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The planetary disturbing function is the basis of much analytical
work in Solar System dynamics and series expansions of it that were
derived in the last century are still in common use today. However,
most previous expansions have the disadvantage of being in terms
of the mutual inclination of the two masses. Also, several of the
classical, high-order expansions contain a number of errors. A new
algorithm for the derivation of the disturbing function in terms of
the individual orbital elements of the two masses is presented. It
allows the calculation, to any order, of the terms associated with
any individual argument without the need for expanding the en-
tire disturbing function. The algorithm is used to generate a new
expansion which is complete to fourth-order in the eccentricities
and inclinations, and incorporates a consistent numbering system
for each argument. The properties of the expansion for a selected
argument are discussed, and the use of the expansion is illustrated
using the examples of the Titan–Hyperion 3:4 resonance and the
possible Jupiter–Pallas 18:7 resonance. c© 2000 Academic Press
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1. INTRODUCTION

The Solar System is not just a collection of objects moving
arbitrary orbits. It has an intricate dynamical structure that
evolved over time. To understand the structure and evolu
of the Solar System we must understand the consequenc
Newton’s universal law of gravitation. To do this we must u
derstand the properties of the perturbing potential experien
by one object due to another; this is also known as the plane
disturbing function.

Despite its importance for planetary science, guidance on
properties and practical use of the disturbing function can o
be found in the specialist literature on celestial mechanics.
own experience is that when the disturbing function is enco
tered, many authors give resonant arguments and simply
that the terms in the semimajor axis are “of order unity.” Ty
cally a reference is given to a textbook on celestial mecha
without any way of knowing which particular arguments a
being considered. Invariably these texts fail to provide a c
presentation, even allowing for inconsistencies in their appro
and their use of a mutual inclination. In an era when, for exa
ple, the locations of resonant structures in planetary rings ca
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determined to within¿1 km, it seems unusual that there is n
consistent approach to the use of the disturbing function gi
that, effectively, it determines the location of the resonant f
ture. Our discovery of a new algorithm to facilitate the derivati
of the terms associated with an explicit argument and its sub
quent application to the generation of a fourth-order expans
makes it appropriate to combine the two by writing a paper
corporating these results in a form suitable for a nonspecia
readership. Therefore the aims of this paper are (i) to presen
efficient algorithm to calculate the terms associated with a giv
argument and (ii) to present a completely new expansion of
disturbing function in a systematic form together with examp
of its use. In this section we provide some basic definitions a
an outline of previous work on the disturbing function.

Consider a massm orbiting a primary of massMc in an ellip-
tical path. Let the orbiting mass have position vectorr relative to
Mc and assume that the gravitational effect of the primary ari
from a point mass (see Fig. 1). This problem is integrable a
the orbital elementsa, e, I ,$ , andÄ, which denote semimajor
axis, eccentricity, inclination, longitude of pericenter, and long
tude of ascending node, respectively, of the massmare constant.
Consider now a third mass,m′, with position vectorr ′ relative
to Mc and orbital elementsa′, e′, I ′,$ ′, andÄ′. Assumer < r ′

always. The mutual gravitational force between the two orb
ing massesm andm′ results in accelerations in addition to th
standard two-body accelerations due toMc (see Fig. 1). These
additional accelerations of the secondary masses with respe
the primary can be obtained from the gradient of the disturb
function.

The equations of motion of the two orbiting masses can
written as

r̈ = ∇(U +R) and r̈ ′ = ∇′(U ′ +R′), (1)

where

U = G (Mc+m)

r
and U ′ = G (Mc+m′)

r ′
(2)

are the central, or two-body parts of the total potential and
is understood that the∇ and∇′ operators denote that the gra
dient is with respect to the coordinates of the massm andm′,
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FIG. 1. The position vectors,r and r ′ of the two massesm andm′ with
respect to the central massMc. The angle between the position vectors isψ .

respectively. TheR andR′ terms in Eq. (1) are the disturbin
functions which represent the potentials arising from the gr
tational effects of the external and internal masses respecti
These are given by

R = Gm′

|r ′ − r | − Gm′
r · r ′
r ′3

(3)

R′ = Gm

|r − r ′| − Gm
r · r ′
r 3

. (4)

The first term in each of these expressions is called the d
term while the second term, which arises from the choice of
origin of the coordinate system, is called the indirect term
the origin of the coordinate system is at the center of mass,
there are no indirect terms.

At this stage we should point out one peculiarity of the d
turbing function as used throughout this paper. The equation
the perturbing force is written asF=∇R rather than the more
usualF=−∇R, becauseR is actually the negative of the tru
potential. This is an historical quirk and has no effect on
inherent dynamics of the system.

It is clear that it is a trivial task to writeR andR′ in terms
of the standard cartesian coordinates of each orbiting mass
cartesian equations of motion of the inner perturbed body
be written in terms of the gradient ofU andR as in Eq. (1) and
numerical techniques can be used to study the orbit. Howeve
many problems it is often more useful to consider the variat
of the orbital elements of the perturbed body with time. Hen
we must express the relevant disturbing function in terms of
orbital elements of each body. Such an expansion is achieve
expandingR orR′ as infinite series of the form

R = µ′
∑

S(a,a′, e, e′, I , I ′) cosφ (5)

and

R′ = µ
∑

S′(a,a′, e, e′, I , I ′) cosφ, (6)

whereµ=Gm, µ′ =Gm′, and
φ = j1λ
′ + j2λ+ j3$

′ + j4$ + j5Ä
′ + j6Ä . (7)
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The ji are all integers, andλ andλ′ denote the mean longitude
of each mass. We define the order of the argument as

N = | j1+ j2|. (8)

As we shall see in Sect. 3 below, the value ofN is the same as
the lowest power ofe, e′, I , andI ′ that occurs inSor S′. Thus,
when we refer to anNth-order expansion we mean an expa
sion that includes all possible arguments up to and includ
orderN, together with the corresponding terms in powers of
eccentricities or inclinations up to and including theNth power.

