Fourierova transformace

- ve spektrální velině prakticky
- pozorování je konvolute → násobením ve F. prostorech

$$F.T. \text{ reprezentace funkce v periodické bázi: } f(x) = \int_{-\infty}^{\infty} F(\omega) e^{2\pi i \omega x} \, d\omega$$

Inverzní: $$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i x \omega} \, dx$$

ne vždy existuje! Ve fyzice ale skončně ani pro $$e^{ix} = \cos x + i\sin x$$

pouze $$F(x) = F_r(x) + i \cdot F_i(x)$$

$$\exists f(x) = \int F_r(x) \cos 2\pi \omega x \, dx + i \int F_i(x) \sin 2\pi \omega x \, dx$$

+ $$i \int F_i(x) \cos 2\pi \omega x \, dx + \int F_r(x) \sin 2\pi \omega x \, dx$$

pro $$f(x) = f_r(x) + i \cdot f_i(x)$$

$$f_r(x) = \int F_r(x) \cos 2\pi \omega x \, dx - \int F_i(x) \sin 2\pi \omega x \, dx$$

$$f_i(x) = \int F_i(x) \sin 2\pi \omega x \, dx + \int F_r(x) \cos 2\pi \omega x \, dx$$

pro $$F(x) = F_r(x) \quad \text{fyzikální signál}$$

$$f(x) = \int F_r(x) \cos 2\pi \omega x \, dx + i \int F_i(x) \sin 2\pi \omega x \, dx$$

$$f_0(x) \text{ je reálná komplex}$$

pro $$F(x) = F_r(x) \quad F_0(x) = F_0(-x)$$

=24=
\[f(\sigma) = \sqrt{F_R(x)} \cos \left(\frac{2\pi x \sigma}{L} \right) \, dx \]

Fournierův obraz - v polarizních koordinátech
\[f(\sigma) = |f(\sigma)| \, e^{i\psi} \]
\[|f(\sigma)| = \sqrt{f_R^2(\sigma) + f_\theta^2(\sigma)} \]
\[\tan \psi = \frac{f_\theta(\sigma)}{f_R(\sigma)} \]

Pozn.: Amplitudní spektrum - popis formálně
Fázové spektrum - kde jinak

Pozn.: \(\sigma = 0 \Rightarrow \text{totalní integrale} \)
\[f(0) = \int F(x) \, e^{\frac{2\pi i x \sigma}{L}} \, dx = \int F(x) \, dx \]

a. opačně \(F(\sigma) \)

Příklady:

1. \(0 < x < \frac{L}{2} \) - box car

\[B(x) = \left\{ \begin{array}{ll}
0 & 0 < x < \frac{L}{2} \\
1 & \frac{L}{2} \leq x \leq \frac{L}{2}
\end{array} \right. \]

\[b(\sigma) = \int B(x) \, e^{\frac{2\pi i x \sigma}{L}} \, dx = \int_{-\frac{L}{2}}^{\frac{L}{2}} e^{\frac{2\pi i x \sigma}{L}} \, dx = \left(\frac{e^{\frac{2\pi i \sigma}{L}}}{\frac{2\pi i \sigma}{L}} \right) \frac{L}{2} = \frac{1}{2} \left(e^{\frac{2\pi i \sigma \omega}{L}} - e^{-\frac{2\pi i \sigma \omega}{L}} \right) = \sqrt{W \sin \frac{\pi \sigma \omega}{L \omega}} = W \sin \left(\frac{2\pi \sigma \omega}{L \omega} \right) = \frac{W}{\pi} \sin \left(\frac{2\pi \sigma \omega}{L \omega} \right) = \frac{W}{\pi} e^{i\pi \sigma \omega / L \omega} = e^{i\pi \sigma \omega / L \omega} = \]
Poté: \(W \rightarrow \) peaky ve Fourierově spektru jsou užší.

Větší: délka pozorování, velikost pixelů - distribuce.

Binning - větší šířka vektorů, full-frame.

