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Astronomical Institute, Charles University in Prague
Supervisor: RNDr. Ladislav Šubr, Ph.D.
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Abstrakt: Nedávná infračervená pozorovánı́ Galaktického jádra nasvědčujı́ tomu, že se v blı́zkosti

supermasivnı́ černé dı́ry Sgr A⋆ nacházı́ nejméně jedna koherentně rotujı́cı́ struktura mladých hvězd

a kulová hvězdokupa složená ze starých hvězd. Radioastronomická pozorovánı́ oblasti Galak-

tického jádra zároveň ukazujı́ na přı́tomnost několika struktur mezihvězdné hmoty, z nichž nás

zajı́mal předevšı́m nejhmotnějšı́ útvar, molekulárnı́ disk (tzv. circum-nuclear disk). Pozorovánı́

ukazujı́, že korotujı́cı́ mladý hvězdný disk je téměř kolmý na uvažovaný molekulárnı́ disk. Mode-

lovali jsme pohyb testovacı́ch částic představujı́cı́h hvězdy korotujı́cı́ho hvězdného disku v domi-

nantnı́m potenciálu Sgr A⋆ porušeném axiálně symetrickou a sférickou poruchou a hledali jsme

množinu parametrů popisujı́cı́ch studovaný model Galaktického centra konzistentnı́ s pozorovánı́mi

jednotlivých zdrojů potenciálu, ale předevšı́m s pozorovánı́mi korotujı́cı́ho hvězdného disku. Před-

pokládali jsme, ze mladý hvězdný disk existuje jako stabilnı́ struktura po dobu 6 miliónů let. Zjis-

tili jsme, že hmotnost molekulárnı́ho disku odpovı́dajı́cı́ 0,2 až 0,4 hmotnosti Sgr A⋆ je v souladu

se současnými pozorovánı́mi korotujı́cı́ho hvězdného disku a že tento hvězdný disk s velkou

pravděpodobnostı́ v době svého vzniku byl téměř kolmý k molekulárnı́mu disku a zároveň nebyl

geometricky rozevřený vı́ce nežli 2 ◦.
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Abstract: Recent NIR observations of the Galactic Centre suggest existence of two young stellar

structures with a coherent rotation pattern in vicinity of the super-massive black hole Sgr A⋆ and a

spherical cluster of old stars. At the same time, radioastronomical observations of the Galactic Centre

show that there are several ISM structures in that region. We focused our interest on the heaviest of

the observed ISM structures, on a molecular disk (circum-nuclear disk, CND) and its gravitational

interaction with the young stellar disk. The observations show that the stellar disk is almost perpen-

dicular to the CND. We have modelled the clockwise stellar disk as a set of test particles influenced

by a dominating Keplerian potential of Sgr A⋆ perturbed by an axi-symmetric and a spherical per-

turbation and we have explored the parameter space describing the Galactic Centre model consistent

with observations of the stellar disk. We assumed that the young stellar disk is a stable structure for

6 Myr. We have found that the mass of the CND corresponding to 0.2 to 0.4 mass of the Sgr A⋆ is

consistent with recent NIR observations of the young stellar disk and that this stellar disk was almost

perpendicular to the CND and very well defined planar structure with a characteristic initial opening

angle of the stellar disk that did not exceed 2 ◦.

Keywords: galaxies: nuclei — Galaxy: centre — young stars: dynamics

i



List of Figures

1.1 Central parsec . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 How axi-symmetric perturbation influences the orbit . . . . 13
2.2 Evolutionary diagram . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Stellar trajectory in the evolutionary diagram . . . . . . . . . 16
2.4 Apsidal precession due to a spherical perturbation . . . . . . 19
2.5 How spherical perturbation influences the orbit . . . . . . . 20
2.6 νquad/νsphe ratio . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.7 Axi-symmetric vs. composed perturbation . . . . . . . . . . 23
2.8 Realistic composed potential . . . . . . . . . . . . . . . . . . . 24
2.9 Change of the longitude of the ascending node . . . . . . . . 26

3.1 Constraints on the initial inclination range . . . . . . . . . . . 31
3.2 Aitoff projection of the Cone . . . . . . . . . . . . . . . . . . . 33
3.3 Opening angle of the Cone . . . . . . . . . . . . . . . . . . . . 34
3.4 Warp of the outer margin of the stellar disk . . . . . . . . . . 36
3.5 Observed normalised angular momentum . . . . . . . . . . . 38
3.6 Normalised angular momentum of an isotropic stellar cluster 40
3.7 Normalised angular momentum as a function of i . . . . . . 42

ii



List of Abbreviations

AGB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Asymptotic giant branch

CCWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Counter-clockwise stellar disk

CND . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Circum-nuclear disk

CWS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Clockwise stellar disk

GC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Galactic Centre

IR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Infra-red

NIR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Near-infrared

SMBH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Super-massive black hole

iii



Preface

A galactic nucleus represent a complex system which harbours a central
compact object, interstellar medium and a dense stellar cluster. Individ-
ual components of the system mutually interact and we witness the most
powerful processes in the Universe. Super-massive black holes, which re-
side in the most of galactic nuclei have the mass of about 106 − 109 M⊙. Ac-
tive galactic nuclei radiate with luminosities of the order of 1049 − 1051 W,
which is by 23 to 25 orders of magnitude more powerful than our nearest
star. Stellar densities in the nuclei of galaxies are ≈ 109 higher than in the
solar neighbourhood. Hence, galactic nuclei represent unique laboratories
for exploration of dynamics in a very dense and complex environment.
Luckily, there is an option to explore the Galactic centre in more detail due
to its proximity. The Centre of Galaxy is rather quiet compared to an AGN,
but still eventful compared to our neighbourhood.

The Galactic Centre is situated in the southern hemisphere of the sky
in the constellation of Sagittarius. Observations of the velocity dispersion
of gas around the dynamical centre of the Galaxy show that there is a very
compact object in that region. There was no proven evidence what kind of
compact object it could be twenty years ago. Since then, improvements of
the observational technique have enabled to resolve smaller and smaller
stellar clusters as far as today diffraction limited observations with 8 m
and 10 m class telescopes resolve single stars. Measurements of proper
stellar motions resulted in a more accurate mass estimate of the central
object. Mass of ≃ 3/5 × 106 M⊙ and a diameter much less than 1 AU
suggest that this central object is a super-massive black hole.

Detailed exploration of the surroundings of the central object gave rose
to several interesting puzzles. The most crucial one for this Thesis is the
presence of several tens of young stars in couple of groups in the Galactic
Centre. There are couple of B-type stars, known as S-stars, on very eccen-
tric orbits in the central arcsecond of the region. Another group of O- and
B-type stars is a bit further from the central super-massive black hole, be-
tween 1” and 12” (0.04 pc and 0.48 pc), where resides at least one structure
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of young stars with a coherent rotation pattern. This stellar cluster offers
us an interesting question: how such a young stellar structure can form?
Since the stars are several Myr young, they are a result of a recent star for-
mation in the Galactic centre. Observations show that the young stellar
cluster with a corotating pattern, with respect to the Galaxy rotation, is a
disk-like structure with an opening angle of ≈ 14 ◦ and the stars have in-
termediate eccentrities. However, such a stellar disk was observed also in
the Andromeda galaxy.

There are two scenarios of the formation of the young stellar disk. The
first one suggests that the formation of young stars arose via a fragmen-
tation of an accretion disk. The other one proposes that the stellar disk
formed after infall of a stellar cluster coming from the outer parts of the
Galactic Centre.

However, the groups of young stars are not the only stars in vicinity of
the super-massive black hole. Near-infrared observations show that there
is a stellar cusp with the total mass similar to that of the central black hole
within a few pc and a broken power-law profile of the mass-density.

Radioastronomical observations of the Galactic Centre region show the
distribution and velocity dispersion of several structures of the interstel-
lar medium. The heaviest structure within the central 2 pc is a clumpy
molecular ring, known as the circum-nuclear disk. Observers estimate the
mass of this molecular ring as ≈ 1/3 M•.

The gravitational interaction between the young stars forming a stellar
disk and the other constituents of the Galactic centre is a subject of inte-
rest of this Thesis. We consider a simplified model of the Galactic centre,
which describes the gravitational potential of that region. In this model
we investigate the dynamics of the young stellar disk. The aim of our
effort is to find a set of parameters describing the Galactic Centre envi-
ronment, which correspond to both near-infrared and radioastronomical
measurements and are in agreement with the observations of the young
stellar cluster. Such a toy-model of the Galactic Centre helps us to better
understand the stellar formation in vicinity of the central super-massive
black hole.

A basic overview of the observations of the Galactic Centre region in
Chapter 1. The model of the Galactic Centre and the results are described
in Chapter 2. Consequences of the acquired results are discussed in Chap-
ter 3.
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1 The Central Two Parsecs Over
The Past Three Decades

This chapter should familiarise the reader with the results of the past three
decades of the Galactic Centre observations with emphasis on the objects
important for this work. However, we do not intend to give the overall
current state-of-art review.

1.1 Where is the Galactic Centre?

The innermost part of our Galaxy is situated on the southern celestial
hemisphere in the direction of the constellation of Sagittarius. In this work
the Galactic Centre (GC) represents the region with the radius 2 pc of the
dynamical centre of the Galaxy. The current GC observations show that
there is a super-massive black hole (SMBH) located at the dynamical cen-
tre of our Galaxy. This SMBHs environment can be observed in radio and
infra-red (IR) wavelengths.

The first determination of the distance from the Sun to the dynamical
centre of the Galaxy, R0, published by Shapley, 1918 based on the Cepheid
magnitude-period relation was estimated as R0 ≈ 13 kpc. According to
the review by Reid, 1993, the best estimate results from H2O maser proper
motions: R0 = (8.0 ± 0.5) kpc.

The most recent value of R0 = (7.62 ± 0.32) kpc by Eisenhauer et al.,
2005. This estimate was obtained by solving the Keplerian orbits (the cor-
responding central mass estimate is M• = (3.61 ± 0.32) × 106M⊙) of the
innermost individual stars from the radial velocity and proper-motions
measurements.

1.2 What is Sgr A⋆ ?

The compact radio-source nowadays referred to as the Sgr A⋆ was first
observed by Becklin & Neugebauer, 1968. Since those times there were
several ideas what kind of an astrophysical object the Sgr A⋆ should be

3



Chapter 1: The Central Two Parsecs Over The Past Three Decades 4

according to the current mass-density estimates determined from IR ob-
servations: from a very dense cluster, through a fermion ball, a cluster of
neutron stars, white dwarfs and stellar black holes – see Fig. 12 in Schödel
et al., 2003. These central object hypotheses were rejected, because the ob-
servations of the central object show 10− 1015× lower mass-densities than
deduced from stellar motions and they would not be luminous enough ei-
ther. The recent observations resulted in agreement that Sgr A⋆ is a super-
massive black hole SMBH. The radio-source radiates then due to the ac-
cretion of interstellar material onto the SMBH. The celestial position of Sgr
A⋆ is RA=17h45m40.0409s and DE=-29◦00’ 28.118” (J2000.0), see Reid &
Brunthaler, 2004.

1.3 Stellar populations in the Galactic Centre

The SMBH in the centre of our Galaxy is surrounded by a nuclear stellar
cluster, gas and dust. The Galactic Centre (GC) region is mostly observed
in near-infrared (NIR) wavelengths, the most often used bands are K-band
(2.2 µm), L-band (3.5 µm) and H-band (1.65 µm).

The central pc contains different stellar populations. Genzel et al., 2003
summarise that the radial distribution of stars follows a power-law distri-
bution with the power-law index α ∼ 1.3 − 1.4. The stellar population in
the GC can distinct three groups of stars: galactic bulge-like, a cusp within
1.5” and the innermost cusp.