The literature on the disturbing function has a distinguish
history. The first paper to be published in theAstronomical Jour-
nal contained the start of a sixth-order expansion by Pe
(1849). Le Verrier (1855) produced a seventh-order expans
which was subsequently extended to eighth-order by Boq
(1889). Newcomb (1895) carried out work on a seventh-or
expansion, while Nor´en and Wallberg (1899) produced a secon
order expansion in canonical elements. Brown and Shook (19
gave a clear derivation of the expansion to second-order in
keplerian orbital elements. In more recent times the expan
contained in Brouwer and Clemence (1961) has become wi
adopted as a standard, low-order expansion; it is complet
third-order in all terms but contains some fourth-order ter
associated with particular arguments.

In the expressions forS and S′ in Eqs. (5) and (6) in each
of these expansions the dependence ona and a′ is given by
means of Laplace coefficients (functions ofα=a/a′) and their
derivatives (see, for example, Brouwer and Clemence 1961
Sect. 2 below). The compact notation afforded by the use
Laplace coefficients means that they can be handled easi
calculations involving the disturbing function.

Another common but undesirable characteristic of all of th
expansions is the use of angles referred to the mutual nod
the orbiting masses, and the mutual inclination,J , of the orbits
given by

cosJ = cosI cosI ′ + sin I sin I ′ cos(Ä′ −Ä). (9)

This has the advantage of making the resulting size of the ex
sions more manageable, but it has the disadvantage of ma
studies of the effect of perturbations on individual inclinatio
or nodes more difficult.

As well as their consistent use of a mutual inclination the
is a more serious drawback to some of these expansions—
contain errors. Most are typographical mistakes that are e
to identify and correct. For example, following the publicatio
of the expansion by Le Verrier (1855), several editions of
Annales de l’Observatoire de Pariscontained corrections to
Le Verrier’s original text. Murray (1985) pointed out a sing
sign error in Le Verrier’s work that had not been corrected. T
early printings of Brouwer and Clemence (1961) contained
rors in the expansion that were corrected only with the th

printing in 1971.
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Using mathematical techniques from geophysics and artifi
satellite theory, Kaula (1962) developed a form of the expans
using Legendre polynomials. This form of the expansion had
advantage that one could specify an argument of interest,φ say,
and then isolate only those terms associated with that partic
argument, avoiding the need to carry out a complete expan
Another advantage was that because the dependence one, e′, I ,
andI ′ was given in the form of explicit functions, expansions
any order could be generated for the terms associated with
particular argument. This made Kaula’s expansion ideal for
in a number of fields (see, for example, Allan 1969, 1970, Mur
1982, Dermott and Murray 1983). However, one disadvant
of Kaula’s work was the absence of Laplace coefficients—
dependence ona anda′ appeared as a summation in powers oα
and reduced the compactness and ease of use of the expa

It is important to recognize that the “classical” expansions
the last century are still in use today. For example, Goldreich
Nicholson (1977) used the expansion by Peirce (1849), w
Wisdom (1982), Murray (1986), anďSidlichovský and Melendo
(1986) all used the expansion by Le Verrier (1855) in their w
on algebraic mappings for asteroid motion at resonance.

In one of the first applications of computer algebra to
lestial mechanics Depritet al. (1971) discovered mistakes
Delaunay’s lunar theory. Since then a number of authors h
developed their own software packages for the developme
series (see the review by Henrard 1989). For example, Bro
and Smith (1971) (and the references therein) describe a
nique for computing the expansion of the disturbing functi
Brumberg (1995) made use of a generic Poisson series proc
to show how the disturbing function can be expanded; sim
methods were employed by Laskar (1991) using Poincar´e vari-
ables.

The need for correct, higher-order expansions and the ab
to perform complicated, error-free series manipulation by co
puter, led Murray and Harper (1993) to generate an eighth-o
expansion of the disturbing function in the individual orbi
elements. The expansion was first produced usingMathemat-
ica (Wolfram 1991) and written as a file of integers that w
then compared with a similar file produced independently
ing Maple. As a final check the expansion was compared w
Kaula’s form of the expansion for a large number of expl
cases. Details of the derivation are given in Harper and Mu
(1994).

Our own experience suggests that many members of the S
System dynamics community find the existing forms of the
pansion difficult to derive and use. Therefore one of the goa
this paper is to present a new algorithm for the determinatio
the terms associated with a given argument in the expan
of the planetary disturbing function. This obviates the need
a complete series expansion involving all arguments up to
including a specified order. The expressions for each term
volve e, e′, I , and I ′ (instead of the mutual inclination,J ) as
well as explicit Laplace coefficients (instead of infinite ser

in the ratio of the semimajor axes) and can be calculated
FUNCTION 131
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to any desired power of the eccentricities and inclinations.
present the algorithm in the next section and in Section 3
provide detailed information on the properties of the expans
In Section 4 we illustrate the use of the expansion by giv
examples of how the appropriate terms are calculated for
specific cases in Solar System dynamics. A complete fou
order expansion of the direct and indirect parts of the disturb
function is given in the Appendix; each argument in this expa
sion has been given a unique identification number for eas
reference. Some of the concepts and results developed in
paper, including the fourth-order expansion are made use o
Murray and Dermott (1999) where the disturbing function a
its properties are examined in some detail. Murray and Derm
also derive an expansion (from first principles) of the disturb
function complete to second-order in the individual elemen
and provide several analytical and numerical comparisons.

