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Received 11 March 2023 / Accepted 18 July 2023

ABSTRACT

Context. The Ch-type asteroid (130) Elektra is orbited by three moons, making it the first quadruple system in the main asteroid belt.
Aims. We aim to characterise the irregular shape of Elektra and construct a complete orbital model of its unique moon system.
Methods. We applied the All-Data Asteroid Modelling (ADAM) algorithm to 60 light curves of Elektra, including our new measure-
ments, 46 adaptive-optics (AO) images obtained by the VLT/SPHERE and Keck/Nirc2 instruments, and two stellar occultation profiles.
For the orbital model, we used an advanced N-body integrator, which includes a multipole expansion of the central body (with terms
up to the order ℓ = 6), mutual perturbations, internal tides, and the external tide of the Sun acting on the orbits. We fitted the astrometry
measured with respect to the central body and also relatively, with respect to the moons themselves.
Results. We obtained a revised shape model of Elektra with the volume-equivalent diameter (201 ± 2) km. Of two possible pole
solutions, (λ, β) = (189;−88) deg is preferred, because the other one leads to an incorrect orbital evolution of the moons. We also
identified the true orbital period of the third moon S/2014 (130) 2 as P2 = (1.642112 ± 0.000400) days, which is in between the
other periods, P1 ≃ 1.212 days, P3 ≃ 5.300 days, of S/2014 (130) 1 and S/2003 (130) 1, respectively. The resulting mass of Elektra,
(6.606+0.007

−0.013) × 1018 kg, is precisely constrained by all three orbits. Its bulk density is then (1.536 ± 0.038) g cm−3. The expansion with
the assumption of homogeneous interior leads to the oblateness J2 = −C20 ≃ 0.16. However, the best-fit precession rates indicate a
slightly higher value, ≃0.18. The number of nodal precession cycles over the observation time span 2014–2019 is 14, 7, and 0.5 for the
inner, middle, and outer orbits.
Conclusions. Future astrometric or interferometric observations of Elektra’s moons should constrain these precession rates even more
precisely, allowing the identification of possible inhomogeneities in primitive asteroids.

Key words. minor planets, asteroids: individual: (130) Elektra – planets and satellites: fundamental parameters – astrometry –
celestial mechanics – methods: numerical

1. Introduction

The asteroid (130) Elektra belongs to the primitive Ch spectral
type objects (Rivkin et al. 2015). The visible and near-infrared
spectral data for Ch- and Cgh-type asteroids most closely resem-
ble those obtained for the unheated CM chondrite meteorites,
and these asteroids therefore most likely represent their parent
bodies (Vilas & Gaffey 1989; Vernazza et al. 2016). The only
minor spectral variations among the largest Ch/Cgh bodies and
the members of the associated collisional families are likely due
to differences in the average grain size of the regolith parti-
cles. Therefore, CM parent bodies had homogeneous internal
structures and did not experience significant (>300 ◦C) heating
due to thermal evolution (Vernazza et al. 2016). Nevertheless,
Elektra is not intact, because it experienced a collision, which is
commonly the origin of small satellites (Durda et al. 2004;
Benavidez et al. 2012).

Elektra is orbited by three satellites (also referred to as
moons): S/2003 (130) 1 (Marchis et al. 2008), S/2014 (130) 1
(Yang et al. 2016), and S/2014 (130) 2 (Berdeu et al. 2022).
The diameters of the moons as derived from their photome-
try are of the order of 6, 2, and 1.6 km. For the third moon, a
short-periodic orbit was found, with a period of only 0.67 days
(Berdeu et al. 2022).

Previous shape modelling of Elektra (Hanuš et al. 2017;
Vernazza et al. 2021) indicates that the ecliptic latitude β is close
to −88◦ or −89◦. Hence, the ecliptic longitude λ remains poorly
constrained, because even distant values of λ represent similar
directions in space.

In this work, we revise the shape model together with the
orbits of the moons. Most importantly, this helps us to resolve
the ambiguity of poles, because the non-spherical shape of the
central body induces a precession of the pericentres ω and nodes
Ω, which is constrained by the astrometry of the moons. We also
use additional photometric data, as described in Sect. 2.

From now on, bodies are denoted as follows: 0 – (130)
Elektra, 1 – S/2014 (130) 1, 2 – S/2014 (130) 2, 3 –
S/2003 (130) 1. As explained in Sect. 4, this order corresponds
to the respective orbits: 1 – inner, 2 – middle, and 3 – outer. All
physical and orbital quantities are numbered accordingly.

2. Data

2.1. Light curves, AO images, and stellar occultations
of Elektra

For the shape reconstruction of Elektra, we prepared a data
set consisting of 60 light curves, 46 AO images, and two
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Table 1. Summary of optical disk-integrated light curves of (130)
Elektra obtained in this work by the BlueEye600 robotic observatory.

N Epoch Np ∆ r φ Filter
(AU) (AU) (◦)

1 2022-03-01.2 112 2.66 3.62 4.3 R
2 2022-03-02.2 60 2.66 3.62 4.1 R
3 2022-03-03.2 39 2.65 3.62 3.9 R
4 2022-03-04.2 29 2.65 3.62 3.8 R
5 2022-03-10.2 71 2.66 3.63 3.5 R

Notes. Each line represents one light curve and contains the epoch, the
number of individual measurements Np, the asteroid’s distances to the
Earth ∆ and the Sun r, phase angle φ, photometric filter and observation
information.

stellar occultations. Most of the light curves (55 out of 60)
were taken from the Database of Asteroid Models from Inver-
sion Techniques (DAMIT1; Ďurech et al. 2010), which contains
light curves and other input parameters in addition to shape mod-
els. The observational data covered the time span from 1980 to
2016. In March 2022, we expanded the set by measuring five new
light curves (Table 1) using the BlueEye600 robotic observa-
tory (Ďurech et al. 2018) located in Ondřejov. These light curves
were obtained exclusively for this study and are now available
in DAMIT together with the new shape and spin state solution.
Moreover, we also uploaded them to the ACLDEF2 database.
All of the light curves used in this study, including the new
measurements, can be found in Appendix D.

