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Chapter 1

Basic concepts and equations

Plasma means a partially or completely ionized gas, whic h is electrically neutral as a whole, and

whic h consists of electrons, ions and neutral atoms. F urthermore the plasma, in the sense used

here, is c haracterized b y so called collectiv e b eha vior of its particles. This asp ect is used to b e

expressed b y the follo wing conditions:

a) The mean force of near in teractions is m uc h less than that of distan t collectiv e in teractions

of particles

F

near

� F

dist

;

b) the n um b er of particles in the so called Deb y e sphere is large

1

n�

3

D

� 1 ;

where n is the plasma particle densit y and �

D

is the Deb y e length,

c) the thermal kinetic energy K E is m uc h greater than p oten tial energy P E

K E � P E ;

3

2

k

B

T �

e

2

4 � �

0

�

D

:

It means that the plasma is a su�cien tly diluted and hot gas, whic h c haracteristic length L is

m uc h greater than the Deb y e length ( L � �

D

).

Deb y e shielding

Let us assume a c harge q

0

at zero p oin t of the reference system at r

0

= 0. The p oten tial of this

c harge in free space is

'

0

( r ) =

q

0

4 � �

0

j r j

; (1.1)

where �

0

is the p ermittivit y of the free space.

No w, let us consider a test c harge q

0

surrounded b y a neutral plasma (electrons with the electron

densit y n

e

and temp erature T

e

and hea vy protons of the same densit y n

e

= n

p

). Then the

p oten tial ' can b e determined from P oisson equation

r

2

' ( r ) = �

q

0

�

0

� ( r ) +

e

�

0

< �

e

>; (1.2)

where the mean c harge densit y is

< �

e

> = n

e

exp

�

e'

k

B

T

e

�

� n

p

: (1.3)
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Here k

B

is the Boltzmann constan t, and for electrons the Maxw ell-Boltzmann statistics ( �

exp ( � q '= ( k

B

T ))) is used. As men tioned ab o v e, in a plasma the kinetic energy of electrons

is m uc h greater than their p oten tial energy , and that is wh y the exp onen tial function can b e

expanded in a T a ylor series and only t w o �rst terms can b e used. Th us, the c harge densit y in

the form of < �

e

> � n

e

e'= ( k

B

T

e

) can b e put in to P oisson equation whic h can b e written as

�r

2

'

0

( r ) +

n

e

e

2

' ( r )

�

0

k

B

T

e

=

q

0

�

0

� ( r ) : (1.4)

Solving this equation in p olar co ordinates (i.e. r

2

!

@

2

@ r

2

+

2

r

@

@ r

) the solution is

'

0

( r ) =

q

0

4 � �

0

r

exp( �

r

�

D

) ; (1.5)

where

�

D

�

s

�

�

0

k

B

T

n

e

e

2

�

; (1.6)

is the Deb y e radius. As seen the electric �eld at distances L � �

D

is e�ectiv ely shielded.

Plasma oscillations

In a quasi-neutral electron-ion plasma a relativ e displacemen t of electrons in comparison with

ions causes the electric �eld:

E =

n

e

e�

�

0

; (1.7)

where � is the displacemen t. Then the Newton force equation giv es the equation for oscillations

of electrons

m

e

d

2

dt

2

� = � eE = �

n

e

�

0

e

2

� ; (1.8)

(where m

e

is the electron mass) with the c haracteristic frequency called electron plasma fre-

quency

!

2

pe

=

n

e

e

2

�

0

m

e

: (1.9)

Similarly , w e can de�ne the proton plasma frequency as

!

2

pp

=

n

p

e

2

�

0

m

p

; (1.10)

where m

p

is the proton mass, and so on.

Equations describing plasma pro cesses

a) Kinetic description

Plasma is fully describ ed b y a distribution function f ( r ; v ; t ). The distribution giv es the n um b er

of particles whic h are presen t in a unit v olume of the 6-dimensional phase space lo cated in

co ordinates r , v at time t . The distribution function is a solution of the Boltzmann equation

@ f ( r ; v ; t )

@ t

+ v � r f ( r ; v ; t ) +

F

m

�

@ f ( r ; v ; t )

@ v

=

�

@ f ( r ; v ; t )

@ t

�

col l

; (1.11)
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where m is the particle mass, F is the general force, and in our case usually in the form

F = q ( E + v � B ) ; (1.12)

where E and B are the electric �eld and magnetic induction.

The term on the righ t side of the equation (1.11) expresses e�ects of particle collisions.

Because plasma can ha v e man y di�eren t comp onen ts (electrons, protons, neutrals, ions of dif-

feren t c hemical elemen ts), the Boltzmann equation should b e solv ed for ev ery single plasma

comp onen t and the in teractions b et w een comp onen ts should app ear in the collisional terms on

the righ t side of the individual Boltzmann equations. But, for man y tasks some simpli�cations

are made, and e.g. only the Boltzmann equation for electrons is solv ed.

F urthermore, if the collisional term is v ery lo w (e.g. if the plasma frequency is m uc h greater

than the collision one; !

pe

� �

c

) then suc h a plasma is called collisionless and for its description

the Vlaso v equation is used

@ f ( r ; v ; t )

@ t

+ v � r f ( r ; v ; t ) +

F

m

�

@ f ( r ; v ; t )

@ v

= 0 ; (1.13)

F or a full set of equations describing a plasma b eha viour the Maxw ell equations need to b e

added

r � E = �

@ B

@ t

r � E =

1

"

0

�

e

(1.14)

r � B = �

0

j +

1

c

2

@ E

@ t

r � B = 0

where j is the electric curren t densit y and �

e

is the c harge densit y , whic h can b e expressed as

follo ws

j =

X

�

e

�

Z

v f

�

d

3

v ; (1.15)

�

e

=

X

�

e

�

Z

f

�

d

3

v ; (1.16)

where the index � corresp onds to individual plasma comp onen ts.

F okk er-Planc k equation

If the particle collisions are dominan t then an ev olution of the particle distribution function is

describ ed b y the F okk er-Planc k equation. Let P ( v ; � v ) b e the probabilit y that a test particle

c hanges its v elo cit y v to v + � v in the time in terv al � t . Pro vided that the particle n um b er is

conserv ed, the v elo cit y distribution at time t can b e written as

f ( v ; t ) =

Z

f ( v � � v ; t � � t ) P ( v � � v ; � v ) d

3

� v : (1.17)

Noting that for small-angle deections j � v j�j v j , the pro duct f P in Equation (1.17) can b e

expanded in to a T a ylor series,

f ( v ; t ) =

Z

( f P � � t [

@ f

@ t

] P � � v [ r

v

f P ] +

1

2

� v

i

� v

j

[

@

@ v

i

@

@ v

j

f P ] + ::: ) d

3

� v : (1.18)
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The Einstein con v ection has b een in tro duced that the sums o v er the indices i and j ha v e to b e

used if they app ear together in the n umerator and denominator, or as subscripts and sup erscripts.

Since the probabilit y that some transition tak es place is unit y , P is normalized to

Z

P d

3

� v = 1 : (1.19)

W e de�ne the a v erage v elo cit y c hange p er time in terv al � t :

Z

� v P d

3

� v � < � v >; (1.20)

Z

� v

i

� v

j

P d

3

� v � < � v

i

� v

j

> : (1.21)

Exc hanging in tegration and di�eren tiation, the in tegral in Eq. (1.18) can b e ev aluated. The

�rst term in the in tegran t cancels with the left hand side of the equation. The remaining terms

form the imp ortan t F okk er-Planc k equation,

�

@ f ( v ; t )

@ t

�

col l

=

@

2

@ v

i

@ v

j

�

f

< � v

i

� v

j

>

2� t

�

�

@

@ v

i

�

f

< � v

i

>

� t

�

: (1.22)

The p ossibilit y of neglecting the higher-order terms in the expansion (1.18) is a prop ert y of

in v erse-square la w particles ha ving m ultiple collisions. Equation (1.22) sho ws that the motion

of particles in v elo cit y space then can b e visualized as a di�usion pro cess. Its righ t hand side

describ es the temp oral c hange of a distribution of test particles b y m ultiple, small-angle collision

pro cesses. It corresp onds to the righ t hand side of the Boltzmann equation (1.11). The �rst

term in Equation (1.22) represen ts the three-dimensional di�usion of the test particle in v elo cit y

space; the second term is a friction, slo wing do wn the test particle and mo ving it radially to w ard

the origin of v elo cit y space.

b) Magnetoh ydro dynamic description

F or man y tasks in astroph ysical plasmas the kinetic approac h is to o complex, in realit y w e do not

need to kno w distribution functions of plasma particles. In these cases the description using the

macroscopic quan tities as e.g. the mean plasma v elo cit y and so on is su�cien t. Mathematically

it means that the in tegration of kinetic equations in v elo cit y space is justi�able. Th us, the

equations with the macroscopic quan tities (called the magnetoh ydro dynamic equations , MHD

equations for short) can b e obtained as the momen ts of the Boltzmann equation [ B K E ]:

Z

[ B K E ] d

3

v ; (1.23)

Z

m v [ B K E ] d

3

v ; (1.24)

Z

1

2

mv

2

[ B K E ] d

3

v : (1.25)

Example of deriv ation of the �rst momen t - �rst MHD equation

Let us in tegrate the �rst momen t

@

@ t

Z

f d

3

v +

@

@ r

Z

v f d

3

v +

q

m

Z

( E + v � B )

@ f

@ v

d

3

v =

Z

�

@ f

@ t

�

col l

d

3

v ; (1.26)
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where r � v = 0 w as used in the second term. Due to the particle n um b er conserv ation the

in tegral of the collisional term is zero. F urthermore, using the Gauss theorem and p er partes

in tegration, the force term can b e expressed as

Z

( E + v � B )

@ f

@ v

d

3

v = E

Z

f d S

v

�

Z

f

@ ( v � B )

j

@ v

j

d

3

v ; (1.27)

where d S

v

is the surface elemen t in the v elo cit y space. The �rst part is zero b ecause f ! 0

for j v j! 1 , and the second one is zero b ecause the ( v � B )

j

do not consist of v

j

. Th us, the

relation (1.26) can b e written as

@

@ t

Z

f d

3

v +

@

@ r

Z

v f d

3

v ; (1.28)

or

@ �

@ t

+ div � u = 0 ; (1.29)

where the densit y is � =

R

f d

3

v and the mean plasma v elo cit y u =

R

v f d

3

v =

R

f d

3

v . This last

equation is kno wn as the con tin uit y equation or the mass conserv ation equation.

MHD equations

Mass c onservation:

d�

dt

�

@ �

@ t

+ v � r � = � � r � v ; (1.30)

where d=dt is the con v ectiv e deriv ativ e.

Momentum c onservation:

�

d v

dt

= �r p + j � B + r � S + F

g

; (1.31)

where p is the plasma pressure, j is the curren t densit y , B is the magnetic induction, S is the

viscous stress tensor, and F

g

is the gra vitation force.

Internal ener gy c onservation:

�

de

dt

+ p r � v = r � ( � � r T ) + ( �

e

� j ) � j + Q

�

� Q

T

; (1.32)

where

e =

p

(  � 1) �

is the in ternal energy p er unit mass, � is the thermal conductivit y tensor, T is the temp erature,

Q

�

is the heating b y viscous dissipation,  is the ratio of sp eci�c heats, and Q

T

= �

2

Q ( T ) is the

radiativ e energy loss, Q ( T ) is a function describing the temp erature v ariation of the radiativ e

loss in the optically thin appro ximation.

F ar aday's e quation:

r � E = �

@ B

@ t

: (1.33)
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A mp � er e's law:

r � B = � j : (1.34)

In comparison with Maxw ell equations the displacemen t curren t term ( � @ E =@ t ) is negligible

in the MHD appro ximation.

Gauss's law:

r � B = 0 : (1.35)

Ohm's law:

E

0

= E + v � B = �

e

� j : (1.36)

Here E

0

= E + v � B giv es the Loren tz transformation from the electric �eld ( E ) in a lab oratory

frame of reference to the electric �eld ( E

0

) in a frame mo ving with the plasma. This Ohm's la w

states that it is the electric �eld ( E

0

) in the mo ving frame whic h is prop ortional to the curren t.

Equation of state:

p = R �T = nk

B

T ; (1.37)

where R is the univ ersal gas constan t, n is the particle densit y , and k

B

is Boltzmann's constan t.

The densit y can b e expressed as

� = n m ;

where m is the mean particle mass. F or a h ydrogen plasma the pressure b ecomes

p = 2 n

e

k

B

T

and the plasma densit y is

� � n

e

m

p

;

where m

p

is the proton mass.

The ab o v e system of MHD equations constitutes a set of 16 coupled equations for 15 unkno wn

v ariables ( v ; B ; j ; E ; �; p; and T ). It seems that the system is o v er-determined. Ho w ev er, from

F arada y's la w follo ws that if w e tak e a div ergence-free initial state, Gauss's la w follo ws from

F arada y's equation( @ =@ ( r � B ) = �r � ( r � E ) = 0). In this sense Gauss's la w is not necessary .
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Induction equation

If w e put E = � v � B + �

e

j from Ohm's la w and j = r � B =�

0

(where �

0

is the magnetic

p ermeabilit y of free space) from Amp � ere's la w in to F arada y's la w w e can write

@ B

@ t

= r � ( v � B ) �

�

e

�

0

r � ( r � B ) : (1.38)

No w, using the v ector form ula

r � r � B = r ( r � B ) � r

2

B

and Gauss's la w the induction equation can b e written as

@ B

@ t

= r � ( v � B ) + � r

2

B ; (1.39)

where � = �

e

=�

0

is the magnetic di�usivit y .

Appro ximations of the induction equation

No w, let us compare terms on the righ t side of the induction equation b y de�ning so called

magnetic Reynolds n um b er:

R

m

=

r � ( v � B )

� r

2

B

�

v

0

B

0

L

0

� B

0

L

2

0

=

L

0

v

0

�

; (1.40)

where v

0

is the c haracteristic plasma v elo cit y and L

0

is the c haracteristic length scale.

As can b e seen, t w o extreme regime of the induction equation can b e considered. F or pro cesses

with small c haracteristic v elo cities, i.e. v

0

! 0 and R

m

! 0, the induction equations giv es a

form of the di�usion equation

@ B

@ t

= � r

2

B : (1.41)

On the other hand, in a collisionless plasma with �

e

= 0, i.e. for R

m

� 1, the induction equation

b ecomes

@ B

@ t

= r � ( v � B ) : (1.42)



Chapter 2

Magnetic �eld structures

The B and j descriptions of plasma pro cesses

Considering Amp ere's la w

r � B = � j : (2.1)

it lo oks that the descriptions using the magnetic �eld B or the electric curren t j as basic v ariables

are equiv alen t. But in realit y only B is directly measured on the Sun. Therefore, the description

with B is preferred in solar circumstances, and the electric curren t is a v ariable deriv ed from

the magnetic �eld.

Based on magnetic measuremen ts at the photosphere the magnetic �eld in the corona can b e

extrap olated (see Fig. 2.1). In mo del situation the magnetic �eld w as extrap olated ev en b et w een

t w o stars (see Fig. 2.2). Commonly used metho ds are so-called p oten tial ( j = 0 ev erywhere ab o v e

the photosphere) and linear force-free �eld extrap olations. But there are attempts to mak e so-

called non-linear extrap olations. One a rough metho d is describ ed in the �le non-extra.p df .

Reference:

Karlic k � y, M.: 1997, Ev olution of force-free electric curren ts in the solar atmosphere, Astron.

Astroph ys. 318, 289-292.

Basic structures

a) Gra vitational strati�cation

A comparison of the sizes of terms in the equation of motion

�

d v

dt

= �r p + j � B + � g

sho ws that the inertial term on the left-hand side ma y b e neglected when the o w sp eed is m uc h

smaller than b oth the sound sp eed (  p

0

=�

0

)

1 = 2

, the Alfv en sp eed B

0

= ( ��

0

)

1 = 2

and the gra vita-

tional free-fall sp eed (2 g l

0

)

1 = 2

for a v ertical scale-length l

0

. The result is a magnetoh ydrostatic

balance

O = �r p + j � B + � g (2.2)

b et w een the pressure gradien t, the Loren tz force and the gra vitational force. The full set of

equation is giv en b y adding

j = r � B =� (2.3)

9
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Fig. 2.1: The so-called 'magnetic carp et' sho wing observ ed photospheric magnetic �eld and extrap olated

o v erlying magnetic �eld lines.

Fig. 2.2: Mo del magnetic �eld for an RS CVn binary system in whic h the t w o stars are tidally lo c k ed in to

rapid sync hronous rotation.

r B = 0 ; (2.4)
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� =

mp

k

B

T

: (2.5)

If gra vit y acts along the negativ e z -axis and s measures the distance along magnetic �eld lines

inclined at the angle � to the v ertical, the comp onen t of Eq. (2.2) parallel to B is

0 = �

dp

ds

� �g cos � : (2.6)

Since � s cos � = � z this b ecomes

0 = �

dp

dz

� �g ; (2.7)

where p and � are functions of z along a particular �eld line. After substituting for � from

Eq.(2.5) in Eq. (2.7) and in tegrating, w e �nd

p = p

0

exp �

Z

z

0

1

�( z )

dz ; (2.8)

where p

0

is the base pressure (at z = 0) whic h ma y v ary from one �eld line to another; also

�( z ) =

k

B

T ( z )

mg

(2.9)

is the pressure scale-heigh t, whic h represen ts the v ertical distance o v er whic h the pressure falls

b y a factor e .

F or the particular case when the temp erature is uniform along a �eld line (due to, for instance,

the dominance of thermal conduction), � is constan t and Eq. (2.8) reduces to

p = p

0

e

� z = �

: (2.10)

c) Structure of magnetic ux tub es

Consider a cylindrically symmetric ux tub e whose magnetic �eld comp onen ts

(0 ; B

�

( R ) ; B

z

( R )) (2.11)

in cylindrical p olar co ordinates are functions of R alone. The �eld lines are then helical and lie

on cylindrical surfaces, as indicated in Fig. 2.3, while the electric curren t comp onen ts are, from

Eq. (2.3)

�

0 ; �

1

�

dB

z

dR

;

1

�R

d

dR

( R B

�

)

�

: (2.12)

Under the neglect of gra vit y the force-balance equation then reduces to (see the matrix with

ro ws: (i,j,k),2.12,2.11)

dp

dR

+

d

dR

 

B

2

�

+ B

2

z

2 �

!

+

B

2

�

�R

= 0 ; (2.13)

the second term represen ting the magnetic pressure and the third term the magnetic tension

due to the azim uthal comp onen t ( B

�

) that encircles the axis.

On eac h cylindrical surface the �eld lines ha v e a constan t inclination, but this ma y v ary from

one radius to another. The �eld lines are giv en b y

R d�

B

�

=

dz

B

z

; (2.14)
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Fig. 2.3: The notation for a cylindrically symmetric ux tub e of length 2 L .

and the amoun t b y whic h a giv en line is t wisted in going from one end of the tub e (length 2 L )

to the other is

� =

Z

d� =

Z

2 L

0

B

�

R B

z

dz ; (2.15)

or

�( R ) =

2 LB

�

( R )

R B

z

( R )

; (2.16)

(4 � L= � is called sometimes the pitc h of the �eld and giv es the axial length of a �eld line that

encircles the axis once, i.e. for � = 2 � this length is 2 L ).

Pur ely axial �eld

When no azim uthal comp onen t ( B

�

) is presen t, Eq. (2.13) reduces to

d

dR

 

p +

B

2

2 �

!

= 0 ; (2.17)

with solution p + B

2

= (2 � ) = constan t, so that the total pressure (gas plus magnetic) is conserv ed.

Pur ely azimuthal �eld
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When the axial comp onen t v anishes, equation Eq. (2.13) b ecomes

dp

dR

+

d

dR

 

B

2

�

2 �

!

+

B

2

�

�R

= 0 ; (2.18)

where, according to Eq. (2.3), B

�

is related to the curren t b y (2.12)

j

z

=

1

�R

d

dR

( R B

�

) : (2.19)

If, in particular, the curren t o ws with uniform total v alue I within a cylinder of radius a , an

in tegration of Eq. (2.19) yields

�

Z

j

z

dS =

Z

r � BdS ;

�I

R

2

a

2

= 2 � R B

�

( R ) ;

B

�

=

�I R

2 � a

2

; R < a; (2.20)

B

�

=

�I

2 � R

; R > a;

assuming B

�

to b e �nite and con tin uous. The corresp onding plasma pressure results from

in tegrating Eq. (2.18). Assuming that it tak es the v alue p

1

outside the curren t column, w e �nd

dp

dR

= �

d

dR

 

1

2 �

�

2

I

2

R

2

4 �

2

a

4

!

�

1

�R

�

2

I

2

R

2

4 �

2

a

4

j

R

a

;

p = p

1

+

1

4

� ( I = ( � a

2

))

2

( a

2

� R

2

) ; R < a; (2.21)

p = p

1

; R > a:

The magnetic �eld lines are sho wn in Fig. 2.4. Within the cylinder of radius a B

�

increases

linearly with R , while the gas pressure decreases, so that the out w ards gas pressure is balanced

b y in w ards magnetic pressure and tension forces. Outside the cylinder the pressure is uniform

and the magnetic �eld is p oten tial, so that the out w ards magnetic pressure and in w ards tension

balance one another.