2. EXPANSION OF THE DISTURBING FUNCTION

It is unlikely that anyone making use of the planetary d
turbing function requires all the arguments in the expansi
in practice the terms associated with only a few arguments
required. Therefore, although we give a complete fourth-or
expansion in the Appendix for reference purposes, our prim
objective is to produce a new form of the expansion which
tains the advantages of Kaula’s (1962) approach but expre
in terms of Laplace coefficients and their derivatives. Full deta
of the procedure for accomplishing this new derivation will
published elsewhere (K. Ellis, in preparation). Here we confi
ourselves to giving the explicit form of the series.

From Eqs. (3) and (4) it is clear that we can write the disturb
function due to an external perturber as

R = µ′

a′
(RD + αRE) (10)

and that due to an internal perturber as

R′ = µ

a

(
αRD + 1

α
RI

)
, (11)

whereα = a/a′ is the ratio of the semimajor axes of the tw
orbits, andµ=Gm, µ′ =Gm′. The direct part in both cases i
given by

RD = a′

1
, (12)

with 12= r 2+ r ′2− 2rr ′ cosψ . Since

r · r ′ = rr ′ cosψ, (13)

whereψ is the angle between the two position vectors (s
Fig. 1), we have

r a′2
up
RE = −

a r ′2
cosψ (14)
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for the indirect part in the case of an external perturber and

RI = − r ′

a′
a2

r 2
cosψ (15)

for the indirect part in the case of an internal perturber.
We find that the series for the direct part,RD is given by

RD =
∞∑

i=0

(2i )!

i !

(−1)i

22i+1
αi

×
+∞∑

j=−∞

{ ∞∑
`=0

(−1)`

`!

∑̀
k=0

(
`

k

)
(−1)kα`

d`

dα`
b( j )

i+ 1
2
(α)

}

×
i∑

s=0

i−s∑
l=0

(−1)s22s

(i − s− l )! l !

[s/2]∑
n=0

(2s− 4n+ 1)(s− n)!

22nn!(2s− 2n+ 1)!

×
s−2n∑
m=0

κm
(s− 2n−m)!

(s− 2n+m)!

s−2n∑
p,p′=0

Fs−2n,m,p(I ) Fs−2n,m,p′ (I
′)

×
+∞∑

q,q′=−∞
Xi+k, i+ j−2l−2n−2p

i+ j−2l−2n−2p+q (e) X−(i+k+1), i+ j−2l−2n−2p′
i+ j−2l−2n−2p′+q′ (e′)

× cos[(i + j − 2l − 2n− 2p′ + q′)λ′ − (i + j − 2l − 2n

− 2p+ q)λ− q′$ ′ + q$ + (m− s+ 2n+ 2p′)Ä′

− (m− s+ 2n+ 2p)Ä], (16)

whereκm= 1 if m= 0 andκm= 2 if m> 0. The series for the
indirect parts,RE andRI are given by

RE = −
1∑

m=0

κm
(1−m)!

(1+m)!

1∑
p,p′=0

F1,m,p(I ) F1,m,p′ (I
′)

×
+∞∑

q,q′=−∞
X1,1−2p

1−2p+q(e) X−2,1−2p′
1−2p′+q′ (e

′)

× cos[(1− 2p′ + q′)λ′ − (1− 2p+ q)λ− q′$ ′ + q$

− (1− 2p′ −m)Ä′ + (1− 2p−m)Ä] (17)

and

RI = −
1∑

m=0

κm
(1−m)!

(1+m)!

1∑
p,p′=0

F1,m,p(I ) F1,m,p′ (I
′)

×
+∞∑

q,q′=−∞
X−2,1−2p

1−2p+q (e) X1,1−2p′
1−2p′+q′ (e

′)

× cos[(1− 2p′ + q′)λ′ − (1− 2p+ q)λ− q′$ ′ + q$

− (1− 2p′ −m)Ä′ + (1− 2p−m)Ä]. (18)

( j )
In the expression forRD the coefficientsb
i+ 1

2
(α) are Laplace

coefficients (see, for example, Brouwer and Clemence 19
MURRAY

given by

1

2
b( j )

s (α) = 1

2π

∫ 2π

0

cos jϕ dϕ

(1− 2α cosϕ + α2)s
, (19)

wheres is a half integer. They can also be written in series form

1

2
b( j )

s (α) = s(s+ 1) · · · (s+ j − 1)

1 · 2 · 3 · · · j α j

[
1+ s(s+ j )

1( j + 1)
α2

+ s(s+ 1)(s+ j )(s+ j + 1)

1 · 2( j + 1)( j + 2)
α4+ · · ·

]
(20)

or, equivalently in terms of elliptical integrals or hypergeom
ric functions. In the special case wherej = 0 the factor outside
the brackets in Eq. (20) is equal to unity. It can be shown
the series forms of the Laplace coefficient and its derivatives
always convergent forα < 1. Note that there are no Laplac
coefficients inRE andRI .

The functions of inclination in all three expressions are
fined by

Fs−2n,m,p(I ) = 1

2s−2n(s− 2n)!

×
min(p,[(s−2n−m)/2])∑

t=0

(2s− 4n− 2t)!

(s− 2n−m− 2t)!

(
s− 2n

t

)

× sins−2n−m−2t I
m∑

g=0

(
m

g

)
cosg I

2s−2n−2t

×
min(p−t,s−2n−m−2t+g)∑

c=max(0,p−t−m+g)

(
s− 2n−m− 2t + g

c

)

×
(

m− g

p− t − c

)
(−1)c−[(s−2n−m)/2], (21)

wheres− 2n= 1 inRE andRI and the square brackets deno
the integer part of the enclosed expression.