The set of AO images consists of two subsets. The first
one from Hanuš et al. (2017) consists of 14 images captured
by the Keck/Nirc2 instrument during the years 2002–2012 and
two high-resolution infrared images were taken by the AO sys-
tem VLT/SPHERE in 2014. The InfraRed Differential Imager
and Spectrograph (IRDIS; Dohlen et al. 2008) and the Inte-
gral Field Spectrograph (IFS; Claudi et al. 2008) were used
simultaneously to cover a more extended spectral range. The
second subset of 30 images is taken from Vernazza et al.
(2021). It was obtained by the Zurich IMaging POLarimeter
(ZIMPOL; Schmid et al. 2018) during the summer of 2019. The
two stellar occultations were taken from the Asteroidal Occul-
tation Observers in Europe3 database. The first event occurred
on 21 April 2018 and was observed by 48 observers in total.
After excluding 4 far misses and 6 chords with incorrect time
indications, we were left with 38 usable chords. The second
event occurred on 21 February 2021 and was observed by
17 observers. However, eight of the chords were non-detections.
Although such chords are generally useful as ‘strict’ bounds for
the asteroid’s shape, we did not use them because the shape
is already well constrained. Both occultation events are shown
in Fig. 1.

2.2. Astrometric measurements of the moons

For the process of fitting the orbital parameters of the moons, it is
crucial to have a sufficient set of positions, usually related to the
central body or its photocentre. These positions were measured
on the AO images of Elektra – with various methods – whenever
some of its moons were visible.
1 https://astro.troja.mff.cuni.cz/projects/damit/
2 https://alcdef.org/
3 http://www.euraster.net/index.html

Fig. 1. Comparison of Elektra’s shape model to chords from occultation
events. The red triangles represent the timing uncertainties at the ends
of each chord and the dashed lines are non-detection chords.

The first data set was taken from Berdeu et al. (2022),
where the process of reduction, halo removal, and astrometry
is explained in detail. Their data set is based on individual AO
images of Elektra from December 2014 and consists of 120 posi-
tions of S/2014 (130) 1, 120 positions of S/2014 (130) 2, and
150 positions of S/2003 (130) 1. However, it is important to
note that the individual positions are not mutually independent.
Indeed, they correspond to a linear fit (in time) of 40 or 50 unique
measurements. The second data set is based on 30 AO images
from Vernazza et al. (2021). The images were reduced using the
eclipse data reduction package (Devillard 1997). After reduction,
the images were separately processed to remove the bright halo
surrounding the asteroid, which was a necessary step to improve
the detectability of the moons. To obtain the astrometric posi-
tions of the satellites, we used a specialised algorithm (Hanuš
et al. 2013) that extracted the primary’s contour and determined
its photocentre. By fitting a Moffat-Gauss source profile to the
moons and measuring from the photocentre, we obtained the 20,
20, and 12 new positions of the respective moons. Moreover, we
computed the astrometric positions of the moons with respect to
the other moons, which is handy to avoid any systematic related
to the photocentre of the central body, or possibly centre-of-mass
corrections.

The new positions are listed in Appendix B. Additionally,
all astrometric data are available for download from the Xitau4

webpage.

3. Shape reconstruction

3.1. All-Data Asteroid Modelling algorithm

The All-Data Asteroid Modelling (ADAM) algorithm
(Viikinkoski et al. 2015) is a versatile inversion technique
for the shape reconstruction of asteroids from various data types
(AO images, light curves, occultations, radar, etc.). ADAM
minimises the objective function, which is a measure of the
difference between the Fourier-transformed image and the
projected shape:

χ2 = wAO

∑
i

Ni∑
j=1

∥∥∥∥FDi(ui j, vi j) − e2πi(ox
i ui j+oyi vi j)+siFMi(ui j, vi j)

∥∥∥∥2
+ wLCχ

2
LC + wOCχ

2
OC +

∑
i

wiγ
2
i ,

(1)

where FDi(ui j, vi j) is the Fourier transform of the data image Di
and FMi(ui j, vi j) is the Fourier transform of the projected
4 https://sirrah.troja.mff.cuni.cz/~mira/xitau/
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Fig. 2. Best-fit shape model (top) and the alternative shape model
(bottom) from three different viewing geometries. The first two are
equator-on views rotated by 90◦ and the third one is a pole-on view.
The model is lit up artificially to highlight its finer surface details.

shape Mi, corresponding to the ith image and evaluated at the jth
frequency point (ui j, vi j). The scale si and offset (ox

i , o
y
i ) are free

parameters resolved during the optimisation. The additional term
χ2

LC is the standard square norm of the light-curve fit, while the
term χ2

OC is the model fit to stellar occultation chords. The imple-
mentation of the latter term in ADAM is described in Hanuš
et al. (2017). The first three terms are multiplied by their cor-
responding weights wAO, wLC, and wOC and the last term is a
sum of regularisation functions γi multiplied by the weights wi
(Viikinkoski et al. 2015; Hanuš et al. 2017).

The data weights have an impact on the initial convergence
of χ2 and subjectively depend on the dataset; they are chosen to
balance the individual χ2 values and enable good convergence.
Regularisation weights then help guide the convergence during
the process.

Two shape representations are supported: octantoids and
subdivisions. Octantoids are a global parametrisation, whereas
subdivisions offer more local control. In this work, we used the
octantoid shape representation. For a more detailed explanation,
see Viikinkoski et al. (2015).

3.2. Best-fit and alternative shape models

We took a two-step approach. First, we aimed to get just a coarse
shape model. Second, the shape resulting from the first optimi-
sation was used as an initial model, and we then doubled the
number of facets and the spherical harmonics degree in order
to capture surface details. The initial conditions for the conver-
gence, which are needed for the period and the pole, were taken
from Vernazza et al. (2021).

Figure 2 and Table 2 present the best-fit and alternative shape
models and their parameters. The best-fit model is a revised ver-
sion of the shape model published in Vernazza et al. (2021),
which is based on a larger dataset. Its pole coordinates were
allowed to converge along with the shape to best fit the data.
The alternative model is a shape model that converged with the
pole fixed according to the coordinates inferred from our orbital
model (Sect. 4).

