## **The Galactic Centre**

#### Determination of the Mass Distribution in the Galactic Centre from Stellar Motions

Jaroslava Schovancová, Ladislav Šubr

Astronomical Institute, Charles University in Prague Argelander Institute for Astronomy, University of Bonn





# Where is the Galactic Centre?



Genzel et al. (2003)

- dynamical centre of Galaxy
   R<sub>0</sub> = (7.62 ± 0.32) kpc Eisenhauer et al. (2005)
  - Celestial position: Sgr  $\alpha = 17^{h}45^{m}40^{s}, \delta = -29^{\circ}00' 28'' (J2000.0)$ Reid & Brunthaler (2004)

#### ► harbours

- super-massive black hole
- stellar clusters
   young and old stars
   ISM

# **The Central Body: Sgr A\***

- ► Detection in radio: Balick & Brown (1974)
- Detection in NIR: Becklin & Neugebauer (1975)
- ► Compact radio source
- Rejected Candidates: would have lower luminosity and density than observed
  - Stellar cluster of neutron stars and white dwarfs
  - Fermion ball
  - Boson star
- ► Super-massive black hole  $M_{\bullet} = (3.61 \pm 0.32) \times 10^{6} M_{\odot}$  Eisenhauer et al. (2005)

## **Stars and Gas in the GC**



Genzel et al. (2003)

Length scaling:
 1 " 
 <sup>^</sup> 0.037 pc

- Young stars in central 1 "
- Stellar disks of young stars inside 12 "
- Circum-nuclear ring of molecular gas, radius 45 "
- Spherical cluster of old stars in central 100 "

### **Cluster of Old Stars**



- Old, metal-rich stars, 1-10 Gyr
- ► Broken power-law cusp:

$$\rho(r) \propto r^{-\alpha}, R_{\rm br} = (6\pm 1)"$$

$$\alpha = \begin{cases} 1.19 \pm 0.05 & r \le R_{\rm br} \\ 1.75 \pm 0.05 & r > R_{\rm br} \end{cases}$$

Schödel et al. (2007)

• Mass 
$$\sim$$
 1  $M_{\bullet}$  inside 2 pc

Genzel et al. (2003)

## The Circum-nuclear Disk (CND)



Christopher et al. (2005)

- Molecular ring: HCN and HCO<sup>+</sup>, ...
- ► Well defined radius 1.6 pc
- Uncertain total mass:  $M_{\rm CND} \approx 10^4 M_{\odot}$ Genzel et al. (1985)  $M_{\rm CND} \approx 10^6 M_{\odot}$ Christopher et al. (2005)
- Considered as a gas source for star formation in the GC

### **The CND Mass**



## **Planar Structures in the GC**



- Two coherent disks of massive O- & B-type stars ~ 0.1 pc; Genzel et al. (2003), Ghez et al. (2005)
- Well defined inner (0.04 pc) and outer (0.5 pc) radii
- ► Geometrically thick: h/R ~ 0.13

#### Paumard et al. (2006)

## **Stellar Disks in the Galactic Centre**

- ► Young stars: (6 ± 2) Myr ⇒ recent star formation Paumard et al. (2006)
- Similar disks detected in the centre of M31 Bender et al. (2005)
- ▶ Flat mass function, mass  $\sim 10^4 M_{\odot}$
- ► Significant eccentricities for some of stellar orbits
- ► Clockwise disk (CWS):  $e_{rms} \in [0.2; 0.3]$ Paumard et al. (2006), Beloborodov et al. (2006)
- ► Counter-clockwise disk (CCWS):  $e_{\rm rms} \in$  [0.6; 0.7]
- ► Hot topic: origin?

#### **The Observed Angular Momentum**



### **Cosine Pattern of the Disk**

Normal vector to the disk  $\vec{n} = (\sin i \cos \Omega, -\sin i \sin \Omega, -\cos i)$  $\blacktriangleright$  Velocity vector of the k-th star  $\vec{v}_k = \|\vec{v}_k\|(\sin\theta_k\cos\phi_k, \sin\theta_k\sin\phi_k, \cos\theta_k)$  $\vec{n} \cdot \vec{v}_k = 0 \quad \Rightarrow \quad \cot \theta_k = \operatorname{tg} i \cos(\Omega + \phi_k)$ clockwise (j>0) counter-clockwise (j<0) 2 2 cotan (0) O -2



Determination of the Mass Distribution in the Galactic Centre from Stellar Motions

# **Model of the GC**

- System dominated by the SMBH central potential
- ► Two "perturbations":
  - > spherical stellar cluster

$$\Phi_{\rm SPHE}(r) = \frac{4\pi G \rho_0 r_0^{\alpha}}{(\alpha - 2)(\alpha - 3)} r^{2-\alpha}$$

axi-symmetrical CND

$$\Phi_{\rm CND}(r) = -2G\lambda \sqrt{\frac{a_{\rm CND}}{R}} k\mathcal{K}(k),$$

 $k^2 = f(a_{\rm CND}, z_{\rm CND}, R, Z)$ 

CWS disk considered as a set of test particles

## **Thesis Aims**

- ► Limit the mass of the CND
- Confine the spatial structure of the CWS disk

How?

