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Chapter 1Basi
 
on
epts and equationsPlasma means a partially or 
ompletely ionized gas, whi
h is ele
tri
ally neutral as a whole, andwhi
h 
onsists of ele
trons, ions and neutral atoms. Furthermore the plasma, in the sense usedhere, is 
hara
terized by so 
alled 
olle
tive behavior of its parti
les. This aspe
t is used to beexpressed by the following 
onditions:a) The mean for
e of near intera
tions is mu
h less than that of distant 
olle
tive intera
tionsof parti
les Fnear � Fdist;b) the number of parti
les in the so 
alled Debye sphere is large1n�3D � 1;where n is the plasma parti
le density and �D is the Debye length,
) the thermal kineti
 energy KE is mu
h greater than potential energy PEKE � PE; 32kBT � e24��0�D :It means that the plasma is a suÆ
iently diluted and hot gas, whi
h 
hara
teristi
 length L ismu
h greater than the Debye length (L� �D).Debye shieldingLet us assume a 
harge q0 at zero point of the referen
e system at r0 = 0. The potential of this
harge in free spa
e is '0(r) = q04��0 j r j ; (1.1)where �0 is the permittivity of the free spa
e.Now, let us 
onsider a test 
harge q0 surrounded by a neutral plasma (ele
trons with the ele
trondensity ne and temperature Te and heavy protons of the same density ne = np). Then thepotential ' 
an be determined from Poisson equationr2'(r) = �q0�0 Æ(r) + e�0 < �e >; (1.2)where the mean 
harge density is< �e >= ne exp� e'kBTe�� np: (1.3)
2



3Here kB is the Boltzmann 
onstant, and for ele
trons the Maxwell-Boltzmann statisti
s (�exp(�q'=(kBT ))) is used. As mentioned above, in a plasma the kineti
 energy of ele
tronsis mu
h greater than their potential energy, and that is why the exponential fun
tion 
an beexpanded in a Taylor series and only two �rst terms 
an be used. Thus, the 
harge density inthe form of < �e >� nee'=(kBTe) 
an be put into Poisson equation whi
h 
an be written as�r2'0(r) + nee2'(r)�0kBTe = q0�0 Æ(r): (1.4)Solving this equation in polar 
oordinates (i.e. r2 ! �2�r2 + 2r ��r ) the solution is'0(r) = q04��0r exp(� r�D ); (1.5)where �D � s��0kBTnee2 �; (1.6)is the Debye radius. As seen the ele
tri
 �eld at distan
es L � �D is e�e
tively shielded.Plasma os
illationsIn a quasi-neutral ele
tron-ion plasma a relative displa
ement of ele
trons in 
omparison withions 
auses the ele
tri
 �eld: E = nee��0 ; (1.7)where � is the displa
ement. Then the Newton for
e equation gives the equation for os
illationsof ele
trons me d2dt2 � = �eE = �ne�0 e2�; (1.8)(where me is the ele
tron mass) with the 
hara
teristi
 frequen
y 
alled ele
tron plasma fre-quen
y !2pe = nee2�0me : (1.9)Similarly, we 
an de�ne the proton plasma frequen
y as!2pp = npe2�0mp ; (1.10)where mp is the proton mass, and so on.Equations des
ribing plasma pro
essesa) Kineti
 des
riptionPlasma is fully des
ribed by a distribution fun
tion f(r;v; t). The distribution gives the numberof parti
les whi
h are present in a unit volume of the 6-dimensional phase spa
e lo
ated in
oordinates r,v at time t. The distribution fun
tion is a solution of the Boltzmann equation�f(r;v; t)�t + v � rf(r;v; t) + Fm � �f(r;v; t)�v = ��f(r;v; t)�t �
oll ; (1.11)



4 Chapter 1: BASIC CONCEPTSwhere m is the parti
le mass, F is the general for
e, and in our 
ase usually in the formF = q(E+ v �B); (1.12)where E and B are the ele
tri
 �eld and magneti
 indu
tion.The term on the right side of the equation (1.11) expresses e�e
ts of parti
le 
ollisions.Be
ause plasma 
an have many di�erent 
omponents (ele
trons, protons, neutrals, ions of dif-ferent 
hemi
al elements), the Boltzmann equation should be solved for every single plasma
omponent and the intera
tions between 
omponents should appear in the 
ollisional terms onthe right side of the individual Boltzmann equations. But, for many tasks some simpli�
ationsare made, and e.g. only the Boltzmann equation for ele
trons is solved.Furthermore, if the 
ollisional term is very low (e.g. if the plasma frequen
y is mu
h greaterthan the 
ollision one; !pe � �
) then su
h a plasma is 
alled 
ollisionless and for its des
riptionthe Vlasov equation is used�f(r;v; t)�t + v � rf(r;v; t) + Fm � �f(r;v; t)�v = 0; (1.13)For a full set of equations des
ribing a plasma behaviour the Maxwell equations need to beadded r�E = ��B�t r �E = 1"0 �e (1.14)r�B = �0j+ 1
2 �E�t r �B = 0where j is the ele
tri
 
urrent density and �e is the 
harge density, whi
h 
an be expressed asfollows j =X� e� Z vf�d3v; (1.15)�e =X� e� Z f�d3v; (1.16)where the index � 
orresponds to individual plasma 
omponents.Fokker-Plan
k equationIf the parti
le 
ollisions are dominant then an evolution of the parti
le distribution fun
tion isdes
ribed by the Fokker-Plan
k equation. Let P (v;�v) be the probability that a test parti
le
hanges its velo
ity v to v +�v in the time interval �t. Provided that the parti
le number is
onserved, the velo
ity distribution at time t 
an be written asf(v; t) = Z f(v ��v; t��t)P (v ��v;�v)d3�v: (1.17)Noting that for small-angle de
e
tions j �v j�j v j, the produ
t fP in Equation (1.17) 
an beexpanded into a Taylor series,f(v; t) = Z (fP ��t[�f�t ℄P ��v[rvfP ℄ + 12�vi�vj [ ��vi ��vj fP ℄ + :::)d3�v: (1.18)



5The Einstein 
onve
tion has been introdu
ed that the sums over the indi
es i and j have to beused if they appear together in the numerator and denominator, or as subs
ripts and supers
ripts.Sin
e the probability that some transition takes pla
e is unity, P is normalized toZ Pd3�v = 1: (1.19)We de�ne the average velo
ity 
hange per time interval �t:Z �vPd3�v �< �v >; (1.20)Z �vi�vjPd3�v �< �vi�vj > : (1.21)Ex
hanging integration and di�erentiation, the integral in Eq. (1.18) 
an be evaluated. The�rst term in the integrant 
an
els with the left hand side of the equation. The remaining termsform the important Fokker-Plan
k equation,��f(v; t)�t �
oll = �2�vi�vj �f < �vi�vj >2�t �� ��vi �f < �vi >�t � : (1.22)The possibility of negle
ting the higher-order terms in the expansion (1.18) is a property ofinverse-square law parti
les having multiple 
ollisions. Equation (1.22) shows that the motionof parti
les in velo
ity spa
e then 
an be visualized as a di�usion pro
ess. Its right hand sidedes
ribes the temporal 
hange of a distribution of test parti
les by multiple, small-angle 
ollisionpro
esses. It 
orresponds to the right hand side of the Boltzmann equation (1.11). The �rstterm in Equation (1.22) represents the three-dimensional di�usion of the test parti
le in velo
ityspa
e; the se
ond term is a fri
tion, slowing down the test parti
le and moving it radially towardthe origin of velo
ity spa
e.b) Magnetohydrodynami
 des
riptionFor many tasks in astrophysi
al plasmas the kineti
 approa
h is too 
omplex, in reality we do notneed to know distribution fun
tions of plasma parti
les. In these 
ases the des
ription using thema
ros
opi
 quantities as e.g. the mean plasma velo
ity and so on is suÆ
ient. Mathemati
allyit means that the integration of kineti
 equations in velo
ity spa
e is justi�able. Thus, theequations with the ma
ros
opi
 quantities (
alled the magnetohydrodynami
 equations , MHDequations for short) 
an be obtained as the moments of the Boltzmann equation [BKE℄:Z [BKE℄d3v; (1.23)Z mv[BKE℄d3v; (1.24)Z 12mv2[BKE℄d3v: (1.25)Example of derivation of the �rst moment - �rst MHD equationLet us integrate the �rst moment��t Z fd3v + ��r Z vfd3v + qm Z (E+ v �B)�f�vd3v = Z ��f�t �
oll d3v; (1.26)



6 Chapter 1: BASIC CONCEPTSwhere r � v = 0 was used in the se
ond term. Due to the parti
le number 
onservation theintegral of the 
ollisional term is zero. Furthermore, using the Gauss theorem and per partesintegration, the for
e term 
an be expressed asZ (E+ v �B)�f�vd3v = E Z fdSv � Z f �(v �B)j�vj d3v; (1.27)where dSv is the surfa
e element in the velo
ity spa
e. The �rst part is zero be
ause f ! 0for j v j! 1, and the se
ond one is zero be
ause the (v �B)j do not 
onsist of vj . Thus, therelation (1.26) 
an be written as ��t Z fd3v + ��r Z vfd3v; (1.28)or ���t + div �u = 0; (1.29)where the density is � = R fd3v and the mean plasma velo
ity u = R vfd3v= R fd3v. This lastequation is known as the 
ontinuity equation or the mass 
onservation equation.MHD equationsMass 
onservation: d�dt � ���t + v � r� = ��r � v; (1.30)where d=dt is the 
onve
tive derivative.Momentum 
onservation: �dvdt = �rp+ j�B+r � S+ Fg; (1.31)where p is the plasma pressure, j is the 
urrent density, B is the magneti
 indu
tion, S is thevis
ous stress tensor, and Fg is the gravitation for
e.Internal energy 
onservation:�dedt + pr � v = r � (� � rT ) + (�e � j) � j+Q� �QT ; (1.32)where e = p(
 � 1)�is the internal energy per unit mass, � is the thermal 
ondu
tivity tensor, T is the temperature,Q� is the heating by vis
ous dissipation, 
 is the ratio of spe
i�
 heats, and QT = �2Q(T ) is theradiative energy loss, Q(T ) is a fun
tion des
ribing the temperature variation of the radiativeloss in the opti
ally thin approximation.Faraday's equation: r�E = ��B�t : (1.33)



7Amp�ere's law: r�B = �j: (1.34)In 
omparison with Maxwell equations the displa
ement 
urrent term (� �E=�t) is negligiblein the MHD approximation.Gauss's law: r �B = 0: (1.35)Ohm's law: E0 = E+ v �B = �e � j: (1.36)Here E0 = E+v�B gives the Lorentz transformation from the ele
tri
 �eld (E) in a laboratoryframe of referen
e to the ele
tri
 �eld (E0) in a frame moving with the plasma. This Ohm's lawstates that it is the ele
tri
 �eld (E0) in the moving frame whi
h is proportional to the 
urrent.Equation of state: p = R�T = nkBT; (1.37)where R is the universal gas 
onstant, n is the parti
le density, and kB is Boltzmann's 
onstant.The density 
an be expressed as � = nm;where m is the mean parti
le mass. For a hydrogen plasma the pressure be
omesp = 2nekBTand the plasma density is � � nemp;where mp is the proton mass.The above system of MHD equations 
onstitutes a set of 16 
oupled equations for 15 unknownvariables (v;B; j;E; �; p; and T ). It seems that the system is over-determined. However, fromFaraday's law follows that if we take a divergen
e-free initial state, Gauss's law follows fromFaraday's equation(�=�(r �B) = �r � (r�E) = 0). In this sense Gauss's law is not ne
essary.



8 Chapter 1: BASIC CONCEPTSIndu
tion equationIf we put E = �v � B + �ej from Ohm's law and j = r � B=�0 (where �0 is the magneti
permeability of free spa
e) from Amp�ere's law into Faraday's law we 
an write�B�t = r� (v �B)� �e�0r� (r�B): (1.38)Now, using the ve
tor formular�r�B = r(r �B)�r2Band Gauss's law the indu
tion equation 
an be written as�B�t = r� (v �B) + �r2B; (1.39)where � = �e=�0 is the magneti
 di�usivity.Approximations of the indu
tion equationNow, let us 
ompare terms on the right side of the indu
tion equation by de�ning so 
alledmagneti
 Reynolds number:Rm = r� (v �B)�r2B � v0B0L0�B0L20 = L0v0� ; (1.40)where v0 is the 
hara
teristi
 plasma velo
ity and L0 is the 
hara
teristi
 length s
ale.As 
an be seen, two extreme regime of the indu
tion equation 
an be 
onsidered. For pro
esseswith small 
hara
teristi
 velo
ities, i.e. v0 ! 0 and Rm ! 0, the indu
tion equations gives aform of the di�usion equation �B�t = �r2B: (1.41)On the other hand, in a 
ollisionless plasma with �e = 0, i.e. for Rm � 1, the indu
tion equationbe
omes �B�t = r� (v �B): (1.42)



Chapter 2Magneti
 �eld stru
turesThe B and j des
riptions of plasma pro
essesConsidering Ampere's law r�B = �j: (2.1)it looks that the des
riptions using the magneti
 �eldB or the ele
tri
 
urrent j as basi
 variablesare equivalent. But in reality only B is dire
tly measured on the Sun. Therefore, the des
riptionwith B is preferred in solar 
ir
umstan
es, and the ele
tri
 
urrent is a variable derived fromthe magneti
 �eld.Based on magneti
 measurements at the photosphere the magneti
 �eld in the 
orona 
an beextrapolated (see Fig. 2.1). In model situation the magneti
 �eld was extrapolated even betweentwo stars (see Fig. 2.2). Commonly used methods are so-
alled potential (j = 0 everywhere abovethe photosphere) and linear for
e-free �eld extrapolations. But there are attempts to make so-
alled non-linear extrapolations. One a rough method is des
ribed in the �le non-extra.pdf.Referen
e:Karli
k�y, M.: 1997, Evolution of for
e-free ele
tri
 
urrents in the solar atmosphere, Astron.Astrophys. 318, 289-292.Basi
 stru
turesa) Gravitational strati�
ationA 
omparison of the sizes of terms in the equation of motion�dvdt = �rp+ j�B+ �gshows that the inertial term on the left-hand side may be negle
ted when the 
ow speed is mu
hsmaller than both the sound speed (
p0=�0)1=2, the Alfven speed B0=(��0)1=2 and the gravita-tional free-fall speed (2gl0)1=2 for a verti
al s
ale-length l0. The result is a magnetohydrostati
balan
e O = �rp+ j�B+ �g (2.2)between the pressure gradient, the Lorentz for
e and the gravitational for
e. The full set ofequation is given by adding j = r�B=� (2.3)9
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Fig. 2.1: The so-
alled 'magneti
 
arpet' showing observed photospheri
 magneti
 �eld and extrapolatedoverlying magneti
 �eld lines.

Fig. 2.2: Model magneti
 �eld for an RS CVn binary system in whi
h the two stars are tidally lo
ked intorapid syn
hronous rotation. rB = 0; (2.4)



11� = mpkBT : (2.5)If gravity a
ts along the negative z-axis and s measures the distan
e along magneti
 �eld linesin
lined at the angle � to the verti
al, the 
omponent of Eq. (2.2) parallel to B is0 = �dpds � �g 
os �: (2.6)Sin
e Æs 
os � = Æz this be
omes 0 = �dpdz � �g; (2.7)where p and � are fun
tions of z along a parti
ular �eld line. After substituting for � fromEq.(2.5) in Eq. (2.7) and integrating, we �ndp = p0 exp� Z z0 1�(z)dz; (2.8)where p0 is the base pressure (at z = 0) whi
h may vary from one �eld line to another; also�(z) = kBT (z)mg (2.9)is the pressure s
ale-height, whi
h represents the verti
al distan
e over whi
h the pressure fallsby a fa
tor e.For the parti
ular 
ase when the temperature is uniform along a �eld line (due to, for instan
e,the dominan
e of thermal 
ondu
tion), � is 
onstant and Eq. (2.8) redu
es top = p0e�z=�: (2.10)
) Stru
ture of magneti
 
ux tubesConsider a 
ylindri
ally symmetri
 
ux tube whose magneti
 �eld 
omponents(0; B�(R); Bz(R)) (2.11)in 
ylindri
al polar 
oordinates are fun
tions of R alone. The �eld lines are then heli
al and lieon 
ylindri
al surfa
es, as indi
ated in Fig. 2.3, while the ele
tri
 
urrent 
omponents are, fromEq. (2.3) �0;� 1� dBzdR ; 1�R ddR (RB�)� : (2.12)Under the negle
t of gravity the for
e-balan
e equation then redu
es to (see the matrix withrows: (i,j,k),2.12,2.11) dpdR + ddR  B2� +B2z2� !+ B2��R = 0; (2.13)the se
ond term representing the magneti
 pressure and the third term the magneti
 tensiondue to the azimuthal 
omponent (B�) that en
ir
les the axis.On ea
h 
ylindri
al surfa
e the �eld lines have a 
onstant in
lination, but this may vary fromone radius to another. The �eld lines are given byRd�B� = dzBz ; (2.14)
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Fig. 2.3: The notation for a 
ylindri
ally symmetri
 
ux tube of length 2L.and the amount by whi
h a given line is twisted in going from one end of the tube (length 2L)to the other is � = Z d� = Z 2L0 B�RBz dz; (2.15)or �(R) = 2LB�(R)RBz(R) ; (2.16)(4�L=� is 
alled sometimes the pit
h of the �eld and gives the axial length of a �eld line thaten
ir
les the axis on
e, i.e. for � = 2� this length is 2L).Purely axial �eldWhen no azimuthal 
omponent (B�) is present, Eq. (2.13) redu
es toddR  p+ B22�! = 0; (2.17)with solution p+B2=(2�) = 
onstant, so that the total pressure (gas plus magneti
) is 
onserved.Purely azimuthal �eld



13When the axial 
omponent vanishes, equation Eq. (2.13) be
omesdpdR + ddR  B2�2�!+ B2��R = 0; (2.18)where, a

ording to Eq. (2.3), B� is related to the 
urrent by (2.12)jz = 1�R ddR (RB�): (2.19)If, in parti
ular, the 
urrent 
ows with uniform total value I within a 
ylinder of radius a, anintegration of Eq. (2.19) yields � Z jzdS = Z r�BdS;�I R2a2 = 2�RB�(R);B� = �IR2�a2 ; R < a; (2.20)B� = �I2�R;R > a;assuming B� to be �nite and 
ontinuous. The 
orresponding plasma pressure results fromintegrating Eq. (2.18). Assuming that it takes the value p1 outside the 
urrent 
olumn, we �nddpdR = � ddR  12� �2I2R24�2a4 !� 1�R �2I2R24�2a4 jRa ;p = p1 + 14�(I=(�a2))2(a2 �R2); R < a; (2.21)p = p1; R > a:The magneti
 �eld lines are shown in Fig. 2.4. Within the 
ylinder of radius a B� in
reaseslinearly with R, while the gas pressure de
reases, so that the outwards gas pressure is balan
edby inwards magneti
 pressure and tension for
es. Outside the 
ylinder the pressure is uniformand the magneti
 �eld is potential, so that the outwards magneti
 pressure and inwards tensionbalan
e one another.In the laboratory, a plasma 
on�guration in whi
h the 
urrent is axial and the magneti
 �eldazimuthal is known as a linear pin
h. A simple relation may be derived in this 
ase between the
urrent I � Z R00 jz2�RdR (2.22)
owing through the plasma 
olumn (of radius R0) and the numberN � Z R00 n2�RdR (2.23)of parti
les per unit length of the 
olumn. Eq. (2.18) may �rst be multiplied by R2 andintegrated to give R2dp = �dR R2B�� dB�dR + B2�R� ! ;



14 Chapter 2: MAGNETIC FIELD STRUCTURESR2dp = �RB�� (RdB� +B�dR) = �RB�� d(RB�);Z R00 R2dp = � Z R00 RB�=�d(RB�): (2.24)Then, assuming that the plasma pressure vanishes at R0 and the temperature (T = p=(nkB)) isuniform a
ross the 
olumn, an integration by parts of the left-hand side together with the useof Eq. (2.19) on the right-hand side yields the expressionj R2p jR00 � Z R00 2RpdR = � j (RB�)22� jR00 = R20B2�2� ;Z R00 2RnkBTdR = kBTN� ;I = Z R00 2�R 1�R d(RB�)dR dR = Z R00 2�� d(RB�) = 2�� R0B�;I2 = (8�=�)kBTN; (2.25)known as Bennett's relation.