The outer part of the central pc contains the same stellar population as
the galactic bulge: synthesis of an old, metal rich stellar population, con-
tributed by young, early- and late-type stars. The central pc is dominated
by old (1-10 Gyr) red giants with K ≥ 13 mag.

There are ∼ 12 luminous blue super-giants (K ∼ 9 − 12 mag) which
suggest the recent star formation (age of 2-7 Myr). The next stellar com-
ponent are bright asymptotic giant branch (AGB) stars with intermediate-
mass and intermediate-age ≥ 100 Myr, K ∼ 10 − 12 mag. The next com-
ponent of the central pc are dust-embedded stars associated with gaseous
mini-spiral.

The hot topic of the GC region research are the young stars in the inner
0.15 pc. In the innermost part of the GC, in the central 0.01 pc, there is a
group of young stars known as the S-stars. Most of the massive early-type
stars in the distance of 0.05-0.15 pc two disk-like structures were formed,
referred to as clockwise (CWS) and counter-clockwise (CCWS) disks.
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Figure 1.1: The central 20” in NIR band KS (2.2 µm) from Genzel et al., 2003. The
black arrows point to the position of Sgr A⋆ .

1.3.1 Spherical cluster

The spherical cluster is dominated by (1-10) Gyr old red giants. Genzel et
al., 2003 analysed NIR images of the central region taken before 2002 by
ESO NTT and Keck telescopes and new images taken at ESO VLT. They
counted sources in these images in anulli and corrected the number counts
for incompleteness. They found that the density profile of the spherical
cluster of old stars has a broken power-law mass density. The central par-
sec in NIR is shown in Fig. 1.1. Schödel et al., 2007 extended measurements
of the central region. They estimated the break radius to be

ρ(r) ∝ r−α, Rbr = (6 ± 1) ” (1.1)

and the cusp profile reads

α =

{

1.19 ± 0.05 r ≤ Rbr,

1.75 ± 0.05 r > Rbr.
(1.2)

The cusp with α = 1.75 corresponds to a theoretical estimate for a relaxed
single-mass stellar population by Bahcall & Wolf, 1976.
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1.3.2 Young stellar disk

Genzel et al., 2003 reported the presence of at least one structure of young
massive O- and B-type stars (Genzel et al., 2003, Ghez et al., 2005) with a
coherent rotation pattern within 0.4 pc. They found a well defined clock-
wise stellar disk with a sharp inner margin (0.04 pc) and a worse de-
fined counter-clockwise disk. Genzel et al., 2003 (normalised and pro-
jected angular momentum in the direction of the line-of-sight), Levin &
Beloborodov, 2003, Beloborodov et al., 2006 (fit of velocity vectors of stars
and χ2 test of planarity of such a structure) and Paumard et al., 2006 (ve-
locities of a planar structure expressed in spherical coordinates show a
cosine pattern in a grid of (φ; cotan θ)) proposed several analyses to con-
firm that the observed structure is disk-like. Beloborodov et al., 2006 and
Paumard et al., 2006 suggest that the clockwise disk thickness is 〈|h|/R〉 =
0.12 ± 0.03 (14 ◦ ± 4 ◦) and that this stellar disk is almost perpendicular to
the circum-nuclear molecular disk.

These structures became an interesting puzzle in the GC research, be-
cause their age (6 ± 2) Myr suggests that these young stars are result
of a recent star formation in GC. There are two scenarios of the forma-
tion of the young stellar disk. The first one suggests that the stellar disk
formed via fragmentation of a accretion disk (Collin & Zahn, 1999, Levin
& Beloborodov, 2003, Goodman, 2003). The other one proposes infall of a
young stellar cluster into the central region (McMillan & Portegies Zwart,
2003, Gürkan & Rasio, 2005, Freitag et al., 2006).

The young stars have intermediate eccentrities e . 0.35 (Paumard et
al., 2006). Alexander et al., 2007 suggest that such eccentrities are attain-
able from initially circular orbits within 6 Myr, assuming the top-heavy
IMF, due to two-body interactions.

1.4 Circum-nuclear disk

Radioastronomical measurements of the velocity dispersion of gas in the
Galactic Centre revealed that there are several ISM structures. The hea-
viest one, first detected by Becklin et al., 1982 as double-lobed emission
at 50 and 100 µm, is a clumpy molecular ring with a well defined inner
radius ∼ 1.5 pc with the thickness of ∼ 0.4 pc at the inner edge and the
outer edge at 3 − 4 pc with the thickness up to 2 pc. The circum-nuclear
disk (CND) consists of neutral and ionised gas. The current estimate of
the mass of the CND is MCND = 106 M⊙ (Christopher et al., 2005). We
overview the mass estimates in Table 1.1.
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Table 1.1: Measurements of MCND from the gas emission.

Neutral gas

Year Mass [M⊙] Emission Paper

1981 103 [OI] Lester et al., 1981
1984 2 × 103 [OI] Genzel et al., 1984
1985 104 CO Harris et al., 1985
1985 2 × 103 — Genzel et al., 1985, review
1985 105 NH3, HNCO, CO Armstrong & Barrett, 1985
1986 103 HI & molecules Hyland, 1984
1993 3 × 103 HI Yusef-Zadeh et al., 1993
1993 104 molecular, atomic Jackson et al., 1993
1995 105 CO⇒HI Zhao et al., 1995
1996 104 — Mezger et al., 1996, review

Ionized gas

Year Mass [M⊙] Emission Paper

1985 3 × 105 HII Ho et al., 1985
1993 2 × 106 HII Gray et al., 1993
1999 104 Hα Anantharamaiah et al., 1999

Neutral and Ionized gas

Year Mass [M⊙] Emission Paper

1987 104 — Genzel et al., 1987, review
2001 104 CO, H2, HCN, CII, [OI] Vollmer et al., 2001, review
2004 3 × 105 HCO+, Hα Shukla et al., 2004
2005 106 HCN, HCO+ Christopher et al., 2005
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2 Model

The main aim of this thesis is to find parameters describing the Galactic
Centre model such that the simulated motion of the clockwise stellar disk
is consistent with the NIR observations. The stellar disk is modelled as
a set of test particles moving under the influence of the gravitational po-
tential dominated by the central potential of the super-massive black hole.
This central Keplerian potential is perturbed by an axi-symmetrical poten-
tial due to the CND and by a spherical potential due to the cluster of old
stars. The perturbing potential causes a secular evolution of the orbital
elements of the test particles. This long-term evolution leads to a defor-
mation of the initial spatial structure. The parameters of the perturbing
potential and the initial orbital elements of the test particle determine the
rate of secular evolution of the orbital elements. Hence, scanning the pa-
rameter space of the modelled CWS disk system enables us to set limits on
some of the parameters of the potential, e.g. limit the mass of the CND in
a way independent of the observed molecular emission.

2.1 Model of the Galactic Centre

Our model of the Galactic Centre region is described by the gravitational
potential

Φper = Φ• + Φsphe + ΦCND. (2.1)

This potential describes the gravitational influence of a SMBH (Φ•), a mo-
lecular ring (ΦCND), and a spherical cusp of old stars (Φsphe) on a young
stellar disk. We consider all the contributing potentials as completely
Newtonian. We do not consider any kind of non-gravitational interactions
in our model.

Taking into account symmetries of the Galactic Centre model (2.1), we
define a coordinate system in which we perform our numerical simula-
tions. Let the SMBH be in the origin of the coordinate system. The axial
symmetry of the CND potential enables us to define the equatorial plane
(Z = 0) such that the axi-symmetrical perturbation CND resides in the
equatorial plane, i.e. ZCND ≡ 0. The normal vector to the CND is then pa-
rallel to the Z axis. Orbital elements Ω, i and ω are then defined as three

8



Chapter 2: Model 9

Eulerian angles: longitude of the ascending node Ω being the precessional
angle, inclination i being the nutational angle, and argument of periapsis
ω being the rotational angle.

The SMBH of mass M• dominates the gravitational potential conside-
red in our model, its gravitational potential Φ•(r) is given by

Φ•(r) = −GM•
r

. (2.2)

Recent NIR observations (Schödel et al., 2003 and 2007) of the central sphe-
rical cusp of old stars show that the density profile of this cluster is de-
scribed with a broken power-law profile (1.1). From the Poisson equation
follows its potential with Msphe/M• ≥ 0:

Φsphe(r) =























1

(α − 2) rsphe
GMsphe

(

r

rsphe

)2−α

for α ∈ [0; 3) \ {2},

α − 3

rsphe
GMsphe ln(r) for α = 2.

(2.3)
The CND is modelled as an infinitely-thin homogeneous ring with a ra-
dius RCND. The potential of CND expressed in cylindrical coordinates
(R, Z) then reads

ΦCND(r) = −2G
MCND

2πRCND

√

RCND

R
kK(k), (2.4)

where k2 =
4RRCND

(RCND + R)2 + Z2
, (2.5)

and K(k) is the complete elliptic integral of the first kind:

K(k) =
∫ π/2

0

(

1 − k2 sin2 θ
)−1/2

dθ. (2.6)

The CWS stellar disk is modelled as a set of test particles moving in the
composed gravitational potential (2.1). While we consider the stars of the
CWS stellar disk as the test particles, we neglect their mutual gravitational
and non-gravitational interaction. The test particles form initially a planar
structure and if they were under the influence of a central point mass only,
they would form such a planar structure and would stay in such a struc-
ture forever. However, the presence of the two perturbing potentials ΦCND

and Φsphe causes a secular evolution of their orbital elements, which leads
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to a spatial deformation (distortion and warp) of the initial planar struc-
ture. The magnitude of the deformation depends on the following set of
parameters:

• parameters describing the ΦCND: total mass of the CND MCND and
its radius RCND,

• parameters describing the Φsphe: total mass Msphe of the spherical
cusp inside a sphere of radius rsphe = RCND, its power-law profile
index α,

• initial orbital elements of the test particle: the semi-major axis a0,
eccentricity e0, inclination of the orbit i0, argument of periapsis ω0

and the longitude of the ascending node Ω0.

2.2 Perturbation influence on the orbital elements

The orbit of a test particle moving in the potential of a point mass source
with mass M is described by 6 orbital elements: the semi-major axis a,
eccentricity e, inclination i, longitude of the ascending node Ω, argument
of periapsis ω and the time of periapsis passage T0. The orbital elements
remain constant over the whole revolution. However, the presence of a
perturbation to the central potential brings along a secular change of some
of the orbital elements. For a given potential (2.1) the semi-major axis a is
a constant of motion. We discuss the influence of an axi-symmetrical per-
turbation, a spherical perturbation, and a composition of both mentioned
perturbations on the temporal evolution in the subsequent sections.

2.2.1 Axi-symmetric perturbation

One of the subjects of our investigation is the circum-nuclear disk. This
molecular disk represents an axi-symmetric perturbation (2.4) to the Kep-
lerian SMBH potential (2.2). The axi-symmetric perturbing potential causes
a secular evolution of the orbital elements inclination i, eccentricity e, argu-
ment of periapsis ω and longitude of the ascending node Ω. This kind of
secular evolution has been investigated by Kozai, 1962 and independently
by Lidov, 1962. They were interested in the secular evolution of such a hi-
erarchical triple system, especially in satellites with a high inclination and
eccentricity moving under the influence of the Sun and Jupiter. They used
the Hamiltonian perturbation theory as a powerful tool for investigation
of such a hierarchical triple system.
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The Hamiltonian perturbation theory allows the use of an approxima-
tive technique, known as the “averaging” technique. Description of this
technique is e.g. in the textbook by Morbidelli, 2002. The “averaging”
technique enables us to get rid of the short periodic changing angle, e.g.
the mean anomaly, by virtue of the canonical transformation of Delaunay
variables. We can consider an axially symmetric perturbation as orbit of
a single mass point averaged over the fast changing angle, i.e. over the
mean anomaly. Proper choice of canonical transformation enables us to
rewrite the Hamiltonian H⋆

tot as

H⋆
tot(p⋆, q⋆) = H•(p⋆) + ε H̄1(p⋆) + ε2 H2(p⋆, q⋆), (2.7)

where H• is the unperturbed part, H̄1 is a perturbation of the order of
ε averaged over the fast changing angle and H2 is a perturbation of the
order of ε2, p⋆ denotes the canonically transformed action and q⋆ the angle
variables.