The χ2 map in Fig. 3 shows why the pole solution from
ADAM remains unconstrained. Due to the close absolute dis-
tance of coordinates, there are many viable models. The best-fit
model, denoted by a black tile, is in the upper left area of the
map, while the alternative model is in a different local minimum

Table 2. Parameters of the best-fit (first line) and alternative (second
line) models.

λ β P a × b × c Deq

(deg) (deg) (h) (km) (km)

68.5 −88.9 5.224663 267 × 202 × 151 201.4 ± 1
188.2 −88.1 5.224664 273 × 230 × 151 202.3 ± 2

Notes. λ, β denote the ecliptic coordinates of the pole, P the period of
rotation, a, b, c the extents along the main axes (The extents a, b, c were
obtained using the overall dimensions technique (Torppa et al. 2008).),
and Deq denotes the diameter of the volume-equivalent sphere. The 1σ
uncertainties on Deq are based on the distribution from Fig. 4.

Fig. 3. χ2 map for pole coordinates λ and β, where each value of χ2

is represented by a colour from the colour bar. The black tiles indicate
values below the range of the colour bar, while the yellow tiles indicate
values above the range of the colour bar.

Fig. 4. Distribution of Deq values based on shape models with χ2 values
below 12. The 16%, 50%, and 84% percentiles of the distribution are
shown with orange lines.

in the bottom right area of the map. We propose that this alterna-
tive local minimum is where the true orbital pole lies. In Sect. 4,
we even present a counterexample model based on the shape pole
solution to support this.

We plotted a distribution of volume values from the dataset
of models obtained from the χ2 mapping (Fig. 4). By looking
at the 16%, 50%, and 84% percentiles of the distribution we
determined the uncertainties of Deq in Table 2.
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Fig. 5. AO images of Elektra (top), the best-fit shape model (middle), and the alternative shape model (bottom), all shown from the same viewing
angle. The rotation axis is indicated by the red arrow.

The comparison of these two models with several AO images
from the 2019 data set is given in Fig. 5. In the comparison and
Fig. 2, we see that the overall shape of the alternative model is
more rounded, with fewer surface features in some areas. How-
ever, this is in the range of expected differences dependent on
regularisations. Both models are statistically and visually almost
identical.

In the last two columns of Fig. 5, we see that the local topog-
raphy present in the two AO images is not captured by either of
the models. We tried using the subdivision shape representation
and locally forcing those features, but it seems that they are not
supported by the rest of the dataset, and forcing them just makes
the overall fit worse.

For both models, we used the following weights: wLC = 1.5,
wAO = 0.85, wOC = 0.019, and standard values for the regulari-
sation weights. In Appendix D, we compare the best-fit model to
all the observed light curves.

3.3. Multipole coefficients

Our orbital model has to be evolved over approximately
1000 days. On such a timescale, approximating the central body
as a point mass is insufficient. Therefore, we computed a mul-
tipole expansion of the gravitational field up to the order of
ℓ = 10. The expansion is based on the Delaunay triangulation
of the ADAM shape model made using the TetGen program (Si
2006). The respective definitions of the multipole coefficients
are as follows:

Cℓ0 =
1

MRℓ

∫
V
ρ|r|ℓPℓ(cos θ) dV, (2)

Cℓm =
2

MRℓ
(ℓ − m)!
(ℓ + m)!

∫
V
ρ|r|ℓPℓm(cos θ) cos (mϕ) dV, (3)

S ℓm =
2

MRℓ
(ℓ − m)!
(ℓ + m)!

∫
V
ρ|r|ℓPℓm(cos θ) sin (mϕ) dV, (4)

where r, θ, ϕ are the body-frozen spherical coordinates,
M the mass of the body, R the reference radius of the

gravitational model, Pℓ, Pℓm the Legendre and associated Leg-
endre polynomials, and Cℓm, S ℓm are the respective coefficients.

Table 3 lists the results of Eqs. (2)–(4) evaluated for our best-
fit shape model with homogeneous density. We found that an
expansion up to the order ℓ = 2 is sufficient to account for the
precession of orbits and the higher orders (up to ℓ = 6) were
used to confirm that their contribution is in fact negligible.

Most notable is the oblateness coefficient J2 = −C20 ≈

0.159. This is a relatively high value; only a few 100 km asteroids
have a similar c/a axial ratio to that of (130) Elektra (Vernazza
et al. 2021); for example (7) Iris, (16) Psyche, (22) Kalliope, and
(45) Eugenia. The value inferred from shape will be compared
to the dynamical oblateness in Sect. 4.6.

The alternative shape model has an almost equivalent J2 ≃

0.162. This corresponds to an uncertainty of only 0.003. We
verified that the discretisation error of J2 arising from the finite
number of tetrahedrons is less than 0.001.

4. Orbital model
4.1. The dynamics included in the model

We use the N-body model called Xitau5 based on the Bulirsch-
Stoer integrator from Levison & Duncan (1994) that was sub-
stantially modified (Brož 2017; Brož et al. 2021, 2022a) to
include the multipole expansion (up to the order ℓ = 10), the
tidal evolution, the external tides, and in particular, the fitting
‘machinery’. To compare the model with the observations, we
use the following unreduced metric6:

χ2 = χ2
sky + χ

2
sky2 + wao χ

2
ao , (5)

χ2
sky =

Nbod∑
j=1

Nsky∑
i=1

 (∆u ji)2

σ2
sky major ji

+
(∆v ji)2

σ2
sky minor ji

 , (6)

5 https://sirrah.troja.mff.cuni.cz/~mira/xitau/
6 i.e. not divided by N; the number of measurements.
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Fig. 6. Keplerian model of orbits 1 and 3 with
χ2 = 2195 over the time-span of 1707 days.
The orbits are plotted in the (u; v) coordinates
(green and pink lines, respectively), together
with observed positions (black crosses), and
residuals (red and yellow lines, respectively).
Elektra’s shape for one of the epochs is over-
plotted in black.

Table 3. Multipole coefficients (up to ℓ = 6) of Elektra’s gravitational
field derived from the ADAM shape, assuming homogeneous density.