Fig. 2.4: The ourely azimuthal magneti
 �eld lines in a se
tion a
ross a 
olumn of uniform 
urrent and radiusa.For
e-free �eldsI. Linear �eldIn the absen
e of pressure, Eq.(2.13) redu
es toddR  B2� +B2z2� !+ B2��R = 0: (2.26)



15Here, either B� or Bz may be pres
ribed and the other dedu
ed. For the so-
alled '
onstant-�'�eld one assumes that �j = �B, where � is uniform. After using Eq. (2.3), the �-
omponent ofthis be
omes �j� = �B�; �dBzdR = �B�: (2.27)Finally, an elimination of B� between Eqs. (2.26) and (2.27) yields Bessel's equation whosesolution subje
t to Bz = B0 and dBz=dR = 0 at R = 0 isddR � 12��2 (dBzdR )2 + 12�B2z�+ �dBzdR �2 1�R�2 = 0;R2B00z +RB0z +R2�2Bz = 0; Bessel0s equationB� = B0J1(�R); Bz = B0J0(�R); (2.28)where J0; J1 are Bessel fun
tions.II. Nonlinear �eldsAn easy way to generate solution to Eq. (2.26) is to 
hooseB2 = f(R); (2.29)and then Eq. (2.26) gives B2� = �12R dfdR (2.30)and B2z = B2 �B2�: (2.31)The restri
tions that B2� and B2z be positive imply that df=dR is negative and that f approa
heszero slower than R�2 as R ! 1. The limiting 
ase f = R�2 gives the purely azimuthal �eldR�1�.Another simple example of a for
e-free �eld is the 'uniform-twist' �eld, for whi
h � is (given byEq. (2.16)) is 
onstant and the �eld 
omponents areB� = B0�R=(2L)1 + �2R2=(2L)2 ; Bz = B01 + �2R2=(2L)2 : (2.32)They have the property that �eld lines at di�erent radii are twisted through the same angle, sothat the whole tube is twisted like a rigid body.Basi
 topology of twisted magneti
 
on�gurationsLet us 
onstru
t a simple magneti
 loop as presented in Fig. 2.5. Su
h a 
on�guration resemblesto that in the solar atmosphere. The z-axis points in the verti
al dire
tion and the plane z = 0represents the photosphere.The whole magneti
 �eld is obtained here by superimposing three 
omponents denoted byBI ;Bqand B�. The �rst 
omponent BI is the �eld 
reated by a ring 
urrent I uniformly distributed
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Fig. 2.5: The magneti
 �eld under study is modelled by a for
e-free 
ir
ular 
ux tube with the total 
urrentI, a pair of magneti
 
harges �q, q and a line 
urrent I0. Below the photospheri
 plane z = 0 this 
on�gurationhas no real physi
al meaning: it is used only to 
onstru
t the proper magneti
 �eld in 
orona.over its 
ir
ular 
ross se
tion of radius a. The plane of symmetry of the ring 
oin
ides withthe plane x = 0, while its axis of symmetry is parallel to the x-axis and submerged under thephotosphere by a depth d, so that in 
orona only an ar
 of the ring with major radiusR is present.The se
ond 
omponent Bq is 
reated by the leading and following spots of the modelling a
tiveregion, whi
h are represented here by two 
harges �q and q lying on the axis of symmetry of thering from both sides of the plane x = 0 on the distan
e L. The third 
omponent B� is 
reatedby a line 
urrent I0 
owing exa
tly along the axis of symmetry of the ring. In this model, of
ourse, only the �eld above the photospheri
 plane z = 0 has a real physi
al meaning, while thesub-photospheri
 
urrents and sour
es play an auxiliary role in 
onstru
ting the 
on�guration.One 
an ignore its sub-photospheri
 part and regard that the 
oronal for
e-free �eld is in fa
tdetermined by the verti
al 
omponents of the �eld Bq + BI + B� and 
urrent density on thephotosphere. The region o

upied by the ring 
urrent is further assumed to be thin, so that theequilibrium of this 
urrent 
an be investigated by using appropriate asymptoti
 expansions insmall parameters a=R and a=L. The external equilibrium here 
orresponds to the equilibriumof a ring 
urrent in an axisymmetri
 potential �eld. Due to the present axial symmetry, therespe
tive equilibrium 
ondition is the same for ea
h element of the 
ux tube and, is redu
ed tothe balan
e of only two for
es: the Lorentz for
e Fq 
aused by intera
tion of the 
urrent I withthe �eld Bq and the Lorentz self-for
e FI resulting from the 
urvature of the tube axis. Bothfor
es a
t along the normal n to thin axis and 
an be written asFq = � 2qLIn(R2 + L2)3=2 ; (2.33)FI = �0I24�R �ln Ra + ln8� 3=2 + li=2�n; (2.34)where li is the internal self-indu
tan
e per unit length of the tube (li = 1=2 in our 
ase).From the for
e balan
e Fq + FI = 0 we obtain the total equilibrium 
urrentI = 8�qLR(R2 + L2)�3=2�0[ln(8R=a)� 3=2 + li=2℄ ; (2.35)whi
h 
ows in the 
orona.



17Now, let us 
onstru
t approximate analyti
al expressions for the magneti
 �eld. We use thetubal system of 
oordinates (�; �; �),� is the distan
e from the axis of the tube and � is the anglebetween radius � and the plane symmetry x = 0, while � measures the angular ar
 length of thetube from the positive dire
tion of y-axis. Sin
e the 
ux tube in our model is assumed to be thinin 
on�guration with its radius of 
urvature R and the 
hara
teristi
 size L, the 
orrespondingfor
e-free 
ondition in zero order approximation by small parameters a=R and a=L is the sameas for the straight tube. So in the above tubal 
oordinates the for
e-free 
ondition 
an be writtenat 0 < � � a as follows �2 ���(B2�in +B2�in) +B2�in � 0; (2.36)where the azimuthal magneti
 �eld 
omponentB�in � �0I�2�a2 (2.37)
orresponds to the uniformly distributed toroidal 
urrent I. These equations give the toroidal�eld inside the tube (when we put Eq. 2.37 into Eq. 2.36)B�in � sign(I0) B2�R + �20I22�2a4 (a2 � �2)!1=2 ; (2.38)where the toroidal �eld on the surfa
e of the tubeB�R � �0I02�R (2.39)is followed from the appropriate approximation of the external toroidal �eldB�ex = �0I02� (y2 + (z + d)2)�1=2; (2.40)whi
h is produ
ed by the sub-photospheri
 line 
urrent I0.Both internal and external toroidal �elds 
an be sewed by using the following formula:B� = �0I02� [ 1R2 + 2�(a� �)a2 I2I20 (1� �2a2 )℄1=2� + (2.41)�0I02� [y2 + (z + d)2℄�1=2 �R�1℄�;where � = �0;�z + dr? ; yr?� ; (2.42)� = [x2 + (r? �R)2℄1=2; (2.43)r? = [y2 + (z + d)2℄1=2; (2.44)and �(X) stands for the Heaviside fun
tion su
h that � = 1 if X > 0 and � = 0 otherwise. Theequation des
ribes the toroidal magneti
 �eld inside the 
ux tube only in zero order approxima-tion by small parameters a=R and a=L, whi
h is suÆ
ient for determination of the topology inour 
on�guration.



18 Chapter 2: MAGNETIC FIELD STRUCTURESRemark: Thus, outside the loop (� = 0)B� = �0I02� [ 1R + [y2 + (z + d)2℄�1=2 �R�1℄�;B� = �0I02� [y2 + (z + d)2℄�1=2�;and inside the loop (� = 1)B� = �0I02� [ 1R2 + 2a2 I2I20 (1� �2a2 )℄1=2�;B� = �0I02� [ 1R2 + 2a2 I24�2R2B2�R=�20 (1� �2a2 )℄1=2�;B� = [B2�R + �20I22�2a4 (a2 � �2)℄1=2�;whi
h 
orresponds to previous formulae.We also determine with the same a

ura
y, the poloidal magneti
 �eld everywhere in the 
oronalvolume. Inside the 
ux tube Eq. (2.37) yields it with the desired a

ura
y, outside the tube itis approximately a superposition of the point sour
es �eldBq = q� r+j r+ j3 � r�j r� j3� ; (2.45)r� = (x� L; y; z + d); (2.46)and of the �eld BIex produ
ed by the line 
urrent I in the ring of radius R. In order to deriveBIex and the proper sewing fun
tion BI , it is helpful to represent the magneti
 �eld in termsof the ve
tor potential, whi
h due to the symmetry of our 
on�guration about x-axis 
an beredu
ed to only one non-vanishing �-
omponent AI(r?; x), so thatBI = r� (AI�) = ��AI�x r?r? + ��AI�r? + AIr?�x: (2.47)Remark: Generally, B = B�� +Br? r?r? +Bxx:Due to 
ylindri
al symmetry BI = Br? r?r? +Bxx;and thus BI 
an be express as BI = r� (AI�):Coordinate ve
tors are:r?r? = (0; yr? ; z + dr? ); � = (0;�z + dr? ; yr? ); x = (x; 0; 0): (2.48)



19Then using standard ve
tor operation r� (AI�) in 
ylindri
al 
oordinates we obtain the abovementioned Eq. (2.47).From here and equation (2.37) one 
an derive AI inside the tubeAIin � �0I2�  
onst� �22a2! : (2.49)BIin � �0I2� �� 2x2a2 r?r? � 2(r? �R)2a2 x� ; 
onst so AI=r? ! 0;j BIin j= �0I2�a2 (x2 + (r? �R)2)1=2:Outside the 
ux tube, AI is well approximated by the potential of the ring determined as:Generally we 
an writeAIex � �0IR4� Z 2�0 
os �0d�0(R2 + r2D � 2RrD sin � 
os �0)1=2 ; (2.50)where R is the radius of the ring 
urrent, rD is the distan
e from the 
entrum of the ring tothe position, where the ve
tor potential is 
al
ulated. Thus, rD = qr2? + x2 and rD sin � = r?.Then we may write AIex � �0IR4�(R2 + r2? + x2)1=2 Z 2�0 
os �0d�0(1� v 
os �0)1=2 ; (2.51)where v = 2r?RR2 + r2? + x2 : (2.52)The above integral 
an be expressed in terms of the 
omplete ellipti
 integrals of the �rst andse
ond kinds, K(k) and E(k), as follows: First, in denominator of Eq. 2.51 we add 2Rr?�2Rr?AIex � �0IR4�(R2 + r2? + x2 + 2Rr?)1=2 Z 2�0 
os �0d�0(1� 2�2Rr?R2+r2?+x2+2Rr? 1+
os �02 )1=2 ;Then we designate k2 = 4Rr?R2 + r2? + x2 + 2Rr? ;and use 
os2 �2 = 1 + 
os �02 ;and �=2 = H, so the ve
tor potential isAIex � �0IR4�(R2 + r2? + x2 + 2Rr?)1=2 Z �=20 4 
os 2HdH(1� k2 
os2H)1=2 ;



20 Chapter 2: MAGNETIC FIELD STRUCTURESwhere the multipli
ation fa
tor 4 in integration is due to a 
hange of integration limits. Now,using 
os 2H = 
os2H � sin2H and de�nitions of the 
omplete ellipti
al integralsK = Z �=20 d�p1� k2 sin2 �; (2.53)E = Z �=20 q1� k2 sin2 �d�;we haveAIex � �0IR4�(R2 + r2? + x2 + 2Rr?)1=2 4� 1k2 (K �E)� 1k2 (E � (1� k2)K� ;(in integrations we 
an repla
e p1� k2 sin2 � by p1� k2 
os2 �), and after a simple manipula-tion the �nal formula for the ve
tor potential isAIex(x; r?) � �0I2� s Rr?A(k); (2.54)in whi
h A(k) � k�1[(2� k2)K(k)� 2E(k)℄ (2.55)and k � 2s r?R(r? +R)2 + x2 : (2.56)There is a small mismat
h at � = a between AIex and AIin, whi
h 
an be eliminated by using,instead of AIin, the following expression:AIin � �0I2� s Rr? [A(ka) +A0(ka)(k � ka)℄; (2.57)where A0(k) � ddkA(k) = (2� k2)E(k) � 2(1 � k2)K(k)k2(1� k2) (2.58)and K 0 = (E=(1 � k2)�K)k ; E0 = E �Kk ;and ka = 2s r?R4r?R+ a2 (2.59)is the value su
h that k = ka at � = a and always ka < 1, so A(ka) and A0(ka) are regularfun
tions of r?. One 
an show that in zero order approximation by a=R Eq. (2.57) redu
esto Eq. (2.49), while AIin and AIex at � = a are equal to ea
h other together with their �rstderivatives, so the 
orresponding sewing fun
tion isAI = �(a� �)AIin + �(�� a)AIex: (2.60)



21By using this and Eq. (2.47) one 
an derive now an expli
it formula for BI and so for the wholemagneti
 �eld.Referen
esPriest, E.R.: 1982, Solar Magnetohydrodynami
s, D. Reidel Publ. Comp., Dordre
ht, Holland.Titov, V.S., Demoulin, P.: 1999, Astron. Astrophys. 351, 707.



Chapter 3Magneti
 �eld re
onne
tionDi�usion in the 
urrent sheet

Fig. 3.1: The magneti
 �eld (B) as a fun
tion of distan
e (x) in a 1-D 
urrent sheet that is di�using from sheetof zero thi
kness initially, for times t = 0; t1; t2, where 0 < t1 < t2.Let us 
onsider a 
urrent sheet des
ribed asB(x; 0) = B0; x > 0; (3.1)B(�x; 0) = �B(x; 0):and the plasma velo
ity v = 0 everywhere in the system. Then the indu
tion equation is redu
edto the di�usion one: �B�t = ��2B�x2 ; (3.2)whose solution is B(x; t) = 2B0p� Z x=p4�t0 e�u2du: (3.3)
22



23Solution (3.3) has the form shown in Fig. 3.1 and may be veri�ed a posteriori by substituting itba
k into Eq. (3.2).Remark: ��� Z �2(�)�1(�) f(x; �)dx = Z �2(�)�1(�) �f(x; �)�� dx+ �02f(�2(�); �) � �01f(�1(�); �): (3.4)The magneti
 �eld di�uses away in time at a speed �=l, where the width (l) of the sheet is ofthe order of (�t)1=2 and so in
reases in time. The resulting magneti
 �eld strength at a �xedposition de
reases with time, so the �eld is annihilated. The total magneti
 
ux (R1�1Bdx)remains 
onstant (namely zero) and the total 
urrentJ = Z 1�1 jdx = 1� Z 1�1 �B�x dx = 2B0� (3.5)is 
onserved, sin
e it simply spreads out in spa
e. However, the magneti
 energy de
reases intime at a rate ��t Z 1�1 B22� dx = Z 1�1 B� �B�t dx: (3.6)Substituting for �B=�t from Eq. 3.2 and integrating by parts, we �nd that this be
omesZ 1�1 B�� �2B�x2 dx = 1�2� �j B�B�x j1�1 � Z 1�1(�B�x )2dx� : (3.7)Sin
e �B=�x remains equal to zero at in�nity, the �rst term on the right vanishes, and, sin
ethe ele
tri
 
urrent is j = ��1�B=�x, we �nally have��t Z 1�1 B22� dx = � Z 1�1 j2� dx: (3.8)In other words, magneti
 energy is 
onverted entirely into heat by ohmi
 dissipation (j2=� perunit volume).Con
ept of frozen 
ux and �eld-line motionThe term "magneti
 re
onne
tion" is intimately lined to the 
on
ept of �eld-line motion. In aplasma with a very small resistivity the Ohm law be
omes E + v � B = 0, and the indu
tionequation redu
es to �B�t = r� (v �B): (3.9)Then, if we 
onsider a 
urve C (bounding a surfa
e S) whi
h is moving with the plasma, ina time dt an element ds of C sweeps out an element of area v � dsdt. The rate of 
hange ofmagneti
 
ux through C isddt ZS B � dS = ZS �B�t � dS+ ZC B � v � ds: (3.10)As C moves, so the 
ux 
hanges, both be
ause the magneti
 �eld 
hanges with time and be
ausethe boundary moves in spa
e. By setting B �v�ds = �v�B �ds and applying Stokes theoremwe obtain ddt ZS B � dS = ZS ��B�t �r� (v �B)� � dS; (3.11)



24 Chapter 3: MAGNETIC FIELD RECONNECTION

Fig. 3.2: Magneti
 
ux 
onservation: if a 
urve C1 is distorted into C2 by plasma motion, the 
ux through C1at t1 equals the 
ux through C2 at t2.