Let us discuss the dynamics of an integrable system in n = 3 dimen-
sions which is in general represented by the Hamiltonian H•(p), so is in-
dependent of the angles q. The equations of motion read

ṗj = −∂H•
∂qj

(p) = 0, q̇j =
∂H•
∂pj

(p) ≡ ωj(p), 1 ≤ j ≤ n. (2.8)

It follows from the equations of motion that the actions pj are constants of
motion and the angles qj have constant frequencies ωj.

A torus Tn is a n−dimensional manifold which admits n independent
angles as a global coordinate system. In the motion described by (2.8), the
angles circulate with constant frequencies on tori defined by p = const.
The tori with p = const. (constants of motion) are invariant for the dy-
namics in the sense that the trajectory with the starting point on the torus
will never leave the torus. The phase space is foliated in invariant tori,
because every initial condition p(0), q(0) generates motion on the invari-
ant torus. The motion of the angles on a torus depends on the frequencies
ωj(p). If the frequencies ωj(p) admit k = (0, . . . , 0) as a unique integer
solution of the equation

k · ω =
n

∑
j=1

kj ωj = 0, k ≡ (k1, . . . , kn) ∈ Z
n, (2.9)

the motion densely covers the torus. Thus, the frequencies are said to be
non-resonant and the motion is called quasi-periodic.
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On the contrary, if equation (2.9) admits n − 1 independent integer
nonzero vectors k1, . . . kn, the motion on the torus is periodic. In this case
it is easy to express the n − 1 angles as periodic function functions of a
unique angle. The frequencies are said to be completely resonant.

From now on we use e, i, ω and Ω as symbols for the averaged orbital
elements, unless stated otherwise. The temporal evolution of the averaged
orbital elements e, i, ω and Ω influenced by an axially perturbed potential
has an oscillative pattern – see Fig. 2.1. The frequency of oscillations is
directly proportional to the mass of the ring. The amplitude of the oscil-
lation depends on the properties of the ΦCND potential and on the orbital
elements of the test particle. There are other integrals of motion besides
the semi-major axis a. One of them is the quantity c1 proportional to the
z-component of the angular momentum:

c1 =
√

1 − e2 cos i, (2.10)

which is known as the Kozai integral. According to the “averaging” tech-
nique, the revolution-averaged value of the perturbation potential ΦCND

is also an integral of motion. These three integrals of motion represent a
set of helpful tools for exploration of the oscillations of the orbital elements
e, i and ω. Let us show the evolution of a stellar orbit in an evolutionary
diagram in Fig. 2.2. In the polar coordinate grid, where e is the radial co-
ordinate and ω represents the angular coordinate, we plot the isocontours
of the one-revolution averaged Φ.

The Hamiltonian perturbation theory and the “averaging” technique
enable us to split the expression of the Hamiltonian of the system into
the unperturbed part and into the perturbed part, which are both time in-
dependent. Another reasonable assumption of the perturbation theory is
that the contribution of the perturbed part to the Hamiltonian of the sys-
tem is much smaller, almost negligible, than the unperturbed one. Thus,
the dominance of the unperturbed, purely Keplerian, part of the Hamilto-
nian and the fact that Φ is an integral of motion allow us to investigate the
evolution of the averaged value of the perturbing potential ΦCND along
the Keplerian orbit. The initial conditions for integration of such a trajec-
tory are given by a set of Keplerian orbital elements. The initial eccentricity
e and argument of periapsis ω are given by the position of the trajectory
in the evolutionary diagram. The time independence of the whole Hamil-
tonian enables us to choose an arbitrary value of the time of pericentre
passage T0 and of the longitude of the ascending node Ω. The semi-major
axis a is constant in the evolutionary diagram, and so is the Kozai integral
c1, which determines the initial inclination i according to relation (2.10).
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Figure 2.1: Comparison of the temporal evolution of the orbital elements of a test
particle influenced by a Keplerian potential (dash line), or by an axially perturbed
Keplerian potential with the perturbation mass MCND/M• = 0.3 (dash-dot line)
or 0.6 (solid line) obtained by numerical integration of the exact equations of mo-
tion. Orbital elements of a test particle influenced by a purely Keplerian poten-
tial are constant. On the contrary, the presence of an axisymmetric perturbation
causes oscillations of e, i, ω and Ω. The amplitude of oscillations is determined
by the ΦCND properties. The frequency of oscillations is directly proportional to
the mass of the perturbation. Note the different period of Ω and the period of
the other three orbital elements. Such temporal evolution was obtained by nu-
merical integration of the exact equations of motion. In our simulations we used
a Runge-Kutta integrator of the 4th order with an adaptive stepsize control. The
orbital elements shown in this Figure are the one-revolution averaged values ob-
tained from the current positions and velocities by virtue of the Laplace method
of coordinates determination.
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Figure 2.2: Evolutionary diagrams of a stellar orbit. The four panels show iso-
contours of the averaged axisymmetric perturbing potential for a test particle
with fixed a = 0.04 pc and for different values of c1 = 0.15, 0.35, 0.55, 0.75. The
polar coordinates are the eccentricity e (radial) and the argument of periapsis ω
(angular coordinate) in these diagrams. Separatrix is depicted with a thick dash
line. Note the decrease of the emax with the increase of c1.
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The diagrams show properties of the orbital elements evolution listed be-
low.

• Evolutionary diagram consists of two different regions: the libra-
tional region and the circulation region. In the librational region
ω periodically oscillates in a limited range of values ⊂ [0 ◦; 360 ◦),
while in the circulation region it changes secularly over the whole
[0 ◦; 360 ◦) range.

• Value of emax is not equal to 1, but according to the value of the Kozai
integral c1, the eccentricity ranges e ∈ [emin; emax], where

emax =
√

1 − c2
1. (2.11)

• Maximal eccentricity emax is reached when ω = 90 ◦ or 270 ◦. In these
points the inclination reaches its minimal value imin. On the contrary,
the minimal eccentricity emin occurs when ω = 0 ◦ or 180 ◦, and the
inclination reaches its maximal value imax.

• Amplitude (emax − emin)
⋆

of eccentricity change of the whole ensem-
ble of possible trajectories is highest on the separatrix and damps
down to zero with increasing distance from the separatrix. In the re-
gion of libration of ω the amplitude equals zero for two points with
ω = 90 ◦ or 270 ◦ and e = emax. On the other hand, in the circulation
region the points of zero amplitude form a circle with radius emax.

As the averaged Φ is constant along the trajectory of the test particle,
we can consider contours of Φ as the evolutionary tracks of the stellar or-
bit. We show stellar tracks projected onto the evolutionary diagram in
Fig. 2.3. The tracks were obtained by integration of exact equations of mo-
tion of a test particle in the potential of the SMBH (2.2) axially perturbed
by an infinitely-thin ring (2.4). We highlight two characteristic trajectories
representative of two families of orbits, one family represents a particle
residing in the librational region, the other one belongs to the circulation
region family.

Another way of investigation of the temporal evolution of the orbital
elements e, i, ω and Ω is the solution of the quadrupole approximation to
the exact equations of motion. The multipole expansion of Hamiltonian
is commonly used in the exploration of a multiple hierarchical system.
Kozai, 1962, Lidov & Ziglin, 1976, and Kiseleva et al., 1998 used the quad-
rupole approximation for investigating a triple hierarchical system. The
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Figure 2.3: Stellar trajectory highlighted in the evolutionary diagram. The trajec-
tory was obtained by direct integration of the equations of motion of a test particle
with a = 0.04 pc (RCND/a = 45) for c1 = 0.35 influenced by an axisymmetric po-
tential (2.4) with MCND/M• = 0.05. The dash line denotes separatrix, with the
libration region inside the separatrix lobes, and the circulation region outside the
lobes. The thick lines denote a stellar orbit, one in the librational region, another
one in the circulation region.

quadrupole equations read

TK
de

dt
= +

5

2
e
√

1 − e2 sin2(i) sin(2ω), (2.12)

TK
di

dt
= −5

2

e2

√

1 − e2
cos(i) sin(i) sin(2ω), (2.13)

TK
dω

dt
=

1
√

1 − e2

{

2(1 − e2) + 5 sin2(ω)
[

e2 − sin2(i)
]}

, (2.14)

TK
dΩ

dt
= − cos(i)

√

1 − e2
[1 + 4e2 − 5e2 cos2(ω)], (2.15)

where TK =
4

3

(

MCND

M•

)−1( a

RCND

)−3 Porb

2π
(2.16)

is the characteristic timescale of the Kozai effect and the orbital period Porb

reads

Porb = 2π

√

a3

GM•
. (2.17)
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Two integrals of motion follow from these equations, the Kozai integral c1

given by (2.10), and

c2 =
[

2(1 − e2) + 5e2 sin2(ω)
]

sin2(i), (2.18)

which is proportional to the averaged value of the perturbing potential
Φ (Carruba et al., 2002). The detailed derivation of the quadrupole equa-
tions (2.12)-(2.15) is shown in Appendix A. Let us focus on the quadrupole
equations with emphasis on the mutual dependence of the four orbital
elements e, i, ω and Ω. From (2.12)-(2.14) it is obvious that the temporal
evolution of e, i and ω is mutually coupled. However, none of these three
orbital elements depends on the fourth orbital element Ω. On the contrary,
from (2.15) follows that Ω depends on those three orbital elements and is
independent of its value. This kind of coupled dependence is important
for preservation or destruction of any planar structure, e.g. the investi-
gated clockwise stellar disk. Since the e, i and ω evolutions are mutually
coupled and Ω stays apart, we can expect that characteristic timescales of
the change of e, i and ω will be similar, but the characteristic timescale of
Ω could be different, as we show in Section 2.2.3. Thus, the exploration
of Ω characteristic timescale, period PΩ, is the key to the limitation of the
mass of the circum-nuclear disk.

2.2.2 Spherical perturbation

In this section, we investigate the influence of the spherical cusp on the
temporal evolution of the orbital elements. The spherical perturbation
(2.3) to the central Keplerian potential causes an apsidal precession. The
precession rate is directly proportional to the mass of the spherical pertur-
bation.

We performed a set of direct numerical integrations of the equations of
motion of a test particle in order to probe the dependence of the preces-
sion rate on the total mass Msphe of the spherical perturbation and on the
power-law index α of the power-law mass-density distribution. The nu-
merical result is shown in Fig. 2.4. Ivanov et al., 2005 have expressed the
precession rate per one revolution δω of a stellar orbit induced by the gra-
vitational field of a stellar cusp as a function of the profile α and the total
mass Msphe of the cusp, the stellar semi-major axis a and the eccentricity e:

δω =
2

2 − α

Msphe

M•

(

a

Rsphe

)3−α √
1 − e2

e
×
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×
[

(7 − 2α) e
(

1 − e2
)5/2−α

A + (4 − α)
(

1 − e2
)7/2−α

B
]

, (2.19)

where A ≡
∫ π

0

dϕ

(1 + e cos ϕ)4−α
, (2.20)

B ≡
∫ π

0

cos φ dϕ

(1 + e cos ϕ)5−α
. (2.21)

The precession rate δω can be expressed in terms of elliptic integrals for
several half-integer values of α. δω for these values is shown in Fig. 2.4. We
show that for a given mass Msphe, the apsidal precession of the same test
particle with a given semi-major axis a can differ by an order of magnitude,
depending on the power-law index α. For a detailed derivation of (2.19)
see Ivanov et al., 2005.

