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Abstract. A linear theory for heat conduction in a spherical,
solid and rotating body illuminated by solar radiation is devel-
oped. The recoil force due to the thermally re-emitted radiation
by the surface of the body is computed, including all the terms
depending both on the body’s rotation frequency and the mean
motion of its revolution about the Sun. The present solution
thus overcomes a drawback of the previous approaches, which
have been tailored separately either to the diurnal or to the sea-
sonal variant of the so–called Yarkovsky effect, corresponding
to different limiting cases of the current theory. We pay a special
attention to compute the secular effects on the semimajor axis
of the body’s orbit about the Sun. The results from the general
model coincide with those of the previous approaches to a high
level of accuracy, as the relative size of the additional “mixed”
terms is smaller than10−3 for plausible parameter choices. This
confirms that the use of the simplified formulæ is warranted in
the relevant Solar System applications.
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1. Introduction

The so–called Yarkovsky effect, a recoil force due to thermal ra-
diation from anisotropically heated orbiting bodies, has recently
attracted a considerable attention in the frame of the studies on
the delivery of meteorites and the dynamics of small bodies
in the Solar System. Specific issues for which the Yarkovsky
effect is probably relevant are: the cosmic–ray exposure ages
of stony and iron meteorites, which are much longer than the
dynamical lifetimes of particles delivered from the asteroid
belt (Farinella et al. 1998; Hartmann et al. 1998; Morbidelli &
Gladman 1998); the overabundance of decameter–sized near–
Earth objects (Rubincam 1995, 1998; Vokrouhlický & Farinella
1998a); the dynamical evolution of large (> 5 km) main–belt as-
teroid fragments and their delivery to Mars– and Earth–crossing
orbits (Farinella & Vokrouhlicḱy 1999). In all these cases, the
Yarkovsky effect plays the role of a dissipative mechanism, re-
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sulting into a significant long–term mobility of the orbital semi-
major axis and a complex interaction with resonances.

To assess the relevance of the Yarkovsky effect in Solar
System dynamics one needs, as a first step, to develop a reliable
physical model of the thermal processes occurring within solid,
spinning and orbiting bodies. A significant amount of work has
been performed on this problem in recent years, after Rubincam
(1995) resurrected the interest in the dynamical consequences
of these thermal effects. Most importantly, Rubincam (1995,
1998) and Farinella et al. (1998) recognized the existence of
two distinct variants of the Yarkovsky effect: a “diurnal” vari-
ant depending on the rotation frequency of the body around its
instantaneous spin axis (ωrot), and a “seasonal” variant depend-
ing on the mean motion frequency of the body around the Sun
(ωrev).

Technically speaking, the diurnal variant is obtained when
one entirely neglects the orbital motion around the Sun (see
e.g. Vokrouhlicḱy 1998a,b), whereas in dealing with the sea-
sonal variant onea priori averages all relevant quantities over
the (assumedly) fast rotation of the body (e.g. Rubincam 1995,
1998; Vokrouhlicḱy & Farinella 1998b). This classification is
meaningful and useful, since the two variants of the Yarkovsky
effect result in qualitatively different long–term changes of the
semimajor axis. The diurnal version is maximum at zero obliq-
uity and can lead either to semimajor axis decrease or increase,
depending on the sense of rotation; on the contrary, the seasonal
version is maximum at90◦ obliquity and can only result in or-
bital decay (e.g. Rubincam 1995, 1998; Farinella et al. 1998;
Hartmann et al. 1998). At the essence, however, the two vari-
ants of the Yarkovsky effect are just two different limiting cases
of a single physical mechanism, i.e., the recoil force associated
to thermal radiation from a body having an anisotropic tempera-
ture distribution on its surface. As their names imply, the diurnal
and seasonal variants correspond to different periodicities and
geometries of the external illumination on the body’s surface.
From this perspective, it seems desirable to develop a unified,
self–consistent theory for the Yarkovsky effect, including at the
same time both the diurnal and the seasonal periodicities, such
that the two classical variants can be derived computing suitable
mathematical limits.

Although the classical variants of the Yarkovsky effect are
present as particular limiting cases, the unified theory inevitably
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will contain additional, “mixed” terms, depending on both the
relevant frequenciesωrot andωrev. This conclusion holds even
in the frame of a linear theory for the temperature changes, such
as that developed in the following sections. Thus, the major
novelty of this paper consists of the derivation of these “mixed”
(or “diurnal–seasonal”) terms. Specifically, we shall show that
the “diurnal” variant does not exist as an effect depending on
the rotation frequency alone, but inevitably contains a linear
combination of the two frequencies. As expected, in the limit of
a very rapid spin rate this doublet tends to merge into a single
line, depending just onωrot.

