

CME modeling at the CPA of KU Leuven

E. Chané & S. Poedts & B. van der Holst & C. Jacobs & G. Dubey & D. Kimpe

Centre for Plasma Astrophysics K.U.Leuven

COST724 workshop, Athens, 13 October, 2005

Motivation Space weather simulations @ CPA: aims

Motivation : space weather

USA NSWP Strategic Plan:

"Space Weather refers to conditions on the sun and in the solar wind, magnetosphere, ionosphere, and thermosphere that can influence the performance and reliability of space-borne and ground-based technological systems and can endanger human life or health."

Space weather =

time-dependent disturbances of the Earth's magnetosphere driven by solar activity in a wide range of spatial and temporal scales

Motivation Space weather simulations @ CPA: aims

Space weather effects

E. Chané et al. CME modeling at the CPA of KU Leuven

Motivation Space weather simulations @ CPA: aims

Space weather : drivers

- drivers are of solar origin:, viz. transient phenomena superposed on the solar wind:
 - CMEs (most prominent)
 - eruptive flares
 - Solar Energetic Particle events

• . . .

- basic physical mechanisms not fully understood
- 2 out of 3 predictions are WRONG !

CMEs :

- typ. 400 km/s, $10^{12} 10^{13} \text{ kg!}$
- $E = 10^{24} 10^{25}$ Joule
- known since 30 yrs only!
- they play a crucial role in SW!

Motivation Space weather simulations @ CPA: aims

Motivation

Construction of numerical models for the solar wind and CME initiation and evolution in order to improve prediction of space weather.

Motivation Space weather simulations @ CPA: aims

Motivation

Construction of numerical models for the solar wind and CME initiation and evolution in order to improve prediction of space weather.

Comparative studies

Study the effect of the background solar wind and CME parameters on the initiation and evolution of IP CMEs and CME shocks.

- in an objective way, i.e. with the same numerical code, grid resolution (numerical dissipation), numerical technique, BCs & ICs, etc.
- in order to quantify the effect of the background wind and initiation parameters on the CME speed, the direction, density, magnetic field etc.

Solar Wind Models CME intitiation : foot point shearing CME intitiation : magnetic flux emergence

Solar wind models

Polytropic Wind

Color: density (log-scale), black lines: magnetic field lines, arrows: velocity

Solar Wind Models CME intitiation : foot point shearing CME intitiation : magnetic flux emergence

Solar wind models

Solar Wind Models CME intitiation : foot point shearing CME intitiation : magnetic flux emergenc

Solar wind models

Solar Wind Models CME intitiation : foot point shearing CME intitiation : magnetic flux emergence

Wind characteristics at $30R_{\odot}$

	Model 1	Model 2	Model 3
<i>Density</i> [m ⁻³]			
Pole	$5.6 imes10^8$	$1.02 imes10^9$	$3.08 imes10^9$
Equator	$7.27 imes10^8$	$1.83 imes10^9$	$2.87 imes10^9$
Ratio	0.77	0.56	1.07
<i>Velocity</i> [km/s]			
Pole	323	727	675
Equator	293	358	374
Ratio	1.1	2.03	1.8
Temperature[K]			
Pole	$0.82 imes10^6$	$1.13 imes10^{6}$	$0.89 imes10^6$
Equator	$0.83 imes10^6$	$0.29 imes10^6$	$0.89 imes10^6$
Ratio	0.99	3.87	1.0
Magnetic field[G]			
Pole	$6.04 imes10^{-4}$	$3.7 imes10^{-4}$	$3.9 imes10^{-4}$
Equator	$6.1 imes10^{-5}$	$1.2 imes 10^{-4}$	$2.0 imes10^{-4}$
Ratio	9.89	3.06	1.95

Solar Wind Models CME intitiation : foot point shearing CME intitiation : magnetic flux emergence

CME initiation: Shearing

Add extra azimuthal velocity v_{ϕ}^{0} at the solar surface to shear the footpoints of the magnetic field.

 $v_{\phi}^{0} = v_{0}(t)\Theta e^{(1-\Theta^{4})/4}$ with $\Theta = \frac{\theta - \pi/2}{\Delta \theta_{m}}$ magnetic field lines

Background wind: Model 1, maximum shear velocity: 6 km/s.

Solar Wind Models CME intitiation : foot point shearing CME intitiation : magnetic flux emergence

CME initiation: Shearing

Add extra azimuthal velocity v_{ϕ}^{0} at the solar surface to shear the footpoints of the magnetic field.

$$v_{\phi}^{0} = v_{0}(t)\Theta e^{(1-\Theta^{4})/4}$$

with $\Theta = \frac{\theta - \pi/2}{\Delta \theta_{m}}$

Background wind: Model 1, maximum shear velocity: 6 km/s.

Solar Wind Models CME intitiation : foot point shearing CME intitiation : magnetic flux emergence

CME initiation: Shearing - parameter studies

Shearing rate affects

- Δt to reach instability
- instability threshold in terms of energy
- amount of energy released
- velocity/acceleration of flux rope

Ο...

Solar Wind Models CME intitiation : foot point shearing CME intitiation : magnetic flux emergence

CME initiation: Shearing - parameter studies

Shearing rate affects

- Δt to reach instability
- instability threshold in terms of energy
- amount of energy released
- velocity/acceleration of flux rope

• . . .

