
Chapter 1

Gentle introduction to the Thesis

1.1 Useful tools

The study of Determination of the Mass Distribution in the Galactic Centre
from the Stellar Motions is impossible to perform without numerical simu-
lations. For this purpose we use the fifth-order Runge-Kutta integrator
with adaptive step-size control which is sufficiently precise.

1.2 Apocentre shift under spherical perturbation

to the central potential

The first experiment we acquitted of was study of the apocentre shift of
a test particle moving in the central potential field caused by the super-
massive black hole (SMBH, M• = 3.5 × 106 M⊙) in the Galactic Centre
and influenced by a spherical perturbing potential.

The studied spherical perturbation has the power-law mass-density
distribution ρper, S(r) with power-law index α and characteristic radius r0:

ρper, S(r) = ρ0

(

r

r0

)−α

(1.1)

From a given mass-density distribution ρper, S(r) one can compute the per-
turbing potential Φper, S and mass distribution Mper, S of such spherical
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perturbation

Mper, S = kM•

(

r

r0

)s

, (1.2)

Φper, S =
kGM•

(s − 1)r0

(

r

r0

)s−1

, (1.3)

where s = 3 − α is the modified power-law index. We can define the
apocentre shift of a test particle with unperturbed semi-major axis a and
eccentricity e in the central potential perturbed by a spherical power-law
in mass-density distribution δω as follows:

δω =
2k

s − 1

(

a

r0

)s ε

e

[

(2s + 1)eε2s−1A + (s + 1)ε2s+1B
]

, (1.4)

where

ε =
√

1 − e2, (1.5)

A ≡
∫ π

0

dϕ

(1 + e cos ϕ)s+1
, (1.6)

B ≡
∫ π

0

cos φ dϕ

(1 + e cos ϕ)s+2
. (1.7)

One can study how the δω changes with the modified power-law index s:

dδω

ds
=

2kε2s

(s − 1)e

(

a

r0

)s

×

×
{[ 1

s − 1
+ ln

(

a

r0

)

+ ln(ε2)
] [

(2s + 1)eA + (s + 1)ε2B
]

+ e [2A + (2s + 1)C] + ε2 [B + (s + 1)D]
}

, (1.8)

d ln(δω)

ds
=

e [2A+ (2s + 1)C] + ε2 [B + (2s + 1)D]

(2s + 1)eA + (s + 1)ε2B −

−
[

1

s − 1
− ln

(

a

r0

)

− ln(ε2)

]

, (1.9)

where

C ≡ −
∫ π

0

ln(1 + e cos ϕ) dϕ

(1 + e cos ϕ)s+1
, (1.10)

D ≡ −
∫ π

0

cos φ ln(1 + e cos ϕ) dϕ

(1 + e cos ϕ)s+2
. (1.11)
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Figure 1.1: Apocentre shift of a test particle in the central potential per-
turbed by a spherical power-law in mass-density distribution with dif-
ferent power-law index α. Note the logarithmic scale of δω. The nu-
merical results are in black, the blue crosses depict analytical values fol-
lowing Ivanov et al. (2005). The black curves differ in total perturba-
tion mass Mper = kM• with equidistant steps ∆k = 10−3 and k values

k ∈ [10−3, 10−2], ordered from the lightest to the heaviest perturbation
sequence from the bottom to the top.

We tested such analytical model with numerical simulation. We show the
numerical result compared with several analytical points given in Ivanov
et al. (2005) on the Fig. 1.1 . You can see the points obtained by analytical
analysis in Ivanov et al. (2005) are consistent with the numerical model,
therefore we can use numerical simulation with sufficient accuracy for
estimate δω for spherical perturbations, where we don’t know the exact
value from analytical formula (1.4).

