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Summary

Title: Simulations of asteroid collisions using a hybrid SPH/N-body approach

Author: Pavel Ševeček

Department: Astronomical Institute of Charles University

Supervisor: doc. Mgr. Miroslav Brož, Ph.D.

Abstract: Understanding asteroid collisions is a key part of Solar System science. To interpret
observations of more than 100 asteroid families, various numerical simulations are used. In
this work, we prefer the smoothed particle hydrodynamics (SPH), which allows a detailed
description of impact mechanics, shock wave propagation, fragmentation of the target, ejection,
or reaccumulation controlled by self-gravity and secondary collisions. Since the respective
time scale may reach the orbital time scale, the SPH is often complemented by efficient N-body
integrators and collisional handlers.

In the review part of the thesis, we describe details of numerical methods and their implementa-
tion in the new OpenSPH code. We also thoroughly test the code, using analytical solutions and
laboratory experiments as references, and discuss its stability and convergence with respect to
spatial resolution.

In the refereed papers, included in the thesis, we focus on collisions with targets of particular
sizes (D = 10 and 100 km). We explore the dependence of outcomes on the target size, the
projectile size, the impact speed, the impact angle, and most importantly, the initial spin rate.
We demonstrate that rotation significantly decreases the effective strength of the targets and
increases the ejected mass. We self-consistently compute the angular momentum transfer due
to sub-catastrophic impacts, which determines the overall evolution of spin rates in asteroid
populations.

Last but not least, we interpret the fourth largest main-belt asteroid (10) Hygiea and its collisional
family. Besides the size-frequency distribution or the velocity field of fragments, we use the
shape of Hygiea derived from adaptive-optics observations as a novel constraint for collisional
modeling. This allowed us to not only determine the parameters of this major impact event, but
to reveal impact-induced material weakening, needed to obtain consistent axial ratios.

Keywords: asteroid collisions, smoothed-particle hydrodynamics (SPH), N-body simulations,
(10) Hygiea
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— Chapter i —

preface

Asteroid families are remarkable structures observed mainly in the Main Belt, but also within
Martian Trojans [Christou et al., 2017], Jupiter Trojans, Hildas [Vinogradova, 2015], irregular
moons [Bottke et al., 2010], or the trans-Neptunian objects [Schlichting and Sari, 2009]. Each
family has been created by a large-scale collision of two asteroids (target and projectile), ejecting
numerous fragments which are now spread out in space due to Keplerian shear, planetary
perturbations and radiation forces [Nesvorný et al., 2015; Spoto et al., 2018]. However, we can
still detect asteroids with common origin as clusters in the space of proper elements ap, ep, Ip
[Knežević and Milani, 2003] and also in spectral properties, e.g. colors, albedos, or reflectance
spectra [Parker et al., 2008; Usui et al., 2011; Nugent et al., 2015], as seen in Fig. 1.1. First families
have been discovered by Kiyotsugu Hirayama in 1918, namely the Koronis, Eos and Themis
families [Hirayama, 1918], and today more than 100 families are known [Brož et al., 2013].

Physical processes taking place during collisions of asteroids are hardly reproducible in
a laboratory environment. Asteroids collide at speeds of several km/s, typically between v ≃ 3
and 7 km/s [Dell’Oro and Paolicchi, 1997; Dahlgren, 1998]. During impacts, material is strongly
compressed, experiencing pressures of up to P = 1011 Pa, it is melted and partly evaporated.
A substantial fraction of the kinetic energy of the projectile is converted into heat. For example,
the total thermal energy released during the impact that formed the Hygiea family was about
E ∼ 1025 J [Vernazza et al., 2020], comparable to a detonation of 50 million Tsar bombs.

Laboratory experiments, studying break-ups of targets hit by high-speed projectiles, have
to be performed on substantially smaller scales [Kadono et al., 2009; Avdellidou et al., 2016,
2017; Ogawa et al., 2021]. Targets in such experiments usually have several centimeters in
size [Nakamura and Fujiwara, 1991; Morris and Burchell, 2017]. These tests provide invaluable
data that constrain material properties, in particular parameters of the fragmentation model.
However, these results cannot be directly compared to kilometer-sized asteroids. For asteroids
with diameters of the order of D ≃ 100 km, experimental data would have to be extrapolated
by scaling the target over six orders of magnitude. Such extrapolation cannot yield accurate
predictions, mainly because the role of gravity is unconstrained by laboratory measurements.
Asteroid collisions are thus commonly studied using numerical simulations.
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10 CHAPTER 1. PREFACE

Figure 1.1: Main-belt asteroids in space of proper elements ap, ep. The colors correspond to
albedos obtained by the WISE telescope. Data from Warner et al. [2009]; Masiero et al. [2010].

To understand the very formation of asteroid families, we have to rely on indirect obser-
vational evidence. One source of data is the families observed in the present-day Main Belt.
Unfortunately, integrating orbits backward in time in order to determine the age of the family
and the initial velocity field is only possible for the youngest families [Nesvorný et al., 2002;
Vokrouhlický et al., 2009]. Due to the chaotic nature of the N-body problem, backward integra-
tion is not reliable for families older than few Myrs [Radović, 2017]. However, it is certainly
possible to solve the problem as an inverse one: assume suitable initial conditions of the impact
and integrate fragments forward in time. A synthetic family as computed by the simulation is
then directly compared with the observational data [Vokrouhlický et al., 2006; Brož et al., 2013].

A key observational constraint is the size-frequency distribution (SFD). It is commonly
plotted as a cumulative histogram of a number N of family members with a diameter larger
than D. By matching the SFD of the synthetic and the observed family, we can estimate the
impact speed, the impact angle, the size of the projectile and most importantly, the size of the
parent body. A substantial fraction of the total mass may be hidden beyond the observational
limit and numerical simulations help to debias this estimate.

Using ground-based observations, it is possible to measure visible (reflected) flux. Together
with far-infrared (FIR), usually measured with space-based instruments, we can derive albedo
and approximate diameter. Determining precise shape is more complex, though. Even the largest
asteroids are small compared to a seeing-limited resolution of telescopes, and resolving disks
of asteroids by more than a few pixels has until recently been beyond technological possibili-
ties. Hence, the shapes of asteroids were mostly derived using light-curve inversion methods
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Figure 1.2: Shape models of asteroids (162173) Ryugu [Hirata et al., 2020] and (25143) Itokawa
[Gaskell et al., 2008], derived from in situ observations. The images are not to scale; the volume-
equivalent radius of Ryugu is 448m [Watanabe et al., 2019], while for Itokawa it is 164m
[Fujiwara et al., 2006].

[Kaasalainen et al., 2001]. Only few asteroids were visited by a spacecraft during missions Galileo
[Thomas et al., 1994; Meltzer, 2007], NEAR Shoemaker [Veverka et al., 1997; Russell et al., 2015],
Deep Space 1 [Soderblom et al., 1999], Stardust [Hillier et al., 2011], Hayabusa [Saito et al., 2006;
Demura et al., 2006], Rosetta [Russell et al., 2016], Dawn [Russell et al., 2016; Hiesinger et al.,
2016], Chang’e 2 [Ji et al., 2016], New Horizons [Schenk et al., 2021], Hayabusa 2 [Watanabe
et al., 2019] and OSIRIS-REx [Lauretta, 2012]. These missions successfully obtained close-up
images of (1) Ceres, (4) Vesta, (21) Lutetia, (243) Ida, (253)Mathilde, (433) Eros, (951) Gaspra,
(2867) Šteins (4179) Toutatis, (5535) Annefrank (9969) Braille, (25153) Itokawa, (101955) Bennu,
(162173) Ryugu and (486958) Arrokoth. Using the in situ observations, it was possible to derive
high-detail models, as shown in Fig. 1.2.

It was only the installation of a second-generation adaptive-optics instruments at ESO
VLT that finally allowed us to really resolve D ≃ 100 km asteroids with ground-based observa-
tions. The SPHERE/ZIMPOL instrument, combined with a deconvolution algorithm, can now
obtain detailed images of celestial bodies with an unprecedented angular resolution of about
3.6mas/pixel [Schmid et al., 2017]. This corresponds to 2.6 km at the distance of 1 au. A large
programme ID 199.C-0074 at the ESO VLT (152 hours) has been carried out to obtain phase-
resolved images of forty large asteroids, e.g. (89) Julia [Vernazza et al., 2018], (7) Iris [Hanuš
et al., 2019], (704) Interamnia [Hanuš et al., 2020], (16) Psyche [Ferrais et al., 2020], (10) Hygiea
[Vernazza et al., 2020], (2) Pallas [Marsset et al., 2020], (31) Euphrosyne [Yang et al., 2020b], etc.

Adaptive-optics imagery revealed overall shapes of the asteroids as well as their major
topographic features. For S-type asteroids, impact craters are a common feature and it is possible
to construct the respective crater-size distribution. On the other hand, C-type asteroids exhibit
smooth surfaces or shallow craters. For asteroids with an associated family, this data provides
a novel insight into the collisional history of the body. We can use it as a constraint of our
collisional models, together with the SFD and the velocity field of the family, and in turn,
numerical simulations are then used to interpret these unique observational data.
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In this thesis, I explore collisions of asteroids and formation of families using numerical
methods. Due to the inherently Lagrangian nature of the problem, I use the smoothed particle
hydrodynamics (SPH) to solve the equations of hydrodynamics, which is coupled with
an efficient N-body integrator that computes gravitational interactions of bodies. I focus on
disruptions of D = 10 km spherical asteroids, trying to understand how the SFDs of synthetic
families scale with the target size, and most importantly, what is the role of initial rotation.
I also examine the asteroid Hygiea and its family, which originated in one of the most-energetic
collisions in the Main belt. In this case study, I try to reconcile the surprisingly smooth and
spherical surface of the asteroid with the existence of the Hygiea family.

The thesis is organized as follows. In Chapter 2, we describe the numerical model used to
carry out SPH/N-body simulations, starting from a discretization of spatial derivatives to a
discussion of all numerical details that had to be solved to obtain meaningful and physically
accurate results. In Chapter 3, we review numerical experiments and validation tests of the
OpenSPH code. Subsequent Chapters 4 to 6 summarize the goals and results of our selected
published papers [Ševeček et al., 2017, 2019; Vernazza et al., 2020].



— Chapter ii —

SPH code for impact simulations

Numerical modeling of physical problems has a long history. Development of mesh-based
methods, such as the finite element method (FEM) or the finite volume method (FVM), dates
back as far as the 1940s [Hrennikoff, 1941], however, it largely took off in the 1960s and 1970s
when the mainframe computers became capable of carrying out computations with more than
a few thousands of degrees of freedom. These methods were applied to tackle various problems
in civil engineering, primarily related to structural analysis.

On the contrary, the smoothed-particle hydrodynamics (SPH) originated in astrophysics. It
was originally developed during the 1970s by Lucy [1977] for simulations of rotating protostars,
and independently also by Gingold and Monaghan [1977], who coined the name of the method.
Since then, it has been used in various areas of astrophysical research, such as merging of
neutron stars [Rosswog et al., 2000], cosmological simulations [Stadel, 2001; Beck et al., 2015],
supernovae explosions [García-Senz and Bravo, 2005; Pakmor et al., 2012], or black hole accretion
[Barai et al., 2011]. The method has been adapted for simulations of solid bodies by Libersky
and Petschek [1991], allowing its application in studies of asteroid collisions and formation
of asteroid families [Jutzi et al., 2015]. Of course, SPH did not remain an exclusive tool for
astrophysicists but also found use in automotive industry, aeronautics and computer graphics
[Ihmsen et al., 2014].

An excellent review of the SPH method for self-gravitational bodies has been written by
Cossins [2010] and also by Springel [2010], who further described an extension of the method
for magneto-hydrodynamics or relativistic simulations. Thus, I have not tried to compile a
comprehensive overview of the SPH in this thesis, instead, I focused on the application of the
method for the impact simulations. As most of the simulations were performed with our newly
developed code OpenSPH, this chapter also serves as a high-level documentation of the code.
Nonetheless, many of aspects are quite universal and hopefully useful for other developers of
hydrodynamical codes.

13
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2.1 Smoothed-particle discretization
Smoothed particle hydrodynamics is a Lagrangian method. Unlike the Eulerian description,
where quantities are known at fixed points in space, The SPH discretizes the continuum into a
finite number of particles comoving with the continuum. Each particle carries a set of associated
physical quantities as well as a fixed mass mi . The method does not require any connectivity
information of the particles; each particle interacts with other particles in its neighborhood,
meaning the topology of the fluid can naturally change during the simulation. This poses an
advantage over grid-based methods, where a construction and spatial adaptation of the mesh can
be a challenging problem. Values of quantities at any point in space are then interpolated from
particle values. The computational domain is defined implicitly by the immediate configuration
of particles and thus it does not have to be a priori set up by the user.

Particles act as tracers, moving with the velocities of the continuum, and there is no need
to explicitly handle the advection of physical quantities. Quantities are propagated together
with particles, making the SPH a suitable method for simulations of extreme deformations,
gravitational collapse, turbulence, convection, collision, etc.

2.1.1 SPH interpolant

To obtain the SPH interpolant for generic quantity A, we start off with identity:

A(𝒓) = ∫
Ω

A(𝒓′)δ(𝒓 − 𝒓′) d𝒓′ , (2.1)

where δ denotes the Dirac delta distribution. This equation is essentially a definition of δ(𝒓).
If we however replace δ(𝒓) with a (yet unspecified) smoothing function W (𝒓), we obtain an
approximation of A(𝒓):

⟨A⟩(𝒓) = ∫
Ω

A(𝒓′)W (𝒓 − 𝒓′, h) d𝒓′ , (2.2)

where h is a length scale, defining the amount of smoothing. As we can only know quantity
values at a finite number of points in space, we need to replace the integral on the right-hand
side with a sum over all particles. Therefore, we formally replace the volume element with a
volume assigned to a single particle:

d𝒓′ =
mi
ρi

. (2.3)

This choice is somewhat arbitrary, any combination of quantities with dimensions of volume
could be used. A standard SPH formulation uses particle masses because they are fixed during
the simulation (and the total mass is therefore conserved), however different volume elements
have been proposed, such as an element based on internal energy [Saitoh and Makino, 2013].

After substituting the volume element and replacing the integral with the sum over all
particles, we obtain the SPH interpolant:

⟨A⟩(𝒓) = ∑
j
Aj

mj

ρj
W (𝒓 − 𝒓j , hj) , (2.4)
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Figure 2.1: Example of a continuum density, computed from a finite set of particles irregularly
distributed in space. The left panel shows individual particles, the right panel the density
interpolated by Eq. 2.5 in color palette and contours.

where Aj is the quantity value of particle j, and hj is its smoothing length. In the case of density,
the interpolant reduces to a well-known SPH density expression:

ρ(𝒓) = ∑
j
mjW (𝒓 − 𝒓j , hj) . (2.5)

Fig. 2.1 shows an example of density computed from particles using the SPH interpolant.
The interpolant (Eq. 2.4) allows us to compute quantity values at any point in the continuum

from a discrete particle distribution, using the smoothing functions as weights. The function
W (𝒓, h) is called the smoothing kernel. It usually has compact support with a radius equal to
small multiple of the smoothing length h; for example, the standard M4 kernel (see Sec. 2.1.5)
has a radius of 2h. Thus the sum in Eq. 2.4 does not enumerate all the particles, but only those
in the neighborhood of particle i. Consequently, all interpolated values drop to zero in regions
with no particles.

The smoothing length h can be seen as a trade-off parameter between the discretization error
and the spatial resolution. Naturally, the discretization error can be decreased by increasing the
number of interacting particles, which can be achieved by increasing the smoothing lengths.
However, larger radii of particles lead to stronger smoothing of quantities and to lower effective
spatial resolution. If the number of neighbors is increased, it is also necessary to increase the
total number of particles to maintain the resolution of the simulation.

As the kernelW (𝒓, h) is a known function, spatial derivatives of quantities, such as gradient,
can be computed by simply applying the derivative on kernel:

⟨∇A⟩(𝒓) = ∑
j
Aj

mj

ρj
∇W (𝒓 − 𝒓j , hj) . (2.6)
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By doing so, we reduce all partial differential equations into ordinary differential equations.
However, such a system of equations has a number of problems. Namely, the velocity field
would not be invariant under the Galilean transformation, integrals of motion would not be
generally conserved, etc. Luckily, there is considerable freedom in the discretization of spatial
derivatives and it is possible to derive a modified set of equations that solves these problems, as
explained in the following sections.

2.1.2 Consistency conditions

Up to this point, we did not specify the smoothing kernel and considered W (𝒓, h) as a generic
function. While there is freedom in choosing the kernel, it cannot be arbitrary and must satisfy
several conditions. We use it as a function interpolant, hence the function ⟨A⟩(𝒓) smoothed using
the kernel W must be an approximation of the original function A(𝒓) and it must approach the
function A(𝒓) as the smoothing length h approaches zero. In particular, the kernel function W
can be constrained in such a way that:

⟨A⟩(𝒓) = A(𝒓) + 𝒪(h2) . (2.7)

2.1.2.1 Kernel constraints. To obtain the conditions necessary for the property 2.7 to hold,
we expand the interpolated function ⟨A⟩(𝒓) into the Taylor series, using its definition in Eq. 2.2:

⟨A⟩(𝒓) = A(𝒓) ∫W (𝒓 − 𝒓′) d𝒓′ + ∇A(𝒓) ⋅ ∫(𝒓
′ − 𝒓)W (𝒓 − 𝒓′) d𝒓′ + 𝒪(h2) . (2.8)

It follows that the property 2.7 holds as long as the kernel function W satisfies the following
consistency conditions:

∫W (𝒓 − 𝒓′) d𝒓′ = 1 , (2.9)

∫(𝒓
′ − 𝒓)W (𝒓 − 𝒓′) d𝒓′ = 0 . (2.10)

We see that any smoothing kernel must be normalized — the volume integral over the kernel
support must be equal to one. Condition 2.10 is fulfilled when the kernel is symmetric, i.e., if:

W (𝒓) = W (−𝒓) . (2.11)

Conditions 2.9 and 2.10 constrain the functionW (𝒓) and do not depend on the distribution of
particles. However, it is further necessary to replace the integral with a sum to obtain equations
in the SPH discretization, as in Eq. 2.4. To satisfy the property 2.7 in particle discretization as well,
the kernel should be further restricted in a way that necessarily depends on particle distribution.
However, the kernel itself does not enter directly into the standard SPH equations, only its
derivatives are used. Thus, it is much more important to satisfy the consistency conditions for
the kernel gradient.
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2.1.2.2 Gradient constraints. The gradient conditions can be obtained in a similar way as
the kernel conditions above. We use the integral (continuous) definition of the interpolated
gradient:

⟨∇A⟩(𝒓) = ∫
∂A
∂𝒓′

W (𝒓 − 𝒓′) d𝒓′ = ∫A(𝒓′)∇W (𝒓 − 𝒓′) d𝒓′ (2.12)

and expand it into the first order in the Taylor series:

⟨∇A⟩(𝒓) = A(𝒓) ∫∇W (𝒓 − 𝒓′) d𝒓′ + ∇A(𝒓) ∫(𝒓
′ − 𝒓) ⊗ ∇W (𝒓 − 𝒓′) d𝒓′ + 𝒪(h2) , (2.13)

where ⊗ denotes the outer product.
The discretization error is of the order 𝒪(h2) even for the kernel gradient, provided the

following gradient consistency conditions are satisfied:

∫∇W (𝒓 − 𝒓′) d𝒓′ = 0 , (2.14)

∫(𝒓
′ − 𝒓) ⊗ ∇W (𝒓 − 𝒓′) d𝒓′ = 1 , (2.15)

where 1 is the identity matrix. Unlike the kernel consistency conditions 2.9 and 2.10, these
conditions do not restrict the kernel gradient any further. Condition 2.14 is satisfied for any
function W (𝒓) with compact support as a consequence of the divergence theorem. Condition
2.15 holds for all normalized kernels. However, we do not deal with integrals directly in the
SPH equations but rather discretize them as sums over particles, as explained above. This leads
to the following consistency equations expressed in discretized form:

∑
j

mj

ρj
∇Wij = 0 , (2.16)

∑
j

mj

ρj
(𝒓j − 𝒓i) ⊗ ∇Wij = 1 . (2.17)

As these consistency conditions depend on particle positions, we cannot satisfy them by simply
modifying the kernel function W (𝒓). Generally, they hold quite poorly when using the naïve
kernel discretization given by Eq. 2.6. However, we can modify the gradient discretization to sat-
isfy both conditions identically. This leads to a different discretization with the asymptotic error
still equal to 𝒪(h2), and the modified gradient will reconstruct all constant and linear functions
precisely. This is often referred to as the first-order consistency of the SPH discretization.

2.1.2.3 Correction tensor. To obtain such a gradient, we need to compensate for the residuals
given by the left-hand sides of equations 2.16 and 2.17. Using the first condition, we can modify
the gradient by subtracting the term on the left-hand side multiplied by Ai , thus resulting in the
gradient:

⟨∇A⟩(𝒓i) = ∑
j

mj

ρj
(Aj − Ai)∇W (𝒓i − 𝒓j) . (2.18)

As the gradient depends only on the differences of values Ai , it will be identically zero for
constant functions. We can further improve the gradient using the second consistency condition.
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The residual on the right-hand side of 2.17 is a tensor, which generally differs from the identity
tensor. We can compensate for this error by defining a correction tensor 𝑪i as:

𝑪i = (∑
j

mj

ρj
(𝒓j − 𝒓i) ⊗ ∇Wij)

−1

. (2.19)

Finally, the adjusted gradient is given by multiplying the kernel gradient by the correction
tensor:

⟨∇A⟩(𝒓i) = ∑
j

mj

ρj
(Aj − Ai) 𝑪i∇W (𝒓i − 𝒓j) . (2.20)

Such a gradient is first-order consistent, precisely reconstructing all linear function in the SPH
discretization. The gradient here was used as a “proxy” derivative and the same method could
be carried out to discretize other spatial derivatives, such as divergence ∇ ⋅ 𝑨 or curl ∇ × 𝑨.

This approach could be extended to regain consistency for a second or any higher order. It is
possible to compute higher kernel moments and construct a moment matrix, which could then
be inverted to compute a smoothing kernel consistent up to the n-th order. Such an approach is
usually called the reproducing kernel particle method [Liu and Liu, 2003]

2.1.3 Second derivatives

Many evolution equations contain second spatial derivatives of quantities. The heat diffusion
equation includes the Laplacian of temperature, the Navier-Stokes equations depend on second
derivatives of the velocity field, etc. We thus need to find a suitable discretization for the second
derivatives in SPH.

We first derive the SPH Laplacian. It could be discretized the same way as the gradient,
using Eq. 2.18 with the Laplacian of the smoothing kernel in place of the gradient:

⟨∇2A⟩(𝒓i) = ∑
j

mj

ρj
(Aj − Ai)∇2Wij . (2.21)

Such a straightforward discretization is however highly sensitive to particle disorder, due to the
second derivative of the smoothing kernel. Instead, a more robust discretization is commonly
used in SPH [Brookshaw, 1985; Price, 2012]. It is based on an integral approximation of the
Laplacian and it can be written as:

⟨∇2A⟩(𝒓i) = −2∑
j

mj

ρj
(Aj − Ai)

𝒓i − 𝒓j
‖𝒓i − 𝒓j ‖2

⋅ ∇Wij . (2.22)

Compared to Eq. 2.21, it uses kernel gradient instead of the Laplacian and results in a more stable
derivative. The difference is of order 𝒪(h2), similarly to other modifications of the discretized
derivatives.

Eq.2.22 can be also applied to vector quantities𝑨. Another frequently used second derivative
of a vector quantity is the gradient of divergence ∇(∇⋅𝑨).The derivation of the SPH discretization
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is more complex, see Español and Revenga [2003]. Using notation 𝑨ij = 𝑨i −𝑨j and 𝒓ij = 𝒓i −𝒓j ,
the SPH version of the derivative can be expressed as [Price, 2012]:

⟨∇(∇ ⋅ 𝑨)⟩ (𝒓i) = −2∑
j

mj

ρj
[(D + 2)(𝑨ij ⋅ 𝒓ij) 𝒓ij − 𝑨ij ‖𝒓ij ‖2]

𝒓ij
‖𝒓ij ‖4

⋅ ∇Wij , (2.23)

where D is the number of spatial dimensions.

2.1.4 Smoothing length

The smoothing lengths hj define the spatial resolution of the simulation. It is a quantity similar
to the voxel size in grid-based methods. Each particle can generally have a different smoothing
length.

The values of smoothing lengths are usually assigned so that the number of neighboring par-
ticles is approximately the same for all particles, thus spatially homogenizing the discretization
error. This is achieved by using the following definition:

hi = ηD

√

mi
ρi

, (2.24)

where η is a dimensionless constant, typically around 1.5, and D is the number of spatial
dimensions. As the factor under the root represents the volume of particle i, the smoothing
length hi defined this way can be interpreted as an effective radius of the particle. However, the
actual radius of the particle influence can be significantly larger, even infinite.

2.1.4.1 Iterative algorithm. The definition 2.24 of smoothing length hi is unfortunately
circular: it depends on density ρi , given by Eq. 2.5, which in turn depends on smoothing lengths
of particles in the kernel support, including the i-th particle itself. Luckily, this is not a big
obstacle. We can find a self-consistent solution using an iterative method. We first choose an
initial guess of smoothing lengths, use it to compute the particle densities, subsequently use
the densities to correct the smoothing lengths, and so on. The iterations are performed until
the required precision has been reached; the sequence is typically quickly converging, so more
than five iterations are rarely needed.

2.1.4.2 Adaptivity. As smoothing lengths do not change significantly between the time steps,
it is often better to link the change of hi with the change of density ρi rather than recompute hi
using the iterative approach every time step. This leads to a continuity equation for smoothing
lengths, derived by taking a temporal derivative of Eq. 2.24:

dhi
dt

= −
hi
Dρi

dρi
dt

. (2.25)

This evolution equation handles adaptation of the spatial resolution during the simulation.
Whenever density increases, the smoothing length is decreased to increase the spatial resolution.
On the other hand, the particles naturally expand in low-density regions.

Eq. 2.25 is used if the density is evolved using the continuity equation; Eq. 2.24 is then only
used to set up the initial conditions. When the summed density is used instead, the “integral”
form given by Eq. 2.24 should be used for self-consistency. Density evolution is discussed in
detail in Sec. 2.4.
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2.1.4.3 Symmetrization. In order to satisfy the law of action and reaction and conserve
the total momentum during the simulation (see Sec. 2.2), the kernel gradient needs to be
antisymmetric with respect to the particle indices i and j, i.e. ∇W (𝒓ij , hi) must be equal to
−∇W (𝒓ji , hj). This is generally not true when particles have different smoothing lengths. To
correct it, symmetrized smoothing lengths ̄hij are used instead:

̄hij =
1
2
(hi + hj) . (2.26)

Alternatively, the smoothing kernel W itself can be symmetrized as:

̄Wij =
1
2
(Wij(hi) +Wij(hj)) . (2.27)

Both approaches ensure the kernel gradient ∇Wij is antisymmetric. We have used Eq. 2.26 in all
simulations.

2.1.5 Kernels and their properties

The kernel is usually defined as a two-parameter function, W = W (𝒓, h); here 𝒓 is a generic
position vector and h is the smoothing length. In practice, 𝒓 is replaced by a difference of
particle positions 𝒓i − 𝒓j . While the SPH discretization allows for quite generic smoothing
kernels in theory, commonly used functions have a gaussian-like shape. This is a consequence
of requirements, some of which were outlined in previous sections. We made the following
observations:

• Kernel must be normalized, the volumetric integral of the kernel is thus:

∫
Ω

W (𝒓, h) d𝒓 = 1 . (2.28)

• Kernel must be an approximation of the Dirac δ-distribution, the function W (𝒓, h) must
approach δ(𝒓) as the smoothing length h decreases to zero. In other words, the SPH
interpolant ⟨A⟩(𝒓), defined by the integral approximation of function A(𝒓) by Eq. 2.2,
must fulfill:

lim
h→0∫

Ω

A(𝒓′)W (𝒓 − 𝒓′, h) d𝒓′ = A(𝒓) . (2.29)

• Kernel must be a symmetric function with respect to the position vector, thus:

W (𝒓) = W (−𝒓) . (2.30)

However, there is a number of additional requirements, arising from the stability analysis of the
method [Swegle et al., 1995], physical considerations or simply practical reasons.

• Kernel should be a smooth function. As the kernel function enters into discretized equa-
tions as a gradient, a divergence, or a higher-order derivative, the minimum practical
smoothness of the kernel is C2, i.e. continuous up to the second derivative.
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• Ideal kernel is amonotonically decreasing function.While this is not necessary to discretize
the equations, the kernel value must decrease as interacting particles recede to ensure
the stability of the method. Furthermore, it makes sense from the physical standpoint
that the influence of the particle decreases at larger distances.

• Kernel has to be a strictly non-negative function. This property distinguishes SPH from
other kernel-based methods, where kernels with negative values (such as Catmull-Rom
kernel) can be conveniently used to achieve higher-order accuracy. In SPH, however,
kernel values are directly linked to the bulk density of the material, hence the kernel must
be non-negative everywhere to avoid unphysical negative densities in the simulation.