Sinc ideální interpolace v dvou rovinách obrázku.

\[L(x) = \begin{cases}
\text{sinc}(\frac{x}{\alpha}), & -\alpha \leq x \leq \alpha \\
0, & \text{jinak}
\end{cases} \]

\[G(x) = \int_{\alpha}^{\alpha} \frac{1}{\sqrt{\pi} \sigma} e^{-\frac{x^2}{\sigma^2}} \, dx \]

\[\sigma(x) = \sqrt{\int G(x) \, dx} = \int \frac{1}{\sqrt{\pi} \sigma} e^{-\frac{x^2}{\sigma^2}} \, dx \]

\[\text{dispersi} \sigma \rightarrow \text{dispersi} \frac{1}{\sqrt{\beta \sigma}} \]

\[\sigma = \frac{1}{\sqrt{\beta \sigma}} \]
$F(x) = \frac{1}{\pi} \frac{\beta}{x^2 + \beta^2}$

\[
\int_0^\infty \frac{\cos \mu \omega}{4\mu^2} \, d\mu = \frac{\pi}{2} e^{-\mu} \quad \text{tabula}
\]

\[
\Rightarrow \quad f(\sigma) = \begin{cases}
\frac{e^{-2\pi \sigma \alpha}}{2} & \text{pro } \sigma > 0 \\
\frac{e^{2\pi \sigma \alpha}}{2} & \text{pro } \sigma \leq 0
\end{cases}
\]

\[\text{uhr } f(\sigma) = e^{-2\pi \sigma \alpha} (\sigma)\]

4. impulso

$\delta'(0) / \int \delta'(x) \, dx = 1$

$F(x) = \delta'(x - x_0)$

\[
f(\sigma) = \int_{-\infty}^{\infty} \delta'(x - x_0) e^{2\pi i \sigma x} \, dx =
\]

\[e^{2\pi i x_0 \sigma} \int \delta'(x - x_0) \, dx = e^{2\pi i x_0 \sigma}
\]

5. von impulso

$F(x) = \delta'(x - x_0) + \delta'(x + x_0)$

\[
f(\sigma) = e^{2\pi i x_0 \sigma} + e^{-2\pi i x_0 \sigma} = 2 \cos 2\pi x_0 \sigma
\]

$F(x) = \delta'(x - x_0) - \delta'(x + x_0)$

\[
f(\sigma) = e^{2\pi i x_0 \sigma} - e^{-2\pi i x_0 \sigma} = 2 i \sin 2\pi x_0 \sigma
\]
δ (Heaviside) function

\[\text{Input: } \delta \text{ndravnu po } \Delta x \]

\[\text{III}(x) = \sum_{n} \delta(x - n \Delta x) \]

\[\text{III}(x) = \sum_{n} \int \delta(x - n \Delta x) e^{+2\pi i n x} dx = \]

\[= \sum_{n} e^{2\pi i n \Delta x} = \sum_{n} \delta\left(\frac{\xi - \frac{n}{\Delta x}}{\Delta x}\right) \]

\[\Rightarrow \text{Space: } \Delta x \rightarrow \text{Sparse: } \frac{1}{\Delta x} \]

Vzorčevalni:

\[D(x) = B(x) \ast \text{III}(x) \ast F(x) \]

* Nota spolja,
 končan delka medži.

napr. sp. eta

\[F(x) \]

\[\text{III}(x) \]

\[B(x) \]

\[D(x) = 2 \tilde{=} \]
\[h(x) = \int F(x) G(x-x) \, dx = \int f(\sigma) e^{2\pi i x \sigma} \, d\sigma . \]

\[g(\sigma) e^{2\pi i (x-x') \sigma} \, d\sigma \, dx = \]

\[= \int f(\sigma) g(\sigma) e^{2\pi i x \sigma} - 2\pi i x^2 (\sigma^2 \sigma) \, dx^2 \, d\sigma \, d\sigma = \]

\[= \int f(\sigma) g(\sigma) e^{2\pi i x \sigma} \delta(\sigma^2 \sigma) \, d\sigma \, d\sigma = \]

\[= \int f(\sigma) g(\sigma) e^{2\pi i x \sigma} \, d\sigma \]