The functions of eccentricity,Xa,b
c (e), in all three expres

sions are Hansen coefficients (see, for example, Plummer 1
Jarnigan 1965, and Hughes 1981) which are defined by

Xa,b
c (e) = e|c−b|

∞∑
σ=0

Xa,b
σ+α,σ+β e2σ , (22)

where, in this context,α= max(0, c − b), β = max(0, b− c),
and theXa,b

c,d are Newcomb operators which can be defin
recursively by

Xa,b
0,0 = 1 (23)
61) Xa,b
1,0 = b− a/2. (24)
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If d= 0, then

4cXa,b
c,0 = 2(2b− a)Xa,b+1

c−1,0 + (b− a)Xa,b+2
c−2,0 . (25)

If d 6= 0, then

4d Xa,b
c,d = −2(2b+ a)Xa,b−1

c,d−1 − (b+ a)Xa,b−2
c,d−2

− (c− 5d + 4+ 4b+ a)Xa,b
c−1,d−1

+ 2(c− d + b)
∑
j≥2

(−1) j

(
3/2

j

)
Xa,b

c− j,d− j . (26)

If c< 0 ord< 0, thenXa,b
c,d = 0. If d> c thenXa,b

c,d = Xa,−b
d,c .

A fourth-order expansion of the direct and indirect parts of
disturbing function was generated by implementing the ab
algorithm inMathematica(Wolfram 1991). A list of possible
arguments was generated for each order (0, 1, 2, 3, 4) and
the terms associated with each argument were calculated
resulting file of integers was compared with a similar expans
obtained by carrying out a full expansion using the techni
employed by Murray and Harper (1993); the expansions ag
in all respects. Generating a full expansion using the new a
rithm was found to be an order of magnitude faster than u
the older method. The full expansions ofRD, RE, andRI are
given in the Appendix.

3. USE OF THE DISTURBING FUNCTION

The expansion of the direct and indirect parts of the distu
ing function given in Eqs. (16)–(18) appears to be compact
at first glance its structure and the number of summation
intimidating. However, it is important to bear in mind that in
given application we are only interested in generating the te
associated with particular arguments.

Before showing how the number of summations can be
duced, we demonstrate the relationship between the intege
efficients in the cosine argument and the powers of the ec
tricity and inclination in the corresponding term. Compari
Eq. (7) with the cosine argument in Eq. (16) gives the follow
relationships between the integers:

j1 = (s− 2n− 2p′ + q′)+ (i + j − 2l − s) (27)

j2 = −(s− 2n− 2p+ q)− (i + j − 2l − s) (28)

j3 = −q′ (29)

j4 = q (30)

j5 = m− (s− 2n− 2p′) (31)

j6 = −m+ (s− 2n− 2p), (32)

where we have added and subtracted a term ins in the expres-

sions for j1 and j2. Because all the angles in the cosine arg
ment are longitudes, the argument satisfies the d’Alembert r
FUNCTION 133
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i=1

ji = 0. (33)

Hamilton (1994) has investigated the d’Alembert rule and si
lar properties in his comparison of Lorentz resonances with p
etary gravitational resonances and satellite gravitatio
resonances.

From Eq. (22) we see that the lowest power ofe arising from
the Hansen coefficientXa,b

c (e) is |c−b|. Therefore, by inspection
of the Hansen coefficients ine ande′ in Eq. (16) we see that

Xi+k,i+ j−2l−2n−2p
i+ j−2l−2n−2p+q (e) = O(e|q|) (34)

and

X−(i+k+1),i+ j−2l−2n−2p′
i+ j−2l−2n−2p′+q′ (e′) = O(e′|q′|). (35)

Therefore one property of the disturbing function is that the lo
est powers ofe ande′ are the absolute values of the coefficie
of $ and$ ′, respectively, in the cosine argument.

Similarly, an inspection of the inclination function defined
Eq. (21) shows that

Fs−2n,m,p(I ) = O( sin|m−s+2n+2p| I
)

(36)

and

Fs−2n,m,p′ (I
′) = O( sin|m−s+2n+2p′| I ′

)
. (37)

Therefore the lowest powers of sinI and sinI ′ that occur in
Eq. (16) are the absolute values of the coefficients ofÄ andÄ′,
respectively, in the cosine argument.

Now consider the various summations inherent in Eq. (1
By adding Eq. (31) and Eq. (32) we have

j5+ j6 = 2p′ − 2p (38)

and soj5+ j6 is always even. This places another constrain
the permissible arguments in the expansion, in addition to
constraint imposed by the d’Alembert relation. It also impl
that the sum of the powers of the inclinations is always an e
number and hence that the expansion can never contain a
lated, single power of an inclination. This property has also b
investigated by Hamilton (1994).

An inspection of the various integers involved in the summ
tions in Eq. (16) allows us to reduce the range of several of
summations. LetNmax be the maximum order of the expansio
this is the maximum sum of the powers ofe, e′, I , and I ′ that
is desired in any one term associated with a given argum
Note that we must haveNmax≥ N, whereN is the order of the
argument as defined in Eq. (8). The following relationships h
throughout the calculation,

q = j4 (39)
u-
ule, q′ = − j3 (40)
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`max= Nmax− | j5| − | j6| (41)

pmin = −( j5+ j6)/2, p′min = 0 if j5+ j6< 0 (42)

pmin = 0, p′min = ( j5+ j6)/2 if j5+ j6 ≥ 0 (43)

smin = max(pmin, p′min, j6+ 2pmin, − j5+ 2p′min) (44)

imax= [(Nmax− | j3| − | j4|)/2], (45)

where, as before, the square brackets in Eq. (45) denote
integer part of the expression.

As well as these global relationships, there are a numbe
intermediate definitions required for the summation. These

nmax= [(s− smin)/2] (46)

mmin = 0 if s, j5 are both even or both odd (47

mmin = 1 if s, j5 are neither both even nor both odd (4

p = (− j6−m+ s− 2n)/2 with p ≤ s− 2n

and p ≥ pmin (49)

p′ = ( j5−m+ s− 2n)/2 with p′ ≤ s− 2n

and p′ ≥ p′min (50)

j = | j2+ i − 2l − 2n− 2p+ q|. (51)

Again the square brackets denote the integer part of
expression.