• The support of the kernel should be compact, i.e. there exists a number η > 0 so that:

‖𝒓‖ > ηh ⟶ W (𝒓, h) = 0 . (2.31)

This requirement is only necessary for optimal performance of the code. A small value
of η can significantly reduce the number of particle interactions that need to be calculated.
For commonly used kernels, the value is in interval 2 ≤ η ≤ 4. Importantly, using a kernel
with twice the support radius means the number of neighbors increases roughly eight
times in three-dimensional simulations, which is a considerable performance penalty.

2.1.5.1 B-spline kernels. We see that the gaussian function g(‖𝒓‖/h) satisfies all the conditions
except for the last one — gaussian has infinite support. For this reason, a widely used family of
kernels are the polynomial B-spline kernels [Rosswog, 2009; Cossins, 2010; Price, 2012]. These
functions are piece-wise polynomial approximations of the gaussian, but unlike the gaussian,
they have compact support. KernelMn of the order (n−1) is defined using the Fourier transform
[Schoenberg, 1946]:

Mn(r , h) =
1
2π

∞

∫
−∞

(
sin(ωh/2)
ωh/2

)
n
cosωr dω . (2.32)

The kernel used by a majority of SPH codes is a cubic B-spline M4:

M4(r , h) =
σ
hd

⎧⎪
⎨⎪
⎩

1
4 (2 − q)3 − (1 − q)3 , 0 ≤ q < 1 ,
1
4 (2 − q)3 , 1 ≤ q < 2 ,

0 otherwise,

(2.33)

where q = r/h and σ = 2/3, 10/(7π), 1/π in 1, 2, 3 dimensions, respectively. It is a C2 function,
the second derivative of which is a piece-wise linear function. The kernel support has radius 2h.

For larger kernel support and thus more precise interpolation, one can use the fourth-order
kernel M5:

M5(r , h) =
σ
hd

⎧
⎪⎪

⎨
⎪⎪
⎩

(52 − q)4 − 5(32 − q)4 + 10(12 − q)4 , 0 ≤ q < 1
2 ,

(52 − q)4 − 5(22 − q)4 , 1
2 ≤ q ≤ 3

2 ,

(52 − q)4 , 3
2 ≤ q < 5

2 ,

0 otherwise,

(2.34)
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where σ = 1/24, 96/(1199π), 1/(20π) in 1, 2, 3 dimensions, respectively. Similarly, higher-order
kernels can be constructed. The higher the order, the larger the kernel support and the closer
the function approaches the gaussian.

Many additional kernels with various properties can be found in the literature, such as
the Wendland functions [Wendland, 1995], the core triangle kernel [Read et al., 2010], the
modified M4 kernel with non-zero central gradient [Thomas and Couchman, 1992] or the linear
quartic kernel [Valcke et al., 2010]. They differ in interpolation accuracy, stability properties,
etc.

Standard SPH kernels only depend on the ratio q = 𝒓/h rather than on each variable
separately. Kernel functions can be thus written as:

W (𝒓, h) = 1
hD

w (
‖𝒓‖
h
) , (2.35)

where w(q) is a function of the dimensionless parameter q and D is the number of spatial dimen-
sions. In this form, the kernels are isotropic functions as they depend only on the magnitude ‖𝒓‖.

2.1.5.2 Anisotropic kernels. While this is the most common form of kernel functions, it
might be worthwhile to consider anisotropic kernels, especially for inherently anisotropic
problems, such as linear shock wave propagation. This is a core of the adaptive smoothed
particle hydrodynamics [Owen et al., 1998], or ASPH, where the smoothing lengths h are
replaced by the symmetric anisotropy tensors 𝑮. The kernel function then has a more general
form:

W (𝒓, 𝑮) = | det𝑮 | ⋅ w (‖𝑮𝒓‖) , (2.36)

This form reduces to the isotropic function for 𝑮 = h−11 .

2.1.5.3 Kernel look-up tables. In high-performance SPH codes, values of the kernel function
and its derivatives are usually tabulated. For given q, the code reads the two closest values
from a look-up table and computes the kernel value using a linear interpolation. Additional
optimization can be made by using q2 rather than q as the key of the look-up table, thus avoiding
the expensive square root during kernel evaluation. Similarly, the tabulated values of kernel
gradients are divided by q, the gradient is then computed from the look-up table (lut) as:

∇W (𝒓, h) = 𝒓
hD+2

lut (
‖𝒓‖2

h2
) . (2.37)

2.2 Lagrange eqations
There is considerable freedom in choosing the SPH discretization. We can adopt gradients that
constrain local discretization errors; however, constraining global errors is more complex, as it
cannot be determined by discretization of a single term in the set of equations. To ensure that
the total energy is conserved in SPH formalism, the equation of motion has to be consistent
with the energy equation; changing one implies the other has to be modified as well.
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2.2.1 Derivation of discretized equations

Unlike the local error minimization, it is not immediately obvious how the set of equations
should be derived in order to conserve the integrals of motion. To obtain a set of conservative SPH
equations, we follow a different strategy than previously. Rather than starting from the gradient
and deriving the equations “from-bottom-to-top”, we start by specifying the Lagrangian ℒ of
the system and derive the equations “from-top-to-bottom”, using the Lagrange equations:

d
dt

(∂ℒ
∂𝒗i

) = ∂ℒ
∂𝒓i

. (2.38)

For simplicity, we assume a fluid-like material and neglect the self-gravitation and external
potential forces; the derived equations can be generalized to account for material strength (see
Sec. 2.3) and gravitation (see Sec. 2.12).

The Lagrangian can be naturally defined as a difference of the kinetic and the internal
energies of all particles:

ℒ = ∑
j
(1
2
mj𝒗2j −mjuj) . (2.39)

The left-hand side of Eq. 2.38 can be evaluated by assuming the internal energy uj does not
depend on particle velocities 𝒗i . Hence:

d
dt

(∂ℒ
∂𝒗i

) = mi
d𝒗i
dt

. (2.40)

The derivative of the Lagrangian with respect to particle positions 𝒓i can be found by taking
into account the first law of thermodynamics. In intensive quantities, it can be written as:

duj = Tjdsj +
Pj
ρ2j

dρj , (2.41)

where Tj is the temperature and sj is the specific entropy of the j-th particle. The Lagrangian
derivative is thus:

∂ℒ
∂𝒓i

= −∑
j
mj (Tj

∂sj
∂𝒓i

+
Pj
ρ2j

∂ρj
∂𝒓i

) . (2.42)

By further assuming an adiabatic process, dsj = 0, the only remaining unknown term in the
equation of motion is the derivative of density ρj at the position of particle j with respect to
the position 𝒓i of particle i. This is finally where the SPH density discretization 2.5 comes into
play. As positions 𝒓j are independent coordinates of the configuration space, the gradient can
be written as:

∂ρj
∂𝒓i

= ∑
k

mk
∂Wjk

∂𝒓i
= ∑

k
mk(δji − δki)∇Wjk . (2.43)

By plugging the derived gradient back into Eq. 2.38, we obtain the equation of motion for the
i-th particle:

d𝒗i
dt

= ∑
j
mj (

Pi
ρ2i

+
Pj
ρ2j

)∇Wij . (2.44)
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The continuity equation can be determined analogously, by computing the temporal deriva-
tive of density from equation 2.5. Using the chain rule, we find:

dρj
dt

= ∑
k

mk
dWjk

dt
= ∑

k
mk(𝒗j − 𝒗k) ⋅ ∇Wjk . (2.45)

The remaining equation is the energy equation, which can now be easily written down by taking
the temporal derivative of Eq. 2.41:

duj
dt

=
Pj
ρ2j

dρj
dt

. (2.46)

Using the previous result for density derivative, we find:

dui
dt

=
Pi
ρ2i

∑
j
mj(𝒗i − 𝒗j) ⋅ ∇Wij . (2.47)

2.2.2 Properties of Lagrangian-based equations

The continuity equation, the equation of motion and the energy equation (together with the
equation of state) form a closed set of first-order differential equations. We immediately see
that the derived set of equations has several desirable properties.

2.2.2.1 Conservation of integrals of motion. When using the derived set of equations, the
total linear momentum, total angular momentum as well as total energy are conserved during
the simulation [Rosswog, 2009; Price, 2012]. This is undoubtedly a great strength of the SPH.
The conservative property arises from a suitable symmetrization of the equation of motion
2.44 in indices i and j. As the kernel gradient is an antisymmetric function (i.e. changes its
direction when indices i and j are swapped), the force exerted by particle i on particle j has
the same magnitude but opposite direction than the force exerted by particle j on particle i,
thus satisfying the principle of action and reaction. To verify the linear momentum is indeed
conserved, we can write down the temporal derivative of the total momentum vector 𝒑:

d𝒑
dt

= ∑
i
mi

d𝒗i
dt

= ∑
i
∑
j
mimj (

Pi
ρ2i

+
Pj
ρ2j

)∇Wij = 0 , (2.48)

where the last equality stems from summing over a product of a symmetric and antisymmetric
term. Therefore, the total momentum 𝒑 must be constant. A similar argument can be made
for the total angular momentum. Finally, the conservation of total energy comes from the
consistent discretization of the energy equation. It can be confirmed by taking a derivative of
the Hamiltonian H :

dH
dt

= ∑
i
(mi𝒗i ⋅

d𝒗i
dt

+mi
dui
dt

) (2.49)
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and by plugging in Eqs. 2.44 and 2.47. We obtain:

dH
dt

= −∑
i,j

mimj (
Pi
ρ2i

𝒗j +
Pj
ρ2j

𝒗i) ⋅ ∇Wij = 0 , (2.50)

where we utilized the antisymmetry of ∇Wij as before.

2.2.2.2 Galilean invariance. The SPH equations have the same outcome regardless of the
selected inertial reference frame. This can be readily seen from Eq. 2.45 and Eq. 2.47. As both
equations depend only on velocity differences 𝒗i − 𝒗j , adding a constant velocity to all particles
does not change the derivatives of quantities. It also implies that when the body moves with a
constant velocity, i.e. all particles have the same velocity vector, its density and specific energy
remain constant. The Galilean invariance is a big advantage of SPH over grid-based Eulerian
methods, where the solution generally depends on (and it may be highly sensitive to) the velocity
of the continuum with respect to the computational grid [Wadsley et al., 2008; Robertson et al.,
2010].

2.2.2.3 Regularization of the particle distribution. Unlike the velocity field, the pressure
gradient in the equation of motion 2.44 is symmetrized using a sum of particle pressures rather
than their difference. As explained previously, such a symmetrization is necessary to conserve
integrals of motion. Consequently, in case all particles have the same pressure value, the
computed pressure gradient is generally not exactly zero. While this seems like an undesirable
feature of the discretization, it actually improves the interpolation properties of the kernel in a
long run. Pressure gradients emerge due to particle disorder and they act as repelling forces,
pushing particles away from each other. The gradient will disappear if the neighboring particles
are symmetrically and uniformly distributed around the reference particle, making it an ideal
state for the evaluation of SPH derivatives. Mathematically, this is expressed by the consistency
conditions 2.16 and 2.17. Although correcting pressure gradient by a constant factor (similarly
as the velocity field in Eq. 2.45) would identically satisfy the condition 2.16 — regardless of
particle distribution — condition 2.17 and higher moments would not be generally satisfied.
By using the derived symmetrization of pressure gradient, the particles will be automatically
driven towards a configuration that meets the consistency conditions [Price, 2012]. This is a
significant advantage over other possible SPH discretizations, where some ad hoc regularization
term has to be added in order to provide an analogous mechanism [Dilts, 1999].

2.3 Eqations for viscous fluids and solid bodies
In simulations of ideal fluids, the forces inside the medium are determined by pressure gradients
only. However, fluids with non-negligible viscosity, granular materials with internal friction or
solid bodies with material strength require a more general treatment, as the internal forces are
specified by the stress tensor 𝝈 rather than the scalar pressure P .
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2.3.1 Equation of motion and energy equation

In the SPH formalism, this means we have to assign a symmetric stress tensor 𝝈i to each particle.
It is useful to split the tensor into an isotropic part, given by the pressure Pi , and a deviatoric
stress tensor 𝑺i :

𝝈i = 𝑺i − Pi1 . (2.51)

As the internal forces result from the stress divergence instead of pressure gradient, the equation
of motion can be obtained by generalizing Eq. 2.44, replacing the particle pressures with stress
tensors:

d𝒗i
dt

= −∑
j
mj (

𝝈i
ρ2i

+
𝝈j
ρ2j

) ⋅ ∇Wij . (2.52)

Due to the symmetrical form of the bracketed term, the action–reaction principle still holds,
implying the total linear momentum is still conserved in this discretization. However, the
direction of the force vector between two particles i and j is generally different than the relative
position 𝒓i − 𝒓j . As a consequence, the total angular momentum is no longer conserved. This
issue is addressed in Sec. 2.3.3.

Likewise, the energy equation needs to be supplemented by a viscous heating term. If we
define the velocity divergence as:

∇ ⋅ 𝒗i = ∑
j
mj(𝒗j − 𝒗i) ⋅ ∇Wij (2.53)

and the strain rate as a symmetrized velocity gradient:

̇𝝐i =
1
2
∑
j
mj((𝒗j − 𝒗i) ⊗ ∇Wij + ∇Wij ⊗ (𝒗j − 𝒗i)) , (2.54)

we can write down the energy equation as:

dui
dt

= −
Pi
ρi
∇ ⋅ 𝒗i +

1
ρi
𝑺i ∶ ̇𝝐i , (2.55)

where 𝑺i ∶ ̇𝝐i = ∑α ,β S
αβ
i ̇ϵαβi is the double-dot product.

2.3.2 Constitutive relation

Since we added a new independent quantity — the deviatoric stress 𝑺i — we have to add a
corresponding equation to close the set. The equation determining the stress tensor is different
for fluids and solids. In fluids, the stress tensor represents the viscosity and it thus depends on
the velocity gradient ∇𝒗i . In the Navier-Stokes equations, the dependence is linear and it can be
written as [Landau and Lifshitz, 1987]:

𝑺i = 2μd ( ̇𝝐i −
1
3
∇ ⋅ 𝒗i) , (2.56)

where μd is the dynamic viscosity of the fluid.



Equations for viscous fluids and solid bodies 27

For solid bodies, the stress is an outcome of the material strength. It depends on the dis-
placement of the material from its reference configuration rather than its velocity field. To avoid
storing the reference configuration of particles, we can use the strain rate ̇𝝐i in place of the strain
𝝐i and define an evolution equation for the deviatoric stress 𝑺i . The most simple stress-strain
dependence is linear, as described by Hooke’s law, hence we have a linear dependence between
the stress derivative and the strain rate:

d𝑺i
dt

= 2μ ( ̇𝝐i −
1
3
∇ ⋅ 𝒗i ) , (2.57)

where μ is the shear modulus of the material. The right-hand side of this equation is the same
as in Eq. 2.56, only the material constant differs. For fluids, the deviatoric stress tensor 𝑺i can be
computed directly from the state of the simulation, for solids, however, the stress tensor has to
be integrated in time from the specified initial conditions.

2.3.3 Bulk rotation

In simulations with viscosity or material strength, the total angular momentum is not generally
conserved. This creates problems especially in simulations with rotation, such as in viscous
circumstellar disks or rotating solid bodies. If left untreated, the spin rate of rotating bodies
would decrease over time until the bodies stop completely, which would prohibit long-term
simulations.

The issue stems from the discretization of velocity gradient 2.54 and divergence 2.53. As
described in Sec. 2.1.2, these spatial derivatives are zero-order consistent, ensuring that constant
velocities remain constant after discretization, but more complex flows are inevitably inaccurate
due to discretization errors. It works quite well for translational motion, but even a rotation
with a constant spin rate gives rise to unphysical velocity gradients. The rotation of a body is
misinterpreted as its deformation due to imprecise discretization. These deformations in turn
induce stresses inside the body, creating forces that act in the direction opposite to the rotation,
gradually slowing down the body and losing its angular momentum.

This inconsistency can be corrected by making the velocity gradient first-order consistent.
We introduce the correction tensor 𝑪 as [Schäfer et al., 2016]:

𝑪i = (∑
j

mj

ρj
(𝒓j − 𝒓i) ⊗ ∇Wij)

−1

. (2.58)

In case the bracketed matrix is not invertible, the Moore-Penrose pseudo-inverse [Penrose,
1955] is used instead. Using the correction tensor, we obtain the following corrected continuity
equation:

dρi
dt

= ∑
j
mj(𝒗i − 𝒗j) ⋅ 𝑪i∇Wij . (2.59)

The corrected equation of motion can be found similarly, taking into account the symmetrization
of interacting particles:

d𝒗i
dt

= −∑
j
mj (

𝝈i
ρ2i

⋅ 𝑪i∇Wij +
𝝈j
ρ2j

⋅ 𝑪j∇Wij) . (2.60)
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Lastly, the energy equation has to be corrected as well, using the correction tensor for the kernel
gradient in both the velocity divergence and the strain rate.

The first-order consistency significantly increases the discretization accuracy. Although the
total angular momentum is still not conserved exactly, the correction tensor greatly improves
the conservation and allows for solid bodies rotating with a constant spin rate. We verify this
on a simple test simulation in Sec. 3.5.

2.4 Density evolution
There are two different approaches to evolving the density in SPH simulations. These are usually
called the direct summation and the continuity equation. The former uses Eq. 2.5 to compute the
density from immediate positions, masses and smoothing lengths of particles, while the latter
treats the density as an independent quantity, which is evolved using the first-order differential
equation 2.45. There are pros and cons to both approaches, so one must choose the approach
that fits better to the problem being solved.

The conceptual difference of the direct sum and the continuity equation can be seen if
we write the density using the integral SPH interpolant rather than the sum. The discretized
interpolant reads:

⟨ρ⟩(𝒓) = ∫ ρ(𝒓′)W (𝒓 − 𝒓′) d𝒓′ . (2.61)

The continuity equation is a differential equation and thus requires all quantities to be differen-
tiable, while the directly summed density is essentially a solution of an integral equation and it
has no such requirements.The density field computed using Eq. 2.61 allows for non-differentiable
or even discontinuous density ρ(𝒓′).

2.4.1 Discontinuities in density

Since the continuity equation 2.45 has been derived by computing the temporal derivative of
2.5, both formulations yield identical results (neglecting the error caused by discretization for
the moment) if the assumptions are satisfied, in particular if the density and the velocity are
continuous and smooth quantities. However, the solutions will differ if the discontinuities are
present. It can be shown by computing the temporal derivative of the continuity equation:

∫(
∂ρ
∂t

+ ∇ ⋅ (ρ𝒗))W (𝒓 − 𝒓′) d𝒓′ = 0 . (2.62)

After rearranging the terms and going from integral form to particle discretization, we get
[Price, 2008]:

∑
j
mj(𝒗i − 𝒗j) ⋅ ∇Wij =

d
dt

∑
j
mjWij + ∮ ρ𝒗W (𝒓i − 𝒓′) ⋅ d𝜞′ . (2.63)

The left-hand side is the continuity equation 2.45, while the right-hand side is the temporal
derivative of the directly summed density 2.5 plus an extra surface term. Provided the ker-
nel W (𝒓) has finite support, this term would disappear if both the density ρ and velocity 𝒗 were
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differentiable. In presence of discontinuities, however, the term is generally non-zero and it is
missing in the density solution based on the continuity equation. For this reason, the direct
summation is more robust and preferred if strong shocks are expected in the simulation [Price,
2008].

2.4.2 Density at free surfaces

Unfortunately, the direct summation is not the “magic wand”, it has problems of its own. Namely,
it has troubles reconstructing the density field at free surfaces of bodies and material interfaces
[Reinhardt and Stadel, 2017; Emsenhuber et al., 2018]. The problem is rooted in the isotropy
of the smoothing kernel W . The kernel support is incomplete at free surfaces, as neighbors
occupy only half of the space and thus the evaluated density will be only about half of the
material density, creating an artificial low-density “atmosphere” near the surface. There are
ways to mitigate the problem, such as using ghost particles to fill the empty half of the kernel
or the corrective SPH density discretization [Liu and Liu, 2003]:

ρi =
∑
j
mjWij

∑
j

mj

ρj
Wij

. (2.64)

In this equation, the SPH density estimate is divided by a factor representing the completeness
of the kernel support. It is an implicit equation, the density ρi is present on both the left-hand
side and the right-hand side of Eq. 2.64, and it needs to be computed by an iterative method. It
does not necessarily imply an additional overhead, though; if the smoothing length is computed
using Eq. 2.24, a self-consistent iterative solution is necessary anyway, so the corrective SPH
approach only modifies the expression for density evaluation.

The continuity equation 2.45 has no issues at surfaces because the density only changes
when the body is compressed or expanded, otherwise it keeps the material density assigned
by the initial conditions. Such a fine control of density is especially important for weakly-
compressible materials, i.e. solids or liquids, where even a minor density difference may lead to
a large pressure gradient.

On the other hand, the evolved density is not constrained in any way and may get arbitrarily
low in a divergent flow. The density often appears in the denominator of the SPH equations,
therefore tiny values of density make the numerical scheme severely unstable. To avoid insta-
bilities, we set the minimal value of density to the implicit minimal value of summed density,
using 2.5 for an isolated particle with no neighbors:

ρmin = min
i

miW (0, hi) . (2.65)

2.4.3 Performance considerations

Finally, the direct sum contrasts with the evolution equation from the implementation point
of view. As the density appears on the right-hand side of the equation of motion and other
evolution equations, it is necessary to first compute the density using Eq. 2.5 and then use the
updated density to evaluate the pressure gradient and other SPH derivatives. Consequently, the
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direct sum approach requires at least two loops over all particle pairs in each time step. On the
other hand, the continuity equation is simply another evolution equation to be evaluated and
requires no special handling. Unless other modifications of the standard SPH scheme are used,
only a single loop over particle pairs is required if the continuity equation is used and it thus
usually outperforms the direct sum approach.

2.5 Energy-conserving discretization
For simulations with ideal gas or other inviscid fluids, the total energy is conserved, as discussed
in Sec. 2.2. However, the conservation of energy is no longer guaranteed if there are forces due
to viscosity or internal friction, although the change of the total energy is often small and does
not pose any problem.

In some cases, such as weak cratering impacts, we found that the energy growth can be
prohibitive. To mitigate the issue, we implemented an alternative way to evolve the internal
energy, using a compatibly-differenced scheme [Owen, 2014]. Instead of computing the energy
derivative, the energy change is computed directly from particle pair-wise accelerations 𝒂ij and
half-step velocities 𝒗i = 𝒗i +

1
2𝒂iΔt , using the equation:

Δui = ∑
j
fij(𝒗j − 𝒗i) ⋅ 𝒂ijΔt , (2.66)

where Δt is the current time step and fij the energy partitioning factors. They can be chosen
arbitrarily, provided they fulfill the constraint fij + fji = 1. With this form of the SPH, the total
energy can be conserved to machine precision, at a cost of performance overhead.

There is a freedom in the choice of factors fij , the total energy is conserved regardless of factor
definition. However, they have to be chosen so that the simulation behaves physically. Namely,
the second law of thermodynamics should be satisfied, i.e. the heat should flow from hotter
particles to colder particles. Frontiere et al. [2017] suggested physically-motivated definition of
the factors fij , using specific entropies si of particles:

fij = {
smin

smin + smax
, Δuij(si − sj) ≥ 0 ,

smax
smin + smax

, Δuij(si − sj) < 0 ,
(2.67)

where smin = min(si , sj) and smax = max(si , sj). Such a definition is quite simple and suitable
for studies of adiabatic problems, however, the specific entropies si are not always known. They
can be easily computed for the equation of state of ideal gas:

si =
Pi
ργi

, (2.68)

where γ is the adiabatic index. Unfortunately, there is no straightforward way to obtain si in
simulations involving solid materials, as Tillotson’s equation of state 2.102 only defines the
relationship P = P(ρ, u); there is no closed-form formula for entropy si , just as no formula exists
for temperature Ti .
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In the general case, we use ad hoc partitioning factors fij introduced by Owen [2014]. They
are constructed to mimic the behavior of Eq. 2.67, but using particle energies only. First, we
define the smoothly variation diminishing factor f smij as:

f smij = 1
2
(1 +

uji sgn(ΔEij)

|uji | +
1

1+|uji |

) , (2.69)

where ΔEij = miΔuij/fij . Second, a strictly monotonic variation diminishing factor f mono
ij is

defined. Given A = ΔEij/uji and B = A/mi if A ≥ 0 and B = A/mj otherwise, we define:

f mono
ij =

⎧

⎨
⎩

max(0, sgn(B)) , |B| ≤ 1 ,
mi
ΔEij

(
ΔEij +miui +mjuj

mi +mj
− ui) , |B| > 1 .

(2.70)

Finally, the partitioning factors fij are computed by a linear interpolation as:

fij = (1 − χ)f smij + χf mono
ij , (2.71)

using the weight χ given by:

χ =
|uj − ui |

|ui | + |uj | + ϵ
, (2.72)

where ϵ is a small number to avoid numerical instabilities.

2.6 Artificial terms
The SPH interpolant 2.4 can reasonably approximate the original function only if the function is
sufficiently smooth. If the function contains steep spikes or oscillations, the discretization error
introduced by smoothing the function with the kernel may be significant. The problem is even
more serious for discontinuous functions, as the continuum in SPH description is continuous
by construction and thus cannot accurately represent discontinuities.

2.6.1 Discontinuities in SPH discretization

Unfortunately, discontinuities are quite common in the astrophysical context. They appear on
the fronts of shock waves, at the interfaces of different materials, etc. The standard formulation
of SPH cannot properly handle these discontinuities, because the assumption of differentiability
was used to derive the set of evolution equations. If no such assumption was made, the disconti-
nuities would manifest as additional surface terms in the equations [Colagrossi et al., 2009],
similarly to the integrated density in Sec. 2.4. We can show that by expressing the SPH gradient
of a generic quantity A:

⟨∇A⟩(𝒓) = ∫
∂
∂𝒓′

(A(𝒓′)W (𝒓 − 𝒓′)) d𝒓′ + ∫A(𝒓′)∇W (𝒓 − 𝒓′) d𝒓′ , (2.73)
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where we utilized the fact that ∇W (−𝒓) = −∇W (𝒓). This leads to the identity:

⟨∇A⟩(𝒓) = ∮A(𝒓′)W (𝒓 − 𝒓′) d𝜞′ + ∫A(𝒓′)∇W (𝒓 − 𝒓′) d𝒓′ . (2.74)

The first term in the equation disappears as long as the function A(𝒓) is continuous and has
bound support. In the presence of a discontinuity, however, the surface terms generally remain
and they are neglected in the standard SPH formulation.

Computing a surface integral in the SPH discretization is rather complex (albeit surely
possible), as smoothed particles are volumetric objects by nature with no topological information
specifying the connectivity to other particles. Hence, there is no straightforward way to obtain
the surface element for a given particle, or even determine whether the particle lies on the
surface (cf. Sec. 2.14).

We can avoid the troubles by getting rid of the discontinuities in the first place. A possible
solution is to add a discontinuity-capturing term to the evolution equation of the discontinuous
state quantities [Price, 2008]. Such a term smooths the step in quantity over several particles,
getting rid of the discontinuity and allowing the SPH to handle the discontinuity naturally.

2.6.1.1 Diffusivity. Considering the discontinuity-capturing term is purely numerical, the
smoothing effect can be achieved arbitrarily. Specifically, it does not need to be a smoothing or
diffusion term introduced by some physical process; it can be problem-independent and simply
appear as another term on the right-hand side of the evolution equation. Nevertheless, it is
common to base the diffusion term for quantity A on the Laplacian ∇2A, which is inspired by
the diffusion equation. The diffusion term can be written as:

(
dAi
dt

)
dif

= η∇2Ai , (2.75)

where η is as-of-yet unspecified diffusivity factor. Unlike the physical terms, the numerical
diffusion has to be dependent on spatial resolution and it shall converge to zero when the
resolution approaches infinity. Consequently, we set the diffusivity η proportional to the spacing
of particles:

η = 1
2
αwij ‖𝒓i − 𝒓j ‖ , (2.76)

where the dimensionless constant α determines the magnitude of the smoothing and wij is the
signal speed. As explained below, the signal speed must be carefully selected for each quantity.

Using Eq. 2.22 to discretize the Laplacian in the SPH, we finally obtain a generic expression
for the diffusion term:

(
dAi
dt

)
dif

= ∑
j
αwij

mj

ρj
(Ai − Aj) ̂𝒓ij ⋅ ∇Wij , (2.77)

where ̂𝒓ij = (𝒓i−𝒓j)/‖𝒓i−𝒓j ‖. The density ρj in the denominator is often symmetrized, i.e. replaced
by ρij = (ρi + ρj)/2, to make the whole smoothing term symmetric with respect to particles i
and j.
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2.6.2 Artificial viscosity

Historically, the first equation that was modified to properly handle shocks was the equation of
motion [Monaghan, 1989]. An SPH formulation with no smoothing terms leads to obvious issues
when shock waves are involved, such as particle interpenetration and unphysical oscillations in
the pressure field after the shock wave passes. To resolve these problems, we add a numerical
term into the equation of motion called the artificial viscosity.