We show the temporal evolution of the eccentricity e, argument of peri-
apsis ω, inclination i and longitude of the ascending of node Ω in Fig. 2.5.
Since the orbital elements a, e, i and Ω remain constant and the preces-
sion of ω does not scatter the spatial structure, the spherical cusp cannot
destroy the planar stellar disk.

Let us now discuss the effect of the ω precession on the evolution of
the orbital elements of a test particle influenced by the composed potential
(2.1). Ivanov et al., 2005 investigated a tidal disruption of stars in a stellar
cluster in the centre of a galaxy. They assumed that stars are moving in a
potential dominated by the SMBH, axially perturbed by a secondary black
hole and spherically perturbed by a spherical cusp of stars. They modified
the quadrupole equation for ω (2.14) by adding the precession term:

TK
dω

dt
=

1
√

1 − e2

{

2(1 − e2) + 5 sin2(ω)
[

e2 − sin2(i)
]}

− κ
√

1 − e2,

(2.22)
where the last term is the precession term:

κ = K

(

TK

Porb

)(

Msphe

M•

)(

a

RCND

)3−α Porb

2π

=
24−α

3
√

π

Γ
(

5
2 − α

)

Γ(3 − α)

Msphe

MCND

(

a

RCND

)−α

, (2.23)

where for small e

K = 23−α
√

π
Γ
(

5
2 − α

)

Γ(3 − α)
, (2.24)
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Figure 2.4: Apsidal precession as a result of direct numerical integration of equa-
tions of motion of a test particle influenced by the central potential field perturbed
by a spherical perturbation compared to Ivanov et al., 2005 formula (2.19) re-
sult for several special values of α. Different lines represent different values of
Msphe inside the sphere with radius Rsphe = 1.8 pc, Msphe = 10−3 M• to 1 M•
from the bottom to the top, with a logarithmic step. The thick line denotes
Msphe = 0.05 M•, which we further discuss in Section 2.2.3. The cusp with a
mass higher than Msphe/M• ≈ 0.14 (fifth line from the top) induces a lower apsi-
dal precession rate than the value expected from formula (2.19). This discrepancy
between the numerical result and the theoretical formula rose probably from the
fact that above a certain mass the cusp is too heavy to be treated as a perturbation.

e.g. K(1.75) = 5.70. Let us compare the frequency of ω due to the axi-
ally symmetric perturbation νquad and the frequency due to the apsidal
precession νsphe:

νquad ≡ 1

TK

1
√

1 − e2

{

2(1 − e2) + 5 sin2(ω)
[

e2 − sin2(i)
]}

, (2.25)

νsphe ≡ 1

TK
κ
√

1 − e2. (2.26)

The characteristic timescale of Kozai oscillations TK expressed in characteri-
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Figure 2.5: Temporal evolution of the averaged orbital elements of a test parti-
cle influenced by a spherically perturbed potential of Msphe/M• = 0, 0.0135 and
0.0675. The semi-major axis a = 0.2 pc is a constant of motion. The averaged
eccentricity e, the averaged inclination i and the averaged longitude of the ascen-
ding node Ω also remain constant. The presence of the spherical perturbation
exposes its power in the periodic changes of ω, the frequency of changes is di-
rectly proportional to the mass of the spherical perturbation, as we have seen in
(2.19). The change in the averaged ω itself does not scatter the spatial structures –
every disk-like structure remains disk-like while influenced just by the spherical
potential.
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stic values of parameters of our model reads

(

TK

Myr

)

= 0.5

(

MCND

M•

)−1( M•
3.5 × 106 M⊙

)−1/2

×

×
(

a

0.24 pc

)−3/2(RCND

1.8 pc

)+3

(2.27)
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Figure 2.6: νquad/νsphe for a test particle with a = 0.24 pc as a function of
Msphe/MCND and α. The thick vertical line represents Msphe/MCND accor-
ding to current observations, while the thin vertical line with arrow represents
Msphe/MCND = 1/22, the lower limit of the Msphe/MCND ratio interval for which
ω circulates through the whole [0 ◦; 360 ◦] range.

We show the possible range of νquad/νsphe for a test particle with a =
0.24 pc in Fig. 2.6. Since (2.24) is valid only for small e, we expect i to be
close to 90 ◦ due to the Kozai integral c1 constraint and the characteristic
behaviour of i and e described in Fig. 2.2 (evolutionary diagrams). Thus,
we focus our interest on i = 88 ◦, which is close to 90 ◦. For this incli-
nation, the amplitude of νquad/νsphe does not exceed a few percent of the
mean νquad/νsphe value for any ω. We plot νquad/νsphe as a function of
Msphe/MCND for different power-law profiles α of the spherical cusp. Our
simulations show that for νquad/νsphe . 0.05 the ω circulates, even though
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without the cusp it would just librate. The effect of the temporal evolution
of ω on the temporal evolution of e, i and Ω is discussed in the following
section.

2.2.3 Composed perturbation

We introduced the ratio νquad/νsphe as a tool for the evaluation of the
strength of the spherical component of our model of the Galactic Centre
in terms of the temporal evolution of ω. However, for the model with a
very light spherical cusp (MCND/Msphe & 20) we cannot use this criterion
for the comparison of frequency due to a typical non-linear temporal evo-
lution. Nevertheless, the strength parameter νquad/νsphe . 0.05 helps us
limit the set of the model parameters for which ω evolves very fast in time,
thus e and i oscillate very fast and with amplitudes of a few per mille to a
few percent, so that we can consider them constant.

In conclusion, the presence of even a light spherical perturbation to-
gether with an axi-symmetric perturbation with MCND/Msphe ≈ 20 re-
sults in the dominance of the apsidal precession term (2.26) over the quad-
rupole term (2.25). The apsidal precession also changes the qualitative
behaviour of ω. The presence of a relatively light spherical perturbation
MCND/Msphe = 4.5 results in an enlargement of the inner circulation re-
gion and a contraction of the libration region around the poles of the evo-
lutionary diagram, as we show in the top panels of Fig. 2.7. Adding the
spherical perturbation causes more than four times higher frequency of ω
compared to the frequency in the axially perturbed model. This change
of the temporal ω behaviour affects temporal evolution of e, i and Ω.
The apsidal precession significantly damps the amplitude and increases
the frequency of e and i oscillations. Since the temporal evolution of e,
i and ω cannot result in a deformation of the planar structure, the most
important qualitative behaviour for the deformation of the stellar disk
is that of Ω. For the model of the Galactic Centre with both perturba-
tions and MCND/Msphe . 20, Ω changes linearly with time instead of its
quadrupole-like behaviour (see Fig. 2.7), for i ≤ 90 ◦ Ω linearly decreases
with time, for i > 90 ◦ it linearly increases with time.

We show the characteristic temporal evolution of 2 test particles influ-
enced by realistic perturbations due to the observations: an axial one with
the mass-ratio MCND/M• = 0.33 and a spherical one with Msphe/M• = 1
in Fig. 2.8. We show that for such two test particles the period of the orbital
elements e, i and ω is ≈ 0.1 Myr, while the period of Ω is ∼ 215 Myr.
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Figure 2.7: Comparison of the orbital elements evolution for a test particle with
a = 0.2 pc influenced by an axially perturbed potential (MCND/M• = 0.3) with-
out a cusp (dash-dot) and with a spherical cusp (solid) with MCND/Msphe = 4.5.

The top left panel shows isocontours of ΦCND for such a particle, the top right
panel shows ΦCND+sphe. Note that the spherical perturbation causes an increase
of the frequency of oscillations and the amplitude damping for e, i.
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Figure 2.8: Temporal evolution of Ω, i, e and ω for two test particles with a =
0.24 pc (thick line) and a = 0.04 pc (thin line) in a realistic composed potential
with MCND/M• = 0.33 and Msphe/M• = 1. Note that the characteristic timescale
of change of e, i and ω is ∼ 0.1 Myr, while the Ω characteristic timescale is much
longer ∼ 215 Myr.

2.2.4 Consequences of PΩ

Since the frequency of ω change for MCND/Msphe / 20 is quite high com-
pared to the frequency of Ω, it enables us to average the quadrupole equa-
tion for Ω (2.15) over ω. Since i and e remain constant (at a first approxi-
mation) for fast changes of ω, the bracket-term in

TK
dΩ

dt
= − cos(i)

√

1 − e2

[

1 + 4e2 − 5e2 cos2(ω)
]

becomes constant and the term cos(i)√
1−e2

becomes also time-independent.

Therefore, the “averaged” equation (2.15) simplifies as

dΩ

dt
= − 1

TK

1 + 3
2e2

√

1 − e2
cos(i) =

const.

TK
. (2.28)

Since Ω changes linearly with time, we convert this rate to a periode PΩ|quad:

PΩ|quad = TK
2π

const.
(2.29)

=
4

3

(

MCND

M•

)−1( a

RCND

)−3 Porb

| cos(i)|

√
1 − e2

1 + 3
2 e2

. (2.30)
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Employing (2.27) and inserting characteristic values of parameters, PΩ|quad

reads
(

PΩ|quad

Myr

)

= 95

(

MCND

M•

)−1( M•
3.5 × 106 M⊙

)−1/2( a

0.24 pc

)−3/2

×

×
(

RCND

1.8 pc

)+3 | cos(88 ◦)|
| cos(i0)|

√
1 − e2

1 + 3
2 e2

. (2.31)

In order to confirm PΩ given by (2.30) we ran a set of numerical simu-
lations, where we integrated exact equations of motion of a test particle in
our Galactic Centre model. We were interested in the dependencies on pa-
rameters describing the Galactic Centre model and the orbit of a test par-
ticle PΩ(a0, e0, i0, ω0, Ω0; MCND, RCND; Msphe, α; M•). We have found that
PΩ indeed is described by (2.30). We compare the analytic result (2.30)
with results from numerical integrations of the exact equations of motion
in Fig. 2.9. We plot isocontours of the surface ∆Ω(6 Myr)(| cos(i0)|, MCND)
for a test particle with a = 0.24 pc in Fig. 2.9. As we show in this Fig-
ure, the analytic formula (2.30) is consistent with numerical results for
| cos(i0)| ∈ [cos(89.5 ◦); cos(40 ◦)]. For | cos(i0)| & cos(40 ◦) the analytic
formula overestimates the ∆Ω value obtained from the solution of the ex-
act equations of motion by a few percent. For | cos(i0)| . cos(89.5 ◦) the
analytic formula overestimates the numerical result by ≈ 10%. Conside-
ring the errors of the determination of the angle between the normal vec-
tor to the circum-nuclear disk and that to the clockwise stellar disk, we can
conclude that the analytic formula (2.30) gives a sufficiently accurate esti-
mate of the Ω precession for particles with an inclination from the range
of the observed inclinations and far beyond.

