.3)

Xnew — Xold

A7 = Vyew- (8.4)

In the leap-frog method values of x and v are not known at the same time, they are shifted
each other by At/2 (Fig. 8.2). The user must show care in at least two ways: first, initial
conditions for particle velocities and positions given at ¢ = 0 must be changed; we push v(0)
back to v(—At/2) using the force F calculated at ¢ = 0; second, the energies calculated from v
(kinetic) and x (potential, or field) must be adjusted to appear at the same time.

The leap-frog method has error, with the error vanishing as At — 0. Applying this method
to integration of a simple harmonic oscillator of frequency wg, we will find that there is no
amplitude error for wyAt < 2 and that the phase advance for one step is given by

1
woAt + ﬂ((«)gAt)g + ... (85)
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.
VELOCITY
Vold Vnew
e
POSITION
Xold Xnew time
1 1
F?It'! FI;IeW
At At
t > t t 2 t+ At

Fig. 8.2: Sketch of leap-frog integration method showing time-centering of force F while advancing v, and of

v while advancing x.

Remark: This relation follows from two half-time steps and Taylor series for one half step as

, At At 1 At\3
sin <w0?> ~ W5 T <w0?> + ... (8.6)

The error terms dictate a choice of wygAt < 0.3 in order to observe oscillations or waves for some
tens of cycles with acceptable accuracy.

Although the numerical system is 1-dimensional, in the limited sense (with the static magnetic
field B perpendicular to the x-coordinate of the system) we can consider two components of
velocities (vg,vy). In this case the force F has two parts,

F = Felectric + Fmagnetic =qE + q(v X B) (87)

Here the electric field E and magnetic field B are to be calculated at the particle position.
Hence, using a spatial grid, we must interpolate E and B from the grid to the particle. As
we will see later, the electric force on a particle will depend not only on the distance to other
particles (physical) but also on the position within the cell (nonphysical).

For our 1-D case, let us consider the particle displacement to be along z, and that we have
velocities v, and vy, with a uniform static magnetic field By, along z (Fig. 8.3). The ¢(v x B)
force is simply a rotation of v; that is, v does not change in magnitude. However, the ¢E = qF,x
force does alter the magnitude of v (v,); E, =0. Hence, a physically reasonable scheme which
is centered in time is as follows (with ¢t and ¢ as dummy variables, t—At/2 <t <t < t+At/2):

Half acceleration

va(t) = vy (t - %) + (%) Ea(t) (%) (8.8)

Rotation



76 Chapter 8: PARTICLE CODES

&)
vy (tll)

Vg <t + %) = (") + (%) E,(t) (%) (8.10)

cosw.At  sinw At g (1) (8.9)
—sinw At cos w:AL vy (') '

Half acceleration

The angle of rotation is
Al = —w At (8.11)

where w, is the cyclotron frequency.

Vy

Fig. 8.3: The v, and v, plane, showing the ¢(v x B) force normal to v, which results in a rotation of v, with

no change in speed magnitude with df/dt < 0 for (¢/m)> 0, By > 0.

Integration of the field equations

Starting from the charge density as assigned to the grid-points, we now obtain the electric field.
In our 1-D case we need to solve the following differential equations

E=-V¢, E,= —%, (8.12)
ox
Ey
v.g=L 9% _r (8.13)
€ Oz €0
which are combined to obtain Poisson’s equation
62
Vipo L OO _p (8.14)

€0 8:132 €0
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One approach is solve the finite difference versions of these equations as

b1 — Pjn1
E. = Tl 1

Pj-1 —(Zéia);r Pjt1 _ _/;)_ (8.16)

A very powerful approach for periodic systems is to use a discrete Fourier series for all grid
quantities. This approach also provides spatial spectral information on p, ¢, and E which is
useful in relating results to plasma theory, and which also allows control (smoothing) over the
spectrum of field quantities.

In such types of computations the fast Fourier transform is effectively used. This transformation
allows us to obtain ¢(k) from p(k) from simple equation (transformed Poisson equation)

k
o(k) = fo(kg (8.17)

The next step is to take the inverse Fourier transform of ¢(k) in order to obtain ¢(z) and then
E(x) using equation (8.15).