2.6.2.1 Riemann-based viscosity. There is a number of possible approaches to construct a
numerical viscosity term. A straightforward way is to use the diffusion term 2.77 derived above,
with velocities 𝒗 in place of the generic quantity A. This leads to the artificial viscosity initially
introduced by Monaghan [1997]:

(
d𝒗i
dt

)
av

= ∑
j
αwij

mj

ρij
(𝒗i − 𝒗j) ⋅ ̂𝒓ij∇Wij . (2.78)

The numerical viscosity is only needed to resolve the shock fronts, it is undesirable to increase
the viscosity in divergent flows. Therefore, the viscosity term is set to zero if (𝒗i − 𝒗j) ⋅ ̂𝒓ij > 0.

The signal speed is estimated using the exact solution of Riemann problem:

wij = ci + cj − 3(𝒗i − 𝒗j) ⋅ ̂𝒓ij , (2.79)

where ci is the sound speed of particle i. For a consistent and conservative formulation, a
corresponding term has to be added into the energy equation:

(
dui
dt

)
av

= ∑
j
(−

αwij

2
mj

ρij
(𝒗ij ⋅ ̂𝒓ij)2) ̂𝒓ij ⋅ ∇Wij . (2.80)

2.6.2.2 Standard viscosity. Although Eq. 2.78 is naturally based on the general form for the
diffusion operator, it is common to use a different, somewhat ad hoc numerical viscosity in
SPH codes [Monaghan, 1989, 1992; Benz and Asphaug, 1994; Cossins, 2010; Price, 2012]. This
viscosity modifies the equation of motion as:

d𝒗i
dt

= −∑
j
mj (

Pi
ρ2i

+
Pj
ρ2j

+ Πij)∇Wij . (2.81)

As the term Πij needs to be “active” on the shock front and small (or ideally zero) elsewhere, it
is based on the velocity divergence ∇ ⋅ 𝒗, which is non-zero only at the shock front in the case of
incompressible flow. To reduce the sensitivity to particle disorder, the velocity divergence is
approximated as:

(∇ ⋅ 𝒗)i = ∑
j

(𝒗i − 𝒗j) ⋅ (𝒓i − 𝒓j)

‖𝒓i − 𝒓j ‖2 + ϵh2
. (2.82)

Since the viscosity term Πij is a pair-wise interaction, given by the state of particles i and j, we
define a pair-wise velocity divergence as:

μij =
h(𝒗i − 𝒗j) ⋅ (𝒓i − 𝒓j)

‖𝒓i − 𝒓j ‖2 + ϵh2
. (2.83)



34 SPH code for impact simulations

The term Πij contains a combination of linear and quadratic function of μij . The viscosity
proportional to μ2ij was suggested by VonNeumann and Richtmyer [1950]:

ΠNR
ij =

βμ2ij
ρij

, (2.84)

where β is a dimensionless constant with value typically in the interval β = 0.3 ÷ 3. As it is
quadratic in velocity, it prevents interpenetration of particles moving at high Mach numbers,
hence it is better suited to handle strong shocks compared to 2.78.

To stabilize the simulation in presence of weak shocks and to damp any unphysical oscil-
lations in the pressure field, an artificial viscosity linear in μij is also added [Landshoff, 1955;
Lattanzio et al., 1985]:

ΠL
ij = −

αcijμij
ρij

, (2.85)

where cij = (ci + cj)/2 is the symmetrized sound speed, α is a dimensionless constant, usually
set up as β = 2α . In the case of a divergent flow, μij > 0, the viscosity Πij is set to zero.

Seeing that the linear and quadratic terms have different purposes and nicely complement
each other, most codes use a sum of both terms [Monaghan, 1989]:

Πij =
−αcijμij + βμ2ij

ρij
. (2.86)

2.6.2.3 Balsara switch. Although the artificial viscosity is essential for handling of disconti-
nuities in the SPH, the added viscosity may have undesirable effects. The problem stems from
the fact that Eq. 2.86 adds the viscosity to all the particles with non-zero velocity divergence
and not only the particles close to the shock front. As a consequence, the term substantially
increases the viscosity in shear motion. A rather simple yet efficient solution is to use the
vorticity ∇ × 𝒗 as an indicator of shear motion and introduce the Balsara switch [Balsara, 1995]:

fi =
‖⟨∇ ⋅ 𝒗i⟩‖

‖⟨∇ ⋅ 𝒗i⟩‖ + ‖⟨∇ × 𝒗i⟩‖ + ϵ2ci/h
. (2.87)

The factors fi are equal to 1 in pure convergent flow and 0 in pure shear flow. They are thus
used as multipliers of μij (2.83):

μij =
h(𝒗i − 𝒗j) ⋅ (𝒓i − 𝒓j)

‖𝒓i − 𝒓j ‖2 + ϵh2
fi + fj
2

. (2.88)

2.6.2.4 Time-dependent viscosity. While these are the standard terms used in majority of
SPH codes, there are more involved approaches to artificial viscosity, which may be useful in
certain situations. For example, Morris and Monaghan [1997] introduced an artificial viscosity
with coefficients αi and βi generally different for each particle. These coefficients are also time-
dependent, governed by an evolution equation that increases the artificial viscosity at the front
of the shock wave, but attenuates the viscosity once the shock wave passes:

dαi
dt

= −
αi − αmin

τ
+max [−(αmax − αi)∇ ⋅ 𝒗i , 0] , (2.89)
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where τ = h/(ϵ2cs) is a decay timescale, ϵ2 = 0.1 to 0.2, αmax ≃ 1.5, αmin ≃ 0.05 [Rosswog et al.,
2000]. For a more detailed description and additional modifications of the artificial viscosity, see
Dolag et al. [2005] or Cullen and Dehnen [2010].

2.6.3 Artificial thermal conductivity

While the artificial viscosity treats problems caused by discontinuities in the velocity field, the
issues arising from ignoring the discontinuity terms in evolution equations are not exclusive
to the equation of motion. Generally, an artificial smoothing term should be added for every
time-dependent quantity [Monaghan, 1997; Price, 2008]. In particular, the discontinuities in
the specific energy and consequently in the pressure lead to issues when mixing of different
materials is involved. It has been demonstrated that the standard SPH formulation cannot
reproduce the mixing of fluids in the Kelvin-Helmholtz instability [Valcke et al., 2010]. The lack
of smoothing term effectively acts as a numerical surface tension at interfaces and keeps the
entropy of the fluid constant, which prevents the mixing of fluids [Valdarnini, 2012].

Problems caused by pressure discontinuities can be mitigated by introducing an artificial
thermal conductivity. We thus add an extra numerical term into the energy equation, using the
generic diffusivity term 2.77 as a template [Price, 2008]:

(
dui
dt

)
dif

= ∑
j

mj

ρij
αuwu(ui − uj) ̂𝒓ij ⋅ ∇Wij , (2.90)

where ρij = (ρi + ρj)/2 is the symmetrized density, αu = 1.5 is a dimensionless constant
controlling the conductivity, wu is the signal speed (to be defined) and ̂𝒓ij = (𝒓i − 𝒓j)/‖𝒓i − 𝒓j ‖.
Importantly, the term is not used instead of the artificial viscosity term 2.80 but rather as an
additional term in the energy equation.

2.6.3.1 Signal speed. Price [2008] suggested using a signal speed:

wu =
√

|Pi − Pj |
ρij

. (2.91)

Since the signal speed wu depends on the difference of particle pressures, it smooths the internal
energy in the presence of a pressure discontinuity or a steep pressure profile, ensuring pressure
equilibration and allowing fluids to properly mix.

In the pressure equilibrium, the artificial conduction disappears and it does not affect the
solution any longer. However, the pressure equilibrium does not necessarily imply a hydrostatic
equilibrium, and similarly, a body in a hydrostatic equilibrium does not necessarily have zero
pressure gradients everywhere. In simulations involving forces other than the pressure gradient,
such as friction, material strength, self-gravity or any external potential, the signal speed 2.91
would trigger an artificial thermal diffusion even if the body is in the hydrostatic equilibrium,
and as such it is not usable [Valcke et al., 2010]. An alternative signal speed, which is independent
of pressure and thus viable for simulations involving the gravity and other forces, has been
suggested by Valdarnini [2012]:

wu = |(𝒗i − 𝒗j) ⋅ ̂𝒓ij | . (2.92)
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The artificial thermal conductivity is only needed to handle shocks and it is generally
undesirable elsewhere. It is possible to add a dissipation switch, similar to the artificial viscosity
switch 2.89 introduced by Morris and Monaghan [1997].

2.6.4 Artificial stress

The artificial terms discussed above are necessary to capture and properly resolve the disconti-
nuities in the SPH numerical scheme. They ensure smoothing of physical quantities over (at
least) several particles, however, they do not guarantee the stability of the numerical scheme
during the simulation. By stability, we mean the conditions under which the particles drift back
to their initial positions upon minor displacements.

2.6.4.1 Tensile instability. As mentioned by Swegle et al. [1994], the standard SPH dis-
cretization is generally stable upon compression (i.e. for positive pressure values), but it shows
instabilities in tension when the pressure values are negative.The instability leads to a clustering
of particles and a formation of clumps, instead of stretching the particle configuration. The issue
appears in simulations with the stress tensor, e.g. when solid bodies with material strength are
used.

The instability is related to the sign of the stress σ and the second derivative W″ of the
smoothing kernel. Swegle et al. [1995] showed that instability occurs if:

σ ⋅W″(𝒓ij) > 0 . (2.93)

The condition does not depend on the spatial resolution and it has no parameters which could
be modified to avoid it. The scheme cannot be stabilized by the artificial viscosity or other terms
discussed in previous sections; if the second kernel derivative has the same sign as the stress,
the numerical scheme is always unstable. For the typically used SPH kernels and the usual
number of neighbors within the kernel support, the condition is satisfied for negative stress σ ,
i.e. in tension. This effect is coined the tensile instability [Monaghan, 2000].

On the other hand, if there is a significantly higher number of neighbors, the particles are
close to each other (relative to the kernel support) and the second derivative W″(𝒓ij) changes
sign, causing the scheme to become unstable in compression. This is called the pairing instability
[Price, 2012; Dehnen and Aly, 2012] and leads to a spontaneous formation of particle pairs
or small clusters of particles, even if no stress tensor is used. The pairing instability can be
mitigated by keeping the number of neighbors under a certain limit. It is also easy to recognize
in simulations, as there is usually no physical reason for particles to form clusters in gas or fluid
simulations.

The tensile instability is more involved, though. First, there is no straightforward way
to mitigate it. Second, the issue may be subtle in simulations of solid bodies, as it results in
(numerical) fragmentation, which may be quite similar to fracture of the material due to the
growth of cracks (see Sec. 2.8.4). This makes the instability difficult to recognize, therefore it is
important to resolve the issue to ensure any fracture appearing in the simulation is physical
rather than numerical, especially in simulations where the fragmentation plays a significant
role.
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The tensile instability can be suppressed by adding an extra numerical term, called the
artificial stress [Monaghan, 2000; Gray, 2001]. Is modifies the equation of motion as:

d𝒗i
dt

= ∑
j
mj (

𝝈i
ρ2i

+
𝝈j
ρ2j

+ Πij1 + 𝜻ij) ⋅ ∇Wij . (2.94)

The symmetric tensor 𝜻ij is defined as:

𝜻ij = (𝑹i + 𝑹j) (
W (𝒓i − 𝒓j)
W (⟨Δr⟩)

)
n

, (2.95)

where ⟨Δr⟩ is the mean particle spacing, n = 4 is a fixed constant and 𝑹i are tensors computed
for each particle, as explained below.The mean particle spacing is proportional to the smoothing
lengths, so the term W (⟨Δr⟩) can be considered a constant in the simulation and it can be
computed only once at the beginning of the simulation.

2.6.4.2 Local measure of tension. Tensors 𝑹i are set in proportion to the physical stress
terms in the equation of motion, although they are activated in tension only. In compression,
they are set to zero; the artificial stress is not needed and the term may undesirably alter the
physical stress. It is similar to setting the artificial viscosity to zero in divergent flows where
∇ ⋅ 𝒗 > 0. In one dimension, the term Ri can be computed as:

Ri = {
−ϵσi/ρ2i , σi ≥ 0 ,

0 , σi < 0 ,
(2.96)

where ϵ ≃ 0.04 is a small number determining the magnitude of the artificial stress. The
decomposition of compression and tension is more complex in three dimensions, because the
stresses 𝝈i are symmetric tensors. The tensor needs to be decomposed into its principal axes
using the eigendecomposition. As the tensor 𝝈i is real and symmetric, we can use the identity:

𝝈 = 𝑼 diag(σA, σB, σC) 𝑼T , (2.97)

where σA, σB, σC are eigenvalues of the tensor. We then construct the part of the stress tensor 𝝈
containing the tension by taking the positive parts of the eigenvalues:

𝝈+ = 𝑼 diag (max(σA, 0),max(σB, 0),max(σC , 0)) 𝑼T . (2.98)

Finally, the artificial stress terms 𝑹i are computed using the same formula as in one dimension,
only the modified stress 𝝈+ is used in place of 𝝈:

𝑹i = −ϵ
𝝈+
i

ρ2i
. (2.99)

Alternatively, the tensile instability can be removed by keeping the particle neighborhood
fixed during the simulation [Peer et al., 2017]. When particles always interact with the same set
of neighbors, it allows to handle extreme deformations of elastic materials without instability
issues. However, it keeps the topology of the simulated continuum locked as well, making it
difficult to couple the solid body physics with a fragmentation model.
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2.6.5 Influence of artificial terms on the solution

Adding ad hoc diffusion terms into our SPH equations raises a question about the validity of the
resulting solution. After all, there are terms in the discretized equations with no corresponding
terms in the continuous equations, from which the discretization was derived. One might expect
that the artificial terms negatively affect the simulation and consequently, the computed result
is not an accurate solution to the original problem anymore.

Luckily, this is not the case. As demonstrated in Sec. 2.1.2, the discretization error is of order
𝒪(h2), and any changes to the spatial derivatives lead to “equally good” discretization, provided
the magnitude of these changes is also 𝒪(h2). Similarly, adding artificial terms to equations
does not make them less accurate, as long as their magnitude is 𝒪(h2). In other words, the
numerical terms do affect the solution, but the introduced difference is of the same order as the
discretization errors. The influence of the numerical terms decreases as the spatial resolution
is increased, similarly to the discretization errors. In the limiting case of infinite resolution,
the numerical terms would disappear completely and we would once again regain the original
continuous equations.

This 𝒪(h2) margin is a blessing and a curse for the SPH method. On one hand, the flexibility
allows us to construct a conserving numerical scheme that properly handles shock waves,
rotating solid bodies, etc. Naïve discretization would have none of these properties. On the
other hand, it is not immediately obvious which scheme is the most appropriate for the given
problem. Even though all discretizations yield the same result in the limit of infinite number
of particles, one always works with a finite number of particles, where the various numerical
schemes differ — in some cases significantly. Using a wrong scheme may result in unacceptable
results (cf. Fig. 3.6). Therefore, it is essential to compare the results of the SPH code with an
analytical solution, where such a solution exists, or with laboratory experiments.

2.7 Eqation of state
Equations of hydrodynamics describe the temporal evolution of any continuum. The same
conservation equations hold for ideal gas, water or other viscous fluids, solids or granular
materials. To close the set of equations and provide the numerical model with the physical
properties specific for the given material, we need to add the equation of state (EoS).

The equation of state determines the relationship between the pressure P , the density ρ
and the specific internal energy u (or other set of independent state quantities), usually as a
function P = P(ρ, u). In collision simulations, we are generally interested in state equations
of solid materials. For this purpose, a number of equations have been formulated, such as the
Mie-Grüneisen or the Murnaghan equation. However, these equations are rather simplistic and
do not capture important processes that take place during asteroid impacts.

2.7.1 Tillotson’s equation

The equation state commonly used in impact simulations has been first described by Tillotson
[1962]. It was developed for hyper-velocity impacts and takes into account the melting and
vaporization of the material at high temperatures. It defines the pressure P(ρ, u) separately for
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two phases of the material — condensed (cold) phase and expanded (hot) phase. The appropriate
phase is selected according to the specific internal energy u. If it is lower than the energy uiv of
incipient vaporization, the condensed phase is used:

Pc = Aμ + Bμ2 + (a + b
u

u0η2
+ 1

) ρu , (2.100)

where A, B, a, b, u0 are Tillotson’s parameters of the condensed material, η = ρ/ρ0 and μ = η−1.
In case the specific energy u exceeds the energy ucv of complete vaporization and material is
expanded (ρ/ρ0 ≤ 1), the material is in the expanded phase and the equation of state follows
the law:

Pe = aρu + (
bρ

1
u0η2

+ 1
u

+ Aμe−β(ρ0/ρ−1)) e−α(ρ0/ρ−1)
2
, (2.101)

where α , β are Tillotson’s material parameters of the expanded phase.
If the specific energy u > uiv and the material started to evaporate, but it has not yet

evaporated completely (u < ucv), the pressure is given by a linear interpolation between
pressures of both phases [Asphaug, 1993]:

P =
(u − uiv)Pe + (ucv − u)Pc

ucv − uiv
. (2.102)

Although we used Tillotson’s equation of state exclusively in our work, there are certainly
more detailed and physically accurate equations for hyper-velocity simulations, such as the
ANEOS [Thompson and Lauson, 1974; Melosh, 2000] or SESAME equation [Bennett et al., 1978;
McHardy, 2018]. However, these equations are no longer closed-form like Tillotson’s equation,
the values need to be tabulated and then interpolated during the simulation.

2.7.2 Sound speed

The equation of state is further used for computing the sound speed c. Even though the sound
speed does not explicitly appear in hydrodynamic equations, it is often used in artificial terms,
such as artificial viscosity (Eq. 2.86) or artificial conductivity (Eq. 2.90). The sound speed is also
needed to determine the time step, making it essential for the stability of the numerical scheme.
We derive the sound speed by taking the derivative of Tillotson’s equation 2.102, as in Kegerreis
et al. [2019]:

c2 = (∂P
∂ρ

)
s
. (2.103)
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Using du = Tds − (P/ρ2)dρ, we obtain the sound speed cc and ce of the condensed and the
expanded phases, respectively:

c2c =
Pc
ρ
(1 + a + b

ω
) +

b(ω − 1)
ω2 (2μ −

Pc
ρ
) + 1

ρ
(A + B(η2 − 1)) , (2.104)

c2e =
Pe
ρ
(1 + a + b

ω
e−αν

2
) + [

bρu
ω2η2

( 1
u0ρ

(2u −
Pe
ρ
) + 2ανω

ρ0
)+

+ A
ρ0

(1 +
μ
η2

(β + 2αν − η)) e−βν] e−αν
2
, (2.105)

where ν = 1/η − 1 and ω = u/(u0η2) + 1. In case the specific energy u lies between uiv and ucv,
the squares of sound speeds c2c and c2e are linearly interpolated similarly as before:

c2 =
(u − uiv)c2e + (ucv − u)c2c

ucv − uiv
. (2.106)

Unfortunately, Tillotson’s equation is an incomplete equation state. It only provides the
pressure function P(ρ, u), there is no straightforward way to compute the temperature T (ρ, u).
However, we can at least obtain a reasonable estimate using:

T = u
cp

, (2.107)

where cp is the specific heat capacity at constant pressure.

2.8 Rheology
When Hooke’s law is used as the constitutive equation, the material behaves as a perfectly elastic
solid. Such material is useful for validation tests of the numerical model, but its applicability
to real-world situations is significantly limited, as it only applies at low stresses and small
deformations. During impacts and other high-energy processes, it is essential to consider more
complex rheology and take into account plasticity and material failure.

2.8.1 Von Mises yield criterion

A simple rheology model that includes material weakening at large stresses and plastic defor-
mations was described by von Mises [1913]. It has been extensively used in the first hydrocodes
studying asteroid impacts [Benz and Asphaug, 1994; Benz and Asphaug, 1995]. The model has a
single material parameter, called the plasticity limit Y0, which determines the transition point
between elastic and plastic deformations. Once the magnitude of the stress exceeds the plasticity
limit, it is reduced to this limit and therefore any subsequent deformation only increases the
strain while keeping the stress constant.

The magnitude of the stress is determined by its second invariant J2 = √𝑺 ∶ 𝑺. Mathemati-
cally, the reduction factor f of the stress for an intact (undamaged) rock is given by:

f = min(
Y0

√
3
2𝑺 ∶ 𝑺

, 1) (2.108)
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Any equation using the stress tensor 𝑺 should then use the reduced stress tensor f 𝑺 instead to
manifest the plasticity; this approach is often called the radial return method [Jutzi et al., 2015].

Themodel can be easily generalized to include weakening of the material shear strength with
increasing temperature. Instead of using a constant plasticity limit Y0, we assume it depends on
the internal energy u. The simplest (but viable) functional dependence is a linear relationship:

Y0(u) = Y0max (1 − u
umelt

, 0) , (2.109)

where umelt is the melting specific internal energy. Naturally, zero yield strength is used when-
ever the internal energy u is larger than the melt energy umelt.

It is also possible to directly incorporate a fragmentation model into the von Mises criterion.
Assuming the relative weakening due to material failure is described by the scalar damage D
(see Sec. 2.8.4), the yield strength can be modified to include the damage as:

Y = (1 − D)Y0 . (2.110)

An important consequence of such a description is that fully damaged material has no shear
strength and behaves as ideal fluid. Von Mises material is thus viable for simulating metallic
bodies, but it fails when applied to granular materials due to the absence of dry friction.

2.8.2 Drucker-Prager yield criterion

A more general rheology, suitable for simulations involving bodies of granular material, is based
on Drucker-Prager model [Collins et al., 2004; Jutzi et al., 2015]. It defines the yield strength of an
intact (undamaged) rock and yield strength of a fully damaged rock separately. For undamaged
material, the yield strength Yi is given by:

Yi = Y0 +
μiP

1 + μiP/(YM − Y0)
, (2.111)

where Y0 is the cohesion (shear strength at zero pressure), μi is the (dimensionless) coefficient of
internal friction and YM is the von Mises plasticity limit. Although pressure can be negative due
to tension, we limit the pressure to positive values in this equation to avoid possible division by
zero.

The yield strength of a completely damaged rock is considerably simpler:

Yd = μdP , (2.112)

where μd is the (dimensionless) coefficient of dry friction.
Whenever the material damage D lies between zero and one (i.e. partially damaged material),

the yield strength Y is given by a linear interpolation:

Y = Yi(1 − D) + YdD . (2.113)

The temperature dependence can also be implemented similarly as in the von Mises criterion.
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The Drucker-Prager rheology differs from the von Mises rheology in several key aspects.
First, the yield strength is pressure-dependent — it increases with larger pressure. The rock
has non-zero strength even at zero pressure, as given by its cohesion Y0, but the strength
substantially increases when the overburden pressure is applied. This is a characteristic property
of granular material, essential for realistic simulations. Second, even a completely damaged
rock has non-zero strength, proportional to the overburden pressure. The coefficient μd of dry
friction relates to the angle of repose θ as tan θ ≃ μd. Thus, the damaged rock under constant
gravity forms a slope with angle θ , unlike the von Mises material, which would eventually form
a flat plane or surface corresponding to equipotentials (similarly to fluids).

2.8.3 Acoustic fluidization

TheDrucker-Prager model gives viable predictions when applied to granular materials and it can
successfully reproduce the end result of a gravity-induced collapse, thus it is a frequently used
model in rock mechanics [Holsapple, 2009]. However, the model cannot explain the complex
structures observed in craters created by high-energy impacts, neither the terrestrial ones
(e.g. Chicxulub or Puchezh-Katunki) nor craters on Moon and other solar system bodies (e.g.
Rheasilvia crater on Vesta). The numerical experiments only match the observations well when
applied to small craters. These so-called simple craters are bowl-shaped depressions encircled by
elevated rims. With increasing impact energy, craters start to transition from simple to complex.
Observed complex craters have additional topographical features, namely the central peak and
occasionally multiple rings. This simple-to-complex transition depends on the surface gravity;
on the Moon it appears for crater diameters D ≈ 15 km [Melosh and Ivanov, 1999].

2.8.3.1 Material weakening. The rheological model needs to be generalized in order to
explain these features of complex craters. It requires such rheology that allows the central peak
to form shortly after the impact, while also preserving the peak for millions of years afterwards.
The key observation is that the central peak naturally forms when the transient crater collapses,
provided the material behaves as a viscous fluid rather than a granular rock.

A number of physical processes explaining this material weakening have been proposed.
Such a process has to temporarily reduce the strength of the material upon impact in order
to form the central peak, but quickly restore the strength after the impact to prevent the peak
from collapsing. A commonly used model explaining this behavior is acoustic fluidization.

The acoustic fluidization model attributes the transient weakening of the material to the dis-
crete structure of the surface rock. The model assumes that the rock is not a seamless continuum,
but rather it consists of blocks separated by layers of matrix material. This assumption seems to
be supported by observations; indeed, deep drilling into terrestrial impact craters showed rock
blocks with sizes between 50 and 200 meters [Ivanov et al., 1996]. Upon the impact, the strong
acoustic vibrations created by the shock wave allow blocks to move with much lower resistance
than the material strength would imply, behaving similarly to fluid. However, this effect is only
temporary as the acoustic oscillations are attenuated or travel away, and the material strength is
restored, preserving the topographical features of the crater. Such a model has been successfully
employed to explain geological structures in the San Andreas fault [Melosh, 1996], Chicxulub
crater [Riller et al., 2018] or craters on Ganymede [Bray et al., 2014].
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2.8.3.2 Meloshmodel. First proposed by Melosh [1996], the degree of fluidization is described
by the vibrational energy Evib. It is a state quantity interpreted as a vibrational acoustic energy
per unit volume and its time evolution is determined by the differential equation [Melosh, 1996;
Hay et al., 2014]:

dEvib
dt

=
ξ
4
∇2Evib −

cp
λQ

Evib + e𝝈 ∶ ̇𝝐 . (2.114)

The first term on the right-hand side describes scattering, ξ being the scattering diffusivity.
The second term converts the acoustic energy into heat. Here cp is the wave speed, λ is the
characteristic wavelength of oscillations and Q is the quality factor determining the fraction of
acoustic energy converted to heat per oscillation cycle. Finally, the last term is the (re)generation
term, specifying the amount of vibrational energy generated during material flow, e being the
dimensionless regeneration efficiency.

In the special case when ξ = e = 0, the solution to the Eq. 2.114 is a simple exponential
decay. This simplification of the acoustic fluidization model is usually called the block model
[Hay et al., 2014].

Acoustic vibrations of blocks imply the local pressure is lower than the ambient overburden
pressure and thus the yield strength of the material is decreased as well. The rheology of the
damaged material is modified to the Bingham-like form [Silber et al., 2017]:

Yd = μ(P − Pvib) + ηlimρ ̇ϵ , (2.115)

where Pvib is the vibrational pressure, calculated from the vibrational energy as Pvib = √2ρc2s Evib,
and ηlim is the effective viscosity of fluidized material.

2.8.3.3 Attenuation timescale. Acoustic fluidization introduces a number of free parameters
which are generally difficult to constrain. In the simplest case of the block model, it requires the
attenuation timescale Tdec and the initial vibrational pressure Pvib. It is difficult to determine
this parameter a priori and it has to be selected to fit observational constraints. However, Ivanov
[2019] plotted the optimal decay timescale Tdec against the crater diameter D for a number of
studied cases and found the points are correlated, providing an empirical formula for the decay
timescale:

[Tdec]s = 1.2 [D]km . (2.116)

While the optimal value of Tdec can still differ significantly, the formula provides a good initial
estimate.

2.8.4 Fragmentation

Besides plasticity, another characteristic behavior of solid materials is a failure under deforma-
tion. When the strain ϵ in the body exceeds a certain activation threshold ϵact, a crack appears
and starts to grow. At this point, the deviation from Hooke’s law is significant; the stress in
the body is relieved and it is no longer increased when increasing the strain. The cracks then
develop until the body is fragmented and dispersed.

Cracks originate from flaws in the rock structure. Flaw sizes range from nanometer-sized
dislocations up to macroscopic cavities [Lawn and Wilshaw, 1975]. However, even flaws ∼ 1m
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in size are still about 103 times smaller than the resolution limit of our simulations and it is thus
impossible to capture the growth of individual cracks in the continuum. Instead, a statistical
treatment of crack growth is used.

2.8.4.1 Weibull distribution. Generally, the notion of a single activation threshold ϵact
is far too simplistic to properly simulate real materials. The activation threshold is different
for each flaw and it can differ by many orders of magnitude. For brittle solids, the Weibull
distribution [Weibull, 1939] is commonly used to describe the number of flaws in unit volume
whose activation threshold is lower than ϵ. It follows the power law:

N (ϵ) = kϵm , (2.117)

where k and m are the Weibull coefficients, specific for given material.