Since Ω changes linearly with time, the period PΩ can be converted
into Ω(t) as follows

Ω(t) = Ω(t) =























Ω(0) − 360 ◦ × t

PΩ

for i0 ≤ 90 ◦,

Ω(0) + 360 ◦ × t

PΩ

for i0 > 90 ◦,

(2.32)

where the subscript (t) denotes the time dependence.
Let us recapitulate the most significant dependencies of Ω:

∆Ω(t) ≡ Ω(t) − Ω(0) ∝

(

MCND

M•

)+1

a+3/2 cos(i0) (2.33)
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Figure 2.9: Isocontours of the surface ∆Ω(6 Myr)(| cos(i0)|, MCND) for a test parti-
cle with a = 0.24 pc. The isocontours are straight diagonal lines labelled by the
po-wers of 2 in units of degrees per 6 Myr. The slopes of isocontours are given by
formula (2.30). The three slightly curved thick lines are numerically obtained iso-
contours of the Ω precession. The formula (2.30) gives us a very accurate estimate
of the Ω precession (compared to the Ω precession obtained by a numerical inte-
gration of the exact equations of motion) for initial inclinations i0 ∈ [40◦; 89.5◦].
This range is sufficient according to the observed inclinations of the clockwise
disk stars i ≈ 89◦. The vertical lines denote the initial inclinations from right to
left: 0 to 70◦ with step 10◦; 80◦ to 88◦ with step 1◦ and 89.0◦ to 89.9◦ with step 0.1◦.
The horizontal line denotes the current mass estimate by Christopher et al., 2005.
Note the shaded half-plane below the Ω = 16◦ per 6 Myr, which restricts the pos-
sible i0-MCND values due to the current NIR observations of the clockwise stellar
disk, as we discuss in Chapter 3.
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Consider a set of test particles moving in the model (2.1) of the Galactic
Centre. The model is described i.a. by the mass of the axi-symmetric per-
turbation MCND. Thus, the direct proportionality between Ω and MCND

suggests that for some masses of CND the precession is too high to pre-
serve the disk-like structure of the stellar disk. This enables us to exclude
the half-plane given by ∆Ω(t) > ∆Ωcrit from our considerations, as we
show in Fig. 2.9.

Let us discuss the precession of Ω in the case of a set of test particles
moving in a specific model of the Galactic Centre (2.1) with a given M•,
MCND and Msphe, RCND and α. Since the dependence on the orbital ele-
ments e, ω and T0 are insignificant for our discussion, we focus only on
the dependence on a and i0.

According to the NIR observations by Paumard et al., 2006, the outer
part of the stellar disk is worse defined as a planar structure. Thus, we
are concerned just with the inner part of the stellar disk, i.e. the part with
a ∈ [0.04; 0.24] pc. The dependence on the semi-major axis a

∆Ω(t) ∝ a+3/2

is quite strong and can remarkably warp the stellar disk. Moreover, it tells
us that a test particle with a = 0.24 pc undergoes a 15× larger change of
Ω than a particle with a = 0.04 pc, assuming these two particles had such
initial inclinations that absolute values of their cosines were equal.

Let us consider two test particles with the same semi-major axes a mo-
ving in the same model of the Galactic Centre, but with different initial
inclinations. While

∆Ω(t) ∝ cos(i0),

the cos(i0) factor permits a difference in the Ω precession by the order of
several magnitudes, depending on i0 values. It is a very distinctive fac-
tor for inclinations close to 90 ◦, where a small change of i0 causes several
orders of magnitude large changes of cos(i0), and less important for incli-
nations close to 0 ◦ or 180 ◦. Thus, a combination of characteristic values
of a and i0 of the test particles from the set representing the stellar disk are
the key to the exploration of the deformation of the stellar disk in a given
Galactic Centre model, i.e. for fixed values of parameters describing (2.1).
On the contrary, the other orbital elements such as e, ω, Ω and T0 and
power-law profile of the spherical cusp α are less important parameters
for the Ω precession, as well as for the stellar disk deformation.



3 On The Deformation Of Stellar
Disk

In this Chapter we discuss consequences of the application of the knowl-
edge of the period PΩ on the exploration of the stellar disk deformation.
In the first section we formulate a criterion for the disk deformation due to
the cone of angular momentum vectors for all test particles from the disk.
This criterion is modified in the second section for the purposes of the in-
vestigation of the angular momentum cone of particles at the outer margin
of the considered part of the stellar disk. In the third section we discuss
suitability of the criterion of the projection of the angular momentum to
the line-of-sight direction proposed by Genzel et al., 2003.

3.1 Cone of angular momentum vectors of the

whole stellar disk

In Chapter 2, we described the qualitative behaviour of the orbital ele-
ments of a test particle moving in our model (2.1) of the Galactic Centre,
consisting of a super-massive black hole, an axially symmetric and a sphe-
rical perturbation. We have shown that the axially symmetric perturbation
causes oscillations in e, i, ω and Ω. We have shown that the presence of
even a light spherical perturbation causes an apsidal precession, which at-
tenuates the amplitudes of the e and i oscillations appearing in the axially
perturbed potential, so we can treat them as constant in time. Moreover,
the apsidal precession rate results in a linear temporal evolution of Ω. We
introduced the period of the Ω precession in equation (2.30).

In investigation of the deformation of the stellar disk, we assume that
the stellar disk is a stable structure for 6 Myr, i.e. the timespan equal to the
age of the stars as given by observations.

First, let us define Criterion 1, which gives us an estimate whether the
disk is deformed or not, based on our knowledge of PΩ from (2.30).

Criterion 1. The stellar disk has lost its initial planar structure, i.e.
is deformed, if ∆Ωmax is larger than a critical value ∆Ωcrit.

28
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This Criterion has been expressed already in Section 2.2.4 and it is visu-
alised in Fig. 2.9, where we shaded the half-plane of the possible [i0; MCND]
pairs for a test particle with a = 0.24 pc, which fulfil Criterion 1 for ∆Ωcrit =
16 ◦. Let us assume that the disk particles have inclinations from a range
i ∈ [imin; imax] ⊂ [0 ◦; 90 ◦]. 1 Then the largest precession of Ω occurs for
the particles at the outer margin of the considered disk – let us denote
them by a[6] = 0.24 pc = 6 ” from now on – with i = imin. In contrast,
the smallest precession of Ω occurs for particles at the innermost part of
the stellar disk – let us denote them by a[1] = 0.04 pc = 1 ” – with the
inclination i = imax.

However, in this Section we formulate another Criterion, which brings
into play the maximal amount of information we know from the temporal
evolution of the orbital elements. Criterion 2 concerns the cone of angu-
lar momentum vectors – hereafter denoted as the Cone – of all the test
particles from the stellar disk for the description of the disk deformation.
The definition of a unit angular momentum vector of a test particle with
inclination i and longitude of the ascending of node Ω at time t reads

L
(t)

=





+ sin[i(t)] sin[Ω(t)]
− sin[i(t)] cos[Ω(t)]

+ cos[i(t)]



 . (3.1)

Knowledge of Ω(t, a, i0, MCND, . . .) from (2.32) and the initial distribution
of inclinations enables us to reconstruct the Cone at an arbitrary time t > t0

and evaluate the disk deformation in terms of the opening angle of this
Cone.

This tells us that the opening angle of the Cone is determined by the an-
gle ∆ between the two “furthest” particles, particle with (a = 0.04 pc, imax)
denoted with the subscript [1], and a particle with (a = 0.24 pc, imin) de-
noted with the subscript [6]:

cos[∆(t)] ≡ L(t)[1] · L(t)[6]. (3.2)

It follows from the ∆ definition that ∆ ∈ [0 ◦; 180 ◦]. We have searched for
the dependence of the Cone opening angle ∆ on the initial distribution of
Ω0 ∈ [Ω0, min; Ω0, max]. We have obtained the largest opening angle for a
single value of Ω0, i.e. for Ω0 = Ω0, min = Ω0, max. The initial opening

1The range i ∈ [imin; imax] ⊂ [0 ◦; 90 ◦] is chosen just for simplicity – the relation (2.32)
is symmetric for inclinations from the range i ∈ [0 ◦; 90 ◦] and i′ = 180 ◦ − i.
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angle ∆(0) of the Cone reads

cos ∆(0) ≡ L(0)[1] · L(0)[6]

= cos
(

i[6]

)

cos
(

i[1]

)

+ sin
(

i[6]

) (

i[1]

)

cos
[

δΩ(0)

]

, (3.3)

where δΩ(0) ≡ Ω(0)[6] − Ω(0)[1], (3.4)

i[1] = i(0)[1] = i(t)[1] = imax, (3.5)

i[6] = i(0)[6] = i(t)[6] = imin, (3.6)

and the subscript (t) denotes the time dependence, i.e. (0) ≡ (t=0). Let
us formulate the criterion of the disk deformation in terms of the Cone
opening angle ∆(t) at an arbitrary time t > 0:

Criterion 2. The stellar disk has lost its initial planar structure, i.e.
is deformed, if the Cone opening angle ∆(t) is larger than a critical
value ∆crit.

The opening angle ∆(t) expressed in terms of the two “furthest” angular
momentum vectors reads:

cos ∆(t) ≡ L(t)[1] · L(t)[6]

= cos
(

i[6]

)

cos
(

i[1]

)

+ sin
(

i[6]

)

sin
(

i[1]

)

cos
[

δΩ(t)

]

,(3.7)

where

δΩ(t) ≡ Ω(t)[6] − Ω(t)[1]

= δΩ(0) − t (GM•)+1/2

(

MCND

M•

)+1

R−3
CND

1 + 3
2e2

√
1 − e2

×

×
[

a+3/2
[6]

cos(i[6])− a+3/2
[1]

cos(i[1])
]

(3.8)

Let us explore the Cone in a given model of the Galactic Centre. As-
sume that the innermost particle has the inclination i[1] = 90 ◦. Accor-
ding to formula (2.32), Ω[1] of this particle is constant, thus angular mo-
mentum vector L[1] of such particle is a constant vector. Therefore, the
size of the Cone opening angle depends on the direction of the angular
momentum vector L(t)[6] of the outermost particle. In Fig. 3.1 we show

the contour ∆crit = 14 ◦ of the surface ∆(6 Myr)(cos(i[6]), MCND). For the
outermost test particle moving in the given model of the Galactic Centre
(given MCND and the other parameters describing the potential (2.1)) this
∆(6 Myr) = ∆crit contour intersects in a single point [cos(i[6]); MCND; ∆crit].
Since we expect the outermost particle to have the minimal inclination imin

in the sense that | cos(imin)| is minimal in the ensemble of the test particles,
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Figure 3.1: Constraints on the initial inclination range by virtue of the Cone cri-
tical opening angle ∆(6 Myr)[6] = 14 ◦, denoted by the thick curved lines for dif-
ferent ages of the stellar disk population: 4 Myr (dots), 6 Myr (solid curve) and
8 Myr (dashed curve). The horizontal dashed line denotes the current mass es-
timate MCND = 1

3 M• by Christopher et al., 2005. The thick vertical line limits
the minimal inclination of 76 ◦, which represents the minimal inclination limit for
MCND = 0. The current MCND estimate implies that the initial inclination range
of the clockwise stellar disk could not be broader than ≈ 2 ◦ for the stellar age of
6 Myr.
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the choice of ∆crit constraints the range of the initial inclinations. The in-
tersection point of contour ∆(6 Myr) = ∆crit with given MCND line tells us
what the characteristic range of initial inclinations should be so that the
Cone opening angle is ∆crit or smaller. For MCND/M• = 1

3 , ∆crit = 14 ◦

and stellar age 6 Myr the characteristic width of the inclination range can-
not exceed 2 ◦. Variation of the stellar age within the range (6 ± 2) Myr
results in the characteristic width of the inclination range in [1.5 ◦; 3 ◦].

