The Galactic Centre

Determination of the Mass Distribution in the Galactic Centre from the Stellar Motions

Jaroslava Schovancová, Ladislav Šubr

schovan@sirrah.troja.mff.cuni.cz

Astronomical Institute, Charles University in Prague Argelander Institute for Astronomy, University of Bonn

Argelanderstronomie

Focusing on the Galactic Centre

Becklin & Neugebauer (1968)

- distance to the Galactic Centre: ~ 8 kpc
- observed in NIR and radio
- successful location of a source:
 Becklin & Neugebauer (1968)
 λ = 2.2 μm, resolution
 0.62 pc and 0.2 pc

Focusing on the Galactic Centre

- 2D speckle imaging:
 - 600 individual stars resolved, 0.15 " resolution (0.006 pc) Eckart et al. (1995)
 - complex of NIR sources very close to Sgr A* Genzel, Eckart, Ott & Eisenhauer (1997)

Eckart et al. (1995)

The Central Parsec

Genzel et al. (2003)

K-band: λ =2.20 μ m H-band: λ =1.60 μ m L-band: λ =3.45 μ m

Determination of the Mass Distribution in the Galactic Centre from the Stellar Motions - p.3

Stellar Disks in the Galactic Centre

black: the Galaxy and sky blue: clockwise stellar disk red: counter-clockwise stellar disk Paumard et al. (2006)

- two coherent disks of massive O- & B-type stars ~ 0.1 pc; Genzel et al. (2003), Ghez et al. (2005)
- well defined inner (0.04 pc) and outer (0.5 pc) radii
- ▶ geometrically thick: h/R ~ 0.13

Stellar Disks in the Galactic Centre

- ▶ young stars: (6 ± 2) Myr ⇒ recent star formation in GC; Paumard et al. (2006)
- similar disks detected in the centre of M31 Bender et al. (2005)
- ▶ flat mass function, mass $\sim 10^4 M_{\odot}$
- ► significant eccentricities for some of stellar orbits
- ▶ clockwise disk: $e_{rms} \in$ [0.2; 0.3] Paumard et al. (2006), Belobordov et al. (2006)
- ► counter-clockwise disk: $e_{\rm rms} \in$ [0.6; 0.7]
- ► hot topic: origin?

Popping the Clockwise Stellar Disk

- ► significant eccentricities for some of stellar orbits
- ▶ clockwise disk: $e_{rms} \in$ [0.2; 0.3] Paumard et al. (2006), Belobordov et al. (2006)
- ► counter-clockwise disk: $e_{\rm rms} \in$ [0.6; 0.7]
- ► assuming originally circular orbits ⇒ require presence of more massive stars in order to excite the eccentricities of these stars to those observed
- ► further reading on stellar disks in the GC:
 - Ghez et al. (2003),
 Genzel et al. (2003),
 Paumard et al. (2006), ...

Popping the Clockwise Stellar Disk

► significantly flatter MF with Γ =1.35 Paumard et al. (2006): M_1 = 125 M_{\odot} , M_3 = 5 M_{\odot}

Alexander et al. (2006), astro-ph/0609812

Youth Paradox – The S Stars

Ghez et al. (2005)

 number of B-type stars very close to GC (~ 0.01 pc)

- ► $M \sim 20 \ M_{\odot}$, eccentric orbits, $a > 10^4 \ R_g$
- ► S2 star:
 - $\triangleright~a\sim$ 930 AU
 - ⊳ *e* ≐ 0.87

$$\triangleright M \doteq 25 M_{\odot}$$

- ▷ P ~ 15 yr
- hot topic: origin?

Thesis Guidelines

- Familiarise with recent Sgr A* observations with respect to mass distribution (gas and stars) and young stars kinematics
- Simulate orbital elements evolution, consider stars trajectories under influence of central SMBH potential and axi-symmetrical perturbation
- Explore parameter space of such perturbation in order to find a system setup consistent with observations

Preliminary results

- ► apocentre shift under spherical perturbing potential
- axi-symmetrical perturbing potential (ring)
- composite perturbing potential: ring + sphere

Spherical Perturbation

Influence of a spherical mass-distribution in the GC on the S2 orbit: Mouawad et al. (2003) & (2005)

Fit for an S2 like star around a 3.7 Million Solar Mass BH with 10% cusp

Spherical Perturbation

► power-law in mass-density:

$$\rho(r) = \rho_0 \left(\frac{r}{r_0}\right)^{-\alpha}$$

$$M(r) = M_{\bullet} \left(\frac{r}{r_0}\right)^{3-\alpha}$$

► potential:

$$\Phi(r) = \frac{GM_{\bullet}}{(2-\alpha)r_0} \left(\frac{r}{r_0}\right)^{2-\alpha}$$

Spherical Perturbation

$$\delta\omega = \frac{2k}{2-\alpha} \left(\frac{a}{r_0}\right)^{3-\alpha} \frac{\mathrm{d}}{\mathrm{d}\varepsilon} \left[\varepsilon^{7-2\alpha} \int_0^\pi \frac{\mathrm{d}\phi}{(1+e\cos\phi)^{4-\alpha}}\right]$$

α

Determination of the Mass Distribution in the Galactic Centre from the Stellar Motions - p.13

► ring potential:

$$\Phi(r) = -2G\lambda \sqrt{\frac{a}{R}}k\mathcal{K}(k),$$

$$k^{2} = \frac{4aR}{(a+R)^{2} + (Z-z)^{2}}$$

► Kozai constant:

$$c = \sqrt{1 - e^2} \cos i$$

Composite Perturbation

Composite Perturbation

The End

Thank you for your attention!