2.8.4.2 Grady-Kipp model. The activation and growth of cracks were described by Grady
and Kipp [1980]. The Grady-Kipp model introduces a scalar state quantity called damage D.
It represents the degree of fragmentation, with D = 0 being an intact, elastic material and
D = 1 being fully fractured material. Damaged material exhibits reduced strength in tension,
modifying the pressure P and the deviatoric stress tensor 𝑺 as1:

P⋆ = {
P , P ≥ 0 ,

(1 − D)P , P < 0 ,
(2.118)

𝑺⋆ = (1 − D)𝑺 . (2.119)

2.8.4.3 Discretization in SPH. The model was discretized in the SPH framework by Benz
and Asphaug [1994] and it is commonly used in shock-physics codes. In the discretized form,
the flaws are initially distributed in the body by sequentially selecting a particle randomly and
adding a flaw to it, starting with the weakest flaw and progressively assigning flaws with a
higher activation threshold, until all particles contain at least one flaw. Following the Weibull
distribution 2.117, activation threshold of n-th flaw assigned using the outlined method is:

ϵi,n = ( n
kV

)
1
m , (2.120)

where V is the total volume of the body, computed as V = ∑i mi/ρi .
The flaws assigned to particles need to be stored and kept in memory during the simulation

in order to determine the total number of activated flaws. One solution is to explicitly store
an array of flaws for each particle. The number nact of activated flaws is then simply the
number of flaws with activation strain lower than the current local strain ϵ. The disadvantage
of such an approach is a considerable memory overhead; for N particles, this requires to store
approximately Nflaws = N lnN flaws [Schäfer et al., 2016]. Alternatively, we can store only the

1For simplicity, we drop the asterisk from quantities in other equations and use the symbols P and 𝑺 for the
reduced pressure and deviatoric stress, respectively.
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smallest activation strain ϵmin, the largest activation strain ϵmax and the total number of flaws
nflaws assigned to each particle [as in Benz and Asphaug, 1994]. Given the current strain ϵ, the
number of activated flaws can be then estimated as:

nact = ( ϵ
ϵmin

)
m0

, (2.121)

where m0 = log(nflaws)/ log(ϵmax/ϵmin).
The sequential filling of particle flaws is suitable for simulations with a moderate number of

particles. However, we found out that for a large number of particles (N > 107), this approach
becomes extremely inefficient, as each particle needs to be selected at random at least once.
In such cases, we instead assign the number of flaws nflaws to particles directly; as flaws are
assigned to particles randomly, the number of flaws follows the Poisson statistics, we can
thus get a reasonable estimate by sampling the Poisson distribution. With this approach, the
computational complexity reduces to 𝒪(N ), allowing to seed the flaws even for high-resolution
simulation.

To determine the number of activated flaws, we need to find the scalar strain ϵ. Given the
total stress tensor 𝝈 = −P𝑰 + 𝑺, we first compute the eigendecomposition of the matrix 𝝈 and
determine the maximum scalar stress as the largest eigenvalue σmax = max(σ1, σ2, σ3). Then,
the scalar strain ϵ is obtained as [Benz and Asphaug, 1994]:

ϵ =
σmax

(1 − D)E
. (2.122)

The Young’s modulus E of the material can be derived from its bulk modulus A and shear
modulus μ, using formula:

E =
9Aμ

3A + μ
. (2.123)

2.8.4.4 Damage integration. Finally, the fragmentation model is integrated during the simu-
lation together with other state quantities. The temporal evolution of damage Di for i-th particle
is given by the differential equation:

d
dt

(D
1
3
i ) = nact

cg
Ri

, (2.124)

where nact is the number of activated flaws, cg is the speed of crack growth and Ri is the radius
of the particle. The crack growth speed is calculated as:

cg = 0.4
√

A + 4
3μ

ρ0
, (2.125)

where A is the bulk modulus, μ is the shear modulus, ρ0 is the initial density. Factor 0.4 comes
from the observation that the speed of crack growth is a constant fraction of the longitudinal
elastic wave in the material [Lawn and Wilshaw, 1975]. Particle radius Ri depends on the
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selected smoothing kernel W , but it always scales linearly with the smoothing length hi ; for
the standard cubic B-spline the radius is Ri = 2hi .

As the Grady-Kipp model considers the scalar damage D, it is isotropic and does not take
into account directionality of fractures. For this reason, some authors used a more complex
damage model, which is anisotropic and treats damage as a symmetric tensor 𝑫 [Lubarda and
Krajcinovic, 1993; Owen, 2010].

2.9 Initial conditions
A necessary precondition for the solution of the hydrodynamic equations is the initial setup of
particle positions, velocities and all state quantities. Lagrangian methods are a bit more complex
in this regard compared to the grid-based methods, as there is no underlying geometrical
structure that could be used to sample the computation domain. Thus, the main goal is to create
a suitable spatial distribution of particles. Assigning values of quantities to each particle is then
rather straightforward.

While setting initial positions of particles is somewhat arbitrary — indeed, one could run a
simulation with particles generated randomly inside the domain — there are several desirable
properties that all particle distributions should satisfy, because they strongly affect the accuracy,
overall stability and proneness of the SPH method to numerical artifacts.

• Low discrepancy. A feasible method should distribute the particles evenly in space,
without forming any clumps, voids or other structures. This implies the particle positions
should not be random, as uniform random distribution forms undesirable particle groups.
Formally, we say the point set should have low discrepancy, where the discrepancy 𝒟(P)
of a point set P = {x1, ..., xN } is defined as:

𝒟(P) = sup
B∈J

|
A(B; P)

N
− λ(B)| , (2.126)

where λ(B) is the volume of box B,A(B; P) is the number of points from the set P contained
in the box B and J is the set of boxes:

J = {[𝒙a, 𝒙b) ∀𝒙a, 𝒙b ∶ xαmin ≤ xαa < xαb ≤ xαmax} . (2.127)

Particle distributions with high discrepancy are not suitable, as the number of neighbors
varies significantly and consequently the approximation of derivatives is very poor.

• Energyminimum.Theparticles should be generated using amethod that avoids spurious
particle motion when the simulation starts. Such a motion could trigger non-physical
acoustic waves in the body and it might even lead to deformation or fragmentation. Thus,
the method should place the particles to the (local) minimum of the potential energy. This
condition is non-trivial even when the body has initially constant pressure, as the equation
of motion (Eq. 2.44) adds numerical repulsive forces which would displace particles if
they were not placed into a stable configuration. For the standard set of equations, the
particle distribution with theminimum of energy is already a low-discrepancy distribution,
although the opposite is not necessarily true.
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• Isotropy. There should be no preferred directions in particle distributions. Anisotropic
particle distributions, such as lattice-based ones, may lead to aliasing artifacts, clumping
of particles along principal directions of the grid, etc. Although this requirement is
undoubtedly desirable, it often comes at a price of worse interpolation properties and
higher numerical potential energy of particles. This is not surprising, given the lattice-
based distributions have optimal interpolation properties (all particles have equal number
of neighbors at equal distances) and the potential energy is globally minimal. In fact, we
can often see the particles spontaneously rearrange themselves to locally hexagonal close
packing during the simulation.

• Versatility. Ideally, the method should be applicable to arbitrary geometries, rather
than being fine-tuned for a geometry with specific symmetry. This requirement is less
important for astrophysical impact simulations, as the generated bodies are often spherical.
In such a case, the spherical symmetry can be utilized to generate particles on concentric
shells [Raskin and Owen, 2016; Reinhardt and Stadel, 2017], satisfying the isotropy and
low-discrepancy requirements.

• Performance. Due to the steadily increasing capabilities of computational clusters, SPH
simulations with 108 to 109 particles are not uncommon [Domínguez et al., 2013; Kegerreis
et al., 2019]. Therefore, the particle-generating method should be fast enough even for a
large number of particles; ideally, the time needed to set up the initial conditions should be
considerably lower than the actual time needed for the simulation.Themethod should also
have low memory overhead, as the memory can become a bottleneck for billion-particle
simulations.

Several methods for distributing particles inside an object are compared in Fig. 2.2. Below, we
describe a few of them in more detail.

2.9.1 Lattice-based distribution

A regular lattice is a simple and commonly used method for setting up initial particle positions.
The advantage is a straightforward and efficient implementation and independence on the
geometry of the generated body. There is a number of possible lattice configurations which
could be used for this purpose.

A cubic lattice, where the particles are separated by vectors aligned with the Cartesian
axes, is not favorable, because the particle configuration is not stable. Although being in local
equilibrium, particles would spontaneously rearrange to different lattice configurations upon
minor displacements. Therefore, hexagonal close-packed (HCP) or face-centered cubic (FCC)
lattices are used instead [Monaghan, 1992; Benz and Asphaug, 1994]. The most notable drawback
of lattice distributions is their anisotropy. Since particles are aligned in the lattice, there are
strongly preferred directions in the generated bodies, which might affect the speed of shock
wave propagation, fragmentation patterns, etc. Such configuration is also more susceptible to
tensile instability [Schäfer et al., 2016]. Layering of particles in the lattice also results in slight
artificial clustering of particles when they are ejected with similar velocities.
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In the case of the hexagonal close packing, the particles are generated on positions:

𝒓ijk = [i + 1
2
(j + k)mod 2, √3

2
(j + 1

3
(kmod 2)) , √6

3
k] ; i, j, k ∈ ℕ . (2.128)

The range of indices i, j, k is of course restricted by the extent of the generated body.

2.9.2 Parametrized spiraling

Raskin and Owen [2016] proposed a specific method for creating spherically symmetric bodies.
Particles are generated using concentric spherical shells, resulting in a distribution that is
spherically symmetric by construction. Such a method allows assigning different values of
pressure, specific energy and other quantities to each spherical shell while preserving the
desirable attributes such as low discrepancy and isotropy. Although the method cannot be
easily generalized for non-spherical bodies, spherically symmetric initial conditions are of great
importance in astrophysical applications.

Shells are created independently of each other. Particles are placed on the surface of a sphere
uniformly using a method of Saff and Kuijlaars [1997]. To create a shell of N particles, we
parametrize the particles using a stepping parameter hk = 2k/N − 1, 1 ≤ k ≤ N . The particle
position in spherical coordinates is then given by:

θk = cos−1(hk) , (2.129)

ϕk = ϕk−1 +
3.8

√N (1 − h2k)
. (2.130)

As the spherical shells are equally spaced in the radial direction, the number of particles in
a shell is proportional to r2, and the number of particles in i-th shell is:

Ni = Ntotal
r2i

∑i r
2
i
, (2.131)

where Ntotal is the total number of particles to create and ri is the radius of the shell.
Without further modification, this method would form spirals of particles instead of an

isotropic low-discrepancy distribution (hence the name of the method). To avoid this, each
shell is transformed using a random rotation, i.e. we generate a random unit vector as the
rotational axis and a random angle of rotation using a uniform random number generator in the
interval [0, 2π). The rotation does not affect the spherical symmetry but removes the undesired
correlation between consecutive shells.

The described method is fast and easily implementable. The particles are equally spaced
within each spherical shell, but the spacing of particles between consecutive shells is essentially
random, thus the interpolation precision in the radial direction is generally worse compared to
lattice-based distributions.
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2.9.3 Blue noise sampling

Finding point sets with low discrepancy while avoiding the grid-based structure is a well-studied
problem. Monte Carlo integration is a typical use case: the goal is to create a point set that
uniformly covers the domain but also avoids possible aliasing artifacts. Methods solving this
type of problems are usually called blue noise sampling [Jiang et al., 2015] in the literature and
they are a good solution for initial conditions in SPH.

There are several different methods for blue noise sampling [Yan et al., 2015]. A usual
approach is to initially create the particles (quasi-)randomly and then apply repulsive forces,
pushing particles away from each other into a stable configuration and getting rid of all particle
clusters in the process. Particles generally do not reach the equilibrium position after a single
displacement, we thus repeat the step and let particles converge towards their final positions.
The iterative method ends after the particle displacement in a single iteration drops under
a certain threshold.

The convergence is achieved using a simple expression for particle displacements. The
displacement shall depend only on the positions of particles, it shall monotonically decrease
as particles recede and the direction shall be proportional to the difference vector 𝒓ij = 𝒓i − 𝒓j .
A suitable expression is [Diehl et al., 2015]:

δ𝒓i = ∑
j
( ℓ
𝒓2ij/h2 + ϵ

− ℓ
1 + ϵ

)
𝒓ij
‖𝒓ij ‖

, (2.132)

where ℓ is themagnitude of displacement and ϵ is a small constant to avoid numerical instabilities.
Since the particles repel each other, it is necessary to keep them inside the domain. To ensure

the particles do not leave the domain, standard handling of boundary conditions in SPH can be
used. The boundary of the domain is occupied by ghost particles that repel the “real” particles.
This also helps to form a smooth boundary of the body, see Fig. 2.2. Importantly, simply moving
the escaped particles back into the domain is not sufficient, because a dense layer of particles
would be created along the boundary.

Initially, particles can be distributed randomly inside the body, although using a low-
discrepancy point set, such as the Halton sequence [Halton, 1964], can considerably speed up
the convergence. The method leads to isotropic, almost equally-spaced particles in a stable
configuration. It is also not restricted to any particular symmetry and can be used for arbitrary
shapes of the body. However, it is more difficult to implement and it also takes longer to generate
the particles due to its iterative nature.

2.9.4 Obtaining equilibrium state

So far, only the particle positions have been discussed. It is however necessary to also assign
values of velocities and other physical quantities to all particles. In contrast to the methods for
generating particle positions, which are quite generic and problem-independent, the quantity
values have to be assigned according to the problem at hand.

One case particularly important for astrophysical simulations is a self-gravitating body in
hydrostatic equilibrium. We aim to set up the state quantities assigned to particles so that all
temporal derivatives evaluated at the beginning of the simulation are zero.
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Hexagonal packing Random sampling Parametrized spiraling Blue noise sampling

Figure 2.2: SPH particles distributed in an arbitrary domain with several particle distributions.
The shape of the domain is given by the Stanford Bunny model of Turk and Levoy [1994]. The
upper row shows the surface of spheres with radii ri = 2hi , while the bottom row shows an
iso-surface of the color field (see Eq. 2.173).

2.9.4.1 Spherically symmetric bodies. If we assume spherical symmetry, there exists an
analytic solution for such a problem. Such a solution is very useful for impacts simulations,
because the spherical symmetry is expected for planets or planetesimals. Moreover, a sphere is
still a reasonable default shape even for smaller objects. Hence, we search for a pressure profile
P = P(R) as a function of the radial coordinate R. The solution is easily found by solving an
ordinary differential equation:

dP
dR

= −
GM(R)ρ

R2
, (2.133)

whereM(R) is the total mass inside the sphere of radius R. In the SPH discretization, we sort the
particles along the coordinate R and compute masses M(Ri) by summing up the total mass of
particles with R ≤ Ri . The pressure is then computed similarly, starting from the central particle
with arbitrary pressure and going outwards, setting the pressure of i-th particle to:

Pi = Pi−1 −
GM(Ri)ρi

R2i
(Ri − Ri−1) . (2.134)

Finally, we subtract the pressure of the outermost particle from all particles to obtain zero
pressure on the surface.

2.9.4.2 Poisson equation. Alternatively, the equilibrium pressure can be found using a more
general approach, provided the equation of motion only includes the pressure gradient 2.44 and
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pressure-independent conservative forces 𝒇i , such as the gravity or the centrifugal force. Then
the sought pressure P is the solution to a set of equations:

∑
j
mj (

Pj
ρ2j

+
Pi
ρ2i

)∇Wij = 𝒇i (2.135)

with a Dirichlet boundary condition Pi = 0 for surface particles. As both ∇Wij and 𝒇i are
functions of particle positions only, this leads to a set of linear equations. Unfortunately, the
system of equations is overdetermined, as the total number of equations is 3N , while the number
of unknowns is N . It could be still solved using a least-squares solver, however, such a solution
is prone to strong noise. Instead, we solve the Poisson problem:

∑
j
mj (

Pj
ρ2j

−
Pi
ρ2i

)∇2Wij = ∑
j

mj

ρj
(𝒇j − 𝒇i)∇Wij , (2.136)

which represents a standard N × N sparse linear problem and its solution is generally smoother
and performs better than the least-squares variant. This method is useful for simulations of
rotating bodies, as it allows to compute the equilibrium states for Maclaurin spheroids or Jacobi
ellipsoids, where the spherically symmetric solution would not be applicable.

2.9.4.3 Stabilization. Although the solution to Eq. 2.136 is an equilibrium pressure, the state
is not necessarily stable. It is also non-trivial to generalize it for simulations with material
strength or other terms. To obtain truly stable initial conditions in a generic and robust way,
we choose a different approach. The idea is to set up initial conditions which are close to the
stable configuration, but not necessarily equilibrium, and then follow up with a stabilization
computation phase. During this phase, the solver uses the same set of equations as the actual
simulation, but additionally, there is an artificial damping of particle velocities [Rosswog,
2009; Genda et al., 2012]. The damping term allows the system to settle into an equilibrium
configuration. Any damping mechanism will suffice, the simplest being a reduction of the
particle velocities by a damping coefficient δ every time step. However, the damping has to be
done carefully if the initial velocities are not zero, for example in simulations involving bulk
rotation. For setting up stable rotating bodies, we have found that the following expression
works well in practice. Each timestep, we modify the particle velocities as [Ševeček et al., 2019]:

𝒗damp = 𝒗 − 𝝎 × 𝒓
1 + δΔt (t − tstab)/tstab

+ 𝝎 × 𝒓 , (2.137)

where 𝒗 is the undamped velocity, 𝝎 the angular frequency of the body, 𝒓 the position of the
particle, δ an arbitrary damping coefficient, Δt the current time step and tstab the duration of
the stabilization phase. We scale the damping coefficient δ by Δt to make the damping strength
independent on the current time step, at least to the first order. The damping is gradually
decreased and it is removed completely at the end of the phase; if one kept the damping constant
during the stabilization, particles might fail to reach the equilibrium position due to over-
damping and oscillate at the beginning of the simulation when the velocity damping is suddenly
removed. Finally, we subtract and re-add the bulk angular frequency in Eq. 2.137, otherwise the
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Figure 2.3: Evolution of the total internal energy U during the stabilization phase for several
values of the damping parameter δ . Stronger damping leads to faster convergence to the
equilibrium state.

Figure 2.4: Radial pressure profile of a spherical body in hydrostatic equilibrium, obtained
using various methods. The body has N = 5000 particles; the discretization is intentionally
coarse to emphasize the differences between the methods. For large number of particles, the
equilibrium profile is almost independent of the method used, as expected. The plotted profiles
correspond to the radial integration using Eq. 2.134, solution of the Poisson equation Eq. 2.136
and running a stabilization simulation with velocity damping given by Eq. 2.137.
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damping would cause the rotating body to slow down. A similar correction needs to be done if
the body has non-zero bulk velocity. The damping of global oscillations is demonstrated on the
total internal energy in Fig. 2.3.

The equilibrium solution is not unique. The accelerations are determined by the pressure
(gradients ∇P ) inside the body, which in turn depends on two parameters — the density and the
specific internal energy — via the equation of state. Consequently, the internal energy can be
computed for arbitrary density and the respective pressure with an inverted equation of state
(if such an inverse exists, of course). It is important to specify a realistic density distribution in
the first place, otherwise, the derived distribution of the internal energy inside the body can be
unrealistic and unphysical. 2

2.10 Boundary conditions
Setting up an exact boundary condition in the SPH framework is considerably more challenging
compared to grid-based Eulerian codes. In a particle-based discretization, there is no equivalent of
boundary elements. Luckily, there is no need to provide a boundary for our collisional simulations
— asteroid fragments can move without spatial restrictions. SPH naturally implements the
vacuum boundary condition on body surfaces, therefore all state quantities outside bodies
(density, pressure, energy, etc.) are zero as expected.

2.10.1 Ghost particles

Boundary conditions are however still necessary for auxiliary tasks, such as surface cratering
simulations, setting up initial conditions or numerical tests of the code. They are commonly
implemented using ghost particles [Herant, 1994]. Ghosts are created for every particle whose
distance from the boundary is less than ηh/2, η being the dimensionless radius of the smoothing
kernel. Given the position of the boundary particle, the ghost’s position is mirrored with respect
to the boundary and all state quantities are copied to the ghost. The rest of the code then treats
ghosts as any other particles.

To avoid creating ghosts directly on top of the boundary particle, we set the minimal distance
of ghosts to 0.1ηh. As the ghost positions are mirrored and the quantities are equal to their
respective sources, all gradients perpendicular the to boundary are approximately zero. Hence,
ghost particles effectively work as the Neumann boundary condition. There is some freedom in
setting up ghosts’ velocities, though.

We considered two options. The first one is to set velocities of ghosts to zero:

𝒗 = 0 . (2.138)

Particles then interact with the boundary as if it was a solid, unmoving wall. In particular, there
is friction between particles and the boundary. The second option is to mirror the velocities of

2In theory, it is possible to specify the internal energy and derive the density distribution. However, such
an approach is more complex, because the density depends on the masses and positions of the particles in the
neighborhood (see Eq. 2.5). Furthermore, the right-hand side of Eq. 2.135 also depends on the density via Poisson’s
equation. It would lead to a non-linear problem.
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Figure 2.5: Simple two-dimensional test which demonstrates various boundary conditions.
A point explosion is detonated in a homogeneous medium of N = 40 000 particles made of ideal
gas. The explosion creates a spherical shock wave that propagates outwards and interacts with
the boundary. Top row shows the boundary condition that mirrors quantities, implemented
via ghost particles. Middle row shows the freezing boundary condition, resetting derivatives
of all particles near the boundary. Bottom row shows the periodic boundary condition, also
implemented using ghosts. Particle color corresponds to local densities.

particles with respect to the boundary. This leads to a boundary condition [Colagrossi et al.,
2009]:

𝒗 ⋅ 𝒏 = 0 , (2.139)

where 𝒏 is the local normal of the boundary.
We ensure particles cannot leave the domain by moving all particles outside the domain

back to the boundary. There may be multiple ghost particles created from a single real particle.
This is especially noticeable in cube-shaped domains; a particle close to the corner may spawn
up to three ghosts, one for each side of the cube.

Ghost particles can be also used to implement periodic boundary conditions. The implemen-
tation is rather straightforward. Instead of creating ghosts in mirror position, they are created
on the opposite side of the domain. Whenever a particle leaves the domain, it exchanges its
position with the ghost, moving it back to the domain on the opposite side.

2.10.2 Particle freezing

We found that boundaries supported by ghost particles sometimes have stability issues, especially
near boundary corners. We thus also use another boundary condition which does not suffer
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from this problem. The idea is to “freeze” particles whenever they get close to the boundary.
The frozen particles are kept in place with fixed state quantities by explicitly setting all their
derivatives to zero every time step. Other particles are then repelled by the frozen particles
whenever they approach. Both the ghost boundary and the freezing boundary behave similarly
with respect to the incoming shock wave, see Fig. 2.5, i.e. in both cases the shock wave is
reflected by the boundary.

A number of other boundary conditions can be found in the literature, such as the non-
reflecting boundary condition [Lastiwka et al., 2009], which ensures the shock wave is absorbed
by the boundary.

2.11 Temporal discretization
In our formulation, the SPH is an explicit method; temporal derivatives of time-dependent
quantities are computed using the current state at each time step. Similarly to Benz and Asphaug
[1994], we use a predictor-corrector scheme for integration. It is a second-order method with
only a single evaluation of derivatives per time step.

2.11.1 Time step criteria

The time step Δt in the SPH is limited by the Courant-Friedrichs-Lewy (CFL) criterion:

ΔtCFL = CCFLmin
i

hi
ci

, (2.140)

where CCFL = 0.2 is an empirical constant, hi is the smoothing length and ci is the local sound
speed, computed using the equation of state. CFL criterion specifies the maximum allowed time
step; exceeding ΔtCFL leads to numerical instability, which manifests as a sudden growth of
energy and a spontaneous “explosion” in the simulation.

Besides the CFL criterion, our code contains other criteria to improve the precision of
integration. Namely, we limit the time step using derivatives of time-dependent quantities, such
as the specific internal energy u, in order to constrain the relative change of the quantity in a
single time step. Such a criterion implies time step:

Δtu = Cu min
i

|ui | + u0

|duidt |
, (2.141)

where Cu = 0.2 and u0 is a small value with the same dimensions as u, which needs to be chosen
according to typical values of u in the simulation. Adding u0 to the numerator is necessary, as
the time step would otherwise drop to zero when u = 0. Such a correction means the time step
is determined by the absolute change of u instead of relative change whenever u is close to
the zero. In our simulations, the specific energy u is often a limiting quantity that controls the
time step, however, a similar criterion is added (automatically) for all time dependent quantities
in the simulation, such as the density ρ, the damage D, the deviatoric stress components Sαβ ,
etc. These criteria control the discretization error of respective quantities and also prevent
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overshooting in case of rapid changes of quantity values. The final step is then given by the
minimum of all time step criteria:

Δt = min(ΔtCFL,Δtu ,Δtρ ,Δt𝑺, ...) . (2.142)

Following Goswami and Pajarola [2011], we further restrict the time step by the velocity
divergence ∇ ⋅ 𝒗 as:

Δt∇⋅𝒗 =
C∇⋅𝒗
|∇ ⋅ 𝒗|

, (2.143)

where C∇⋅𝒗 = 0.005. The divergence criterion helps to constrain the time step in supersonic
flows, where the CFL criterion, given by the sound speed, is generally not sufficient to guarantee
numerical stability. In collision simulations, the limiting time step criterion typically changes
in the course of time. The initial impact and fragment ejection is often constrained by the
derivative of specific energy or stress tensor, while the reaccumulation phase is integrated with
the divergence or CFL time step.

2.11.2 Gravitational time step

At each time step, the code computes the derivatives, i.e. the right-hand sides of the SPH
equations, and the self-gravitational interaction of particles. Both of these tasks take compa-
rable amount of time to compute; usually, the calculation of self-gravity is about 50% slower
than hydrodynamics in our code. However, they act on significantly different time scales. We
demonstrate the difference on a typical setup of our simulations: let us assume a body of radius
R = 50 km, made of N = 105 particles and the density ρ = 2700 kg/m3. A characteristic time
scale of hydrodynamics can be inferred from the crossing time of sound wave across a single
particle:

thydro ≃
h
c
≃ 0.1 s . (2.144)

As for the self-gravitation, the time scale can be estimated from the gravitational accelera-
tion 𝒂g . Given a single particle close to the surface of the body, the time scale is:

tgravity ≃
√

h
‖𝒂g‖

≃ 10 s . (2.145)

We see that the gravity time scale is larger than the hydrodynamics time scale by two orders of
magnitude. The changes of the gravitational potential are much slower compared to changes of
state quantities like pressure or specific energy. Recalculating the gravity on every time step is
unnecessary and quite inefficient. We thus significantly optimize the simulation by integrating
the hydrodynamics and self-gravity with different time steps.

The disparity between hydrodynamical and gravitational time steps further increases in
simulations with larger particle counts N or simulations with smaller targets, as tCFL ∝ h while
tgravity ∝ √h. Moreover, tCFL represents the maximum allowed time step for hydrodynamics,
but the actual time step is determined by Eq. 2.142 and it is often much smaller. Naturally,
recomputing the gravity is pointless if the particles barely move during one hydrodynamical
time step.
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// Compute gravitational accelerations
𝒂gravity = computeBarnesHut( 𝒓 + 1

2𝒗Δtgravity) ;
while t < t0 + Δtgravity do

// Make predictions
𝒓 = 𝒓 + 𝒗ΔtSPH + 1

2𝒂Δt
2
SPH ;

𝒗 = 𝒗 + 𝒂ΔtSPH ;
// Compute hydrodynamical accelerations
𝒂SPH = computeSPH(𝒓, 𝒗) ;
𝒂corr = 𝒂SPH + 𝒂gravity ;
// Make corrections
𝒓 = 𝒓 + 1

3 (𝒂corr − 𝒂)Δt2SPH ;
𝒗 = 𝒗 + 1

2 (𝒂corr − 𝒂)ΔtSPH ;
𝒂 = 𝒂corr ;
// Advance time
ΔtSPH = min(ΔtCFL,Δt𝒂,Δtu , ...);
t = t + ΔtSPH ;

end
Algorithm 1: Description of a single gravitational time step in our OpenSPH code. The
equations are integrated using a predictor-corrector scheme.

Our approach is summarized in Algorithm 1. The gravitation is recomputed with the period
Δtgravity, using predicted particle positions in the middle of the time step:

𝒓est = 𝒓 + 1
2
𝒗Δtgravity . (2.146)

The computed gravitational accelerations are cached and used to integrate particle velocities
every time step until the next recomputation. Motivated by Eq. 2.145, the gravitational time
step is computed as:

Δtgravity = Cgravitymin
i √

hi
‖𝒂i‖

, (2.147)

where Cgravity = 0.2 and 𝒂i is the current acceleration of i-th particle. We further set a maximal
allowed value of the step, which is usually Δtgravity = 5 s.

2.12 Self-gravitation
Gravity is a fundamental force of astrophysics. It is dominant on large scales and it is absolutely
necessary to include gravity in the physical model of collisional simulation of large asteroids.

In the scaling law, the transition between the strength regime and the gravitation regime
occurs at D ≃ 100m [Benz and Asphaug, 1999], even small D ≃ 10 km bodies are thus signif-
icantly affected by gravity, especially if one carries out the simulation for long-enough time,
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beyond the initial shock wave passage and fragmentation of the target. It mainly comes into
play during the reaccumulation of fragments ejected during the impact and formation of the
asteroidal family. Nevertheless, gravity should be already included prior to the initial impact to
set up a hydrostatic equilibrium in the target.