1.3 Axi-symmetric perturbation

There are several axi-symmetric structures observed in the central parsec
of our Galaxy. In our simulations we study effect of Kozai oscillations on
orbital elements of a testing particle influenced by the central potential
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perturbed by axi-symmetrical ring with potential ΦR(r)

Φper, R = −2Gλ

√

a

R
kK(k), (1.12)

where

k2 =
4aRR

(aR + R)2 + (z − zR)2
. (1.13)

The equations of motion given by the problem Hamiltonian

H = 0.5(v2
x + v2

y + v2
z) −

1

r
+ Φper, R (1.14)

then read

ẋ = vx, (1.15)

ẏ = vy, (1.16)

ż = vz, (1.17)

v̇x = − x

r3
− Gλ

√
aRkR−5/2K(k)x + 2

Gλ
√

aR√
R(1 − k2)

CAE(k)x, (1.18)

v̇y = − y

r3
− Gλ

√
aRkR−5/2K(k)y + 2

Gλ
√

aR√
R(1 − k2)

CAE(k)y, (1.19)

v̇z = − z

r3
− Gλ(z − zR)k3

2
√

aR(1 − k2)
R−3/2E(k), (1.20)

where

CA =
k

2R2

(

1 − aR + R

2aR
k2

)

. (1.21)

In the system consisting of the central SMBH, axi-symmetrical pertur-
bation and test particle we can study how much the averaged perturbing
potential value changes with different initial eccentricity e0 and initial ar-
gument of periapsis ω0. From such experiment we obtain four distinct
topologies of iso-contours of averaged perturbing potential with different
values of constant c proportional to the z−component of the angular mo-
mentum Lz

c =
√

1 − e2 cos i. (1.22)

The four panels on Fig. 1.2 depicting c=0.0, c=0.2, c=0.4 and c=0.8. The
higher value of c the lower maximal eccentricity eMAX of possible trajecto-
ries given by (1.22).
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Figure 1.2: The four panels show iso-contours of averaged perturb-
ing potential given by the axi-symmetric system (ring) with parameters
aRING = 10 a, MRING= 5 × 10−3 M•, where a = 13578.588Rg is the semi-
major axis of the test particle (S2 star).
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The value of the averaged perturbing potential is a quasi-constant of
motion. Therefore, one can study time evolution of averaged orbital ele-
ments, namely of the averaged eccentricity 〈e〉 and the averaged argument
of periapsis 〈ω〉 with such figures (see Fig. 1.2 ), because the 〈e〉 and 〈ω〉
should evolve around a specific iso-contour of 〈Φper, R〉. On Fig. 1.3 we
can see the time evolution of 〈e〉 and 〈ω〉 projected onto a iso-contours
diagram and time evolution of three averaged orbital elements of such
trajectory, namely 〈e〉(t), 〈ω〉(t), 〈i〉(t).

1.4 Kozai oscillations in the Galactic Centre

The Kozai period is the time-scale on which the averaged orbital elements
suffer significant changes in their values. We can study several configu-
rations of sources of perturbation to the central SMBH potential in order
to compare the values of Kozai periods as function of a, c, e0, ω0 and the
composition of the perturbation taken into account. The Fig. ?? shows
such dependence for one specific system setup.
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Figure 1.3: Time evolution of averaged orbital elements of a trajectory with
e0 = 0.666 and ω0 = 80◦. Note that the red ”trajectory” follows the iso-
contour of 〈Φper, R〉 .

= −7.33 × 10−8. On three remaining panels you can
see the time evolution of averaged orbital elements eccentricity 〈e〉(t), ar-
gument of periapsis 〈ω〉(t) and inclination 〈i〉(t) over one Kozai period.
Shown time scales are in units of unperturbed periods P of such trajectory,
given by test particle the semi-major axis a value and the third Kepler law.
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Figure 1.4: Kozai period as a function of initial eccentricity e0 for trajecto-
ries with initial argument of periastre ω0 = π/2 influenced by composite
perturbing potential from ring with aRING = 10 a, MRING = 5 × 10−2M•
and from sphere with mass MSPHE = 10−3M• evaluated at r0 = 2 a
with the power-law index α = 1.4. The test particle was the S2 star with
a = 13578.588Rg and the chosen value of Kozai constant was c = 0.2.
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