C00 +1.00000000
C10 +0.00000000
C11 +0.00000000 S 11 +0.00000000
C20 −1.59109015 × 10−1

C21 −7.06376507 × 10−5 S 21 −1.73622001 × 10−4

C22 −4.46764263 × 10−2 S 22 +5.16249277 × 10−6

C30 +1.52377403 × 10−3

C31 −4.71344916 × 10−4 S 31 −2.13299430 × 10−3

C32 +1.68475688 × 10−3 S 32 +7.99513867 × 10−4

C33 −7.99140262 × 10−4 S 33 +1.61094232 × 10−3

C40 +5.47386330 × 10−2

C41 +1.84595619 × 10−3 S 41 −1.98090953 × 10−3

C42 +4.18945086 × 10−3 S 42 −1.56934242 × 10−4

C43 +1.63489342 × 10−4 S 43 +8.16971619 × 10−6

C44 +1.19047276 × 10−4 S 44 −1.04901431 × 10−4

C50 −3.05649267 × 10−3

C51 +3.70902439 × 10−4 S 51 +1.27208068 × 10−4

C52 −5.69391535 × 10−4 S 52 −2.33343309 × 10−4

C53 +7.24854310 × 10−5 S 53 −1.50240727 × 10−4

C54 −3.17247273 × 10−5 S 54 −1.43162546 × 10−5

C55 +1.64621165 × 10−5 S 55 −1.89458984 × 10−5

C60 −2.54715420 × 10−2

C61 −1.11217188 × 10−3 S 61 +1.69598512 × 10−3

C62 −9.25476914 × 10−4 S 62 +6.44072903 × 10−5

C63 −4.83382376 × 10−5 S 63 +1.27210479 × 10−5

C64 −6.40791927 × 10−6 S 64 +6.56867385 × 10−6

C65 −2.07536310 × 10−6 S 65 −7.77372686 × 10−7

C66 +6.05696810 × 10−7 S 66 +5.52013261 × 10−7

χ2
sky2 =

Nsky2∑
i=1

 (∆ui)2

σ2
sky major i

+
(∆vi)2

σ2
sky minor i

 , (7)

χ2
ao =

Nao∑
i=1

360∑
k=1

(u′ik − uik)2(v′ik − vik)2

σ2
ao i

, (8)

where the index i corresponds to the observational data, j to
individual bodies, k to angular steps of silhouette data, ′ to syn-
thetic data interpolated to the times of observations, u, v are
the sky-plane coordinates, and σ the observational uncertainties
along the two axes (denoted ‘major’ and ‘minor’ for ellipsoidal
uncertainties).

The ‘goodness-of-fit’ terms χ2
sky and χ2

sky2 correspond to the
absolute astrometry (i.e. with respect to body 0) and the relative
astrometry (e.g. body 2 with respect to body 1). Optionally, we
also include the regularisation term χ2

ao derived from silhouettes
(as explained in Brož et al. 2021), which prevents pole orienta-
tions incompatible with the shape. This term is multiplied by
the weight wao, which has no relation to the weight term wao
from Eq. (1).

Using both χ2
sky and χ2

sky2 is useful because they are not
exactly the same measurements. Computing the relative posi-
tions removes any systematics related to the photocentre and
provides more precise (relative) information. We note that this
rapidly increases the overall number of measurements, as each
AO image where two or three moons are visible at the same time
is counted again for each relative measurement taken.

In the following, we present two orbital models of increasing
complexity. In both of them, we account for the external tide
exerted by the Sun. The necessary ephemerides were obtained
from the Jet Propulsion Laboratory (JPL; Park et al. 2021).

4.2. Keplerian model

Initially, by manual fitting and then by converging with the
simplex algorithm (Nelder & Mead 1965), we constructed a
simplified Keplerian model for the already well-known moons:
S/2014 (130) and S/2003 (130), that is, a model of orbits 1 and 3.
The masses of the moons were neglected and the central body
was taken as a point of mass. These preliminary orbits are shown
in Fig. 6.

In the case of the Elektra system, a Keplerian model is accu-
rate enough for a time span of about a month, as can be seen
in Berdeu et al. (2022), but is insufficient for the time span of
1707 days. The resulting value of χ2 = 2195 is too high com-
pared to the number of measurements (i.e. 430). The residuals in

A189, page 5 of 19



Fuksa, M., et al.: A&A, 677, A189 (2023)

Fig. 7. Quadrupole model of the orbits 1, 2,
and 3 with χ2 = 1084 over the time-span of
1707 days. The orbits are plotted in the (u; v)
coordinates (green, blue and pink lines, respec-
tively), together with observed positions (black
crosses) and residuals (red, orange and yellow
lines, respectively). Elektra’s shape for one of
the epochs is overplotted in black.

Fig. 6 exhibit large systematic uncertainties. In the top left part in
particular, the synthetic orbit is far from that suggested by obser-
vations. This is due to the missing nodal precession, which must
be present given the non-negligible oblateness (J2 = −C20) of
the central body.

4.3. Best-fit quadrupole model

We present a quadrupole model of the full system in Figs. 7 and
8. In this more complex model, the masses of the moons are
taken into account and the gravitational field of the central body
was expanded up to the order ℓ = 2 (according to Table 3), assum-
ing homogeneous density. When evaluated with the full metric
(Eq. (5)) with the weight wao = 0.3, the model is a best-fit one
with χ2 = 1084.

This model is the result of a long series of models, which
were being improved with every iteration. It was much more effi-
cient to only use up to ℓ = 2, which is sufficient for a satisfying
model.

We list the parameters of this best-fit model in Tables 4 and 5.
They are given as osculating for the epoch T0 = 2457021.567880
(TDB), but these elements are not constant. Due to the oblate-
ness of Elektra and its massive moons, the orbital elements
oscillate over time, as can be seen in Figs. 9–11. The peak-to-
peak amplitudes of some of these elements are substantial, and
so it is not surprising that the Keplerian model is insufficient.
From the circulation of the arguments of pericentre, we deter-
mined the apsidal precession of the moons: ω̇1 = 5.9 deg day−1,
ω̇2 = 2.9 deg day−1, and ω̇3 = 0.19 deg day−1.