The solution using a finite Fourier series starts from the charge densities at the grid points, with
values p(X;),7 =0, 1, 2, ..., NG -1 for a total of NG values. Letting the grid functions G(X})
(standing for field or potential or charge density) be periodic, G(X;) = G(X; + L), then the
finite discrete Fourier transform is (sum on X; = jAx)

NG-1
G(k) =Az Y G(X;)e*. (8.18)
§=0

The inverse transform is (the sum is on k = n(27/L))

1 NG/2—1 .
G(X)) =+ > Gk)e*, (8.19)
n=—NG/2

which produces NG distinct values of G(Xj).
Weighting procedures

In the numerical code, it is necessary to calculate the charge density on the discrete grid points
from the continuous particle positions and then to calculate the force at the particle positions
from the fields known on grid points. There are several methods of such weighting.

Zero-order weighting

In this procedure (Fig. 8.4), we simply count the number of particles within distance +Az/2
(one cell width) about the 5% grid point and assign that number [call it N(j)] to that point,
that is, the grid density is simply n; = N(j)/Az. The common name for this weighting is
nearest-grid-point. The electric field to be used in the force is that at X, for all particles in the
3t cell.

As a particle moves into the 5% cell (through cell boundaries at z = X j£Ax/2), the grid density
due to that particle jumps up; as the particle moves out (z > X; + Az/2 or z < X; — Az/2),
the grid density jumps down. We can see two effects. One is that the particle appears to have
a rectangular shape with a width of Az. This leads us to think that we have a collection of
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finite-size particles; hence, the physics observed will be that of such particles rather than that
of point particles. Because close encounters between plasma particles are rare (i.e., for many
particles in a Debye length, the plasma parameter Np > 1), this new physics hardly alters the
basic plasma effects to be studied. The second effect is that the jumps up and down as a particle
passes through a cell boundary will produce a density and an electric field which are relatively
noisy both in space and time; this noise may be intolerable in many plasma problems therefore
a better weighting is necessary to look for.

{a)

| I
| I
- y — =
Xj-1 | Xpoo% | Xj4i x
| I I | |
| xi-%’l | xi+‘°—2" |
ni(x;)
(b) | L
I I
| ] |
| 1 |
| Xj | X|
I L—-Ax——-l

Fig. 8.4: Zero-order particle and field weighting, also called nearest-grid-point. Particles in the 4t cell, that
is, with positions z;eX; + Az /2, are assigned to X; to obtain grid density n(X;). All of these particles are acted
on by the field at X;, E(X;). b) The density n;(X;) at point X; due to a particle at z;, as the particle moves
through the cell centered on X;. This density may be interpreted as the effective particle shape.

First-order weighting

This procedure smooths the density and field fluctuations, which reduces the noise (relative
to zero-order weighting), but requires additional expense in accessing two grid points for each
particle, twice per step. The charged particles seem to be finite-size rigid clouds which may pass
freely through each other. The model is called cloud-in-cell (Fig. 8.5). For total cloud charge of
qc, the part assigned to j is

_ AZ‘—(Z‘Z’—XJ') _ Xj-I—l — T
q; = d4c ( Az > ={(c Az s (8-20)

and the part assigned to j + 1 is
Gj+1 = qe <7ZM J) : (8.21)

The net effect is to produce a triangle particle shape which has width 2Az.
There are also higher-order weighting, but at the cost of more computations.

Initial state

Now, few words about initiating the program. In all cases we need to choose:
e The number of particles and grid cells.
e The weighting.

e The desired initial distribution functions of electrons, protons and further components
(e.g. a beam)(random or ordered).
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Fig. 8.5: First-order particle weighting. The finite-size charged particle, or cloud, is one cell wide, with center
at z;. This weighting puts that part of the cloud which is in the jth cell an X;, fraction (a), and that part which is
in the (j 4 1)** cell at X;11, fraction (b). This weighting is the same as applying nearest-grid-point interpolation
to each elemental part. (b) The grid density n;(z;) at point z; as the particle moves past X, again displaying
the effective particle shape.

The next step is to place the particles in phase space (x,v) so that the problem desired is
properly set up to run.

A cold, uniform periodic plasma of mobile electrons and immobile protons (M,/m, — o) is
simplest. The electrons can be put in uniformly. But sometimes we need in the initial state a
plasma wave. It can be done by perturbing the uniform positions x;y by

2i(t = 0) = 20 + 241 cos(ksxi0), (8.22)

where knpin < ks < Ekmae 18 some wave vector for which we want the plasma behavior of the
system.