On the other hand, fixation of the characteristic width of initial incli-
nation range ≈ 2 ◦ and variation of the Galactic Centre model (variation
of MCND) tell us that for the stellar age within (6 ± 2) Myr the mass of
the circum-nuclear disk should be MCND ∈ [0.25; 0.4] M•. This finding
shows that the NIR observations of the positions, proper motions and ra-
dial velocities of young stars in the Galactic Centre are in a perfect agree-
ment with the radioastronomical determination of the mass of the circum-
nuclear disk.

The choice of ∆crit plays a role of a free parameter in the evaluation of
the disk deformation. Paumard et al., 2006 analysed positions, proper mo-
tions and radial velocities of several stars of the clockwise stellar disk and
affirmed that this stellar disk has an opening angle ≈ 14 ◦. They confirmed
the values of the opening angle proposed by Genzel et al., 2003, Levin &
Beloborodov, 2003 and Beloborodov et al., 2006.

We plot three examples of the Cone in Fig. 3.2. The Cone is visualised
as the Aitoff projection of a set of angular momentum vectors on a sphere
in the (i; Ω) grid. We assume that the stellar disk is a stable structure for
6 Myr and that initially inclinations and semi-major axes were distributed
uniformly and Ω(0) = 0 ◦ for all particles. According to the findings about
the i and Ω temporal evolution, we plot the Cone at the time of 6 Myr
afterwards, in order to visually compare its opening angle for different
initial inclination ranges.

Let us compare the deformation of the stellar disk according to the Cri-
terion 1 and to the Criterion 2. In Fig. 3.3 we show the contours ∆(6 Myr) =

∆crit for several ∆crit ∈ [0.125 ◦; 90 ◦] and the contour ∆Ω(6 Myr)[6] = 16 ◦.

Let us focus on a given Galactic Centre model with MCND = 1
3 M• and

the stellar age 6 Myr. For ∆Ωcrit = 16 ◦ Criterion 1 tells us that the stellar
disk is deformed if the characteristic width of the initial inclination range
is larger than ≈ 3 ◦. On the other hand, for ∆(6 Myr) = 16 ◦ Criterion 2
tells us that the disk is deformed if the characteristic width of the initial
inclination range is larger than ≈ 2 ◦. However, the difference of the sin-
gle degree does not play an important role in observations, since the angle
between the normal vectors to the CND and to the stellar disk cannot be
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Figure 3.2: Aitoff projection of the Cone in the (i; Ω) grid. The chosen model
of the Galactic Centre consists of a super-massive black hole M• = 3.5 × 106M⊙,
Msphe = M•, α = 1.75, MCND = 1

3 M• and RCND = 1.8 pc. The stellar disk
ensemble consists of 250 particles with a uniform distribution of semi-major axes
a ∈ [0.04; 0.24] pc and a uniform distribution of initial inclinations i0 ∈ [imin; 90 ◦]
for imin = 80 ◦, 85 ◦ and 88 ◦.
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determined with such an accuracy nowadays.
In conclusion, the assumption of stability of the stellar disk over the ti-

mespan of the stellar age, the observational evidence that the stellar disk is
almost perpendicular to the circum-nuclear disk and the choice of ∆crit =
14 ◦ tells us that the initial structure was well defined as a planar structure
with an opening angle . 2 ◦. This finding suggests that the stellar disk
formed rather via fragmentation of an accretion disk than by an infall of a
stellar cluster.
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Figure 3.3: Contours of the surface ∆(6 Myr)(cos(i[6]), MCND) for i[1] = 90 ◦.
Solid line contours are labelled by the value of ∆(6 Myr) in degrees. The diag-
onal dash-dot line represents the contour Ω(cos(i[6]), MCND) = 16 ◦. The cur-
rent mass-estimate by Christopher et al., 2005 is denoted by dashed horizontal
line. The shaded area represents region where the Criterion 1 is never fulfilled
(∆Ω(6 Myr)[6] > ∆Ωmax). Chosen ∆(6 Myr)(cos(i[6]), MCND) = ∆crit < 90 ◦, the con-
tour intersects with chosen MCND line at most in 1 point, which denotes imin for
the Galactic Centre model. If the particles of the stellar disk have inclinations
from the range i0 ∈ [imin; imax], then according to the Criterion 2, the disk has pre-
served its initial disk-like structure. If i[6] ∈ [0; imin) for given MCND and ∆(6 Myr),
the disk loses its disk-like structure, according to the Criterion 2.
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3.2 Cone of angular momentum vectors at a[6]

In this section we discuss the opening angle of the cone of angular momen-
tum vectors – hereafter the Cone[6] – of particles from the outer margin of

the stellar disk, particles which have a[6] ≡ a = 0.24 pc = 6 ′′, and the
connection of the Cone[6] opening angle to the Cone opening angle.

In the previous Section we discussed the deformation of the whole stel-
lar disk in terms of the Cone of angular momentum vectors of all particles
from the stellar disk. As we have shown, the deformation of the disk at a
time t > 0 depends on the initial configuration of the stellar disk. If the
initial configuration of the stellar disk is such that the innermost particles,
those with a[1], have an inclination very close to i = 90 ◦, their angular mo-
mentum vectors will remain (almost) constant vectors for all times. Thus,
the deformation of the whole stellar disk is then given by the change of
L[6] direction from its initial position. Let us consider the relation between
the deformation of the whole disk and the deformation of the outer mar-
gin of the disk and let us ask, whether Criterion 2 was convenient for the
description of the deformation of the stellar disk or not. Let us define the
angle δ(t) between the two “furthest” particles at a[6], i.e. two particles
with marginal inclinations of the inclination range, in a similar way as the
angle ∆(t) for the whole disk:

cos δ(t) ≡ L(t)[6], imin
· L(t)[6], imax

= cos
(

i[6], min

)

cos
(

i[6], max

)

+ sin
(

i[6], min

)

sin
(

i[6], max

)

×

× cos

{

δΩ(0)[6] − t (GM•)+1/2

(

MCND

M•

)+1

R−3
CND a+3/2

[6]
×

× 1 + 3
2 e2

√
1 − e2

[

cos(i[6],max)− cos(i[6],min)
]

}

(3.9)

Let us ask a question, what the initial inclination range of the particles
with a[6] should be, so that the outer margin of the inner part of the disk is
warped? For this purpose we formulate the third Criterion:

Criterion 3. The outer margin of the stellar disk is warped, if the
Cone[6] opening angle δ(t) is larger than a critical value δcrit.

To answer the question, we must consider the choice of δcrit value. Accor-
ding to the current NIR observations of young stars in the clockwise stellar
disk, we use δcrit = 14 ◦. Consider the Cone[6] with two “furthest” parti-
cles. Assume that particle 1 has the maximal inclination imax of the a[6]
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Figure 3.4: Contours of δ(6 Myr)(cos(imin), MCND) = 14 ◦. Choice of imax de-
termines the imin due to (3.9). Every vertical imax line has its corresponding
imin-curve counterpart, the region between the line and the curve has a “drop”
like shape. The thick dashed line figures ∆(6 Myr) = 14 ◦ curve. Note that for
imax = 90 ◦ the ∆(6 Myr) = 14 ◦ and δ(6 Myr) = 14 ◦ curves are identical, i.e. both
Criterions give the same results for the determination of the stellar disk deforma-
tion. The shaded area emphasizes the “drop” with imax = 89 ◦. Thick diagonal
dash-dot line denotes Ω(6 Myr)[6] − Ω(0)[6] = 14 ◦.
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ensemble and the particle 2 has the minimal inclination imin. Criterion 3
and equation (3.9) tells us that the outer margin of the inner part of the
stellar disk is warped at a time t > 0, if δ(t) > δcrit. In Fig. 3.4 we show
the regions of the initial configuration of a few pairs of the “furthest” a[6]
particles. By choosing imax denoted at the top of Figure, we see what is the
possible imin, such that for the given Galactic Centre model (given MCND)
the outer margin is not warped at a time t > 0 yet. The region inside
the imax and imin lines fulfils the condition δ(t) < δcrit. In Fig. 3.4 we as-
sume the stellar age of 6 Myr. Nevertheless, a variation of the age within
the range (6 ± 2) Myr would cause a vertical shift of the “drop” region.
Variation of the δcrit choice causes a widening of the “drop” region – the
minimal inclination shifts towards lower values (higher cos(imin) values)
for δcrit > 14 ◦, and narrowing of the “drop” for δcrit < 14 ◦. The imax

border would remain preserved.
Let us discuss the deformation of the stellar disk according to Crite-

rion 2 and Criterion 3 at the same time, let ∆crit = δcrit = 14 ◦ and the stel-
lar age be 6 Myr. For a fixed model of the Galactic Centre, MCND = 1

3 M•,
Criterion 2 tells us that the whole disk is not deformed (∆(6 Myr) ≤ 14 ◦)

for every i0 ∈ [88 ◦; 90 ◦]. If imax = 90 ◦, Criterion 3 tells us that if the in-
clination range for the a[6] particle is the same, i[6] ∈ [88 ◦; 90 ◦], the outer
margin is now warped. If imax < 90 ◦, we can find the minimal incli-
nations, which suggest that despite the fact that the outer margin is not
warped (δ(t) < δcrit), the whole disk has already lost its disk-like structure
(∆(t) > ∆crit).

In conclusion, the choice of Criterion for the evaluation of the disk de-
formation influences the mass ranges of MCND and the initial inclinations
of the disk stars we estimate. Since we are interested in the deformation of
the whole stellar disk, we find Criterion 2 more convenient for the deter-
mination of the initial inclination range than Criterion 3 in a given Galactic
Centre model.

3.3 Angular momentum projected to the direc-

tion of line-of-sight

In this section we discuss the evaluation of the disk deformation in terms
of the angular momentum projected to the direction of the line-of-sight.
Genzel et al., 2003 defined a normalised angular momentum with respect
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to the line of sight as

j ≡ Jz

Jz, max
=

xvy − yvx
√

(x2 + y2)
(

v2
x + v2

y

)

. (3.10)
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Figure 3.5: Distribution of the projected and normalized angular momentum on
the sky j = Jz/Jz,max (3.10) for the early-type stars as a function of the projected
separation p from Sgr A⋆ (for p > 0.08”). In this diagram stars on projected
tangential, clockwise orbits are at j ≃ +1, while stars on the tangential, counter-
clockwise orbits are at j ≃ −1. Stars at j ≃ 0 are on projected radial orbits.

They used this quantity as a way to distinguish stars on projected clock-
wise orbits (j ≃ +1) from those on projected counter-clockwise orbits
(j ≃ −1). This quantity is also a good tool for discrimination between
the projected tangential (|j| ≃ 1) and the projected radial (|j| = 0) orbits.