Fig. 3.3: Magneti
 �eld-line 
onservation: if plasma elements P1 and P2 lie on a �eld line at time t1, then theywill lie on the same line at a later time t2.whi
h vanishes in the ideal limit. Thus, the total magneti
 
ux through C remains 
onstant asit moves with the plasma. In other words, we have proved magneti
 
ux 
onservation, namelythe plasma elements that initially form a 
ux tube 
ontinue to do so at all later times (Fig. 3.2).There is also magneti
 �eld line 
onservation, namely that, if two plasma elements lie on a �eldline initially, then they will always do so (Fig. 3.3).Line 
onservation 
an be proved as follows. Applying the ve
tor identity (r � (a � b) =(b � r)a� (a � r)b+ a(r � b)� b(r � a)) to the ideal indu
tion equation gives�B�t = (B � r)v � (v � r)B�B(r � v): (3.12)



25Using the mass 
ontinuity equation to eliminate r � v, we then obtaind�dt = ���t + v � r� = ��r � v;�B�t + (v � r)B = (B � r)v �B(r � v);dBdt � B� d�dt = (B � r)v;ddt �B� � = �B� � r�v; (3.13)where d=dt = �=�t + v � r is the total or 
onve
tive derivative. To see how this result leads tothe 
on
lusion that the �eld lines are "frozen" to the plasma, 
onsider an element segment Ælalong a line moving with the plasma. If v is the plasma velo
ity at one end of the element andv + Æv is the velo
ity at the other end, then the di�erential velo
ity between the two ends isÆv = (Æl � r)v. During the time interval dt, the segment Æl 
hanges at the ratedÆldt = Æv = (Æl � r)v: (3.14)Sin
e this equation has exa
tly the same form as Eq. (3.13) for the ve
tor B=�, it ne
essarilyfollows that, if Æl and B=� are initially parallel, then they will remain parallel for all time.Adve
tion of magneti
 �eld linesIf Rm � 1, plasma 
an move freely along magneti
 �eld lines, but in motion perpendi
ular tothem they are dragged with the plasma or vi
e versa.As an example (Fig.3.4), 
onsider the e�e
t of a 
owvx = �v0xa ; vy = v0ya (3.15)on a �eld that is initially B = B0 
os xay; t = 0 (3.16)between x = �12�a and x = 12�a. The equations of the streamlines (namely, xy=
onstant)are obtained from dy=dx = vy=vx = �y=x (Remark: dy=y = �dx=x; ln y = � lnx+ C, xy =
onstant). These are re
tangular hyperbolae (Fig. 3.4) with in
ow along the X-axis and out
owalong the y-axis when v0 > 0.The velo
ity �eld 
orresponds to a hydrodynami
 stagnation-point 
ow. The e�e
t of this 
owon the magneti
 �eld is to 
arry the �eld lines inwards from the sides and a

umulate them nearx = 0, in
reasing the �eld strength there. Sin
e the 
omponent (vx) of the velo
ity perpendi
ularto the �eld lines is 
onstant along a parti
ular �eld line (x= 
onstant), the �eld lines are notdistorted but remain straight as they 
ome in.Now, the y-
omponent of the indu
tion equation is �B=�t = (r� (v�B))y = ��(vxB)=�x or�B�t � v0xa �B�x = v0Ba ; (3.17)
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Fig. 3.4: A sket
h of the magneti
 lines (thin-headed arrows) and streamlines (thi
k-headed arrows) at t = 0for j x j< �a=2.

Fig. 3.5: (a) Chara
teristi
 
urves x = x� exp(�v0t=a); (b) the solution for B as a fun
tion of x for severaltimes.and this determines B(x; t). In order to solve su
h a partial di�erential equation, we 
onsider
hara
teristi
 
urves in the xt-plane, whi
h are de�ned asdxdt = vx = �v0xa ; (3.18)



27with solution x = x�e�v0t=a; (3.19)where x = x� at t = 0. We wish to determine B(x; t) at every point of the xt-plane, and theelegan
e of 
onsidering 
hara
teristi
 
urves, x = x(t) given by Eq. (3.19) (Fig. 3.5a), is that onsu
h 
urves B(x(t); t) has the derivativedBdt = �B�t + dxdt �B�x = �B�t � v0xa �B�x ; (3.20)by Eq. (3.18), or, from Eq. (3.17), dB=dt = v0B=a. In other words, on the 
hara
teristi
 
urveswe have a simple ordinary di�erential equation to solve in pla
e of Eq. (3.17): the solution isB = 
onstant ev0t=a or, sin
e x = x� and B = B0 
os(x�=a) at t = 0, we haveB(x; t) = B0 
os(x�=a)ev0t=a: (3.21)However, in this solution x� is a 
onstant whi
h we have introdu
ed for 
onvenien
e and whi
hwas not present in the initial statement of the problem, so we should eliminate it by Eq. (3.19),with the �nal result B(x; t) = B0 
os�xaev0t=a� ev0t=a: (3.22)This solution is plotted in Fig. 3.5b against x for several times. It 
an be seen that the �eld doesindeed, as expe
ted, 
on
entrate near x = 0 as time pro
eeds. The �eld strength at the originis B(0; t) = B0ev0t=a, whi
h grows exponentially in time (or de
reases if the 
ow is reversed bytaking v0 < 0).Stagnation-point 
ow model

Fig. 3.6: (a) Stagnation-point 
ow 
reating a steady 
urrent sheet (shaded). (b) Magneti
 �eld pro�le, withsmall-x and large-x approximations shown as dashed 
urves.The standard equations for 2-D steady-state in
ompressible 
ow areE+ v �B = �r�B; (3.23)
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�(v � r)v = �r p+ B22�!+ (B � r)B� ; (3.24)where r �B = 0;r � v = 0; j�B = (r�B)�B=� = (B � r)B=��r(B2=(2�)); (3.25)and the 
omponents vx; vy; Bx; By depend on x and y alone. Faraday's law (r�E = 0) impliesthat �E=�y = �E=�x = 0, so that E = Ez is uniform.Considering a steady-state 
ow vx = �v0xa ; vy = v0ya ; (3.26)for whi
h r�v = 0. The steady-state 
ontinuity equation (v �r)�+�(r�v) = 0 then redu
es to(v � r)� = 0, whi
h implies that the density � is uniform if it is 
onstant at the in
owing sides.The 
ow vanishes at the origin and therefore represents an in
ompressible, stagnation-point
ow.Suppose now that the magneti
 �eld lines are straight with B = B(x)y and they reverse sign atx = 0. Then in Ohm law (Eq. 3.23), both v�B;r�B, and therefore E are dire
ted purely inthe z-dire
tion and in the present 
ase it redu
es toE � v0xa B = �dBdx : (3.27)From this equation the magneti
 �eld B 
an be estimated in two extreme 
ases as (see alsoFig.3.6): B � Eav0x; x� 1; (3.28)B � Ex� ; x� 1: (3.29)Steady re
onne
tion: 
lassi
al solutions

Fig. 3.7: Breaking and re
onne
tion of magneti
 �eld lines.In most of the universe the magneti
 Reynolds number is very mu
h larger than unity and sothe magneti
 �eld is frozen to the plasma, but in very small singular regions it 
an slip (di�use)



29through the plasma (Fig. 3.7). There are several important e�e
ts of this lo
al pro
ess:a) Changes of global topology and 
onne
tivity of �eld lines, whi
h a�e
t the paths of fast par-ti
les and heat, sin
e these travel mainly along �eld lines.b) Conversion of magneti
 energy to heat, kineti
 energy and fast parti
le energy.
) Creation of large ele
tri
 
urrents, large ele
tri
 �elds, sho
ks, all of whi
h may help to a

el-erate fast parti
les.a) Formation of a 
urrent sheetX-type 
ollapse

Fig. 3.8: Collapse of the �eld near an X-point.There are several ways of forming 
urrent sheets. One is through the 
ollapse of the �eld nearan X-type neutral point su
h as Bx = y;By = x; (3.30)whi
h has �eld lines y2 � x2 = 
onstant (dy=dx = By=Bx = x=y). The �eld is in equilibriumsin
e the ele
tri
 
urrent ��1(�By=�x� �Bx=�y) vanishes and so there is a balan
e everywherebetween the magneti
 pressure for
e (P ) a
ting inwards and the magneti
 tension for
e (T )a
ting outwards (Fig. 3.8a).Suppose now the �eld is distorted to Bx = y;By = �2x, where �2 > 1, with �eld lines y2��2x2 =
onstant, as sket
hed in Fig. ( 3.8b), and ele
tri
 
urrent j = (�2 � 1)=�.Physi
ally, we expe
t an inwards for
e on the x-axis sin
e the tension for
e is smaller and themagneti
 pressure for
e larger, whereas along the y-axis we expe
t an outwards for
e sin
ethe tension for
e is in
reased by the larger 
urvature. Mathemati
ally, the magneti
 for
e has
omponents j�B = �(�2 � 1)�2x� x+ (�2 � 1)y� y: (3.31)
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t in su
h a sense as to in
rease the perturbation and so the initial equilibrium is unstable.Current sheet formation: des
ription by 
omplex variables

Fig. 3.9: Creation of a 
urrent sheet from an X-point 
on�guration.Suppose the sour
es of the magneti
 �eld move slowly together and drive the formation of a seriesof equilibria 
ontaining a 
urrent sheet (Fig. 3.9a). Initially Bx = y;By = x. Then the questionis how to des
ribe the resulting equilibrium 
ontaining a 
urrent sheet as in Fig. 3.9b. Outsidethe sheet, where the 
urrent vanishes, the magneti
 �eld satis�es r�B = 0 and r �B = 0 or,in two dimensions, �By�x � �Bx�y = 0; �Bx�x + �By�y = 0: (3.32)Now, it may be shown as follows that ifBy + iBx = f(z) (3.33)is any analyti
 fun
tion of the 
omplex variable z = x + iy, then Eq. (3.32) is automati
allysatis�ed. We are familiar with the fa
t that the derivative f 0(x) of a fun
tion of x exists if thegradient at x has the same value whether x is approa
hed from the left or the right. In a similarway if f(z) is analyti
 the gradient has the same value when z is approa
hed from any dire
tion,in parti
ular keeping y 
onstant (so that z = x) and keeping x 
onstant (so that z = iy). Inother words ��x(By + iBx) = 1i�y (By + iBx); (3.34)or, by equating real and imaginary parts, we obtain Eq. 3.32 as required. Thus, we 
an treatthe 
urrent sheet as a 
ut in the 
omplex plane and the obje
t is to �nd a fun
tion f(z) whi
hhas su
h a 
ut.Now the initial state (3.33) has By+iBx = z and when a sheet stret
hes from z = �iL to z = iLwe may use By + iBx = (z2 + L2)1=2; (3.35)



31whi
h behaves like z when z � L and redu
es to z when L = 0 (for z = 0; By = L;Bx = 0). Thusthe evolution through a series of equilibria with a slowly growing sheet may simply be modelledby letting L slowly in
rease in value in (3.35). The �eld has limiting �eld lines (separatri
es)through the ends of the sheet, �eld lines whi
h are in
lined to one another at the ends of thesheet by 2�=3. This may be shown by noting that near the upper end of the sheet at z = iL,(3.35) be
omes approximately By + iBx = p(iL+ Z)2 + L2 � p2iLZ1=2 where Z = z � iL.This may be written as By + iBx = dadZ ; (3.36)where a = p2iL23Z3=2 = p2L23ei�=4R3=2e3i�=2; (3.37)and the 
omplex number Z has been written in polar form as Z = Rei�; (pi = (ei�=2)1=2).However, if A is the real part of a, then (3.36) implies that By = �A=�X;Bx = ��A=�Y , whereX and Y are the real and imaginary parts of Z and the magneti
 �eld lines are given bydYdX = ByBx = ��A=�X�A=�Y ; �A�X dX + �A�Y dY = 0: (3.38)In other words dA = 0 and so A = 
onstant.By taking the real part of (3.37) we 
an see thatA = p2L23R3=2 
os�3�2 + �4� : (3.39)Thus the parti
ular �eld lines A = 0 are given by3�2 + �4 = ��2 ; �2 ; 3�2 ; 5�2 ; (3.40)and so � = ��=2; �=6; 5�=6 or 3�=2. In other words the 
urrent sheet (at ��=2 or 3�=2) isin
lined to the separatri
es (�=6 and 5�=6) by 2�=3, as required.b) Sweet-Parker model

Fig. 3.10: Sweet-Parker re
onne
tion.This model 
onsists of a simple di�usion region of length 2L and width 2l between oppositelydire
ted �elds. Let us suppose the input 
ow speed and magneti
 �eld are vi; Bi. (Fig.3.10).



32 Chapter 3: MAGNETIC FIELD RECONNECTIONThe ele
tri
 
urrent is about j � Bi=(�l) and so the Lorentz for
e along the sheet is (j�B)x �jB0 = BiB0=(�l). This for
e a

elerates the plasma from rest at the neutral point to v0 overdistan
e L and so, by equating the magnitude of �(v � r)vx to the above Lorentz for
e, we have�v20L � BiB0�l : (3.41)From r �B = 0 follows B0l � BiL ; (3.42)and so the right-hand side of Eq.3.41 may be written as B2i =(�L) and we havev20 = B2i�� = v2Ai; (3.43)where vAi is the Alfven speed at the in
ow.Now a question is: how fast 
an �eld lines and plasma enter the di�usion region. Note that fora steady state the plasma must 
arry the �eld lines in the same speed that they are trying todi�use outward, so that vi = vDiffuse = �l : (3.44)Conservation of mass implies that the rate (4�Lvi) at whi
h mass is entering the sheet mustequal the rate(4�lv0) at whi
h it is leaving, so thatLvi = lvAi: (3.45)The width l may be eliminated between these two equations to give v2i = �vAi=L, or in dimen-sionless form Mi = 1R1=2m (3.46)in terms of the Alfven Ma
h number M = vvA (3.47)and the magneti
 Reynolds number Rm = LvA� (3.48)based on the Alfven speed.Now, let us 
onsider the energeti
s of this model. Be
ause l � L then vi � vAi. The rate ofin
ow of ele
tromagneti
 energy is the Pointing 
ux E�H per unit area, or, sin
e E = viBi inmagnitude, EHL = EBi� L = viB2i� L: (3.49)Therefore by Eq. 3.47 the ratio of the in
ow of kineti
 to ele
tromagneti
 energy isInflowK:E:InflowE:M: = vi1=2�v2i LviLB2i =� = 1=2�v2iB2i =� = v2i2v2Ai � 1: (3.50)



33In other words, most of the in
owing energy is magneti
.Next 
onsider the energy out
ow. By 
onservation of 
uxv0B0 = viBi; (3.51)(whi
h is 
onsistent with Eq. 3.42 and 3.45) and so B0 � Bi. Out
ow of ele
tromagneti
 energyis EB0l=�, whi
h is mu
h less than the in
ow of ele
tromagneti
 energy sin
e both B0 � Biand l � L. So what has happened to the in
owing magneti
 energy? The ratio of out
owingkineti
 to in
owing magneti
 energy isoutflowK:E:inflowE:M: = 1=2�v20(v0l)viB2i L=� = 1=2v20v2Ai = 12 : (3.52)Thus half of the in
owing magneti
 energy is 
onverted to kineti
 energy, while the remaininghalf is 
onverted to thermal energy. In other words, the e�e
t of the re
onne
tion is to 
reatehot fast streams of plasma. In this 
onne
tion it is useful to remember, that by substituting forr�H from Ampere law and for r�E from Faraday law, we 
an write�r � (E�H) = E � r �H�H � r �E (3.53)�r � (E�H) = E � j+ ��t  B22�! ; (3.54)whi
h implies that an in
ow of ele
tromagneti
 energy 
an produ
e ele
tri
al energy (E � j) forthe plasma and a rise in the magneti
 energy. Furthermore, by taking the s
alar produ
t of jwith Ohm law E = j=� � v�B, we obtainE � j = j2� + v � j�B; (3.55)so that the ele
tri
al energy appears partly as ohmi
 heat and partly as the work done by theLorentz for
e (a

elerating plasma). In our 
ase the in
ow of ele
tromagneti
 energy goes intoele
tri
al energy, half of whi
h appears as heat and half as kineti
 energy.There is also fast regime of the Sweet-Parker re
onne
tion (see Fig. 3.11). The 
ow speed andmagneti
 �eld at large distan
es Le from X-point are denoted by ve and Be. The propertiesof re
onne
tion models depend on two dimensionless parameters: the re
onne
tion rate (Me =ve=vAe) and global magneti
 Reynolds number (Rme = LevAe=�).Re
onne
tion is "fast" when the re
onne
tion rate (Me) is mu
h greater than the rate expressedin Eq. (3.46). Properties at the in
ow to the di�usion to the di�usion region (denoted by "i")may be related to the external values at large distan
es (denoted by "e"). Thus 
ux 
onservation(viBi = veBe, through the same length, a part of 
ux is going out of di�usion region) may bewritten as MiMe = B2eB2i : (3.56)Then the relations (3.44) and (3.45) may by rewritten intoLLe = 1Rme 1M3=2i 1M1=2e ; (3.57)lLe = 1Rme 1M1=2e 1M1=2i : (3.58)
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Fig. 3.11: The notation for fast regimes.Thus, on
e Bi=Be is determined from a model of the external region outside the di�usion regionlast tree equations determine Mi=Me and the dimensions of the di�usion region in terms of Meand Rme.
) Pets
hek modelIn this model, most of the energy 
onversion takes pla
e at standing slow-mode sho
ks (Fig. 3.12).These sho
ks a

elerate and heat the plasma, with 2=5 of the in
owing magneti
 energy being
hanged to heat and 3=5 to kineti
 energy.The in
ow region 
onsists of slightly 
urved �eld lines and the magneti
 �eld is a uniformhorizontal �eld (Bex), plus a solution of Lapla
e equation whi
h vanishes at large distan
es andwhi
h has a normal 
omponent BN at the sho
k waves and zero at the di�usion region. Tolowest order, the in
lination of the sho
ks may be negle
ted, and so the problem is to �nd asolution in the upper half-plane whi
h vanishes at in�nity and whi
h equals 2BN between Land Le on the x-axis and, by symmetry �2BN between �Le and �L. Now, we may regard thenormal 
omponent on the x-axis as being produ
ed by a 
ontinuous series of poles. If ea
h poleprodu
es a �eld m=r at distan
e r, then the 
ux produ
ed in the upper half plane by that polewill be �m: if the pole o

upies a distan
e dx of the x-axis, the 
ux is also 2BNdx, so thatm = 2BN=� and integrating along the x-axis gives the �eld at the origin produ
ed by the poles
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Fig. 3.12: (a) Pets
hek model, (b) notation for the in
ow region.as 1� Z �L�Le 2BNx dx� 1� Z LeL 2BNx dx: (3.59)Adding this to the uniform �eld (Be) at in�nity givesBi = Be � 4BN� log LeL : (3.60)But at the sho
k waves (slow sho
ks travel at the Alfven speed based on the normal �eld,BN=p��, so that (3.60) be
omesBi = Be �1� 4Me� log LeL � ; (3.61)whi
h is the expression for Bi that we have been seeking.Sin
e Me � 1 and Bi � Be, the s
alings (3.57) and (3.58) be
omeLLe � 1RmeM2e ; lLe � 1RmeMe ; (3.62)whi
h show that the dimensions of the 
entral region de
rease as the magneti
 Reynolds number(Rme) or re
onne
tion rate (Me) in
rease. Pets
hek suggests that the me
hanism 
hokes itselfo� when Bi be
omes too small, and so he estimates a maximum re
onne
tion rate (M�e ) byputting Bi = 1=2Be in (3.61) to give12 = 4Me� log LeL ; LeL � Rme; (3.63)M�e � �8 logRme : (3.64)



36 Chapter 3: MAGNETIC FIELD RECONNECTION

Fig. 3.13: Coordinate system used in the derivation of the tearing-mode instability 
ondition for a sheet
urrent.Unsteady re
onne
tion: tearing modeLet us 
onsider instability in the suÆ
iently long 
urrent sheet (Fig. 3.13); J1 and B1 areperturbations. This type of instability is that with �nite resistivity, so Ohm law may be writtenas E1 + v1 �B0 � �eJ1 = 0: (3.65)We 
an see that the e�e
t of �nite resistivity be
omes important at the neutral layers at x � 0,where the z-dire
ted magneti
 �eld B0 � 0. On the other hand, at distan
es suÆ
iently far fromthe neutral layer, the v � B term 
an dominate, and the plasma 
an be regarded as lossless.Thus, the 
urrent sheet 
an be divided into two regions:a) In the �rst region j x j< � the di�usion equation is valid�B1�t = �e� r2B1: (3.66)If the solution in the form B1x � exp(ikz + 
t) is assumed then the equation may be rewritteninto d2B1xdx2 � �k2 + 
��e �B1x = 0; (3.67)where B1x � A 
osh�k2 + 
��e �1=2 x: (3.68)is the solution of this equation.b) Similarly in the lossless region a >j x j> � this equation has a formd2B1xdx2 + � 1�2 � k2�B1x = 0; (3.69)



37whi
h solution 
an be expressed asB1x = C sin� 1�2 � k2�1=2 x: (3.70)If we now 
onne
t the solutions from both these regions at x = �, then we 
an derive the growthrate as 
 = �e��2 : (3.71)Namely, for small x 
osh x � 1 + x; sinx � x; (3.72)1 + �k2 + 
��e �1=2 � = ( 1�2 � k2)1=2� � 0; k ! 0: (3.73)Referen
e:Hasegawa, A.: 1975, Plasma instabilities and non-linear e�e
ts, Springer-Verlag, Berlin.Re
onne
tion in three dimensions

Fig. 3.14: Linear three-dimensional nulls. Potential nulls: (a) radial and (b) improper. Non-potential nulls:(
) improper and (d) spiral, both with only parallel 
urrent; (e) radial and (f) spiral, both with perpendi
ular
urrent.Re
onne
tion in three dimension di�ers essentially from that of in two dimensions. For a 3-Dneutral point, the stru
ture 
onsists of two main features (Fig. 3.14a): a spine and fan surfa
e.