In this section, we describe how self-gravitation is integrated into our model in the SPH
discretization. Although the computation of gravity is quite similar to N-body approach, SPH
particles are not point masses, they rather have a density profile described by the smoothing
kernelW . Hence, the gravitational potential of particles needs to be softened as well, consistently
with the smoothing used in hydrodynamics. Furthermore, the inclusion of gravity should
not break any of the important properties of SPH, mainly the Galilean invariance and the
conservation of integrals of motion.

2.12.1 Gravity in SPH discretization

For a set of N point-mass particles, the acceleration of the i-th particle due to gravity is simply:

d𝒗i
dt

= G∑
i≠j

mj(𝒓j − 𝒓i)

‖𝒓j − 𝒓i‖3
. (2.148)

This equation still holds for smoothed particles when the smoothing kernel W is isotropic,
provided they do not intersect each other (i.e. the corresponding kernel value Wij is zero).
However, it is necessary to account for softening of the gravitational potential for neighboring
particles. The more two smoothed particles overlap, the smaller their gravitational attraction is
compared to point masses. We follow Cossins [2010] by introducing a gravitational softening
kernel ψ associated with the SPH smoothing kernel W as:

ϕ(𝒓) = G∑
j
mjψ (𝒓 − 𝒓j) , (2.149)

where ϕ is the gravitational potential. The relationship between the gravitational softening
kernel ψ and the smoothing kernel W can be derived from the Poisson equation:

∇2ϕ(𝒓) = 4πGρ(𝒓) = 4πG∑
j
mjW (𝒓 − 𝒓j) . (2.150)

The left-hand side depends on the gravitational kernel ψ , while the right-hand side depends on
the smoothing kernel W . Considering Eq. 2.150 has to hold for any particle distribution, we can
relate the gravity kernel ψ and the smoothing kernel W directly. If we further consider that
kernel W (𝒓) is a spherically symmetric function, the gravity kernel ψ can be found by solving
the following ordinary differential equation:

1
r2

d
dr

(r2
dψ
dr

) = 4πW (r) . (2.151)

This equation can be directly integrated to obtain the gradient of the gravity kernel ψ :

dψ
dr

= 4π
r2

r

∫
0

r ′2W (r ′) dr ′ + C
r2

. (2.152)
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Figure 2.6: Cubic-spline kernel W , associated gravitational softening kernel ψ (with a negative
sign) and its gradient ψ ′. Dashed lines correspond to the gravitational kernel of a point mass
with no softening.

Moreover, the kernel ψ has to fall back to the Newtonian potential of a point mass if the particles
are sufficiently distant from each other. The constant C is thus determined from the boundary
condition:

dψ
dr

→ 1
r2
, r → ∞ . (2.153)

To obtain the final expression for the kernel gradient dψ/dr , we have to specify the smooth-
ing kernel W . For the cubic B-spline M4 (Eq. 2.33), the gravity softening kernel gradient is:

dψ
dr

=
⎧⎪
⎨⎪
⎩

1
h2 (

4
3q −

6
5q

3 + 1
2q

4) , 0 ≤ q < 1 ,
1
h2 (

8
3q − 3q2 + 6

5q
3 − 1

2q
5 − 1

15q2 ) , 1 ≤ q < 2 ,
1
r2 , q ≥ 2 ,

(2.154)

where q = r/h. Actually, we do not need to know the kernel ψ , because the gravitational
acceleration depends only on kernel gradient. However, having the formula for kernel ψ is still
useful, e.g. for evaluation of the total energy in the simulation. For the M4 kernel, the associated
kernel ψ is:

ψ =
⎧⎪
⎨⎪
⎩

1
h (

2
3q

2 − 3
10q

4 + 1
10q

5 − 7
5 ) , 0 ≤ q < 1 ,

1
h (

4
3q

2 − q3 + 3
10q

4 − 1
30q

5 − 8
5 +

1
15q ) , 1 ≤ q < 2 ,

−1
r , q ≥ 2 .

(2.155)

Unlike the SPH smoothing kernel W , this kernel does not have a compact support. An example
of the softening kernel is plotted on Fig. 2.6
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2.12.2 Multipole approximation

Gravity is a long-distance force and therefore its effects cannot be restricted to neighboring
particles like for the hydrodynamic forces. The right-hand side of Eq. 2.148 needs to be computed
for every particle. This leads to computational complexity 𝒪(N 2), which is prohibitively time-
consuming for any simulation with N ≳ 104 particles.

2.12.2.1 Barnes-Hut algorithm. To compute gravitational accelerations in simulations with
a large number of particles, we have to employ a faster, albeit approximative method — the
Barnes-Hut algorithm. It was first introduced by Barnes and Hut [1986] and since then it has
been used commonly in N-body as well as hydrodynamic simulations. The key idea is to replace
a group of particles, located far away from the given point, with a single particle, located at
the center of mass with a mass equal to the sum of masses of all particles in the group. This
allows us to significantly reduce the number of evaluated gravitational interactions with little
loss of accuracy. Furthermore, the error introduced by the Barnes-Hut approximation can be
constrained by grouping together more or fewer particles, depending on the size of the group
and the distance from the point where the acceleration is evaluated.

The accuracy of the method can be further improved by calculating higher gravitational
moments for grouped particles.The computed accelerations then depend on themass distribution
within the group, rather than just the total mass. While the multipole expansion is usually
performed in spherical coordinates using spherical harmonics as the basis functions, we follow
Stadel [2001] and perform the expansion in Cartesian coordinates. The n-th moment is then
simply:

Mn = ∑
i
mix

n
i , (2.156)

where the underscored n represents n indices, i.e. the dipole moment is Mα = ∑i mixαi ,
the quadrupole moment Mαβ = ∑i mix

αβ
i = ∑i mixαi x

β
i and the octupole moment Mαβγ =

∑i mix
αβγ
i = ∑i mixαi x

β
i x

γ
i . The number of tensor components and the complexity of the

resulting expressions grows significantly and it quickly becomes impractical, which is why
the spherical harmonics approach is generally preferred. However, we truncate the multipole
expansion at the octupole order, providing a viable trade-off between precision and complexity,
and unlike the spherical harmonics, we avoid costly computations of trigonometric functions
when calculating the moments in Cartesian coordinates.

2.12.2.2 Traceless multipoles. When the moments are computed, not all components of
moment tensors need to be stored in memory. In fact, we can significantly reduce the number
of stored values by using the reduced multipole moment [Stadel, 2001]:

Qn =
⌊ n2 ⌋

∑
j=0

(−1)j
(2n − 2j − 1)!!
j!(2n − 1)!!

δ (2jT
n−2j)
j (Mn) (2.157)

where T n
n−2j is defined as:

T
n−2j
j (Mn) = δ2jM

2j n−2j . (2.158)
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The brackets grouping superscripts of different quantities indicate a sum over all unique permu-
tations of indices. This expression also uses the Einstein convention, summing over common
indices. The reduced multipole Qn is traceless and it only has 2n + 1 independent components.

To compute the moments, we first have to define the groups of particles. In the Barnes-Hut
method, a hierarchical spatial structure is constructed over the particles in the simulation.
OpenSPH implements the K-d tree, a generalization of the binary tree in multiple dimensions.
The gravitational accelerations are computed in two steps. First, the tree is traversed starting
from leaf nodes going to the root node (bottom-up traversal) and the gravitational moments are
computed for each node. Second, the tree is traversed from the root node going downwards
(top-down traversal) and the gravitational accelerations are computed for all individual particles,
using the precomputed moments. The bottom-up and the top-down traversal are described in
Algorithm 2 and Algorithm 3, respectively.

2.12.2.3 Bottom-up traversal. The bottom-up traversal starts by computing moments in
leaf nodes of the K-d tree. In our code, the maximal number of particles in a leaf node is set
to 20. All moments are evaluated at the center of mass of the node, the dipole moment is thus
always zero. Moving to the parent nodes, the multipole moments are computed by summing up
the moments in the child nodes. However, the summed moments have to be first moved to the
center of mass of the parent node, as only moments defined with respect to the same point can
be summed. A moment translated by an arbitrary vector 𝒅 can be computed using the parallel
axis theorem [Stadel, 2001]:

Mn
𝒅 = ∑

j
M (n−jd j) . (2.159)

The nodes are processed recursively until the root node of the tree is reached.

2.12.2.4 Top-down traversal. The top-down traversal uses the gravitational moments to
compute the accelerations. Rather than traversing the tree for each particle, we traverse the
tree only once and accumulate the accelerations for all particles at the same time, which greatly
improves code performance. Starting from the root node of the tree, the algorithm recursively
descends to child nodes. During the traversal, each node obtains three lists from its parent.
Node list contains nodes for which the gravitational interaction can be approximated using the
multipole moments. Particle list contains particles whose gravity cannot be approximated and
it has to be computed by pair-wise interactions, using Eq. 2.148. Finally, check list contains the
nodes that are yet to be decided; they might be added to the node list, they might be “opened”
and the stored particles added to the particle list, or they can be left in the check list, deferring
this decision to the child nodes.

2.12.2.5 Opening angle. The opening of nodes during traversal is linked to the error intro-
duced by the multipole approximation. It is controlled by the code parameter named the opening
angle θopen. Larger values of θopen imply fewer nodes are opened, hence the code performance
improves at the cost of accuracy. In the extreme case of θopen = 0, all the nodes are opened and
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Input :Particle positions and masses
Output :Multipole moments for each node Q[node]

Function buildNode(node)
if isLeaf(node) then

rcom = centerOfMass(node);
Q[node] = computeMultipole(node, rcom);

else
buildNode(node→ left);
buildNode(node→right);
rcom = centerOfMass(node→ left, node→right);
Qleft = parallelAxisTheorem(node→ left, rcom);
Qright = parallelAxisTheorem(node→right, rcom);
Q[node] = Qleft + Qright;

end
end
buildNode(rootnode)

Algorithm 2: Bottom-up traversal of the K-d tree, computing multipole moments for each
tree node.

the algorithm falls back to the brute-force 𝒪(N 2) gravity computation. Using the opening angle,
we compute the opening radius ropen for each node as:

ropen = 2
√3θopen

rmax , (2.160)

where rmax is the maximal distance of a particle from the center of mass of the node.The opening
radius defines a sphere, centered at the center of mass of the node.

For each evaluated node, we go through the nodes in the check list. We compute the
bounding box of particles in the evaluated node and the opening sphere of the checked node.
There are three possible configurations of a box and a sphere. Either the box is fully contained
within the sphere, the box is intersected by the sphere, or the box lies outside the sphere. In
the first case, we know that the evaluated note and all of its child nodes lie inside the opening
sphere, and thus the checked node cannot be approximated by multipole expansion. Therefore, if
the checked node is a leaf node, all of its particles are added into the particle list of the evaluated
node, otherwise the check list is extended by child nodes of the checked node and the checked
node itself is removed from the check list. In case the sphere intersects the box, it is possible
some of the child nodes still lie outside the opening sphere. The checked node is thus kept
in the check list, the same decision process is then performed by the child nodes. Finally, if
there is no intersection of the bounding box and the opening sphere, the checked node can be
approximated using multipoles. It is thus added into the node list and removed from the check
list.

2.12.2.6 Evaluation of acceleration. Once the traversal descents into a leaf node, the gravi-
tational accelerations are computed for all particles contained in the node, using the particle
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Input :Multipole moments Q for each tree node
Output :Gravitational accelerations of all particles

Function evalNode(node, checklist, particlelist, nodelist)
box = getBoundingBox(node);
for checknode in checklist do

sphere = getOpeningSphere(checknode);
if sphereContainsBox(sphere, box) then

// Do exact gravity evaluation for all particles
if isLeaf(checknode) then

particlelist = particlelist ∪ checknode;
else

checklist = checklist ∪ (checknode→ left);
checklist = checklist ∪ (checknode→right);

end
checklist = checklist ⧵ checknode;

else if not intersects(sphere, box) then
// We can approximate the node by multipole expansion
nodelist = nodelist ∪ checknode;
checklist = checklist ⧵ checknode;

else
// Keep in the checklist, will be decided by children

end
end

if isLeaf(node) then
evalParticleList(node, particlelist);
evalNodeList(node, nodelist);

else
evalNode(node→ left, checklist ∪ (node→right), particlelist, nodelist);
evalNode(node→right, checklist ∪ (node→ left), particlelist, nodelist);

end
end

evalNode(rootnode, ∅, ∅, ∅);
Algorithm 3: Top-down traversal of the K-d tree for the evaluation of acceleration, using
precomputed multipoles stored in each node of the tree.

list and the node list aggregated during the descend. The exact acceleration is computed for
all pairs of particles from the leaf node and the particle list, using Eq. 2.148. The approximate
accelerations are computed by evaluating the gradient of the potential, given by the multipole
expansion up to octupole order:

a1 = ∑
n

(γn+1x1Q
0
n + γnQ

1
n) , (2.161)
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where the values γn are defined recursively as:

γ0 = −1
r
, (2.162)

γn+1 = −2n + 1
r2

γm , (2.163)

and the tensors Qm
n relate to the traceless tensors Qn as:

Qm
n = 1

(n −m)!
xn−mQmn−m . (2.164)

2.13 Implementation notes
Since practical aspects of an SPH solver implementation are rarely mentioned in scientific
papers, I believe it is worthwhile to briefly describe our solvers used in OpenSPH, including
implementation details.

2.13.1 SPH solvers

We implemented two different solvers, code-named symmetric and asymmetric solver. Both
solvers have their advantages (and disadvantages). Which solver is better depends on the
machine running the simulation and on the problem to be solved. Of course, both solvers
produce the same output (give or take minor round-off errors), they only differ in the way SPH
derivatives are evaluated.

The symmetric and asymmetric solvers are summarized in Algorithms 4 and 5, respectively.
Their main differences are outlined in Table 2.1.

2.13.1.1 Evaluation of derivatives. The main difference between the two solvers is in
the accumulation of derivatives for each particle. Asymmetric solver evaluates each particle
independently; for i-th particle, it finds all of its neighbors and sums the derivatives calculated
for each particle pair i and j, the result of which is then assigned to the i-th particle.

On the other hand, symmetric solver utilizes the fact that all terms in SPH equations (forces,
velocity derivatives, energy sources, etc.) are either symmetric or antisymmetric with a respect
to particles i and j. It is thus superfluous to evaluate the interaction of particles i and j twice;
the contribution of the j-th particle to the derivative of the i-th particle is equal to (possibly
with a negative sign) the contribution of the i-th particle to the derivative of the j-th particle.
For this reason, the symmetric solver iterates over each particle pair only once, it computes the
summands and adds the result to the derivatives of both particles i and j. The symmetric solver
thus does considerably fewer computations compared to the asymmetric one.

2.13.1.2 Search radius. There is another advantage of the symmetric solver. To explain it, let
us first discuss the required search radius Ri of i-th particle. Since the smoothing kernel W has
compact support, the radius required to find all neighbors of the i-th particle is proportional
to the smoothing length h. However, the smoothing lengths used to evaluate the kernel are
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Input :Particle positions 𝒓i and smoothing lengths hi
Output :Derivatives of time-dependent quantities

rankH = findRankH(h);
parallelFor i = 1 to N do

neighs = findNeighbors(𝒓i , ηhi);
for j in neighs do

if rankHj > rankHi then
continue;

end
hbar =

1
2 (hi + hj);

grad = ∇W (𝒓i − 𝒓j , hbar);
// Accumulate the derivatives to a thread-local storages
derivsTL = derivs[threadId()];
evalParticlePair(derivsTL, i, j, grad);
evalParticlePair(derivsTL, j, i, grad);

end
end
// Sum up the thread-local results
derivs = reduce(derivsTL);

Algorithm 4: Description of the symmetric solver used in OpenSPH.

symmetrized using Eq. 2.26 in order to conserve the total momentum. Assuming the support
radius of the smoothing kernel W (𝒓, h) is ηh (η = 2 for the cubic spline kernel), the required
search radius for the i-th particle is:

Ri = ηmax
j

(
hi + hj

2
) , (2.165)

where the sum iterates over all interacting particles. This leads to an egg-or-chicken problem; to
determine the search radius of the particle i, we first need to find the most extended particle j
that interacts with the particle i, for which we need to know the search radius Ri .

The symmetric solver provides an elegant solution to the search radius problem. As each
particle pair is evaluated only once, we can sort the particles by their smoothing lengths to find
their ranks, i.e. unique indices, in the sorted sequence. The smoothing length hj of the particle
with a lower rank than particle i is then always smaller than or equal to the smoothing length hi .
Therefore, we can simply set the search radius of each particle to:

Ri = ηhi (2.166)

and restrict the neighbor search only to particles with a lower rank. This trick ensures that we
correctly find all interacting particles and also that all particle pairs are evaluated only once.

To our knowledge, there is no straightforward way to compute the optimal search radius
for the asymmetric solver in constant time. If the smoothing lengths are equal or similar for
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all particles, we can simply find the maximal smoothing length hmax = maxi hi and define the
search radius as:

Ri = η
hi + hmax

2
. (2.167)

Unfortunately, this method becomes extremely inefficient when smoothing lengths are adap-
tively adjusted during the simulation using Eq.2.25. The largest particle can easily exceed other
particles by an order of magnitude and the computed search radius Ri is significantly larger
than the optimal value.

To improve the code performance in such cases, we use a two-phase approach. First, we
create a spatial hash grid, using spatial coordinates of particles as a key. The cell size of the
hash grid is set to ηhmax. In each time step, the particles are assigned to the cells based on their
current positions. Given a cell at grid coordinates x , y, z, we then find the maximal smoothing
length hx ,y ,z of all particles assigned to this cell. To make sure we do not skip any potentially
interacting particles from neighboring cells, we increase the value of each cell to the maximum
of the cell and all its neighbor cells. We finally compute the search radius Ri for each particle
using the smoothing length hx ,y ,z of the cell containing the i-th particle as:

Ri = η
hi + hx ,y ,z

2
. (2.168)

Since the size of the cell is equal to the maximal kernel radius in the simulation, we can
guarantee no neighbors are missing. Although both the construction of the hash grid and the
evaluation of the required search radius for each particle add additional computational overhead,
it greatly improves the code performance whenever the smoothing lengths vary significantly.
In case the smoothing lengths are constant during the simulation and all the particles have
either equal or similar smoothing lengths, we can skip constructing the hash grid and simply
use the maximal smoothing length instead, thus avoiding the extra complexity and performance
overhead.

2.13.1.3 Correction tensor computation. When the symmetric solver is used, each particle
finds only half (on average) of its neighbors. In fact, the sum over neighbors of any given particle
is completed only after all the particles are evaluated. This poses a problem when the correction
tensor 𝑪i , defined by Eq.2.58, is used in the simulation. The correction tensor requires to first
compute a complete sum over particle neighbors, invert the resulting matrix and then use the
matrix inverse when evaluating the velocity gradient for each particle. However, since the sum
is completed only after iterating over all particles, this requires doing two loops over all particle
pairs — the first one to compute the correction tensors 𝑪i for all particles and the second one to
finally compute the corrected gradients. This is a significant performance penalty of the solver.
Asymmetric solver has no such issue. It requires only to iterate over the list of neighbors twice,
and since the neighbors are likely to be stored in the CPU cache, the performance penalty is
minimal.

2.13.1.4 Parallelization. Both solvers differ significantly in parallelization. In OpenSPH, the
work is split among available threads using a task-based scheduler. Particles are split into chunks
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Input :Particle positions 𝒓 and smoothing lengths h
Output :Derivatives of time-dependent quantities

Rmax = ηmax(h1, ..., hN );
// Compute a hash grad storing maximal radius in each cell
hashgrid = ∅;
for i = 1 to N do

𝒄 = ⌊𝒓i/Rmax⌋;
hashgrid[𝒄] = max(hashgrid[𝒄], ηhi);

end
// Propagate maximum values to neighboring cells
dilate(hashgrid);
parallelFor i = 1 to N do

𝒄 = ⌊𝒓i/Rmax⌋;
// Determine search radius using the hash grid
R = hashgrid[𝒄];
neighs = findNeighbors(𝒓i ,

1
2 (hi + R));

for j in neighs do
hbar =

1
2 (hi + hj);

if ‖𝒓i − 𝒓j ‖ > hbarRW then
continue;

end
grad = ∇W (𝒓i − 𝒓j, hbar);
evalParticlePair(derivs, i, j, grad);

end
end

Algorithm 5: Description of the asymmetric solver used in OpenSPH.

and assigned to worker threads, which then compute the derivatives for the assigned particles.
As performance is an important aspect of the code, it is essential to utilize all available CPU
cores optimally. This shows the strength of the asymmetric solver. Particles only accumulate
their own derivatives, the interacting particles are never modified. Therefore, each thread can
simply work independently without the need for synchronization.

However, the same is not true for the symmetric solver, because each particle i accumulates
to both the derivatives of the particle i and the interacting particle j, which may be assigned to a
different thread. Accumulating frommultiple threads without synchronization would then result
in a race condition and potentially an incorrect result. We decided to store the accumulated
derivatives in temporary thread-local storage. Each thread thus computes a fraction of the result
and the thread-local sums are then reduced to get the final results. This inevitably increases
the memory overhead. A standard double-precision simulation requires storing 192 bytes per
particle per thread. For 1 000 000 particles and 32 threads, about 6GB of additional memory
needs to be accumulated and reduced every time step.
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Asymmetric solver Symmetric solver

N evaluations per time step N/2 evaluations per time step

Performs best for equal-sized particles Same number of interactions regardless of h

Material-independent Performance penalty for solid materials

Embarrassingly parallel Requires thread-local derivatives

Suitable for highly-parallel computation Suitable for single-threaded computation

Table 2.1: Bullet points outlining the main differences between the asymmetric and symmetric
solver implemented in OpenSPH.

Unfortunately, even the asymmetric solver does not guarantee perfectly linear scaling with
the number of threads, as there is other work to be done outside the main loop evaluating
derivatives, mainly building the K-d tree, computing the time step and also self-gravitational
accelerations.

We used Intel Threading Building Blocks [Pheatt, 2008] for parallelization. The code further
uses intrinsic instructions for vectorization which optimize the vector and tensor algebra, the
performance is thus significantly improved compared to the code SPH5 [Benz and Asphaug,
1994] we used previously.

2.13.2 Neighbor queries

An efficient algorithm for finding particles within a certain radius is a fundamental part of the
code. Apart from the evaluation of gravity, a search for neighbors is generally the computational
bottleneck of simulations. It is thus necessary to ensure the search for neighbors is fast and that
the performance does not deteriorate during the simulation as particles recede from each other.

An exhaustive search of neighbors, although useful for tests and verification of other
algorithms, is not viable due to its 𝒪(N 2) complexity. In OpenSPH, we thus use a K-d tree or
alternatively a spatial hash grid for neighbor queries. Both approaches belong to a set of classical
algorithms of computer science [Bentley, 1975; Samet, 1990; Teschner et al., 2003; Kipfer and
Westermann, 2006; Onderik and Ďurikovič, 2008; Lefebvre and Hoppe, 2006]. The K-d tree is the
default, since it is robust and works well for any particle distribution, although the hash grid
can be faster in some situations.

2.13.2.1 K-d tree. The K-d tree is a generalization of the binary tree to multiple dimensions.
It is constructed by recursively subdividing the particles into groups along the dimension of
the largest extent. The subdivision ends when the number of particles in the node is below a
certain threshold; this is a parameter of the code; the default value nleaf = 20 seems to be the
optimal value in most situations. Neighbors of a given particle are then found by tree traversal,
descending into nodes that are closer than the query radius. The computational complexity for
a single particle is only 𝒪(logN ), assuming a balanced tree.

There are twomain advantages of K-d tree. First, it works remarkably well even for extremely
uneven distributions of particles in space, which is often the case for impact simulations. During
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Figure 2.7: Snapshot of a simulation, showing the K-d tree clustering of particles. Individual
particles are drawn red, black boxes show the bounding boxes of particles in tree nodes. Each
leaf node holds nleaf = 400 particles.

the late stages of reaccumulation, the fragments are separated by distances that are larger by
several orders of magnitude compared to the sizes of fragments. Second, tree nodes can also
store multipole moments which are used for the evaluation of self-gravity (see Sec. 2.12.2).
Hence, there is no need to build another structure to compute gravity, which would require
computational and memory overhead.

2.13.2.2 Spatial hash grid. Alternatively, the particles are partitioned to a three-dimensional
grid with a fixed cell size, i.e. a particle with coordinates x , y , z is assigned to a grid cell with
integer indices:

i = ⌊ x
hcell

⌋ , j = ⌊
y

hcell
⌋ , k = ⌊ z

hcell
⌋ , (2.169)

where hcell denotes the cell size. We set the cell size to:

hcell = ηmax
i

hi , (2.170)

where η is the support radius of the kernel (η = 2 for the standard cubic kernel) and hi is the
smoothing length of the i-th particle. Rather than allocating the entire grid in memory, we store
all cells in a hash map. The hash for three-dimensional cell index i,j,k is computed as:

H (i, j, k) = (73856093i) ⊕ (19349663j) ⊕ (83492791k) , (2.171)
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Figure 2.8: Snapshot of a simulation, showing cells of a spatial hash grid. The particle configu-
ration is the same as in Fig. 2.7. Gray squares show the allocated cells, black boxes represent the
bounding boxes of particles stored in the cells. The cell size is set to 30h.

where the symbol ⊕ denotes binary XOR operation. Using the hash map, only cells occupied by
particles need to be allocated, hence the required memory does not increase as the particles
move away from each other. When looking for neighbors of a given particle, only particles in
the corresponding cell and possibly the neighboring cells need to be checked.

The advantage of the hash grid over the K-d tree is a generally faster look-up of particles in
cells. Compared to 𝒪(logN ) of the K-d tree, the hash grid allows to search neighbors in 𝒪(1),
provided hash collisions can be neglected. The implementation is also considerably simpler, as
we make use of std::unordered_map from the C++ standard library. Unfortunately, it is not
suitable for simulations involving gravity, as a K-d tree (or possibly other hierarchical structure)
needs to be built anyway to evaluate gravitational interactions.

2.14 Surface reconstruction
Collisional simulations usually do not require extracting a surface within a continuum, because
all forces and other terms in the equations are volumetric. While surface terms can be used in
some SPH simulations, e.g. to add a surface tension or radiative cooling into the physical model,
no such terms are present in our problem formulation. Nevertheless, surface extraction is a
part of OpenSPH code, as it can be utilized to determine shapes of fragments. The surface is also
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convenient for visualization purposes, because it allows to render a fragment as a continuous
volume rather than a group of discrete spherical particles.

Surface reconstruction from particles is a well-known problem in computer graphics [Blinn,
1982; Müller et al., 2003; Ihmsen et al., 2014]. We follow the approach of Yu and Turk [2013] and
define a color field function C as:

C(𝒓) = ∑
i

mi
ρi

1
h3i

w (
‖𝒓 − 𝒓i‖

hi
) , (2.172)

where w(‖𝒓‖/h)/h3 = W (𝒓, h) is a dimensionless form of the smoothing kernel. This definition
is similar to the SPH density (Eq. 2.5), except the summand is divided by the particle density
ρi . The color field C is thus a dimensionless quantity, which serves as an indicator function of
the volume. Given a point 𝒓 inside the body, C(𝒓) is close to 1; deviations from value 1 are only
caused by particle disorder and local density gradient. If 𝒓 is outside the body with no particles
in the vicinity, the sum is empty and C(𝒓) is thus trivially zero. Due to particle smoothing, the
function C(𝒓) is not discontinuous but falls from C ≃ 1 to C = 0 gradually. The surface of the
SPH continuum can be then defined implicitly as the isosurface C(𝒓) = c0, where c0 is a suitable
constant. Increasing c0 makes the surface more smooth and less sensitive to noise in particle
distributions, but it may also remove surface details or small asteroid fragments. We empirically
determined that c0 = 0.13 is usually the best choice.

The surface quality can be further improved by using an anisotropic smoothing kernel. The
color field is then redefined as:

C(𝒓) = ∑
i

mi
ρi

| det𝑮i |w (‖𝑮i ⋅ (𝒓 − 𝒓i)‖) , (2.173)

where 𝑮i is the anisotropy tensor. Tensor 𝑮i represents the particle distribution in the neigh-
borhood of 𝒓i . To find 𝑮i , we first need to construct the covariance matrix:

𝑲i = ∑
j
(𝒓j − 𝒓i) ⊗ (𝒓j − 𝒓i) , (2.174)

where the sum goes over neighboring particles. Matrix 𝑮i is then essentially an inverse of matrix
𝑲i , however, care must be taken to avoid inverting singular matrices. To make it robust, we
compute the singular value decomposition of 𝑲i :

𝑲i = 𝑼𝜮𝑽T . (2.175)

Here, 𝜮 is a diagonal matrix with elements 𝜮 = diag(Σ1,Σ2,Σ3), where Σ1 ≥ Σ2 ≥ Σ3 is assumed.
To avoid small singular values, which could cause numerical instabilities, and also to limit the
anisotropy of the kernel, the diagonal elements are thresholded using:

Σ̃2,3 = max(Σ2,3, kΣ1) , (2.176)

where k = 0.25 is a user-defined constant. Finally, the anisotropy tensor 𝑮i is defined as:

𝑮i = 𝑽𝜮̃−1𝑼 T . (2.177)
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Figure 2.9: Snapshot of a reaccumulation phase during impact simulation. The image on the left
shows individual particles, encoding particle speed as color. Particles are used to compute the
color field 2.173, from which a triangle mesh is extracted using marching cubes. The resulting
mesh is rendered with flat shading in the right image.