The uniqueness of our solution lies in the precession cycles
of Ω and ϖ (Figs. 9–11). The two innermost orbits have
many cycles; that is, about 14 cycles of Ω1 and ϖ1 and about
7 cycles of Ω2 and ϖ2. A correct orbital solution could be
one with two and one cycle less, respectively. Thankfully, we
also have the outer moon and its orbit with only a half cycle
of Ω3 and ϖ3, which cannot be made one cycle more or less
without being a completely different and unviable solution.
Therefore, even the number of precession cycles of the two
innermost moons is well constrained because the central body is
the same.
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Fig. 8. Same as Fig. 7, but plotted separately for each data set: Berdeu
et al. (2022, top) and Vernazza et al. (2021, bottom).

Having the precise mass of Elektra, (6.606+0.007
−0.013) × 1018 kg,

we can combine it with the volume of the shape model, (4.3 ±
0.1)× 106 km3, and obtain the precise bulk density, ρ̄ = (1.536±
0.038) g cm−3. Since we use multipole expansion, our orbital
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Table 4. Parameters of the best-fit model, given with uncertainties.

Best-fit model Counter-example
model

χ2
sky + χ

2
sky2 872 19903

Nmeasurements 837 837

Variable Unit Value with uncertainty Value

λpole deg 188.3 ± 2.6 68.5
βpole deg −88.2 ± 0.2 −88.9
Mtotal MS (3.322+0.003

−0.006) × 10−12 3.323 × 10−12

q1 1 (1.02 ± 0.55) × 10−6 0.97 × 10−6

q2 1 (5.2 ± 5.4) × 10−7 2.7 × 10−7

q3 1 (2.74 ± 0.12) × 10−5 5 × 10−5

P1 day 1.2127 ± 0.0002 1.2127
e1 1 0.028 ± 0.005 0.068
i1 deg 179.7 ± 0.6 191.9
Ω1 deg 275.3 ± 11.9 265.2
ϖ1 deg 324.3 ± 18.5 25.8
λ1 deg 343.2 ± 24.1 347.9

P2 day 1.6421 ± 0.0004 1.6420
e2 1 0.064 ± 0.007 0.060
i2 deg 183.7 ± 0.3 184.1
Ω2 deg 197.1 ± 7.5 194.7
ϖ2 deg 107.9 ± 12.1 65.5
λ2 deg 248.5 ± 15.2 244.9

P3 day 5.30032 ± 0.00015 5.30041
e3 1 0.123+0.004

−0.002 0.156
i3 deg 175.3 ± 0.2 173.8
Ω3 deg 133.5 ± 2.1 129.7
ϖ3 deg 356.8+4.3

−1.3 6.6
λ3 deg 291.1+4.3

−0.1 289.1

Notes. Also, for completeness, we provide the parameters of a counter-
example model based on the rotational pole given by the ADAM
algorithm in Sect. 3. The listed χ2 is with the weight wao set to zero
and Nmeasurements is the number of all astrometry measurements, both
absolute and relative. Orbital elements are referred to the epoch T0 =
2457021.567880 (TDB). Uncertainties are given at 1σ. λpole and βpole
are the ecliptic longitude and latitude of Elektra’s rotational pole. Mtotal
is the total mass of the system, q1 = m1/m0, q2 = m2/(m0 + m1), and
q3 = m3/(m0 + m1 + m2) are the mass ratios, where m0 denotes the
mass of the central body (i.e. Elektra), m1 the mass of body 1 (inner
moon S/2014 1), m2 the mass of body 2 (middle moon S/2014 2), m3 the
mass of body 3 (outer moon S/2003), Pk the orbital period of the cor-
responding orbit, ek eccentricity, ik inclination, Ωk the longitude of the
nodes, ϖk the longitude of the pericentre, and λk is the true longitude;
k = 1, 2, 3.

Table 5. Dependent parameters of the best-fit model, given with
uncertainties.

Variable Unit Value with uncertainty

m0 MS (3.322+0.003
−0.006) × 10−12

m1 MS (3.4 ± 1.8) × 10−18

m2 MS (1.7 ± 1.8) × 10−18

m3 MS (9.1 ± 0.4) × 10−17

a1 km 496.8 ± 0.4
a2 km 608 ± 0.5
a3 km 1328 ± 0.9

Notes. m are the masses of the individual bodies and a are the semi-
major axes. The same notation as in Table 4 is used.
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Fig. 9. Evolution of the osculating elements of the inner moon
S/2014 1 plotted over the time span of 1707 days. Shown is the
semimajor axis a1, eccentricity e1, inclination i1, the longitude of the
ascending node Ω1, and the longitude of the periapsis ϖ1.
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Fig. 10. Same as Fig. 9, but for the middle moon S/2014 2.
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Fig. 11. Same as Fig. 9, but for the outer moon S/2003.

model sensitively depends on the orientation of the central body.
Even a small change in the coordinates of the pole can com-
pletely change the satellite’s orbits. Indeed, we obtained more
precise pole coordinates, λpole = (188.3 ± 2.6) deg and βpole =
(−88.2 ± 0.2) deg, from our orbital model than from the shape
model alone. Consequently, we derived an alternative shape
model, as discussed in Sect. 3.

To demonstrate that these more precise pole coordinates
are indeed preferable, we present a counterexample model in
Table 4. This model is based on a rotational pole given by the
ADAM algorithm in Sect. 3 and has a much higher χ2 value,
making it unviable.

4.4. MCMC analysis

The Markov chain Monte Carlo (MCMC; Robert & Casella
2011; Tierney 1994) is a method for randomly sampling proba-
bility distributions. To sample the distribution functions of the
parameters of our orbital model we used the Python package
emcee (Foreman-Mackey et al. 2013), which is an implementa-
tion of the MCMC.

We let all parameters of the model be free, including the rota-
tional pole of Elektra, the total mass of the system, the mass
ratios of the moons q1, q2, and q3, and 18 orbital parameters,
six for each orbit of the three moons. To initialise the chains, we
started with the parameters of the best-fit model and set some a
priori limits to keep the walkers around the local minimum of our
preferred solution. The limits were an order of magnitude higher
and lower for q1, q2 and q3 to test if they are constrained, and a
range of a few hours for the orbital periods. For other variables,
the limits are relevant only in the case of Ω1 and λ1, because
some part of their distribution lies beyond their upper limits, as

can be seen in Fig. A.1. However, this should not notably affect
the results.