38 Chapter 3: MAGNETIC FIELD RECONNECTIONThe spine is made up of two �eld lines that are dire
ted into (or out of) the null. The fan
onsists of a surfa
e of �eld lines that are pointing away from (or into) the null. Other 
uxsurfa
es in the vi
inity of the null 
onsist of �eld lines that run almost parallel to the spinebefore spreading out below the fan plane. In a positive null the �eld along the spine is dire
tedinto the null and the fan �eld lines spread out from the null; similarly, a negative null has �eldlines pointing towards the null in the fan and dire
ted out along the spine.The stru
ture of any null is de�ned by four parameters (p; q; jk; j?); the 
urrent is equal toj = (j?; 0; jk); (3.74)so the parameters jk and j? represent 
omponents of 
urrent parallel and perpendi
ular to thespine, respe
tively, while p and q are asso
iated with the potential part of the �eld. We de�nejthresh, 
alled the threshold 
urrent, to be equal tojthresh = q(p� 1)2 + q2: (3.75)To investigate the di�erent types of 3-D null points we �rst 
onsider potential null points, whi
hhave a general form B = (x; py;�(p+ 1)z): (3.76)They 
an either be radial (p = 1) or improper nulls (p > 0 and p 6= 0) (see Fig. 3.14a andFig. 3.14b).Non-potential nulls, however, have the formB = (x+ (q � jk)y=2; (q + jk)x=2 + py; j?y � (p+ 1)z): (3.77)These nulls may be divided into two 
ategories: those that only have 
urrent parallel to the spineand those that have a 
omponent of 
urrent perpendi
ular to the spine. For example, two typesof null with only parallel 
urrent are illustrated in (Fig. 3.14
 and Fig. 3.14d); an improper nullwhere jk < jthresh and a spiral null where jk > jthresh, respe
tively. Two examples of nulls withthe perpendi
ular 
urrent are radial null (jk = 0) and a spiral null (jk > jthresh) (Fig. 3.14e andFig. 3.14f).Referen
e:Parnell, C.E.: 1996, Pro
eedings of YOHKOH Conferen
e, Bath, England, p. 19.



39Kineti
 re
onne
tion

Fig. 3.15: Stru
ture of the x-line: (a) in-plane magneti
 �eld, (b) in-plane velo
ity, (
) out-of-plane ion 
urrent,(d) out-of-plane ele
tron 
urrent, out-of-plane magneti
 �eld.There are attempts to simulate the magneti
 re
onne
tion not only in the MHD approximation,but in a more general kineti
 approa
h. In Fig. 3.15 the results of the hybrid modelling with2048� 512 grid points and 20 million parti
les are shown. Here, di�eren
es between ele
tronand ion 
urrents 
an be seen, whi
h it is not possible to simulate in the MHD models.Referen
e:Shay, M.A., Drake, J.F, Rogers, B.N., Denton, R.E.: 1999, Geophys. Resear
h Letters, Vol. 26(14), 2163.Conne
tivity and quasi-separatrix layersAs seen in Fig. 3.16 magneti
 �eld lines form domains in whi
h they 
onne
t the photosphere.
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Fig. 3.16: The model of the magneti
 �eld of four sunspots of pairwise opposite polarity. The boundarysurfa
es D1 and D2 
ross in the 
orona at a topologi
ally singular magneti
 �eld line, the separator, whi
h
onne
ts the points X1 and X2 in the photosphere. The 
ontour f is an example of a �eld line 
onne
ting thedistant sunspots N and S.

Fig. 3.17: Flaring AR 2779 on November 12, 1980: example of quadrupolar region formed by two extendedbipoles. (a) Observational data: hat
hed regions - H� 
are kernels and longitudinal magneti
 �eld. (b) Interse
tionof the QSLs with the photosphere for a linear for
e-free extrapolation (�= -0.019 Mm�1) with �eld lines and
urrent-density regions. (
,d) Perspe
tive views of (b), with �eld lines drawn as surfa
es.These domains are separated by separatri
es, whi
h 
an 
ross in the separators. The separator
an be formed by null magneti
 �eld line. If there is non-zero 
omponent of the magneti
 �eldalong these separatri
es then it is useful to de�ne so 
alled quasi-separatrix layers (QSL). These



41QSL are regions where a drasti
 
hange in �eld-line 
onne
tivity o

urs, i.e. where �eld linesinitially 
lose separate widely over a short distan
e. Let us integrate over a distan
e s in bothdire
tions the �eld line passing at a point P (x; y; z) of the 
orona. The end points of 
oordinates(x0; y0; z0) and (x00; y00; z00) de�ne a ve
tor D(x; y; z) = X1;X2;X3 = x00 � x0; y00 � y0; z00 � z0. Adrasti
 
hange in �eld-line 
onne
tivity means that for a slight shift of the point P (x; y; z),D(x; y; z) varies greatly.The fun
tion N , de�ned byN(x; y) =vuutXi=1;2((�Xi�x )2 + (�Xi�y )2); (3.78)N(x; y) is de�ned only at the photospheri
 boundary and is the norm of the displa
ement gra-dient tensor de�ned when mapping, by �eld lines, points from one se
tion to another of thephotosphere. The lo
ations where N(x; y) takes its highest values de�ne the �eld lines involvedin the QSLs. By following these lines we 
an lo
ate the 
oronal portion of the QSLs - see Fig. 3.17.Referen
e:Demoulin, P., Bagala, L.G., Mandrini, C.H., Henoux, J.C., Rovira, M.G.: 1997, Astron. Astro-phys. 325, 305-317.Triggering of re
onne
tion by a passage of the sho
k wave throughthe 
urrent sheetSee �le trigger.pdfReferen
e:Odstr�
il, D., Karli
k�y, M.: 1997, Triggering of magneti
 re
onne
tion in the 
urrent sheet bysho
k waves, Astron. Astrophys. 326, 1252-1258.Shear magneti
 �eld re
onne
tion near the the 3-D null pointNumeri
al ModelComputations are performed in the 3-D numeri
al box with 41 � 41 � 41 grid points (800 �800 � 800 km). The numeri
al 
ode whi
h solves the set of MHD equations is based on theFCT algorithm.In the initial state the magneti
 
on�guration 
orresponding to the 3-D null point is generated(Fig. 3.18). B(G) = �x� x0x00 ; y � y0y00 ;�2(z � z0)z00 � ; (3.79)where x0 = 4� 105 m, x00 = 4� 104 m, y0 = 4� 105 m and z00 = 4� 104 m. The layer near theplane Z = 1 is 
alled the fan, and the 
entral verti
al line in the stru
ture is 
alled the spine.The initial temperature of 106 K and the plasma density of 10�8 kg m�3 is put 
onstant throughthe system (
oronal 
onditions). The plasma parameter � is thus everywhere � � 1.The shear plasma 
ow whi
h 
ontinuously deforms the initial magneti
 �eld lines is used in thefollowing form: v = v0 tanh�z � z0zv � ; (3.80)



42 Chapter 3: MAGNETIC FIELD RECONNECTIONwhere v0 = �105 m s�1, z0 = 4�105 and zv = 105 m. Free boundaries around the 
omputationalbox are 
onsidered.For a modelling of re
onne
tions the anomalous resistivity was assumed in the X � Y layerbetween 320 and 480 km, and its value was 
hosen to be �e = 2� 10�6 s.ResultsWe made two types of 
omputations: with and without the anomalous resistivity at the fan layer.Namely, at this layer where the ele
tri
 
urrent density is in
reasing during the shear plasma
ow the anomalous resistivity 
an be naturally generated. The 
ase without this resistivity is
onsidered for 
omparison.First, the 
urrent density in the 
entral box point for both 
ases are 
ompared (Fig. 3.19).While in the 
ase without the resistivity the 
urrent density is linearly in
reasing as expe
tedfrom theoreti
al estimations, in the 
ase with the resistivity the 
urrent density in
reases moreslowly up to the saturated value 
orresponding to the steady-state of re
onne
tion.The results of 
omputations are shown in Figs 3.20 and 3.21. Figure 3.20 shows a deformationof magneti
 �eld lines due to the shear plasma 
ow without taking into a

ount the resistivity;on the other hand Figure 3.21 shows this deformation simultaneously with the 
ipping of linesdue to the anomalous resistivity. Comparing the magneti
 �eld lines in these �gures we 
ansee that the magneti
 �eld lines re
onne
t in the fan layer. Thus, the magneti
 �eld lines fromone side of the fan 
onne
t magneti
 lines on the opposite side and 
rossing the plane Z = 1.Simultaneously, their 
onne
tions in the fan layer are 
hanged over a broad range of angles: themaximum is near the spine (180o); this angle is de
reasing with the distan
e in
rease from thespine.

Fig. 3.18: The initial state of the magneti
 �eld 
on�guration.Referen
e



43

Fig. 3.19: Evolution of the normalized ele
tri
 
urrent density at the 
entral box point for the 
ase without(full line) and with (dashed line) the anomalous resistivity in the fan layer.Karli
k�y, M.: 1997, Shear magneti
 �eld re
onne
tion near the 3-D null point, Hvar Obs. Bull.21, 1, 91-96.Priest, E., Forbes, T.: 2000, Magneti
 re
onne
tion: MHD theory and appli
ations, CambridgeUniversity Press, Cambridge, UK.
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Fig. 3.20: Magneti
 �eld lines at 2 s for the 
ase without the anomalous resistivity. X,Y, and Z s
ale unitsare 400km.

Fig. 3.21: Magneti
 �eld lines at 2 s for the 
ase with the anomalous resistivity. X,Y, and Z s
ale units are400km.



Chapter 4Heli
ityAn evolution of some energy integrals of physi
al systems is 
ommonly used for a system de-s
ription. In the solar 
orona for a des
ription of e.g. 
ares or prominen
es we 
an use thevolume integral of the magneti
 �eld energy:Emag = ZV B22�0 dV: (4.1)A disadvantage of this approa
h is that the 
oronal magneti
 �eld 
onsists of a strong 
omponentof the potential magneti
 �eld whi
h is produ
ed by sub-photospheri
 ele
tri
 
urrents. Thispart of magneti
 energy remains 
onstant during a
tive pro
esses in the solar atmosphere. Onthe other hand, only a small part of the magneti
 �eld energy, 
orresponding to ele
tri
 
urrentsin the solar atmosphere, 
an be transformed into other energy forms and 
an be dissipated.For these reasons an another volume integral, 
alled heli
ity, was proposed for a physi
al de-s
ription of these phenomena H = ZV A �BdV; (4.2)where B = r�A;where A is the ve
tor potential.It 
an be shown that the heli
ity is dire
tly 
onne
ted with twists and linkings of magneti
 �eldlines, whi
h simultaneously expresses ele
tri
 
urrents in the system. Thus, the heli
ity des
ribesa part of the magneti
 �eld energy whi
h 
an be released during solar 
ares, and therefore theheli
ity is useful tool for a
tive phenomena des
ription.Heli
ity 
onservationLet us 
al
ulate a time 
hange of the heli
ity:��t Z A �BdV = Z A � �B�t dV + Z �A�t �BdV:Now, using the indu
tion equation �B�t = r� (v �B);45



46 Chapter 4: HELICITY�r�A�t = r� (v �B);r� �A�t = r� (v �B);�A�t = (v �B) = �E;(where the last equation expresses Ohm law) we 
an 
ontinue in the heli
ity 
onservation 
al-
ulationsZ A � ��t(r�A)dV + Z �A�t �BdV = Z A � r � �A�t dV + Z �A�t � r �AdV: (4.3)The right side of this equation 
an be rewritten using the ve
tor identityr � (A� �A�t ) = �A�t � r �A�A � r � �A�t ;as = � Z r � (A� �A�t )dV + Z 2�A�t � r �AdV:The last term is zero, be
ause �A=�t = v �B and r�A = B, and thus their s
alar produ
tis zero.It means that for time 
hange of heli
ity we 
an write��t Z A �BdV = � Z r � (A� �A�t )dV;and using Gauss theorem ��t Z A �BdV = � ZSA� �A�t dS: (4.4)Then, if �A=�t = �E = 0 at the system boundary then the heli
ity in the system is 
onserved.Now, let us show that the heli
ity is invariant to a gauge transformation. Performing thistransformation A0 = A+r� (namelyr�r� = 0) we 
an writeH 0 �H = Z r� �BdV;and using r � (�B) = r� �B+ �r �B; r �B = 0;the heli
ity di�eren
e is H 0 �H = Z r(�B)dV = ZS �BdS; (4.5)whi
h vanishes only if Bn = 0 at the system boundary, sin
e � is arbitrary. Thus, in in�nite or
losed system the heli
ity is 
onserved and it is gauge-invariant. But this general statement is



47not very useful for pra
ti
al purposes. Therefore other forms of the heli
ity integrals need to be
onstru
ted.Let us de�ne the so 
alled relative heli
ity in a �nite system asH = ZV (A+A0) � (B�B0)dV; (4.6)where A0 and B0 
orrespond to the potential magneti
 �eld with the same boundary 
onditionsas A and B.Now, let us 
al
ulate the time derivative of this heli
ity: (The auxiliary relations are E0 =0;r�0 = 0; �A0=�t = 0; �B0=�t = 0; �A=�t = �E�r�; �B=�t = �r�E.)�H�t = Z (�(A+A0)�t � (B�B0) + (A+A0) � �(B�B0)�t )dV;�H�t = Z (�A�t � (B�B0) + (A+A0) � �B�t )dV;�H�t = Z ((�E�r�) � (B�B0)� (A+A0) � (r�E))dV;�H�t = Z (�E �B+E �B0 �r� � (B�B0)� (A+A0) � (r�E))dV:In the following the ve
tor identity r � (�(B�B0) +E� (A+A0)) = (4.7)�r � (B�B0) +r� � (B�B0) + (A+A0) � r �E�E �B�E �B0;where E �r�A = E �B; E �r�A0 = E �B0; r� (B�B0) = 0, is used. After a manipulationand using Gauss theorem we 
an write�H�t = �2 ZV E �BdV � ZS(�(B�B0) +E� (A+A0))dS: (4.8)The �rst term on the right side of this relation expresses the Ohm dissipation as 
an be seenrepla
ing the ele
tri
 �eld as E = B� v + �ej, where j is the ele
tri
 
urrent density. Thus therelative heli
ity is 
onserved in the spatially limited system when the Ohm dissipation is low (in
oronal 
onditions it is usually ful�lled) and Bn = B0n;E = 0.If the Ohm dissipation is negle
ted and A = A0 then the 
hange of the relative heli
ity in thesystem is given by two term:�H�t = �2 ZSA0 �EdS = �2 ZSA0(B� v)dS = (4.9)= �2 ZS(A0 � v)BdS + 2 Zs(A0 �B)vdS;the �rst term expresses a 
hange of the relative heli
ity due to shearing motions at the systemboundary and the se
ond one represents a dire
t 'in
ow' of the heli
ity.



48 Chapter 4: HELICITYIn the solar physi
s studies there are attempts to evaluate the heli
ity 
hange 
aused by photo-spheri
 shearing motions. For simpli
ity, let us assume that the photosphere is lo
ally planar atthe s
ale size of the a
tive region. Then a 
hange of the heli
ity 
an be written as�H�t = 2 ZS(A0 � v)BndS = 1� ZS ZS0 R� v(r)R2 jn Bn(r)Bn(r0)dSdS0; (4.10)where R = r� r0 is the di�eren
e between two spatial positions on the photospheri
 plane, andBn is the magneti
 �eld 
omponent perpendi
ular to the photosphere. This equation involvesa double integration on the boundary. Sin
e the integrations are done on the same surfa
es,S = S0, we 
an ex
hange r and r0. This yields a new equation that summed up with previousequation gives: 2�H�t = 1� ZS ZS0 R� [v(r) � v(r0)℄R2 jn Bn(r)Bn(r0)dSdS0: (4.11)Let us de�ne � as the angle between R and a �xed dire
tion (e.g. the east-west dire
tion) withtrigonometri
 
onve
tion (
ounter
lo
kwise), then:d�dt = R� dR=dtR2 jn (4.12)(with dR=dt = v(r)� v(r0)) the equation (1.11) is transformed to:�H�t = 12� ZS ZS0 d�dtBn(r)Bn(r0)dSdS0: (4.13)This equation shows that the heli
ity inje
tion rate 
an be understood as the summation of therotation rate of all the pairs of elementary 
uxes weighted with their magneti
 
ux.