Note thatq andq′ are determined directly from the coefficien
of $ and$ ′ in the argument of interest, and remain fixed ov
all the summations. This removes the infinite summation o
all values ofq andq′ in Eq. (16). On the other hand,p and p′

change withs, n, andm but the relationships given in Eqs. (49
and (50) always hold.

We can now rewrite Eq. (16) as

RD =
imax∑
i=0

(2i )!

i !

(−1)i

22i+1
αi

×
i∑

s=smin

nmax∑
n=0

(2s− 4n+ 1)(s− n)!

22nn!(2s− 2n+ 1)!

s−2n∑
m=0

κm
(s− 2n−m)!

(s− 2n+m)!

× Fs−2n,m,p(I ) Fs−2n,m,p′ (I
′)

i−s∑
l=0

(−1)s22s

(i − s− l )!l !

×
`max∑
`=0

(−1)`

`!

∑̀
k=0

(
`

k

)
(−1)kα`

d`

dα`
b( j )

i+ 1
2
(α)

× Xi+k,− j2− j4
− j2

(e) X−(i+k+1), j1+ j3
j1

(e′)

× cos[j1λ
′ + j2λ+ j3$

′ + j4$ + j5Ä
′ + j6Ä], (52)

where, as before,κm= 1 if m= 0 andκm= 2 if m> 0.

In the form of the expansion forRD given in Eq. (52) above,

it is understood that the summations involved in the definitio
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of the functions of eccentricity and inclination need only
evaluated to a finite order which is at most equal toNmax. The
Hansen coefficient ine need only include terms up to orde
Nmax− | j3| − | j5| − | j6| in e; similarly the Hansen coefficient in
e′ need only include terms up to orderNmax− | j4| − | j5| − | j6|
in e′. TheF inclination function inI need only include terms up
to orderNmax− | j3| − | j4| − | j5| in I ; similarly theF function in
I ′ need only include terms up to orderNmax− | j3| − | j4| − | j6|
in I ′.

In producing the truncated form of the full expression forRD

we have also replaced the upper limit on the summation i`

from `=∞ to `= `max 6=∞, where`max is defined in Eq. (41).
This is not part of the general truncation process; it arises fr
the fact that for values of̀>`max all additional contributions to
the summation are zero. This is because

∑̀
k=0

(
`

k

)
(−1)k f (k) = 0, (53)

where f (x) is any polynomial of degree less than`.
Most previous expansions did not involve any sinI or cosI

terms in the inclination parts. Instead the expansions were
ried out in terms of sin12 I , or, to be more precise, sin12J . We
can follow this example by noting that sinI = 2s

√
1− s2 and

cos I =1− 2s2 wheres= sin 1
2 I and make the appropriate sub

stitutions in the definition of theF inclination function given
in Eq. (21). This requires an additional series expansion is
(ands′) and permits a direct comparison with the expansion
Murray and Harper (1993).

Now consider the indirect part for an external perturber (
Eq. (17)). A comparison of Eqs. (7) and (17) gives the followi
relationships between the integers:

j1 = 1− 2p′ + q′ (54)

j2 = −(1− 2p+ q) (55)

j3 = −q′ (56)

j4 = q (57)

j5 = −(1− 2p′ −m) (58)

j6 = 1− 2p−m. (59)

An analysis of the integers involved in the expansion of t
indirect part gives the following relationships:

q = j4 (60)

q′ = − j3 (61)

p = ( j2+ j4+ 1)/2 (62)

p′ = −( j1+ j3− 1)/2 (63)
ns m = j5− 2p′ + 1 (64)
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and the expansion itself can now be written

RE = −κm
(1−m)!

(1+m)!

×F1,m,p(I )F1,m,p′ (I
′)X1,− j2− j4
− j2

(e)X−2, j1+ j3
j1

(e′)

× cos[j1λ
′ + j2λ+ j3$

′ + j4$ + j5Ä
′ + j6Ä], (65)

where each of the quantitiesp, p′, andm must be integers an
equal to 0 or 1. If these conditions are not satisfied then the g
argument does not appear in the expansion of the indirect
As with the direct part we can reduce the extent of the se
expansions in powers of the eccentricity and inclination, and
same modifications apply.

The equivalent expression for the indirect part due to an
ternal perturber is

RI = −κm
(1−m)!

(1+m)!

×F1,m,p(I )F1,m,p′ (I
′)X−2,− j2− j4
− j2

(e) X1, j1+ j3
j1

(e′)

× cos[j1λ
′ + j2λ+ j3$

′ + j4$ + j5Ä
′ + j6Ä]. (66)

The same restrictions onp, p′, andm apply.
In reality, the expansions ofRD, RE, andRI are infinite se-

ries. However, in practice we are only interested in terms
are appropriate for a particular problem. Thus we need to
late the relevant terms from the expansion, ignoring all ot
nonrelevant terms; effectively this assumes that the remai
terms produce only short-period effects which average ou
zero. This is known as the averaging principle and it is the b
of much analytical work in Solar System dynamics. What c
stitutes a relevant term is not always obvious, but some gen
principles apply. A study of the dynamics of an object mo
ing close to ap+q : p resonance with a perturber would r
quire the isolation of those arguments withj1=±(p+q) and
j2=∓p. For example, if we were interested in studying mot
close to the 5:4 resonance we would isolate those terms a
ciated with arguments that contained 5λ′ − 4λ and−5λ′ + 4λ
(i.e., p+q=±5, q=±1).

We now consider the procedure for determining the app
priate averaged term,〈R〉 or 〈R′〉 in the disturbing function,
based on the fourth-order expansion given in the Appen
or the eighth order expansion given by Murray and Har
(1993). This procedure is also given in Murray and Derm
(1999).

1. Decide which particular combination of angles,φ= j1λ′ +
j2λ+ j3$ ′ + j4$ + j5Ä′ + j6Ä, is applicable to the problem
at hand; this requires knowledge of the physical problem un
investigation.