Once the color function C(𝒓) is known, the surface mesh can be extracted using an off-the-
shelf algorithm, such as the marching cubes [Lorensen and Cline, 1987]. If there is no need for
triangle mesh, the implicit surface can also be rendered directly using raymarching. In that case,
the color field C can be also used to compute the surface normal, which is necessary for surface
shading. The (unnormalized) normal vector 𝒏 is given by the color field gradient:

𝒏 = ∇C = ∑
i

mi
ρi

∇W (𝒓 − 𝒓i , hi) . (2.178)



— Chapter iii —

numerical and laboratory
experiments

Validation is a crucial part of a development of any numerical code. In this chapter, we review
tests of the OpenSPH code we developed, comparing a numerical solution with an analytical
one if such a solution exists, checking the integrals of motion, and discussing results of selected
laboratory experiments. All plots and visuals were obtained using our code.

3.1 Sod shock tube test
One simple test that hydrocodes have to “pass” is a numerical solution of a one-dimensional
Riemann problem.While the test is quite rudimentary, it can reliably reveal gross (but sometimes
indiscernible) errors in equations, such as an incorrect sign. Still, it shows the basic properties
of fluid dynamics, such as sound waves, shock waves, rarefaction waves, etc. As for the SPH
discretization, the shock tube test mainly demonstrates the importance of the artificial viscosity.

The test calculates the temporal evolution of a gas tube by solving the Euler equations in
one dimension:

∂ρ
∂t

+ ∂
∂x

(ρv) = 0 , (3.1)

∂v
∂t

+ v ∂v
∂x

+ 1
ρ
∂P
∂x

= 0 , (3.2)

∂u
∂t

+ v ∂u
∂x

+ P
ρ
∂v
∂x

= 0 , (3.3)

together with the ideal gas equation of state:

P = (γ − 1)ρu . (3.4)

73



74 Numerical and laboratory experiments

Figure 3.1: Numerical solution of the one-dimensional Sod shock tube problem (blue circles)
compared to the analytical solution (black solid line) and unphysical numerical solution com-
puted without the artificial viscosity (red crosses) at time t = 0.2. The simulations contains
N = 400 particles.

Initially, the gas is divided into two regions along x = 0, denoted L and R. Following Sod [1978],
we set up the initial conditions as follows:

ρL = 1 , PL = 1 , vL = 0 ,

ρR = 0.125 , PR = 0.1 , vR = 0 .
(3.5)

Despite the relatively simple setup, the solution is surprisingly complex. The computational
domain is split into five regions, with the boundaries moving at different speeds. Although
the solution is trivial in some parts, one part of the domain has no closed-form solution; the
analytical solution can only be computed using an iterative procedure.

The analytical solution can be found in Toro [2009]. We plot the numerical result computed
by the SPH as well as the expected result in Fig. 3.1. The plots show that the SPH solution
follows the analytical solution well, except for the characteristic “blip” visible in the pressure
distribution (and consequently also in the energy distribution). This is a known deficiency of
the standard SPH discretization, caused by fact that volume elements only take into account
the particle mass and local density1. Besides the blip, the computed solution diverts from the

1The issue could be mitigated by using the density-independent SPH discretization instead, see Saitoh and
Makino [2013].
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Figure 3.2: Snapshots of a two-dimensional Sedov-Taylor blast. The color palette shows the
density ρ; the initial background density was set to ρ = 1 (gray), compressed and expanded gas
is marked red and blue, respectively. Black outline represents the expected shock front radius
according to Eq. 3.6.

analytical solution only at discontinuities, which is to be expected due to smoothing, caused by
artificial viscosity. If no artificial viscosity is used, the solution contains strong oscillations near
discontinuities (see the red curve in Fig. 3.1).

3.2 Sedov-Taylor blast wave test
Another classical test is known as the Sedov-Taylor blast wave. It is often used to test the
propagation of a spherical wave through a discretized medium; specifically, it can be used to
check for artifacts arising from grid-based structures of voxels or particles [Tasker et al., 2008].

A two-dimensional computational domain is initially filled with a homogeneous ideal gas
with a density of ρ = 1. A strong detonation is placed at the center of the domain. The central
detonation point thus contains a large internal energy E0, which creates a spherical shock wave
propagating outwards, centered at the point of detonation.

The analytical solution of the explosion can be found in Sedov [1959]. The complete solution
is rather complex, however the radius of the shock front can be readily computed. At time t ,
the radius is:

R(t) = (
E0t2

αρ0
)

1
2+ν

, (3.6)
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where ν = 2 is the number of spatial dimensions of the simulation and α is a dimensionless
constant of order unity. The constant α depends on the adiabatic index γ of the gas; for γ = 5/3,
it is approximately α ≈ 0.64 [Frontiere et al., 2017].

Our simulation contains N = 100 000 particles. The initial detonation energy is set to
E0 = 2.76 × 10−3. Particles are initially placed on a hexagonal grid, mainly to test whether
such an anisotropic configuration creates noticeable artifacts. Simulation snapshots can be
seen in Fig. 3.2. The radius of the shock front, given by Eq. 3.6, matches the SPH simulation
well. We can also see that the shock wave is indeed spherical, despite the hexagonal layout of
particles; however some anisotropy in the computed density distribution is still noticeable. It
could be improved by using an anisotropic particle distribution instead (see Sec. 2.9.3). We can
further see that the densities between the pre-shock and post-shock regions differ significantly.
The simulation demonstrates the importance of an adaptive spatial resolution; keeping the
smoothing lengths of particles constant would lead to separation of particles in the center of
the explosion and generally incorrect results.

3.3 Kelvin-Helmholtz instability test
The importance of artificial thermal conductivity can be seen in simulations that involve a
mixing of two different fluids. Such a situation appears when two fluids move along an interface
in a shearing motion. Any initial perturbation of the boundary triggers the Kelvin-Helmholtz
instability, mixing the fluids and creating vortices that grow over time.

In our example, we set up a square two-dimensional computational domain:

Ω = {−0.5 ≤ x ≤ 0.5, −0.5 ≤ y ≤ 0.5}, (3.7)

split vertically into two regions. Both regions contain ideal gas with an adiabatic index γ = 1.4,
but they differ in initial densities and they move in opposite directions with equal speeds. We
set up the initial conditions as:

|y | < 0.25 ∶ ρ = 2, vx = 0.5 ,

otherwise ∶ ρ = 1, vx = −0.5 .
(3.8)

Fluid regions are in pressure equilibrium with P = 2.5. The boundaries of the domain are
connected using periodic boundary conditions (see Sec. 2.10).

To create a seed for the instability, a small sinusoidal perturbation is added to the vertical
component of the velocity. Following Read et al. [2010], we set:

vy =
⎧⎪
⎨⎪
⎩

A sin(−2πx/λ) |y − 0.25| < 0.025 ,

A sin(2πx/λ) |y + 0.25| < 0.025 ,

0 elsewhere .

(3.9)

In this test, we consider A = 0.025 and λ = 1/6.
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Without artificial conductivity

With artificial conductivity

Figure 3.3: Simulations of the Kelvin-Helmholtz instability. The panels show the instability at
times t = 0.4 s (left), 0.8 s (center) and 1.6 s (right). The top row corresponds to the simulation
without the artificial conductivity, while the artificial conductivity is enabled in the bottom row,
using αu = 1.5. The color palette shows the specific internal energy. “Vanilla” SPH creates an
unphysical surface tension on the interface of interacting fluids, which leads to a deformation
of the interface and a separation of bubbles. The artificial conductivity allows the different fluids
to mix and the instability can properly develop.

We solve the problem using a symmetric SPH solver. Both regions are initially filled with
equal-mass particles in a hexagonal closely packed configuration. The regions differ in particle
spacing to obtain the required densities. The total number of particles is approximately N =
175 000. The periodic boundary condition is implemented using ghost particles.

We run two simulations, one with no treatment of the discontinuity and one with an artificial
thermal conductivity, using αu = 1.5. Results of these simulations can be seen in Fig. 3.3. In
case the conductivity is missing, the instability fails to develop and the fluids remain separated,
forming bubbles of constant density. As explained by Read et al. [2010], the standard SPH
formulation ignores the extra terms related to the discontinuity of the specific energy. These
terms (or lack thereof) cause a numerical surface tension at the interface of two fluids, which
effectively prevents their mixing. The artificial thermal conductivity helps to smooth the energy
field, reducing the surface tension and allowing the fluids to mix.
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Figure 3.4: Four snapshots of elastic bands, showing an impact, deformation and a subsequent
rebound. The color palette represents a measure of the artificial stress 𝑹i . As expected, the
artificial stress appears only in tension, while it remains zero in compression.

Figure 3.5: Snapshots of elastic bands without the artificial stress, corresponding to snapshots
in Fig. 3.4. Due to untreated tensile instability, unphysical fractures appear under tension,
eventually leading to a fragmentation of both bands.

3.4 Colliding elastic bands test
To demonstrate the effect of artificial stress, we perform a simple numerical experiment. Fol-
lowing Monaghan [2000], we create two equal cylindrical bands and run a collision simulation.
The bands are made of an ideal elastic material, the strain-stress relation thus follows Hooke’s
law for all plausible values of the strain and stress in the material.

The height of the bands is set to h = 1 cm, the inner and the outer radius is r1 = 3 cm and
r2 = 4 cm, respectively. The relative impact speed of bands is v = 160m/s. As for the material,
we assume the density ρ = 2700 kg/m3, shear modulus μ = 109 Pa and Tillotson’s equation of
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Figure 3.6: Results of the rotating rod test. The upper panel shows the rod at several phases
during the simulation. Color represents the particle velocities, red for rotation in the clockwise
direction, blue for counter-clockwise direction. The lower panel shows the z-component of
angular momentum. Points correspond to times for which the rod is rendered. The correction
tensor 2.58 is clearly essential in simulations involving rotating elastic bodies.

state. Each ring consists of approximately N = 10 000 particles, the SPH solver uses standard
artificial viscosity (2.86) with α = 1.5 and β = 3. We run two simulations, one that includes the
artificial stress with ζ = 0.04 and one with no artificial stress.

Although no analytical solution to the described problem exists, a qualitative result is
adequate for this test. We are only interested in whether the topology of the bands remains
unchanged upon the collision. Despite a considerable deformation, the material is perfectly
elastic and any fragmentation occurring in the simulation is therefore necessarily unphysical.
The results are shown in the Figs. 3.4 and 3.5.

If no artificial stress is used, the particles form clumps in regions where the bands are
stretched, which causes the particles to lose the connection to their neighbors, ultimately
breaking the bands apart. Adding the artificial stress ensures the particles remain connected.
The improvement and successful mitigation of the tensile instability can be seen clearly.

3.5 Rotating rod test
We perform a simple test to demonstrate how the correction tensor changes the simulation
of solid bodies. The simulation consists of a single cylindrical rod with a height h = 10m and
radius r = 1.5m, which is initially spun up with a spin rate ω = 20 s−1. It is made of perfectly
elastic material (i.e. no plasticity nor fragmentation) with the shear modulus μ = 2.27 × 1010 Pa.
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The simulation is run with N = 5000 particles. We measure the total angular momentum during
the simulation and plot it as a function of time, see Fig. 3.6. The test demonstrates that the
correction tensor is necessary to conserve angular momentum and maintain the initial spin rate
of the rod. If no correction tensor is used, the rod gradually decelerates, until it stops entirely
and starts rotating in the opposite direction. In such a case, rotation behaves like deformation,
inducing stresses in the rod that act in the opposite direction of the rotation, which is of course
unphysical.

The described issue is caused by discretization errors, hence it is mitigated by increasing
the spatial resolution; here we intentionally chose a coarse discretization to make the issue
pronounced. In actual impact simulations, where the resolution is larger by two or three orders
of magnitude, the problem is much less severe. However, it still alters the rotation of small
fragments and it can even affect larger bodies in the simulation if the integration time is
sufficiently long.

3.6 Cliff collapse test
The rheological model can be tested against empirical data. We create a rectangular column
made from granular material and restrict its movement into a single direction with boundary
conditions. The column has a width w = 1 km and height h = 3.2 km. This configuration is
highly unstable and since we assume zero cohesion of the material, it will spontaneously collapse
and create a cliff.

We compare the slope of the collapsed cliff and also overall shape of the column during
the collapse with empirical data of Lajeunesse et al. [2005]. They tested several initial setups of
the columns, one of which matches our setup described above; only the scale of the column
is (obviously) smaller. However, the problem is scale-invariant and we can still compare our
results by adjusting the time scale accordingly.

The column in these experiments was made of glass beads with density ρ = 2500 kg/m3

and measured angle of repose θ = 22 ± 0.5∘. To match the conditions in the numerical code, the
column is made of fully damaged (D = 1) material. Boundary conditions are implemented using
ghost particles, which mirror the physical quantities of real particles. However, the velocity of
ghosts created on the ground (y ≃ 0) needs to be set to zero to produce friction between the
source particle and its ghost, otherwise, the material would slide on the ground and no cliff
would be formed.

Particles are placed into a gravitational field with acceleration 𝒈 = (0, −9.81, 0)ms−2. The
simulation runs until all particles come to rest. Our numerical result is compared with exper-
imental data of Lajeunesse et al. [2005] in Fig. 3.7. We see that the rheological model in our
code behaves physically, both the motion of the cliff and the final slope approximately match
experimental data.

3.7 Fragmentation validation test
The strength model is arguably the most complex part of the code. Naturally, no analytical solu-
tion for fragmentation exists, nevertheless, we can make use of laboratory impact experiments.
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Figure 3.7: Cliff collapse experiment used to test the rheological model in OpenSPH. Left images
are the simulation results, showing a section through the cliff at several times. Color coding
corresponds to the local speed of the material. Right panels are photos of the experiment at
matching time points [Lajeunesse et al., 2005].
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Figure 3.8: Snapshots of the impact simulation and corresponding images from the experiment
of Nakamura and Fujiwara [1991] at times t = 0.1ms, 1.4ms and 2.7ms.The simulation snapshots
were rendered using the ray marching algorithm.
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Figure 3.9: Fragmentation pattern on the surface of the target for several different resolutions.
The numbers of particles is (left to right) N = 2 × 104, 105, 4 × 105 and 106.

We decided to use a classical work of Nakamura and Fujiwara [1991]. Their experiment consisted
of shooting a high-speed projectile into an anchored spherical target and capturing the impact
using a high-speed camera. To compare how our numerical model matches these experimental
data, we ran a corresponding simulation with a basalt target and a nylon projectile. The diameter
of the target was D = 6 cm, the projectile diameter d = 7mm, the impact angle ϕimp = 30∘ and
the impact speed vimp = 3.2 km/s. Both the target and the impactor used a Tillotson material;
the density of the target was ρ = 2700 km/m3, while the impactor density was ρ = 1150 km/m3

in order to match the projectile mass. We assumed the Weibull parameters k = 4 × 1035m−3

and m = 9. The target contained approximately N ≃ 500 000 particles.
One of our simulations is compared with images of Nakamura’s experiment in Fig. 3.8. We

see that the simulation is qualitatively very similar to the experiment. The collision “strips” the
surface layer while keeping the core of the target undamaged. Ejected fragments have various
sizes, from large pieces originating from the antipode to tiny dust particles. Although the ejecta
curtain of high-speed fragments originating from the impact point seems to be almost missing
in our simulations, this is certainly only due to the limited resolution.

For a quantitative comparison, we measured the mass of the intact core using the friends-
of-friends algorithm. Depending on the exact relation for determining neighbors (limit distance,
including/excluding fully damaged particles), we obtain values between 25 % and 35 % of the total
mass, which is consistent with the empirical value of 31 %. The velocity field of multiple-particle
fragments is also matched, according to the sequence of images. The typical ejection velocity in
this small-scale experiment is vej ≃ 10m/s; in large-scale collisions, it is often comparable to
the escape velocity from the parent body.

3.8 Convergence tests
We also ran several tests to ensure our results are not strongly dependent on the spatial resolution.
It can be tested by running the same simulation several times with increasing number of particles;
however, these simulations will necessarily differ, as our problem is stochastic in its nature and
slightly different initial conditions (even if not related to the number of particles) can cause
noticeable differences. The stochasticity is introduced by the distribution of Weibull flaws in the
target and also by gravitational reaccumulation, which is a chaotic N-body problem (especially
when N eventually becomes low, corresponding to a few sizeable individual fragments).
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Figure 3.10: Convergence test of simulations with increasing numbers of particles. The plots
show quantities computed from the end state of each simulation. Core size is the relative mass
of the undamaged core of the target, and damaged fraction is the fraction of fully damaged
particles.

To avoid issues related to self-gravitation, we first separately test the fragmentation model.
For this purpose, we set up a simple cratering simulation with Dpb = 10 km target, dimp = 100m
impactor, the impact speed vimp = 4 km/s and the impact angle ϕimp = 40∘. Particles are
generated using the parametrized spiraling approach (see Sec. 2.9.2). There is no self-gravity
and the target is initially in a zero-pressure state. The simulations run for t = 10 s, which is
enough time for the fragmentation pattern to fully develop.

Of course, the exact fragmentation pattern will be different in each simulation, because
the flaw distribution is randomized (see Fig. 3.9). Nevertheless, we compute some integral
quantities related to the fragmentation, which should ideally be resolution-independent, namely
the size of the largest fragment and the fraction of fully damaged particles. The largest fragment,
corresponding to the undamaged core of the target, was identified by first removing the damaged
particles and then using the friends-of-friends algorithm. In some cases, the fragment would
remain connected to the undamaged shell of particles located at the antipode, in which case
we further split them using a graph partitioner. These quantities are plotted as functions of the
number N of particles in Fig. 3.10.

For low particle counts, the quantities differ significantly from the high-resolution results
and oscillate between consecutive simulations, which is to be expected given the fragmentation
pattern is strongly underresolved. With increasing resolution, the differences between subse-
quent simulations further decrease, although the quantities are still not exactly constant and a
slight dependence on the resolution is observed.

These conclusions apply to this specific simulation, which is a weak cratering event (Q/Q⋆
D ≃

10−3). For mid-energy or catastrophic impacts, the fragmentation is less important since the
target is fully damaged anyway. On the other hand, simulations of even weaker impacts require
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Figure 3.11: Simulation with the same geometric parameters and increasing resolution (N =
103, 104, 105, 106 particles). Columns correspond to times t = 1600, 4800, 9600, 14400 seconds.
The sizes of the target and the impactor were Dpb = 2000 km and dimp = 1500 km, respectively.
Color coding shows the specific energy.
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much higher resolution to resolve the area around the impact point in great detail. For such
simulations, it is more suitable to consider only a small block of the target around the impact
point instead of the whole body and set up appropriate boundary conditions.

We finally test the convergence of longer simulations that include reaccumulation.Therefore,
we run a similar set of simulations with self-gravitation. For simplicity, we assume a simple
fluid-like rheology with no fragmentation nor plasticity. The target size is set to Dpb = 2000 km
and the projectile size dimp = 1500 km, which allows for much larger time steps. The simulations
run for t = 7 hours.

Individual snapshots can be compared in Fig. 3.11. We see that simulations match each other
qualitatively well, even for very coarse resolutions. Low-resolution simulations still capture
the large-scale features of reaccumulation (e.g. the formation of the largest remnant, its overall
shape, the size of the largest fragment), higher resolutions then add fine details, such as the
stream of matter incident to the largest remnant, reaccumulation of individual fragments, etc.



— Chapter iv —

impacts into small targets

Asteroid collisions played a major role in the formation of the Main Belt. Past collisions are
preserved in the structure of the Main Belt as asteroid families, groups of asteroids with similar
trajectories and taxonomic types [Hirayama, 1918]. To date, over 100 distinct families have
been identified [Nesvorný et al., 2005; Brož et al., 2013; Nesvorný et al., 2015; Vinogradova,
2015] using the hierarchical clustering method [Zappalà et al., 1995], each containing from less
than ten to several thousand members. Although the collisional origin of families has been
widely accepted, explaining and interpreting size-frequency distributions of families remained
an unsolved problem until hydrodynamical and N-body codes were used to simulate impact
events.

4.1 Hybrid model for family-forming events
Impacts are commonly studied using numerical methods [Michel et al., 2015]. Although some
constraints on the size-frequency distribution (SFD) can be obtained using purely geometric
arguments [Tanga et al., 1999; Bagatin et al., 2001], the standard method of choice is a hybrid
SPH/N-body approach [Michel et al., 2001, 2002, 2003, 2004; Durda et al., 2007; Benavidez et al.,
2012, 2018]. Computation is split to two phases — fragmentation and reaccumulation. During
the fragmentation phase, an SPH code is used to solve the set of hydrodynamical equations.
It consists of the initial impact, projectile deformation, propagation of the shock wave, target
breakup and ejection of fragments. Once the fragmentation phase ends, smoothed particles
are converted to hard spheres in a procedure called hand-off. The spheres are then used as
initial conditions for an N-body integrator that computes mutual gravitational interactions and
collisions of fragments until reaccumulated fragments are sufficiently distant from each other
that any remaining collisions will not have a significant influence to the resulting synthetic
family.

The split of the simulation to phases is possible due to substantially different characteristic
time scales associated with the shock wave and the self-gravitation. The time scale of fragmen-
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tation is given by the crossing time of the shock wave. Using Dpb = 10 km and vimp = 5 km/s,
we get an order-of-magnitude estimate:

tfrag =
Dpb

vimp
≃ 100 s . (4.1)

For reaccumulation, the time scale is mainly determined by the largest remnant, as the gravita-
tional acceleration is maximal at its surface. Approximating the density of the largest remnant
by the initial density ρ, the time scale can be estimated from the free-fall time:

tff ≃ 1
Gρ

≃ 103 s . (4.2)

Clearly, the time scale associated with self-gravity is much larger than the shock wave time scale.
For this reason, gravitational acceleration is often neglected during the fragmentation phase;
instead, the target is created with an overburden stress to account for gravitation compression
[Benz and Asphaug, 1999; Durda et al., 2007].

The resulting size-frequency distribution (SFD) can be directly compared with young families
in the Main Belt. Such data is used to constrain the size of the parent body or the geometrical
parameters of the impact that formed the family or even detect probable interlopers. Karin
family is a good example as it was formed only (5.8 ± 0.2)Myr ago; Nesvorný et al. [2006]
analyzed it in detail using SPH/N-body simulations and they were able to find an excellent
match between the synthetic and observed SFDs.

The same analysis is more difficult for older families, because they underwent considerable
evolution due to the Yarkovsky effect, planetary perturbations, including mean-motion and
secular resonances, and secondary collisions. Care must be taken when interpreting SFDs of
such families; either limit the analysis to the largest family members which are less affected by
the evolution, or follow up the impact simulation with a numerical integration of orbital and
collisional evolution, as in Brož and Morbidelli [2019] or Marsset et al. [2020].

4.1.1 Related work

Benz and Asphaug [1999] pioneered the hydrodynamical simulations of asteroid collisions. Their
code was the first to properly discretize the Grady-Kipp model of fragmentation in SPH. The
hydrocode was coupled with an algorithm for fragment search in order to identify the largest
remnant of the impact. They computed 480 runs for targets with a diameter from Dpb ≃ 10−2 to
105m at different impact speeds and derived scaling laws of ice and basalt.

The developed code was used for studies of individual asteroid families, such as Eunomia,
Koronis [Michel et al., 2001, 2004] or Karin [Nesvorný et al., 2006]. These families are of the
S taxonomic type, likelymade of ordinary chondrite material, hence the targets in the simulations
were monolithic spheres made of basalt, which is a viable terrestrial analog [Michel et al., 2015].
The SPH simulations were followed by N-body simulations of the reaccumulation phase to
obtain the size-frequency distribution of the synthetic family.

A large suite of SPH/N-body simulations for Dpb = 100 km monolithic targets was later
performed by Durda et al. [2007]. They studied how the size-frequency distribution depends
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on various impact parameters, mainly on the impact speed vimp, the impactor diameter dimp
and the impact angle ϕimp. This set of SFDs was used to estimate the sizes of parent bodies of
observed families, assuming the SFD scales linearly with the size of the target, i.e. shifts left or
right on the log-log plot of the SFD.

A similar set of simulations was carried out by Benavidez et al. [2012], using Dpb = 100 km
targets with macroscopic voids to model rubble-pile bodies (i.e. macroscopic porosity). They
compared the SFDs of rubble-pile and monolithic targets and discussed where the fit to the
observed SFDs can be improved by using the rubble-piles. This work was followed up with
simulations of Dpb = 400 km targets, using both monolithic and rubble-pile bodies [Benavidez
et al., 2018].

The rheological model was also extended to simulate micro-porous bodies. Unlike the
macro-porous targets, the model assumes sub-resolution porosity using a P-alpha model rather
than macroscopic voids in the distribution of particles [Jutzi et al., 2008]. Considering most
asteroids in the range D = 10 to 100 km are expected to be rubble piles [Bagatin and Petit, 2001],
integrating such rheology to an SPH code is valuable, as it makes it possible to find accurate
parametric relations of collisions which can then be used in collisional models of Main Belt
evolution [Morbidelli et al., 2009; Cibulková et al., 2014]. SPH simulations with microporosity
were used in a number of works. For example, Jutzi and Benz [2017] performed sub-catastrophic
collision simulations to explain the bi-lobed shape of comet 67P/Churyumov-Gerasimenko,
similar simulations were also used to study shapes of collisional remnants of small Dpb ∼ 1 km
[Jutzi et al., 2019] and large Dpb ∼ 100 km targets [Sugiura et al., 2018].

4.2 Methods and aims
Our work is mostly a follow-up of simulations done by Durda et al. [2007]. We kept the
same rheological model, i.e. monolithic non-porous basalt bodies, but we assumed smaller
Dpb = 10 km targets. Although observed families likely originated from larger parent bodies,
small families with the size of the parent body closer to 10 km have already been found, such
as the Iannini family [Nesvorný et al., 2003] or the Datura family [Vokrouhlický et al., 2009].
Since the strength of Dpb = 10 km bodies is substantially smaller compared to the 100 km ones
due to the decreasing role of self-gravity, the asteroid impact occurs under different conditions,
potentially with a very different outcome. We thus ran a set of simulations to understand these
breakups and discussed differences between our simulations and Dpb = 100 km simulations
from the dataset of Durda et al. [2007].

Another goal of our work was to quantitatively analyze the error introduced by linear
scaling of SFDs which is being used to estimate the sizes of the parent bodies of observed
families. It is widely accepted that such scaling is useful for obtaining a first-order estimate;
to get an accurate result, one should run a dedicated set of simulations instead with a specific
size of the parent body. We studied how the SFDs differ when they are scaled by an order of
magnitude, from Dpb = 100 km down to 10 km, and how this difference depends on impact
parameters.

We further analyzed velocity fields of fragments. Namely, we constructed speed histograms
relative to the largest remnant and discussed their relation to the escape velocity vesc of the
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parent body. Similarly, we computed angular histograms of velocity directions in the x-y plane
(i.e. the plane of symmetry of the impact). Considering simplified collisional models often
assume the velocity field is isotropic, we investigated whether this assumption was justified.

To compare two simulations with different targets, we quantify the impact using a dimen-
sionless value Q/Q⋆

D, where Q is the specific kinetic energy of the impactor and Q⋆
D is the

threshold energy needed to eject 50% of the target’s mass, as given by the scaling law of Benz
and Asphaug [1999]. Hence, the impactors in our simulations are systematically smaller relative
to the target size than in the corresponding simulations of Durda et al. [2007].

4.2.1 Model used for simulations

To avoid any systematic bias in our results, we tried to match the setup of Durda et al. [2007]
as closely as possible. We assumed monolithic basalt material and used Tillotson’s equation
of state and von Mises rheology (see Sec. 2.8.1). Although such a model is more suitable for
simulation of metallic materials and the results may differ significantly if the Drucker-Prager
model is used instead [Jutzi et al., 2015], we use it intentionally to separate the effect of target
size. Nevertheless, the material model is still viable for simulations of catastrophic impacts, as
the material strength is less important in these cases.

Our simulations contain about N ≃ 1.4 × 105 particles. This is relatively coarse resolution
(these days, many works use N ≳ 106 particles), we want to avoid possible systematic errors
introduced by increased resolution. For 10 km targets, this implies a resolution limit of about
h ≃ 200m.

We performed two-phase simulations for each set of impact parameters ϕimp, vimp and dimp.
The fragmentation phase was computed with SPH5 code [Benz and Asphaug, 1994], modified for
double-precision computations. During this phase, we solved the following set of SPH equations:

dρi
dt

= −ρi ∑
j

mj

ρj
(𝒗j − 𝒗i) ⋅ ∇Wij , (4.3)

d𝒗i
dt

= ∑
j
mj (

𝝈i + 𝝈j
ρiρj

+ Πij1) ⋅ ∇Wij , (4.4)

dui
dt

= −
Pi
ρi

Tr ̇𝝐i +
1
ρi
𝑺i ∶ ̇𝝐i +∑

j

1
2
mjΠij(𝒗i − 𝒗j) ⋅ ∇Wij , (4.5)

d𝑺i
dt

= 2μ ( ̇𝝐i −
1
3
1Tr ̇𝝐i) , (4.6)

dhi
dt

= −
hi
3
dρi
dt

, (4.7)

̇𝝐i =
1
2ρi

∑
j
mj [(𝒗j − 𝒗i) ⊗ ∇Wij + (𝒗j − 𝒗i) ⊗ ∇Wij

⊤] , (4.8)

and Πij is the artificial velocity term, defined by Eq.2.86. Material parameters are summarized in
Table 1 of the reprint below. The code SPH5 uses slightly different discretization of the equation
motion and velocity divergence than we derived in Sec. 2.2. Although these equations are also
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conservative due to symmetries in the stress 𝝈i and velocity 𝒗i , the results might be slightly
different, especially in simulations with a small number of particles.