Chapter 5Simple numeri
al s
hemes for asolution of MHD equationsUsing a simple equation �u�t = �v�u�x (5.1)as an example, let us show some numeri
al methods whi
h may be used for a solution of gen-eral MHD equations. Namely, �u=�t + v�u=�x:::: is a part of these equations. A numeri
alapproximation of Eq. 5.1 may beun+1j � unj�t = �vunj+1 � unj�12�x ; (5.2)where �t and �x are the time step and grid step, respe
tively. Rearranging this equation wehave un+1j = unj � v�t2�x(unj+1 � unj�1): (5.3)Let u vary like unj � ei(kxj�!n�t), where xj is the j-th grid point 
oordinate j�x. From Eq.5.3we obtainei(kj�x�!(n+1)�t) = ei(kj�x�!n�t) � v�t2�x �ei(k(j+1)�x�!n�t) � ei(k(j�1)�x�!n�t)� ; (5.4)and after dividing by ei(kj�x�!n�t)e�i!�t = 1� v�t2�x(eik�x � e�ik�x): (5.5)The ampli�
ation fa
tor g � un+1j =unj = e�i!�t is then a

ording to the previous equationg = 1� iv�t�x sin(k�x); (5.6)and its modulus j g j2= 1 + �v�t�x �2 sin2(k�x) > 1; (5.7)whi
h shows that this s
heme is always numeri
ally unstable.
49



50 Chapter 5: SIMPLE MHD NUMERICAL SCHEMESLax s
hemeIn this approa
h we write Eq. 5.1 asun+1j = 12(unj+1 + unj�1)� v�t2�x(unj+1 � unj�1): (5.8)Then it 
an be rewritten intoei(kj�x�!(n+1)�t) = 12 �ei(k(j+1)�x�!n�t) + ei(k(j�1)�x�!n�t)� (5.9)� v�t2�x �ei(k(j+1)�x�!n�t) � ei(k(j�1)�x�!n�t)� ;and after dividing by ei(kj�x�!n�t) the ampli�
ation fa
tor isg = 
os(k�)� iv�t�x sin(k�x); (5.10)and its modulus is j g j2= 1� sin2(k�x)�1� (v�t�x )2� : (5.11)The s
heme is stable when j g j2� 1. This 
ondition is ful�lled if�t � �x=v: (5.12)Lax-Wendro� s
hemeLet us 
onsider a simple equation �u�t + �F�x = 0; (5.13)where F = uv (v is 
onstant), as an example. The Lax-Wendro� s
heme 
onsists of two steps:The �rst one is a

ording to Lax s
heme over a half time stepun+1=2j = 1=2(unj�1 + unj+1)� �t=22�x (F nj+1 � F nj�1); (5.14)and the se
ond one over a full time step follows asun+1j = unj � �t2�x(F n+1=2j+1 � F n+1=2j�1 ): (5.15)There are many further expli
it as well as impli
it s
hemes. The leap-frog s
heme was des
ribedin details in the above mentioned parti
le 
ode. Further important approa
h is so 
alled "
ux
orre
ted transport method", whi
h is su

essfully used in MHD tasks with sho
k waves.



Chapter 6Plasma emission pro
essesIn this 
hapter, only a general approa
h is presented. For more details and appli
ations see:Melrose, D.B.: 1980, Plasma Astrophysi
s, Gordon and Brea
h, New York.6.1 Waves in plasmas6.1.1 Wave equationDue to many types of parti
le motions, in plasmas (espe
ially in plasmas with the magneti
�eld) many types of waves 
an exist. This broad variety follows from a high 
omplexity of theplasma response to ele
tri
 or magneti
 �eld perturbations. The ele
tri
 (E) and magneti
 (B)�elds in plasmas are des
ribed by the system of Maxwell equations:r�E = ��B�t r � E = 1"0 � (6.1)r�B = �0j+ 1
2 �E�t r �B = 0where j is the ele
tri
 
urrent density and � the 
harge density. These two quantities satisfy the
harge 
ontinuity equation ���t +r � j = 0; (6.2)what implies from the set (6.1) as followsr � �E�t = 1"0 ���t ;r � (
2r�B� �0
2j) = 1"0 ���t :Another useful equation is that for energy 
onservation, whi
h 
an be derived asB � r �E+B�B�t = 0;E � r �B� �0E � j� 1
2E � �E�t = 0:51



52 Chapter 6: PLASMA EMISSION PROCESSESUsing now the ve
tor identityr � (E�B) = B � r �E�E � r �B;we 
an write ��t  j B j22�0 + "0 j E j22 !+r � (E�H) = �E � j: (6.3)This equation expresses the 
onservation of ele
tromagneti
 energy; its 
hange is due to Poyntingve
tor 
ux E�B=�0 and Ohm dissipation E � j.For the purpose of formal theory of waves it is 
onvenient to express Maxwell equations innatural basis of harmoni
 fun
tions. Thus Fourier transforming the set (6.1) one obtains:k�E = !B (6.4)k�B = �i�0j� !
2 � E (6.5)k �E = � i"0� (6.6)k �B = 0: (6.7)It is 
lear that the equation (6.7) is redundant sin
e it follows dire
tly from eq. (6.4), butwith one ex
eption { in the 
ase of ! = 0, i.e. in the 
ase of stati
 �elds, the redu
tion of thesystem of equations does not apply. Thus, stati
 �elds have to be treated expli
itly in further
onsiderations. This is 
losely related to the well known problem of the fourth Maxwell equation(r�B = 0), whi
h should be 
onsidered as the initial 
ondition rather than independent relation.From the set of three remaining equations the general wave equation in the formk� (k�E(k; !)) + !2
2 E(k; !) = �i!�0j(k; !) (6.8)
an be derived, where equations (6.4) and!�(k; !) = k � j(k; !);whi
h is just the Fourier transform of 
ontinuity equation (6.2), should be 
onsidered as de�ni-tions of auxiliary quantities B and � in terms of basi
 quantities E and j, respe
tively.The 
urrent density j at the right-hand side of the general wave equation 
an 
onsist of twoparts:1. The 
urrent 
aused by indu
ed motion of parti
les in plasmas under in
uen
e of ele
tro-magneti
 �eld jind.2. The extraneous 
urrent jext.In the �rst approximation the indu
ed part of the 
urrent is linearly related to ele
tri
 �elda

ording to generalized Ohms law (in usual tensor notation):jindi (k; !) = �ij(k; !) �Ej(k; !) (6.9)where �ij(k; !) is the generalized 
ondu
tivity tensor and usual Einstein's summation law wasapplied. For the formal purposes it is mu
h more 
onvenient to use another tensor des
ribing



6.1. Waves in plasmas 53the linear plasma response to ele
tri
 �eld perturbation. The diele
tri
 tensor "ij(k; !) is de�nedas: "ij(k; !) � Æij + i!"0 � �ij(k; !) (6.10)with Æij being the Krone
ker delta (the unit tensor). Separating the 
urrent density into indu
edand extraneous parts and using Ohms law (6.9) and diele
tri
 tensor de�nition (6.10) the waveequation (6.8) may be re-written into the form: 
2k� (k�E)!2 !i +Ei + i!"0 jindi = � i!"0 jexti ; 
2k� (k�E)!2 !i + (Æij + i!"0�ij)Ej = � i!"0 jexti ;�ij(k; !) �Ej(k; !) = � i!"0 jexti (k; !) (6.11)where the dispersion tensor �ij(k; !) is de�ned as�ij(k; !) � k2
2!2 �kikjk2 � Æij�+ "ij(k; !): (6.12)The equation (6.11) represents a set of three linear equations with 
omponents of the extraneous
urrent density jext(k; !) as expli
it sour
e terms.Ex
ept of this expli
it sour
e term there is also an impli
it one hidden in the diele
tri
 tensor.The diele
tri
 tensor 
an be separated into two parts { hermitian and anti-hermitian"ij = "hij + "aij ;"hij = 1=2("ij + "�ji);"aij = 1=2("ij � "�ji);whose des
ribe di�erent kinds of plasma response to an ele
tri
 �eld perturbation. While the her-mitian part of "ij(k; !) des
ribes time-reversible 
omponent of the response, the anti-hermitianpart 
auses wave energy 
hanges, either negative (damping of waves) or positive (ampli�
ationor by other words negative damping/negative absorption of waves).6.1.2 The dispersion equation of linear wavesThe question arises what is behaviour of the ele
tri
 �eld perturbation in the 
ase withoutdissipation and extraneous sour
es. One has to solve homogeneous form of the equation (6.11)in whi
h also the impli
it sour
e term in the diele
tri
 tensor (the anti-hermitian part) is omitted,i.e. �hij(k; !) �Ej(k; !) = 0; (6.13)where �hij(k; !) is the hermitian part of the dispersion tensor. Solution of su
h a system ofequations exist only if the relation�(k; !) � det�hij(k; !) = 0 (6.14)



54 Chapter 6: PLASMA EMISSION PROCESSESis ful�lled. The 
ondition (6.14) represents the general dispersion equation for linear non-dampedwaves in plasmas. To rewrite it to the usual form of the dispersion relation for a spe
i�
 wavemode one has to express the frequen
y ! as a fun
tion of the wave ve
tor k. This is not uniqueoperation in general, however, many bran
hes of waves with di�erent dispersion relations!m = !m(k) (6.15)
an be obtained. Ea
h bran
h !m(k) represents one wave mode m.6.1.3 Polarisation ve
torsInserting relation (6.15) into the homogeneous equation (6.13) a solution for spe
i�
 wave mode
an be found. A

ording to known rules of linear algebra the ve
tor that solves (6.13) has to bethe eigen-ve
tor 
orresponding to the zero eigen-value of the tensor�hij(k) = �hij (k; !m(k)) :Namely, one eigen-value of the matrix representing a homogenous set of equations is zero. The
orresponding eigen-ve
tor is not determined uniquely sin
e in the homogenous set of equations,with its determinant equals to zero, the number of linearly independent equations is less thanthe number of ve
tor 
omponents. Therefore it is 
onvenient to 
hoose an unimodular 
omplexve
tor em(k) as a representative of all solutions of the equation (6.13) for given wave mode.Su
h ve
tor is 
alled the polarisation ve
tor and besides the dispersion relation (6.15) it is oneof the basi
 
hara
teristi
s of the spe
i�
 wave mode. For example, from the polarization ve
torthe magneti
 and indu
ed 
urrent ve
tors 
an be derived; using Eq. (6.4) and (6.9).6.1.4 Energeti
s in the wavesThe ele
tri
 perturbation in plasma waves indu
es also the perturbation of magneti
 �eld and,due to medium response, also variations of plasma velo
ity, stresses and pressure. All theseperturbations raise the total amount of energy 
ontained in plasmas and the di�eren
e over theequilibrium state 
an be as
ribed to the waves. Thus, for the total wave energy of the mode mwe 
an write wmT (k) = wmE (k) + wmM (k) + wmp (k):It is straightforward to 
ompute the ele
tri
 or magneti
 �eld energy in waves knowing theele
tri
 �eld amplitude: wmE (k) = "0jEm(k)j2V : (6.16)and using Eq. (6.4) wmM (k) = �k
! �2 (1� j kk � em j2)wmE :On the other hand, me
hani
al energy 
onne
ted with plasma motions and stresses is hard tobe identi�ed in general. Nevertheless, the total amount of energy 
ontained in parti
ular wavemode 
an be, fortunately, related to the ele
tri
 �eld energy in this mode independently. The�rst is to in
lude the anti-hermitian part of the diele
tri
 tensor "aij as a small 
orre
tion in thedispersion equation. To �rst order one 
an writedet(�hij + "aij) = � + �ij"aji: (6.17)



6.1. Waves in plasmas 55Now damping of the waves is taken into a

ount by allowing ! to have a small imaginary part�i
=2, su
h that the wave energy damps as e�
t. Then, to lowest order in the terms asso
iatedwith wave damping, Eq. (6.17) gives� i
2 ���! + �ij"aji = 0; (6.18)whi
h is evaluated at � = 0. Similarly we 
an allow k to have a small imaginary part �i�=2Then Eq. (6.18) has a form: � i
2 ���! � i�2 ���k = ��ij"aji: (6.19)On the other hand, for the energy wm damped as e�
t and the energy 
ux Fm damped as e��rwe 
an write �wm�t +r � Fm = Qm;
wm + �Fm = �Qm; (6.20)where Qm is the sour
e or damping wave term.Now, 
omparing Eqs. (6.19) and (6.20) one hasFmwm = ����k =���!�!=!m = �!m�k = vmg :The result implies that the velo
ity of energy propagation is the group velo
ity.Moreover, the term 
 = �Qmwm = � 2i�ij"aji����!�!=!m (6.21)is the absorption 
oeÆ
ient. Besides this relation there is a theoreti
al pro
edure in whi
hthe ratio between Qm and wmE 
an be derived. Then by a 
omparison of these ratios thequantity RmE = wmE =wm, expressing the ratio between the ele
tri
 and total wave energies, 
anbe determined.6.1.5 Spe
i�
 wave modesAs an illustration of determination of parti
ular wave mode and its 
hara
teristi
s from the gen-eral dispersion equation (6.14) one may 
hoose well known Langmuir, transverse and ion-soundwaves in plasmas without ambient magneti
 �eld. The �rst thing has to be done is 
al
ulationof the diele
tri
 tensor. The kineti
 approa
h gives for unmagnetized plasmas following result(Melrose, 1980, p. 40):"ij(k; !) = Æij +X� q2�"0!2 Z (! � k � v)Æsj + ksvj! � k � v + iO � vi � �f�(p)�ps d3p; (6.22)the sum is performed over ea
h parti
le spe
ies � and small imaginary part in the denominatorindi
ates that 
orre
t integration path a

ording to Landau pres
ription has to be used. Forisotropi
 medium the diele
tri
 tensor 
an be separated into longitudinal("l) and transversal ("t)parts as: "ij(k; !) = "l(k; !) � kikjk2 + "t(k; !)�Æij � kikjk2 � (6.23)



56 Chapter 6: PLASMA EMISSION PROCESSESand expli
it 
al
ulation for Maxwellian distribution fun
tion gives (Melrose, 1980, p. 50):"l(k; !) = 1 +X� 1k2�2D� h1� �(y�) + ip�y� exp(�y2�)i (6.24)"t(k; !) = 1 +X� !2p�!2 h��(y�) + ip�y� exp(�y2�)i :Here, !p� and �D� are appropriate plasma frequen
ies and Debye lengths, respe
tively:!2p� � n�q2�m�"0 ; �D� � V�!p� ; (6.25)and the following dispersion fun
tion (V� � kBT=m� designates thermal velo
ity of parti
les ofspe
ies �) was used: �(y) � 2y exp(�y2) Z y0 exp(t2)dt; y� � !p2kV� ;�(y) = 2y2 � 4=3y4 + :::: for j y2 j� 1; (6.26)�(y) = 1 + 1=(2y2) + 3=(4y4) + :::: for j y2 j� 1:Inserting the hermitian part of the diele
tri
 tensor (i.e. retaining real parts of longitudinaland transversal 
omponents only) in the form of (6.23) into the equation (6.14) the dispersionequation �Ren"l(k; !)o� � �n2 �Ren"t(k; !)o�2 = 0 (6.27)is obtained with the refra
tive index n de�ned asn � 
k! :Now, expanding the fun
tion �(y) into series for the high-frequen
y limit (y � 1) and retainingonly �rst few terms of ele
troni
 
ontribution to this fun
tion (the 
ontribution of ions is redu
edby fa
tor of me=mi relatively to that of ele
trons) the transversal part of the equation (6.27)be
omes n2 = 1� !2pe!2or using the refra
tive index de�nition, it 
an be written in more familiar form!2(k) = !2pe + 
2k2: (6.28)The just derived equation (6.28) represents the dispersion equation for transversal (ele
tromag-neti
) mode. Additional relations for this mode are:e � kk = 0; RtE = 12 ;expressing transverse 
hara
ter of this mode and the ratio between ele
tri
 and total wave energy.The longitudinal part of Eq. (6.27) gives two wave modes depending on the frequen
y limitused. For ! � kVe, i.e. ye � 1 the expansion of the fun
tion � yields dispersion equation1 + 1k2�2De  1� 1� 12 2k2V 2e!2 � 34 4k4V 4e!4 ! = 0; !2pe = V 2e�2De



6.2. Spontaneous emission 57!2(k) = !2pe + 3k2V 2e ; e = kk ; RlE = !22!2pe ; (6.29)whi
h des
ribes well known Langmuir waves.On the other hand, expanding formulae for longitudinal part of the diele
tri
 tensor in the limitkVi � ! � kVethe ion-sound mode with the dispersion equation isRe "l � 1� !2pi!2 + 1k2�2De ;!2(k) � k2
2s1 + k2�2De ; e = kk ; RsE = !22!2pi ; (6.30)is found. Here, the ion-sound wave speed 
s is de�ned by
s � !pi � �De:6.2 Spontaneous emissionIf wave emission pro
esses are taken into a

ount then, in general 
ase, the inhomogeneous waveequation �hij(k; !) �Ej(k; !) = � i!"0 jexti (k; !) (6.31)with the sour
e term, needs to be solved. Spe
i�
ally, jext is assumed to in
lude the the termwith the anti-hermitian part of the diele
tri
 tensorjexti (k; !) = �i!"0"aij(k; !)Ej(k; !) + :::; (6.32)whi
h in
ludes not only the normal absorption of waves, but in spe
i�
 situations also negativeabsorption (ampli�
ation) of waves. But in the sour
e term 
an be also further 
ontributions.Remark: Analyzing the equation of 
ontinuity for ele
tromagneti
 waves��t  j B j22�0 + j E j22"0 !+r � (E�H) = �E � j; (6.33)it is important to see a di�eren
e in methods used in 
al
ulation of power radiated in plasma andin va
uo. In the plasma this power is 
al
ulated as a volume integral of the work done by theextraneous 
urrent against the ele
tri
 �eld whi
h it generates (the right-hand side of Eq. (6.33).In va
uo the power es
aping is found by integrating the radial 
omponent of the Poynting ve
torE � H over the surfa
e of an in�nite sphere. In the plasma this method makes problem be-
ause in this 
ase the Poynting ve
tor does not give the total energy 
ux in the waves, in general.