2. Determine the order,N= | j1+ j2|, of the argument. This

is just the absolute value of the sum of the coefficients ofλ and
λ′ in φ.
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3. By looking at the appropriate order terms in the exp
sion ofRD, determine the value of the integerj which gives
agreement with the desired argument,φ.

4. Calculate the combination of Laplace coefficients for t
value of j to give the explicit form of the term of interest,〈RD〉
say.

5. Decide whether an external or an internal perturba
is being considered. This is determined by the nature of
problem.

6. If the perturbation is external, then look at the appropri
order terms in the expansion of the indirect part,RE, and isolate
a matching argument, if it exists, and read off the correspond
indirect term〈RE〉.

7. If the perturbation is internal, then look at the appropri
order terms in the expansion of the indirect part,RI , and isolate
a matching argument, if it exists, and read off the correspond
indirect term〈RI〉.

8. If the perturbation is external then

〈R〉 = µ′

a′
(〈RD〉+α〈RE〉). (67)

9. If the perturbation is internal then

〈R′〉 = µ

a

(
α〈RD〉+ 1

α
〈RI〉

)
. (68)

It is important to note that other terms may also have to be c
sidered. For example, if the 2:1 resonance is being studied
a fourth-order expansion, then the contributions from argum
containing 4λ′ − 2λ, 6λ′ − 3λ, and 8λ′ − 4λ (and their negatives
should also be included since they are associated with resona
at almost the same location and can make significant contr
tions if the eccentricity is large enough. Furthermore, any exp
sion above the first-order should also include the secular te
which contain second- and higher-order terms in the eccen
ities and inclinations. These arise from arguments of orde
which do not contain the mean longitudes. For example, insp
tion of the Appendix shows that the arguments 4D0.1, 4D0.2,
4D0.3 in Table I withj = 0 will give rise to arguments withou
the mean longitudes where the associated terms contain t
of order 2 ine, e′, s, ands′; all remaining secular terms are o
order 4 or higher and there are no contributions from the indi
terms.

Derivation of the disturbing function should not be conside
an end in itself. The actual value ofR is unimportant becaus
we are interested only in the terms in its series expansion w
will make significant contributions to the force acting on t
perturbed body. To calculate the resulting changes in orbital
ments due to particular terms we need to make use of Lagran

planetary equations (see, for example, Brouwer and Clemence
1961).
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4. EXAMPLES

In order to demonstrate the use of the fourth order expan
given in the Appendix as well as the algorithm given in Section
we now consider two examples. In each case we show how
averaged resonant terms can be obtained using each me
Again we stress that if the derived expressions are to be use
a study of the motion of the objects then it may be necessar
include the secular as well as the resonant terms.

4.1. The Titan–Hyperion 3:4 Resonance

The saturnian satellites Titan and Hyperion are involved i
3:4 resonance where the librating resonant argument is

φ = 4λ′ − 3λ−$ ′, (69)

where the primed quantities refer to Hyperion and the unprim
ones refer to Titan. Because the mass of Titan is so larg
is customary to neglect the perturbations of Hyperion
Titan. Note that this is a first-order resonance with an int
nal perturber. The eccentricity of Hyperion’s orbit ise′ = 0.104
and this value is forced on the orbit as a result of the per
bations from Titan. Thus an expansion to order 1 is unlik
to be sufficient to model the system; consequently we will
rive a fourth-order expansion for this particular resonant ar
ment.

The appropriate resonant argument from the Appendix
4D1.2 in Table IV with j = 4. This gives

〈RD〉 =
{

1

2
e′[7+ αD]b(3)

1
2

(α)

+ 1

8
e2e′[−252− 20αD + 11α2D2+ α3D3]b(3)

1
2

(α)

+ 1

16
e′3[−358− 26αD + 13α2D2+ α3D3]b(3)

1
2

(α)

− 1

4
e′(s2+ s′2)[8α + α2D]

(
b(2)

3
2

(α)+ b(4)
3
2

(α)
)}

× cos[4λ′ − 3λ−$ ′], (70)

where the operatorD denotes d/dα and wheres= sin 1
2 I , s′ =

sin 1
2 I ′. There are no indirect terms for this argument to th

order and so〈R′〉 = (Gm/a′)〈RD〉.
Now consider the derivation using the algorithm discusse

Sections 2 and 3. From the definition ofφ=+(4λ′ − 3λ−$ ′)
and the relationships given in Eqs. (39)–(51), we haveq′ = 1,
q= 0, `max= 4, pmin= 0, p′min= 0, smin= 0, imax= 1; we can
also deduce that the only permissible values ofn, p, andp′ are
n= 0, p= 0, andp′ = 0. Hence,

1∑ (2i )! (−1)i i∑ s! s∑ (s−m)!
〈RD〉+ =
i=0 i ! 22i+1

αi

s=0 (2s)!
m=0

κm
(s+m)!
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× Fs,m,0(I ) Fs,m,0(I ′)
i−s∑
l=0

(−1)s22s

(i − s− l )!l !

×
4∑
`=0

(−1)`

`!

∑̀
k=0

(
`

k

)
(−1)kα`D`b( j )

i+ 1
2
(α)Xi+k,3

3 (e)

× X−(i+k+1),3
4 (e′) cos[4λ′ − 3λ−$ ′], (71)

where D≡ d/dα. If we consider the terms arising from tak
ing φ=−(4λ′ − 3λ−$ ′) we haveq′ =−1, q= 0, `max= 4,
pmin= 0, p′min= 0, smin= 0, imax= 1; we can also deduce tha
the only permissible values ofn, p, andp′ aren= 0, p= 0, and
p′ = 0. Hence,

〈RD〉− =
1∑

i=0

(2i )!

i !

(−1)i

22i+1
αi

i∑
s=0

s!