In the lab oratory , a plasma con�guration in whic h the curren t is axial and the magnetic �eld

azim uthal is kno wn as a linear pinc h. A simple relation ma y b e deriv ed in this case b et w een the

curren t

I �

Z

R

0

0

j

z

2 � R dR (2.22)

o wing through the plasma column (of radius R

0

) and the n um b er

N �

Z

R

0

0

n 2 � R dR (2.23)

of particles p er unit length of the column. Eq. (2.18) ma y �rst b e m ultiplied b y R

2

and

in tegrated to giv e

R

2

dp = � dR

 

R

2

B

�

�

dB

�

dR

+

B

2

�

R

�

!

;
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R

2

dp = �

R B

�

�

( R dB

�

+ B

�

dR ) = �

R B

�

�

d ( R B

�

) ;

Z

R

0

0

R

2

dp = �

Z

R

0

0

R B

�

=�d ( R B

�

) : (2.24)

Then, assuming that the plasma pressure v anishes at R

0

and the temp erature ( T = p= ( nk

B

)) is

uniform across the column, an in tegration b y parts of the left-hand side together with the use

of Eq. (2.19) on the righ t-hand side yields the expression

j R

2

p j

R

0

0

�

Z

R

0

0

2 R pdR = � j

( R B

�

)

2

2 �

j

R

0

0

=

R

2

0

B

2

�

2 �

;

Z

R

0

0

2 R nk

B

T dR =

k

B

T N

�

;

I =

Z

R

0

0

2 � R

1

�R

d ( R B

�

)

dR

dR =

Z

R

0

0

2 �

�

d ( R B

�

) =

2 �

�

R

0

B

�

;

I

2

= (8 � =� ) k

B

T N ; (2.25)

kno wn as Bennett's relation.

Fig. 2.4: The ourely azim uthal magnetic �eld lines in a section across a column of uniform curren t and radius

a .

F or c e-fr e e �elds

I. Line ar �eld

In the absence of pressure, Eq.(2.13) reduces to

d

dR

 

B

2

�

+ B

2

z

2 �

!

+

B

2

�

�R

= 0 : (2.26)



15

Here, either B

�

or B

z

ma y b e prescrib ed and the other deduced. F or the so-called 'constan t- � '

�eld one assumes that � j = � B , where � is uniform. After using Eq. (2.3), the � -comp onen t of

this b ecomes

�j

�

= �B

�

; �

dB

z

dR

= �B

�

: (2.27)

Finally , an elimination of B

�

b et w een Eqs. (2.26) and (2.27) yields Bessel's equation whose

solution sub ject to B

z

= B

0

and dB

z

=dR = 0 at R = 0 is

d

dR

�

1

2 ��

2

(

dB

z

dR

)

2

+

1

2 �

B

2

z

�

+

�

dB

z

dR

�

2

1

�R �

2

= 0 ;

R

2

B

00

z

+ R B

0

z

+ R

2

�

2

B

z

= 0 ; B essel

0

s eq uation

B

�

= B

0

J

1

( �R ) ; B

z

= B

0

J

0

( �R ) ; (2.28)

where J

0

; J

1

are Bessel functions.

II. Nonline ar �elds

An easy w a y to generate solution to Eq. (2.26) is to c ho ose

B

2

= f ( R ) ; (2.29)

and then Eq. (2.26) giv es

B

2

�

= �

1

2

R

d f

dR

(2.30)

and

B

2

z

= B

2

� B

2

�

: (2.31)

The restrictions that B

2

�

and B

2

z

b e p ositiv e imply that d f =dR is negativ e and that f approac hes

zero slo w er than R

� 2

as R ! 1 . The limiting case f = R

� 2

giv es the purely azim uthal �eld

R

� 1

� .

Another simple example of a force-free �eld is the 'uniform-t wist' �eld, for whic h � is (giv en b y

Eq. (2.16)) is constan t and the �eld comp onen ts are

B

�

=

B

0

� R = (2 L )

1 + �

2

R

2

= (2 L )

2

; B

z

=

B

0

1 + �

2

R

2

= (2 L )

2

: (2.32)

They ha v e the prop ert y that �eld lines at di�eren t radii are t wisted through the same angle, so

that the whole tub e is t wisted lik e a rigid b o dy .

Basic top ology of t wisted magnetic con�gurations

Let us construct a simple magnetic lo op as presen ted in Fig. 2.5. Suc h a con�guration resem bles

to that in the solar atmosphere. The z -axis p oin ts in the v ertical direction and the plane z = 0

represen ts the photosphere.

The whole magnetic �eld is obtained here b y sup erimp osing three comp onen ts denoted b y B

I

; B

q

and B

�

. The �rst comp onen t B

I

is the �eld created b y a ring curren t I uniformly distributed
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Fig. 2.5: The magnetic �eld under study is mo delled b y a force-free circular ux tub e with the total curren t

I , a pair of magnetic c harges � q , q and a line curren t I

0

. Belo w the photospheric plane z = 0 this con�guration

has no real ph ysical meaning: it is used only to construct the prop er magnetic �eld in corona.

o v er its circular cross section of radius a . The plane of symmetry of the ring coincides with

the plane x = 0, while its axis of symmetry is parallel to the x -axis and submerged under the

photosphere b y a depth d , so that in corona only an arc of the ring with ma jor radius R is presen t.

The second comp onen t B

q

is created b y the leading and follo wing sp ots of the mo delling activ e

region, whic h are represen ted here b y t w o c harges � q and q lying on the axis of symmetry of the

ring from b oth sides of the plane x = 0 on the distance L . The third comp onen t B

�

is created

b y a line curren t I

0

o wing exactly along the axis of symmetry of the ring. In this mo del, of

course, only the �eld ab o v e the photospheric plane z = 0 has a real ph ysical meaning, while the

sub-photospheric curren ts and sources pla y an auxiliary role in constructing the con�guration.

One can ignore its sub-photospheric part and regard that the coronal force-free �eld is in fact

determined b y the v ertical comp onen ts of the �eld B

q

+ B

I

+ B

�

and curren t densit y on the

photosphere. The region o ccupied b y the ring curren t is further assumed to b e thin, so that the

equilibrium of this curren t can b e in v estigated b y using appropriate asymptotic expansions in

small parameters a=R and a=L . The external equilibrium here corresp onds to the equilibrium

of a ring curren t in an axisymmetric p oten tial �eld. Due to the presen t axial symmetry , the

resp ectiv e equilibrium condition is the same for eac h elemen t of the ux tub e and, is reduced to

the balance of only t w o forces: the Loren tz force F

q

caused b y in teraction of the curren t I with

the �eld B

q

and the Loren tz self-force F

I

resulting from the curv ature of the tub e axis. Both

forces act along the normal n to thin axis and can b e written as

F

q

= �

2 q LI n

( R

2

+ L

2

)

3 = 2

; (2.33)

F

I

=

�

0

I

2

4 � R

�

ln

R

a

+ ln 8 � 3 = 2 + l

i

= 2

�

n ; (2.34)

where l

i

is the in ternal self-inductance p er unit length of the tub e ( l

i

= 1 = 2 in our case).

F rom the force balance F

q

+ F

I

= 0 w e obtain the total equilibrium curren t

I =

8 � q LR ( R

2

+ L

2

)

� 3 = 2

�

0

[ln (8 R =a ) � 3 = 2 + l

i

= 2]

; (2.35)

whic h o ws in the corona.
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No w, let us construct appro ximate analytical expressions for the magnetic �eld. W e use the

tubal system of co ordinates ( �; �; � ), � is the distance from the axis of the tub e and � is the angle

b et w een radius � and the plane symmetry x = 0, while � measures the angular arc length of the

tub e from the p ositiv e direction of y -axis. Since the ux tub e in our mo del is assumed to b e thin

in con�guration with its radius of curv ature R and the c haracteristic size L , the corresp onding

force-free condition in zero order appro ximation b y small parameters a=R and a=L is the same

as for the straigh t tub e. So in the ab o v e tubal co ordinates the force-free condition can b e written

at 0 < � � a as follo ws

�

2

@

@ �

( B

2

�in

+ B

2

� in

) + B

2

�in

� 0 ; (2.36)

where the azim uthal magnetic �eld comp onen t

B

�in

�

�

0

I �

2 � a

2

(2.37)

corresp onds to the uniformly distributed toroidal curren t I . These equations giv e the toroidal

�eld inside the tub e (when w e put Eq. 2.37 in to Eq. 2.36)

B

� in

� sig n ( I

0

)

 

B

2

� R

+

�

2

0

I

2

2 �

2

a

4

( a

2

� �

2

)

!

1 = 2

; (2.38)

where the toroidal �eld on the surface of the tub e

B

� R

�

�

0

I

0

2 � R

(2.39)

is follo w ed from the appropriate appro ximation of the external toroidal �eld

B

� ex

=

�

0

I

0

2 �

( y

2

+ ( z + d )

2

)

� 1 = 2

; (2.40)

whic h is pro duced b y the sub-photospheric line curren t I

0

.

Both in ternal and external toroidal �elds can b e sew ed b y using the follo wing form ula:

B

�

=

�

0

I

0

2 �

[

1

R

2

+

2 � ( a � � )

a

2

I

2

I

2

0

(1 �

�

2

a

2

)]

1 = 2

� + (2.41)

�

0

I

0

2 �

[ y

2

+ ( z + d )

2

]

� 1 = 2

� R

� 1

] � ;

where

� =

�

0 ; �

z + d

r

?

;

y

r

?

�

; (2.42)

� = [ x

2

+ ( r

?

� R )

2

]

1 = 2

; (2.43)

r

?

= [ y

2

+ ( z + d )

2

]

1 = 2

; (2.44)

and � ( X ) stands for the Hea viside function suc h that � = 1 if X > 0 and � = 0 otherwise. The

equation describ es the toroidal magnetic �eld inside the ux tub e only in zero order appro xima-

tion b y small parameters a=R and a=L , whic h is su�cien t for determination of the top ology in

our con�guration.
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Remark: Th us, outside the lo op ( � = 0)

B

�

=

�

0

I

0

2 �

[

1

R

+ [ y

2

+ ( z + d )

2

]

� 1 = 2

� R

� 1

] � ;

B

�

=

�

0

I

0

2 �

[ y

2

+ ( z + d )

2

]

� 1 = 2

� ;

and inside the lo op ( � = 1)

B

�

=

�

0

I

0

2 �

[

1

R

2

+

2

a

2

I

2

I

2

0

(1 �

�

2

a

2

)]

1 = 2

� ;

B

�

=

�

0

I

0

2 �

[

1

R

2

+

2

a

2

I

2

4 �

2

R

2

B

2

� R

=�

2

0

(1 �

�

2

a

2

)]

1 = 2

� ;

B

�

= [ B

2

� R

+

�

2

0

I

2

2 �

2

a

4

( a

2

� �

2

)]

1 = 2

� ;

whic h corresp onds to previous form ulae.

W e also determine with the same accuracy , the p oloidal magnetic �eld ev erywhere in the coronal

v olume. Inside the ux tub e Eq. (2.37) yields it with the desired accuracy , outside the tub e it

is appro ximately a sup erp osition of the p oin t sources �eld

B

q

= q

�

r

+

j r

+

j

3

�

r

�

j r

�

j

3

�

; (2.45)

r

�

= ( x � L; y ; z + d ) ; (2.46)

and of the �eld B

I ex

pro duced b y the line curren t I in the ring of radius R . In order to deriv e

B

I ex

and the prop er sewing function B

I

, it is helpful to represen t the magnetic �eld in terms

of the v ector p oten tial, whic h due to the symmetry of our con�guration ab out x -axis can b e

reduced to only one non-v anishing � -comp onen t A

I

( r

?

; x ), so that

B

I

= r � ( A

I

� ) = �

@ A

I

@ x

r

?

r

?

+

�

@ A

I

@ r

?

+

A

I

r

?

�

x : (2.47)

Remark: Generally ,

B = B

�

� + B

r

?

r

?

r

?

+ B

x

x :

Due to cylindrical symmetry

B

I

= B

r

?

r

?

r

?

+ B

x

x ;

and th us B

I

can b e express as

B

I

= r � ( A

I

� ) :

Co ordinate v ectors are:

r

?

r

?

= (0 ;

y

r

?

;

z + d

r

?

) ; � = (0 ; �

z + d

r

?

;

y

r

?

) ; x = ( x; 0 ; 0) : (2.48)
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Then using standard v ector op eration r � ( A

I

� ) in cylindrical co ordinates w e obtain the ab o v e

men tioned Eq. (2.47).

F rom here and equation (2.37) one can deriv e A

I

inside the tub e

A

I in

�

�

0

I

2 �

 

const �

�

2

2 a

2

!

: (2.49)

B

I in

�

�

0

I

2 �

�

�

2 x

2 a

2

r

?

r

?

�

2( r

?

� R )

2 a

2

x

�

; const so A

I

=r

?

! 0 ;

j B

I in

j =

�

0

I

2 � a

2

( x

2

+ ( r

?

� R )

2

)

1 = 2

:

Outside the ux tub e, A

I

is w ell appro ximated b y the p oten tial of the ring determined as:

Generally w e can write

A

I ex

�

�

0

I R

4 �

Z

2 �

0

cos �

0

d�

0

( R

2

+ r

2

D

� 2 R r

D

sin � cos �

0

)

1 = 2

; (2.50)

where R is the radius of the ring curren t, r

D

is the distance from the cen trum of the ring to

the p osition, where the v ector p oten tial is calculated. Th us, r

D

=

q

r

2

?

+ x

2

and r

D

sin � = r

?

.

Then w e ma y write

A

I ex

�

�

0

I R

4 � ( R

2

+ r

2

?

+ x

2

)

1 = 2

Z

2 �

0

cos �

0

d�

0

(1 � v cos �

0

)

1 = 2

; (2.51)

where

v =

2 r

?

R

R

2

+ r

2

?

+ x

2

: (2.52)

The ab o v e in tegral can b e expressed in terms of the complete elliptic in tegrals of the �rst and

second kinds, K ( k ) and E ( k ), as follo ws: First, in denominator of Eq. 2.51 w e add 2 R r

?

� 2 R r

?

A

I ex

�

�

0

I R

4 � ( R

2

+ r

2

?

+ x

2

+ 2 R r

?

)

1 = 2

Z

2 �

0

cos �

0

d�

0

(1 �

2 � 2 Rr

?

R

2

+ r

2

?

+ x

2

+2 Rr

?

1+cos �

0

2

)

1 = 2

;

Then w e designate

k

2

=

4 R r

?

R

2

+ r

2

?

+ x

2

+ 2 R r

?

;

and use

cos

2

�

2

=

1 + cos �

0

2

;

and � = 2 = H , so the v ector p oten tial is

A

I ex

�

�

0

I R

4 � ( R

2

+ r

2

?

+ x

2

+ 2 R r

?

)

1 = 2

Z

� = 2

0

4 cos 2 H dH

(1 � k

2

cos

2

H )

1 = 2

;
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where the m ultiplication factor 4 in in tegration is due to a c hange of in tegration limits. No w,

using cos 2 H = cos

2

H � sin

2

H and de�nitions of the complete elliptical in tegrals

K =

Z

� = 2

0

d�

p

1 � k

2

sin

2

�

; (2.53)

E =

Z

� = 2

0

q

1 � k

2

sin

2

� d�;

w e ha v e

A

I ex

�

�

0

I R

4 � ( R

2

+ r

2

?

+ x

2

+ 2 R r

?

)

1 = 2

4

�

1

k

2

( K � E ) �

1

k

2

( E � (1 � k

2

) K

�

;

(in in tegrations w e can replace

p

1 � k

2

sin

2

� b y

p

1 � k

2

cos

2

� ), and after a simple manipula-

tion the �nal form ula for the v ector p oten tial is

A

I ex

( x; r

?

) �

�

0

I

2 �

s

R

r

?

A ( k ) ; (2.54)

in whic h

A ( k ) � k

� 1

[(2 � k

2

) K ( k ) � 2 E ( k )] (2.55)

and

k � 2

s

r

?

R

( r

?

+ R )

2

+ x

2

: (2.56)

There is a small mismatc h at � = a b et w een A

I ex

and A

I in

, whic h can b e eliminated b y using,

instead of A

I in

, the follo wing expression:

A

I in

�

�

0

I

2 �

s

R

r

?

[ A ( k

a

) + A

0

( k

a

)( k � k

a

)] ; (2.57)

where

A

0

( k ) �

d

dk

A ( k ) =

(2 � k

2

) E ( k ) � 2(1 � k

2

) K ( k )

k

2

(1 � k

2

)

(2.58)

and

K

0

=

( E = (1 � k

2

) � K )

k

; E

0

=

E � K

k

;

and

k

a

= 2

s

r

?

R

4 r

?

R + a

2

(2.59)

is the v alue suc h that k = k

a

at � = a and alw a ys k

a

< 1, so A ( k

a

) and A

0

( k

a

) are regular

functions of r

?

. One can sho w that in zero order appro ximation b y a=R Eq. (2.57) reduces

to Eq. (2.49), while A

I in

and A

I ex

at � = a are equal to eac h other together with their �rst

deriv ativ es, so the corresp onding sewing function is

A

I

= � ( a � � ) A

I in

+ � ( � � a ) A

I ex

: (2.60)
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By using this and Eq. (2.47) one can deriv e no w an explicit form ula for B

I

and so for the whole

magnetic �eld.
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Chapter 3

Magnetic �eld reconnection

Di�usion in the curren t sheet

Fig. 3.1: The magnetic �eld (B) as a function of distance (x) in a 1-D curren t sheet that is di�using from sheet

of zero thic kness initially , for times t = 0 ; t

1

; t

2

, where 0 < t

1

< t

2

.

Let us consider a curren t sheet describ ed as

B ( x; 0) = B

0

; x > 0 ; (3.1)

B ( � x; 0) = � B ( x; 0) :

and the plasma v elo cit y v = 0 ev erywhere in the system. Then the induction equation is reduced

to the di�usion one:

@ B

@ t

= �

@

2

B

@ x

2

; (3.2)

whose solution is

B ( x; t ) =

2 B

0

p

�

Z

x=

p

4 � t

0

e

� u

2

du: (3.3)
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Solution (3.3) has the form sho wn in Fig. 3.1 and ma y b e v eri�ed a p osteriori b y substituting it

bac k in to Eq. (3.2).

Remark:

@

@ �

Z

�

2

( � )

�

1

( � )

f ( x; � ) dx =

Z

�

2

( � )

�

1

( � )

@ f ( x; � )

@ �

dx + �

0

2

f ( �

2

( � ) ; � ) � �

0

1

f ( �

1

( � ) ; � ) : (3.4)

The magnetic �eld di�uses a w a y in time at a sp eed � =l , where the width ( l ) of the sheet is of

the order of ( � t )

1 = 2

and so increases in time. The resulting magnetic �eld strength at a �xed

p osition decreases with time, so the �eld is annihilated. The total magnetic ux (

R

1

�1

B dx )

remains constan t (namely zero) and the total curren t

J =

Z

1

�1

j dx =

1

�

Z

1

�1

@ B

@ x

dx =

2 B

0

�

(3.5)

is conserv ed, since it simply spreads out in space. Ho w ev er, the magnetic energy decreases in

time at a rate

@

@ t

Z

1

�1

B

2

2 �

dx =

Z

1

�1

B

�

@ B

@ t

dx: (3.6)

Substituting for @ B =@ t from Eq. 3.2 and in tegrating b y parts, w e �nd that this b ecomes

Z

1

�1

B �

�

@

2

B

@ x

2

dx =

1

�

2

�

�

j B

@ B

@ x

j

1

�1

�

Z

1

�1

(

@ B

@ x

)

2

dx

�

: (3.7)

Since @ B =@ x remains equal to zero at in�nit y , the �rst term on the righ t v anishes, and, since

the electric curren t is j = �

� 1

@ B =@ x , w e �nally ha v e

@

@ t

Z

1

�1

B

2

2 �

dx = �

Z

1

�1

j

2

�

dx: (3.8)

In other w ords, magnetic energy is con v erted en tirely in to heat b y ohmic dissipation ( j

2

=� p er

unit v olume).

Concept of frozen ux and �eld-line motion

The term "magnetic reconnection" is in timately lined to the concept of �eld-line motion. In a

plasma with a v ery small resistivit y the Ohm la w b ecomes E + v � B = 0, and the induction

equation reduces to

@ B

@ t

= r � ( v � B ) : (3.9)

Then, if w e consider a curv e C (b ounding a surface S ) whic h is mo ving with the plasma, in

a time dt an elemen t ds of C sw eeps out an elemen t of area v � ds dt . The rate of c hange of

magnetic ux through C is

d

dt

Z

S

B � dS =

Z

S

@ B

@ t

� dS +

Z

C

B � v � ds : (3.10)

As C mo v es, so the ux c hanges, b oth b ecause the magnetic �eld c hanges with time and b ecause

the b oundary mo v es in space. By setting B � v � ds = � v � B � ds and applying Stok es theorem

w e obtain

d

dt

Z

S

B � dS =

Z

S

�

@ B

@ t

� r � ( v � B )

�

� dS ; (3.11)
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Fig. 3.2: Magnetic ux conserv ation: if a curv e C

1

is distorted in to C

2

b y plasma motion, the ux through C

1

at t

1

equals the ux through C

2

at t

2

.