However, we show that this quantity is an ambiguous and useless tool
for the evaluation of the disk deformation from the observed data. We re-
produce Fig. 3 from Paumard et al., 2006 in our Fig. 3.5, which shows the
normalised angular momentum along the line-of-sight as a function of the
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projected radial separation p =
√

x2 + y2 from Sgr A⋆ . Let us investigate
properties of the projected and normalised angular momentum j as a func-
tion of the angle between the direction of line-of-sight and the direction of
the normal vector to the stellar disk in case of a test particle moving in a
pure Keplerian potential. In the frame corotating with the particle we can
describe the position q and velocity q̇ of the particle with a set of orbital
elements as follows:

q =
[

a(cos E − e); a
√

1 − e2 sin E; 0
]

, (3.11)

q̇ =

[

− na sin E

1 − e cos E
;

na
√

1 − e2 cos E

1 − e cos E
; 0

]

, (3.12)

where a is the semi-major axis, e eccentricity, E the mean anomaly and n is
the mean motion

n =

√

GM•
a3

(3.13)

Let us define a coordinate frame in the way that its equatorial plane is
identical with the plane of the sky and the z axis of this frame is parallel to
the direction of the line-of-sight. Then the positions r and velocities ṙ of a
test particle expressed in this frame read

r = Rxq · q = [x; y; z], (3.14)

ṙ = Rxq · q̇ = [vx; vy; vz], (3.15)

where the matrix of transformation reads

Rxq =





cos (Ω) cos (ω) − sin (Ω) cos (i) sin (ω)
sin (Ω) cos (ω) + cos (Ω) cos (i) sin (ω)

sin (i) sin (ω)

− cos (Ω) sin (ω) − sin (Ω) cos (i) cos (ω)
− sin (Ω) sin (ω) + cos (Ω) cos (i) cos (ω)

sin (i) cos (ω)

sin (Ω) sin (i)
− cos (Ω) sin (i)

cos (i)





(3.16)
From (3.10) with the use of (3.14) and (3.15) it follows that j is a function of
the angle between the direction of the line-of-sight and the direction of the
normal vector to the stellar disk, which we denote i here. In conclusion, j
depends on (a, e, i, ω, E), but j does not depend on Ω at all.
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Figure 3.6: Normalised angular momentum of an isotropic stellar cluster. Top
panel: Cumulative probability that j(p) of a chosen star is larger than a characteri-
stic (chosen) value. j(p) is uniformly distributed in an isotropic cluster. Bottom
panel: Histogram of distribution of j(p) in an isotropic stellar cluster.
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Paumard et al., 2006 in a figure similar to Fig. 3.5 show what is the
j(p) distribution for the clockwise disk stars. The stars from the inner part
of the clockwise stellar disk, i.e. stars within a . 6” = 0.24 pc have j
close to +1 (within errorbars), while the stars from the outer part of the
disk, with a & 6” reveal a deflection from j ∼ +1 to radial orbits (j ∼ 0).
This deflection can be a sign of a disk deformation, but the errorbars of
the measurements of stars in this region are much larger than those from
the inner part. Let us further discuss how the stellar disk deformation
influences the j(p) diagram.

Firstly, let us discuss what the j(p) looks like in the case of an isotropic
stellar cluster. We have set up a cluster of test particles in an external Kep-
lerian potential with an isotropic spatial distribution, and velocities which
correspond to a Keplerian orbit at given position. In Fig. 3.6 we show what
the histogram of j(p) for such a cluster looks like. Despite the fact that an
isotropic cluster has the most of stars on tangential orbits, either clockwise
(j ≃ +1) or counter-clockwise (j ≃ −1), the cumulative probability that
a chosen star from the ensemble has j(p) larger than some characteristic
value is approximatively linearly decreasing. Thus, if we have observed
an isotropic stellar cluster instead of a stellar disk, we would have seen a
uniformly distributed j(p).

Paumard et al., 2006 have determined the eccentrities of the stellar po-
pulation from the clockwise stellar disk as intermediate (. 0.4). In Fig. 3.7
we show the cumulative probabilities that j(p) is larger than a characteri-
stic value for different small to intermediate eccentrities and different incli-
nations. According to Paumard et al., 2006 the angle between the normal
vector to the clockwise stellar disk and the direction of the line-of-sight is
≈ 53 ◦. However, for inclinations i . 50 ◦ and i & 130 ◦ it is quite impos-
sible to determine the inclination from the observational j(p) data. The
quantity j would be more helpful, if the clockwise stellar disk was at least
≈ 10 ◦ more side-on. As this is not the case, the normalised angular mo-
mentum j projected to direction of the line-of-sight is inconvenient quan-
tity to explore the small deformation (∆(6 Myr) ≈ 10 ◦) ≈ 50 ◦ angle-wise,
i.e. for the exploration of the deformation of the clockwise stellar disk.
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4 Conclusions

Model We modelled the motion of stars from the clockwise stellar disk
in the dominating Keplerian potential of Sgr A⋆ perturbed by the circum-
nuclear disk and the spherical cluster of old stars. The stars of the stellar
disk were modelled as test particles moving in the composed potential.
We assumed the stellar disk is a stable structure in the timespan of 6 Myr.

Results We found that the presence of the spherical stellar cluster with
the total mass Msphe/MCND & 1/20 increases the frequencies and damps
the amplitudes of the oscillations of the eccentricity e and the inclination i
due to the apsidal precession ω. Fast changes of ω affect temporal evolu-
tion of the longitude of the ascending node Ω, which then precedes line-
arly with time.

We have explored the timescale of the Ω changes and its dependence
on a set of parameters describing the Galactic Centre model and the orbi-
tal elements of a test particle and shown these dependences in equation
(2.30). We used these findings about the temporal evolution of the orbital
elements in the investigation of the deformation of the stellar disk.

We found that the stellar disk formed almost perpendicular to the cir-
cum-nuclear disk. Furthermore, we found out that the stellar disk was
indeed a planar structure with the opening angle ≈ 2 ◦. Such an opening
angle requires a mass of the circum-nuclear disk in the range MCND ∈
[0.25; 0.4] M•, which embraces the current observational estimate by Chris-
topher et al., 2005.

Moreover, our model of the Galactic Centre shows that such a high col-
limation of the planar structure suggests that the stellar disk probably did
not form via an infall of a stellar cluster. However, the collimation indi-
cates that formation of the stellar disk via fragmentation of an accretion
disk is a plausible scenario.

Limitations We considered all potentials as purely Newtonian. There-
fore, the post-Newtonian approach represents a possible improvement on
the way to a more realistic description of the Galactic Centre environment.
We treated the CND as an infinitely thin ring. Thus, a consideration of

43
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other axially symmetric potentials comes into question.
Since we modelled the stellar disk as a set of test particles, we neglected

e.g. mutual interactions among stars. Consequently, our model does not
reflect the dynamical evolution of the young stellar cluster due to the two-
body relaxation, which could affect the deformation of the stellar disk in
the timespan of the relaxation time of the stellar cluster. We also neglected
any kind of non-gravitational interactions and the stellar evolution.

Outlook Despite all the simplifications we have made, our model of the
Galactic centre shows that the radioastronomical observations and mea-
surements of the circum-nuclear disk mass are in agreement with the dif-
fraction-limited NIR observations of the young stellar disk. Consequently,
with an improved observational instrumentation, observers acquire more
accurate measurements, which then provide us with better knowledge of
the environment required for the design of more precise models.



A The Quadrupole Equations

The quadrupole equations represent an approximative description of the
temporal evolution of the orbital elements of a satellite in the hierarchi-
cal three-body problem (star-planet-satellite). Here we present a more de-
tailed summary of the derivation of the satellite’s equations of motion,
which can be assembled from information found in Brouwer & Clemence,
1961 and in Ćuk & Burns, 2004.

In this Thesis we study the motion of a test particle under the influence
of axially symmetric and spherical perturbations to the central potential of
the super-massive black hole. If the spherical perturbation was sufficiently
negligible to the central mass potential, the quadrupole equations would
describe the motion of the test particle. The test particle would replace the
“satellite” in the following derivation, the axially symmetric perturbation
would then represent the “star” in the hierarchical model and the super-
massive black hole would then be the “planet”. Let us study the motion
of a satellite in a hierarchical triple system consisting of a star, a planet
orbiting the star, and a satellite orbiting the planet. Let the star (mass
M⋆) and the planet (mass Mpl) be considered as point masses and let the
mass of the satellite be negligible. Let x, y, z be the coordinates of the
satellite and x⋆, y⋆, z⋆ the coordinates of the star in a Cartesian coordinate
system with its centre at the planet position. The equations of motion for
the satellite are

d2x

dt2
+ GMpl

x

r3
=

∂R

∂x
,

d2y

dt2
+ GMpl

y

r3
=

∂R

∂y
, (A.1)

d2z

dt2
+ GMpl

z

r3
=

∂R

∂z
,

where r2 = x2 + y2 + z2, and R is the disturbing function describing the
influence of the star on the satellite:

R = GM⋆

(

1

∆
− xx⋆ + yy⋆ + zz⋆

r3
⋆

)

, (A.2)
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the distance of the star from the satellite ∆ is given by

∆2 = (x − x⋆)
2 + (y − y⋆)

2 + z2

= r2
⋆ + r2 − 2(xx⋆ + yy⋆)

= r2
⋆ + r2 − 2r⋆r cos ψ, (A.3)

where ψ is the angle between~r⋆ and~r. The orbit of the planet around the
star is considered to be an ellipse in a fixed plane, therefore the coordinate
system is chosen such that z⋆ = 0. From (A.3) it follows that

r⋆

∆
=

[

1 +

(

r

r⋆

)2

− 2
r

r⋆

cos ψ

]−1/2

. (A.4)

If the ratio ρ = r/r⋆ is sufficiently small, we can expand r⋆/∆ in terms of
ρ. In order to do so, it is useful to introduce substitution

2 cos ψ = η + η−1 (A.5)

and rewrite (A.4) in terms of ρ and η:

r⋆

∆
=
[(

1 − ρη
) (

1 − ρη−1
)]−1/2

. (A.6)

The use of the Taylor expansion and grouping together terms with the
same power in ρ, and trigonometric relations enable us to rewrite the r⋆/∆

ratio in terms of the Legendre polynomials with the argument cos ψ:

r⋆

∆
=

[(

1 − ρη
) (

1 − ρη−1
)]−1/2

=

(

1 +
1

2
ρη +

3

8
(ρη)2 +

5

16
(ρη)3 + . . .

)

·

·
(

1 +
1

2
ρη−1 +

3

8
(ρη−1)2 +

5

16
(ρη−1)3 + . . .

)

= 1 +
1

2
ρ(η + η−1) +

+ ρ2

[

1

4
+

3

8
(η2 + η−2)

]

+

+ ρ3

[

3

16
(η + η−1) +

5

16
(η3 + η−3)

]

+ . . .

= 1 + ρ cos ψ + ρ2

[

1

4
+

3

4
cos 2ψ

]

+ ρ3

[

3

8
cos ψ +

5

8
cos 3ψ

]

+ . . .

= 1 + ρ cos ψ + ρ2

[

−1

2
+

3

2
cos2 ψ

]

+ ρ3

[

−3

2
cos ψ +

5

2
cos3 ψ

]

+ . . .

r⋆

∆
= 1 + ρP1(cos ψ) + ρ2P2(cos ψ) + ρ3P3(cos ψ) + . . . (A.7)
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Since
xx⋆ + yy⋆

r3
⋆

=
r cos ψ

r2
⋆

= ρ
cos ψ

r⋆

and z⋆ = 0,

the disturbing function R can be written as

R =
GM⋆

r⋆

r⋆

∆
− GM⋆

xx⋆ + yy⋆

r3
⋆

− GM⋆

zz⋆

r3
⋆

=
GM⋆

r⋆

[

1 + ρP1(cos ψ) + ρ2P2(cos ψ) + ρ3P3(cos ψ) + . . .
]

− GM⋆

r⋆

ρ cos ψ

=
GM⋆

r⋆

[

1 + ρ2

(

−1

2
+

3

2
cos2 ψ

)

+ ρ3

(

−3

2
+

5

2
cos3 ψ

)

+ . . .

]

.

Finally, the term GM⋆/r⋆ does not depend on satellite’s coordinates, there-
fore it will not contribute to the right-hand sides of (A.1) and it is possible
to write the disturbing function R as follows:

R =
GM⋆

r⋆

[

(

r

r⋆

)2(

−1

2
+

3

2
cos2 ψ

)

+

(

r

r⋆

)3(

−3

2
+

5

2
cos3 ψ

)

+ . . .