Then, we shall assess the contribution of the new terms to
the secular changes in the semimajor axis of the body’s orbital
motion. As noted above, such changes probably play an impor-
tant role in several problems of astronomical interest, and the
quantitative results obtained so far have always been computed
as a simple superposition of the diurnal and seasonal effects
(e.g. Farinella & Vokrouhlicḱy 1999), neglecting any possible
“mixed” effects.

To make the calculations as simple as possible, we shall
make three simplifying assumptions: (i) a circular orbit around
the Sun; (ii) a spherical shape of the body; and (iii) a com-
mensurability between the rotation and revolution periods. In
particular, we shall introduce a parameterm = ωrot/ωrev, and
we shall assume thatm is an integer number. However, we stress
that while the first two assumptions correspond to physical sim-
plifications, the third one is just a suitable mathematical step to
simplify the derivation of our results, and that this assumption
can be easily removed by the technique used by Farinella &
Vokrouhlický (1996). Therefore, our final results will be valid
for any (real) value of the parameterm.

2. Theory

2.1. Formulation of the problem

Hereafter, we use the mathematical approach and the notations
introduced by Vokrouhlicḱy (1998a,b). We refer to those papers
for a historical background and a more detailed discussion of
thermal physics, while here we shall just provide a few general
concepts and definitions required to derive a unified solution for
the thermal Yarkovsky force on a spherical body.

Since we plan to remain in the framework of a linear theory
to describe the thermal response of an orbiting body to external
heating, we suppose that the temperatureT throughout the body
is close to a constant mean valueT = Tav, and therefore write
T = Tav + ∆T (∆T � Tav). A suitable scaling of the temper-
atureT , as well as other variables, simplifies the mathematical
formulation of the problem. The temperatureT will be normal-
ized by an auxiliary valueT? defined by:εσT 4

? = αE?. Here,ε
is the thermal emissivity coefficient of the body,σ the Stefan–
Boltzmann constant,α the optical absorption coefficient and
E? the solar radiation flux at the mean distance along the orbit.
Since we shall restrict our analysis to the case of a circular orbit,
the scaled mean temperature readsT ′

av = Tav/T? = 1/
√

2 [see
Vokrouhlický 1998a; the normalized quantities will be always
denoted by a prime]. Similarly, the radial coordinater measured

from the center of the body to its surface (atr = R) is to be
scaled by the penetration depth of the seasonal thermal wave
ls =

√
K/ρCωrev: r′ = r/ls. Here,K is the thermal conduc-

tivity, C the thermal capacity, andρ the density of the material.
Finally, the timet will be represented by a complex quantity
ζ = exp(iλ) [λ = ωrev(t− t0)], with t0 being an arbitrary time
origin to be specified below (herei =

√−1).
The temperature variation∆T ′ = ∆T/T? satisfies the heat

diffusion equation (see, e.g., Vokrouhlický 1998a)

iζ
∂

∂ζ
∆T ′(r′; θ, φ; ζ) = (1)

=
1
r′2

{
∂

∂r′

(
r′2 ∂

∂r′

)
+ Λ (θ, φ)

}
∆T ′(r′; θ, φ; ζ) ,

with the operatorΛ(θ, φ) given by

Λ (θ, φ) =
1

sin θ

[
∂

∂θ

(
sin θ

∂

∂θ

)
+

1
sin θ

∂2

∂φ2

]
(2)

(hereθ andφ are the usual spherical coordinates with the pole
defined by the body’s rotation axis). Eq. (1) is supplemented by
the linearized boundary condition

√
2∆T ′ + Θ

(
∂∆T ′

∂r′

)
R′

= ∆E ′ , (3)

with the seasonal thermal parameterΘ defined by

Θ =
Γ
√

ωrev

εσT 3
?

(4)

(hereΓ =
√

ρCK is the thermal inertia). The right–hand side
term in Eq. (3) is defined byE ′ = 1

4 +∆E ′, E ′
av = 1/4 being the

averaged irradiation of the fragment’s surface. The temperature
variation∆T ′ is a function of the coordinates(r′, θ, φ) inside
the body and of timeζ.

As in Vokrouhlicḱy (1998a), we shall solve for∆T ′ in a ro-
tating, body–fixed reference frame, with theZ-axis coinciding
with its spin vector. At the reference timet0, theX-axis of this
system points toward the radiation source (the Sun). After ex-
pressing the thermal force vectorf in this reference frame – see
Eqs. (14) and (15) below – we will compute its projections in
the orbit–related reference system and obtain the force compo-
nents appearing in the Gauss perturbation equations. The latter
operation is simple vectorial algebra.