Fig. 3.3: Magnetic �eld-line conserv ation: if plasma elemen ts P

1

and P

2

lie on a �eld line at time t

1

, then they

will lie on the same line at a later time t

2

.

whic h v anishes in the ideal limit. Th us, the total magnetic ux through C remains constan t as

it mo v es with the plasma. In other w ords, w e ha v e pro v ed magnetic ux conserv ation, namely

the plasma elemen ts that initially form a ux tub e con tin ue to do so at all later times (Fig. 3.2).

There is also magnetic �eld line conserv ation, namely that, if t w o plasma elemen ts lie on a �eld

line initially , then they will alw a ys do so (Fig. 3.3).

Line conserv ation can b e pro v ed as follo ws. Applying the v ector iden tit y ( r � ( a � b ) =

( b � r ) a � ( a � r ) b + a ( r � b ) � b ( r � a )) to the ideal induction equation giv es

@ B

@ t

= ( B � r ) v � ( v � r ) B � B ( r � v ) : (3.12)
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Using the mass con tin uit y equation to eliminate r � v , w e then obtain

d�

dt

=

@ �

@ t

+ v � r � = � � r � v ;

@ B

@ t

+ ( v � r ) B = ( B � r ) v � B ( r � v ) ;

d B

dt

�

B

�

d�

dt

= ( B � r ) v ;

d

dt

�

B

�

�

=

�

B

�

� r

�

v ; (3.13)

where d=dt = @ =@ t + v � r is the total or con v ectiv e deriv ativ e. T o see ho w this result leads to

the conclusion that the �eld lines are "frozen" to the plasma, consider an elemen t segmen t � l

along a line mo ving with the plasma. If v is the plasma v elo cit y at one end of the elemen t and

v + � v is the v elo cit y at the other end, then the di�eren tial v elo cit y b et w een the t w o ends is

� v = ( � l � r ) v . During the time in terv al dt , the segmen t � l c hanges at the rate

d� l

dt

= � v = ( � l � r ) v : (3.14)

Since this equation has exactly the same form as Eq. (3.13) for the v ector B =� , it necessarily

follo ws that, if � l and B =� are initially parallel, then they will remain parallel for all time.

Adv ection of magnetic �eld lines

If R

m

� 1, plasma can mo v e freely along magnetic �eld lines, but in motion p erp endicular to

them they are dragged with the plasma or vice v ersa.

As an example (Fig.3.4), consider the e�ect of a o w

v

x

= �

v

0

x

a

; v

y

=

v

0

y

a

(3.15)

on a �eld that is initially

B = B

0

cos

x

a

y ; t = 0 (3.16)

b et w een x = �

1

2

� a and x =

1

2

� a . The equations of the streamlines (namely , xy =constan t)

are obtained from dy =dx = v

y

=v

x

= � y =x (Remark: dy =y = � dx=x; ln y = � ln x + C, xy =

constan t). These are rectangular h yp erb olae (Fig. 3.4) with ino w along the X -axis and outo w

along the y -axis when v

0

> 0.

The v elo cit y �eld corresp onds to a h ydro dynamic stagnation-p oin t o w. The e�ect of this o w

on the magnetic �eld is to carry the �eld lines in w ards from the sides and accum ulate them near

x = 0, increasing the �eld strength there. Since the comp onen t ( v

x

) of the v elo cit y p erp endicular

to the �eld lines is constan t along a particular �eld line ( x = constan t), the �eld lines are not

distorted but remain straigh t as they come in.

No w, the y -comp onen t of the induction equation is @ B =@ t = ( r � ( v � B ))

y

= � @ ( v

x

B ) =@ x or

@ B

@ t

�

v

0

x

a

@ B

@ x

=

v

0

B

a

; (3.17)
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Fig. 3.4: A sk etc h of the magnetic lines (thin-headed arro ws) and streamlines (thic k-headed arro ws) at t = 0

for j x j < � a= 2.

Fig. 3.5: (a) Characteristic curv es x = x

�

exp ( � v

0

t=a ); (b) the solution for B as a function of x for sev eral

times.

and this determines B ( x; t ). In order to solv e suc h a partial di�eren tial equation, w e consider

c haracteristic curv es in the xt -plane, whic h are de�ned as

dx

dt

= v

x

= �

v

0

x

a

; (3.18)
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with solution

x = x

�

e

� v

0

t=a

; (3.19)

where x = x

�

at t = 0. W e wish to determine B ( x; t ) at ev ery p oin t of the xt -plane, and the

elegance of considering c haracteristic curv es, x = x ( t ) giv en b y Eq. (3.19) (Fig. 3.5a), is that on

suc h curv es B ( x ( t ) ; t ) has the deriv ativ e

dB

dt

=

@ B

@ t

+

dx

dt

@ B

@ x

=

@ B

@ t

�

v

0

x

a

@ B

@ x

; (3.20)

b y Eq. (3.18), or, from Eq. (3.17), dB =dt = v

0

B =a . In other w ords, on the c haracteristic curv es

w e ha v e a simple ordinary di�eren tial equation to solv e in place of Eq. (3.17): the solution is

B = constan t e

v

0

t=a

or, since x = x

�

and B = B

0

cos ( x

�

=a ) at t = 0, w e ha v e

B ( x; t ) = B

0

cos ( x

�

=a ) e

v

0

t=a

: (3.21)

Ho w ev er, in this solution x

�

is a constan t whic h w e ha v e in tro duced for con v enience and whic h

w as not presen t in the initial statemen t of the problem, so w e should eliminate it b y Eq. (3.19),

with the �nal result

B ( x; t ) = B

0

cos

�

x

a

e

v

0

t=a

�

e

v

0

t=a

: (3.22)

This solution is plotted in Fig. 3.5b against x for sev eral times. It can b e seen that the �eld do es

indeed, as exp ected, concen trate near x = 0 as time pro ceeds. The �eld strength at the origin

is B (0 ; t ) = B

0

e

v

0

t=a

, whic h gro ws exp onen tially in time (or decreases if the o w is rev ersed b y

taking v

0

< 0).

Stagnation-p oin t o w mo del

Fig. 3.6: (a) Stagnation-p oin t o w creating a steady curren t sheet (shaded). (b) Magnetic �eld pro�le, with

small- x and large- x appro ximations sho wn as dashed curv es.

The standard equations for 2-D steady-state incompressible o w are

E + v � B = � r � B ; (3.23)
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� ( v � r ) v = �r

 

p +

B

2

2 �

!

+ ( B � r )

B

�

; (3.24)

where

r � B = 0 ; r � v = 0 ; j � B = ( r � B ) � B =� = ( B � r ) B =� � r ( B

2

= (2 � )) ; (3.25)

and the comp onen ts v

x

; v

y

; B

x

; B

y

dep end on x and y alone. F arada y's la w ( r � E = 0) implies

that @ E =@ y = @ E =@ x = 0, so that E = E z is uniform.

Considering a steady-state o w

v

x

= �

v

0

x

a

; v

y

=

v

0

y

a

; (3.26)

for whic h r � v = 0. The steady-state con tin uit y equation ( v � r ) � + � ( r � v ) = 0 then reduces to

( v � r ) � = 0, whic h implies that the densit y � is uniform if it is constan t at the ino wing sides.

The o w v anishes at the origin and therefore represen ts an incompressible, stagnation-p oin t

o w.

Supp ose no w that the magnetic �eld lines are straigh t with B = B ( x ) y and they rev erse sign at

x = 0. Then in Ohm la w (Eq. 3.23), b oth v � B ; r � B , and therefore E are directed purely in

the z -direction and in the presen t case it reduces to

E �

v

0

x

a

B = �

dB

dx

: (3.27)

F rom this equation the magnetic �eld B can b e estimated in t w o extreme cases as (see also

Fig.3.6):

B �

E a

v

0

x

; x � 1 ; (3.28)

B �

E x

�

; x � 1 : (3.29)

Steady reconnection: classical solutions

Fig. 3.7: Breaking and reconnection of magnetic �eld lines.

In most of the univ erse the magnetic Reynolds n um b er is v ery m uc h larger than unit y and so

the magnetic �eld is frozen to the plasma, but in v ery small singular regions it can slip (di�use)
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through the plasma (Fig. 3.7). There are sev eral imp ortan t e�ects of this lo cal pro cess:

a) Changes of global top ology and connectivit y of �eld lines, whic h a�ect the paths of fast par-

ticles and heat, since these tra v el mainly along �eld lines.

b) Con v ersion of magnetic energy to heat, kinetic energy and fast particle energy .

c) Creation of large electric curren ts, large electric �elds, sho c ks, all of whic h ma y help to accel-

erate fast particles.

a) F ormation of a curren t sheet

X-typ e c ol lapse

Fig. 3.8: Collapse of the �eld near an X-p oin t.

There are sev eral w a ys of forming curren t sheets. One is through the collapse of the �eld near

an X-t yp e neutral p oin t suc h as

B

x

= y ; B

y

= x; (3.30)

whic h has �eld lines y

2

� x

2

= constan t ( dy =dx = B

y

=B

x

= x=y ). The �eld is in equilibrium

since the electric curren t �

� 1

( @ B

y

=@ x � @ B

x

=@ y ) v anishes and so there is a balance ev erywhere

b et w een the magnetic pressure force ( P ) acting in w ards and the magnetic tension force ( T )

acting out w ards (Fig. 3.8a).

Supp ose no w the �eld is distorted to B

x

= y ; B

y

= �

2

x , where �

2

> 1, with �eld lines y

2

� �

2

x

2

=

constan t, as sk etc hed in Fig. ( 3.8b), and electric curren t j = ( �

2

� 1) =� .

Ph ysically , w e exp ect an in w ards force on the x -axis since the tension force is smaller and the

magnetic pressure force larger, whereas along the y -axis w e exp ect an out w ards force since

the tension force is increased b y the larger curv ature. Mathematically , the magnetic force has

comp onen ts

j � B = �

( �

2

� 1) �

2

x

�

x +

( �

2

� 1) y

�

y : (3.31)
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These act in suc h a sense as to increase the p erturbation and so the initial equilibrium is unstable.

Curr ent she et formation: description by c omplex variables

Fig. 3.9: Creation of a curren t sheet from an X-p oin t con�guration.

Supp ose the sources of the magnetic �eld mo v e slo wly together and driv e the formation of a series

of equilibria con taining a curren t sheet (Fig. 3.9a). Initially B

x

= y ; B

y

= x . Then the question

is ho w to describ e the resulting equilibrium con taining a curren t sheet as in Fig. 3.9b. Outside

the sheet, where the curren t v anishes, the magnetic �eld satis�es r � B = 0 and r � B = 0 or,

in t w o dimensions,

@ B

y

@ x

�

@ B

x

@ y

= 0 ;

@ B

x

@ x

+

@ B

y

@ y

= 0 : (3.32)

No w, it ma y b e sho wn as follo ws that if

B

y

+ iB

x

= f ( z ) (3.33)

is an y analytic function of the complex v ariable z = x + iy , then Eq. (3.32) is automatically

satis�ed. W e are familiar with the fact that the deriv ativ e f

0

( x ) of a function of x exists if the

gradien t at x has the same v alue whether x is approac hed from the left or the righ t. In a similar

w a y if f ( z ) is analytic the gradien t has the same v alue when z is approac hed from an y direction,

in particular k eeping y constan t (so that z = x ) and k eeping x constan t (so that z = iy ). In

other w ords

@

@ x

( B

y

+ iB

x

) =

1

i@ y

( B

y

+ iB

x

) ; (3.34)

or, b y equating real and imaginary parts, w e obtain Eq. 3.32 as required. Th us, w e can treat

the curren t sheet as a cut in the complex plane and the ob ject is to �nd a function f ( z ) whic h

has suc h a cut.

No w the initial state (3.33) has B

y

+ iB

x

= z and when a sheet stretc hes from z = � iL to z = iL

w e ma y use

B

y

+ iB

x

= ( z

2

+ L

2

)

1 = 2

; (3.35)
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whic h b eha v es lik e z when z � L and reduces to z when L = 0 (for z = 0 ; B

y

= L; B

x

= 0). Th us

the ev olution through a series of equilibria with a slo wly gro wing sheet ma y simply b e mo delled

b y letting L slo wly increase in v alue in (3.35). The �eld has limiting �eld lines (separatrices)

through the ends of the sheet, �eld lines whic h are inclined to one another at the ends of the

sheet b y 2 � = 3. This ma y b e sho wn b y noting that near the upp er end of the sheet at z = iL ,

(3.35) b ecomes appro ximately B

y

+ iB

x

=

p

( iL + Z )

2

+ L

2

�

p

2 iL Z

1 = 2

where Z = z � iL .

This ma y b e written as

B

y

+ iB

x

=

da

d Z

; (3.36)

where

a =

p

2 iL

2

3

Z

3 = 2

=

p

2 L

2

3

e

i� = 4

R

3 = 2

e

3 i � = 2

; (3.37)

and the complex n um b er Z has b een written in p olar form as Z = R e

i �

; (

p

i = ( e

i� = 2

)

1 = 2

).

Ho w ev er, if A is the real part of a , then (3.36) implies that B

y

= @ A=@ X ; B

x

= � @ A=@ Y , where

X and Y are the real and imaginary parts of Z and the magnetic �eld lines are giv en b y

d Y

dX

=

B

y

B

x

= �

@ A=@ X

@ A=@ Y

;

@ A

@ X

dX +

@ A

@ Y

d Y = 0 : (3.38)

In other w ords dA = 0 and so A = constan t.

By taking the real part of (3.37) w e can see that

A =

p

2 L

2

3

R

3 = 2

cos

�

3�

2

+

�

4

�

: (3.39)

Th us the particular �eld lines A = 0 are giv en b y

3�

2

+

�

4

= �

�

2

;

�

2

;

3 �

2

;

5 �

2

; (3.40)

and so � = � � = 2 ; � = 6 ; 5 � = 6 or 3 � = 2. In other w ords the curren t sheet (at � � = 2 or 3 � = 2) is

inclined to the separatrices ( � = 6 and 5 � = 6) b y 2 � = 3, as required.

b) Sw eet-P ark er mo del

Fig. 3.10: Sw eet-P ark er reconnection.

This mo del consists of a simple di�usion region of length 2 L and width 2 l b et w een opp ositely

directed �elds. Let us supp ose the input o w sp eed and magnetic �eld are v

i

; B

i

. (Fig.3.10).
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The electric curren t is ab out j � B

i

= ( �l ) and so the Loren tz force along the sheet is ( j � B )

x

�

j B

0

= B

i

B

0

= ( �l ). This force accelerates the plasma from rest at the neutral p oin t to v

0

o v er

distance L and so, b y equating the magnitude of � ( v � r ) v

x

to the ab o v e Loren tz force, w e ha v e

�

v

2

0

L

�

B

i

B

0

�l

: (3.41)

F rom r � B = 0 follo ws

B

0

l

�

B

i

L

; (3.42)

and so the righ t-hand side of Eq.3.41 ma y b e written as B

2

i

= ( �L ) and w e ha v e

v

2

0

=

B

2

i

��

= v

2

Ai

; (3.43)

where v

Ai

is the Alfv en sp eed at the ino w.

No w a question is: ho w fast can �eld lines and plasma en ter the di�usion region. Note that for

a steady state the plasma m ust carry the �eld lines in the same sp eed that they are trying to

di�use out w ard, so that

v

i

= v

D if f use

=

�

l

: (3.44)

Conserv ation of mass implies that the rate (4 �Lv

i

) at whic h mass is en tering the sheet m ust

equal the rate(4 �l v

0

) at whic h it is lea ving, so that

Lv

i

= l v

Ai

: (3.45)

The width l ma y b e eliminated b et w een these t w o equations to giv e v

2

i

= � v

Ai

=L , or in dimen-

sionless form

M

i

=

1

R

1 = 2

m

(3.46)

in terms of the Alfv en Mac h n um b er

M =

v

v

A

(3.47)

and the magnetic Reynolds n um b er

R

m

=

Lv

A

�

(3.48)

based on the Alfv en sp eed.

No w, let us consider the energetics of this mo del. Because l � L then v

i

� v

Ai

. The rate of

ino w of electromagnetic energy is the P oin ting ux E � H p er unit area, or, since E = v

i

B

i

in

magnitude,

E H L = E

B

i

�

L = v

i

B

2

i

�

L: (3.49)

Therefore b y Eq. 3.47 the ratio of the ino w of kinetic to electromagnetic energy is

I nf l ow K :E :

I nf l ow E :M :

=

v

i

1 = 2 �v

2

i

L

v

i

LB

2

i

=�

=

1 = 2 �v

2

i

B

2

i

=�

=

v

2

i

2 v

2

Ai

� 1 : (3.50)
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In other w ords, most of the ino wing energy is magnetic.

Next consider the energy outo w. By conserv ation of ux

v

0

B

0

= v

i

B

i

; (3.51)

(whic h is consisten t with Eq. 3.42 and 3.45) and so B

0

� B

i

. Outo w of electromagnetic energy

is E B

0

l =� , whic h is m uc h less than the ino w of electromagnetic energy since b oth B

0

� B

i

and l � L . So what has happ ened to the ino wing magnetic energy? The ratio of outo wing

kinetic to ino wing magnetic energy is

outf l ow K :E :

inf l ow E :M :

=

1 = 2 �v

2

0

( v

0

l )

v

i

B

2

i

L=�

=

1 = 2 v

2

0

v

2

Ai

=

1

2

: (3.52)

Th us half of the ino wing magnetic energy is con v erted to kinetic energy , while the remaining

half is con v erted to thermal energy . In other w ords, the e�ect of the reconnection is to create

hot fast streams of plasma. In this connection it is useful to remem b er, that b y substituting for

r � H from Amp ere la w and for r � E from F arada y la w, w e can write

�r � ( E � H ) = E � r � H � H � r � E (3.53)

�r � ( E � H ) = E � j +

@

@ t

 

B

2

2 �

!

; (3.54)

whic h implies that an ino w of electromagnetic energy can pro duce electrical energy ( E � j ) for

the plasma and a rise in the magnetic energy . F urthermore, b y taking the scalar pro duct of j

with Ohm la w E = j =� � v � B , w e obtain

E � j =

j

2

�

+ v � j � B ; (3.55)

so that the electrical energy app ears partly as ohmic heat and partly as the w ork done b y the

Loren tz force (accelerating plasma). In our case the ino w of electromagnetic energy go es in to

electrical energy , half of whic h app ears as heat and half as kinetic energy .

There is also fast regime of the Sw eet-P ark er reconnection (see Fig. 3.11). The o w sp eed and

magnetic �eld at large distances L

e

from X-p oin t are denoted b y v

e

and B

e

. The prop erties

of reconnection mo dels dep end on t w o dimensionless parameters: the reconnection rate ( M

e

=

v

e

=v

Ae

) and global magnetic Reynolds n um b er ( R

me

= L

e

v

Ae

=� ).

Reconnection is "fast" when the reconnection rate ( M

e

) is m uc h greater than the rate expressed

in Eq. (3.46). Prop erties at the ino w to the di�usion to the di�usion region (denoted b y "i")

ma y b e related to the external v alues at large distances (denoted b y "e"). Th us ux conserv ation

( v

i

B

i

= v

e

B

e

, through the same length, a part of ux is going out of di�usion region) ma y b e

written as

M

i

M

e

=

B

2

e

B

2

i

: (3.56)

Then the relations (3.44) and (3.45) ma y b y rewritten in to

L

L

e

=

1

R

me

1

M

3 = 2

i

1

M

1 = 2

e

; (3.57)

l

L

e

=

1

R

me

1

M

1 = 2

e

1

M

1 = 2

i

: (3.58)
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Fig. 3.11: The notation for fast regimes.

Th us, once B

i

=B

e

is determined from a mo del of the external region outside the di�usion region

last tree equations determine M

i

= M

e

and the dimensions of the di�usion region in terms of M

e

and R

me

.

c) P etsc hek mo del

In this mo del, most of the energy con v ersion tak es place at standing slo w-mo de sho c ks (Fig. 3.12).

These sho c ks accelerate and heat the plasma, with 2 = 5 of the ino wing magnetic energy b eing

c hanged to heat and 3 = 5 to kinetic energy .