(2s)!

s∑
m=0

κm
(s−m)!

(s+m)!

× Fs,m,0(I ) Fs,m,0(I ′)
i−s∑
l=0

(−1)s22s

(i − s− l )!l !

×
4∑
`=0

(−1)`

`!

∑̀
k=0

(
`

k

)
(−1)kα`D`b( j )

i+ 1
2
(α)Xi+k,−3

−3 (e)

× X−(i+k+1),−3
−4 (e′) cos[4λ′ − 3λ−$ ′]. (72)

The required inclination functions are given without appro
mation by F0,0,0(I )= F0,0,0(I ′)= 1, F1,1,0(I )= 1− s2 and
F1,1,0(I ′)= 1− s′2. The required Hansen coefficients toO(e2)
andO(e′3) are given by

X0,3
3 (e) = X0,−3

−3 (e) = 1− 9e2 (73)

X−1,3
4 (e′) = X−1,−3

−4 (e′) = 7

2
e′ − 179

8
e′3 (74)

X1,3
3 (e) = X1,−3

−3 (e) = 1− 17

2
e2 (75)

X−2,3
4 (e′) = X−2,−3

−4 (e′) = 4e′ − 24e′3 (76)

X2,3
3 (e) = X2,−3

−3 (e) = 1− 15

2
e2 (77)

X−3,3
4 (e′) = X−3,−3

−4 (e′) = 9

2
e′ − 24e′3 (78)

X3,3
3 (e) = X3,−3

−3 (e) = 1− 6e2 (79)

X−4,3
4 (e′) = X−4,−3

−4 (e′) = 5e′ − 22e′3 (80)

X4,3
3 (e) = X4,−3

−3 (e) = 1− 4e2 (81)

X−5,3
4 (e′) = X−5,−3

−4 (e′) = 11

2
e′ − 141

8
e′3 (82)

X5,3
3 (e) = X5,−3

−3 (e) = 1− 3

2
e2 (83)
X−6,3
4 (e′) = X−6,−3

−4 (e′) = 6e′ − 21

2
e′3. (84)
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There are no indirect terms in the expansion associated
this argument and so〈R′〉 = (Gm/a′)(〈RD〉+ + 〈RD〉−). The re-
sulting expansion agrees with that obtained above using
Appendix.

A good orbital theory of Hyperion is notoriously difficu
to achieve (see, for example, the study by Message 1993
is beyond the scope of this paper to investigate this furt
and we content ourselves with the derivation of some of
higher-order terms which would be appropriate to include
any analytical investigation of the perturbations on Hyperio
orbit.

4.2. The Jupiter–Pallas 18:7 Resonance

As an example of a higher order resonance argument for w
there is no existing, general literal expansion, we consider
of the terms relevant to a description of the motion of min
planet 2 Pallas. Ifn′ andn denote the mean motions of Jupit
and Pallas, respectively, then from observation,

18n′ − 7n = −0.45◦ year−1. (85)

This implies that Jupiter and Pallas are close to an 18:7 r
nance. To 11th order there are 182 arguments associated
this resonance. In order to illustrate the use of our algorithm
derive the terms associated with just one of these argume
namely

φ = 18λ′ − 7λ− 5$ − 6Ä. (86)

Applying the definitions given in Eqs. (39)–(45) givesq=−5,
q′ = 0, `max= 5, pmin= 3, p′min= 0, smin= 3, imax= 3. Since
smin= imax the only contribution will come fromi = s= 3 and
hencel = 0. Similarly, sincenmax= [(s − 3)/2]= 0 we must
haven= 0. Hence, from Eq. (49) the only valid value ofp
is p= 3; hencem= 3 and so from Eq. (50)p′ = 0; we also
have j = 15. We can now write the simplified form of Eq. (52
as

〈RD〉+ = α3

720

5∑
`=0

(−1)`

`!

∑̀
k=0

(
`

k

)
(−1)kα`D`b(15)

7/2 (α)F3,3,3(I )

×F3,3,0(I ′)X3+k,12
7 (e) X−(4+k),18

18 (e′)

× cos[18λ′ − 7λ− 5$ − 6Ä]. (87)

In order to complete the calculation we need to investigate
possibility that there are terms associated with the negativ
our original argument, namelyφ=−(18λ′ − 7λ− 5$ − 6Ä).
In this case inspection of Eqs. (39)–(51) shows that there ar
contributions and〈RD〉− = 0.

We require only two evaluations of the inclination functio

and 12 evaluations of Hansen coefficients. Although our e
pansion is to 11th order, according to the approximations giv
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in Eqs. (34)–(37) the functionF3,3,3(I ) will produce terms of
O(I 6) andX3+k,12

7 (e) will produce terms ofO(e5). Thus we are
concerned only with the lowest order terms in all function ev
uations. This means that we can ignore the higher order te
in F3,3,0(I ′)= 15+O(I ′2) and X−(4+ k),18

18 (e′)= 1+ O(e′2) for
k= 0, 1, . . .5. We have

F3,3,3(I ) = 15s6 (88)

X3,12
7 (e) = −1577149

1280
e5 (89)

X4,12
7 (e) = −1473703

960
e5 (90)

X5,12
7 (e) = −7280077

3840
e5 (91)

X6,12
7 (e) = −1486337

640
e5 (92)

X7,12
7 (e) = −10842187

3840
e5 (93)

X8,12
7 (e) = −409031

120
e5, (94)

and the resulting expression for〈RD〉 is

〈RD〉 = − e5s6

12288
[4731447α3+ 1163365α4D + 110950α5D2

+ 5130α6D3+ 115α7D4+ α8D5]b(15)
7/2 (α)

× cos[18λ′ − 7λ− 5$ − 6Ä]. (95)

Application of the algorithm given in Sections 2 and 3 f
the indirect parts shows that none exist in this case; furth
more, there are no indirect terms associated with any of the
possible arguments to 11th order at this resonance. There
the averaged part of the disturbing function for this argumen
given by〈R〉= (Gm′/a′)〈RD〉. Note that this example was cho
sen to illustrate the calculation of a high-order term; we do
imply that this particular argument is likely to be the domina
one at the 18:7 resonance.