58 Chapter 6: PLASMA EMISSION PROCESSES6.2.1 Energy radiated by extraneous 
urrentThe extraneous 
urrent on the R.H. side of the expression (6.11) represents a sour
e term in thewave equation. The wave energy U radiated (or absorbed) by this sour
e is given by the workof the extraneous 
urrent against the 
onsistent ele
tri
 �eld of the wave, i.e.:U = � Z +1�1 ZV jext(r; t) �E(r; t) d3r dt = (6.34)= � Z +1�1 Z Renjext(k; !) �E(k; !)o d3k(2�)3 d!2� ;where the Par
evals power theorem was used. Solution of the wave equation (6.31) 
an beexpressed as Ei(k; !) = � i!"0��1ik (k; !) � jextk (k; !); (6.35)where the matrix ��1ik (k; !) is the inversion operator to the dispersion tensor (6.12) and a

ordingto the tensor algebra rules it is written down using its 
o-fa
tors (sub-determinants of transposedmatrix) �ik as: ��1ik (k; !) = �ik(k; !)�(k; !) :Now, inserting the parti
ular solution (6.35) into the formula (6.34), the wave energy generatedby the extraneous 
urrent density jext 
an be 
omputed. Contributions to integral over ! are zero(be
ause the integral is from the real part of apparently imaginary quantity) with ex
eptions ofthe poles of fun
tion in integrand. Su
h residues have to be treated 
arefully, and the integrationhas to be performed over the path in the 
omplex plane a

ording to Landau pres
ription, i.e.near the zeros we approximate � as�(k; !) � (! � !m(k) + i0)����!�!=!m(k) :Ea
h residue is 
onne
ted with one zero of �(k; !), and thus ea
h pole represents the energyradiated in one spe
i�
 wave mode. Expli
it 
al
ulation gives for energy radiated by extraneous
urrent in wave mode m the expressions:U = �2 Z +10 Z Re�jexti (� i!"0 )jextk �ik� � d3k(2�)3 d!2� ;U = �2 Z 10 Z Re8><>:jexti (� i!"0 )jextk �ik(! � !m(k) + i0)����!�!=!m(k)9>=>; d3k(2�)3 d!2� :Now using the Plemelj formula,1! � !0 � i0 = P 1! � !0 � i�Æ(! � !0);where P denotes the Cau
hy prin
ipal value:P 1! = lim�!0 1! for j ! j>j � j;P 1! = lim�!0 0 for j ! j<j � j;



6.3. Plasma emission me
hanism 59we 
an writeU = �2 Z 10 Z Re(jexti (� i!"0 )jextk �ik���! (�i�Æ(! � !m))) d3k(2�)3 d!2� ;U = �2 Z 10 Z Re(jexti (� i!"0 )jextk �ssemi emk���! (�i�Æ(! � !m))) d3k(2�)3 d!2� ;Um = Z RmE (k)"0 ���em(k) � jext (k; !m(k))���2 d3k(2�)3 ;where the bar over the polarisation ve
tor em(k) means 
omplex 
onjugation as usual. Appar-ently, the quantity um(k) = RmE (k)"0 ���em(k) � jext (k; !m(k))���2 (6.36)that represents the wave energy generated by 
urrent density jext (k; !m(k)) in the mode m perunit 
ube of k-spa
e, or its time derivative { the radiated powerpm(k) = lim�!1 um(k)� (6.37)will be more relevant ones for 
omputation of radiation in parti
ular emission pro
esses.6.3 Plasma emission me
hanismStandard radiative me
hanisms { the bremsstrahlung and gyrosyn
hrotron radiation are 
onsid-ered also for solar 
orona radio emission, parti
ularly for quiet sun radiation and slowly-varyingsolar radio 
omponent. Nevertheless, solar radio bursts that often 
onsist of intense narrow-band�ne stru
tures hardly 
ould be explained in terms of these pro
esses sin
e they have by theirnature broad-band emission spe
trum. Moreover, there is quantitative disagreement in valuesof radio 
ux predi
ted 
onsidering these me
hanisms.On the other hand, very hot and sparse 
oronal plasmas may, due to la
k of 
ollisions, easilybe in the state of thermodynami
 non-equilibrium with non-Maxwellian distribution fun
tion,parti
ularly during solar transient events (e.g. 
ares or CMEs). Under su
h 
ir
umstan
es theanti-hermitian part "aij(k; !) of the diele
tri
 tensor (6.22) 
an result in negative values of theabsorption 
oeÆ
ient (6.21) in some range of wave-ve
tors for the spe
i�
 wave mode m. Onethen says, that distribution fun
tion is unstable with respe
t to generation of wave mode mwithin some range of k-spa
e. The negative absorption is also often 
alled stimulated or indu
edemission.Su
h self-generation of waves in unstable plasmas, similar to light ampli�
ation in lasers as willbe seen further, represents the basis of so 
alled plasma emission me
hanism. Sin
e there aremany types of distribution fun
tions unstable to large amount of wave modes the term \plasmaemission" should be regarded as generi
 name for all radiative pro
esses based primarily on thenegative absorption of parti
ular wave modes.For the ele
tromagneti
 mode whi
h only 
an es
ape from the 
oronal plasmas and rea
h Earthradioteles
opes the absorption 
oeÆ
ient (6.21) is always positive with one ex
eption of so
alled ele
tron-
y
lotron maser radiation. Thus, some me
hanism of 
onversion between unsta-ble plasma modes and the ele
tromagneti
 one is required. Su
h me
hanism is possible due to
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oupling among variations of plasma parameters (e.g. ele
tri
 and magneti
 �eld,ele
tron density et
.) in di�erent wave modes.To sum up, plasma emission me
hanism is generi
 name for 
lass of radiative pro
esses workingusually in the following two stages:1. the wave mode m unstable in some range of k-spa
e is generated due to deviation ofdistribution fun
tion from equilibrium Maxwellian distribution.2. this mode m is 
onverted via non-linear 
oupling into the ele
tromagneti
 one that es
apessolar 
orona and 
an be dete
ted on Earth.Sin
e the region of unstable waves in k-spa
e is usually limited to small extent and also thewave mode 
onversion is strongly resonant pro
ess as will be seen later, resulting radio emissionis narrowband and possibly with �ne stru
tures as usually observed during solar radio bursts.Due to mentioned similarity with radiation ampli�
ation in lasers it is 
onvenient to adoptprin
iple of detailed balan
e between emission and absorption pro
esses used in radiative transferelementary physi
s and quantitatively expressed using the Einstein 
oeÆ
ients. The theory builton these axioms will be in usual quantum notation brie
y reviewed in the following.6.4 Weak turbulen
e theoryStimulated emission and other indu
ed pro
esses su
h as wave-parti
le or wave-wave s
attering
an be under some assumptions des
ribed 
onsistently within the weak turbulen
e theory. It isbased on semi-
lassi
al formalism { the parti
les in states with momentum p are des
ribed bydistribution fun
tion f(p) while the waves in mode m with wave-ve
tor k is des
ribed by theo

upation number Nm(k) (number of quanta of wave mode m in state with momentum �hk)de�ned as: Nm(k) = wm(k)�h!m(k) (6.38)Su
h des
ription brings not only the advantage of uniform treatment of various indu
ed pro
essesfrom the wave generation point of view, but also it enables 
onsistent estimation of ba
k-rea
tionof parti
les to wave radiation or absorption sin
e the prin
iple of energeti
 balan
e is imposedon mi
ros
opi
 level here. On the other hand, approa
h (6.38) to wave distribution disables
orre
t des
ription of 
oherent pro
esses sin
e the phase information about mode depi
ted byo

upation number is lost. Thus, the assumption that phases of waves are unimportant { so
alled random phase approximation { plays key role in the weak turbulen
e theory. Coherentpro
esses will be dis
ussed in the next se
tion 6.5, however su
h general theory as in 
ase ofin
oherent emission has not been available yet.One may start with subset of this general des
ription applied to stimulated emission of wavesdue to unstable parti
le distribution fun
tion and its ba
k-rea
tion to wave generation { so 
alledquasi-linear theory.6.4.1 Quasi-linear theoryTransferring wave generation and/or absorption pro
esses onto mi
ros
opi
 level one has to use,a

ording to quantum physi
s, probabilisti
 des
ription of ea
h elementary emission/absorptiona
tion. This is usually done introdu
ing the Einstein 
oeÆ
ients.



6.4. Weak turbulen
e theory 61Einstein 
oeÆ
ients Consider two states des
ribed by parti
le momenta p and p�. Let thetotal number of parti
les in state p is Np and Np� for the state p�, respe
tively. A

ordingto quantum theory the transition of one parti
le between states p and p� is a

ompanied byemission or absorption of quantum of waves with frequen
y given by 
ondition�h! = jE(p) �E(p�)j: (6.39)Here, E(p�) and E(p) are parti
le energies in the states p� and p, respe
tively. In 
ase of freeparti
les the energy of the state p reads in non-relativisti
 limitE(p) = p22m (6.40)with m being the parti
le mass, 
omponents of state ve
tor p are simply Cartesian 
omponentsof parti
le momentum.

hω (k)

hω (k)

p
+

p
−

p

Fig. 6.1: Absorption and emission pro
esses due to p+ $ p and p$ p� state transitions.Now suppose that E(p�) < E(p) (see Fig. 6.1) and 
onsider probabilities (transition rates)wm;absp�p (k), wm;sppp� (k) and wm;indpp� (k) of transitions between the states p and p� due to absorption,spontaneous and indu
ed emission of quantum of mode m with wave-ve
tor k (referred as (m;k)quantum further) per unit time, respe
tively. The rates wm;absp�p (k), wm;sppp� (k) and wm;indpp� (k)represents Einstein 
oeÆ
ients for transitions p *) p�. The total rate of transitions p� ! pdue to absorption is �dNm(k)dt = wm;absp�p (k)Np�Nm(k) (6.41)while total rate of transitions p! p� as 
onsequen
e of spontaneous or indu
ed emission readsdNm(k)dt = wm;sppp� (k)Np +wm;indpp� (k)NpNm(k): (6.42)The relations between the Einstein 
oeÆ
ients 
an be obtained in the state of thermodynami
equilibrium but it should be noted, that resulting relations are valid regardless of ma
ros
opi
state of plasma-waves system as they are fundamental 
hara
teristi
s of the p*) p� transitions.In the state of thermodynami
 equilibrium adopted prin
iple of detailed balan
e applies implyingthat rate of 
hange of o

upation numberNm(k) of (m;k) quanta due to absorption and emission
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esses during p *) p� transitions together is zero. Thus 
ombining equations (6.41) and(6.42) one obtaindNm(k)dt = wm;sppp� (k)Np +wm;indpp� (k)NpNm(k)� wm;absp�p (k)Np�Nm(k) = 0: (6.43)In the state of thermodynami
 equilibrium the distribution of wave quanta is given by Plan
klaw Nm(k) = 1exp ��h!m(k)kBT �� 1 :Inserting the Plan
k law into the eq. (6.43), 
onsideringNpNp� = exp �E(p)�E(p�)kBT ! = exp�� �h!kBT �;and taking into a

ount that (6.43) has to apply for arbitrarily high temperature T the relationamong three Einsteins 
oeÆ
ients is found:wm;absp�p (k) = wm;sppp� (k) = wm;indpp� (k) � wmpp�(k): (6.44)Quasi-linear equations Using the relations (6.44) the rate the (m;k) quanta are emitted atin the general (non-equilibrium) state due to all transitions that 
an be taken into a

ount is(see eq. 6.43): dNm(k)dt = Xp;p�wmpp�(k) �Np +Nm(k)(Np �Np�)� : (6.45)However, the a
tual number of possible transitions is mu
h less than it seems from eq. (6.45)sin
e the quantum 
ondition p� p� = �hksele
ts only allowed ones. In parti
ular, the transition rate wmpp�(k) 
an be expressed as:wmpp�(k) = wm(p;k) � Æ(p� p� � �hk): (6.46)Now, one would like to 
hange from dis
rete notation used hitherto to the 
ontinuous one. Thus,the number of parti
les Np in the state p should be repla
ed by distribution fun
tion f(p) anddouble sum in the equation (6.45) by integration over p and p�. Using the expression (6.46) forthe transition rate w(p;p�;k) , whi
h is now re-interpreted as probability of quantum emissionper unit 
ube of k-spa
e, the integration over p� is performed trivially due to Æ-fun
tion. Theexpression f(p� �hk) appeared in the result 
an be for �hk� p expanded in Taylor seriesf(p� �hk) = f(p)� �hki�f(p)�pi + 12 �h2kikj �2f(p)�pi�pj + : : :When only the terms that are meaningful in 
lassi
al limit �h 7! 0 (see the paragraph Transitionrates 
al
ulation) are retained, the �rst quasi-linear equation des
ribing wave generation (orabsorption) in plasmas des
ribed by distribution fun
tion f(p) is �nally found:dNm(k)dt = Z wm(p;k) �f(p) +Nm(k)�hk � �f(p)�p � d3p (6.47)As was already mentioned, the advantage of this semi-
lassi
al approa
h 
onsist besides otherin possibility of homogeneous des
ription of ba
k-rea
tion of parti
le distribution to wave emis-sion/absorption pro
esses. On the mi
ros
opi
 level, ea
h emission or absorption of quantum of
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e theory 63waves is 
onne
ted with transition of parti
le between two states. Consequently, the time 
hangeof number Np of parti
les in state p is given by the di�eren
e between net rate the quanta (m;k)are emitted at due to transition (p+ = p+�hk)! p and net rate the quanta (m;k) are emittedat due to transition p! (p� = p� �hk), i.e. (see Fig. 6.1):dNpdt =Xk wmp+p(k) �Np+ +Nm(k)(Np+ �Np)��Xk wmpp�(k) �Np +Nm(k)(Np �Np�)� :(6.48)Transferring from the dis
rete notation to the 
ontinuous one again and expressing the di�eren
eof the two sums in the previous relation as a derivative times the interval k, the se
ond quasi-linear equation des
ribing ba
k-rea
tion of parti
les distribution to the wave emission/absorptionpro
esses readsdf(p)dt = Z �hk � ��p �wm(p;k) �f(p) +Nm(k) �hk � �f(p)�p �� d3k(2�)3 : (6.49)Transition rates 
al
ulation To make equations (6.47) and (6.49) meaningful for pra
ti
al
omputation one has to 
al
ulate the emission rate wm(p;k) . It 
an be done when one re-interprets the power radiated pm(k) 
onsidered in the se
tion 6.2.1 as 
ontinuous pro
ess to be{ a

ording to quantum physi
s ideas { the series of quanta emissions with emission probabilityper unit time w(p;k), i.e.: pm(k) = �h!m(k) wm(p;k)Thus, using relations (6.36) and (6.37) the emission rate 
an be expressed as:wm(p;k) = lim�!1 1� � 1�h!m(k) RmE (k)"0 ���em(k) � jext(k; !m(k))���2� (6.50)In the for
e-free 
ollision-less plasmas parti
le moves on re
tilinear traje
tory. Consequently, theextraneous 
urrent density in the equation (6.50) is to be identi�ed with that given by equationwith re
tilinear traje
tory r(t) = r0 + vtinserted. Now usingj(k; !) = q Z 11 dt Z d3r exp [�i(k � r)� !t℄v(t)Æ3(r� r(t)) = q Z 11 dtv(t) exp [�i(k � r(t))� !t℄;j(k; !) = qv exp (�ik � r0) Z 11 dt exp [i(! � k � v)t℄ = 2�qv exp (�ik � r0)Æ(! � k � v);[Æ(!)℄2 = lim�!1 �2�Æ(!);
al
ulation gives wm(p;k) = 2�q2RmE (k)�h!m(k) "0 jem(k) � vj2 Æ (!m(k)� k � v) (6.51)Absorption 
oeÆ
ient As was already mentioned, the �rst quasi-linear equation (6.47) ex-presses the emission or absorption of wave quanta due to medium des
ribed by distributionfun
tion. The rate of o

upation number 
hange 
an be separated to two parts { one indepen-dent of the o

upation number itself�dNm(k)dt �sp = Z wm(p;k) f(p) d3p



64 Chapter 6: PLASMA EMISSION PROCESSESand one linearly proportional to it�dNm(k)dt �ind = �
m(k)Nm(k)where 
m(k) reads 
m(k) = � Z wm(p;k) �hk � �f(p)�p d3p: (6.52)As the supers
ripts over ea
h part indi
ate the former part des
ribes spontaneous or thermalwave emission whereas the latter belongs to indu
ed pro
esses. The quantity 
m(k) is absorp-tion 
oeÆ
ient by de�nition and its sign depend on what pro
ess prevails { whether absorptionor stimulated emission of waves. In 
ase of negative values also the term growth rate is often used.It is 
lear from expression (6.52) that in 
ase of positive slope of distribution fun
tion f(p) in thedire
tion of wave-ve
tor k the absorption 
oeÆ
ient 
m(k) 
an rea
h negative values implyingso self-ampli�
ation or instability of waves. The positive slope 
orresponds to inequalityNp+�hk > Npin the formula (6.45), whi
h is only dis
rete form of the �rst quasi-linear equation (6.47), and thusinverse population of energeti
 levels is required (in unmagnetised plasmas) for self-ampli�
ationto work. This feature of the theory of indu
ed pro
esses in plasmas makes it very 
lose to, nowalready 
lassi
al, physi
s of lasers as was already mentioned in the introdu
tion to this se
tion.Probably the most known examples of ampli�
ation of waves due to su
h inverse population ofenergeti
 levels in the �eld of plasma physi
s are the \Bump-in-Tail" or \Two-stream" instabil-ities of Langmuir waves. The positive slope of the parti
le distribution fun
tion is rea
hed byenergeti
 parti
le stream propagating through the thermal ba
kground plasmas in this 
ase.Then, the resonant 
ondition 
ontained impli
itly due to Æ-fun
tion in the relation (6.51) 
anbe ful�lled only if v � v' (6.53)where v' = !(k)=k is the wave phase velo
ity. Sin
e refra
tive index for ele
tromagneti
 wavesnT (k) < 1 for all k-ve
tors, negative absorption of this mode is forbidden in the 
ase of unmag-netized plasmas as a 
onsequen
e of apparent inequalityv < 
Hen
e, the mode 
onversion between waves that 
an satisfy the 
ondition (6.53), and theirampli�
ation is therefore possible, and the ele
tromagneti
 ones is required for plasma emissionpro
ess to work.6.5 Coherent pro
essesThe weak-turbulen
e theory just reviewed in the previous se
tion is 
apable to des
ribe manytypes of parti
le-wave or wave-wave intera
tions, provided that wave �eld is suÆ
iently des
ribedby o

upation numbers { i.e. that wave phases are unimportant. As was shown, su
h a 
onditionis ful�lled in 
ase of broad-band wave distributions as after the 
oheren
e time �
 the phases ofwaves are 
ompletely mixed. Nevertheless, sometimes the region of unstable waves in the k-spa
eis so narrow, that before the phase mixing state is rea
hed the waves have grown up substantially.For su
h 
ases the weak-turbulen
e theory is inappli
able and its departure from the reality 
anbe separated into two kinds of problems:



6.5. Coherent pro
esses 65� the theory predi
ts qualitatively some pro
ess (e.g. instability) to be running, but furtherquantitative analysis gives wrong results { usually predi
ted growth rates of unstable wavesare lower than in reality.� the weak-turbulen
e version of 
oherent pro
ess does not exist at all.Hen
e, pro
esses where also wave phases are important have to be treated another way. Un-fortunately, the general theory of 
oherent pro
esses { as a 
ounterpart of the weak-turbulen
etheory { has not been established yet. One parti
ular 
ase is dis
ussed in the following.6.5.1 Strong wave turbulen
eStrong wave turbulen
e is term for non-linear wave-wave intera
tions that 
an not be suÆ
ientlydes
ribed within the weak-turbulen
e theory just due to great importan
e of wave phases forpro
esses involved. The �rst des
ription of 
oherent wave-wave intera
tions is that by Zakharovwho treated the non-linear intera
tion between Langmuir and ion-sound waves. His approa
hwas roughly as follows:Firstly, let us 
onsider linear Langmuir and ion-sound waves in homogeneous plasmas. The timeevolution of plasma parameters variations in these waves 
an be derived most simply within theplasma two-
uid theory or alternatively they 
an be guessed Fourier transforming the dispersionrelations (6.29) and (6.30) for relevant waves into the 
oordinate spa
e. Hen
e, the ele
tri
 �eldvariation in Langmuir waves is governed by equation�2E�t2 � 3V 2e 4E+ !2peE = 0 (6.54)and similarly the ele
tron density variation n in the ion-sound waves ful�ls (for wavelengths�� �De) relation �2n�t2 � 
2s4n = 0: (6.55)Now suppose that both wave modes propagate through plasma simultaneously. Due to ion-soundwave the ele
tron density is now distributed non-uniformly and as a 
onsequen
e of the plasmafrequen
y de�nition (6.25) the last term !2peE in the eq. (6.54) depends expli
itly on time andspa
e. Hen
e, the equation (6.54) 
an be rewritten in the form�2E�t2 � 3V 2e 4E+ !2peE = �!2pen(r; t)n0 E (6.56)where the plasma frequen
y !pe is now re-interpreted as that 
onne
ted with the ba
kgroundaverage density n0. Equation (6.56) des
ribes Langmuir wave ele
tri
 �eld evolution under thein
uen
e of ion-sound density perturbation. The e�e
t of density distribution 
an be estimatedqualitatively even without solving it by analogy with the S
hr�odinger wave equation des
ribingan ele
tron inside the 
rystal latti
e (
.f. equation 6.59). Identifying the total density n0+n with
rystal single-ele
tron potential one �nds, that the Langmuir ele
tri
 �eld tends to 
on
entrateitself in the density holes, similarly as ele
tron probability density in the 
rystal is high in pla
esof low potential (in the vi
inity of ions lo
ations).On the other hand, non-homogeneous (averaged over wavelength) ele
tri
 �eld in
uen
es densitydistribution due to non-linear ponderomotive for
e FNL whose volume density is (e.g. ??):fNL = �!2pe!2 grad "0hE2i2 : (6.57)
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ales of several plasma period) averaging. As a 
onsequen
e,a sour
e term has to appear on the R.H. side of equation (6.55), i.e.�2n�t2 � 
2s4n = 1mi div fNL: (6.58)Sin
e 
hanges of ele
tri
 �eld amplitude and ion-sound density variations are slow in 
omparisonwith plasma frequen
y it is 
onvenient to separate the instantaneous Langmuir ele
tri
 �eldtime evolution into the fast (on plasma frequen
y) variations and the slowly varying 
omplexamplitude E(r; t) = 12 hE(r; t) � exp(�i!pet) + E(r; t) � exp(+i!pet)iUsing this separation and relation (6.57) for ponderomotive for
e, further omitting the se
ondderivative of slowly 
hanging 
omplex amplitude E(r; t) the equations (6.56) and (6.58) 
an berewritten in the form: i�E�t + 3V 2e2!pe4E = !pe n2n0E (6.59)�2n�t2 � 
2s4n = "04mi 4jEj2: (6.60)The relations (6.59, 6.60) are known as set of Zakharov equations and des
ribe 
oherent non-linear intera
tions of Langmuir and ion-sound waves.