The ino w region consists of sligh tly curv ed �eld lines and the magnetic �eld is a uniform

horizon tal �eld ( B

e

x ), plus a solution of Laplace equation whic h v anishes at large distances and

whic h has a normal comp onen t B

N

at the sho c k w a v es and zero at the di�usion region. T o

lo w est order, the inclination of the sho c ks ma y b e neglected, and so the problem is to �nd a

solution in the upp er half-plane whic h v anishes at in�nit y and whic h equals 2 B

N

b et w een L

and L

e

on the x-axis and, b y symmetry � 2 B

N

b et w een � L

e

and � L . No w, w e ma y regard the

normal comp onen t on the x-axis as b eing pro duced b y a con tin uous series of p oles. If eac h p ole

pro duces a �eld m=r at distance r , then the ux pro duced in the upp er half plane b y that p ole

will b e � m : if the p ole o ccupies a distance dx of the x-axis, the ux is also 2 B

N

dx , so that

m = 2 B

N

=� and in tegrating along the x-axis giv es the �eld at the origin pro duced b y the p oles
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Fig. 3.12: (a) P etsc hek mo del, (b) notation for the ino w region.

as

1

�

Z

� L

� L

e

2 B

N

x

dx �

1

�

Z

L

e

L

2 B

N

x

dx: (3.59)

Adding this to the uniform �eld ( B

e

) at in�nit y giv es

B

i

= B

e

�

4 B

N

�

log

L

e

L

: (3.60)

But at the sho c k w a v es (slo w sho c ks tra v el at the Alfv en sp eed based on the normal �eld,

B

N

=

p

�� , so that (3.60) b ecomes

B

i

= B

e

�

1 �

4 M

e

�

log

L

e

L

�

; (3.61)

whic h is the expression for B

i

that w e ha v e b een seeking.

Since M

e

� 1 and B

i

� B

e

, the scalings (3.57) and (3.58) b ecome

L

L

e

�

1

R

me

M

2

e

;

l

L

e

�

1

R

me

M

e

; (3.62)

whic h sho w that the dimensions of the cen tral region decrease as the magnetic Reynolds n um b er

( R

me

) or reconnection rate ( M

e

) increase. P etsc hek suggests that the mec hanism c hok es itself

o� when B

i

b ecomes to o small, and so he estimates a maxim um reconnection rate ( M

�

e

) b y

putting B

i

= 1 = 2 B

e

in (3.61) to giv e

1

2

=

4 M

e

�

log

L

e

L

;

L

e

L

� R

me

; (3.63)

M

�

e

�

�

8 log R

me

: (3.64)
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Fig. 3.13: Co ordinate system used in the deriv ation of the tearing-mo de instabilit y condition for a sheet

curren t.

Unsteady reconnection: tearing mo de

Let us consider instabilit y in the su�cien tly long curren t sheet (Fig. 3.13); J

1

and B

1

are

p erturbations. This t yp e of instabilit y is that with �nite resistivit y , so Ohm la w ma y b e written

as

E

1

+ v

1

� B

0

� �

e

J

1

= 0 : (3.65)

W e can see that the e�ect of �nite resistivit y b ecomes imp ortan t at the neutral la y ers at x � 0,

where the z -directed magnetic �eld B

0

� 0. On the other hand, at distances su�cien tly far from

the neutral la y er, the v � B term can dominate, and the plasma can b e regarded as lossless.

Th us, the curren t sheet can b e divided in to t w o regions:

a) In the �rst region j x j < � the di�usion equation is v alid

@ B

1

@ t

=

�

e

�

r

2

B

1

: (3.66)

If the solution in the form B

1 x

� exp ( ik z +  t ) is assumed then the equation ma y b e rewritten

in to

d

2

B

1 x

dx

2

�

�

k

2

+

 �

�

e

�

B

1 x

= 0 ; (3.67)

where

B

1 x

� A cosh

�

k

2

+

 �

�

e

�

1 = 2

x: (3.68)

is the solution of this equation.

b) Similarly in the lossless region a > j x j > � this equation has a form

d

2

B

1 x

dx

2

+

�

1

�

2

� k

2

�

B

1 x

= 0 ; (3.69)
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whic h solution can b e expressed as

B

1 x

= C sin

�

1

�

2

� k

2

�

1 = 2

x: (3.70)

If w e no w connect the solutions from b oth these regions at x = � , then w e can deriv e the gro wth

rate as

 =

�

e

��

2

: (3.71)

Namely , for small x

cosh x � 1 + x; sin x � x; (3.72)

1 +

�

k

2

+

 �

�

e

�

1 = 2

� = (

1

�

2

� k

2

)

1 = 2

� � 0 ; k ! 0 : (3.73)

Reference:

Hasega w a, A.: 1975, Plasma instabilities and non-linear e�ects, Springer-V erlag, Berlin.

Reconnection in three dimensions

Fig. 3.14: Linear three-dimensional n ulls. P oten tial n ulls: (a) radial and (b) improp er. Non-p oten tial n ulls:

(c) improp er and (d) spiral, b oth with only parallel curren t; (e) radial and (f ) spiral, b oth with p erp endicular

curren t.

Reconnection in three dimension di�ers essen tially from that of in t w o dimensions. F or a 3-D

neutral p oin t, the structure consists of t w o main features (Fig. 3.14a): a spine and fan surface.
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The spine is made up of t w o �eld lines that are directed in to (or out of ) the n ull. The fan

consists of a surface of �eld lines that are p oin ting a w a y from (or in to) the n ull. Other ux

surfaces in the vicinit y of the n ull consist of �eld lines that run almost parallel to the spine

b efore spreading out b elo w the fan plane. In a p ositiv e n ull the �eld along the spine is directed

in to the n ull and the fan �eld lines spread out from the n ull; similarly , a negativ e n ull has �eld

lines p oin ting to w ards the n ull in the fan and directed out along the spine.

The structure of an y n ull is de�ned b y four parameters ( p; q ; j

k

; j

?

); the curren t is equal to

j = ( j

?

; 0 ; j

k

) ; (3.74)

so the parameters j

k

and j

?

represen t comp onen ts of curren t parallel and p erp endicular to the

spine, resp ectiv ely , while p and q are asso ciated with the p oten tial part of the �eld. W e de�ne

j

thr esh

, called the threshold curren t, to b e equal to

j

thr esh

=

q

( p � 1)

2

+ q

2

: (3.75)

T o in v estigate the di�eren t t yp es of 3-D n ull p oin ts w e �rst consider p oten tial n ull p oin ts, whic h

ha v e a general form

B = ( x; py ; � ( p + 1) z ) : (3.76)

They can either b e radial ( p = 1) or improp er n ulls ( p > 0 and p 6= 0) (see Fig. 3.14a and

Fig. 3.14b).

Non-p oten tial n ulls, ho w ev er, ha v e the form

B = ( x + ( q � j

k

) y = 2 ; ( q + j

k

) x= 2 + py ; j

?

y � ( p + 1) z ) : (3.77)

These n ulls ma y b e divided in to t w o categories: those that only ha v e curren t parallel to the spine

and those that ha v e a comp onen t of curren t p erp endicular to the spine. F or example, t w o t yp es

of n ull with only parallel curren t are illustrated in (Fig. 3.14c and Fig. 3.14d); an improp er n ull

where j

k

< j

thr esh

and a spiral n ull where j

k

> j

thr esh

, resp ectiv ely . Tw o examples of n ulls with

the p erp endicular curren t are radial n ull ( j

k

= 0) and a spiral n ull ( j

k

> j

thr esh

) (Fig. 3.14e and

Fig. 3.14f ).

Reference:

P arnell, C.E.: 1996, Pro ceedings of YOHK OH Conference, Bath, England, p. 19.
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Kinetic reconnection

Fig. 3.15: Structure of the x-line: (a) in-plane magnetic �eld, (b) in-plane v elo cit y , (c) out-of-plane ion curren t,

(d) out-of-plane electron curren t, out-of-plane magnetic �eld.

There are attempts to sim ulate the magnetic reconnection not only in the MHD appro ximation,

but in a more general kinetic approac h. In Fig. 3.15 the results of the h ybrid mo delling with

2048 � 512 grid p oin ts and 20 million particles are sho wn. Here, di�erences b et w een electron

and ion curren ts can b e seen, whic h it is not p ossible to sim ulate in the MHD mo dels.

Reference:

Sha y , M.A., Drak e, J.F, Rogers, B.N., Den ton, R.E.: 1999, Geoph ys. Researc h Letters, V ol. 26

(14), 2163.

Connectivit y and quasi-separatrix la y ers

As seen in Fig. 3.16 magnetic �eld lines form domains in whic h they connect the photosphere.
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Fig. 3.16: The mo del of the magnetic �eld of four sunsp ots of pairwise opp osite p olarit y . The b oundary

surfaces D

1

and D

2

cross in the corona at a top ologically singular magnetic �eld line, the separator, whic h

connects the p oin ts X

1

and X

2

in the photosphere. The con tour f is an example of a �eld line connecting the

distan t sunsp ots N and S .

Fig. 3.17: Flaring AR 2779 on No v em b er 12, 1980: example of quadrup olar region formed b y t w o extended

bip oles. (a) Observ ational data: hatc hed regions - H � are k ernels and longitudinal magnetic �eld. (b) In tersection

of the QSLs with the photosphere for a linear force-free extrap olation ( � = -0.019 Mm

� 1

) with �eld lines and

curren t-densit y regions. (c,d) P ersp ectiv e views of (b), with �eld lines dra wn as surfaces.

These domains are separated b y separatrices, whic h can cross in the separators. The separator

can b e formed b y n ull magnetic �eld line. If there is non-zero comp onen t of the magnetic �eld

along these separatrices then it is useful to de�ne so called quasi-separatrix la y ers (QSL). These
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QSL are regions where a drastic c hange in �eld-line connectivit y o ccurs, i.e. where �eld lines

initially close separate widely o v er a short distance. Let us in tegrate o v er a distance s in b oth

directions the �eld line passing at a p oin t P ( x; y ; z ) of the corona. The end p oin ts of co ordinates

( x

0

; y

0

; z

0

) and ( x

00

; y

00

; z

00

) de�ne a v ector D ( x; y ; z ) = X

1

; X

2

; X

3

= x

00

� x

0

; y

00

� y

0

; z

00

� z

0

. A

drastic c hange in �eld-line connectivit y means that for a sligh t shift of the p oin t P ( x; y ; z ),

D ( x; y ; z ) v aries greatly .

The function N , de�ned b y

N ( x; y ) =

v

u

u

t

X

i =1 ; 2

((

@ X

i

@ x

)

2

+ (

@ X

i

@ y

)

2

) ; (3.78)

N ( x; y ) is de�ned only at the photospheric b oundary and is the norm of the displacemen t gra-

dien t tensor de�ned when mapping, b y �eld lines, p oin ts from one section to another of the

photosphere. The lo cations where N ( x; y ) tak es its highest v alues de�ne the �eld lines in v olv ed

in the QSLs. By follo wing these lines w e can lo cate the coronal p ortion of the QSLs - see Fig. 3.17.

Reference:

Demoulin, P ., Bagala, L.G., Mandrini, C.H., Henoux, J.C., Ro vira, M.G.: 1997, Astron. Astro-

ph ys. 325, 305-317.

T riggering of reconnection b y a passage of the sho c k w a v e through

the curren t sheet

See �le trigger.p df

Reference:

Odstr � cil, D., Karlic k � y, M.: 1997, T riggering of magnetic reconnection in the curren t sheet b y

sho c k w a v es, Astron. Astroph ys. 326, 1252-1258.

Shear magnetic �eld reconnection near the the 3-D n ull p oin t

Numerical Mo del

Computations are p erformed in the 3-D n umerical b o x with 41 � 41 � 41 grid p oin ts (800 �

800 � 800 km). The n umerical co de whic h solv es the set of MHD equations is based on the

F CT algorithm.

In the initial state the magnetic con�guration corresp onding to the 3-D n ull p oin t is generated

(Fig. 3.18).

B ( G ) =

�

x � x

0

x

00

;

y � y

0

y

00

; �

2( z � z

0

)

z

00

�

; (3.79)

where x

0

= 4 � 10

5

m, x

00

= 4 � 10

4

m, y

0

= 4 � 10

5

m and z

00

= 4 � 10

4

m. The la y er near the

plane Z = 1 is called the fan, and the cen tral v ertical line in the structure is called the spine.

The initial temp erature of 10

6

K and the plasma densit y of 10

� 8

kg m

� 3

is put constan t through

the system (coronal conditions). The plasma parameter � is th us ev erywhere � � 1.

The shear plasma o w whic h con tin uously deforms the initial magnetic �eld lines is used in the

follo wing form:

v = v

0

tanh

�

z � z

0

z

v

�

; (3.80)
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where v

0

= � 10

5

m s

� 1

, z

0

= 4 � 10

5

and z

v

= 10

5

m. F ree b oundaries around the computational

b o x are considered.

F or a mo delling of reconnections the anomalous resistivit y w as assumed in the X � Y la y er

b et w een 320 and 480 km, and its v alue w as c hosen to b e �

e

= 2 � 10

� 6

s.

Results

W e made t w o t yp es of computations: with and without the anomalous resistivit y at the fan la y er.

Namely , at this la y er where the electric curren t densit y is increasing during the shear plasma

o w the anomalous resistivit y can b e naturally generated. The case without this resistivit y is

considered for comparison.

First, the curren t densit y in the cen tral b o x p oin t for b oth cases are compared (Fig. 3.19).

While in the case without the resistivit y the curren t densit y is linearly increasing as exp ected

from theoretical estimations, in the case with the resistivit y the curren t densit y increases more

slo wly up to the saturated v alue corresp onding to the steady-state of reconnection.

The results of computations are sho wn in Figs 3.20 and 3.21. Figure 3.20 sho ws a deformation

of magnetic �eld lines due to the shear plasma o w without taking in to accoun t the resistivit y;

on the other hand Figure 3.21 sho ws this deformation sim ultaneously with the ipping of lines

due to the anomalous resistivit y . Comparing the magnetic �eld lines in these �gures w e can

see that the magnetic �eld lines reconnect in the fan la y er. Th us, the magnetic �eld lines from

one side of the fan connect magnetic lines on the opp osite side and crossing the plane Z = 1.

Sim ultaneously , their connections in the fan la y er are c hanged o v er a broad range of angles: the

maxim um is near the spine (180

o

); this angle is decreasing with the distance increase from the

spine.

Fig. 3.18: The initial state of the magnetic �eld con�guration.

Reference
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Fig. 3.19: Ev olution of the normalized electric curren t densit y at the cen tral b o x p oin t for the case without

(full line) and with (dashed line) the anomalous resistivit y in the fan la y er.

Karlic k � y, M.: 1997, Shear magnetic �eld reconnection near the 3-D n ull p oin t, Hv ar Obs. Bull.

21, 1, 91-96.

Priest, E., F orb es, T.: 2000, Magnetic reconnection: MHD theory and applications, Cam bridge

Univ ersit y Press, Cam bridge, UK.
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Fig. 3.20: Magnetic �eld lines at 2 s for the case without the anomalous resistivit y . X,Y, and Z scale units

are 400km.

Fig. 3.21: Magnetic �eld lines at 2 s for the case with the anomalous resistivit y . X,Y, and Z scale units are

400km.



Chapter 4

Helicit y

An ev olution of some energy in tegrals of ph ysical systems is commonly used for a system de-

scription. In the solar corona for a description of e.g. ares or prominences w e can use the

v olume in tegral of the magnetic �eld energy:

E

mag

=

Z

V

B

2

2 �

0

dV : (4.1)

A disadv an tage of this approac h is that the coronal magnetic �eld consists of a strong comp onen t

of the p oten tial magnetic �eld whic h is pro duced b y sub-photospheric electric curren ts. This

part of magnetic energy remains constan t during activ e pro cesses in the solar atmosphere. On

the other hand, only a small part of the magnetic �eld energy , corresp onding to electric curren ts

in the solar atmosphere, can b e transformed in to other energy forms and can b e dissipated.

F or these reasons an another v olume in tegral, called helicit y , w as prop osed for a ph ysical de-

scription of these phenomena

H =

Z

V

A � B dV ; (4.2)

where

B = r � A ;

where A is the v ector p oten tial.

It can b e sho wn that the helicit y is directly connected with t wists and linkings of magnetic �eld

lines, whic h sim ultaneously expresses electric curren ts in the system. Th us, the helicit y describ es

a part of the magnetic �eld energy whic h can b e released during solar ares, and therefore the

helicit y is useful to ol for activ e phenomena description.

Helicit y conserv ation

Let us calculate a time c hange of the helicit y:

@

@ t

Z

A � B dV =

Z

A �

@ B

@ t

dV +

Z

@ A

@ t

� B dV :

No w, using the induction equation

@ B

@ t

= r � ( v � B ) ;

45
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@ r � A

@ t

= r � ( v � B ) ;

r �

@ A

@ t

= r � ( v � B ) ;

@ A

@ t

= ( v � B ) = � E ;

(where the last equation expresses Ohm la w) w e can con tin ue in the helicit y conserv ation cal-

culations

Z

A �

@

@ t

( r � A ) dV +

Z

@ A

@ t

� B dV =

Z

A � r �

@ A

@ t

dV +

Z

@ A

@ t

� r � A dV : (4.3)

The righ t side of this equation can b e rewritten using the v ector iden tit y

r � ( A �

@ A

@ t

) =

@ A

@ t

� r � A � A � r �

@ A

@ t

;

as

= �

Z

r � ( A �

@ A

@ t

) dV +

Z

2

@ A

@ t

� r � A dV :

The last term is zero, b ecause @ A =@ t = v � B and r � A = B , and th us their scalar pro duct

is zero.

It means that for time c hange of helicit y w e can write

@

@ t

Z

A � B dV = �

Z

r � ( A �

@ A

@ t

) dV ;

and using Gauss theorem

@

@ t

Z

A � B dV = �

Z

S

A �

@ A

@ t

d S : (4.4)

Then, if @ A =@ t = � E = 0 at the system b oundary then the helicit y in the system is conserv ed.

No w, let us sho w that the helicit y is in v arian t to a gauge transformation. P erforming this

transformation A

0

= A + r � (namely r � r � = 0) w e can write

H

0

� H =

Z

r � � B dV ;

and using

r � ( � B ) = r � � B + � r � B ; r � B = 0 ;

the helicit y di�erence is

H

0

� H =

Z

r ( � B ) dV =

Z

S

� B d S ; (4.5)

whic h v anishes only if B

n

= 0 at the system b oundary , since � is arbitrary . Th us, in in�nite or

closed system the helicit y is conserv ed and it is gauge-in v arian t. But this general statemen t is
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not v ery useful for practical purp oses. Therefore other forms of the helicit y in tegrals need to b e

constructed.

Let us de�ne the so called relativ e helicit y in a �nite system as

H =

Z

V

( A + A

0

) � ( B � B

0

) dV ; (4.6)

where A

0

and B

0

corresp ond to the p oten tial magnetic �eld with the same b oundary conditions

as A and B .

No w, let us calculate the time deriv ativ e of this helicit y: (The auxiliary relations are E

0

=

0; r �

0

= 0; @ A

0

=@ t = 0; @ B

0

=@ t = 0; @ A =@ t = � E � r � ; @ B =@ t = �r � E .)

@ H

@ t

=

Z

(

@ ( A + A

0

)

@ t

� ( B � B

0

) + ( A + A

0

) �

@ ( B � B

0

)

@ t

) dV ;

@ H

@ t

=

Z

(

@ A

@ t

� ( B � B

0

) + ( A + A

0

) �

@ B

@ t

) dV ;

@ H

@ t

=

Z

(( � E � r � ) � ( B � B

0

) � ( A + A

0

) � ( r � E )) dV ;

@ H

@ t

=

Z

( � E � B + E � B

0

� r � � ( B � B

0

) � ( A + A

0

) � ( r � E )) dV :

In the follo wing the v ector iden tit y

r � ( � ( B � B

0

) + E � ( A + A

0

)) = (4.7)

� r � ( B � B

0

) + r � � ( B � B

0

) + ( A + A

0

) � r � E � E � B � E � B

0

;

where E � r � A = E � B ; E � r � A

0

= E � B

0

; r � ( B � B

0

) = 0, is used. After a manipulation

and using Gauss theorem w e can write

@ H

@ t

= � 2

Z

V

E � B dV �

Z

S

( � ( B � B

0

) + E � ( A + A

0

)) d S : (4.8)

The �rst term on the righ t side of this relation expresses the Ohm dissipation as can b e seen

replacing the electric �eld as E = B � v + �

e

j , where j is the electric curren t densit y . Th us the

relativ e helicit y is conserv ed in the spatially limited system when the Ohm dissipation is lo w (in

coronal conditions it is usually ful�lled) and B

n

= B

0 n

; E = 0.