We ran the MCMC with 48 walkers (i.e. two times 24; the
number of free parameters) for 4000 iterations. However, as our
limits on orbital periods were not narrow enough, about 15 walk-
ers ended up migrating into neighbouring local minima, and so
without the loss of generality, we removed them. We set the
burn-in phase as 2000 iterations; after that, almost all parame-
ters were in a steady state (Fig. A.2), except for q1, q2, log e2,
and Ω2 (and therefore ϖ2 and λ2), which still have some overall
upward or downward trends. Regardless, this again should not
notably affect the results.

From the MCMC, we obtained the uncertainties on the
parameters. These are given in Table 4 at 1σ, also known as the
16% and 84% percentiles. In particular, we have a very precise
determination of the total mass, because it was constrained by all
three orbits.

The complete corner plot is shown in Fig. A.1. Some of
the parameters are correlated with each other. First, we have a
strong positive triple correlation in each set of Ωi, ϖi, and λi,
where i = 1, 2, 3. This is not surprising given the definitions of
these parameters. The third triplet also has a positive correlation
with log e3. This could be explained by the specific observa-
tion geometry during the respective epochs. The log e3 also has
a negative correlation with i3, which could also be due to the
different observation geometries. Lastly, the first triplet has a
positive correlation with the mass ratio q3.

4.5. The third moon, S/2014 (130) 2

The Kepler solution presented by Berdeu et al. (2022) is a
short-period (0.67 day) orbit of the third moon S/2014 (130) 2.
However, it appears to ‘cross’ the orbit of the inner moon
S/2014 (130) 1. Here, we present a 4-body model, which includes
mutual interactions, multipoles (ℓ = 2), and external tides. We
surveyed all possible periods and tested both inner and outer
orbits. In particular, we were interested in a co-orbital solution
because the astrometric positions of S/2014 (130) 2 are always
close to the orbit of S/2014 (130) 1.

The periodogram for the third moon is presented in Fig. 12.
Its orbit is unstable below 0.58 day; 0.67 day is only one local
minimum, but undeniably not the deepest. The co-orbital solu-
tions have periods between 1.19 and 1.20 days, but none of
them are deep enough, unfortunately. A regular series of min-
ima is seen for longer periods, with 1.64 days being the deepest
minimum.

This minimum is our preferred solution for S/2014 (130) 2.
It is a stable orbit, close to the mean-motion resonance with
S/2014 (130) 1. The ratio of periods 1.35 is not exactly 4/3,
because of the respective critical angle:

σ = 4λ2 − 3λ1 +ϖ1, (9)

or alternatively:

σ′ = 4λ2 − 3λ1 +ϖ2 (10)

includes a non-negligible precession contribution. Nevertheless,
neither of these angles librates; a necessary period for an exact
resonance is slightly shorter, P2 = 1.608 days. Nonetheless, the
proximity to the mean-motion resonance might be an indepen-
dent indication of a correct solution (such as for (216) Kleopatra;
Brož et al. 2021).

We also verified the influence of moon masses on their
orbital evolution. According to our tests with mass ratios up to
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Fig. 12. Periodogram for the orbit of the third moon (S/2014 (130) 2).
The χ2 values were computed from the 2014 astrometric data only,
without contributions for other moons. The osculating period P2 was
varied, while other elements were kept fixed. At the epoch T0 =
2457021.567880 (TDB), the synthetic position was very close to the
observed one. The best-fit period is 1.642 days. For comparison, the
period of 0.678 days from Berdeu et al. (2022) is indicated.

10−4, mutual perturbations are weak compared to the remain-
ing systematic uncertainties in astrometry. Therefore, the moon
masses remain unconstrained and the mass ratios inferred from
photometry (approximately 10−6, 5 × 10−7, 3 × 10−5) should be
preferred.

4.6. Dynamical constraints for the oblateness

Having all three orbits, we performed a fitting of the oblateness
C20 of the central body. We were interested not only in the best-fit
model but also in poor fits, which enable us to reject the respec-
tive models. We computed an extended grid of models, with the
oblateness C20 and the time lag ∆t parameters kept fixed, while
all other parameters were set free.

We included all multipole terms up to the order ℓ = 6 (from
Table 3) in order to ensure that none of these high-order contri-
butions to the total precession rate is missed. We also verified
that orders ℓ > 6 only negligibly affect the value of χ2. Initial
conditions for the simplex algorithm (Nelder & Mead 1965) must
be set up precisely; in particular, P1, P2, and P3 must be close to
the true or global minimum (for a given value of C20), otherwise
the simplex could be ‘stuck’. We used two fully converged mod-
els for two different values of C20; we verified these minima are
global by a χ2 mapping, knowing the typical spacing between
the local minima, such as ∆P = P2

1/(22.1 days) � 0.066 days, or
∆P′ = P2

1/(1701 days) � 0.00086 days, depending on the time
span (2014 only, 2014–2019). Eventually, we determined the lin-
ear relations P1(C20), P2(C20), and P3(C20), and interpolated the
periods accordingly.

Overall, the best-fit model has χ2 = 932, with contribu-
tions χ2

sky = 479, χ2
sky2 = 211, and χ2

ao = 792, where we used
the weight wao = 0.3. All models are summarised in Fig. 13.
The best-fit value of C20 ≃ −0.18, with an uncertainty of less
than 0.01. This is slightly larger than the value computed for a
homogeneous body.

Most importantly, we did not find any fits with C20 ≃ −0.16
that have lower or comparable χ2. On the contrary, the values
were always significantly higher. This might be an indication of
irregular, or (partially) differentiated internal structure; however,
the irregularity should be more oblate, not more spherical.

Possible Elektra family. The nature of the meteorite
analogue material (CM chondrites) and its average density
(2.13 g cm−3) imply a substantial porosity of 28% for Elektra.