Solar Wind Models CME intitiation : foot point shearing CME intitiation : magnetic flux emergence

CME initiation: Shearing - parameter studies

Background wind affects

- Δt to reach instability
- instability threshold in terms of energy
- amount of energy released

o . . .

 velocity/acceleration of flux rope

Solar Wind Models CME intitiation : foot point shearing CME intitiation : magnetic flux emergence

CME initiation: flux emergence / cancellation

Initial model

- cf. Chen & Shibata (2000)
- + **physics** : MHD (incl. gravity)
- + geometry : 2D (axisymmetric)
- + dipole field OR
 - + solar wind \Rightarrow

$$ec{B}_0 = ec{B}_{ ext{LC}} + ec{B}_{ ext{IC}} + ec{B}_{ ext{BC}}$$

Solar Wind Models CME intitiation : foot point shearing CME intitiation : magnetic flux emergence

CME initiation: flux emergence / cancellation

Addition of flux

cf. Forbes & Priest ('84), Chen & Shibata ('00)

- at lower boundary $(r=1R_{\odot})$
- in region $\frac{\pi}{2} 0.6 \le \theta \le \frac{\pi}{2} + 0.6$
- BC: $A_{\varphi} = A_{\varphi}(t_0) + c_e A_{\varphi}^+ \frac{t t_0}{t_e t_0}$

E. Chané et al. CME modeling at the CPA of KU Leuven

Solar Wind Models CME intitiation : foot point shearing CME intitiation : magnetic flux emergence

CME initiation: flux emergence / cancellation

Parameter study : t_e

- fixed amount of flux: $2\pi c_e \psi_0 \approx$ -6.6×10^{20} Mx in Northern hemisphere
- vary flux emergence rate, i.e. $2\pi c_e \psi_0 / \Delta t$ from -3×10^{18} to -5×10^{16} Mx/s

Height - time plot for difference flux emergence rates

Solar Wind Models CME intitiation : foot point shearing CME intitiation : magnetic flux emergence

CME initiation: flux emergence / cancellation

Parameter study : t_e

- fixed amount of flux: $2\pi c_e \psi_0 \approx$ -6.6×10^{20} Mx in Northern hemisphere
- vary flux emergence rate, i.e. $2\pi c_e \psi_0 / \Delta t$ from -3×10^{18} to -5×10^{16} Mx/s

CME evolution up to 30 R_{\odot} CME evolution up to 1 AU

CME evolution: creating shocks

- Superpose a high-density & high-pressure plasma blob on the wind
- Initial perturbation of the density: $\rho_{CME} = 5N_0$
- Initial perturbation of the velocity: 1000 km/s
- Plasma blob can contain a flux rope with same or opposite polarity of the background field

CME evolution up to 30 R_{\odot} CME evolution up to 1 AU

CME evolution: Low & Zhang (2002) confirmed!

'Normal' polarity flux rope

CME evolution up to 30 R_{\odot} CME evolution up to 1 AU

CME evolution: Low & Zhang (2002) confirmed!

'Inverse' polarity flux rope

CME evolution up to 30 R_{\odot} CME evolution up to 1 AU

Magnetic polarity of the flux rope

Effect on evolution path...

- magnetic polarity of flux rope influences evolution path CME!
- effect has been quantified for different background wind models
- here only shown for Wind model 3 and initial launch angle 60 degrees

CME evolution up to 30 R_{\odot} CME evolution up to 1 AU

CME evolution up to 1 AU

- self-similar evolution stops beyond 30 R_☉
- difference normal/inverse polarity much smaller (e.g. density distr.)
- higher wind density at equator leads to serious deformation (compression) of the CMEs
- only difference :
 - about 6 hrs ≠ in arrival time
 - orientation of field

CME evolution up to 30 R_{\odot} CME evolution up to 1 AU

Evolution path (Centre of Mass)

inverse CMEs still deviated towards equator but :

- difference smaller than at 30 R_{\odot}
- not true for $\theta_{cme} \leq 10^{\circ}$ (due to high wind density at equator)

Effect of polarity flux rope Event study

Simulated satellite data at 1 AU (Wind model 2)

- Normal (blue) and inverse (red) CME
- 3-part structure of CME
 - 1 leading shock
 - 2 dark cavity
 - 3 high density core in cavity
- leading shock front

• . . .

Effect of polarity flux rope Event study

Simulated satellite data at 1 AU (Wind model 2)

effect of magnetic polarity flux rope :

for $\theta_{CME} = 10^\circ$: magnetic cloud of • normal CME

misses

• inverse CME hits

the earth!

Effect of polarity flux rope Event study

Event study

- full halo CME observed by LASCO and EIT on April 4, 2000
- observed at 16:32 UT in C2 frame
- related flare observed by EIT at 15:24 UT
- C3 measurements : plane-of-the-sky speed is 984 km/s
- try to match ACE data by
 - using wind model 2
 - playing with CME parameters (v_{cme} , θ_{cme} , B_{rope} , polarity)

Effect of polarity flux rope Event study

Event study

E. Chané et al. CME modeling at the CPA of KU Leuven

Effect of polarity flux rope Event study

However...

Comparison of Ulysses data (between 1/11/94 and 1/08/95, i.e. when spacecraft was evolving between 1.34 and 2.03 AU) and wind model 2 at 1 AU

Effect of polarity flux rope Event study

New wind model

Comparison of Ulysses data (between 1/11/94 and 1/08/95, i.e. when spacecraft was evolving between 1.34 and 2.03 AU) and wind model 2 at 1 AU

Conclusions

The chosen background wind model influences :

- the initiation of the CME (threshold, energetics,...)
 - time of formation (threshold), energetics, speed, acceleration,...
- evolution of the CME
 - shape of leading shock front, shock speed, spread angle, mass distribution,...

Clearly, the initial parameters (shear velocity, polarity of fluxrope, v_{CME} , ρ_{CME} , θ_{CME} ,...) also influence the structure and evolution of the CME.