- Deformation of the CWS disk
- Dependence of the deformation on the parameters of the perturbing potentials
- Compare simulation results with observations

## **Useful Tools and Techniques**

► Kozai mechanism, Kozai (1962), Lidov (1962):

- Evolution of a hierarchical triple system; motion of an asteroid under influence of Sun and Jupiter
- $\triangleright$  Secular evolution of the orbital elements e, i and  $\omega$
- Hamiltonian perturbation theory & averaging technique to get rid of fast-changing variable, the mean anomaly

▷ Integrals of motion:  $a, c = \sqrt{1 - e^2} \cos i, \bar{\Phi}_{perturb}$ 

Convenient tool for study of motion of a test particle in the potential dominated by the central mass and perturbed by an <u>axi-symmetrical</u> potential and a spherical potential

# **The** $\overline{\Phi}_{perturb}$ **Isocontours**



 $M_{\rm CND}/M_{ullet} = 0.01$ ,  $a_{\rm CND}/a_{*} = 2$ , c = 0.2

#### **Secular Evolution of Orbits**



### **Composite Perturbation**



 $M_{\rm CND}/M_{\bullet} = 0.01$ ,  $M_{\rm CND}/M_{\rm SPHE} = 0.5$ ,  $a_{\rm CND}/a_* = 2$ , c = 0.2

#### The GC Model



 $M_{\rm CND}/M_{\bullet} = 0.33$ ,  $M_{\rm CND}/M_{\rm SPHE} = 0.33$ ,  $a_{\rm CND}/a_* = 4.5$ , c = 0.1

#### The "Quadrupole Equations"

$$\frac{de}{d\tau} = +\frac{15}{8} e \sqrt{1 - e^2} \sin^2(i) \sin(2\omega)$$
  
$$\frac{di}{d\tau} = -\frac{15}{8} \frac{e^2}{\sqrt{1 - e^2}} \cos(i) \sin(i) \sin(2\omega)$$
  
$$\frac{d\omega}{d\tau} = +\frac{3}{4} \frac{1}{\sqrt{1 - e^2}} \left\{ 2(1 - e^2) + 5 \sin^2(\omega) \left[ e^2 - \sin^2(i) \right] \right\}$$

$$\frac{\mathrm{d}\Omega}{\mathrm{d}\tau} = -\frac{3}{4} \frac{\cos(i)}{\sqrt{1-e^2}} [1 + 4e^2 - 5e^2 \cos^2(\omega)]$$

# **Evolution of the Orbital Elements**

- **b** Disk deformation depends more on  $\Omega$  than on e, i,  $\omega$
- Quadrupole equations DO NOT describe system with a heavy spherical perturbation!
  - $\Rightarrow$  alternative timescale estimate necessary

$$P_{\Omega} = ?$$

•  $P_{\Omega} = f(M_{\text{CND}}; M_{\text{SPHE}}, \alpha_{\text{SPHE}}; a_{*,0}, e_{*,0}, i_{*,0}, \omega_{*,0})$ 

# **Exploring the** $P_{\Omega}$ **Dependences**

#### Dependence on

•  $M_{\rm CND}$ :  $P_{\Omega} \propto M_{\rm CND}^{-1}$ 

► 
$$a_{*,0}$$
:  $P_{\Omega} \propto a_{*}^{-3/2}$ 

• 
$$e_{*,0}: P_{\Omega} \propto \sqrt{\frac{1-e_{*,0}}{1+e_{*,0}}}$$

• 
$$i_{*,0}: P_{\Omega} \propto |\cos i_{*,0}|^{-1}$$

►  $M_{\text{SPHE}}, \alpha_{\text{SPHE}}$ : no dependence has been found for mass range  $M_{\text{SPHE}}/M_{\bullet} \in [0.5; 4]$  and profiles  $\alpha_{\text{SPHE}} \in [1.0; 2.0]$ 

#### **The** $P_{\Omega}$ **Estimate**

$$\left(\frac{P_{\Omega}}{\text{Myr}}\right) = \left(\frac{a}{\text{a}_{\text{CND}}}\right)^{-3/2} \left(\frac{M_{\text{CND}}}{M_{\bullet}}\right)^{-1} \frac{1}{|\cos i_0|} \sqrt{\frac{1-e_0}{1+e_0}} \text{ fn}$$





M<sub>CND</sub> [M<sub>BH</sub>]

# FIG: jak vypada jz(p) pro ruzne konfig

– kumulovane cetnosti

# FIG: The Modelled Angular Momentu

- TODO: obrazky pro par bodu podel P Omega=108 Myr, par bodu pro delsi a par bodu pro kratsi periodu.
  - snapshot disku
  - odpovidajici  $j_z(p)$
  - Aitoffova projekce  $\vec{j}$  tehoz?

### Conclusions

TODO: – zminit nutnost vyssich excentricit nez "pozorovanych"

- mass of CND is ...
- pocatecni rozevreni

### Thank you for your attention!