⇒ kouvolu → nullověm te F. prostem
\[F \left(F(x) \ast G(x) \right) = f(\sigma) g(\sigma) \]

KOUVOLUCE GRAFICKY

první funkce, druhou otočit a posouvat
pózitivně předním průměrem

1. \[f(x) = \int \delta(x-x) e^{2\pi i x \sigma} \, d\sigma = e^{2\pi i x \sigma} \]

 \[\Rightarrow x \rightarrow x-x' \text{ / funkce vstupí } \]

2. \[\text{Druhé gaussovo: } \]

 \[f_a(\sigma) f_b(\sigma) = e^{-\frac{\sigma^2}{2a^2}} e^{-\frac{\sigma^2}{2b^2}} = e^{-\frac{\sigma^2}{2a^2} + \frac{\sigma^2}{2b^2}} \]

 \[\beta_c^2 = \beta_a^2 + \beta_b^2 \]
\[f(x) = e^{-2\pi i b_1 x - 2\pi i b_2 |x|} \]

\[l(x) = e^{-2\pi b_1 x} - 2\pi i b_2 |x| \]

\[\Rightarrow \text{Voigtova funkce} \]

\[\text{and Voigtová funkce} \]

\[\Rightarrow \text{Voigtova funkce} \]

\[\beta_2 = \beta_2^q + \beta_2^p \]

\[\beta_1^2 = (\beta_1^q)^2 + \beta_2^p \]

Teorema F1

1. \[F(x-y) = e^{2\pi i b_1 y} f(y) \]
2. \[F(ax) \Rightarrow |\frac{1}{a}| f(\frac{x}{a}) \]
3. \[\frac{dF(x)}{dx} = 2\pi i b_1 f(x) \] (useful for proof of Voigt's theorem)
4. \[\frac{d(F \times G)}{dx} = \frac{dF}{dx} \times G + G \times \frac{dF}{dx} \]
5. \[\int F(x) = 1 \Rightarrow \int F(k) G(x) dx = \int F(k) dx \]
6. \[\frac{1}{x} = \frac{\sqrt{F(x)} dx}{\sqrt{F(k)} dx} \] (useful for determining mass)
7. \[k(x) = F(x) \times G(x) \]

\[\mu \times k = k \times (k + \mu) \geq 0 \]
\[\int |F(x)|^2 \, dx = \int |f(x)|^2 \, dx \]

\[\int F(x) \, dx = \int f(x) g(x) \, dx \]

\[D(A) = B(A) \ast I(A) F(A) \]

\[I(A) \text{ obvykle zatýká vysoké frekvence} \]

\[D(A) = B(A) \ast I(A) F(A) \]

\[d(\sigma) = b(\sigma) \ast f(\sigma) = \frac{\delta}{\Delta \omega} \ast f(\sigma) \]

\[\Delta \sigma = \frac{1}{\Delta \omega} \]

\[d(\sigma) = b(\sigma) + f(\sigma) = \sum \delta (\sigma - \frac{n}{\Delta x}) \ast f(\sigma) \]

\[f(\sigma) \text{ se reprodukuje v periodách } \frac{\pi}{\Delta x} \]

\[\text{Pokud } \sigma < \frac{n}{\Delta x} \Rightarrow \text{replika budou zcela separovány} \]

\[= 31 \]
pokud $\sigma \geq \frac{1}{2\Delta x}$ ⇒ reálný z párů řádů ⇒ omlouvám se překrývají ⇒ omlouvám se.

Rowlettův příklad: $\sigma = \frac{1}{\Delta x}$ ⇒ N jmenovitá frekvence
genně je signálu na frekvenci $\sigma > \sigma_0$ ⇒ nelze
pro nížší teleskopky!