]

.

Hence, the quadrupole approximation to the disturbing function Rq reads

Rq = GM⋆

r2

2r3
⋆

(

3 cos2 ψ − 1
)

. (A.8)

Spherical trigonometry provides us with expansion of cos ψ:

cos ψ = cos(ω⋆ + v⋆) cos(ω + v) + sin(ω⋆ + v⋆) sin(ω + v) cos i,

where ω⋆ is the argument of periapsis, v⋆ is the true anomaly of the star, ω
is the argument of periapsis, v is the true anomaly and i is the inclination
of the satellite’s orbit to the planet’s orbital plane. Thus, the quadrupole
disturbing function Rq can be written as

Rq =
GM⋆

2r3
⋆

(

3Rq,1 + 3Rq,2 + 6Rq,12 cos i − Rq,0

)

, (A.9)

where

Rq,1 = r2 cos2(ω⋆ + v⋆)
[

cos2(ω) cos2(v)−

−1

2
sin(2ω) sin(2v) + sin2(ω) sin2(v)

]

, (A.10)

Rq,2 = r2 sin2(ω⋆ + v⋆)
[

cos2(ω) sin2(v)+

+
1

2
sin(2ω) sin(2v) + sin2(ω) cos2(v)

]

, (A.11)
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Rq,12 =
1

4
r2 sin[2(ω⋆ + v⋆)] [cos(2ω) sin(2v)+

+ sin(2ω) cos(2v)] , (A.12)

Rq,0 = r2. (A.13)

In the equations (A.10)-(A.13) the dependence on ω and v is separated in
order to prepare the disturbing function for averaging over the satellite’s
orbital motion. We average Rq over v by integration

〈Rq,i〉 =
1

2π

∫ 2π

0
Rq,in dt. (A.14)

The easiest way to perform such integration is by expressing r, v and n dt
in terms of the eccentric anomaly E:

r = a[1 − e cos(E)], (A.15)

cos(v) =
cos(E) − e

1 − e cos(E)
, (A.16)

sin(v) =

√

1 − e2 sin(E)

1 − e cos(E)
, (A.17)

tan
(v

2

)

=

√

1 + e

1 − e
tan

(

E

2

)

, (A.18)

n dt = [1 − e cos(E)] dE. (A.19)

During the averaging process we make use of these five terms:

〈r2〉 =
1

2π

∫ 2π

0
r2n dt

=
1

2π

∫ 2π

0
a2[1 − e cos(E)]3 dE

= a2

(

1 +
3

2
e2

)

, (A.20)

〈r2 cos2(v)〉 =
1

2π

∫ 2π

0
r2 cos2(v)n dt

=
1

2π

∫ 2π

0
a2[1 − e cos(E)][cos(E) − e]2 dE

= a2

(

1

2
+ 2e2

)

, (A.21)
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〈r2 sin2(v)〉 =
1

2π

∫ 2π

0
r2 sin2(v)n dt

=
1

2π

∫ 2π

0
a2[1 − e cos(E)](1 − e2) sin2(E) dE

=
1

2
a2
(

1 − e2
)

, (A.22)

〈r2 sin(2v)〉 =
1

2π

∫ 2π

0
r2 sin(2v)n dt

=
2a2

2π

∫ 2π

0

[

√

1 − e2 sin(E)

] [

cos(E) − e

]

·

·
[

1 − e cos(E)

]

dE

= 0, (A.23)

〈r2 cos(2v)〉 =
1

2π

∫ 2π

0
r2 cos(2v)n dt

=
1

2π

∫ 2π

0
r2
[

cos2(v) − sin2(v)
]

n dt

=
5

2
a2e2. (A.24)

Averaging the terms (A.10)-(A.13) over the satellite’s motion now yields

〈Rq,1〉 = cos2(ω⋆ + v⋆)
[

cos2(ω)〈r2 cos2(v)〉−

−1

2
sin(2ω)〈r2 sin(2v)〉 + sin2(ω)〈r2 sin2(v)〉

]

= a2 cos2(ω⋆ + v⋆)

[

1

2
(1 − e2) +

5

2
e2 cos2(ω)

]

, (A.25)

〈Rq,2〉 = sin2(ω⋆ + v⋆)
[

cos2(ω)〈r2 sin2(v)〉+

+
1

2
sin(2ω)〈r2 sin(2v)〉 + sin2(ω)〈r2 cos2(v)〉

]

= a2 sin2(ω⋆ + v⋆)

[

1

2
(1 − e2) +

5

2
e2 sin2(ω)

]

, (A.26)

〈Rq,12〉 =
1

4
sin[2(ω⋆ + v⋆)]

[

cos(2ω)〈r2 sin(2v)〉+

+ sin(2ω)〈r2 cos(2v)〉
]

=
5

8
a2 sin[2(ω⋆ + v⋆)] e2 sin(2ω), (A.27)
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〈Rq,0〉 = 〈r2〉 = a2

(

1 +
3

2
e2

)

. (A.28)

Averaging Rq over v now involves replacing terms (A.10)-(A.13) with their
averaged companions (A.25)-(A.28) in (A.9):

〈Rq〉 =
GM⋆

2r3
⋆

[

3〈Rq,1〉 + 3〈Rq,2〉 + 6〈Rq,12〉 cos i − 〈Rq,0〉
]

. (A.29)

In order to obtain the quadrupole equations the Rq term must be averaged
over the satellite’s motion and over the star’s motion. The averaging over
v resulted in (A.29). In order to perform the averaging over the motion of
the star, we split (A.29) into three parts: the part which does not depend
on 2(ω⋆ + v⋆), and the part which does depend on 2(ω⋆ + v⋆) only, and
the part which depends on both 2(ω) and 2(ω⋆ + v⋆). Thus,

〈Rq〉 = 〈Rq,A〉 + 〈Rq,B〉 + 〈Rq,C〉, (A.30)

where

〈Rq,A〉 = GM⋆

a2

2r3
⋆

[

−2

8
− 3

8
e2 +

15

8
e2 cos(2ω) +

6

8
cos2 i+

+
9

8
e2 cos2 i − 15

8
e2 cos2 i cos(2ω)

]

, (A.31)

〈Rq,B〉 = GM⋆

a2

2r3
⋆

[

6

8
cos[2(ω⋆ + v⋆)] +

9

8
e2 cos[2(ω⋆ + v⋆)]−

−6

8
cos2 i cos[2(ω⋆ + v⋆)] −

−9

8
e2 cos2 i cos[2(ω⋆ + v⋆)]

]

, (A.32)

〈Rq,C〉 = GM⋆

a2

2r3
⋆

[

15

8
e2 cos[2(ω⋆ + v⋆)] cos(2ω)(1 + cos2 i)+

+
15

8
e22 cos i sin[2(ω⋆ + v⋆)] sin(2ω)

]

. (A.33)

Now, the averaging of (A.29) over the motion of the star will be carried
out through averaging over the star’s mean anomaly m⋆. This can be done
using the following useful relations:

1

2π

∫ 2π

0

(

a⋆

r⋆

)3

n⋆ dt =
1

2π

∫ 2π

0

(

a⋆

r⋆

)3

dm⋆ = (1 − e2
⋆)

−3/2, (A.34)
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1

2π

∫ 2π

0

a3
⋆

r3
⋆

cos[2(ω⋆ + v⋆)] dm⋆ = 0 =
1

2π

∫ 2π

0

a3
⋆

r3
⋆

sin[2(ω⋆ + v⋆)] dm⋆.

(A.35)
The term 〈Rq,A〉 does depend on v⋆ only via r−3

⋆ , thus the averaging over
the motion of the star will employ formula (A.34):

〈〈Rq,A〉〉⋆ =
1

2π

∫ 2π

0
〈Rq,A〉 n⋆ dt

= GM⋆

a2

2a3
⋆

[. . .]
1

2π

∫ 2π

0

(

a⋆

r⋆

)3

n⋆ dt,

〈〈Rq,A〉〉⋆ =
GM⋆a2

8a3
⋆(1 − e2

⋆)
3/2

{

2 + 3e2 − 3 sin2(i)
[

1 + e2(4 − 5 cos2(ω))
]}

.

(A.36)
Averaging the terms 〈Rq,B〉 and 〈Rq,C〉 over the motion of the star will
employ formula (A.35):

〈〈Rq,B〉〉⋆ =
1

2π

∫ 2π

0
〈Rq,B〉 n⋆ dt

= GM⋆

a2

2a3
⋆

[. . .] sin2(i)
1

2π
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0

(
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)3

cos[2(ω + v)] n⋆ dt,

〈〈Rq,C〉〉⋆ =
1

2π

∫ 2π

0
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a2

2a3
⋆

15

8
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1

2π
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(
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+2 cos i sin(2ω)
1

2π

∫ 2π

0

(

a⋆

r⋆

)3

sin[2(ω⋆ + v⋆)] n⋆ dt

]

,

〈〈Rq,B〉〉⋆ = 0 = 〈〈Rq,C〉〉⋆. (A.37)

Finally, according to (A.29), (A.36) and (A.37), the quadrupole approxima-
tion to the disturbing function averaged over the motion of the satellite
and over the motion of the star reads

〈〈Rq〉〉⋆ = 〈〈Rq,A〉〉⋆ + 〈〈Rq,B〉〉⋆ + 〈〈Rq,C〉〉⋆

=
GM⋆a2

8a3
⋆(1 − e2

⋆)
3/2

{

2 + 3e2 − 3 sin2(i)
[

1 + e2(4 − 5 cos2(ω))
]}

.

(A.38)
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Inserting RAVG ≡ 〈〈Rq〉〉⋆ into the Lagrange planetary equations will give
us the quadrupole equations. The Lagrange planetary equations read

da

dt
=

2

na

∂RAVG

∂m
, (A.39)

de

dt
=

1 − e2

na2e

∂RAVG

∂m
−
√

(1 − e2)

na2e

∂RAVG

∂ω
, (A.40)

di

dt
=

cotg i

na2
√

1 − e2

∂RAVG

∂ω
, (A.41)

dω

dt
=

− cotg i

na2
√

1 − e2

∂RAVG

∂i
+

√

1 − e2

na2e

∂RAVG

∂e
, (A.42)

dΩ

dt
=

− csc i

na2
√

1 − e2

∂RAVG

∂i
, (A.43)

dm

dt
= n − 1 − e2

na2e

∂RAVG

∂e
− 2

na

∂RAVG

∂a
. (A.44)

Since we are looking for evolutionary equations for e, i, ω and Ω, it is
necessary to evaluate the the partial derivatives of RAVG with respect to e,
i, ω and m:

∂RAVG

∂e
=

6GM⋆ea2

8a3
⋆(1 − e2

⋆)
3/2

{1 − sin2(i)[4 − 5 cos2(ω)]}, (A.45)

∂RAVG
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8a3
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[1 + 4e2 − 5e2 cos2(ω)], (A.46)

∂RAVG

∂ω
=

−15GM⋆a2e2

8a3
⋆(1 − e2

⋆)
3/2

sin2(i) sin(2ω), (A.47)

∂RAVG

∂m
= 0. (A.48)

Last, inserting these partial derivatives into the Lagrange planetary equa-
tions gives rise to the quadrupole equations:

de

dτ
=

15

8
e
√

1 − e2 sin2(i) sin(2ω), (A.49)

di

dτ
= −15
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cos(i) sin(i) sin(2ω), (A.50)
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, (A.51)
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dτ
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4

cos(i)
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1 − e2
[1 + 4e2 − 5e2 cos2(ω)], (A.52)
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where τ ≡ 2π

Porb

MCND

M•

(

a

RCND

)3

t. (A.53)
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