Diagnostics

For an interpretation of numerical results the diagnostic output of the code is very important.
Information of our interest can be as follows:
a) For particles:

e Phase space, v, versus .

e Velocity space, vy versus v,.

e density in velocity, f(v) versus v, or f(v?) versus v2, or In(f(v?)) versus v2.
b) For grid quantities:

e Charge density p(z) versus z or particle density n(z) versus z.

e Potential ¢(z) versus z.

e Field E(x) versus .

e distribution of electrostatic energy 1/2p;¢; versus k.

Furthermore, the result at the end of a run will consist of plots of histories of various quantities
versus time, such as:
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Electrostatic energy >, 1/2p5 ¢}

Particle kinetic energy by species >, 1/ 2mivz~2.
Particle drift energy 37, 1/2m; < v; >2.

Particle thermal energy >, 1/2m;(< v? > — < v; >2).
Total energy, electrostatic plus particle.

Mode plots, 1/2p ¢}, for each k with plots versus w - dispersion curves.
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Solar radio bursts

9.1 Classification of solar radio bursts

Solar radio bursts are observed in a very broad range of frequencies (see Fig. 9.1). Based on
their spectral and time characteristics they are classified into five main classes:

a) Type III radio bursts

An example of these bursts is shown in Fig. 9.2. These bursts are characterized by very fast
frequency drifts (~ 20 MHz s~ ! in the metric range) on the dynamic radio spectrum. The
observed drifts correspond to exciter speeds between 0.2¢ and 0.6¢, where c is the speed of light.
These bursts are observed at the beginning of solar flares, in so called impulsive phase and they
are considered as a signature of electron beams propagating from the flare site upwards into the
interplanetary space.

b) Type II radio bursts

An example of this burst is shown in Fig. 9.3. These bursts are characterized by relatively
slow frequency drifts (~ 1 MHz s~ ! in the metric range) on the dynamic radio spectrum. The
observed drifts correspond to exciter speeds between 500 km s~! and 2000 km s~'. These bursts
are observed after the impulsive phase and they are considered to be a signature of the MHD
flare shock propagating from the flare site upwards into the interplanetary space.

¢) Type IV radio bursts

These broadband radio bursts (or continuum bursts) are typical bursts observed during solar
flares, especially in long-lasting ones. While the high-frequency type IV bursts are generated by
the gyro-synchrotron mechanism of superthermal electrons trapped in magnetic flare loops, on
lower frequencies (those with relatively narrow band emission) are probably generated by the
plasma emission processes.

There are many fine structures of these bursts, see the following examples.

d) Type I radio bursts - noise storm
These bursts express activity in solar active regions. They are observed in the metric range only

and they consist of a continuum radiation and a cloud of short-lasting (< 1 s) and narrowband
(~ 5 MHz) bursts.
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a) Type V radio bursts

The type V burst is similar to the type IIT burst, but its duration is longer (~ 1 min). It is
believed that some electrons of fast electron beam are trapped for some time in coronal magnetic
trap and thus the radio emission is prolonged.

Radio bursts during stellar flares

In Fig. 9.4 an example of the dynamic radio spectrum of the AD Leo star flare in the decimetric

range is shown for comparison.
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Fig. 9.1: Schematic representation of different solar radio bursts.
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Fig. 9.2: Type III solar radio burst observed at Tremsdorf Observatory, Germany on May 17, 1999 (courtesy
Dr. A. Klassen).

Examples of solar radio bursts

In this chapter new results and new types of solar radio bursts are presented.

a) High-frequency zebras

See file zebras.ps

Reference:

Sawant, H.S., Karlicky, M., Fernandes, F.C.R., Cecatto, J.R.: 2002, Observation of harmoni-
cally related solar radio zebra patterns in the 1-4 GHz frequency range, Astron. Astrophys. 396,
1015-1018.

b) Narrowband dm-spikes

See file spikes.ps

Reference:

Barta, M., Karlicky, M.: 2001, Turbulent plasma model of the narrowband dm-spikes, Astron.
Astrophys. 379, 1045-1051.

c) Lace bursts

See file laces.ps
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Fig. 9.3: Dynamic spectrum of type IT solar radio burst observed at Tremsdorf Observatory on October 22,
1999 (courtesy Dr. A. Klassen).