The reaccumulation phase was computed using pkdgrav code [Richardson et al., 2000]. We
assumed perfect merging of collided particles, regardless of their relative velocity. Similarly, any
overlapping particles were merged to larger spheres. The hand-off was performed by converting
each SPH particle to a hard sphere with the same volume, skipping all particles in expanded
phase (i.e. most impactor particles).

4.2.2 Numerical issues

The analysis of our simulations with small parent bodies showed some numerical problems that
were not present in simulations with Dpb = 100 km bodies, or at least not to the same extent.
There were strong high-frequency oscillations in the target after the shock wave passed, which
induced further growth of fractures until eventually the whole target has been disintegrated.

Issues mainly appeared on the smallest targets, for Dpb = 1 km bodies which we studied
originally. Compared to Dpb ≃ 100 km targets, these bodies have much smaller strength, because
this size range still lies in the gravity regime of the scaling law [Benz and Asphaug, 1999].
Hence, for small targets, an impact with the given Q/Q⋆

D requires a much smaller impactor.
Consequently, impact leaves an undamaged core of the target where the pressure may oscillate;
larger Dpb ≃ 100 km bodies are fully damaged by the impact, the pressure inside the remnant
is thus always positive. Furthermore, the ejection speeds are generally lower for small bodies,
meaning the integration time has to be longer (relative to the size of the target).

The pressure oscillations are necessarily numerical artifacts, given their wavelength exactly
corresponds to the spatial resolution. They appear due to the evolution of density using the
continuity equation 2.45. The density of every particle is evolved independently, based only on
the local velocity divergence, hence there is no spatial continuity of density enforced, similarly
how the continuity of the velocity field is not enforced without the artificial conductivity. No
such oscillations are present if the density is computed by the direct summation 2.5, however,
this approach has its own drawbacks, as discussed in Sec. 2.4.

Instead, OpenSPH adds a numerical term to the continuity equation which works as diffusion
in presence of high-frequency oscillations. Such a term is analogous to the artificial viscosity in
the equation of motion or the artificial conductivity in the energy equation. Following Marrone
et al. [2011], we add the so-called δ-SPH term:

(
dρi
dt

)
δ
= δhc∑

j

mj

ρj
𝝍ij ⋅ ∇Wij , (4.9)

where δ ≃ 0.01 is a small constant controlling the magnitude of diffusion, c is the sound speed
and:

𝝍ij = (ρj − ρi)
𝒓j − 𝒓i

‖𝒓j − 𝒓i‖2
− 1
2
(∇ρi + ∇ρj) . (4.10)

The sum in Eq. 4.9 and also in the computation of ∇ρi enumerates neighbors of the i-th particle,
but it skips fully damaged (D = 1) particles. Such an approach is necessary to prevent the δ-SPH
term from further damaging particles with fully damaged neighbors. Additionally, the gradient
∇ρi is corrected using the correction tensor 2.58.
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Figure 4.1: Pressure distribution inside a damaged Dpb = 1 km target at time t = 10 s for several
values of parameter δ of the δ-SPH modification. Strong high-frequency oscillations can be
efficiently attenuated with even a small value of δ , while the large-scale pressure distribution
and the fracture pattern remains unchanged.

Vector 𝝍ij is defined as a difference of two discretizations of the density gradient. If the
density field is smooth, both gradients give a similar result and the term is efficiently zero,
however, if the densities of neighboring particles differ significantly, the term acts as a smoothing
operator. We have found that even small values of δ can efficiently diminish the high-frequency
oscillations in the pressure field, see results in Fig. 4.1. This modification was not included in
the original code SPH5, though.

4.3 Major results
We performed 125 SPH/N-body runs, i.e. a matrix with five different values of the impact
angle ϕimp, the impact speed vimp and the impactor diameter dimp. The five different impactor
diameters correspond to mass ratii log10(mimp/Mpb) = 3.0, 2.6, 2.2, 1.8 and 1.0. Henceforth, the
impact angle ϕimp is defined as the angle between the impact velocity vector and the inward
normal at the impact point1, i.e. a head-on impact corresponds to ϕimp ≃ 0∘, while a grazing
(hit-and-run) impact corresponds to ϕimp ≃ 90∘.

We observed major differences in the compared SFDs. The deviations of the scaled-down
Dpb = 100 km SFDs are most pronounced for weak craterings (Q/Q⋆

D ≪ 1) and also for super-
catastrophic (Q/Q⋆

D ≫ 1) impacts. Cratering events generally produce shallower distribution,
the power-law slope is considerably smaller than in the corresponding 100 km simulations.
Our 10 km simulations appear to be weaker in this regime, despite having the same Q/Q⋆

D.
Catastrophic events also appear to be shallower and produce more larger fragments. The SFDs
contain a characteristic “knee” that is not present in the 100 km runs. This makes it difficult to
find a linear fit of some SFDs, hence we instead used a two-slope function for fitting.

On the other hand, the SFDs of mid-energy impacts with Q/Q⋆
D ∼ 1 generally match quite

well. This is partly due to the application of the scaling law to quantify the impact energy; since
1Some authors use a different convention for the impact angle. For example, Nakamura and Fujiwara [1991]

used an angle between the velocity vector and tangential plane at the impact point.
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the mid-energy impacts were used to derive the scaling law in the first place, the total mass
of fragments is approximately 50% of the mass of the parent body in both cases, so it is not
surprising that the SFDs are similar. Nevertheless, our results show certain universality of SFDs.
Both the 10 km and 100 km impacts produce SFDs with the same morphology in the mid-energy
regime. This “canonical SFD” always contains a separated largest remnant (LR) and a much
smaller largest fragment (LF), followed by a power-law of remaining fragments. The slope of
this power-law is comparable as well, suggesting that impacts generally produce very similar
SFDs even if the target is scaled by an order of magnitude.

There are noticeable differences at oblique impact angles, especially for impacts with ϕimp =
75∘. However, this angle-dependence is a purely geometric effect, as previously recognized by
Leinhardt and Stewart [2012]. During these oblique impacts, a large part of the impactor misses
the target, the kinetic energy actually delivered to the target is thus significantly smaller than
the total kinetic energy of the impactor. To correct for this effect and make the results less
sensitive to the impact angle, we defined the effective specific energy of the impact:

Qeff = Q A
πr2imp

, (4.11)

where A is the cross-sectional area of the impact. We used this quantity instead of the energy Q
when deriving the parametric relations for the masses Mlr of the largest remnants in order to
avoid outliers in fitted data.

Although there seem to be significant differences between some of the compared SFDs, that
alone does not mean the Dpb = 100 km simulations cannot be used to estimate the size of the
parent body in D ∼ 10 km size range. To determine the systematic errors the scaling introduces,
we tried to find the best matching SFD from the dataset of Durda et al. [2007] for several of
our synthetic data with Dpb = 10 km. The factor required to scale down the SFDs is then used
to compute the size of the parent body, which — unlike for the observed families — we can
compare with the ground truth.

Our SFDs with three best fits from 100 km runs are shown in Fig. 4.2. The scaling is precise
within 10 % for cratering impacts. This is of course not surprising, given the size of the largest
remnant is close to the size of the parent body. Nevertheless, the scaling works reasonably well
even for more energetic impacts. The discrepancy is largest for super-catastrophic events with
ϕimp = 15∘, the parent body is predicted to be larger by up to ∼50%. On average, however, the
error seems to be about ∼20%, which indicates the method is surprisingly accurate, considering
the SFDs were scaled down by an order of magnitude.

Another finding is that the method systematically overestimates the true size; only one
of the fits predicted size smaller than 10 km. As the scaling law is a monotonically increasing
function in this regime, the method is likely to behave similarly if used for Dpb ≫ 100 km bodies,
we thus expect that the fit will underestimate the real size of the parent body. Therefore, the
method can be used to find an upper limit of Dpb when scaling down and a lower limit when
scaling up.

In the paper, we further compared estimates of the size of the parent body on the example of
the Karin family. As our upscaled 10 km simulations predicted Dpb ≃ 25 km and the downscaled
100 km simulations predicted Dpb ≃ 63 km, this led us to a rather pessimistic conclusion that the
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Figure 4.2: Scaling of Dpb = 100 km SFDs applied to our synthetic Dpb = 10 km data. Each plot
shows three best fits from the dataset of Durda et al. [2007] along with the estimated diamater
of the parent body. Our SFDs (black) are computed from vimp = 5 km/s runs.

error of the scaling method can be as large as 100%. However, this was based on an erroneous
result of Durda et al. [2007]. After re-examining a fit of Dpb = 100 km SFDs to the observed
SFD of the Karin family, we obtained an estimate of Dpb = (33 ± 3) km, remarkably similar to
the value Dpb = 33 km obtained by Nesvorný et al. [2006]. Consequently, we now believe the
scaling method is actually much more precise than previously stated.

We also analyzed the velocity distributions of fragments. For cratering events, we found
that the mode of the speed histogram is located near the escape speed vesc. With increasing
energy, however, this peak of the histogram moves towards higher values and the tail of the
histogram grows as more high-speed fragments are being ejected; for super-catastrophic events,
the histogram becomes almost flat for a wide range of speeds. As for the angular distribution,
we noticed impacts can be assigned to three categories that are sorted by the impact energy.
The weakest impacts only cause minor cratering, the velocity distribution of fragments is thus
clustered around the point of the impact. When the energy exceeds a certain threshold, the
impact causes fragment ejection from the antipode of the target, we can thus see two distinct
groups of fragments in the angular histogram. Finally, for high-energy impacts, the whole target
is disintegrated and the velocity field is essentially isotropic.
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4.4 Reprint
See pages 96 to 113.









































— Chapter v —

rotating targets and angular
momentum transfer

All asteroids have a non-zero spin rate. The rotation state is modified over time by sub-
catastrophic impacts, radiation forces [Rubincam, 2000; Ćuk and Burns, 2005], or tidal in-
teractions. However, there is no mechanism to efficiently dissipate the angular momentum,
hence we currently observe only about ∼800 asteroids with a rotation period above P = 10 days,
such as (253)Mathilde with P ≃ 17 days [Mottola et al., 1995]. Our previous work, as well as
most of the other impact studies, did not consider pre-impact rotation of the target body, though.
A static target greatly simplifies the numerical model and reduces the number of free parameters,
which is why non-rotating bodies are generally preferred. However, the mean rotational period
of D = 10 km asteroids is about P ≃ 6 h [Pravec and Harris, 2000]. One can presume that
rotation does not play a major role, given the speed of revolution is much lower than the speed
of impact or ejection, however, this assumption has not been thoroughly scrutinized before. We
analyze the effect of rotation in this chapter.

5.1 Collisions of rotating bodies
The rotation certainly affects asteroids rotating close to the spin barrier. For an asteroid with
bulk density ρ = 2700 kg/m3, the barrier lies at about P ≃ 2 h, independently of the asteroid
size. Fast rotators may undergo rotational fission and split to binary asteroids [Pravec et al.,
2010], even if no collision triggers mass ejection. It is clear that for fast rotators, we can expect
major differences in outcomes of collisions.

About 10 % of the observed asteroids are fast rotators with a rotational period below P = 3 h.
Few asteroids even rotate super-critically, e.g. asteroid 2001UC5 has a rotational period of only
P ≃ 104 seconds [Hergenrother and Whiteley, 2011]. Such fast rotation is only possible due to
the cohesive strength of the body, meaning the asteroid cannot be a rubble pile (provided the
derived spin rate is correct, of course). Although the rotation strongly affects critically rotating
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asteroids, it is not a priori clear how it affects bodies with an average rotational period which is
longer by a factor of 3.

Impacts also change the rotational state of the target. Subsequent cratering impacts may
gradually reduce the spin rate of asteroids, as statistically more fragments are ejected in the
direction of rotation, thus the fragments carry away the angular momentum of the target. This
process is known as the angular momentum draining [Dobrovolskis and Burns, 1984] and it is
one possible explanation of the excess of slow rotators in the Main Belt.

Rotation introduces additional parameters of the model. For simplicity, we only study
impacts along the equatorial plane of the target. We distinguish prograde impacts in which the
projectile velocity is aligned with the rotational velocity of the target, and retrograde impacts in
which the velocity has the opposite orientation. Henceforth, we denote the prograde events
with a positive value of the impact angle ϕimp, while retrograde events have negative ϕimp.

5.1.1 Numerical issues

There are major numerical issues related to SPH simulations of rotating bodies with material
strength.The “vanilla” SPH code conserves the total angular momentum only for isotropic forces;
once the stress tensor is introduced to the model, the angular momentum usually decreases
over time, especially in simulations with coarse spatial resolution.

Johnson and Beissel [1996] identified the root of the problem. It is caused by the linear
inconsistency of the smoothing kernel. They suggested scaling the kernel by per-particle factors
to reduce the error. The precise correction of the smoothing kernel that allows to reconstruct
linear functions without numerical errors was derived by Krongauz and Belytschko [1997] and
with slight modifications also by Libersky et al. [1997] and Bonet and Lok [1999]. The kernel
gradient needs to be corrected using a tensor defined in Eq. 2.58. This modification allows to
properly simulate rotating bodies and it is thus commonly included in SPH codes [Schäfer et al.,
2007; Lastiwka et al., 2009; Peer et al., 2017; Koschier et al., 2019].

To simulate rotating targets, it was also necessary to include self-gravity in the fragmentation
phase. There are two reasons. First, the rotation of the target complicates the set-up of initial
conditions. We need to ensure the constructed body is stable and does not spontaneously
fracture before the impact. We discussed the initial conditions of rotating bodies in Sec. 2.9. To
create robust and stable targets in hydrostatic equilibrium, self-gravity needs to be taken into
account. Second, we found that the simulation of fragmentation needs to be prolonged in order
to reveal rotational effects. The difference between a rotating and a static target is often quite
small and an early hand-off would then convert fragments to the largest remnant regardless of
their ejection speeds. To run the simulations over long time intervals, gravity can no longer be
neglected.

5.1.2 Related work

Small rotating targets did not get much attention in impact studies. Most works that explored
the parametric space of impact simulations simply assumed that the targets are static [Durda
et al., 2007; Benavidez et al., 2012; Jutzi et al., 2019]. Collisional spin-up of targets, albeit initially
non-rotating, was analyzed by Love and Ahrens [1997]. They performed SPH simulations to
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test a range of target sizes, from Dkm = 10 km to 1000 km, although they assumed strengthless
bodies, thus avoiding the numerical issues linked with the material strength of rotating bodies.

The rotation has been already accounted for in large-scale impact simulations. Canup [2005]
used an SPH code to study the origin of Pluto and Charon. She ran simulations for both non-
rotating targets and targets with initial rotation. Canup [2008] then used similar methods to
simulate the Moon-forming impact, studying the effect of the initial spin rate of the proto-Earth.
Target rotation has also been into account by Jutzi et al. [2013] for simulations of asteroid
(4) Vesta in order to explain the origin of the Rheasilvia impact basin. They have shown that the
topographical patterns observed in the crater can be attributed to the Coriolis force acting on
ejected fragments.

Furthermore, the effect of rotation has been examined using N-body methods. Takeda and
Ohtsuki [2007] used an N-body code to model rubble-pile bodies and simulate the transfer of
angular momentum from the impactor to the target. The simulations were later generalized for
targets with initial rotation [Takeda and Ohtsuki, 2009]. Similarly, Ballouz et al. [2014] utilized
the code pkdgrav to study the influence of pre-impact rotation on the strength of gravitational
aggregates. Ballouz et al. [2015] then extended these studies by varying the material properties
of the target.

5.2 Methods and aims
Our work mainly focused on the formation of synthetic families from impacts to rotating targets.
Similarly to our previous simulations, we studied Dpb = 10 km monolithic bodies made of
basalt, but we extended the parameter space and also simulated larger Dpb = 100 km bodies
to determine how the influence of rotation scales with target size. Our goal was to compare
the size-frequency distributions of synthetic families created by an impact to rotating targets
for several initial rotational periods. As we expected that the rotation mostly affects critically
rotating bodies, the initial period of targets was selected close to the spin barrier. Given a
spherical body with the bulk density ρ0 = 2700 kg/m3, the critical period can be computed as
[Pravec and Harris, 2000]:

Pcrit =
√

3π
Gρ0

≃ 2.009 h . (5.1)

We compared SFDs for three rotational states of the target: critically rotating target with
P = Pcrit, target with the spin rate lower by one third, hence P = 1.5Pcrit, and a static target
with P = ∞ for reference.

We further examined the change of the rotational state of the target. It is expected that a
single sub-catastrophic impact can both increase and decrease the angular momentum of the
target. However, if the target encounters a larger number of consecutive impacts at random
impact angles, it is not clear what the net effect on its rotational state is. As suggested by
Dobrovolskis and Burns [1984], we expected to observe a deceleration of the target, thus our
goal was to quantify the amount of angular momentum draining and its dependence on impact
parameters and initial spin rate of the target.
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As in our previous work, we used a hybrid SPH/N-body method. However, we had to extend
the code to include the stabilization phase, necessary to obtain stable initial conditions. The
entire process thus has several steps:

1. generate target particles,

2. run stabilization SPH phase with the damping term given by Eq. 2.137,

3. generate impactor particles at the position given by the impact angle ϕimp,

4. run the fragmentation phase using an SPH solver,

5. convert all smoothed particles to hard spheres,

6. run the reaccumulation phase using an N-body solver.

This motivated us to write a new SPH code from scratch, named OpenSPH. The code is open-
sourced1, hoping it will make it easier to compare and validate results with other researchers.

5.2.1 Extensions of the numerical model

The SPH method with the changes necessary to simulate rotating bodies as well as the imple-
mentation in our code has already been described in Chapter 2. Here, we summarize the main
differences between OpenSPH and SPH5 code, used in the previous work. Although our code
contains a number of modifications and add-ons, the following changes were the most relevant
for this work:

• Lagrangian-based SPH discretization. The set of equations solved in the code has been
derived from the Lagrangian, making it more consistent and reliable compared to an ad
hoc discretization. Although various SPH discretizations can be found in the literature,
ours is the most common and thus likely to yield results comparable with other works.

• Self-gravitation using the Barnes-Hut algorithm. This is by far the biggest change in
the code. The self-gravity allows us to set up hydrostatic equilibrium in the target and it
also removes the upper limit of the integration time in the SPH phase, making it only
restricted by the available computational resources.

• Consistent bulk rotation of bodies with material strength. The strain rate had to
be computed using the correction tensor 2.58 in order to conserve the total angular
momentum.

• Artificial stress to mitigate the tensile instability. The untreated SPH method is unstable
in tension, resulting in a numerical fracture that unfortunately looks similar to the physical
fracture due to crack growth.

1The code can be found at https://gitlab.com/sevecekp/sph, together with a graphical interface and
documentation (as of August 2021).
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• Set-up of stable initial conditions. We had to ensure the target body will not break up
immediately after the start of the simulation, even if there was no impact.

• Inertial forces to confirm a self-consistency of the model. The target rotation can be
easily emulated by running the simulation in a co-rotating reference frame. This way, the
issues related to the conservation of the total angular momentum are avoided. Comparing
simulations ran in the inertial and non-inertial frames is useful for testing that rotating
bodies behave correctly in the SPH discretization.

• N-body solver, allowing us to run the full simulations with a single code. As the self-
gravitationwas already included in the code, it was relatively easy to implement an N-body
solver as well. It replaces the evaluation of SPH derivatives with collision detection and a
simplified “billiard ball” physics. Furthermore, by using the same algorithm for gravity
computation in the fragmentation and the reaccumulation phase, we avoid potential
systematic errors caused by different settings.

• Parallelization. The code can utilize all available CPU cores. As the present-day CPUs
often have tens of cores, parallelization is essential for optimal performance of the code. It
also allowed us to compute simulations in a higher resolution compared to our previous
work, which was computed using a single-threaded code.

As explained above, we start each simulationwith a stabilization phase to prevent undesirable
oscillations of the target. During this phase, the fragmentation model is not integrated to avoid
growing cracks, otherwise, the solver is the same as in the fragmentation phase. We found
that the total internal energy is a good measure for determining when to end the stabilization.
It oscillates as the energy is converted from internal to kinetic form and vice versa; once the
oscillations are attenuated, we start the impact simulation.

For these simulations, the run time of the fragmentation phase was prolonged up to
thandoff = 30min to make sure the fragments are sufficiently separated in space. While this
is a considerably longer time than in our previous work, it does not imply the computation
time is proportionally longer, considering the initial impact and fragmentation are the most
computationally demanding parts of the run. Once the body is fragmented and the fragments
start to recede, the time step is mostly limited by the CFL criterion 2.140 and the simulation
progresses at a much higher pace.

Taking advantage of the improved performance of our code, we used higher resolution in
our simulations and constructed targets with N = 500 000 particles2. In this work, we do not
directly compare our results to the previous work, thus we preferred a more precise solution
instead of consistency.

We found that the resulting differences between the rotating and static targets are quite sen-
sitive to the hand-off time and the parameters of the N-body solver used for the reaccumulation
phase, specifically the collision and overlap handling. When two spheres collide, they are either
merged to a larger sphere or undergo an inelastic bounce, losing part of their kinetic energy.

2Unfortunately, it is difficult to significantly increase the spatial resolution. As we perform three-dimensional
simulations and the time step is further limited by CFL criterion, the computation time scales roughly as 𝒪(h4);
increasing the linear resolution by a factor of 2 thus implies about sixteen times longer computation time.
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Following Michel et al. [2002], the normal and the tangential coefficient of restitution were set to
ηn = 0.5 and ηt = 1, respectively. If merging occurs, the resulting merger is constructed so that
the momentum, angular momentum, mass and volume of the collided spheres are conserved.

5.2.2 Merging parameters

Perfect merging of spheres significantly improves the performance of the code, especially in
the case of cratering events, however, it is clearly a rough approximation. We avoided perfect
merging used previously in the pkdgrav code as it substantially exaggerates the degree of
reaccumulation and also creates unphysical super-critically rotating particles. In our code, two
colliders are only merged if their relative velocity is lower than a certain fraction of the escape
velocity:

vrel < αv
√

2G(mi +mj)
ri + rj

, (5.2)

where mi , mj are the masses, ri , rj are the radii and αv is a free parameter, used to fine-tune the
reaccumulation process; perfect merging corresponds to α = ∞.

Similarly, the merging is also conditioned by a spin-rate criterion; particles can only merge
if the spin rate of the merger is lower than a fraction of the breakup spin rate ωcrit:

ωmerger < αω
√

G(mi +mj)

r3merger
, (5.3)

where αω is a free parameter, set to α = αv = αω for simplicity.
We tried to constrain the α parameter by comparing an N-body reaccumulation with the

same simulation computed by the SPH solver. To do this, a catastrophic head-on impact to
Dpb = 200 km target was first computed with the SPH solver. The intermediate state of the
simulation at t = 10min was then handed over to the N-body solver and computed for various
values of α . The results are shown in Fig. 5.1. To get similar patterns in the fragment cloud as in
our reference SPH simulation, α has to be sufficiently low, we estimated optimal α = 0.2 for our
simulations. Occasionally, the simulation ends with fast-spinning overlapping fragments that
cannot be merged due to criterion 5.3. Therefore, we always merge all overlapping particles
before the construction of SFDs to avoid artifacts.

5.2.3 Code validation

We carefully checked that OpenSPH code calculates correct results for a number of test cases,
documented in Chapter 2. As for self-gravitation, the Barnes-Hut approximation was validated
using the brute-force algorithm. We also confirmed the code works as expected using well-
studied N-body simulations, such as the M31–Milky Way collision [Schiavi et al., 2020].

Furthermore, we made sure that our code yields identical results as the code SPH5 when it
is configured identically, i.e. equal number of particles, same discretization of equations, no self-
gravitation, same time step criteria, etc. Although there are some inherent differences between
the codes (C++ vs. Fortran 77, object-oriented vs. procedural programming), we managed
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SPH N-body N-body N-body
perfect merging α = 1 α = 0.2

Figure 5.1: Snapshots of a reaccumulative event, comparing an SPH simulation with N-body
runs for several values of the α parameter (see Eq. 5.2). The images were rendered at times
t = 50, 100, 150, 200 and 250min after the impact. The particle colors correspond to the local
gravitational acceleration. To avoid excessive reaccumulation, α has to be as low as 0.2.
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to get almost the same result, meaning the relative difference between the quantities of the
corresponding particles was ∼ 10−6. We attribute this difference to compiler optimizations,
nevertheless, this validation is certainly sufficient.

5.3 Major results

5.3.1 SFDs of static and rotating targets

We ran a matrix of simulations for all combinations of relevant parameters: the target diameters
Dpb = 10 km and 100 km, the initial rotational periods of the target P = 2 h, 3 h and ∞, the
impact energies Q/Q⋆

D = 0.1, 0.3, 1, 3 and the impact angles ϕimp = 75∘, 45∘, 15∘, −45∘, −75∘ (from
oblique prograde to oblique retrograde impacts). The impact speed was set to vimp = 5 km/s,
i.e. the mean velocity for Main-belt collisions [Dahlgren, 1998], in all simulations to reduce
already large parameter space.

For simulations with Dpb = 10 km, we observed significant differences for targets rotating
at P = 2 h, however, the slower P = 3 h target is already similar to the static target in most
runs. Rotation is the most pronounced for less energetic impacts — either impacts with a small
impactor or oblique impact angles. On the other hand, the catastrophic head-on impacts produce
SFDs almost independent of the initial rotational state of the target, because the energy is already
sufficient to disperse >50% of the target mass.

Our results are also predictable considering the rotation effectively decreases the strength of
the target. Given that the material strength is generally less important for catastrophic impacts,
it makes sense that the differences appear mostly in the cratering regime.

We can estimate the importance of the initial rotation of the target by relating the rotation
angular momentum of the target and the angular momentum of the impactor with respect to
the center of mass of the target. The former can be computed as the angular momentum of a
homogeneous sphere:

Ltarget =
8
15

πρR5targetωtarget . (5.4)

The latter follows from the impact parameters:

Limp = 4
3
πρr3imp(Rtarget + rimp)vimp sin ϕimp . (5.5)

Using P = 3 h, vimp = 5 km and ϕimp = 45∘ as an example, we get Ltarget/Limp ≃ 0.16 for
dimp = 1226m and Ltarget/Limp ≃ 5.18 for dimp = 394m. This back-of-the-envelope calculation
also suggests that head-on impacts are affected by rotation more than the oblique impacts,
which seems to contradict our results; however, the impactor angular momentum Limp should
be further multiplied by an (unknown) efficiency of the angular momentum transfer, which can
be positive or negative.

On the other hand, simulations with Dpb = 100 km show substantial differences between
the static and rotating targets. It is consistent with the reasoning above; Ltarget is much larger
than Limp due to the fifth power of Rtarget. A target of such size rotating close to the spin barrier
can thus completely change the impact regime from cratering to catastrophic. Nevertheless, we
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Figure 5.2: Differential histograms of asteroid spin rates in two size ranges, representing the
D = 10 km and 100 km bodies we studied. The bin size is dω = 0.5 rev/day. Vertical dashed lines
show the average value for each histogram, the dotted line is an approximate position of the
critical spin rate at P = 2 h. Data from Warner et al. [2009].

again observe a significant drop of ejected mass between the P = 2 and 3 h run, suggesting that
targets with a spin rate well below the critical value are not overly affected by the rotation.

The rotation seems to be more relevant for collisions of larger bodies; however, the 100 km
bodies in the Main Belt also have statistically lower spin rates compared to the 10 km bodies, as
shown in Fig. 5.2. Although asteroids rotating close to the spin barrier exist in this size range,
such as (216) Kleopatra [Ostro et al., 2000; Hirabayashi and Scheeres, 2014; Shepard et al., 2018;
Brož et al., 2021], larger bodies are on average slower and thus more distant from the barrier. It
is however possible that there were more fast rotators in the past, but the rotation made them
more fragile and less impact resistant, which is why they are no longer observed.

5.3.2 Angular momentum transfer and mass loss

It is quite difficult to read the total mass of fragments from the SFDs. To better understand how
the ejected mass depends on the initial rotation of the target, we ran a large set of simulations
with Dpb = 10 km that densely covered the parameter space, from fast-spinning targets with
P = Pcrit up to almost static targets with P = 50Pcrit. In total, we computed over 400 simulations.
To be able to run all simulations with available computing power, we chose a lower resolution
of N = 100 000 particles. Here, we only focused on the largest remnant of the impact, hence the
family does not have to be resolved in great detail and the coarse resolution is acceptable.