2.2. The insolation term

As discussed in detail by Vokrouhlický (1998a), a particular at-
tention has to be paid to a suitable development of the irradiation
term∆E ′ on the right–hand side of Eq. (3). In general, we can
use a series of spherical functions

∆E ′ =
∑
n≥1

n∑
k=−n

ank(ζ) Ynk(θ, φ) , (5)

where only the dipole (n = 1) part

a10(ζ) =
√

π

3
cos θ0(ζ) , (6)
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a1±1(ζ) = ∓
√

π

6
sin θ0(ζ) e∓iφ0 (7)

will be relevant. Hereθ0 andφ0 are the solar colatitude (mea-
sured from the spin axis) and longitude in the body–fixed ref-
erence frame (a mathematical technique allowing one to obtain
most elegantly these results has been discussed in Vokrouhlický
1998a). To simplify the following algebra, the origin of the mean
longitudeλ (i.e. t0) has been chosen so that

cos θ0 = − sin γ sinλ =
i

2
sin γ

(
ζ − ζ−1) , (8)

whereγ is the obliquity of the spin axis. Eq. (8) allows us to
make immediately an important observation, namely that the
Fourier spectrum of thea10(ζ) coefficient contains only the
revolution frequency.

On the other hand, the Fourier development for the tesseral
coefficientsa1±1(ζ) is more complicated. It contains a linear
combination of the rotation and revolution frequencies, since

sin θ0 e±iφ0 = sin2 γ

2
ζ∓(m+1) + cos2

γ

2
ζ∓(m−1) . (9)

As an alternative way of obtaining these results, one may use the
insolation function development of Rubincam [1994; Eq. (6)].

2.3. Linear solution and thermal force evaluation

The linearity of the system (1) – (3) and the development (5) of
the insolation term allows us to make a suitable decomposition
of the temperature∆T ′ into multipole components

∆T ′(r′; θ, φ; ζ) =
∑
n≥1

n∑
k=−n

t′nk(r′; ζ) Ynk(θ, φ) . (10)

The coefficientst′nk(r′; ζ), weighing the different multipole
terms, satisfy the following system of decoupled differential
equations

iζ
∂

∂ζ
t′nk(r′; ζ) = (11)

=
1
r′2

{
∂

∂r′

(
r′2 ∂

∂r′

)
− n (n + 1)

}
t′nk(r′; ζ) ,

with the boundary constraints

√
2 t′nk(R′; ζ) + Θ

(
∂t′nk

∂r′

)
(R′;ζ)

= ank(ζ) (12)

at the surface of the body. The regularity oft′nk at the central
positionr′ = 0 is also assumed. In the next sections we shall
obtain a general solution of Eqs. (11) and (12) for the dipole
(n = 1) part of development (5).

When determining the recoil force due to thermal radiation,
we assume – in agreement with the boundary condition (3) –
that the isotropic Lambert’s law holds as far as the directional
characteristics of the emission are concerned. Linearizing the
fourth power of the surface temperature as before, we obtain

f(ζ) = −2
√

2
3π

αΦ
∫

dΩ ∆T ′(R′; θ, φ; ζ)n , (13)

which gives the thermal recoil force per unit of mass of the body.
Here,Φ = (E?πR2/mc) is the usual radiation force factor:m
is the body’s mass,c the velocity of light andn the unit vector
normal to the surface. Given the multipole development (10) of
the temperature variation∆T ′, we easily obtain the following
formulæ for the thermal force components

fX(ζ) + ifY (ζ) = − 8
3
√

3π
αΦ t′1−1(R

′; ζ) , (14)

fZ(ζ) = −4
3

√
2
3π

αΦ t′10(R
′; ζ) , (15)

confirming that only the dipole part (n = 1) of the temperature
development (10) is relevant at the level of a linear theory. The
force components (14) and (15) are given in the co–rotating
body–fixed reference frame defined in Sect. 2.1.