If the Ohm dissipation is neglected and A = A

0

then the c hange of the relativ e helicit y in the

system is giv en b y t w o term:

@ H

@ t

= � 2

Z

S

A

0

� E d S = � 2

Z

S

A

0

( B � v ) d S = (4.9)

= � 2

Z

S

( A

0

� v ) B d S + 2

Z

s

( A

0

� B ) v d S ;

the �rst term expresses a c hange of the relativ e helicit y due to shearing motions at the system

b oundary and the second one represen ts a direct 'ino w' of the helicit y .
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In the solar ph ysics studies there are attempts to ev aluate the helicit y c hange caused b y photo-

spheric shearing motions. F or simplicit y , let us assume that the photosphere is lo cally planar at

the scale size of the activ e region. Then a c hange of the helicit y can b e written as

@ H

@ t

= 2

Z

S

( A

0

� v ) B

n

dS =

1

�

Z

S

Z

S

0

R � v ( r )

R

2

j

n

B

n

( r ) B

n

( r

0

) dS dS

0

; (4.10)

where R = r � r

0

is the di�erence b et w een t w o spatial p ositions on the photospheric plane, and

B

n

is the magnetic �eld comp onen t p erp endicular to the photosphere. This equation in v olv es

a double in tegration on the b oundary . Since the in tegrations are done on the same surfaces,

S = S

0

, w e can exc hange r and r

0

. This yields a new equation that summed up with previous

equation giv es:

2

@ H

@ t

=

1

�

Z

S

Z

S

0

R � [ v ( r ) � v ( r

0

)]

R

2

j

n

B

n

( r ) B

n

( r

0

) dS dS

0

: (4.11)

Let us de�ne � as the angle b et w een R and a �xed direction (e.g. the east-w est direction) with

trigonometric con v ection (coun terclo c kwise), then:

d�

dt

=

R � d R =dt

R

2

j

n

(4.12)

(with d R =dt = v ( r ) � v ( r

0

)) the equation (1.11) is transformed to:

@ H

@ t

=

1

2 �

Z

S

Z

S

0

d�

dt

B

n

( r ) B

n

( r

0

) dS dS

0

: (4.13)

This equation sho ws that the helicit y injection rate can b e understo o d as the summation of the

rotation rate of all the pairs of elemen tary uxes w eigh ted with their magnetic ux.
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Simple n umerical sc hemes for a

solution of MHD equations

Using a simple equation

@ u

@ t

= � v

@ u

@ x

(5.1)

as an example, let us sho w some n umerical metho ds whic h ma y b e used for a solution of gen-

eral MHD equations. Namely , @ u=@ t + v @ u=@ x:::: is a part of these equations. A n umerical

appro ximation of Eq. 5.1 ma y b e

u

n +1

j

� u

n

j

� t

= � v

u

n

j +1

� u

n

j � 1

2� x

; (5.2)

where � t and � x are the time step and grid step, resp ectiv ely . Rearranging this equation w e

ha v e

u

n +1

j

= u

n

j

�

v � t

2� x

( u

n

j +1

� u

n

j � 1

) : (5.3)

Let u v ary lik e u

n

j

� e

i ( k x

j

� ! n � t )

, where x

j

is the j -th grid p oin t co ordinate j � x . F rom Eq.5.3

w e obtain

e

i ( k j � x � ! ( n +1)� t )

= e

i ( k j � x � ! n � t )

�

v � t

2� x

�

e

i ( k ( j +1)� x � ! n � t )

� e

i ( k ( j � 1)� x � ! n � t )

�

; (5.4)

and after dividing b y e

i ( k j � x � ! n � t )

e

� i! � t

= 1 �

v � t

2� x

( e

ik � x

� e

� ik � x

) : (5.5)

The ampli�cation factor g � u

n +1

j

=u

n

j

= e

� i! � t

is then according to the previous equation

g = 1 � i

v � t

� x

sin ( k � x ) ; (5.6)

and its mo dulus

j g j

2

= 1 +

�

v � t

� x

�

2

sin

2

( k � x ) > 1 ; (5.7)

whic h sho ws that this sc heme is alw a ys n umerically unstable.
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Lax sc heme

In this approac h w e write Eq. 5.1 as

u

n +1

j

=

1

2

( u

n

j +1

+ u

n

j � 1

) �

v � t

2� x

( u

n

j +1

� u

n

j � 1

) : (5.8)

Then it can b e rewritten in to

e

i ( k j � x � ! ( n +1)� t )

=

1

2

�

e

i ( k ( j +1)� x � ! n � t )

+ e

i ( k ( j � 1)� x � ! n � t )

�

(5.9)

�

v � t

2� x

�

e

i ( k ( j +1)� x � ! n � t )

� e

i ( k ( j � 1)� x � ! n � t )

�

;

and after dividing b y e

i ( k j � x � ! n � t )

the ampli�cation factor is

g = cos( k �) � i

v � t

� x

sin ( k � x ) ; (5.10)

and its mo dulus is

j g j

2

= 1 � sin

2

( k � x )

�

1 � (

v � t

� x

)

2

�

: (5.11)

The sc heme is stable when j g j

2

� 1. This condition is ful�lled if

� t � � x=v : (5.12)

Lax-W endro� sc heme

Let us consider a simple equation

@ u

@ t

+

@ F

@ x

= 0 ; (5.13)

where F = uv ( v is constan t), as an example. The Lax-W endro� sc heme consists of t w o steps:

The �rst one is according to Lax sc heme o v er a half time step

u

n +1 = 2

j

= 1 = 2( u

n

j � 1

+ u

n

j +1

) �

� t= 2

2� x

( F

n

j +1

� F

n

j � 1

) ; (5.14)

and the second one o v er a full time step follo ws as

u

n +1

j

= u

n

j

�

� t

2� x

( F

n +1 = 2

j +1

� F

n +1 = 2

j � 1

) : (5.15)

There are man y further explicit as w ell as implicit sc hemes. The leap-frog sc heme w as describ ed

in details in the ab o v e men tioned particle co de. F urther imp ortan t approac h is so called "ux

corrected transp ort metho d", whic h is successfully used in MHD tasks with sho c k w a v es.



Chapter 6

Plasma emission pro cesses

In this c hapter, only a general approac h is presen ted. F or more details and applications see:

Melrose, D.B.: 1980, Plasma Astroph ysics, Gordon and Breac h, New Y ork.

6.1 W a v es in plasmas

6.1.1 W a v e equation

Due to man y t yp es of particle motions, in plasmas (esp ecially in plasmas with the magnetic

�eld) man y t yp es of w a v es can exist. This broad v ariet y follo ws from a high complexit y of the

plasma resp onse to electric or magnetic �eld p erturbations. The electric ( E ) and magnetic ( B )

�elds in plasmas are describ ed b y the system of Maxw ell equations:

r � E = �

@ B

@ t

r � E =

1

"

0

�

(6.1)

r � B = �

0

j +

1

c

2

@ E

@ t

r � B = 0

where j is the electric curren t densit y and � the c harge densit y . These t w o quan tities satisfy the

c harge con tin uit y equation

@ �

@ t

+ r � j = 0 ; (6.2)

what implies from the set (6.1) as follo ws

r �

@ E

@ t

=

1

"

0

@ �

@ t

;

r � ( c

2

r � B � �

0

c

2

j ) =

1

"

0

@ �

@ t

:

Another useful equation is that for energy conserv ation, whic h can b e deriv ed as

B � r � E + B

@ B

@ t

= 0 ;

E � r � B � �

0

E � j �

1

c

2

E �

@ E

@ t

= 0 :
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Using no w the v ector iden tit y

r � ( E � B ) = B � r � E � E � r � B ;

w e can write

@

@ t

 

j B j

2

2 �

0

+ "

0

j E j

2

2

!

+ r � ( E � H ) = � E � j : (6.3)

This equation expresses the conserv ation of electromagnetic energy; its c hange is due to P o yn ting

v ector ux E � B =�

0

and Ohm dissipation E � j .

F or the purp ose of formal theory of w a v es it is con v enien t to express Maxw ell equations in

natural basis of harmonic functions. Th us F ourier transforming the set (6.1) one obtains:

k � E = ! B (6.4)

k � B = � i�

0

j �

!

c

2

� E (6.5)

k � E = �

i

"

0

� (6.6)

k � B = 0 : (6.7)

It is clear that the equation (6.7) is redundan t since it follo ws directly from eq. (6.4), but

with one exception { in the case of ! = 0, i.e. in the case of static �elds, the reduction of the

system of equations do es not apply . Th us, static �elds ha v e to b e treated explicitly in further

considerations. This is closely related to the w ell kno wn problem of the fourth Maxw ell equation

( r � B = 0), whic h should b e considered as the initial condition rather than indep enden t relation.

F rom the set of three remaining equations the general w a v e equation in the form

k � ( k � E ( k ; ! )) +

!

2

c

2

E ( k ; ! ) = � i! �

0

j ( k ; ! ) (6.8)

can b e deriv ed, where equations (6.4) and

! � ( k ; ! ) = k � j ( k ; ! ) ;

whic h is just the F ourier transform of con tin uit y equation (6.2), should b e considered as de�ni-

tions of auxiliary quan tities B and � in terms of basic quan tities E and j , resp ectiv ely .

The curren t densit y j at the righ t-hand side of the general w a v e equation can consist of t w o

parts:

1. The curren t caused b y induced motion of particles in plasmas under inuence of electro-

magnetic �eld j

ind

.

2. The extraneous curren t j

ext

.

In the �rst appro ximation the induced part of the curren t is linearly related to electric �eld

according to generalized Ohms la w (in usual tensor notation):

j

ind

i

( k ; ! ) = �

ij

( k ; ! ) � E

j

( k ; ! ) (6.9)

where �

ij

( k ; ! ) is the generalized conductivit y tensor and usual Einstein's summation la w w as

applied. F or the formal purp oses it is m uc h more con v enien t to use another tensor describing
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the linear plasma resp onse to electric �eld p erturbation. The dielectric tensor "

ij

( k ; ! ) is de�ned

as:

"

ij

( k ; ! ) � �

ij

+

i

! "

0

� �

ij

( k ; ! ) (6.10)

with �

ij

b eing the Kronec k er delta (the unit tensor). Separating the curren t densit y in to induced

and extraneous parts and using Ohms la w (6.9) and dielectric tensor de�nition (6.10) the w a v e

equation (6.8) ma y b e re-written in to the form:

 

c

2

k � ( k � E )

!

2

!

i

+ E

i

+

i

! "

0

j

ind

i

= �

i

! "

0

j

ext

i

;

 

c

2

k � ( k � E )

!

2

!

i

+ ( �

ij

+

i

! "

0

�

ij

) E

j

= �

i

! "

0

j

ext

i

;

�

ij

( k ; ! ) � E

j

( k ; ! ) = �

i

! "

0

j

ext

i

( k ; ! ) (6.11)

where the disp ersion tensor �

ij

( k ; ! ) is de�ned as

�

ij

( k ; ! ) �

k

2

c

2

!

2

�

k

i

k

j

k

2

� �

ij

�

+ "

ij

( k ; ! ) : (6.12)

The equation (6.11) represen ts a set of three linear equations with comp onen ts of the extraneous

curren t densit y j

ext

( k ; ! ) as explicit source terms.

Except of this explicit source term there is also an implicit one hidden in the dielectric tensor.

The dielectric tensor can b e separated in to t w o parts { hermitian and an ti-hermitian

"

ij

= "

h

ij

+ "

a

ij

;

"

h

ij

= 1 = 2( "

ij

+ "

�

j i

) ;

"

a

ij

= 1 = 2( "

ij

� "

�

j i

) ;

whose describ e di�eren t kinds of plasma resp onse to an electric �eld p erturbation. While the her-

mitian part of "

ij

( k ; ! ) describ es time-rev ersible comp onen t of the resp onse, the an ti-hermitian

part causes w a v e energy c hanges, either negativ e (damping of w a v es) or p ositiv e (ampli�cation

or b y other w ords negativ e damping/negativ e absorption of w a v es).

6.1.2 The disp ersion equation of linear w a v es

The question arises what is b eha viour of the electric �eld p erturbation in the case without

dissipation and extraneous sources. One has to solv e homogeneous form of the equation (6.11)

in whic h also the implicit source term in the dielectric tensor (the an ti-hermitian part) is omitted,

i.e.

�

h

ij

( k ; ! ) � E

j

( k ; ! ) = 0 ; (6.13)

where �

h

ij

( k ; ! ) is the hermitian part of the disp ersion tensor. Solution of suc h a system of

equations exist only if the relation

�( k ; ! ) � det�

h

ij

( k ; ! ) = 0 (6.14)
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is ful�lled. The condition (6.14) represen ts the general disp ersion equation for linear non-damp ed

w a v es in plasmas. T o rewrite it to the usual form of the disp ersion relation for a sp eci�c w a v e

mo de one has to express the frequency ! as a function of the w a v e v ector k . This is not unique

op eration in general, ho w ev er, man y branc hes of w a v es with di�eren t disp ersion relations

!

m

= !

m

( k ) (6.15)

can b e obtained. Eac h branc h !

m

( k ) represen ts one w a v e mo de m .

6.1.3 P olarisation v ectors

Inserting relation (6.15) in to the homogeneous equation (6.13) a solution for sp eci�c w a v e mo de

can b e found. According to kno wn rules of linear algebra the v ector that solv es (6.13) has to b e

the eigen-v ector corresp onding to the zero eigen-v alue of the tensor

�

h

ij

( k ) = �

h

ij

( k ; !

m

( k )) :

Namely , one eigen-v alue of the matrix represen ting a homogenous set of equations is zero. The

corresp onding eigen-v ector is not determined uniquely since in the homogenous set of equations,

with its determinan t equals to zero, the n um b er of linearly indep enden t equations is less than

the n um b er of v ector comp onen ts. Therefore it is con v enien t to c ho ose an unimo dular complex

v ector e

m

( k ) as a represen tativ e of all solutions of the equation (6.13) for giv en w a v e mo de.

Suc h v ector is called the p olarisation v ector and b esides the disp ersion relation (6.15) it is one

of the basic c haracteristics of the sp eci�c w a v e mo de. F or example, from the p olarization v ector

the magnetic and induced curren t v ectors can b e deriv ed; using Eq. (6.4) and (6.9).

6.1.4 Energetics in the w a v es

The electric p erturbation in plasma w a v es induces also the p erturbation of magnetic �eld and,

due to medium resp onse, also v ariations of plasma v elo cit y , stresses and pressure. All these

p erturbations raise the total amoun t of energy con tained in plasmas and the di�erence o v er the

equilibrium state can b e ascrib ed to the w a v es. Th us, for the total w a v e energy of the mo de m

w e can write

w

m

T

( k ) = w

m

E

( k ) + w

m

M

( k ) + w

m

p

( k ) :

It is straigh tforw ard to compute the electric or magnetic �eld energy in w a v es kno wing the

electric �eld amplitude:

w

m

E

( k ) =

"

0

j E

m

( k ) j

2

V

: (6.16)

and using Eq. (6.4)

w

m

M

( k ) =

�

k c

!

�

2

(1 � j

k

k

� e

m

j

2

) w

m

E

:

On the other hand, mec hanical energy connected with plasma motions and stresses is hard to

b e iden ti�ed in general. Nev ertheless, the total amoun t of energy con tained in particular w a v e

mo de can b e, fortunately , related to the electric �eld energy in this mo de indep enden tly . The

�rst is to include the an ti-hermitian part of the dielectric tensor "

a

ij

as a small correction in the

disp ersion equation. T o �rst order one can write

det (�

h

ij

+ "

a

ij

) = � + �

ij

"

a

j i

: (6.17)
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No w damping of the w a v es is tak en in to accoun t b y allo wing ! to ha v e a small imaginary part

� i = 2, suc h that the w a v e energy damps as e

�  t

. Then, to lo w est order in the terms asso ciated

with w a v e damping, Eq. (6.17) giv es

�

i

2

@ �

@ !

+ �

ij

"

a

j i

= 0 ; (6.18)

whic h is ev aluated at � = 0. Similarly w e can allo w k to ha v e a small imaginary part � i�= 2

Then Eq. (6.18) has a form:

�

i

2

@ �

@ !

�

i�

2

@ �

@ k

= � �

ij

"

a

j i

: (6.19)

On the other hand, for the energy w

m

damp ed as e

�  t

and the energy ux F

m

damp ed as e

� �r

w e can write

@ w

m

@ t

+ r � F

m

= Q

m

;

 w

m

+ � F

m

= � Q

m

; (6.20)

where Q

m

is the source or damping w a v e term.

No w, comparing Eqs. (6.19) and (6.20) one has

F

m

w

m

=

�

@ �

@ k

=

@ �

@ !

�

! = !

m

=

@ !

m

@ k

= v

m

g

:

The result implies that the v elo cit y of energy propagation is the group v elo cit y .

Moreo v er, the term

 = �

Q

m

w

m

= �

2 i�

ij

"

a

j i

�

@ �

@ !

�

! = !

m

(6.21)

is the absorption co e�cien t. Besides this relation there is a theoretical pro cedure in whic h

the ratio b et w een Q

m

and w

m

E

can b e deriv ed. Then b y a comparison of these ratios the

quan tit y R

m

E

= w

m

E

=w

m

, expressing the ratio b et w een the electric and total w a v e energies, can

b e determined.

6.1.5 Sp eci�c w a v e mo des

As an illustration of determination of particular w a v e mo de and its c haracteristics from the gen-

eral disp ersion equation (6.14) one ma y c ho ose w ell kno wn Langm uir, transv erse and ion-sound

w a v es in plasmas without am bien t magnetic �eld. The �rst thing has to b e done is calculation

of the dielectric tensor. The kinetic approac h giv es for unmagnetized plasmas follo wing result

(Melrose, 1980, p. 40):

"

ij

( k ; ! ) = �

ij

+

X

�

q

2

�

"

0

!

2

Z

( ! � k � v ) �

sj

+ k

s

v

j

! � k � v + iO

� v

i

�

@ f

�

( p )

@ p

s

d

3

p ; (6.22)

the sum is p erformed o v er eac h particle sp ecies � and small imaginary part in the denominator

indicates that correct in tegration path according to Landau prescription has to b e used. F or

isotropic medium the dielectric tensor can b e separated in to longitudinal( "

l

) and transv ersal ( "

t

)

parts as:

"

ij

( k ; ! ) = "

l

( k ; ! ) �

k

i

k

j

k

2

+ "

t

( k ; ! )

�

�

ij

�

k

i

k

j

k

2

�

(6.23)
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and explicit calculation for Maxw ellian distribution function giv es (Melrose, 1980, p. 50):

"

l

( k ; ! ) = 1 +

X

�

1

k

2

�

2

D �

h

1 � � ( y

�

) + i

p

� y

�

exp( � y

2

�

)

i

(6.24)

"

t

( k ; ! ) = 1 +

X

�

!

2

p�

!

2

h

� � ( y

�

) + i

p

� y

�

exp( � y

2

�

)

i

:

Here, !

p�

and �

D �

are appropriate plasma frequencies and Deb y e lengths, resp ectiv ely:

!

2

p�

�

n

�

q

2

�

m

�

"

0

; �

D �

�

V

�

!

p�

; (6.25)

and the follo wing disp ersion function ( V

�

� k

B

T =m

�

designates thermal v elo cit y of particles of

sp ecies � ) w as used:

� ( y ) � 2 y exp( � y

2

)

Z

y

0

exp( t

2

)dt ; y

�

�

!

p

2kV

�

;

� ( y ) = 2 y

2

� 4 = 3 y

4

+ :::: for j y

2

j� 1 ; (6.26)

� ( y ) = 1 + 1 = (2 y

2

) + 3 = (4 y

4

) + :::: for j y

2

j� 1 :

Inserting the hermitian part of the dielectric tensor (i.e. retaining real parts of longitudinal

and transv ersal comp onen ts only) in the form of (6.23) in to the equation (6.14) the disp ersion

equation

�

Re

n

"

l

( k ; ! )

o �

�

�

n

2

� Re

n

"

t

( k ; ! )

o �

2

= 0 (6.27)

is obtained with the refractiv e index n de�ned as

n �

ck

!

:

No w, expanding the function � ( y ) in to series for the high-frequency limit ( y � 1) and retaining

only �rst few terms of electronic con tribution to this function (the con tribution of ions is reduced

b y factor of m

e

=m

i

relativ ely to that of electrons) the transv ersal part of the equation (6.27)

b ecomes

n

2

= 1 �

!

2

pe

!

2

or using the refractiv e index de�nition, it can b e written in more familiar form

!

2

( k ) = !

2

pe

+ c

2

k

2

: (6.28)

The just deriv ed equation (6.28) represen ts the disp ersion equation for transv ersal (electromag-

netic) mo de. Additional relations for this mo de are:

e �

k

k

= 0 ; R

t

E

=

1

2

;

expressing transv erse c haracter of this mo de and the ratio b et w een electric and total w a v e energy .

The longitudinal part of Eq. (6.27) giv es t w o w a v e mo des dep ending on the frequency limit

used. F or ! � k V

e

, i.e. y

e

� 1 the expansion of the function � yields disp ersion equation

1 +

1

k

2

�

2

D e

 

1 � 1 �

1

2

2 k

2

V

2

e

!

2

�

3

4

4 k

4

V

4

e

!

4

!

= 0 ; !

2

pe

=

V

2

e

�

2

D e
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!

2

( k ) = !

2

pe

+ 3 k

2

V

2

e

; e =

k

k

; R

l

E

=

!

2

2 !

2

pe

; (6.29)

whic h describ es w ell kno wn Langm uir w a v es.

On the other hand, expanding form ulae for longitudinal part of the dielectric tensor in the limit

k V

i

� ! � k V

e

the ion-sound mo de with the disp ersion equation is

Re "

l

� 1 �

!

2

pi

!

2

+

1

k

2

�

2

D e

;

!

2

( k ) �

k

2

c

2

s

1 + k

2

�

2

D e

; e =

k

k

; R

s

E

=

!

2

2 !