Reference:

Karlicky, M., Barta, M., Jificka, K., Mészarosové, H., Sawant, H.S., Fernandes, F.C.R., Cecatto,
J.R.: 2001, Radio bursts with rapid frequency variations - Lace bursts, Astron. Astrophys. 375,
638-642.



9.1.

Classification of solar radio bursts

Fig. 9.4: Decimetric radio spectrum of the AD Leo star obtained by Arecibo

radioheliograph.
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Chapter 10

Solar flares and coronal mass
ejections

Examples of solar flare studies
a) Magnetic field reconnection
See file reconnection.ps

Reference:

Karlicky, M.: 2002, Plasma resonance surfaces in the magnetic field reconnection and radio fine
structures, Solar Physics, in press.

b) Plasmoid ejection
See file plasmoid.ps
Reference:

Karlicky, M., Farnik, F., Mészarosova, H.: 2002, High-frequency slowly drifting structures in
solar flares, Astron. Astrophys. 395, 677-683.

c) Impact polarization of optical chromospheric lines

See file impact.ps
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Reference:

Karlicky, M., Henoux, J.C.: 2002, Impact H-alpha line polarization and return current, Astron.
Astrophys. 383, 713-718.

c) Flare hard X-rays from neutral beams
See file nhardx-ray.pdf
Reference:

Karlicky, M., Brown, J.C., Conway, A.J., Penny, G.: 2000, Flare hard X-rays from neutral
beams, Astron. Astrophys. 353, 729-740.

c) Return current in solar flares
See file return.pdf
Reference:

Karlicky, M., Hénoux, J.C.: 1992, Return current losses in pulse beam heating of the solar
atmosphere, Astron. Astrophys. 264, 679-685.

Priest, E., Forbes, T.: 2000, Magnetic reconnection: MHD theory and applications, Cambridge
University Press, Cambridge, UK.
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Gallery of the models of solar flares and coronal mass ejection

Characteristic values of the total energy £ [erg] and
power P [erg/s] released in various forms in large and small flares.

Form of energy release
1. Hydrodynamic plasma flows:
a) Interplanetary ejections and
shock waves
b) Surges above photosphere
2. Radiation:
a) Soft X-ray and UV
b) optical continuum
c) H, line
d) hard X-ray
€) gamma-ray
f) radio waves
3. Accelerated particles:
a) electrons (£, > 20 keV)
b) protons (£, > 20 MeV)

Largest flares Subflares

£ P £ P
(1-3)x 10 - - -
=~ 107 ~10¥° <102 <107
B-5)x10"  (@3-5)x10®* <10¥® <107
3 x 10 3 x 107 none? none?
3 x 10%° 3 x 107 ~ 102 =~ 10%
(3-5)x10*  (3-5)x10® <10" <102
(1-3)x10%  (1-3)x10% none? none?
~ 10% ~100 <107 <10Y
(1-3)x10%"  (1-3)x10%® 10%7* 10%°
(1-3)x10*"  (1-3)x10%*® none? none?

* In vast majority of flares not detected.

Fig. 10.1: Energies in large and small solar flares.
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Fig. 10.2: Schematic drawing of the collision time vs. height of an electron moving at the mean thermal
velocity in the quiet solar atmosphere. The relevant plasma parameters are from standard models and are also

shown (dashed). The hydrogen density includes both neutral atoms and ions.
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Fig. 10.3: Characteristic profile of a solar flare in various wavelengths.
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Fig. 10.4: Two scenarios which have been proposed for opening the magnetic field during large solar flares
and coronal mass ejections. (a) In the first scenario an ideal MHD process changes the closed-field configuration
(1) into an open configuration (2) during the impulsive phase, and reconnection re-closes the field (3) during the
gradual phase. (b) In the second scenario an ideal MHD process creates a relatively short current sheet without
opening the field, but magnetic flux can still escape into space if rapid reconnection occurs in this sheet. If there
is no input of the magnetic energy during the eruption, then the magnetic energy continuously decreases during

both the impulsive and gradual phases of the flare, as shown in (c)
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Fig. 10.5: Quasi-static evolution of an axially symmetric arcade in response to shearing of its footpoints. (a)