Omitě: $\Delta \omega = \frac{1}{T} \leq \sigma < \frac{1}{2\Delta x}$

Příklad: Fourierova transformace

např. FFT ⇒ optimální pokud počet vzorků 2^N

a data identifikace

$D(x) = D(j \Delta x) = D(j) \Delta x \sigma$

$\Rightarrow a(k) = \sum D(x) e^{2\pi i x j \Delta x} = \sum_{x=0}^{N-1} D(j) e^{2\pi i j x \Delta x}$

pro $\sigma = k \Delta \sigma$

$\Rightarrow a(k) = \sum_{x=0}^{N-1} D(j) e^{2\pi i j x \Delta x \sigma}$

Vedlejší $\Delta \sigma = \frac{\Delta \omega}{\Delta x N} = \frac{1}{\Delta x N}$ jednotlivé frekvence, za místo by

f_0 = $\frac{1}{N \Delta x}$

$\Rightarrow a(k) = \sum_{x=0}^{N-1} D(j) e^{2\pi i j x \Delta x}$

Inverzní FFT transformace

$D(j) = \sum_{x=0}^{N-1} a(k) e^{-2\pi i j x \Delta x \sigma}$ pro frekvence $\sigma = \frac{1}{\Delta x N}$

$\Rightarrow D(j) = \frac{1}{\Delta x N} \sum_{x=0}^{N-1} a(k) e^{-2\pi i j x \Delta x / N}$

$= 3\sigma$
Přenos "čímu"

\[F(x) = F_0(x) + E(x) \]

\[E(x) \text{ vůn} \]

\[\langle E(x) \rangle = 0 \]

Pouze pro \(\int E^2(x) \, dx = \int e^2(\sigma) \, d\sigma \)

Můžeme je rozložit v ohlede na množinu při exerci v

\[\int_{x_0}^{x_0 + L} E^2(x) \, dx = \int_{0}^{L/2} e^2(\sigma) \, d\sigma \]

\[\int_{x_0}^{x_0 + L} \, dx \text{ je pravilný pro } L \]

\[\Rightarrow \langle E^2 \rangle L = \langle e^2 \rangle L \]

\[\Rightarrow \text{ubosej řízně } x \text{ rozloženě je} \]

\[\text{konstanta} \]

\[\text{orazínu fčení} \Rightarrow \text{ryšim čínu} \]

\[\text{u vótsování} \]

\[\sum_{i=1}^{N} E^2(x_i) \, dx = \sum_{i=1}^{N} e^2(\sigma_i) \, d\sigma \]

\[L = \Delta x \, N \]

\[\frac{L}{2} = \Delta x \frac{N}{2} \]

\[\text{pro standardní odchylky} (RIV): \]

\[s_x = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} E^2(x_i)} \]

\[s_\sigma = \sqrt{\frac{1}{N-1} \sum_{i=1}^{N} e^2(\sigma_i)} \]

\[\text{ekvivalentní je} \]

\[s_\sigma \, L = s_x \, L \]

\[\Rightarrow s_\sigma = s_x \left(\frac{L}{e} \right)^{1/2} = s_x \left(\Delta x \, L \right)^{1/2} = s_x \Delta x \, N^{1/2} \]

\[\Rightarrow \text{redukce čímu: kritéri tvrkování} \]
ve vybraného datě - pokud se kontinuum náhodí
stranou hodnotů a měření lezí údají
jen v povětvi - redukce dimen.

Bílý úven - $\langle \mathbf{H}(0) \rangle$ v kontu

→ pokud alazovy → úven $=$ alzování

rekurze (kde uvej signal) se transformuje
do útvarů → úven namísto sálaka

Signálu

Numerická konvoluta

dvě funkce $f(x) = f(j \Delta x) = f(j)$
$g(x) = g(j \Delta x) = g(j)$

$\text{conv}(f, g) = \sum_{k=0}^{N} f(k) \cdot g(i - k \Delta x) \cdot \Delta x$

$N(i) = \sum_{j} f(i) \cdot g(i - j)$

okrajový úven

→ platit, je pauze
pole, kde konvolucí
je uvolněná většina × funkce

Pokud ne FT → předpokládáte periodickost?
Co pokud jen to pole nízké velikosti?
→ to můžete obložit nulavou a pole FT

FT konvolute ne FT vydělejte už od
půl' a 128 pixelů