2

pi

; (6.30)

is found. Here, the ion-sound w a v e sp eed c

s

is de�ned b y

c

s

� !

pi

� �

D e

:

6.2 Sp on taneous emission

If w a v e emission pro cesses are tak en in to accoun t then, in general case, the inhomogeneous w a v e

equation

�

h

ij

( k ; ! ) � E

j

( k ; ! ) = �

i

! "

0

j

ext

i

( k ; ! ) (6.31)

with the source term, needs to b e solv ed. Sp eci�cally , j

ext

is assumed to include the the term

with the an ti-hermitian part of the dielectric tensor

j

ext

i

( k ; ! ) = � i! "

0

"

a

ij

( k ; ! ) E

j

( k ; ! ) + :::; (6.32)

whic h includes not only the normal absorption of w a v es, but in sp eci�c situations also negativ e

absorption (ampli�cation) of w a v es. But in the source term can b e also further con tributions.

Remark: Analyzing the equation of con tin uit y for electromagnetic w a v es

@

@ t

 

j B j

2

2 �

0

+

j E j

2

2 "

0

!

+ r � ( E � H ) = � E � j ; (6.33)

it is imp ortan t to see a di�erence in metho ds used in calculation of p o w er radiated in plasma and

in v acuo. In the plasma this p o w er is calculated as a v olume in tegral of the w ork done b y the

extraneous curren t against the electric �eld whic h it generates (the righ t-hand side of Eq. (6.33).

In v acuo the p o w er escaping is found b y in tegrating the radial comp onen t of the P o yn ting v ector

E � H o v er the surface of an in�nite sphere. In the plasma this metho d mak es problem b e-

cause in this case the P o yn ting v ector do es not giv e the total energy ux in the w a v es, in general.
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6.2.1 Energy radiated b y extraneous curren t

The extraneous curren t on the R.H. side of the expression (6.11) represen ts a source term in the

w a v e equation. The w a v e energy U radiated (or absorb ed) b y this source is giv en b y the w ork

of the extraneous curren t against the consisten t electric �eld of the w a v e, i.e.:

U = �

Z

+ 1

�1

Z

V

j

ext

( r ; t ) � E ( r ; t ) d

3

r dt =

(6.34)

= �

Z

+ 1

�1

Z

Re

n

j

ext

( k ; ! ) � E ( k ; ! )

o

d

3

k

(2 � )

3

d !

2 �

;

where the P arcev als p o w er theorem w as used. Solution of the w a v e equation (6.31) can b e

expressed as

E

i

( k ; ! ) = �

i

! "

0

�

� 1

ik

( k ; ! ) � j

ext

k

( k ; ! ) ; (6.35)

where the matrix �

� 1

ik

( k ; ! ) is the in v ersion op erator to the disp ersion tensor (6.12) and according

to the tensor algebra rules it is written do wn using its co-factors (sub-determinan ts of transp osed

matrix) �

ik

as:

�

� 1

ik

( k ; ! ) =

�

ik

( k ; ! )

�( k ; ! )

:

No w, inserting the particular solution (6.35) in to the form ula (6.34), the w a v e energy generated

b y the extraneous curren t densit y j

ext

can b e computed. Con tributions to in tegral o v er ! are zero

(b ecause the in tegral is from the real part of apparen tly imaginary quan tit y) with exceptions of

the p oles of function in in tegrand. Suc h residues ha v e to b e treated carefully , and the in tegration

has to b e p erformed o v er the path in the complex plane according to Landau prescription, i.e.

near the zeros w e appro ximate � as

�( k ; ! ) � ( ! � !

m

( k ) + i 0)

�

@ �

@ !

�

! = !

m

( k )

:

Eac h residue is connected with one zero of �( k ; ! ), and th us eac h p ole represen ts the energy

radiated in one sp eci�c w a v e mo de. Explicit calculation giv es for energy radiated b y extraneous

curren t in w a v e mo de m the expressions:
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:

No w using the Plemelj form ula,

1

! � !

0

� i 0

= P

1

! � !

0

� i� � ( ! � !

0

) ;

where P denotes the Cauc h y principal v alue:

P

1

!

= l im

� ! 0

1

!

for j ! j > j � j ;

P

1

!

= l im

� ! 0

0 for j ! j < j � j ;
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w e can write

U = � 2
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where the bar o v er the p olarisation v ector e

m

( k ) means complex conjugation as usual. Appar-

en tly , the quan tit y

u

m

( k ) =

R

m

E

( k )

"

0

�

�

�

e

m

( k ) � j

ext

( k ; !
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( k ))

�

�

�
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(6.36)

that represen ts the w a v e energy generated b y curren t densit y j

ext

( k ; !

m

( k )) in the mo de m p er

unit cub e of k-space, or its time deriv ativ e { the radiated p o w er

p

m

( k ) = lim

� !1

u

m

( k )

�

(6.37)

will b e more relev an t ones for computation of radiation in particular emission pro cesses.

6.3 Plasma emission mec hanism

Standard radiativ e mec hanisms { the bremsstrahlung and gyrosync hrotron radiation are consid-

ered also for solar corona radio emission, particularly for quiet sun radiation and slo wly-v arying

solar radio comp onen t. Nev ertheless, solar radio bursts that often consist of in tense narro w-band

�ne structures hardly could b e explained in terms of these pro cesses since they ha v e b y their

nature broad-band emission sp ectrum. Moreo v er, there is quan titativ e disagreemen t in v alues

of radio ux predicted considering these mec hanisms.

On the other hand, v ery hot and sparse coronal plasmas ma y , due to lac k of collisions, easily

b e in the state of thermo dynamic non-equilibrium with non-Maxw ellian distribution function,

particularly during solar transien t ev en ts (e.g. ares or CMEs). Under suc h circumstances the

an ti-hermitian part "

a

ij

( k ; ! ) of the dielectric tensor (6.22) can result in negativ e v alues of the

absorption co e�cien t (6.21) in some range of w a v e-v ectors for the sp eci�c w a v e mo de m . One

then sa ys, that distribution function is unstable with resp ect to generation of w a v e mo de m

within some range of k -space. The negativ e absorption is also often called stimulate d or induc e d

emission.

Suc h self-generation of w a v es in unstable plasmas, similar to ligh t ampli�cation in lasers as will

b e seen further, represen ts the basis of so called plasma emission me chanism . Since there are

man y t yp es of distribution functions unstable to large amoun t of w a v e mo des the term \plasma

emission" should b e regarded as generic name for all radiativ e pro cesses based primarily on the

negativ e absorption of particular w a v e mo des.

F or the electromagnetic mo de whic h only can escap e from the coronal plasmas and reac h Earth

radiotelescop es the absorption co e�cien t (6.21) is alw a ys p ositiv e with one exception of so

called electron-cyclotron maser radiation. Th us, some mec hanism of con v ersion b et w een unsta-

ble plasma mo des and the electromagnetic one is required. Suc h mec hanism is p ossible due to



60 Chapter 6: PLASMA EMISSION PR OCESSES

non-linear coupling among v ariations of plasma parameters (e.g. electric and magnetic �eld,

electron densit y etc.) in di�eren t w a v e mo des.

T o sum up, plasma emission mec hanism is generic name for class of radiativ e pro cesses w orking

usually in the follo wing t w o stages:

1. the w a v e mo de m unstable in some range of k -space is generated due to deviation of

distribution function from equilibrium Maxw ellian distribution.

2. this mo de m is con v erted via non-linear coupling in to the electromagnetic one that escap es

solar corona and can b e detected on Earth.

Since the region of unstable w a v es in k -space is usually limited to small exten t and also the

w a v e mo de con v ersion is strongly resonan t pro cess as will b e seen later, resulting radio emission

is narro wband and p ossibly with �ne structures as usually observ ed during solar radio bursts.

Due to men tioned similarit y with radiation ampli�cation in lasers it is con v enien t to adopt

principle of detailed balance b et w een emission and absorption pro cesses used in radiativ e transfer

elemen tary ph ysics and quan titativ ely expressed using the Einstein co e�cien ts. The theory built

on these axioms will b e in usual quan tum notation briey review ed in the follo wing.

6.4 W eak turbulence theory

Stim ulated emission and other induced pro cesses suc h as w a v e-particle or w a v e-w a v e scattering

can b e under some assumptions describ ed consisten tly within the w eak turbulence theory . It is

based on semi-classical formalism { the particles in states with momen tum p are describ ed b y

distribution function f ( p ) while the w a v es in mo de m with w a v e-v ector k is describ ed b y the

o ccupation n um b er N

m

( k ) (n um b er of quan ta of w a v e mo de m in state with momen tum �h k )

de�ned as:

N

m

( k ) =

w

m

( k )

�h !

m

( k )

(6.38)

Suc h description brings not only the adv an tage of uniform treatmen t of v arious induced pro cesses

from the w a v e generation p oin t of view, but also it enables consisten t estimation of bac k-reaction

of particles to w a v e radiation or absorption since the principle of energetic balance is imp osed

on microscopic lev el here. On the other hand, approac h (6.38) to w a v e distribution disables

correct description of coheren t pro cesses since the phase information ab out mo de depicted b y

o ccupation n um b er is lost. Th us, the assumption that phases of w a v es are unimp ortan t { so

called r andom phase appr oximation { pla ys k ey role in the w eak turbulence theory . Coheren t

pro cesses will b e discussed in the next section 6.5, ho w ev er suc h general theory as in case of

incoheren t emission has not b een a v ailable y et.

One ma y start with subset of this general description applied to stim ulated emission of w a v es

due to unstable particle distribution function and its bac k-reaction to w a v e generation { so called

quasi-line ar the ory .

6.4.1 Quasi-linear theory

T ransferring w a v e generation and/or absorption pro cesses on to microscopic lev el one has to use,

according to quan tum ph ysics, probabilistic description of eac h elemen tary emission/absorption

action. This is usually done in tro ducing the Einstein co e�cien ts.
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Einstein co e�cien ts Consider t w o states describ ed b y particle momen ta p and p

�

. Let the

total n um b er of particles in state p is N

p

and N

p

� for the state p

�

, resp ectiv ely . According

to quan tum theory the transition of one particle b et w een states p and p

�

is accompanied b y

emission or absorption of quan tum of w a v es with frequency giv en b y condition

�h! = j E ( p ) � E ( p

�

) j : (6.39)

Here, E ( p

�

) and E ( p ) are particle energies in the states p

�

and p , resp ectiv ely . In case of free

particles the energy of the state p reads in non-relativistic limit

E ( p ) =

p

2

2 m

(6.40)

with m b eing the particle mass, comp onen ts of state v ector p are simply Cartesian comp onen ts

of particle momen tum.

hw (k)

hw (k)

p
+

p
-

p

Fig. 6.1: Absorption and emission pro cesses due to p

+

$ p and p $ p

�

state transitions.

No w supp ose that E ( p

�

) < E ( p ) (see Fig. 6.1) and consider probabilities (transition rates)

w

m;abs

p

�

p

( k ), w

m;sp

pp

�

( k ) and w

m;ind

pp

�

( k ) of transitions b et w een the states p and p

�

due to absorption,

sp on taneous and induced emission of quan tum of mo de m with w a v e-v ector k (referred as ( m; k )

quan tum further) p er unit time, resp ectiv ely . The rates w

m;abs

p

�

p

( k ), w

m;sp

pp

�

( k ) and w

m;ind

pp

�

( k )

represen ts Einstein co e�cien ts for transitions p

*

)

p

�

. The total rate of transitions p

�

! p

due to absorption is

�

d N

m

( k )

d t

= w

m;abs

p

�

p

( k ) N

p

�
N

m

( k ) (6.41)

while total rate of transitions p ! p

�

as consequence of sp on taneous or induced emission reads

d N

m

( k )

d t

= w

m;sp

pp

�

( k ) N

p

+ w

m;ind

pp

�

( k ) N

p

N

m

( k ) : (6.42)

The relations b et w een the Einstein co e�cien ts can b e obtained in the state of thermo dynamic

equilibrium but it should b e noted, that resulting relations are v alid regardless of macroscopic

state of plasma-w a v es system as they are fundamen tal c haracteristics of the p

*

)

p

�

transitions.

In the state of thermo dynamic equilibrium adopted principle of detailed balance applies implying

that rate of c hange of o ccupation n um b er N

m

( k ) of ( m; k ) quan ta due to absorption and emission
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pro cesses during p

*

)

p

�

transitions together is zero. Th us com bining equations (6.41) and

(6.42) one obtain

d N

m

( k )

d t

= w

m;sp

pp

�

( k ) N

p

+ w

m;ind

pp

�

( k ) N

p

N

m

( k ) � w

m;abs

p

�

p

( k ) N

p

�
N

m

( k ) = 0 : (6.43)

In the state of thermo dynamic equilibrium the distribution of w a v e quan ta is giv en b y Planc k

la w

N

m

( k ) =

1

exp

�

�h!

m

( k )

k

B

T

�

� 1

:

Inserting the Planc k la w in to the eq. (6.43), considering

N

p

N

p

�

= exp

 

�

E ( p ) � E ( p

�

)

k

B

T

!

= exp

�

�

�h!

k

B

T

�

;

and taking in to accoun t that (6.43) has to apply for arbitrarily high temp erature T the relation

among three Einsteins co e�cien ts is found:

w

m;abs

p

�

p

( k ) = w

m;sp

pp

�

( k ) = w

m;ind

pp

�

( k ) � w

m

pp

�

( k ) : (6.44)

Quasi-linear equations Using the relations (6.44) the rate the ( m; k ) quan ta are emitted at

in the general (non-equilibrium) state due to all transitions that can b e tak en in to accoun t is

(see eq. 6.43):

d N

m

( k )

d t

=

X

p;p

�

w

m

pp

�

( k )

�

N

p

+ N

m

( k )( N

p

� N

p

� )

�

: (6.45)

Ho w ev er, the actual n um b er of p ossible transitions is m uc h less than it seems from eq. (6.45)

since the quan tum condition

p � p

�

= �h k

selects only allo w ed ones. In particular, the transition rate w

m

pp

�

( k ) can b e expressed as:

w

m

pp

�

( k ) = w

m

( p ; k ) � � ( p � p

�

� �h k ) : (6.46)

No w, one w ould lik e to c hange from discrete notation used hitherto to the con tin uous one. Th us,

the n um b er of particles N

p

in the state p should b e replaced b y distribution function f ( p ) and

double sum in the equation (6.45) b y in tegration o v er p and p

�

. Using the expression (6.46) for

the transition rate w( p ; p

�

; k ) , whic h is no w re-in terpreted as probabilit y of quan tum emission

p er unit cub e of k -space, the in tegration o v er p

�

is p erformed trivially due to � -function. The

expression f ( p � �h k ) app eared in the result can b e for �h k � p expanded in T a ylor series

f ( p � �h k ) = f ( p ) � �h k

i

@ f ( p )

@ p

i

+

1

2

�h

2

k

i

k

j

@

2

f ( p )

@ p

i

@ p

j

+ : : :

When only the terms that are meaningful in classical limit �h 7! 0 (see the paragraph T ransition

rates calculation ) are retained, the �rst quasi-linear equation describing w a v e generation (or

absorption) in plasmas describ ed b y distribution function f ( p ) is �nally found:

d N

m

( k )

d t

=

Z

w

m

( p ; k )

�

f ( p ) + N

m

( k )� h k �

@ f ( p )

@ p

�

d

3

p (6.47)

As w as already men tioned, the adv an tage of this semi-classical approac h consist b esides other

in p ossibilit y of homogeneous description of bac k-reaction of particle distribution to w a v e emis-

sion/absorption pro cesses. On the microscopic lev el, eac h emission or absorption of quan tum of
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w a v es is connected with transition of particle b et w een t w o states. Consequen tly , the time c hange

of n um b er N

p

of particles in state p is giv en b y the di�erence b et w een net rate the quan ta ( m; k )

are emitted at due to transition ( p

+

= p + � h k ) ! p and net rate the quan ta ( m; k ) are emitted

at due to transition p ! ( p

�

= p � �h k ), i.e. (see Fig. 6.1):

d N

p

d t

=

X

k

w

m

p

+

p

( k )

�

N

p

+ + N

m

( k )( N

p

+ � N

p

)

�

�

X

k

w

m

pp

�

( k )

�

N

p

+ N

m

( k )( N

p

� N

p

� )

�

:

(6.48)

T ransferring from the discrete notation to the con tin uous one again and expressing the di�erence

of the t w o sums in the previous relation as a deriv ativ e times the in terv al k , the second quasi-

linear equation describing bac k-reaction of particles distribution to the w a v e emission/absorption

pro cesses reads

d f ( p )

d t

=

Z

�h k �

@

@ p

�

w

m

( p ; k )

�

f ( p ) + N

m

( k ) �h k �

@ f ( p )

@ p

��

d

3

k

(2 � )

3

: (6.49)

T ransition rates calculation T o mak e equations (6.47) and (6.49) meaningful for practical

computation one has to calculate the emission rate w

m

( p ; k ) . It can b e done when one re-

in terprets the p o w er radiated p

m

( k ) considered in the section 6.2.1 as con tin uous pro cess to b e

{ according to quan tum ph ysics ideas { the series of quan ta emissions with emission probabilit y

p er unit time w( p ; k ), i.e.:

p

m

( k ) = �h!

m

( k ) w

m

( p ; k )

Th us, using relations (6.36) and (6.37) the emission rate can b e expressed as:

w

m

( p ; k ) = lim

� !1

1

�

�

1

�h!

m

( k )

R

m

E

( k )

"

0

�

�

�

e

m

( k ) � j

ext

( k ; !

m

( k ))

�

�

�

2

�

(6.50)

In the force-free collision-less plasmas particle mo v es on rectilinear tra jectory . Consequen tly , the

extraneous curren t densit y in the equation (6.50) is to b e iden ti�ed with that giv en b y equation

with rectilinear tra jectory

r ( t ) = r

0

+ v t

inserted. No w using

j ( k ; ! ) = q

Z

1

1

dt

Z

d

3

r exp [ � i ( k � r ) � ! t ] v ( t ) �

3

( r � r ( t )) = q

Z

1

1

dt v ( t ) exp [ � i ( k � r ( t )) � ! t ] ;

j ( k ; ! ) = q v exp ( � i k � r

0

)

Z

1

1

dt exp [ i ( ! � k � v ) t ] = 2 � q v exp ( � i k � r

0

) � ( ! � k � v ) ;

[ � ( ! )]

2

= lim

� !1

�

2 �

� ( ! ) ;

calculation giv es

w

m

( p ; k ) =

2 � q

2

R

m

E

( k )

�h!

m

( k ) "

0

j e

m

( k ) � v j

2

� ( !

m

( k ) � k � v ) (6.51)

Absorption co e�cien t As w as already men tioned, the �rst quasi-linear equation (6.47) ex-

presses the emission or absorption of w a v e quan ta due to medium describ ed b y distribution

function. The rate of o ccupation n um b er c hange can b e separated to t w o parts { one indep en-

den t of the o ccupation n um b er itself

�

d N

m

( k )

d t

�

sp

=

Z

w

m

( p ; k ) f ( p ) d

3

p
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and one linearly prop ortional to it

�

d N

m

( k )

d t

�

ind

= � 

m

( k ) N

m

( k )

where 

m

( k ) reads



m

( k ) = �

Z

w

m

( p ; k ) �h k �

@ f ( p )

@ p

d

3

p : (6.52)

As the sup erscripts o v er eac h part indicate the former part describ es sp on taneous or thermal

w a v e emission whereas the latter b elongs to induced pro cesses. The quan tit y 

m

( k ) is absorp-

tion co e�cien t b y de�nition and its sign dep end on what pro cess prev ails { whether absorption

or stim ulated emission of w a v es. In case of negativ e v alues also the term gr owth r ate is often used.

It is clear from expression (6.52) that in case of p ositiv e slop e of distribution function f ( p ) in the

direction of w a v e-v ector k the absorption co e�cien t 

m

( k ) can reac h negativ e v alues implying

so self-ampli�cation or instabilit y of w a v es. The p ositiv e slop e corresp onds to inequalit y

N

p +� h k

> N

p

in the form ula (6.45), whic h is only discrete form of the �rst quasi-linear equation (6.47), and th us

in v erse p opulation of energetic lev els is required (in unmagnetised plasmas) for self-ampli�cation

to w ork. This feature of the theory of induced pro cesses in plasmas mak es it v ery close to, no w

already classical, ph ysics of lasers as w as already men tioned in the in tro duction to this section.

Probably the most kno wn examples of ampli�cation of w a v es due to suc h in v erse p opulation of

energetic lev els in the �eld of plasma ph ysics are the \Bump-in-T ail" or \Tw o-stream" instabil-

ities of Langm uir w a v es. The p ositiv e slop e of the particle distribution function is reac hed b y

energetic particle stream propagating through the thermal bac kground plasmas in this case.

Then, the resonan t condition con tained implicitly due to � -function in the relation (6.51) can

b e ful�lled only if

v � v

'

(6.53)

where v

'

= ! ( k ) =k is the w a v e phase v elo cit y . Since refractiv e index for electromagnetic w a v es

n

T

( k ) < 1 for all k -v ectors, negativ e absorption of this mo de is forbidden in the case of unmag-

netized plasmas as a consequence of apparen t inequalit y

v < c

Hence, the mo de con v ersion b et w een w a v es that can satisfy the condition (6.53), and their

ampli�cation is therefore p ossible, and the electromagnetic ones is required for plasma emission

pro cess to w ork.