2.4. Solution for the seasonal component

Hereafter, we give a solution for the “zonal” partt′10(r
′; ζ) of

the temperature distribution, which yields the along–spin com-
ponent of the thermal force [see Eq. (15)]. Given the simplicity
of the correspondinga10(ζ) coefficient from Eq. (8), we may as-
sume:t′10(r

′; ζ) = κ+(r′)ζ + κ−(r′)ζ−1. The radial functions
κ± satisfy the equation[

d

dr′

(
r′2 d

dr′

)
− (

2 ± ir′2)] κ±(r′) = 0 . (16)

whose solution is given by

κ±(r′) = c±j1(
√∓ir′) . (17)

Here,j1(z) is the spherical Bessel function of order1. Deter-
mining the proportionality factorsc± in Eq. (17) by the surface
boundary constraint (12), we obtain the following expression
for the zonal dipole coefficientt′10(r

′; ζ) at the surface of the
body (r′ = R′):

t′10(R
′; ζ) = −

√
π

6
sin γ

ER′ sin(λ + δR′)
1 + χ

. (18)

Following the notations of Vokrouhlicḱy (1998a), we introduce
the amplitudeER′ and the phaseδR′ by

ER′ exp (iδR′) =
A(x) + iB(x)
C(x) + iD(x)

, (19)

with x =
√

2R′. The auxiliary functionsA(x), B(x), C(x),
D(x) read

A(x) = − (x + 2) − ex [(x − 2) cos x − x sinx] , (20)

B(x) = −x − ex [x cos x + (x − 2) sinx] , (21)

C(x) = A(x) +
χ

1 + χ
× (22)

{3 (x + 2) + ex [3 (x − 2) cos x + x (x − 3) sinx]} ,

D(x) = B(x) +
χ

1 + χ
× (23)

{x (x + 3) − ex [x (x − 3) cos x − 3 (x − 2) sinx]} ,
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with the parameterχ in Eqs. (18), (22) and (23) defined by:
χ = Θ/(

√
2R′). Note that the same quantity had been calledλ

by Vokrouhlicḱy (1998a).
As we are mainly interested in the mean rate of change

(da/dt)of the orbital semimajor axisadue to Yarkovsky effects,
we look for the perturbations caused by the along–spin thermal
force componentfZ in the along–track direction –T1. Assuming
a quasi–circular orbit we have

T1 = fZ sin γ cos λ + O(e) . (24)

Averaging over one revolution of the body around the Sun (i.e.
one cycle of the mean longitudeλ) we finally obtain(

da

dt

)
s

=
4α

9
Φ

ωrev

ER′ sin δR′

1 + χ
sin2 γ . (25)

This formula coincides exactly with the semimajor axis decay
rate due to the seasonal variant of the Yarkovsky effect (see e.g.
Rubincam 1998; Farinella et al. 1998).

2.5. Solution for the diurnal/mixed components

Next, we determine the “tesseral” coefficientst′1±1(r
′; ζ) of the

temperature development (10), which are related to the out–of–
axis thermal force components(fX , fY ) [see Eq. (14)]. Given
the Fourier expansion of the insolation coefficientsa1±1(ζ)
from (7) and (9) we may expect

t′1±1(r
′; ζ) = τ±

1 (r′) ζ±(m+1) + τ±
−1(r

′) ζ±(m−1) , (26)

and we find again from Eq. (11) that the radial amplitudes
τ±
±1(r

′) satisfy a system of decoupled homogeneous spherical
Bessel equations. Their solution reads

τ±
1 (r′) = c±

1 j1

[√
∓i (m + 1)r′

]
, (27)

τ±
−1(r

′) = c±
−1 j1

[√
∓i (m − 1)r′

]
. (28)

So far, we have been keeping the normalization of the radial
coordinater by the penetration depthls of the seasonal thermal
wave. However, a normalization by the penetration depthld =
ls/

√
m of the diurnal wave is more suitable now, and will be

used hereafter in this section. Thus

τ±
1 (r′) = c±

1 j1

[√
∓i (1 + 1/m)r′

]
, (29)

τ±
−1(r

′) = c±
−1 j1

[√
∓i (1 − 1/m)r′

]
. (30)

After deriving the constant factorsc±
±1 from the boundary con-

ditions we obtain

fX + ifY = −4
9

αΦ
1 + χ

{
sin2 γ

2
ER′

+
exp(−iδn

R′
+
) ζ−1 (31)

+ cos2
γ

2
ER′

− exp(−iδn
R′

−
) ζ

}
ζ−m .