    1558

    1601

    1593

    1622

    1536

    1585

    1541

    1251

    1267

    1265

    1234

    1333

    1262

    1266

    1301

    1510

    1428

    1471

    1342

    1417

    1404

    1253

    1164

    1204

    1182

    1203

    1155

    1326

    994

    979

    974

    1098

    955

    967

    893

    1144

    1083

    1079

    1097

    1060

    1076

    1174

    806

    923

    833

    878

    862

    851

    826

    1039

    998

    1035

    1005

    1003

    998

    1016

    674

    676

    675

    677

    677

    676

    670

    640

    653

    657

    644

    694

    650

    645

    616

    613

    623

    615

    615

    619

    622

    511

    533

    519

    524

    517

    521

    525

    636

    640

    640

    639

    638

    635

    640

    452

    448

    434

    440

    438

    445

    454

    529

    526

    540

    530

    530

    534

    524

    464

    475

    479

    470

    468

    467

    462

    540

    542

    539

    541

    544

    541

    542

    653

    654

    649

    640

    652

    644

    645

    616

    617

    607

    610

    605

    618

    613

    748

    762

    757

    753

    757

    752

    747

    750

    780

    764

    771

    761

    781

    775

 0

 10

 20

 30

 40

 50

 60

-0.2 -0.18 -0.16 -0.14 -0.12 -0.1

SKY (1.5)

    1983

    1870

    1926

    1952

    2067

    1873

    1951

    1432

    1442

    1389

    1394

    1488

    1465

    1463

    1436

    1486

    1453

    1422

    1438

    1422

    1413

    1343

    1228

    1326

    1255

    1350

    1291

    1443

    808

    872

    792

    790

    828

    860

    766

    1210

    1216

    1222

    1205

    1213

    1200

    1245

    740

    819

    785

    795

    787

    791

    784

    1073

    1117

    1083

    1074

    1126

    1098

    1098

    601

    600

    606

    615

    602

    626

    595

    576

    557

    668

    580

    645

    549

    567

    550

    546

    544

    551

    549

    550

    542

    403

    407

    400

    401

    399

    397

    400

    766

    767

    772

    768

    768

    771

    767

    403

    393

    408

    401

    402

    406

    403

    357

    358

    357

    357

    356

    354

    353

    211

    213

    216

    215

    218

    218

    212

    346

    347

    347

    349

    345

    350

    349

    643

    638

    644

    646

    647

    648

    652

    597

    602

    600

    606

    594

    601

    604

    428

    437

    426

    424

    426

    427

    425

    325

    334

    340

    331

    329

    329

    328

 0

 10

 20

 30

 40

 50

 60

-0.2 -0.18 -0.16 -0.14 -0.12 -0.1

SKY2 (2.0)

    701

    700

    702

    706

    712

    701

    703

    699

    699

    702

    708

    701

    701

    704

    705

    737

    722

    719

    717

    724

    705

    705

    701

    704

    702

    703

    705

    714

    705

    704

    706

    704

    703

    705

    707

    717

    721

    719

    710

    712

    716

    735

    767

    717

    773

    707

    728

    720

    707

    796

    784

    782

    796

    792

    803

    802

    748

    748

    749

    776

    749

    782

    719

    717

    718

    723

    710

    716

    707

    725

    788

    781

    772

    789

    753

    786

    778

    806

    780

    790

    789

    798

    798

    779

    826

    822

    800

    829

    827

    825

    822

    790

    743

    766

    757

    765

    772

    791

    795

    796

    796

    796

    799

    790

    799

    797

    790

    784

    794

    790

    792

    795

    782

    799

    798

    798

    795

    796

    797

    788

    793

    810

    817

    787

    808

    799

    774

    774

    796

    780

    809

    772

    780

    769

    775

    767

    785

    763

    772

    781

    779

    752

    757

    760

    773

    758

    760

 0

 10

 20

 30

 40

 50

 60

-0.2 -0.18 -0.16 -0.14 -0.12 -0.1

AO (1.5)

    3755

    3685

    3733

    3789

    3821

    3672

    3707

    2897

    2923

    2869

    2845

    3035

    2941

    2944

    2953

    3221

    3102

    3113

    2999

    3060

    3032

    2811

    2606

    2745

    2652

    2768

    2661

    2987

    2017

    2066

    1982

    2103

    1997

    2043

    1875

    2574

    2520

    2520

    2520

    2491

    2496

    2644

    1780

    1960

    1854

    1889

    1871

    1862

    1826

    2354

    2354

    2357

    2322

    2371

    2341

    2358

    1503

    1505

    1509

    1529

    1508

    1540

    1485

    1435

    1430

    1545

    1440

    1558

    1415

    1433

    1407

    1397

    1403

    1407

    1394

    1408

    1402

    1160

    1179

    1159

    1167

    1160

    1162

    1163

    1654

    1657

    1657

    1660

    1658

    1658

    1657

    1096

    1068

    1076

    1072

    1074

    1087

    1099

    1128

    1127

    1140

    1129

    1130

    1129

    1121

    918

    929

    933

    927

    926

    927

    916

    1124

    1133

    1130

    1134

    1131

    1134

    1134

    1537

    1534

    1539

    1535

    1539

    1538

    1541

    1449

    1456

    1449

    1454

    1446

    1454

    1455

    1410

    1435

    1417

    1417

    1416

    1415

    1410

    1313

    1344

    1336

    1335

    1327

    1341

    1335

 0

 10

 20

 30

 40

 50

 60

-0.2 -0.18 -0.16 -0.14 -0.12 -0.1C201 [1]

∆
t 1

 [
s
]

chi2 (1.5)

Fig. 13. Overview of best-fit models of the (130) system for the pair
of fixed parameters: oblateness C20,1 and tidal time lag ∆t1 (Brož et al.
2022a) of the central body. All other parameters were free. Each of the
147 models was converged for up to 1000 iterations, that is 147 000 mod-
els in total. The χ2 values are plotted as colours: cyan corresponds to the
overall best fit, blue to good fits (1.2 times the best fit), orange to poor
fits (1.5). The four panels correspond to the χ2 contributions: astrome-
try (SKY), relative astrometry of the moons (SKY2), silhouettes of the
central body (AO), and the weighted sum of them.