6.5 Coheren t pro cesses

The w eak-turbulence theory just review ed in the previous section is capable to describ e man y

t yp es of particle-w a v e or w a v e-w a v e in teractions, pro vided that w a v e �eld is su�cien tly describ ed

b y o ccupation n um b ers { i.e. that w a v e phases are unimp ortan t. As w as sho wn, suc h a condition

is ful�lled in case of broad-band w a v e distributions as after the coherence time �

c

the phases of

w a v es are completely mixed. Nev ertheless, sometimes the region of unstable w a v es in the k -space

is so narro w, that b efore the phase mixing state is reac hed the w a v es ha v e gro wn up substan tially .

F or suc h cases the w eak-turbulence theory is inapplicable and its departure from the realit y can

b e separated in to t w o kinds of problems:
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� the theory predicts qualitativ ely some pro cess (e.g. instabilit y) to b e running, but further

quan titativ e analysis giv es wrong results { usually predicted gro wth rates of unstable w a v es

are lo w er than in realit y .

� the w eak-turbulence v ersion of coheren t pro cess do es not exist at all.

Hence, pro cesses where also w a v e phases are imp ortan t ha v e to b e treated another w a y . Un-

fortunately , the general theory of coheren t pro cesses { as a coun terpart of the w eak-turbulence

theory { has not b een established y et. One particular case is discussed in the follo wing.

6.5.1 Strong w a v e turbulence

Strong w a v e turbulence is term for non-linear w a v e-w a v e in teractions that can not b e su�cien tly

describ ed within the w eak-turbulence theory just due to great imp ortance of w a v e phases for

pro cesses in v olv ed. The �rst description of coheren t w a v e-w a v e in teractions is that b y Zakharo v

who treated the non-linear in teraction b et w een Langm uir and ion-sound w a v es. His approac h

w as roughly as follo ws:

Firstly , let us consider linear Langm uir and ion-sound w a v es in homogeneous plasmas. The time

ev olution of plasma parameters v ariations in these w a v es can b e deriv ed most simply within the

plasma t w o-uid theory or alternativ ely they can b e guessed F ourier transforming the disp ersion

relations (6.29) and (6.30) for relev an t w a v es in to the co ordinate space. Hence, the electric �eld

v ariation in Langm uir w a v es is go v erned b y equation

@

2

E

@ t

2

� 3 V

2

e

4 E + !

2

pe

E = 0 (6.54)

and similarly the electron densit y v ariation n in the ion-sound w a v es ful�ls (for w a v elengths

� � �

D e

) relation

@

2

n

@ t

2

� c

2

s

4 n = 0 : (6.55)

No w supp ose that b oth w a v e mo des propagate through plasma sim ultaneously . Due to ion-sound

w a v e the electron densit y is no w distributed non-uniformly and as a consequence of the plasma

frequency de�nition (6.25) the last term !

2

pe

E in the eq. (6.54) dep ends explicitly on time and

space. Hence, the equation (6.54) can b e rewritten in the form

@

2

E

@ t

2

� 3 V

2

e

4 E + !

2

pe

E = � !

2

pe

n ( r ; t )

n

0

E (6.56)

where the plasma frequency !

pe

is no w re-in terpreted as that connected with the bac kground

a v erage densit y n

0

. Equation (6.56) describ es Langm uir w a v e electric �eld ev olution under the

inuence of ion-sound densit y p erturbation. The e�ect of densit y distribution can b e estimated

qualitativ ely ev en without solving it b y analogy with the Sc hr• odinger w a v e equation describing

an electron inside the crystal lattice (c.f. equation 6.59). Iden tifying the total densit y n

0

+ n with

crystal single-electron p oten tial one �nds, that the Langm uir electric �eld tends to concen trate

itself in the densit y holes, similarly as electron probabilit y densit y in the crystal is high in places

of lo w p oten tial (in the vicinit y of ions lo cations).

On the other hand, non-homogeneous (a v eraged o v er w a v elength) electric �eld inuences densit y

distribution due to non-linear p onderomotiv e force F

N L

whose v olume densit y is (e.g. ?? ):

f

N L

= �

!

2

pe

!

2

grad

"

0

h E

2

i

2

: (6.57)
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where h i denotes the fast-time (on scales of sev eral plasma p erio d) a v eraging. As a consequence,

a source term has to app ear on the R.H. side of equation (6.55), i.e.

@

2

n

@ t

2

� c

2

s

4 n =

1

m

i

div f

N L

: (6.58)

Since c hanges of electric �eld amplitude and ion-sound densit y v ariations are slo w in comparison

with plasma frequency it is con v enien t to separate the instan taneous Langm uir electric �eld

time ev olution in to the fast (on plasma frequency) v ariations and the slo wly v arying complex

amplitude

E ( r ; t ) =

1

2

h

E ( r ; t ) � exp( � i!

pe

t ) + E ( r ; t ) � exp(+ i!

pe

t )

i

Using this separation and relation (6.57) for p onderomotiv e force, further omitting the second

deriv ativ e of slo wly c hanging complex amplitude E ( r ; t ) the equations (6.56) and (6.58) can b e

rewritten in the form:

i

@ E

@ t

+

3 V

2

e

2 !

pe

4E = !

pe

n

2 n

0

E (6.59)
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@ t

2
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2

s

4 n =

"

0

4 m

i

4jE j

2

: (6.60)

The relations (6.59, 6.60) are kno wn as set of Zakharo v equations and describ e coheren t non-

linear in teractions of Langm uir and ion-sound w a v es.



Chapter 7

Beams and t w o-stream instabilit y

a) Beams in the solar atmosphere

See �le b eams.ps

Doplnit obrazky do SP A3.tex

Reference

Karlic k � y, M: 1997, E�ects of particle b eams in the solar atmosphere, Space Sci. Rev. 81, 143-172.

b) Tw o-stream instabilit y

Here the CGS unit system is used.

Disp ersion equation

Let at times t < 0 a plasma exists in a stationary state, i.e. the plasma densit y , plasma v elo cit y ,

magnetic and electric �elds are:

n = n

0

; v = v

0

; B = B

0

; E = E

0

: (7.1)

Then at times t > 0 small p erturbations app ear:

n = n

0

+ n

0

; v = v

0

+ v

0

; B = B

0

+ B

0

; E = E

0

+ E

0

: (7.2)

Let us assume that these p erturbations ha v e p erio dic form in time as:

X

0

( t; r ) = X

0

( r ) exp ( � i! t ) ; (7.3)

where r is the p osition and ! is the frequency .

Then the mass conserv ation, momen tum and Maxw ell equations can b e linearized. Th us, a set

of equations for v ariables of zero-, �rst- and higher-orders of magnitude can b e deriv ed. The set

of equations with �rst-order v ariables follo ws:
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;
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r � E

0

=

i!

c

B

0

;

r � E

0

= 4 � en

0

r � B

0

= 0 ; (7.4)

where the F ourier transform in time ( @ =@ t ! � i! ) w as done.

Oscillations of homogenous plasma

Let us assume a 1-D case with B

0

= 0 ; v

0

= 0 ; r n

0

= 0 and the spatial p erturbation in the

form: X

0

( r ) � exp ( ik r ). Then from the ab o v e men tioned equations follo w:
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;

ik E
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;

No w, from these equations the disp ersion equation for so called plasma oscillations can b e written

as:
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0

m

: (7.5)

Electromagnetic w a v es in homogenous plasma

F urthermore w e can write
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; (7.6)

whic h is the disp ersion equation for the electromagnetic w a v es in the plasma without static

magnetic �eld.

Disp ersion equation for plasma with mo ving comp onen ts

Let us consider a p oten tial p erturbation of the electric �eld

E = �r  ; E = � i k  ;
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and let us lo ok what a p erturbation of the electric c harge densit y �

e

causes the electric �eld

p erturbation, i.e. let us lo ok for the function � in the relation �

e

= � .

In this case the linearized MHD equation has a follo wing form:
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;

Using r v

0

= 0 and E

0

= �r  

0

the equation can b e rewritten in to
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;

No w, w e can express the densit y and plasma v elo cit y p erturbations as
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;

Com bining these equations the p erturbation of c harge densit y is
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; (7.7)

i.e. the function � for some sp eci�c plasma comp onen t � can b e expressed as
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: (7.8)

Let us put these results in to the P oisson equation. Then
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In the last relation the term in brac k ets is the disp ersion equation whic h can b e formally written

as

�
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; (7.10)

where con tributions of mo ving comp onen ts of plasma in to the disp ersion equation are
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Beam instabilities

a) Instabilit y of t w o coun ter-streaming b eams

Let us consider t w o coun ter-streaming b eams of the same densit y , i.e.

n

01

= n

02

= n

0

; v

01

= � v

02

= v : (7.12)

in this case the disp ersion equation is

1 �

!

2

p

( ! � k

k

v )

2

�

!

2

p

( ! + k

k

v )

2

= 0 : (7.13)

This equation leads ti the bi-quadratic equation with the follo wing solutions:

! = �

q

( k

k

v )

2

+ !

2

p

� !

p

( !

2

p

+ 4 k

2

k

v

2

)

1 = 2

: (7.14)

If

( k

k

v )

2

+ !

2

p

< !

p

( !

2

p

+ 4 k

2

k

v

2

)

1 = 2

;

i.e. if

( k

k

v )

4

+ 2( k

k

v )

2

!

2

p

+ !

4

p

< !

2

p

( !

2

p

+ 4 k

2

k

v

2

) ;

and i.e. if k

k

<

p

2 !

p

=v then there is one solution with I m ! > 0, whic h for the p erturbation in

the form X ( t ) � exp

� i! t

means an instabilit y . F urthermore, if k

k

� !

p

=v then the term under

the ro ot can b e written as

( k

k

v )

2

+ !

2

p

� !

2

p

(1 +

2 k

2

k

v

2

!

2

p

) = ( k

k

v )

2

� 2( k

k

v )

2

;

whic h giv es the gro wth rate of the instabilit y as

I m ! = j k

k

v j : (7.15)

On the other hand, the maxim um gro wth rate can b e deriv ed as follo ws:

d

dk

k

(( k

k

v )

2

+ !

2

p

� !

p

( !

2

p

+ 4 k

2

k

v

2

)

1 = 2

) = 0 ;
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2

k

k

�

!

p

2

8 k

k

v

2

( !

2

p

+ 4 k

2

k

v

2

)

1 = 2

= 0 ;

!

2

p

+ 4 k

2

k

v

2

= 4 !

2

p

;

k

k max

=

p

3

2

!

p

v

: (7.16)

No w, putting this k

k max

in to the relation for ! (Eq.7.14), the maxim um gro wth rate is



max

= !

p

= 2 : (7.17)
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b) Beam-plasma instabilit y

Let us assume a b eam whic h densit y is m uc h lo w er than that of bac kground plasma ( n

1

� n

0

).

Then the disp ersion equation is

1 �

!

2

pe

!

2

�

�!

2

pe

( ! � k

k

v )

2

= 0 : (7.18)

where !

2

pe

= 4 � e

2

n

0

=m

e

, � = n

1

=n

0

� 1, v is the b eam v elo cit y .

Solutions:

a) The non-resonan t case, i.e. the case with !

pe

6= k

k

v .

The solution can b e deriv ed as follo ws:

( ! � k

k

v )

2

� ( ! � k

k

v )

2

!

2

pe

!

2

� �!

2

pe
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k
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2
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;

( ! � k

k
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2

pe

1
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!

2
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!

2

;

! � k

k

v = �

q

�!

2

pe

1

q

1 �

!

2

pe

!

2

;

! = k

k

v �

p

�

!

pe

r

1 �

!

2

pe

( k

k

v )

2

; (7.19)

where, in the last equation, the appro ximate relation ! ' k

k

v w as used.

As can b e seen, if k

k

v < !

pe

the solution is complex and the gro wth rate is

 =

p

�

!

pe

q

( !

pe

=k

k

v )

2

� 1

; (7.20)

b) The resonan t case, i.e the case with ! ' k

k

v ' !

pe

.

Let us assume that the frequency correction is

j !

(1)

j�j !

pe

� k

k

v j ;

Then the disp ersion equation can b e written as

1 �

!

2

pe

!

2

�

�!

2

pe

( !

pe

+ !

(1)

� k

k
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2

= 0 ; = � !

2

!

2

� !

2
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�

�!

4

pe

( !

(1)

)

2

= 0 :
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Using no w

!

2

� ( !

pe

+ !

(1)

)

2

= !

2

pe

+ 2 !

(1)

!

pe

;

w e can con tin ue in the simpli�cation of the disp ersion equation as follo ws

2 !

(1)

!

pe

�

�!

4

pe

( !

(1)

)

2

= 0 ;

(( !

(1)

)

3

�

�!

2

pe

2

= 0 ;

whic h solution is

x

1 ; 2 ; 3

=

�

1 = 3

!

pe

2

1 = 3

(cos � + i sin � )

1 = 3

; � = 0 ; 2 � ; 4 �

Th us the correction of real frequency and gro wth rate of the instabilit y ( �= 3 = 4 � = 3) are

R e!

(1)

= � !

pe

�

1 = 3

2

4 = 3

; (7.21)

 = !

pe

p

3 �

1 = 3

2

4 = 3

: (7.22)

c) Buneman instabilit y

In this case the electron plasma comp onen t is in a relativ e motion to the proton comp onen t. In

this case the disp ersion equation is

1 �

!

2

pe

( ! � k

k

v )

2

�

!

2

pp

( ! )

2

= 0 ; (7.23)

where !

2

pp

=!

2

pe

� 1. Using the same pro cedure as in the previous case for � = m

e

=m

p

(the

electron-proton mass ratio) the resonan t gro wth rate can b e obtained as

 = !

pe

p

3( m

e

=m

i

)

1 = 3

2

4 = 3

: (7.24)

d) Kinetic b eam instabilit y

If a b eam has some disp ersion in v elo cities v

T 1

whic h is greater than �

1 = 3

v , where � = n

1

=n

0

is

the ratio of b eam and plasma densities and v is the b eam v elo cit y , then the results for the ab o v e

men tioned b eam-plasma instabilit y are not v alid and the kinetic approac h to this instabilit y is

necessary . In this case the instabilit y has a maxim um for k � !

pe

=v with the gro wth rate

 '

!

pe

2

�

�

v

v

T 1

�

2

: (7.25)

Comparing the relations (1.22) and (1.25) w e can see that the gro wth rate of the kinetic insta-

bilit y is lo w er than that of the MHD one, and the b oth gro wth rates are equal if v

T 1

= �

1 = 3

v .



Chapter 8

Numerical particle co de

A t the end of �fties and at the b eginning of sixties of the 20-cen tury John Da wson and Oscar

Buneman started to sim ulate a plasma b y a big amoun t of n umerical particles whic h w ere

electromagnetically in teracting. While at the b eginning man y scien tists expressed scepticism to

this approac h, no w it is w ell dev elop ed researc h �eld.

T o ful�ll basic c haracteristics of the plasma it is necessary to ha v e a system whic h is large enough

(its length L � �

D

) and the n um b er of n umerical particles in the Deb y e sphere is m uc h greater

than 1. It needs enormous amoun t of particles, esp ecially in 3-dimensional case. Muc h b etter

situation is in 1-D case and that is wh y all studies in this �eld started with the 1-D system

where the n um b er of particles in the Deb y e sphere is N

D

= n�

D

only; n is the plasma particle

densit y . But generally , a relativ ely small n um b er of particles in the system generates high lev el

of noise.

In principle, it is p ossible to build a n umerical piece of plasma considering particles whic h in teract

with all other particles, but this n umerical approac h is v ery time and memory consuming.

Therefore a mo di�ed metho d called as particle-in-cell is used.

As an example, in the follo wing, let us presen t a simple 1-D electrostatic co de. A sc heme of this

n umerical co de is sho wn in Fig. 8.1. P articles are distributed in the system of the length L whic h

is m uc h greater than �

D

; usually L � 100 �

D

. In eac h Deb y e length is as minim um 100 electrons

and 100 protons forming th us a quasi-neutral plasma. As kno wn from n umerical exp erimen ts

these n um b ers are su�cien t to ful�lled the condition ab out a big n um b er of particles in the

Deb y e sphere. Th us in our system sim ulating plasma w e ha v e ab out 10000+10000 n umerical

particles. Although, the electron-proton ratio is 1836, in n umerical sim ulations this ratio is

usually smaller in order to accelerate some plasma pro cesses. On the other hand, this fact needs

to b e tak en in to accoun t when w e in terpret results of n umerical sim ulations.

First in the co de, the initial state of the system needs to b e generated; ev ery particle needs

to ha v e initial p osition and v elo cit y . P ositions of particles can b e regular or b y some w a y

mo di�ed, e.g. b y the presence of initial electrostatic w a v e in some tasks. In the case of cold

plasma all v elo cities are zero, otherwise Maxw ell distribution of particles corresp onding to some

temp erature is generated. Then w e need to compute electrostatic forces among particles. As

men tioned ab o v e a direct metho d through the Coulom b la w is not used in suc h a mo del. Here,

electrostatic forces are computed as a di�erence of the electrostatic p oten tial computed from

P oisson equation. F or this purp ose the c harge densit y is calculated on the grids (h undreds

grids p er system) using some w eigh ting pro cedure. Kno wing the electric c harge distribution

in the system the F ourier transform is applied and the P oisson equation is solv ed in k-space.

Then the in v erse F ourier transform is made, and from the electrostatic p oten tial the electric

�eld is computed. Because the fast F ourier transform is used then it is useful to use p o w ers

of 2

n

(128, 256, 512 ..) for the n um b er of system grids. F urthermore, usually the p erio dic

b oundary conditions are used. Using no w further w eigh ting pro cedure the force on ev ery particle

73
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Fig. 8.1: One time step in a particle sim ulation program. The particles are n um b ered i = 1,2,...., NP; the grid

indices are j .

is calculated from the electric �eld computed on grids. Then solving Newton equation w e obtain

new p ositions and new v elo cities of all particles, and the full time step � t is �nished and further

step can start. During computations it is imp ortan t to record some imp ortan t v ariables for

diagnostic purp oses.

No w let us describ e the 1-D electrostatic co de in more details.

In tegration of the equations of motion

One commonly used in tegration is the leap-frog metho d. The use of high-order metho ds (e.g.

Runge-Kutta) is p ossible, but they m ultiply the op erations tak en for eac h particle.

The t w o �rst-order di�eren tial equations to b e in tegrated separately for eac h particle are

m

d v

dt

= F ; (8.1)

d x

dt

= v ; (8.2)

where F is the force. These equations are replaced b y the �nite-di�erence equations

m

v

new

� v

ol d

� t

= F

ol d

; (8.3)

x

new

� x

ol d

� t

= v

new

: (8.4)

In the leap-frog metho d v alues of x and v are not kno wn at the same time, they are shifted

eac h other b y � t= 2 (Fig. 8.2). The user m ust sho w care in at least t w o w a ys: �rst, initial

conditions for particle v elo cities and p ositions giv en at t = 0 m ust b e c hanged; w e push v (0)

bac k to v ( � � t= 2) using the force F calculated at t = 0; second, the energies calculated from v

(kinetic) and x (p oten tial, or �eld) m ust b e adjusted to app ear at the same time.

The leap-frog metho d has error, with the error v anishing as � t ! 0. Applying this metho d

to in tegration of a simple harmonic oscillator of frequency !

0

, w e will �nd that there is no

amplitude error for !

0

� t � 2 and that the phase adv ance for one step is giv en b y

!

0

� t +

1

24

( !

0

� t )

3

+ ::: (8.5)
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Fig. 8.2: Sk etc h of leap-frog in tegration metho d sho wing time-cen tering of force F while adv ancing v , and of

v while adv ancing x .

Remark: This relation follo ws from t w o half-time steps and T a ylor series for one half step as

sin

�

!

0

� t

2

�

� !

0

� t

2

�

1

6

�

!

0

� t

2

�

3

+ ::: (8.6)

The error terms dictate a c hoice of !

0

� t � 0 : 3 in order to observ e oscillations or w a v es for some

tens of cycles with acceptable accuracy .

Although the n umerical system is 1-dimensional, in the limited sense (with the static magnetic

�eld B p erp endicular to the x-co ordinate of the system) w e can consider t w o comp onen ts of

v elo cities ( v

x

; v

y

). In this case the force F has t w o parts,

F = F

el ectr ic

+ F

mag netic

= q E + q ( v � B ) : (8.7)

Here the electric �eld E and magnetic �eld B are to b e calculated at the particle p osition.

Hence, using a spatial grid, w e m ust in terp olate E and B from the grid to the particle. As

w e will see later, the electric force on a particle will dep end not only on the distance to other

particles (ph ysical) but also on the p osition within the cell (nonph ysical).