Chapter 7Beams and two-stream instabilitya) Beams in the solar atmosphereSee �le beams.psDoplnit obrazky do SPA3.texReferen
eKarli
k�y, M: 1997, E�e
ts of parti
le beams in the solar atmosphere, Spa
e S
i. Rev. 81, 143-172.b) Two-stream instabilityHere the CGS unit system is used.Dispersion equationLet at times t < 0 a plasma exists in a stationary state, i.e. the plasma density, plasma velo
ity,magneti
 and ele
tri
 �elds are:n = n0;v = v0;B = B0;E = E0: (7.1)Then at times t > 0 small perturbations appear:n = n0 + n0;v = v0 + v0;B = B0 +B0;E = E0 +E0: (7.2)Let us assume that these perturbations have periodi
 form in time as:X 0(t; r) = X 0(r) exp(�i!t); (7.3)where r is the position and ! is the frequen
y.Then the mass 
onservation, momentum and Maxwell equations 
an be linearized. Thus, a setof equations for variables of zero-, �rst- and higher-orders of magnitude 
an be derived. The setof equations with �rst-order variables follows:�i!n0 +r � (n0v0 + n0v0) = 0;�i!v0 + (v0r)v0 + (v0r)v0 = em(E0 + 1
 (v0 �B0) + 1
 (v0 �B0));r�B0 = 4�
 e(n0v0 + n0v0)� i!
 E0;67



68 Chapter 7: BEAMS AND TWO-STREAM INSTABILITYr�E0 = i!
 B0;r �E0 = 4�en0r �B0 = 0; (7.4)where the Fourier transform in time (�=�t! �i!) was done.Os
illations of homogenous plasmaLet us assume a 1-D 
ase with B0 = 0;v0 = 0;rn0 = 0 and the spatial perturbation in theform: X 0(r) � exp(ikr). Then from the above mentioned equations follow:�i!n0 + n0ikv0 = 0;�i!v0 = emE0;ikE0 = 4�en0;Now, from these equations the dispersion equation for so 
alled plasma os
illations 
an be writtenas: !2 = 4�e2n0m : (7.5)Ele
tromagneti
 waves in homogenous plasmaFurthermore we 
an write r�B0 = 4�
 en0v0 + 1
 �E0�t ; = ��tr� �B0�t = 4�
 en0�v0�t + 1
 �2E0�t2 ;�
r�r�E0 = 4�
 en0 emE0 + 1
 �2E0�t2 ;�
k2E0 = !2p
 E0 � !2
 E0;!2 = !2p + k2
2; (7.6)whi
h is the dispersion equation for the ele
tromagneti
 waves in the plasma without stati
magneti
 �eld.Dispersion equation for plasma with moving 
omponentsLet us 
onsider a potential perturbation of the ele
tri
 �eldE = �r ; E = �ik ;



69and let us look what a perturbation of the ele
tri
 
harge density �e 
auses the ele
tri
 �eldperturbation, i.e. let us look for the fun
tion � in the relation �e = � .In this 
ase the linearized MHD equation has a following form:�i!n0 +r � (n0v0 + n0v0) = 0;�i!v0 + (v0r)v0 + (v0r)v0 = emE0;Using rv0 = 0 and E0 = �r 0 the equation 
an be rewritten into�i!n0 + in0kv0 + in0kv0 = 0;�i!v0 + v0ikv0 = �i emk 0;Now, we 
an express the density and plasma velo
ity perturbations asn0 = n0kv0! � kv0 ; v0 = ek 0m(! � kv0) ;Combining these equations the perturbation of 
harge density is�e = n0e = � 0 = e2n0k2m(! � kv0)2 0; (7.7)i.e. the fun
tion � for some spe
i�
 plasma 
omponent � 
an be expressed as�� = e�n�0k2m�(! � kv�0 )2 : (7.8)Let us put these results into the Poisson equation. Thenk2 = 4�X� ��e ;k2 = 4�X� �� ;(1� 4�k2 X� ��) = 0 (7.9)In the last relation the term in bra
kets is the dispersion equation whi
h 
an be formally writtenas �0 = 1� 4�k2 X� ��; (7.10)where 
ontributions of moving 
omponents of plasma into the dispersion equation are��0 = �4�k2 �� = � (!�p )2(! � kv�0 )2 : (7.11)



70 Chapter 7: BEAMS AND TWO-STREAM INSTABILITYBeam instabilitiesa) Instability of two 
ounter-streaming beamsLet us 
onsider two 
ounter-streaming beams of the same density, i.e.n01 = n02 = n0; v01 = �v02 = v: (7.12)in this 
ase the dispersion equation is1� !2p(! � kkv)2 � !2p(! + kkv)2 = 0: (7.13)This equation leads ti the bi-quadrati
 equation with the following solutions:! = �q(kkv)2 + !2p � !p(!2p + 4k2kv2)1=2: (7.14)If (kkv)2 + !2p < !p(!2p + 4k2kv2)1=2;i.e. if (kkv)4 + 2(kkv)2!2p + !4p < !2p(!2p + 4k2kv2);and i.e. if kk < p2!p=v then there is one solution with Im ! > 0, whi
h for the perturbation inthe form X(t) � exp�i!t means an instability. Furthermore, if kk � !p=v then the term underthe root 
an be written as(kkv)2 + !2p � !2p(1 + 2k2kv2!2p ) = (kkv)2 � 2(kkv)2;whi
h gives the growth rate of the instability asIm ! =j kkv j : (7.15)On the other hand, the maximum growth rate 
an be derived as follows:ddkk ((kkv)2 + !2p � !p(!2p + 4k2kv2)1=2) = 0;2v2kk � !p2 8kkv2(!2p + 4k2kv2)1=2 = 0;!2p + 4k2kv2 = 4!2p;kkmax = p32 !pv : (7.16)Now, putting this kkmax into the relation for ! (Eq.7.14), the maximum growth rate is
max = !p=2: (7.17)



71b) Beam-plasma instabilityLet us assume a beam whi
h density is mu
h lower than that of ba
kground plasma (n1 � n0).Then the dispersion equation is 1� !2pe!2 � �!2pe(! � kkv)2 = 0: (7.18)where !2pe = 4�e2n0=me, � = n1=n0 � 1, v is the beam velo
ity.Solutions:a) The non-resonant 
ase, i.e. the 
ase with !pe 6= kkv.The solution 
an be derived as follows:(! � kkv)2 � (! � kkv)2!2pe!2 � �!2pe = 0;(! � kkv)2(1� !2pe!2 ) = �!2pe;(! � kkv)2 = �!2pe 11� !2pe!2 ;! � kkv = �q�!2pe 1q1� !2pe!2 ;! = kkv �p� !per1� !2pe(kkv)2 ; (7.19)where, in the last equation, the approximate relation ! ' kkv was used.As 
an be seen, if kkv < !pe the solution is 
omplex and the growth rate is
 = p� !peq(!pe=kkv)2 � 1 ; (7.20)b) The resonant 
ase, i.e the 
ase with ! ' kkv ' !pe.Let us assume that the frequen
y 
orre
tion isj !(1) j�j !pe � kkv j;Then the dispersion equation 
an be written as1� !2pe!2 � �!2pe(!pe + !(1) � kkv)2 = 0; = � !2!2 � !2pe � �!4pe(!(1))2 = 0:



72 Chapter 7: BEAMS AND TWO-STREAM INSTABILITYUsing now !2 � (!pe + !(1))2 = !2pe + 2!(1)!pe;we 
an 
ontinue in the simpli�
ation of the dispersion equation as follows2!(1)!pe � �!4pe(!(1))2 = 0;((!(1))3 � �!2pe2 = 0;whi
h solution is x1;2;3 = �1=3!pe21=3 (
os�+ i sin�)1=3; � = 0; 2�; 4�Thus the 
orre
tion of real frequen
y and growth rate of the instability (�=3 = 4�=3) areRe!(1) = �!pe�1=324=3 ; (7.21)
 = !pep3�1=324=3 : (7.22)
) Buneman instabilityIn this 
ase the ele
tron plasma 
omponent is in a relative motion to the proton 
omponent. Inthis 
ase the dispersion equation is1� !2pe(! � kkv)2 � !2pp(!)2 = 0; (7.23)where !2pp=!2pe � 1. Using the same pro
edure as in the previous 
ase for � = me=mp (theele
tron-proton mass ratio) the resonant growth rate 
an be obtained as
 = !pep3(me=mi)1=324=3 : (7.24)d) Kineti
 beam instabilityIf a beam has some dispersion in velo
ities vT1 whi
h is greater than �1=3v, where � = n1=n0 isthe ratio of beam and plasma densities and v is the beam velo
ity, then the results for the abovementioned beam-plasma instability are not valid and the kineti
 approa
h to this instability isne
essary. In this 
ase the instability has a maximum for k � !pe=v with the growth rate
 ' !pe2 �� vvT1�2 : (7.25)Comparing the relations (1.22) and (1.25) we 
an see that the growth rate of the kineti
 insta-bility is lower than that of the MHD one, and the both growth rates are equal if vT1 = �1=3v.



Chapter 8Numeri
al parti
le 
odeAt the end of �fties and at the beginning of sixties of the 20-
entury John Dawson and Os
arBuneman started to simulate a plasma by a big amount of numeri
al parti
les whi
h wereele
tromagneti
ally intera
ting. While at the beginning many s
ientists expressed s
epti
ism tothis approa
h, now it is well developed resear
h �eld.To ful�ll basi
 
hara
teristi
s of the plasma it is ne
essary to have a system whi
h is large enough(its length L� �D) and the number of numeri
al parti
les in the Debye sphere is mu
h greaterthan 1. It needs enormous amount of parti
les, espe
ially in 3-dimensional 
ase. Mu
h bettersituation is in 1-D 
ase and that is why all studies in this �eld started with the 1-D systemwhere the number of parti
les in the Debye sphere is ND = n�D only; n is the plasma parti
ledensity. But generally, a relatively small number of parti
les in the system generates high levelof noise.In prin
iple, it is possible to build a numeri
al pie
e of plasma 
onsidering parti
les whi
h intera
twith all other parti
les, but this numeri
al approa
h is very time and memory 
onsuming.Therefore a modi�ed method 
alled as parti
le-in-
ell is used.As an example, in the following, let us present a simple 1-D ele
trostati
 
ode. A s
heme of thisnumeri
al 
ode is shown in Fig. 8.1. Parti
les are distributed in the system of the length L whi
his mu
h greater than �D; usually L � 100�D. In ea
h Debye length is as minimum 100 ele
tronsand 100 protons forming thus a quasi-neutral plasma. As known from numeri
al experimentsthese numbers are suÆ
ient to ful�lled the 
ondition about a big number of parti
les in theDebye sphere. Thus in our system simulating plasma we have about 10000+10000 numeri
alparti
les. Although, the ele
tron-proton ratio is 1836, in numeri
al simulations this ratio isusually smaller in order to a

elerate some plasma pro
esses. On the other hand, this fa
t needsto be taken into a

ount when we interpret results of numeri
al simulations.First in the 
ode, the initial state of the system needs to be generated; every parti
le needsto have initial position and velo
ity. Positions of parti
les 
an be regular or by some waymodi�ed, e.g. by the presen
e of initial ele
trostati
 wave in some tasks. In the 
ase of 
oldplasma all velo
ities are zero, otherwise Maxwell distribution of parti
les 
orresponding to sometemperature is generated. Then we need to 
ompute ele
trostati
 for
es among parti
les. Asmentioned above a dire
t method through the Coulomb law is not used in su
h a model. Here,ele
trostati
 for
es are 
omputed as a di�eren
e of the ele
trostati
 potential 
omputed fromPoisson equation. For this purpose the 
harge density is 
al
ulated on the grids (hundredsgrids per system) using some weighting pro
edure. Knowing the ele
tri
 
harge distributionin the system the Fourier transform is applied and the Poisson equation is solved in k-spa
e.Then the inverse Fourier transform is made, and from the ele
trostati
 potential the ele
tri
�eld is 
omputed. Be
ause the fast Fourier transform is used then it is useful to use powersof 2n (128, 256, 512 ..) for the number of system grids. Furthermore, usually the periodi
boundary 
onditions are used. Using now further weighting pro
edure the for
e on every parti
le73
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Fig. 8.1: One time step in a parti
le simulation program. The parti
les are numbered i = 1,2,...., NP; the gridindi
es are j.is 
al
ulated from the ele
tri
 �eld 
omputed on grids. Then solving Newton equation we obtainnew positions and new velo
ities of all parti
les, and the full time step �t is �nished and furtherstep 
an start. During 
omputations it is important to re
ord some important variables fordiagnosti
 purposes.Now let us des
ribe the 1-D ele
trostati
 
ode in more details.Integration of the equations of motionOne 
ommonly used integration is the leap-frog method. The use of high-order methods (e.g.Runge-Kutta) is possible, but they multiply the operations taken for ea
h parti
le.The two �rst-order di�erential equations to be integrated separately for ea
h parti
le aremdvdt = F; (8.1)dxdt = v; (8.2)where F is the for
e. These equations are repla
ed by the �nite-di�eren
e equationsmvnew � vold�t = Fold; (8.3)xnew � xold�t = vnew: (8.4)In the leap-frog method values of x and v are not known at the same time, they are shiftedea
h other by �t=2 (Fig. 8.2). The user must show 
are in at least two ways: �rst, initial
onditions for parti
le velo
ities and positions given at t = 0 must be 
hanged; we push v(0)ba
k to v(��t=2) using the for
e F 
al
ulated at t = 0; se
ond, the energies 
al
ulated from v(kineti
) and x (potential, or �eld) must be adjusted to appear at the same time.The leap-frog method has error, with the error vanishing as �t ! 0. Applying this methodto integration of a simple harmoni
 os
illator of frequen
y !0, we will �nd that there is noamplitude error for !0�t � 2 and that the phase advan
e for one step is given by!0�t+ 124(!0�t)3 + ::: (8.5)
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Fig. 8.2: Sket
h of leap-frog integration method showing time-
entering of for
e F while advan
ing v, and ofv while advan
ing x.Remark: This relation follows from two half-time steps and Taylor series for one half step assin�!0�t2 � � !0�t2 � 16 �!0�t2 �3 + ::: (8.6)The error terms di
tate a 
hoi
e of !0�t � 0:3 in order to observe os
illations or waves for sometens of 
y
les with a

eptable a

ura
y.Although the numeri
al system is 1-dimensional, in the limited sense (with the stati
 magneti
�eld B perpendi
ular to the x-
oordinate of the system) we 
an 
onsider two 
omponents ofvelo
ities (vx; vy). In this 
ase the for
e F has two parts,F = Fele
tri
 + Fmagneti
 = qE+ q(v �B): (8.7)Here the ele
tri
 �eld E and magneti
 �eld B are to be 
al
ulated at the parti
le position.Hen
e, using a spatial grid, we must interpolate E and B from the grid to the parti
le. Aswe will see later, the ele
tri
 for
e on a parti
le will depend not only on the distan
e to otherparti
les (physi
al) but also on the position within the 
ell (nonphysi
al).For our 1-D 
ase, let us 
onsider the parti
le displa
ement to be along x, and that we havevelo
ities vx and vy, with a uniform stati
 magneti
 �eld B0, along z (Fig. 8.3). The q(v �B)for
e is simply a rotation of v; that is, v does not 
hange in magnitude. However, the qE = qExxfor
e does alter the magnitude of v (vx); Ey =0. Hen
e, a physi
ally reasonable s
heme whi
his 
entered in time is as follows (with t0 and t00 as dummy variables, t��t=2 < t0 < t00 < t+�t=2):Half a

eleration vx(t0) = vx �t� �t2 �+ � qm�Ex(t)��t2 � (8.8)vy(t0) = vy �t� �t2 �Rotation
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 vx(t00)vy(t00) ! =  
os!
�t sin!
�t� sin!
�t 
os!
�t ! vx(t0)vy(t0) ! (8.9)Half a

eleration vx �t+ �t2 � = vx(t00) + � qm�Ex(t)��t2 � (8.10)vy �t+ �t2 � = vy(t00)The angle of rotation is �� = �!
�t (8.11)where !
 is the 
y
lotron frequen
y.