The initial field is a Sun-centered dipole which (b) evolves into a force-free field when its footpoints in the upper

and lower hemispheres are rotated in opposite directions. (c) After a rotation of 126°, the field becomes fully

opened as long as the diffusivity (n) remains zero. (d) A plot of the corresponding time evolution of the total

energy divided by the potential energy.
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Fig. 10.6: A flux-rope model. (a) Ideal MHD evolution of a two-dimensional arcade containing an unshielded
flux rope of height h as the source separation (2)\) decrease. (b), (c) The flux rope and arcade move upwards
when the two photospheric field sources are pushed too close to one another. (d) In the absence of reconnection

the eruption leads to a new equilibrium containing a current sheet.
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t = 87s t= 1295

X X

Fig. 10.7: Resistive MHD simulation based on the two-dimensional flux-rope model. White curves are magnetic
field lines, while the grey scale corresponds to temperature variations. White regions have the highest temperature
(> 10® K in the absence of cooling processes),while black regions have the lowest. The magnetic Reynolds number

is about 200, many orders of magnitude smaller than expected for the Sun.
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Fig. 10.8: (a) Trajectories of the shock, flux rope, and X-line for the simulation shown in the previous figure.
(b) The electric field at the X-line as a function of time.
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Fig. 10.9: (i) Twisted flux tube showing three types of field line I, II, and TII. (ii) Quasi-separatrix layers
viewed from above together with sample field lines of types (a) I (dotted curve), (b) III (dashed-dotted curve)

and (c) II (solid curve) and (d) the connectivity of points on the quasi-separatrix layers.
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Fig. 10.10: Perspective view of a 3-D twisted configuration with a finite spatial extension and without nulls
or field line tangent to the photosphere. Separatrices are no longer present, but there is a very thin volume (QSL)
where the field line connectivity changes rapidly. The intersection of the QSL with the lower boundary (plane
z = 0) is shown by an iso-contour of the function N (see chapter about connectivity). This intersection forms
two elongated strips on both sides of the boundary inversion line (IL). From these strips the QLS extends above,
following magnetic field lines (the complexity of this elongated volume precludes a clear drawing of it). Two
representative sets of field lines have been included; they belong to the periphery of the twisted flux tube and to

the lower arcade (Demoulin, 1997).
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Fig. 10.11: A schematic representation of an ambient coronal streamer (a) in which a coronal mass ejection

(b) originates.
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Fig. 10.12: How field line shrinkage is defined for flare loops. Shrinkage is simply a measure of the change in

shape of a field line due to its closure by reconnection.
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Fig. 10.13: Schematic diagram of a flare loop system formed by reconnection in the supermagnetosonic regime.
This regime is most likely to occur in the early phase of a flare when the reconnecting fields are strong. It has
both upward- and downward- directed jects, but only the region below the downward jet has high-density plasma,
because in two-dimensional models chromospheric evaporation occurs on just those field lines that lie below the
X-line. Solid curves indicate boundaries between various plasma regions, while dashed ones indicate magnetic
field lines.
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Fig. 10.14: Schematic diagram of a flare loop system formed by reconnection in the submagnetosonic regime.
This regime is most likely to occur when the reconnection fields are weak. Here the downward jet of the previous
figure is replaced by a weak bifurcated flow along the field lines mapping from tip of the current sheet to the
chromosphere. Because of the weaker fields, the evaporation process is greatly reduces and the plasma density in

the loops becomes too low to trigger a thermal condensation. However, condensation remnants may remain lower
down as a result of an earlier supermagnetosonic phase.
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Fig. 10.15: Processes in flare loops.
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Fig. 10.16: Schematic model of impulsive hard X-ray, radio and EUV sources.
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Fig. 10.17: The emerging flux model for a small flares. (a) The preflare phase when the emerging flux slowly
reconnects with the over-lying field. Slow-mode shocks (dashed curves) radiate from a small current sheet and heat
the plasma that passes through them (striped region). (b) The impulsive phase caused by the onset of turbulence
and anomalous resistivity in the current sheet when it reaches a critical height. The electric field generated by
the sudden enhancement in the reconnection rate accelerates the particles, which produce hard X-rays and type

III radio bursts. In the main phase (c), quasi-steady reconnection leads to extensive heating.