F or our 1-D case, let us consider the particle displacemen t to b e along x , and that w e ha v e

v elo cities v

x

and v

y

, with a uniform static magnetic �eld B

0

, along z (Fig. 8.3). The q ( v � B )

force is simply a rotation of v ; that is, v do es not c hange in magnitude. Ho w ev er, the q E = q E

x

x

force do es alter the magnitude of v ( v

x

); E

y

=0. Hence, a ph ysically reasonable sc heme whic h

is cen tered in time is as follo ws (with t

0

and t

00

as dumm y v ariables, t � � t= 2 < t

0

< t

00

< t + � t= 2):

Half ac c eler ation

v

x

( t

0

) = v

x

�

t �

� t

2

�

+

�

q

m

�

E

x

( t )

�

� t

2

�

(8.8)

v

y

( t

0

) = v

y

�

t �

� t

2

�

R otation
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Half ac c eler ation

v

x

�

t +

� t

2

�

= v

x

( t

00

) +

�

q

m

�

E

x

( t )

�

� t
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�

(8.10)

v

y

�

t +

� t

2

�

= v

y

( t

00

)

The angle of rotation is

� � = � !

c

� t (8.11)

where !

c

is the cyclotron frequency .

Fig. 8.3: The v

x

and v

y

plane, sho wing the q ( v � B ) force normal to v , whic h results in a rotation of v , with

no c hange in sp eed magnitude with d� =dt < 0 for ( q =m ) > 0, B

0

> 0.

In tegration of the �eld equations

Starting from the c harge densit y as assigned to the grid-p oin ts, w e no w obtain the electric �eld.

In our 1-D case w e need to solv e the follo wing di�eren tial equations

E = �r �; E

x

= �

@ �

@ x

; (8.12)

r � E =

�

�

0

;

@ E

x

@ x

=

�

�

0

; (8.13)

whic h are com bined to obtain P oisson's equation

r

2

� = �

�

�

0

;

@

2

�

@ x

2

= �

�

�

0

: (8.14)
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One approac h is solv e the �nite di�erence v ersions of these equations as

E

j

=

�

j � 1

� �

j +1

2� x

(8.15)

�

j � 1

� 2 �

j

+ �

j +1

(� x )

2

= �

�

�

: (8.16)

A v ery p o w erful approac h for p erio dic systems is to use a discrete F ourier series for all grid

quan tities. This approac h also pro vides spatial sp ectral information on � , � , and E whic h is

useful in relating results to plasma theory , and whic h also allo ws con trol (smo othing) o v er the

sp ectrum of �eld quan tities.

In suc h t yp es of computations the fast F ourier transform is e�ectiv ely used. This transformation

allo ws us to obtain � ( k ) from � ( k ) from simple equation (transformed P oisson equation)

� ( k ) =

� ( k )

�

0

k

2

: (8.17)

The next step is to tak e the in v erse F ourier transform of � ( k ) in order to obtain � ( x ) and then

E ( x ) using equation (8.15).

The solution using a �nite F ourier series starts from the c harge densities at the grid p oin ts, with

v alues � ( X

j

) ; j = 0, 1, 2, ..., NG -1 for a total of NG v alues. Letting the grid functions G ( X

j

)

(standing for �eld or p oten tial or c harge densit y) b e p erio dic, G ( X

j

) = G ( X

j

+ L ), then the

�nite discrete F ourier transform is (sum on X

j

= j � x )

G ( k ) = � x

N G � 1

X

j =0

G ( X

j

) e

� ik X

j

: (8.18)

The in v erse transform is (the sum is on k = n (2 � =L ))

G ( X

j

) =

1

L

N G= 2 � 1

X

n = � N G= 2

G ( k ) e

ik X

j

; (8.19)

whic h pro duces NG distinct v alues of G ( X

j

).

W eigh ting pro cedures

In the n umerical co de, it is necessary to calculate the c harge densit y on the discrete grid p oin ts

from the con tin uous particle p ositions and then to calculate the force at the particle p ositions

from the �elds kno wn on grid p oin ts. There are sev eral metho ds of suc h w eigh ting.

Zer o-or der weighting

In this pro cedure (Fig. 8.4), w e simply coun t the n um b er of particles within distance � � x= 2

(one cell width) ab out the j

th

grid p oin t and assign that n um b er [call it N ( j )] to that p oin t,

that is, the grid densit y is simply n

j

= N ( j ) = � x . The common name for this w eigh ting is

nearest-grid-p oin t. The electric �eld to b e used in the force is that at X

j

, for all particles in the

j

th

cell.

As a particle mo v es in to the j

th

cell (through cell b oundaries at x = X

j

� � x= 2), the grid densit y

due to that particle jumps up; as the particle mo v es out ( x > X

j

+ � x= 2 or x < X

j

� � x= 2),

the grid densit y jumps do wn. W e can see t w o e�ects. One is that the particle app ears to ha v e

a rectangular shap e with a width of � x . This leads us to think that w e ha v e a collection of
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�nite-size particles; hence, the ph ysics observ ed will b e that of suc h particles rather than that

of p oin t particles. Because close encoun ters b et w een plasma particles are rare (i.e., for man y

particles in a Deb y e length, the plasma parameter N

D

� 1), this new ph ysics hardly alters the

basic plasma e�ects to b e studied. The second e�ect is that the jumps up and do wn as a particle

passes through a cell b oundary will pro duce a densit y and an electric �eld whic h are relativ ely

noisy b oth in space and time; this noise ma y b e in tolerable in man y plasma problems therefore

a b etter w eigh ting is necessary to lo ok for.

Fig. 8.4: Zero-order particle and �eld w eigh ting, also called nearest-grid-p oin t. P articles in the j

th

cell, that

is, with p ositions x

i

�X

j

� � x= 2, are assigned to X

j

to obtain grid densit y n ( X

j

). All of these particles are acted

on b y the �eld at X

j

, E ( X

j

). b) The densit y n

j

( X

j

) at p oin t X

j

due to a particle at x

i

, as the particle mo v es

through the cell cen tered on X

j

. This densit y ma y b e in terpreted as the e�ectiv e particle shap e.

First-or der weighting

This pro cedure smo oths the densit y and �eld uctuations, whic h reduces the noise (relativ e

to zero-order w eigh ting), but requires additional exp ense in accessing t w o grid p oin ts for eac h

particle, t wice p er step. The c harged particles seem to b e �nite-size rigid clouds whic h ma y pass

freely through eac h other. The mo del is called cloud-in-cell (Fig. 8.5). F or total cloud c harge of

q

c

, the part assigned to j is

q

j

= q

c

�

� x � ( x

i

� X

j

)

� x

�

= q

c

X

j +1

� x

i

� x

; (8.20)

and the part assigned to j + 1 is

q

j +1

= q

c

�

x

i

� X

j

� x

�

: (8.21)

The net e�ect is to pro duce a triangle particle shap e whic h has width 2� x .

There are also higher-order w eigh ting, but at the cost of more computations.

Initial state

No w, few w ords ab out initiating the program. In all cases w e need to c ho ose:

� The n um b er of particles and grid cells.

� The w eigh ting.

� The desired initial distribution functions of electrons, protons and further comp onen ts

(e.g. a b eam)(random or ordered).
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Fig. 8.5: First-order particle w eigh ting. The �nite-size c harged particle, or cloud, is one cell wide, with cen ter

at x

i

. This w eigh ting puts that part of the cloud whic h is in the j

th

cell an X

j

, fraction (a), and that part whic h is

in the ( j + 1)

th

cell at X

j +1

, fraction (b). This w eigh ting is the same as applying nearest-grid-p oin t in terp olation

to eac h elemen tal part. (b) The grid densit y n

j

( x

i

) at p oin t x

i

as the particle mo v es past X

j

, again displa ying

the e�ectiv e particle shap e.

The next step is to place the particles in phase space ( x ; v ) so that the problem desired is

prop erly set up to run.

A cold, uniform p erio dic plasma of mobile electrons and immobile protons ( M

p

=m

e

! 1 ) is

simplest. The electrons can b e put in uniformly . But sometimes w e need in the initial state a

plasma w a v e. It can b e done b y p erturbing the uniform p ositions x

i 0

b y

x

i

( t = 0) = x

i 0

+ x

i 1

cos ( k

s

x

i 0

) ; (8.22)

where k

min

� k

s

� k

max

is some w a v e v ector for whic h w e w an t the plasma b eha vior of the

system.

Diagnostics

F or an in terpretation of n umerical results the diagnostic output of the co de is v ery imp ortan t.

Information of our in terest can b e as follo ws:

a) F or particles:

� Phase space, v

x

v ersus x .

� V elo cit y space, v

y

v ersus v

x

.

� densit y in v elo cit y , f ( v ) v ersus v , or f ( v

2

) v ersus v

2

, or ln ( f ( v

2

)) v ersus v

2

.

b) F or grid quan tities:

� Charge densit y � ( x ) v ersus x or particle densit y n ( x ) v ersus x .

� P oten tial � ( x ) v ersus x .

� Field E ( x ) v ersus x .

� distribution of electrostatic energy 1 = 2 �

k

�

�

k

v ersus k .

F urthermore, the result at the end of a run will consist of plots of histories of v arious quan tities

v ersus time, suc h as:
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� Electrostatic energy

P

k

1 = 2 �

k

�

�

k

.

� P article kinetic energy b y sp ecies

P

i

1 = 2 m

i

v

2

i

.

� P article drift energy

P

i

1 = 2 m

i

< v

i

>

2

.

� P article thermal energy

P

i

1 = 2 m

i

( < v

2

i

> � < v

i

>

2

).

� T otal energy , electrostatic plus particle.

� Mo de plots, 1 = 2 �

k

�

�

k

, for eac h k with plots v ersus ! - disp ersion curv es.
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Solar radio bursts

9.1 Classi�cation of solar radio bursts

Solar radio bursts are observ ed in a v ery broad range of frequencies (see Fig. 9.1). Based on

their sp ectral and time c haracteristics they are classi�ed in to �v e main classes:

a) T yp e I I I radio bursts

An example of these bursts is sho wn in Fig. 9.2. These bursts are c haracterized b y v ery fast

frequency drifts ( � 20 MHz s

� 1

in the metric range) on the dynamic radio sp ectrum. The

observ ed drifts corresp ond to exciter sp eeds b et w een 0 : 2 c and 0 : 6 c , where c is the sp eed of ligh t.

These bursts are observ ed at the b eginning of solar ares, in so called impulsiv e phase and they

are considered as a signature of electron b eams propagating from the are site up w ards in to the

in terplanetary space.

b) T yp e I I radio bursts

An example of this burst is sho wn in Fig. 9.3. These bursts are c haracterized b y relativ ely

slo w frequency drifts ( � 1 MHz s

� 1

in the metric range) on the dynamic radio sp ectrum. The

observ ed drifts corresp ond to exciter sp eeds b et w een 500 km s

� 1

and 2000 km s

� 1

. These bursts

are observ ed after the impulsiv e phase and they are considered to b e a signature of the MHD

are sho c k propagating from the are site up w ards in to the in terplanetary space.

c) T yp e IV radio bursts

These broadband radio bursts (or con tin uum bursts) are t ypical bursts observ ed during solar

ares, esp ecially in long-lasting ones. While the high-frequency t yp e IV bursts are generated b y

the gyro-sync hrotron mec hanism of sup erthermal electrons trapp ed in magnetic are lo ops, on

lo w er frequencies (those with relativ ely narro w band emission) are probably generated b y the

plasma emission pro cesses.

There are man y �ne structures of these bursts, see the follo wing examples.

d) T yp e I radio bursts - noise storm

These bursts express activit y in solar activ e regions. They are observ ed in the metric range only

and they consist of a con tin uum radiation and a cloud of short-lasting ( < 1 s) and narro wband

( � 5 MHz) bursts.

81
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a) T yp e V radio bursts

The t yp e V burst is similar to the t yp e I I I burst, but its duration is longer ( � 1 min). It is

b eliev ed that some electrons of fast electron b eam are trapp ed for some time in coronal magnetic

trap and th us the radio emission is prolonged.

Radio bursts during stellar ares

In Fig. 9.4 an example of the dynamic radio sp ectrum of the AD Leo star are in the decimetric

range is sho wn for comparison.

Fig. 9.1: Sc hematic represen tation of di�eren t solar radio bursts.
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Fig. 9.2: T yp e I I I solar radio burst observ ed at T remsdorf Observ atory , German y on Ma y 17, 1999 (courtesy

Dr. A. Klassen).

Examples of solar radio bursts

In this c hapter new results and new t yp es of solar radio bursts are presen ted.

a) High-frequency zebras

See �le zebras.ps

Reference:

Sa w an t, H.S., Karlic k � y, M., F ernandes, F.C.R., Cecatto, J.R.: 2002, Observ ation of harmoni-

cally related solar radio zebra patterns in the 1-4 GHz frequency range, Astron. Astroph ys. 396,

1015-1018.

b) Narro wband dm-spik es

See �le spik es.ps

Reference:

B� arta, M., Karlic k � y, M.: 2001, T urbulen t plasma mo del of the narro wband dm-spik es, Astron.

Astroph ys. 379, 1045-1051.

c) Lace bursts

See �le laces.ps
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Fig. 9.3: Dynamic sp ectrum of t yp e I I solar radio burst observ ed at T remsdorf Observ atory on Octob er 22,

1999 (courtesy Dr. A. Klassen).

Reference:

Karlic k � y, M., B� arta, M., Ji � ri � ck a, K., M � esz� aroso v� a, H., Sa w an t, H.S., F ernandes, F.C.R., Cecatto,

J.R.: 2001, Radio bursts with rapid frequency v ariations - Lace bursts, Astron. Astroph ys. 375,

638-642.
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Fig. 9.4: Decimetric radio sp ectrum of the AD Leo star obtained b y Arecib o radioheliograph.
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Solar ares and coronal mass

ejections

Examples of solar are studies

a) Magnetic �eld reconnection

See �le reconnection.ps

Reference:

Karlic k � y, M.: 2002, Plasma resonance surfaces in the magnetic �eld reconnection and radio �ne

structures, Solar Ph ysics, in press.

b) Plasmoid ejection

See �le plasmoid.ps

Reference:

Karlic k � y, M., F� arn � �k, F., M � eszaroso v� a, H.: 2002, High-frequency slo wly drifting structures in

solar ares, Astron. Astroph ys. 395, 677-683.

c) Impact p olarization of optical c hromospheric lines

See �le impact.ps

86



87

Reference:

Karlic k � y, M., Henoux, J.C.: 2002, Impact H-alpha line p olarization and return curren t, Astron.

Astroph ys. 383, 713-718.

c) Flare hard X-ra ys from neutral b eams

See �le nhardx-ra y .p df

Reference:

Karlic k � y, M., Bro wn, J.C., Con w a y , A.J., P enn y , G.: 2000, Flare hard X-ra ys from neutral

b eams, Astron. Astroph ys. 353, 729-740.

c) Return curren t in solar ares

See �le return.p df

Reference:

Karlic k � y, M., H � enoux, J.C.: 1992, Return curren t losses in pulse b eam heating of the solar

atmosphere, Astron. Astroph ys. 264, 679-685.

Priest, E., F orb es, T.: 2000, Magnetic reconnection: MHD theory and applications, Cam bridge

Univ ersit y Press, Cam bridge, UK.
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Gallery of the mo dels of solar ares and coronal mass ejection

Fig. 10.1: Energies in large and small solar ares.
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Fig. 10.2: Sc hematic dra wing of the collision time vs. heigh t of an electron mo ving at the mean thermal

v elo cit y in the quiet solar atmosphere. The relev an t plasma parameters are from standard mo dels and are also

sho wn (dashed). The h ydrogen densit y includes b oth neutral atoms and ions.
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Fig. 10.3: Characteristic pro�le of a solar are in v arious w a v elengths.
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Fig. 10.4: Tw o scenarios whic h ha v e b een prop osed for op ening the magnetic �eld during large solar ares

and coronal mass ejections. (a) In the �rst scenario an ideal MHD pro cess c hanges the closed-�eld con�guration

(1) in to an op en con�guration (2) during the impulsiv e phase, and reconnection re-closes the �eld (3) during the

gradual phase. (b) In the second scenario an ideal MHD pro cess creates a relativ ely short curren t sheet without

op ening the �eld, but magnetic ux can still escap e in to space if rapid reconnection o ccurs in this sheet. If there

is no input of the magnetic energy during the eruption, then the magnetic energy con tin uously decreases during

b oth the impulsiv e and gradual phases of the are, as sho wn in (c).
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Fig. 10.5: Quasi-static ev olution of an axially symmetric arcade in resp onse to shearing of its fo otp oin ts. (a)

The initial �eld is a Sun-cen tered dip ole whic h (b) ev olv es in to a force-free �eld when its fo otp oin ts in the upp er

and lo w er hemispheres are rotated in opp osite directions. (c) After a rotation of 126

o

, the �eld b ecomes fully

op ened as long as the di�usivit y ( � ) remains zero. (d) A plot of the corresp onding time ev olution of the total

energy divided b y the p oten tial energy .
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Fig. 10.6: A ux-rop e mo del. (a) Ideal MHD ev olution of a t w o-dimensional arcade con taining an unshielded

ux rop e of heigh t h as the source separation (2 � ) decrease. (b), (c) The ux rop e and arcade mo v e up w ards

when the t w o photospheric �eld sources are pushed to o close to one another. (d) In the absence of reconnection

the eruption leads to a new equilibrium con taining a curren t sheet.
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Fig. 10.7: Resistiv e MHD sim ulation based on the t w o-dimensional ux-rop e mo del. White curv es are magnetic

�eld lines, while the grey scale corresp onds to temp erature v ariations. White regions ha v e the highest temp erature

( > 10

8

K in the absence of co oling pro cesses),while blac k regions ha v e the lo w est. The magnetic Reynolds n um b er

is ab out 200, man y orders of magnitude smaller than exp ected for the Sun.
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Fig. 10.8: (a) T ra jectories of the sho c k, ux rop e, and X-line for the sim ulation sho wn in the previous �gure.

(b) The electric �eld at the X-line as a function of time.



96 Chapter 10: SOLAR FLARES AND COR ONAL MASS EJECTIONS

Fig. 10.9: (i) Twisted ux tub e sho wing three t yp es of �eld line I, I I, and I I I. (ii) Quasi-separatrix la y ers

view ed from ab o v e together with sample �eld lines of t yp es (a) I (dotted curv e), (b) I I I (dashed-dotted curv e)

and (c) I I (solid curv e) and (d) the connectivit y of p oin ts on the quasi-separatrix la y ers.
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Fig. 10.10: P ersp ectiv e view of a 3-D t wisted con�guration with a �nite spatial extension and without n ulls

or �eld line tangen t to the photosphere. Separatrices are no longer presen t, but there is a v ery thin v olume (QSL)

where the �eld line connectivit y c hanges rapidly . The in tersection of the QSL with the lo w er b oundary (plane

z = 0) is sho wn b y an iso-con tour of the function N (see c hapter ab out connectivit y). This in tersection forms

t w o elongated strips on b oth sides of the b oundary in v ersion line (IL). F rom these strips the QLS extends ab o v e,

follo wing magnetic �eld lines (the complexit y of this elongated v olume precludes a clear dra wing of it). Tw o

represen tativ e sets of �eld lines ha v e b een included; they b elong to the p eriphery of the t wisted ux tub e and to

the lo w er arcade (Demoulin, 1997).
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Fig. 10.11: A sc hematic represen tation of an am bien t coronal streamer (a) in whic h a coronal mass ejection

(b) originates.
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Fig. 10.12: Ho w �eld line shrink age is de�ned for are lo ops. Shrink age is simply a measure of the c hange in

shap e of a �eld line due to its closure b y reconnection.
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Fig. 10.13: Sc hematic diagram of a are lo op system formed b y reconnection in the sup ermagnetosonic regime.

This regime is most lik ely to o ccur in the early phase of a are when the reconnecting �elds are strong. It has

b oth up w ard- and do wn w ard- directed jects, but only the region b elo w the do wn w ard jet has high-densit y plasma,

b ecause in t w o-dimensional mo dels c hromospheric ev ap oration o ccurs on just those �eld lines that lie b elo w the

X-line. Solid curv es indicate b oundaries b et w een v arious plasma regions, while dashed ones indicate magnetic

�eld lines.
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Fig. 10.14: Sc hematic diagram of a are lo op system formed b y reconnection in the submagnetosonic regime.

This regime is most lik ely to o ccur when the reconnection �elds are w eak. Here the do wn w ard jet of the previous

�gure is replaced b y a w eak bifurcated o w along the �eld lines mapping from tip of the curren t sheet to the

c hromosphere. Because of the w eak er �elds, the ev ap oration pro cess is greatly reduces and the plasma densit y in

the lo ops b ecomes to o lo w to trigger a thermal condensation. Ho w ev er, condensation remnan ts ma y remain lo w er

do wn as a result of an earlier sup ermagnetosonic phase.
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Fig. 10.15: Pro cesses in are lo ops.

Fig. 10.16: Sc hematic mo del of impulsiv e hard X-ra y , radio and EUV sources.
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Fig. 10.17: The emerging ux mo del for a small ares. (a) The preare phase when the emerging ux slo wly

reconnects with the o v er-lying �eld. Slo w-mo de sho c ks (dashed curv es) radiate from a small curren t sheet and heat

the plasma that passes through them (strip ed region). (b) The impulsiv e phase caused b y the onset of turbulence

and anomalous resistivit y in the curren t sheet when it reac hes a critical heigh t. The electric �eld generated b y

the sudden enhancemen t in the reconnection rate accelerates the particles, whic h pro duce hard X-ra ys and t yp e

I I I radio bursts. In the main phase (c), quasi-steady reconnection leads to extensiv e heating.