Fig. 8.3: The vx and vy plane, showing the q(v�B) for
e normal to v, whi
h results in a rotation of v, withno 
hange in speed magnitude with d�=dt < 0 for (q=m)> 0, B0 > 0.Integration of the �eld equationsStarting from the 
harge density as assigned to the grid-points, we now obtain the ele
tri
 �eld.In our 1-D 
ase we need to solve the following di�erential equationsE = �r�; Ex = ����x; (8.12)r � E = ��0 ; �Ex�x = ��0 ; (8.13)whi
h are 
ombined to obtain Poisson's equationr2� = � ��0 ; �2��x2 = � ��0 : (8.14)



77One approa
h is solve the �nite di�eren
e versions of these equations asEj = �j�1 � �j+12�x (8.15)�j�1 � 2�j + �j+1(�x)2 = ��� : (8.16)A very powerful approa
h for periodi
 systems is to use a dis
rete Fourier series for all gridquantities. This approa
h also provides spatial spe
tral information on �, �, and E whi
h isuseful in relating results to plasma theory, and whi
h also allows 
ontrol (smoothing) over thespe
trum of �eld quantities.In su
h types of 
omputations the fast Fourier transform is e�e
tively used. This transformationallows us to obtain �(k) from �(k) from simple equation (transformed Poisson equation)�(k) = �(k)�0k2 : (8.17)The next step is to take the inverse Fourier transform of �(k) in order to obtain �(x) and thenE(x) using equation (8.15).The solution using a �nite Fourier series starts from the 
harge densities at the grid points, withvalues �(Xj); j = 0, 1, 2, ..., NG -1 for a total of NG values. Letting the grid fun
tions G(Xj)(standing for �eld or potential or 
harge density) be periodi
, G(Xj) = G(Xj + L), then the�nite dis
rete Fourier transform is (sum on Xj = j�x)G(k) = �xNG�1Xj=0 G(Xj)e�ikXj : (8.18)The inverse transform is (the sum is on k = n(2�=L))G(Xj) = 1L NG=2�1Xn=�NG=2G(k)eikXj ; (8.19)whi
h produ
es NG distin
t values of G(Xj).Weighting pro
eduresIn the numeri
al 
ode, it is ne
essary to 
al
ulate the 
harge density on the dis
rete grid pointsfrom the 
ontinuous parti
le positions and then to 
al
ulate the for
e at the parti
le positionsfrom the �elds known on grid points. There are several methods of su
h weighting.Zero-order weightingIn this pro
edure (Fig. 8.4), we simply 
ount the number of parti
les within distan
e ��x=2(one 
ell width) about the jth grid point and assign that number [
all it N(j)℄ to that point,that is, the grid density is simply nj = N(j)=�x. The 
ommon name for this weighting isnearest-grid-point. The ele
tri
 �eld to be used in the for
e is that at Xj , for all parti
les in thejth 
ell.As a parti
le moves into the jth 
ell (through 
ell boundaries at x = Xj��x=2), the grid densitydue to that parti
le jumps up; as the parti
le moves out (x > Xj +�x=2 or x < Xj ��x=2),the grid density jumps down. We 
an see two e�e
ts. One is that the parti
le appears to havea re
tangular shape with a width of �x. This leads us to think that we have a 
olle
tion of
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les; hen
e, the physi
s observed will be that of su
h parti
les rather than thatof point parti
les. Be
ause 
lose en
ounters between plasma parti
les are rare (i.e., for manyparti
les in a Debye length, the plasma parameter ND � 1), this new physi
s hardly alters thebasi
 plasma e�e
ts to be studied. The se
ond e�e
t is that the jumps up and down as a parti
lepasses through a 
ell boundary will produ
e a density and an ele
tri
 �eld whi
h are relativelynoisy both in spa
e and time; this noise may be intolerable in many plasma problems thereforea better weighting is ne
essary to look for.

Fig. 8.4: Zero-order parti
le and �eld weighting, also 
alled nearest-grid-point. Parti
les in the jth 
ell, thatis, with positions xi�Xj ��x=2, are assigned to Xj to obtain grid density n(Xj). All of these parti
les are a
tedon by the �eld at Xj , E(Xj). b) The density nj(Xj) at point Xj due to a parti
le at xi, as the parti
le movesthrough the 
ell 
entered on Xj . This density may be interpreted as the e�e
tive parti
le shape.First-order weightingThis pro
edure smooths the density and �eld 
u
tuations, whi
h redu
es the noise (relativeto zero-order weighting), but requires additional expense in a

essing two grid points for ea
hparti
le, twi
e per step. The 
harged parti
les seem to be �nite-size rigid 
louds whi
h may passfreely through ea
h other. The model is 
alled 
loud-in-
ell (Fig. 8.5). For total 
loud 
harge ofq
, the part assigned to j isqj = q
 ��x� (xi �Xj)�x � = q
Xj+1 � xi�x ; (8.20)and the part assigned to j + 1 is qj+1 = q
 �xi �Xj�x � : (8.21)The net e�e
t is to produ
e a triangle parti
le shape whi
h has width 2�x.There are also higher-order weighting, but at the 
ost of more 
omputations.Initial stateNow, few words about initiating the program. In all 
ases we need to 
hoose:� The number of parti
les and grid 
ells.� The weighting.� The desired initial distribution fun
tions of ele
trons, protons and further 
omponents(e.g. a beam)(random or ordered).
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Fig. 8.5: First-order parti
le weighting. The �nite-size 
harged parti
le, or 
loud, is one 
ell wide, with 
enterat xi. This weighting puts that part of the 
loud whi
h is in the jth 
ell an Xj , fra
tion (a), and that part whi
h isin the (j+1)th 
ell at Xj+1, fra
tion (b). This weighting is the same as applying nearest-grid-point interpolationto ea
h elemental part. (b) The grid density nj(xi) at point xi as the parti
le moves past Xj , again displayingthe e�e
tive parti
le shape.The next step is to pla
e the parti
les in phase spa
e (x;v) so that the problem desired isproperly set up to run.A 
old, uniform periodi
 plasma of mobile ele
trons and immobile protons (Mp=me ! 1) issimplest. The ele
trons 
an be put in uniformly. But sometimes we need in the initial state aplasma wave. It 
an be done by perturbing the uniform positions xi0 byxi(t = 0) = xi0 + xi1 
os(ksxi0); (8.22)where kmin � ks � kmax is some wave ve
tor for whi
h we want the plasma behavior of thesystem.Diagnosti
sFor an interpretation of numeri
al results the diagnosti
 output of the 
ode is very important.Information of our interest 
an be as follows:a) For parti
les:� Phase spa
e, vx versus x.� Velo
ity spa
e, vy versus vx.� density in velo
ity, f(v) versus v, or f(v2) versus v2, or ln(f(v2)) versus v2.b) For grid quantities:� Charge density �(x) versus x or parti
le density n(x) versus x.� Potential �(x) versus x.� Field E(x) versus x.� distribution of ele
trostati
 energy 1=2�k��k versus k.Furthermore, the result at the end of a run will 
onsist of plots of histories of various quantitiesversus time, su
h as:
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trostati
 energy Pk 1=2�k��k.� Parti
le kineti
 energy by spe
ies Pi 1=2miv2i .� Parti
le drift energy Pi 1=2mi < vi >2.� Parti
le thermal energy Pi 1=2mi(< v2i > � < vi >2).� Total energy, ele
trostati
 plus parti
le.� Mode plots, 1=2�k��k, for ea
h k with plots versus ! - dispersion 
urves.



Chapter 9Solar radio bursts9.1 Classi�
ation of solar radio burstsSolar radio bursts are observed in a very broad range of frequen
ies (see Fig. 9.1). Based ontheir spe
tral and time 
hara
teristi
s they are 
lassi�ed into �ve main 
lasses:a) Type III radio burstsAn example of these bursts is shown in Fig. 9.2. These bursts are 
hara
terized by very fastfrequen
y drifts (� 20 MHz s�1 in the metri
 range) on the dynami
 radio spe
trum. Theobserved drifts 
orrespond to ex
iter speeds between 0:2
 and 0:6
, where 
 is the speed of light.These bursts are observed at the beginning of solar 
ares, in so 
alled impulsive phase and theyare 
onsidered as a signature of ele
tron beams propagating from the 
are site upwards into theinterplanetary spa
e.b) Type II radio burstsAn example of this burst is shown in Fig. 9.3. These bursts are 
hara
terized by relativelyslow frequen
y drifts (� 1 MHz s�1 in the metri
 range) on the dynami
 radio spe
trum. Theobserved drifts 
orrespond to ex
iter speeds between 500 km s�1 and 2000 km s�1. These burstsare observed after the impulsive phase and they are 
onsidered to be a signature of the MHD
are sho
k propagating from the 
are site upwards into the interplanetary spa
e.
) Type IV radio burstsThese broadband radio bursts (or 
ontinuum bursts) are typi
al bursts observed during solar
ares, espe
ially in long-lasting ones. While the high-frequen
y type IV bursts are generated bythe gyro-syn
hrotron me
hanism of superthermal ele
trons trapped in magneti
 
are loops, onlower frequen
ies (those with relatively narrow band emission) are probably generated by theplasma emission pro
esses.There are many �ne stru
tures of these bursts, see the following examples.d) Type I radio bursts - noise stormThese bursts express a
tivity in solar a
tive regions. They are observed in the metri
 range onlyand they 
onsist of a 
ontinuum radiation and a 
loud of short-lasting (< 1 s) and narrowband(� 5 MHz) bursts.
81



82 Chapter 9: SOLAR RADIO BURSTSa) Type V radio burstsThe type V burst is similar to the type III burst, but its duration is longer (� 1 min). It isbelieved that some ele
trons of fast ele
tron beam are trapped for some time in 
oronal magneti
trap and thus the radio emission is prolonged.Radio bursts during stellar 
aresIn Fig. 9.4 an example of the dynami
 radio spe
trum of the AD Leo star 
are in the de
imetri
range is shown for 
omparison.

Fig. 9.1: S
hemati
 representation of di�erent solar radio bursts.
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Fig. 9.2: Type III solar radio burst observed at Tremsdorf Observatory, Germany on May 17, 1999 (
ourtesyDr. A. Klassen).Examples of solar radio burstsIn this 
hapter new results and new types of solar radio bursts are presented.a) High-frequen
y zebrasSee �le zebras.psReferen
e:Sawant, H.S., Karli
k�y, M., Fernandes, F.C.R., Ce
atto, J.R.: 2002, Observation of harmoni-
ally related solar radio zebra patterns in the 1-4 GHz frequen
y range, Astron. Astrophys. 396,1015-1018.b) Narrowband dm-spikesSee �le spikes.psReferen
e:B�arta, M., Karli
k�y, M.: 2001, Turbulent plasma model of the narrowband dm-spikes, Astron.Astrophys. 379, 1045-1051.
) La
e burstsSee �le la
es.ps
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Fig. 9.3: Dynami
 spe
trum of type II solar radio burst observed at Tremsdorf Observatory on O
tober 22,1999 (
ourtesy Dr. A. Klassen).Referen
e:Karli
k�y, M., B�arta, M., Ji�ri�
ka, K., M�esz�arosov�a, H., Sawant, H.S., Fernandes, F.C.R., Ce
atto,J.R.: 2001, Radio bursts with rapid frequen
y variations - La
e bursts, Astron. Astrophys. 375,638-642.
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Fig. 9.4: De
imetri
 radio spe
trum of the AD Leo star obtained by Are
ibo radioheliograph.



Chapter 10Solar 
ares and 
oronal masseje
tionsExamples of solar 
are studiesa) Magneti
 �eld re
onne
tionSee �le re
onne
tion.psReferen
e:Karli
k�y, M.: 2002, Plasma resonan
e surfa
es in the magneti
 �eld re
onne
tion and radio �nestru
tures, Solar Physi
s, in press.b) Plasmoid eje
tionSee �le plasmoid.psReferen
e:Karli
k�y, M., F�arn��k, F., M�eszarosov�a, H.: 2002, High-frequen
y slowly drifting stru
tures insolar 
ares, Astron. Astrophys. 395, 677-683.
) Impa
t polarization of opti
al 
hromospheri
 linesSee �le impa
t.ps

86



87Referen
e:Karli
k�y, M., Henoux, J.C.: 2002, Impa
t H-alpha line polarization and return 
urrent, Astron.Astrophys. 383, 713-718.
) Flare hard X-rays from neutral beamsSee �le nhardx-ray.pdfReferen
e:Karli
k�y, M., Brown, J.C., Conway, A.J., Penny, G.: 2000, Flare hard X-rays from neutralbeams, Astron. Astrophys. 353, 729-740.
) Return 
urrent in solar 
aresSee �le return.pdfReferen
e:Karli
k�y, M., H�enoux, J.C.: 1992, Return 
urrent losses in pulse beam heating of the solaratmosphere, Astron. Astrophys. 264, 679-685.Priest, E., Forbes, T.: 2000, Magneti
 re
onne
tion: MHD theory and appli
ations, CambridgeUniversity Press, Cambridge, UK.
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ares and 
oronal mass eje
tion

Fig. 10.1: Energies in large and small solar 
ares.
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Fig. 10.2: S
hemati
 drawing of the 
ollision time vs. height of an ele
tron moving at the mean thermalvelo
ity in the quiet solar atmosphere. The relevant plasma parameters are from standard models and are alsoshown (dashed). The hydrogen density in
ludes both neutral atoms and ions.
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Fig. 10.3: Chara
teristi
 pro�le of a solar 
are in various wavelengths.
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Fig. 10.4: Two s
enarios whi
h have been proposed for opening the magneti
 �eld during large solar 
aresand 
oronal mass eje
tions. (a) In the �rst s
enario an ideal MHD pro
ess 
hanges the 
losed-�eld 
on�guration(1) into an open 
on�guration (2) during the impulsive phase, and re
onne
tion re-
loses the �eld (3) during thegradual phase. (b) In the se
ond s
enario an ideal MHD pro
ess 
reates a relatively short 
urrent sheet withoutopening the �eld, but magneti
 
ux 
an still es
ape into spa
e if rapid re
onne
tion o

urs in this sheet. If thereis no input of the magneti
 energy during the eruption, then the magneti
 energy 
ontinuously de
reases duringboth the impulsive and gradual phases of the 
are, as shown in (
).



92 Chapter 10: SOLAR FLARES AND CORONAL MASS EJECTIONS

Fig. 10.5: Quasi-stati
 evolution of an axially symmetri
 ar
ade in response to shearing of its footpoints. (a)The initial �eld is a Sun-
entered dipole whi
h (b) evolves into a for
e-free �eld when its footpoints in the upperand lower hemispheres are rotated in opposite dire
tions. (
) After a rotation of 126o, the �eld be
omes fullyopened as long as the di�usivity (�) remains zero. (d) A plot of the 
orresponding time evolution of the totalenergy divided by the potential energy.
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Fig. 10.6: A 
ux-rope model. (a) Ideal MHD evolution of a two-dimensional ar
ade 
ontaining an unshielded
ux rope of height h as the sour
e separation (2�) de
rease. (b), (
) The 
ux rope and ar
ade move upwardswhen the two photospheri
 �eld sour
es are pushed too 
lose to one another. (d) In the absen
e of re
onne
tionthe eruption leads to a new equilibrium 
ontaining a 
urrent sheet.
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Fig. 10.7: Resistive MHD simulation based on the two-dimensional 
ux-rope model. White 
urves are magneti
�eld lines, while the grey s
ale 
orresponds to temperature variations. White regions have the highest temperature(> 108 K in the absen
e of 
ooling pro
esses),while bla
k regions have the lowest. The magneti
 Reynolds numberis about 200, many orders of magnitude smaller than expe
ted for the Sun.



95

Fig. 10.8: (a) Traje
tories of the sho
k, 
ux rope, and X-line for the simulation shown in the previous �gure.(b) The ele
tri
 �eld at the X-line as a fun
tion of time.
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Fig. 10.9: (i) Twisted 
ux tube showing three types of �eld line I, II, and III. (ii) Quasi-separatrix layersviewed from above together with sample �eld lines of types (a) I (dotted 
urve), (b) III (dashed-dotted 
urve)and (
) II (solid 
urve) and (d) the 
onne
tivity of points on the quasi-separatrix layers.
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Fig. 10.10: Perspe
tive view of a 3-D twisted 
on�guration with a �nite spatial extension and without nullsor �eld line tangent to the photosphere. Separatri
es are no longer present, but there is a very thin volume (QSL)where the �eld line 
onne
tivity 
hanges rapidly. The interse
tion of the QSL with the lower boundary (planez = 0) is shown by an iso-
ontour of the fun
tion N (see 
hapter about 
onne
tivity). This interse
tion formstwo elongated strips on both sides of the boundary inversion line (IL). From these strips the QLS extends above,following magneti
 �eld lines (the 
omplexity of this elongated volume pre
ludes a 
lear drawing of it). Tworepresentative sets of �eld lines have been in
luded; they belong to the periphery of the twisted 
ux tube and tothe lower ar
ade (Demoulin, 1997).
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Fig. 10.11: A s
hemati
 representation of an ambient 
oronal streamer (a) in whi
h a 
oronal mass eje
tion(b) originates.
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Fig. 10.12: How �eld line shrinkage is de�ned for 
are loops. Shrinkage is simply a measure of the 
hange inshape of a �eld line due to its 
losure by re
onne
tion.
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Fig. 10.13: S
hemati
 diagram of a 
are loop system formed by re
onne
tion in the supermagnetosoni
 regime.This regime is most likely to o

ur in the early phase of a 
are when the re
onne
ting �elds are strong. It hasboth upward- and downward- dire
ted je
ts, but only the region below the downward jet has high-density plasma,be
ause in two-dimensional models 
hromospheri
 evaporation o

urs on just those �eld lines that lie below theX-line. Solid 
urves indi
ate boundaries between various plasma regions, while dashed ones indi
ate magneti
�eld lines.
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Fig. 10.14: S
hemati
 diagram of a 
are loop system formed by re
onne
tion in the submagnetosoni
 regime.This regime is most likely to o

ur when the re
onne
tion �elds are weak. Here the downward jet of the previous�gure is repla
ed by a weak bifur
ated 
ow along the �eld lines mapping from tip of the 
urrent sheet to the
hromosphere. Be
ause of the weaker �elds, the evaporation pro
ess is greatly redu
es and the plasma density inthe loops be
omes too low to trigger a thermal 
ondensation. However, 
ondensation remnants may remain lowerdown as a result of an earlier supermagnetosoni
 phase.
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Fig. 10.15: Pro
esses in 
are loops.

Fig. 10.16: S
hemati
 model of impulsive hard X-ray, radio and EUV sour
es.
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Fig. 10.17: The emerging 
ux model for a small 
ares. (a) The pre
are phase when the emerging 
ux slowlyre
onne
ts with the over-lying �eld. Slow-mode sho
ks (dashed 
urves) radiate from a small 
urrent sheet and heatthe plasma that passes through them (striped region). (b) The impulsive phase 
aused by the onset of turbulen
eand anomalous resistivity in the 
urrent sheet when it rea
hes a 
riti
al height. The ele
tri
 �eld generated bythe sudden enhan
ement in the re
onne
tion rate a

elerates the parti
les, whi
h produ
e hard X-rays and typeIII radio bursts. In the main phase (
), quasi-steady re
onne
tion leads to extensive heating.