If these findings are accurate, a re-accumulation event might be
at the origin of Elektra itself (and its satellite system). Usually,
the event ends with a re-accumulation of streams (see e.g. Brož
et al. 2022b), which deposit loose, low-dense, rubble-pile mate-
rial, creating ‘hills’, some of which could be observed at the limb
(see e.g. Fig. 5, top row, fifth column). Fragments from this event
should also form a family. Even though there is no ‘official’
Elektra family (Nesvorný et al. 2015), (130) Elektra is embed-
ded in the Alauda family ((702), FIN 9027). Given all of the
arguments above, a part of this family should belong to Elektra;
in particular, bodies with lower semimajor axis (a < 3.07 au),
which do have similar inclinations to (130) Elektra (sin i ≃ 0.38).

5. Conclusions

We present the first self-consistent model for all three moons of
(130) Elektra. The model covers a considerably long time span
(2014–2019) requiring a sufficiently complex dynamical model,
including at least oblateness (ℓ = 2), which induces precession.
With the constraint of three orbits and assuming a homoge-
neous internal structure, we obtain a precise mass for Elektra
of (6.606+0.007

−0.013) × 1018 kg.
The relative astrometry of the moons seems more reliable

than measurements with respect to (130) Elektra, because any
possible issues with determining the photocentre of the primary
are absent. The relative astrometry strongly suggests a dynam-
ical oblateness of J2 ≃ 0.18, even with the high-order (ℓ = 6)

7 Family Identification Number = 902 (Nesvorný et al. 2015).
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multipoles included, which also contribute to the total preces-
sion. This higher oblateness would either require some internal
structure or a substantial modification of the shape, ‘enforced’
by the observed precession. In the future, this should lead to new
‘photo-dynamical’ shape reconstruction methods.
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Appendix A: MCMC figures
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Fig. A.1. Corner plot showing the probability distributions of all parameters of the orbital model. Blue lines indicate a best-fit parameter, while the
three dashed lines show the 16%, 50%, and 84% percentiles for each parameter.
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Fig. A.2. Markov chains. Each subplot corresponds to one variable and contains 33 walkers, each denoted by a different colour. Walkers, over 4000
iterations, mapped out possible values of the variables.
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Appendix B: Observation data

In this Appendix, we present three tables of astrophotometry fits
of the three moons of Elektra. In each table, x and y are the
Cartesian positions of the moons relative to the photocentre of
Elektra.

Table B.1. Astrophotometry fit of the inner moon S/2014 (130) 1.

July 2019 (Julian date) x (mas) y (mas)
2458694.861418 172.9 36.8
2458694.864054 177 37.5
2458694.866710 180 43.6
2458694.875133 188.7 46.5
2458694.877797 192.8 46.4
2458694.880464 196.2 47.4
2458694.883109 200.8 48.2
2458694.885767 207 49.7

August 2019 (Julian date) x (mas) y (mas)
2458699.760132 344.8 96.2
2458699.762773 346.2 99.7
2458699.765448 345.7 101.1
2458699.768099 349.2 105.4
2458699.770757 345.2 103.2
2458700.887314 275 83.1
2458700.897933 295.2 87
2458701.728692 -351.6 -120.7
2458701.731355 -341.9 -114.9
2458701.734024 -339.6 -115.9
2458701.736668 -348.2 -121.6
2458701.739317 -337.1 -118

Table B.2. Astrophotometry fit of the middle moon S/2014 (130) 2.

July 2019 (Julian date) x (mas) y (mas)
2458694.856099 366.6 169.1
2458694.858750 371.2 161.5
2458694.861418 377.6 160.5
2458694.864054 370.1 153.6
2458694.866710 362.1 153.6
2458694.875133 352.9 148.3
2458694.877797 353.1 148.8
2458694.880464 348.5 145.1
2458694.883109 349.4 153.9
2458694.885767 342.4 146.6

August 2019 (Julian date) x (mas) y (mas)
2458699.760132 340.2 154.7
2458699.762773 341.4 149.8
2458699.765448 340.2 153.2
2458699.768099 331.5 152.3
2458699.770757 321.3 148.2
2458701.728692 -228 -79.3
2458701.731355 -231.2 -83.3
2458701.734024 -233 -90.9
2458701.736668 -246.6 -88.6
2458701.739317 -247.7 -91.7

Table B.3. Astrophotometry fit of the outer moon S/2003 (130) 1.

July 2019 (Julian date) x (mas) y (mas)
2458694.85737 -663.6 -233.7
2458694.86799 -654 -233.9
2458694.87641 -651 -230
2458694.88704 -645.3 -227

August 2019 (Julian date) x (mas) y (mas)
2458699.69701 -915.2 -385.7
2458699.70762 -918.9 -388.3
2458699.76141 -898.5 -382.2
2458699.77203 -898.1 -379.5
2458700.88859 162.5 137.4
2458700.89921 188.4 147.5
2458701.72997 956.5 443.4
2458701.74059 960.9 445.7

Appendix C: Extension of the best-fit orbital model

In this section, we present an extension of the best-fit orbital
model from Sect. 4. There are several astrometric measurements
of the outer moon S/2003, from 2003 to 2006, which were
published in Marchis et al. (2008). To further test our best-fit
model, we extended it by about 10 years into the past and added
these older measurements. With some additional converging, the
resulting model has a χ2 = 1406. In Fig. C.1, we present the fit of
the outer moon’s orbit to the older positions.
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Fig. C.1. Extension of the best-fit quadrupole model, now with χ2 =
1406. Shown is only the relevant time span of 903 days for orbit 3.
The orbit is plotted in the (u; v) coordinates (pink line), together with
observed positions (black crosses), and residuals (yellow lines). The
shape of Elektra for one of the epochs is overplotted in black.
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Appendix D: Lightcurves
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Fig. D.1. The light curves used in the shape reconstruction compared to the simulated light curves of the best-fit model. The observed intensity
is represented by blue dots, while the simulated intensity of the shape model is depicted in red. The mean phase angle α for each observation is
provided in the bottom left corner of each graph.
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Fig. D.1. Continued.
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