As in the previous section, we were mostly interested in the relative difference between
rotating and static targets rather than absolute values. We thus quantified the simulations with
the quantity μej, defined as the ratio of the total mass of fragments in the given simulation and
the total mass of fragments in the reference simulation with a static target. Using the computed
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simulations, we evaluated the quantity μej as a function of the period P , the impact angle ϕimp
and the impact energy Q/Q⋆

D.
The results confirmed our previous findings, but they also gave us concrete numbers. We

found that the rotation may amplify the mass ejection by up to five times. This happens in
extreme cases, namely, we observe significant mass loss amplification for oblique prograde
cratering impacts to critically rotating targets. The rotation is less important for catastrophic
impacts at head-on or retrograde impact angles; in such cases, μej ≲ 2.

We further averaged μej over impact angles, taking into account the probability of impacts
at a given angle. This averaged μej can be interpreted as an average mass ejection increase
for asteroids of given sizes and rotation periods, or a time-averaged effect on a single asteroid
caused by a number of subsequent cratering events. This angle-averaged value shows that
rotation amplifies the mass loss by up to 100%.

Using our simulation matrix, we further computed the change of the spin rate due to impact,
i.e. the difference between the spin rate of the target ωpb and the largest remnant ωlr. We used
the spin rates ω instead of periods P to avoid the undefined period of static targets. To measure
the fraction of angular momentum embedded to the target, we defined the dimensionless
effectivity γ of the angular momentum transfer as:

γ = sgn(ϕimp)
Llr − Lpb
Limp

. (5.6)

The value γ is not determined by the state just after the impact but after the very end of
reaccumulation. Only the difference between the initial and the final state is relevant, thus it
can be lower than 0 if the target is slowed down by a prograde impactor, and similarly, it can
exceed 1 if the target loses more angular momentum than a retrograde impactor delivered.

The cratering events exhibit the expected behavior — the prograde impacts cause spin-up
while the retrograde impacts cause spin-down. The only exception appears for critically rotating
targets that can no longer be accelerated and therefore the impacts always slow the target down,
regardless of the impact angle.

However, we saw that the outcome starts to change with increasing impact energy. For
Q/Q⋆

D = 1, the behavior appears to be reversed; prograde impacts cause strong deceleration,
while the retrograde impacts tend to speed up the target’s rotation. This could be due to change
of the spin direction, as we only computed the absolute value of the spin rate.

The angular momentum transfer effectivity γ is generally higher for cratering impacts; it
appears to be the highest for retrograde impacts to critically rotating targets, however, these
targets lose the angular momentum mostly due to mass ejection and the impact regime is
not very relevant. On average, the effectivity is around γ ∼ 0.5. For catastrophic impacts, the
effectivity is significantly lower, because the targets again lose their angular momentum by
ejecting fragments.

Finally, we evaluated an angle-averaged change of the spin rate, analogously to the average
mass loss. This quantity showed that an average impact to rotating targets indeed causes
a deceleration. Of course, static targets cannot be decelerated anymore, hence we also observed
an acceleration of slowly rotating targets. The transition between these regimes occurs around
P ∼ 10Pcrit.
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5.4 Reprint
See pages 126 to 137.





























— Chapter vi —

impact forming the Hygiea family

It has only recently become possible to obtain disk-resolved observations of large Main-belt
asteroids using ground-based instruments. The second-generation adaptive-optics (AO) instru-
ments can now acquire images with the angular resolution of 3.6mas/pixel [Schmid et al., 2017],
allowing to analyze the shapes of asteroids and resolve impact craters and other topographic
features with only a few kilometers in size. Formerly, detailed images of asteroid surfaces and
other small bodies were taken exclusively by in situ measurements during space missions.

For bodies visited by a spacecraft, it was possible to derive a detailed shapemodel using either
photogrammetric structure-from-motion [Hirata et al., 2020] or photoclinometric shape-from-
shading [Gaskell et al., 2008] techniques. The shapes of other asteroids were only constrained
using lightcurve inversion [Ďurech et al., 2010], stellar occultations [Buie et al., 2015] or radar
images [Ostro et al., 2000]. Adaptive optics now allows to reconstruct an accurate shape of a
number of large asteroids, yielding valuable insights to their collisional histories, and it also
resolves the albedo–shape ambiguity.

In light of these new research possibilities, I decided to move on from generic studies
of normative targets and focus on interpretations of observational data. As a number of the
observed asteroids are associated with a collisional family, numerical simulations can be used to
compute the expected size of the crater from which the family originated. This can be directly
compared with the images of the surface. In this chapter, I focus on the asteroid (10) Hygiea and
its family.

6.1 Observational constraints
Asteroid (10)Hygiea is the fourth-largest body in the Main Belt, after (1) Ceres, (2) Pallas and
(4) Vesta. It has been discovered on the 12th of April 1849 by Annibale De Gasparis and was
named after Hygiea (or Hygieia), the Greek goddess of health and hygiene. The asteroid is
located in the outer Main Belt, having the proper semi-major axis ap = 3.14 au. Prior to the AO
observations, it was estimated that the asteroid has a diameter of D = 443 km [Bowell et al.,

139



140 Impact forming the Hygiea family

1979], the mass of M = (5.57 ± 0.70) × 10−11M⊙ [Michalak, 2001], and the rotational period of
P ≃ 27.6 h [Michalowski et al., 1991]. Due to its low albedo and carbonaceous surface, Hygiea is
a C-type asteroid [Mothé-Diniz et al., 2001] with a composition similar to (1) Ceres [Vernazza
et al., 2017].

6.1.1 Hygiea family

There is a known asteroid family associated with (10)Hygiea, first identified by Zappalà et al.
[1995]. It currently consists of approximately 7000 observed members. Hygiea itself lies in the
center of the respective region of the proper elements ap, ep and Ip, as seen in Fig. 6.1. It is
bounded by the mean-motion resonance J2:1 at a = 3.28 au and crossed by several weaker mean-
motion resonances as well as secular resonances, such as ν6 = g − g6. The volume-equivalent
diameter of all fragments is Deq = 110 km, well below the diameter of Hygiea itself, suggesting
the family was created by a cratering event. This shall be revised in the light of our work.

The largest asteroids in the region are (538) Friederike with a diameter of D = 70 km,
(1109) Tata with D = 62 km, and (1599) Giomus with D = 46 km. However, the spectra of both
Friederike and Tata are distinct from the spectrum of Hygiea, hinting these bodies are likely
interlopers. Asteroids Friederike and Giomus were also recognized as dynamical interlopers by
Carruba et al. [2014], however, the spectrum of Giomus is compatible with Hygiea, suggesting
it is actually a family member [Vernazza et al., 2020].

Most of the family members are C-type asteroids and are taxonomically similar to Hygiea
[Carruba et al., 2014]. The family also contains several X-type and B-type asteroids. Furthermore,
there are few asteroids of different spectral types in the region (D-type, K-type, …), although
these are probable interlopers. Using Monte Carlo simulations, Carruba et al. [2014] estimated
the age of the family T = 3200+380−120Myr, suggesting very old and dynamically evolved family.

6.1.2 Adaptive-optics observations of (10)Hygiea

Hygiea was selected as one of the asteroids of interest for the imaging survey [Vernazza et al.,
2018] using ESO VLT1, located at the Paranal Observatory. The images were acquired using
the adaptive-optics SPHERE2/ZIMPOL3 camera between June 2017 and September 2018. The
raw images were deconvolved using MISTRAL4 algorithm [Fusco et al., 2003] to obtain sharp
images of the asteroids. The deconvolved images together with disk-integrated data were then
used to reconstruct the surface shape of Hygiea using ADAM5 code [Viikinkoski et al., 2015].

The images revealed a smooth spherical surface. By finding an optimal fit to an ellipsoid,
Vernazza et al. [2020] determined semi-axes a = 225 km, b = 215 km, c = 212 km. While these
are indeed comparable, they do not indicate how spherical the body actually is. A better measure

1Very Large Telescope
2Spectro-Polarimetric High-contrast Exoplanet REsearch
3Zurich IMaging POLarimeter
4Myopic Iterative STep Preserving ALgorithm
5All-Data Asteroid Modeling
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Figure 6.1: Hygiea family in the space of proper orbital elements (ap, ep) and (ap, sin Ip) [Kneže-
vić and Milani, 2003]. It is located close to the 2:1 mean-motion resonance with Jupiter at
a = 3.28 au. The family has been identified using the HCM [Zappalà et al., 1995] using cutoff
velocity vcutoff = 60m/s. We observe a family core with diffuse surroundings and a smooth
transition to the background population. Colors correspond to WISE albedos pV , sizes of dots
are related to body sizes. Green crosses show the potential interlopers. (10)Hygiea itself and
the largest asteroids in the vicinity are marked by their respective numbers.
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for the surface roundness is Wadell’s sphericity [Wadell, 1935]. It is defined as the surface area
of a sphere with equal volume V and the surface area A of the body:

ψ =
π

1
3 (6V )

2
3

A
. (6.1)

However, small-scale topographical features can substantially enlarge the total surface area and
thus decrease the sphericity ψ . In fact, a higher resolution will always add some complexity
to the surface and therefore decrease the sphericity; it is a two-dimensional equivalent of the
coastline paradox. To get a resolution-independent measure of sphericity which can be used to
compare Hygiea with other asteroids, the surface shape was first approximated using spherical
harmonics up to the tenth order and only then the sphericity was evaluated.

Using this definition, the sphericity of Hygiea is ψ ≃ 0.9975, quite comparable to the
sphericity of Ceres ψ ≃ 0.9988. The other asteroids larger than Hygiea, Vesta and Pallas, are
considerably less spherical, having sphericities of ψ ≃ 0.985 and ψ ≃ 0.991, respectively.

Vernazza et al. [2020] further revised the rotational period of Hygiea and derived a value
of P = 13.83 h, half of the value reported previously. Due to its extremely spherical shape, the
lightcurves have been formerly misread and the period was incorrectly computed as twice the
real value.

Hence, we faced seemingly contradictory facts. On one hand, we observe a numerous family
with Hygiea its center. The family matches Hygiea spectroscopically, making it likely the largest
remnant. On the other hand, the deconvolved images revealed a smooth surface of the asteroid
with a lack of large-scale topographic features. Only two impact craters have been identified,
neither of which could be a progenitor of the family due to their small diameters (D = 180 km
and 97 km). A large impact basin has been expected, similar to the one seen on (4) Vesta, but
no such feature has been found. These findings were quite puzzling and we thus performed
hydrodynamical simulations of the impact in an attempt to interpret these observational data.

6.2 Methods and aims
We simulated the impact using our code OpenSPH, which was developed and tested during the
previous years. The diameter of the target was D = 428 km, other parameters of the impact
were varied to obtain the optimal fit to the observed SFD. We ran simulations with various
impact speeds vimp, impact angles ϕimp, impactor diameters dimp, and initial rotational periods
P of the target.

Contrary to the previous work, we employed both the standard von Mises rheological model
as well as the more complex Drucker-Prager model (see Sec. 2.8.2). As the shape of Hygiea was
one of our observational constraints, it was important to choose such rheology that results
in a shape of the largest remnant which is compatible with the given shape model. The main
difference between the two is the behavior of fully damaged material; while the von Mises
material is completely strengthless when damaged and thus the largest remnant always takes on
a spherical shape, the Drucker-Prager material has non-negligible dry friction even if damaged
and the resulting shape may be significantly different.
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To reconstruct the final shape of the largest remnant in the simulation and to avoid any pos-
sible numerical artifacts from the hand-off to an N-body integrator, we performed a significant
fraction of the reaccumulation phase in the SPH framework. Instead of the thandoff = 30min
used previously, we prolonged the run time of SPH simulations to thandoff = 24 hours. This time
was sufficient to separate individual fragments in space and attenuate any further changes of
their shapes. The following reaccumulation phase ran for treac = 10 days in order to merge the
particles and obtain the final synthetic SFD which can be compared with the observed SFD.

Such a long integration time of SPH simulation was viable for two reasons. First, Hygiea
is a much larger body than targets studied in previous works, allowing us to use larger time
steps; the same run time would require about forty times the computation time if used for
D = 10 km targets. Second, the total number of performed simulations is significantly lower; in
the previous works, we thoroughly explored the parameter space, here we only focused on one
particular impact regime.

The initial density of the target was set to ρ0 = 2000 kg/m3 to approximately match the
derived density ρ ≃ 1944 kg/m3 of Hygiea. Other material parameters were equal to the
parameters of basalt, assuming a monolithic internal structure of the target. As Hygiea is one
of the largest bodies in the Main belt, it was likely a primordial body with low macroporosity
[Morbidelli et al., 2009] and the monolithic material model is thus viable. The number of particles
was N = 4 × 105 in all simulations.

The main goal of our work was to find the parameters of the target and impactor that
simultaneously produce SFD matching the observed family and the shape of the largest remnant
with semi-axes and sphericity similar to the present-day asteroid (10) Hygiea.

6.3 Major results
We ran a number of hybrid SPH/N-body simulations from which we selected a few that match
the observed SFD most closely. Snapshots of one representative simulation can be seen in
Fig. 6.2.

6.3.1 Matching SFD

SFDs of selected simulations are shown in Fig. 6.3. In these simulations, the von Mises rheology
is used for both the target and the impactor. Some simulations intentionally overestimated or
underestimated the total ejected mass to get an idea of how big the error bars are for the studied
impact parameters. Using these results, we inferred that a SFD with the same ratio of the largest
remnant to the largest fragment can be obtained by an impactor with a diameter between 75 km
and 150 km, depending on the impact angle. The best match can be achieved with the impactor
diameter dimp ≃ 100 km.

Given such a large impactor, this event belongs among the most energetic impacts in the
Main-belt history. For comparison, the family associated with asteroid (221) Eos was likely
created by a dimp ≈ 200 km impactor. For (24)Themis, the probable impactor diameter is
dimp ≈ 160 km, for (15) Eunomia it is dimp ≈ 90 km, and for (4) Vesta dimp ≈ 65 km [Durda et al.,
2007].
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Figure 6.2: Snapshots of one of the performed impact simulations. The impactor diameter
was dimp = 120 km and the impact angle ϕimp = 45∘. The color of particles corresponds to
the specific internal energy, time elapsed between consecutive images is 30min. The impact
clearly cannot be classified as a cratering event; the entire target disintegrated and the largest
remnant, despite being similar in size to the parent body, gained its mass only after substantial
reaccumulation.
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Figure 6.3: Selected synthetic SFDs compared with the observed SFD of the Hygiea family.
Probable interlopers have been removed from the observed SFD.

For the studied impact on Hygiea, the relative impact energy was Q/Q⋆
D ≈ 0.25, assuming

the scaling law Q⋆
D = Q⋆

D(D) of Benz and Asphaug [1994]. As the impact energy is substantially
lower than 1, this impact falls to the cratering regime. Indeed, most of the mass is stored in
the largest remnant; the largest fragment with a diameter of dlf ≃ 40 is ten times smaller than
Hygiea itself. However, Fig. 6.2 clearly shows that the whole target has been disintegrated
and later reaccumulated due to self-gravitation. The parent body was fully damaged by the
impact and the pre-impact topography was completely erased, meaning any craters found on
the present-day Hygiea are necessarily younger than the family. It shows that the established
nomenclature does not fit this particular impact well, as the role of self-gravity is much more
important for the Dpb = 428 km parent body, compared to the Dpb = 100 km asteroids. This
impact is evidently not a “cratering” event, perhaps a “reaccumulative” event is a more suitable
term.

Although both the head-on and oblique impacts can produce the observed a SFD with
a power-law slope similar to the observed value, we noticed the head-on impacts consistently
produce intermediate-sized fragments, while no such fragments were observed in SFDs of the
oblique impacts. These intermediate-sized bodies have diameters in the range 40 km < D <
100 km and they always originate from the antipode, see Fig. 6.4. As these fragments do not fit
to the canonical SFDs, where only the largest remnant and a power-law of smaller fragments
are expected, the intermediate-sized bodies are often discarded as interlopers.

The intermediate-sized bodies are particularly interesting in the case of the Hygiea family.
Although the two largest bodies in the region have been removed as interlopers, there still
remains an intermediate-sized asteroid, (1599) Giomus with diameter of d ≃ 41 km. Its reflection
spectrum seems to be similar to the spectrum Hygiea; see the Supplementary Information of
Vernazza et al. [2020]. We thus hypothesized that Giomus is indeed a family member that has
been ejected from the antipode of the parent body during the impact. This helps us to constrain
the impact geometry. It likely was a head-on or low-angle impact, as there is no significant
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Figure 6.4: Original positions of particles that end up in the same fragment. Each fragment is
rendered with a unique color. As Q/Q⋆

D ≈ 0.25, most of the particles form the largest remnant
(lime color). Several of the largest fragments are ejected from the impact antipode.

fragment ejection from antipode in case of oblique impacts. Furthermore, one could estimate
the direction from which the impactor arrived.

Finally, we see two major sources of fragments in our simulations. The first group of
fragments originate from the antipode and generally contains larger bodies, as mentioned above.
The second group is ejected from the point of the impact and contains smaller fragments, often
underresolved in our simulations (i.e. single-particle fragments). This group lies close to the
impact plane, perpendicular to the normal at the impact point. Both groups differ in the specific
internal energies of fragments. The antipodal fragments are mostly ejected by the shock wave
(reflection from free surface) and therefore their internal energy is quite low. On the other hand,
the impact-point fragments are significantly heated by the compression and their peak internal
energy is higher by one or two orders of magnitude. This distinction may potentially influence
the taxonomical classes of both groups.

6.3.2 Constraining dry friction

In the simulations computed with the von Mises material, a fully damaged body will always end
up as a Maclaurin spheroid due to its self-gravity. However, a body made of granular material
always has non-zero shear strength, hence the largest remnant as well as fragments generally
have non-trivial shapes, often significantly different from spheroids. To analyze the shape of
synthetic largest remnant, we further ran a set of simulations with the Drucker-Prager material
model with various values of the coefficient μd of dry friction. Several of the simulations are
summarized in Fig. 6.5.

We compared these results to the shape of present-day Hygiea. The spherical shape without
large-scale topographical features is a natural outcome of an energetic impact event, considering
the largest remnant was created by reaccumulation of smaller fragments. However, we found
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μd 0 0.05 0.2 0.6

c/b 0.988 0.937 0.906 0.913

b/a 0.999 0.987 0.911 0.943

su
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ac

e

Figure 6.5: The shape of the largest remnant is shown for increasing values of the coefficient μd
of dry friction. Columns show μd together with the resulting ratios of semi-axes c/b and b/a.
To obtain a shape consistent with the observed one for (10) Hygiea, the friction coefficient needs
to be as low as 0.1. This substantial weakening of the material can be attributed to acoustic
fluidization.

that Hygiea is actually too spherical. Assuming realistic values6 of μd, the largest remnants in
our simulations were much more deformed; for reference, the ratii of semiaxes of (10) Hygiea are
c/b = 0.989 and b/a = 0.955. The coefficient of dry friction has to be extremely low to obtain
a shape consistent with the observational data. Counter-intuitively, the simulations with the
von Mises rheology give better predictions than the more physically accurate Drucker-Prager
model.

We attribute this discrepancy to fluidization of material during the impact. The material
strengthmust have been significantly weakened by the impact, thus allowing the material to flow
almost like a fluid during a short transient period after the impact, before the material strength
was regained. This material weakening is commonly explained as the acoustic fluidization, as
briefly discussed in Sec.2.8.3.

To better understand the fluidization, we looked at the evolution of the shape of the largest
remnant during the simulations with the von Mises material. We observed macroscopic oscilla-
tions of the body with the Keplerian period, as seen on Fig. 6.6. Naturally, the oscillations are
eventually attenuated due to the lack of friction and we end up with a body that is much more
spherical than Hygiea; nevertheless, the ratii of semi-axes often seem to match the observed
values at some point during the simulations, usually around tmatch = 4 h. If the von Mises model
was used as a “proxy” for the fluidized material and the dry friction was only added at time
tmatch to solidify the material, the shapes of the synthetic largest remnants would be much
closer to the observed shape, compared to the simulations with the Drucker-Prager material.

This can be modeled more realistically by weakening the material in the presence of acoustic
waves and using an exponential decay for the fluidization magnitude, as explained in Sec. 2.8.3.
However, the time scale of such decay is still a free parameter, which is difficult to constrain
independently, it is thus infeasible to make any predictions based on the model alone. The

6The coefficient μd of dry friction is between 0.4 and 1 for most materials.
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Figure 6.6: Global oscillations of the largest remnant in SPH simulations. Temporal evolution
of the axis ratios 1− c/b (blue) and 1− b/a (red) is shown, along with the present-day observed
values (dashed lines). In most simulations (5 out of 6), it is possible to find an agreement, typically
around (4 ± 1) hours, which may be regarded as the acoustic fluidization time span. When
acoustic oscillations stop, the body suddenly regains its strength and the shape freezes. The
impact angle, projectile size and initial rotation period are indicated on top.

respective time scale certainly depends on the size of bodies. For Earth-sized planets, acoustic
waves will travel away from the impact point, while for Hygiea-sized asteroids, they will reflect
multiple times from the free surface.

In any case, the acoustic fluidization has been employed in several other contexts to interpret
observational data, hence the Hygiea case study is very useful to examine weakening of materials
due to high-energy impacts and constrain the time scale of such fluidization.

6.4 Reprint
See pages 149 to 154.
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conclusions

In this thesis, we explored collisions of asteroids, their fragmentation and reaccumulation and
formation of families. These processes were modeled using a hybrid approach, combining a
state-of-the-art SPH solver with an N-body integrator.

7.1 Code development
To perform these simulations, we developed a new code named OpenSPH. The code includes
both an SPH solver and an N-body solver and it can thus compute the entire hybrid simulation of
a family-forming event, from the set-up of the initial conditions to the final fragment distribution.
Combinedwith handy analysis and visualization utilities that allow to view the particle quantities
while the simulation is running, the code greatly simplifies studies of collisions. We also utilized
the visualization of the impact on the parent body of the Hygiea family, which was included in
the ESO press release1 and which met with success.

The code is robust and capable of simulating bodies or arbitrary sizes, allowing to compute
collisions of planet-sized objects as well as small D ∼ 100m bodies. The only limitation is the
time step, which effectively prohibits computing reaccumulative events of such small bodies.
However, it is feasible to assume a lower bulk modulus of the material and thus substantially
increase the time step. A similar trick was already done by Jutzi and Asphaug [2015] or Sugiura
et al. [2019]. This opens up possibilities to study impacts and reaccumulations of small bodies
which are less strengthened by gravity, or even bodies in the strength regime of the scaling law.

7.2 Simulations of D= 10 km and 100 km targets
At first, we focused on simulations that explore the parametric space of collisions, with no
reference to a specific asteroid family.We studied the disruption of smallDpb = 10 kmmonolithic

1See https://www.eso.org/public/news/eso1918/ (as of August 2021).
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Figure 7.1: Scatter plot of asteroid diameters and their respective spin rates. The dashed line
shows the limit spin rate ωstrength in the strength regime, as derived by Holsapple [2007]. Data
from Warner et al. [2009]; Ďurech et al. [2010].

targets and compared the resulting SFDs with the corresponding SFDs of Dpb = 100 km targets
from the dataset of Durda et al. [2007]. Using these synthetic SFDs, we assessed their scaling
with the diameterDpb of the parent body and estimated an error introduced by using simulations
with fixed-sized targets to determine the size of a parent body of observed families.

The simulations showed that the corresponding Dpb = 10 km and Dpb = 100 km targets
differ significantly in a large part of parametric space. The differences are most pronounced
in the weak cratering regime (Q/Q⋆

D ≪ 1) and in the supercatastrophic regime (Q/Q⋆
D ≫ 1).

We further see substantial differences in oblique impact angles, which we identified to be
a geometrical effect.

We analyzed velocities of ejected fragments and constructed speed histograms as well as
angular histograms of velocity directions. These velocity fields can be used as initial conditions
of an N-body simulation of a synthetic family, allowing to constrain ages of observed families,
as in e.g. Yang et al. [2020a].

The synthetic SFDs were used to construct parametric relations that can be utilized in
Monte Carlo models of the Main Belt. For small D ∼ 10 km bodies, these relations provide more
accurate predictions for the massMlr of the largest remnant, the massMlf of the largest fragment
and the slope q of the size-frequency distribution, compared to the parametric relations derived
using Dpb = 100 km targets.

The second part of the thesis was focused on rotating asteroids. We mainly studied asteroids
close to the spin barrier ωcrit. Considering a large fraction of observed asteroids have high spin
rates (see Fig. 7.1), such bodies are an important case study. We assumed the target retains its
spherical shape despite fast rotation due to shear strength, which is then released on impact.
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The material rheology is thus more pronounced and studies of (almost) critically rotating
asteroids are very valuable.

The fast rotation increases the ejected mass considerably. Compared to the static target, the
mass ejection is larger by up to five times. When averaged over impact angles, the ejection
is still increased by up to 100%. We observed the biggest differences for large Dpb = 100 km
targets, cratering events (Q ≪ Q⋆

D) and oblique impact angles.
We further studied the impact-induced change of the angular momentum of the target.

The simulations showed that sub-catastrophic impacts mostly cause acceleration at prograde
impact angles and deceleration at retrograde impact angles. However, the statistically average
impact tends to decelerate the target. An asteroid encountering a number of successive cratering
impacts will thus be slowed down over time.This angular momentum draining contrasts with the
normal YORP effect which can cause both a spin-up and spin-down [Čapek and Vokrouhlický,
2004; Hanuš et al., 2011] and the tangential YORP effect which always accelerates the rotation
[Golubov et al., 2014; Ševeček et al., 2015].

All impacts took place in the equatorial plane. Due to reflection symmetry, collisions mostly
affected spin rates of targets, rotational axes remained unchanged. A similar analysis could be
performed for general impact directions in order to study impact-induced rotational excitations,
as in Henych and Pravec [2013].

7.3 (10) Hygiea
Lastly, we focused on impact simulations of selected observed families. For the Hygiea family
with C-type members, we ran a number of simulations to determine impact parameters that
produce a SFD matching the observed SFD. We assumed either the frictionless von Mises
rheology or the Drucker-Prager rheology that takes into account dry friction of damaged
material. Surprisingly, the frictionless model gave a better match of the observed shape of the
largest remnant. There are two conceivable explanations:

1. Hygiea formed as an aspherical irregular body after the impact, but it became more round
over time due to long-term relaxation of the surface (or subsurface layers).

2. The impact induced temporary weakening of the material, which allowed the material
to flow as if it was frictionless. We hypothesized that such weakening could have been
caused by acoustic fluidization.

Since Hygiea formed more than 2Gyr ago [Carruba et al., 2014], a slow surface relaxation
seems feasible. However, we found that the asteroid (31) Euphrosyne is a similar case [Yang
et al., 2020b]. It is also a C-type asteroid, created by an energetic impact that disintegrated the
parent body and formed a spherical largest remnant. Unlike Hygiea, its age is only t ≃ 280Myr
[Yang et al., 2020a]. We thus prefer the acoustic fluidization as the likely cause of the observed
sphericity of C-type asteroids.
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7.4 Future work
While our SPH code was mainly developed for collision simulations, it is designed as a generic
particle-based code and can be utilized for other applications. For example, it allows to set
up arbitrary initial conditions, it can be straightforwardly extended by more sophisticated
equations of state, material rheologies, acceleration terms, heat sources, cooling mechanisms,
etc. We believe the code can be a useful tool for other researchers.

There is a number of possible directions for future research. The code can be used to study
shapes of largest remnants [as in Sugiura et al., 2018] as well as the shapes of smaller fragments.
With extensive databases of observed shapes obtained by light curve inversion [Ďurech et al.,
2010] and numerous members of asteroid families, e.g. Eos,Themis and Flora [Hanuš et al., 2013],
collisional models can be used to constrain rheology of real asteroidal materials. Following
Michel et al. [2020], SPH simulations can be used to explain the formation of top-shaped
asteroids, e.g. (162173) Ryugu, or even changes to local topography due to small craterings.
The cratering events are particularly interesting because of recently acquired in situ data from
the artificial impact experiment and formation of a crater on Ryugu [Arakawa et al., 2020].
Furthermore, the planned DART mission [Maindl and Schäfer, 2019; Raducan and Jutzi, 2021]
will obtain additional valuable information in the near future.

The code allows to easily set up bodies of arbitrary shapes and various materials, hence it
is suitable for simulations of differentiated bodies. Together with “geodetic” observations of
asteroid satellites [Johnston, 2018], one can address key questions of Solar System science about
the internal structure of asteroids. Regarding larger bodies, one can study hit-and-run impacts
and the stripping of Mercury’s mantle [as Asphaug and Reufer, 2014] or relevant collisions of
gas giants to explain Jupiter’s diluted core [Liu et al., 2020]. The code can be generalized for
simulations in a gas disk and employed for collisions of protoplanets [Chrenko et al., 2017; Brož
et al., 2018]. Another option is to study collisions of moons of Jupiter or Saturn and formation
of rings [Dubinski, 2019]; the code already provides an easy way to set up tidal forces.

Of course, we do not need to limit ourselves to the Solar System.The discovery of 1I/‘Oumua-
mua opens up the possibility to study interstellar objects, which is especially intriguing given
its extraordinary “cigar” shape. Apart from already tested formation scenarios, e.g. low-speed
collisions [Sugiura et al., 2019] or tidal fragmentation [Zhang and Lin, 2020], we are sure there
is something to be discovered…
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