Here we definedR′
± =

√
1 ± 1/m R′, while the remaining

quantities are the same we used previously. Note that, like the
insolation coefficientsa1±1(ζ), the “diurnal” force components

(31) also depend on a linear combination of the rotation and rev-
olution frequencies, but not on the rotation frequency itself. This
statement is obviously “coordinate dependent”. To make a more
obvious link to the results of Vokrouhlický (1998a; Eq. 30), one
may transform(fX , fY ) force components to the body–centered
frame with the axisz along its spin axis and the axisx so that
the local direction to the Sun lies in thexz–plane (this system
has been used by Vokrouhlický, 1998a). Denoting the equato-
rial Yarkovsky force components in this reference system by we
obtain

fx + ify =
fX + ifY

sin θ0

(
sin2 γ

2
ζ + cos2

γ

2
ζ−1

)
ζm . (32)

Fourier development of (32) contains infinite series of spectral
lines depending on both rotation and revolution frequencies. In
what follows, we use (31) because of its simplicity.

As in the previous section, we are primarily interested in the
contribution of the(fX , fY ) force components to the along–
track perturbation on a quasi–circular orbit. Simple algebra
yields

T2 =
1
2

(fY − ifX)
(
sin2 γ

2
ζm+1 − cos2

γ

2
ζm−1

)
+ C.C.

+O(e) (33)

for the along–track perturbation force; C.C. means the complex
conjugate quantity of the previous term. Taking the average of
T2 over one revolution around the Sun we obtain the mean rate
of change of the semimajor axis(

da

dt

)
d

= − 8α

9ωrev

Φ
1 + χ

{
cos4

γ

2
ER′

− sin δR′
−

− sin4 γ

2
ER′

+
sin δR′

+

}
. (34)

where the indexd reminds us that we are dealing with the
diurnal components(fX , fY ) of the thermal force. Interest-
ingly, Eq. (34) shows that the diurnal effect on the semima-
jor axis is not simply proportional to the cosine of the obliq-
uity – as most commonly used – but depends onγ in a more
complicated way. However, the classicalcos γ result can be re-
covered realizing that in the typical astronomical applications
ωrot/ωrev = m � 1. Then, to a high accuracy we can set
R′

± ' R′ and cos4 γ/2 − sin4 γ/2 = cos γ. Then, Eq. (34)
becomes identical with the classical result (e.g. Vokrouhlický
1998a), confirming that in the fast rotation limit (m → ∞) the
diurnal variant of the Yarkovsky effect is naturally decoupled
from its seasonal counterpart. It is easy to check that in all astro-
nomical applications listed in Sect. 1 the exact result (34) differs
from the classical formula by less than one part in103.

Another consequence of Eq. (34) is that the diurnal effect
on the semimajor axis does not vanish exactly at90◦ obliquity.
This asymmetry implies that the corresponding semimajor axis
drift does not average out to zero when an isotropic distribution
of spin axes is assumed (e.g., due to frequent and random im-
pact reorientation events). Denoting by angled brackets such an
average over all the spin orientations, we obtain〈(

da

dt

)
d

〉
=

8α

27ωrev

Φ
1 + χ
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×
{

ER′
+

sin δR′
+
− ER′

− sin δR′
−

}
. (35)

However, unless them parameter is unrealistically small, col-
lisional events will anyway tend to spin up the rotation rate
besides reorienting the spin axis, the long–term average (35) of
the diurnal semimajor axis effect is very small. Quantitatively,
one can easily show that〈(da/dt)d〉 ∝ 1/m at largem.

3. Conclusions

The main results of this paper can be summarized as follows:

– We have developed a self–consistent, unified linear theory
for the thermal Yarkovsky effects on a spherical, rotating
body which orbits around a radiation source. The solution
contains consistently all terms that depend on both the rota-
tion and the revolution frequency and their mutual combina-
tions. In the limit of a rapidly rotating body the two classical
variants of the thermal effects – the so–called diurnal and the
seasonal effects previously modeled in a separate fashion –
are recovered at the same time.

– Besides rederiving the previously known results for the sea-
sonal and diurnal variants of the Yarkovsky effect, we have
computed and clarified the contribution of the “mixed” terms
to the mean semimajor axis rate of an orbiting body.

– We have found that in most relevant astronomical applica-
tions, such as the motion of asteroidal fragments in the main
asteroid belt, the relative contribution of the newly derived
mixed terms to the Yarkovsky semimajor axis perturba-
tions is less than one part in103. This is a negative result,
but it is important to justify a number of recent studies taking

into account only the limit variants of the Yarkovsky effect,
namely the diurnal and seasonal effects, in dealing with the
meteorite delivery issue. Only in the case of very slowly
rotating bodies orbiting in the inner Solar System (a possible
case would be that of Mercurian ejecta escaped from the
planet’s gravity field), the more exact solution derived in
this paper might be used to improve the accuracy of the
results.
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Farinella P., Vokrouhlicḱy D., 1998, Sci, in press
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