An Improved Model of δ Orionis A

P. Harmanec, A. Oplištilová, P. Mayer, P. Zasche, M. Šlechta, H. Pablo, A. Pigulski, the BRITE Team

9th September 2019

δ Orionis A

- HR 1852, HD 36486, HIP 25930
- Member of δ Orionis (Mintaka, ADS 4134)

Recent studies

Harvin et al. 2002

Unexpectly low masses

Mayer et al. 2010

- Confusion of secondary and tertiary in Harvin's study
- The spectral lines of the primary and tertiary dominate the optical spectra
- Normal masses, $q \approx 0.4$

Harmanec et al. 2013

- Detection of the secondary in the red spectral region
- Corcoran et al. 2015
- Nichols et al. 2015
- Pablo et al. 2015
- Shenar et al. 2015

Series of four consecutive detailed studies

The observational material used

Spectroscopic data

TABLE 1: Electronic spectra (blue and green spectral region): the Ondřejov Observatory, the Haute Provence Observatory, the ESO LaSilla

Time interval (RJD)	No. of spectra	Detector	Wavelength range (Å)
53613.62–56003.35	70	Site-5 CCD	4753–5005
55836.57–58405.57	65	Site-5 CCD	4270–4523
50031.68–50435.40	4	Elodie	4000–6800
54136.58–54953.46	6	Feros	4000–8000

Photometric data

TABLE 2: Information about satellites

SMEI MOST BRITE

Instrument/Satellite	Height (km)	Inclination (°)	Period (days)
SMEI (Satellite Coriolis)	840	98.7	0.07048
MOST	785	98.7	0.07041
UBr (UniBRITE)	775-790	98.6	0.06972
BAb (BRITE-Austria)	775-790	98.6	0.06972
BLb (Lem)	600-890	97.7	0.06917
BTr (BRITE-Toronto)	620-643	97.9	0.06819
BHr (Heweliusz)	612-640	98.0	0.06743

-5-

¹Krpata (2008); http://astro.troja.mff.cuni.cz/ftp/hec/SPEFO/
 ²P. Harmanec; http://astro.troja.mff.cuni.cz/ftp/hec/HEC35/
 ³Hadrava (1995, 1997, 2004, 2005); http://www.asu.cas.cz/ had/korel.html
 ⁴https://github.com/chrysante87/pyterpol/wiki
 ⁵Prša & Zwitter (2005); http://phoebe-project.org/
 *Mayer et al. (2010)

Application of KOREL disentangling

- Variable quality of individual spectra
 - Signal to noise ratio

$$w = rac{(S/N)^2}{(S/N_{mean})^2}$$

- Problems in solution of this system
 - Lines of the primary and tertiary are blended
 - The primary and tertiary dominate
 - Faint secondary spectrum
 - The dependence of sum of squares on q is flat

Spectral disentangling in two steps

The first step

The second step

The spectra of primary and tertiary were disentangled Residua for all individual spectra after disentangling + 1

The spectrum of secondary was disentangled

KORELMAP

Python program
 KORELMAP¹

$$\omega = 143.0^\circ$$
; $e = 0.73$; $q = 0.41$

¹ Written by J. A. Nemravová

KOREL chain

Disentangled:

primary and tertiary with variable intensities

Convergence of:

 T_{01} , e, ω , K_1 (orbit of close pair) T_{02} , K_2 (outer orbit)

Disentangled:

primary and tertiary with constant intensities and the secondary with variable intensity

Convergence of: T_{01} , q (orbit of close pair)

Disentangled: all three components with constant intensities

q = 0.41549; e = 0.07583

Convergence of: T_{01} , e, ω , q, K_1 (orbit of close pair) T_{02} , K_2 (outer orbit)

PYTERPOL

- For instance: T_{eff} , $\log g$, $v \sin i$, L_{R}
- Finds fit between observed spectra and interpolated model
 - Simplex minimization technique

Parameters	Primary Aa1	Secondary Aa2	
χ^2_{N}	2.562	1.769	
\mathcal{T}_{eff} (K)	31401	25442	
$\log g$ (cgs)	3.549	3.476	
$v \sin i$ (km s ⁻¹)	114.280	89.506	
L_{R_3}	0.692	0.035	
RV (km s ^{-1})	26.25	36.44	

TABLE 3: Parameters derived with PYTERPOL

The primary Aa1 and residuals

The secondary Aa2 and residuals

Homogenization of photometric data

Normal points

Homogenization of photometric data

- Normal points
- Interpolating maxima by Hermite polynomial

Homogenization of photometric data

- Normal points
- Interpolating maxima by Hermite polynomial

Interpolated maxima of light curves

Homogenization of photometric data

- Normal points
- Interpolating maxima by Hermite polynomial

Homogenized BRITE data

LC solution

$$F_{\rm k} = P_{\rm orb} \frac{v_{\rm k} \sin i}{50.59273 R_{\rm k}^e \sin i}$$

TABLE 4: Fixed parameters

Parameters	Values	
P (d)	5.732436	
ώ (°/d)	0.004220	
$q=M_1/M_2$	0.41549	
е	0.07583	
$T_{{ m eff}_1}$ (K)	31401	
$T_{\rm eff_2}$ (K)	25442	
L_{R_3}	0.273	

TABLE 5: Solution

Parameters	SMEI	MOST + BRITE
$a\left(\mathcal{R}^{N}_{\odot} ight)$	40.71 ± 0.21	41.91 ± 0.18
ω (°)	158.37 ± 0.71	148.73 ± 1.49
γ (km s $^{-1}$)	22.28 ± 0.41	21.96 ± 0.33
i (°)	91.6 ± 0.4	78.1 ± 0.3
$M_1~(\mathcal{M}^{\sf N}_{\odot})$	19.4	21.1
$M_2~(\mathcal{M}^{ m N}_{\odot})$	8.1	8.8
$R_1 \ (\mathcal{R}^{\sf N}_{\odot})$	10.4	13.6
$R_2 (\mathcal{R}_{\odot}^{N})$	1.71	3.7
M_{bol_1} (mag)	-7.69	-8.28
$M_{\rm bol_2}$ (mag)	-2.87	-4.55
L_{R_1}	0.712	0.690
L_{R_2}	0.014	0.037
$\log g_1 (cgs)$	3.70	3.50
$\log g_2$ (cgs)	4.88	4.24
Cost function $\chi^2_{ m N}$	1.008	11.389

-17-

Fitted light curves

Model of the system at orbital phase 0.25 from the primary minimum

Results

TABLE 6: Comparison of results

	Star	Spectral type	$M~(\mathcal{M}^{\sf N}_{\odot})$	$R~(\mathcal{R}^{N}_{\odot})$
BRITE, MOST	del Ori Aa1	O 9.5 II	21.1	13.6
SMEI			19.4	10.4
Martins et al. (2005)		O 9.5 III	21.04	13.37
BRITE, MOST			8.8	3.7
SMEI	del Ori Aa2	B1V	8.1	1.7
Harmanec (1988)			10.41	4.75

Conclusion

- Analysis of a triple star delta Orionis A
 - Multiple star system delta Orionis
 - An eclipsing binary and a distant tertiary
- Spectroscopic data
 - Disentangling the spectral lines of the secondary
 - Mass ratio: q = 0.415
- Photometric data satellites SMEI, MOST, BRITE
 - Light-curve solution
 - Improved physical elements

Thank you for your attention