5. DISCUSSION

Our overriding aim in this work is to present a new, workab
algorithm for producing expansions of the planetary disturb
function to any order in the eccentricities and inclinations
both objects. This obviates the need for the major expans
of the last century which, although they are still in use, hav
number of drawbacks and contain errors. In particular we h

x-
en
now developed the capability to produce a high-order expan-
sion for only those arguments of interest in a particular problem



d

,
g
a

f

t
r

r
t

o
i
n
l
c

r
e

n
e

n

138 ELLIS AND

in Solar System dynamics. It is our hope that this work, a
the fourth-order expansion given in the Appendix, will provi
Solar System dynamicists with a clearer understanding of
disturbing function, its use, and its applications.

We do not pretend that the algebraic effort involved in gen
ating and manipulating such expansions is trivial. However
underlying assumption of this work is that software packa
for algebraic manipulation will become even more widespre
powerful, and affordable than they already are. For our own p
poses we have developed a package inMathematica(Wolfram
1991), which implements the algorithm given here and conta
a number of useful routines for generating and manipulating
series involved. The package is available free of charge to in
ested researchers and further information can be obtained
the second author.

APPENDIX

In Section 2 we outlined an algorithm for obtaining an expansion of
disturbing function,R. Here we give a literal expansion of the direct pa
RD, and the indirect part for an external perturber,RE, and an internal per-
turber,RI , complete to fourth-order in the eccentricities and inclinations
the two bodies. The notation is the same as that used in Sections 2 a
where the expansion is given in terms of Laplace coefficients and their de
tives. The use of the disturbing function is described in the main text of
paper.

In our expansion each cosine argument has been labeled for the order
expansion (4 in this case) followed by a letter denoting that the term is assoc
with the direct (prefix D) or indirect (prefix E or I) part of the disturbing functio
The next character denotes the order of the argument, i.e., the absolute va
the sum of the coefficients ofλ′ andλ, and hence the order of the resonan
associated with that argument. The final number identifies the argument. T
are ordered with priority being given to those involving only$ ,$ ′,Ä, andÄ′ in
that order. This means that terms involvingeoccur before those involvinge′, etc.
This follows the procedure adopted by Murray and Harper (1993). For exam
4D3.4 denotes the fourth possible argument of the third-order direct pa
the fourth order expansion. The entry for this argument should be interpr
as

〈RD〉 = e′3
1

48
[−6+ 29j − 30j 2 + 8 j 3 + 6αD − 21jαD

+ 12j 2αD − 3α2D2 + 6 jα2D2 + α3D3]b( j−3)
1
2

(α)

× cos[jλ′ + (3− j )λ− 3$ ′], (96)

whereD denotes the differential operator d/dα. If we consider the same argume
for a particular value ofj , then we must also look at the expansion of the indir
part for any matching arguments. For example, ifj = 4 and we are dealing with
an external perturber then we must also include the argument 4E3.7. The
contribution of this argument to the averaged part of the disturbing functio
then

〈R〉 = Gm′

a′
e′3
[
−16

3
α + 71

24
b(1)

1
2

(α)+ 19

8
α

d

dα
b(1)

1
2

(α) + 7

16
α2 d2

dα2
b(1)

1
2

(α)

+ 1

48
α3 d3

dα3
b(1)

1
2

(α)

]
cos[4λ′ − λ− 3$ ′]. (97)
Tables I–XIX below give all arguments and associated terms in an expan
of the disturbing function complete to fourth-order. The expansion is arran
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TABLE I
Zeroth-Order Arguments: Direct Part

ID Cosine argument Term

4D0.1 jλ′ − jλ f1 + (e2 + e′2) f2 + (s2 + s′2) f3
+ e4 f4+e2e′2 f5+e′4 f6+ (e2s2

+ e′2s2 + e2s′2 + e′2s′2) f7
+ (s4 + s′4) f8 + s2s′2 f9

4D0.2 jλ′ − jλ+$ ′ −$ ee′ f10+ e3e′ f11+ ee′3 f12

+ee′(s2 + s′2) f13

4D0.3 jλ′ − jλ+Ä′ −Ä ss′ f14+ ss′(e2 + e′2) f15

+ ss′(s2 + s′2) f16

4D0.4 jλ′ − jλ+ 2$ ′ − 2$ e2e′2 f17

4D0.5 jλ′ − jλ+ 2$ − 2Ä e2s2 f18

4D0.6 jλ′ − jλ+$ ′ +$ − 2Ä ee′s2 f19

4D0.7 jλ′ − jλ+ 2$ ′ − 2Ä e′2s2 f20

4D0.8 jλ′ − jλ+ 2$ −Ä′ −Ä e2ss′ f21

4D0.9 jλ′ − jλ+$ ′ −$ −Ä′ +Ä ee′ss′ f22

4D0.10 jλ′ − jλ+$ ′ −$ +Ä′ −Ä ee′ss′ f23

4D0.11 jλ′ − jλ+$ ′ +$ −Ä′ −Ä ee′ss′ f24

4D0.12 jλ′ − jλ+ 2$ ′ −Ä′ −Ä e′2ss′ f25

4D0.13 jλ′ − jλ+ 2$ − 2Ä′ e2s′2 f18

4D0.14 jλ′ − jλ+$ ′ +$ − 2Ä′ ee′s′2 f19

4D0.15 jλ′ − jλ+ 2$ ′ − 2Ä′ e′2s′2 f20

4D0.16 jλ′ − jλ+ 2Ä′ − 2Ä s2s′2 f26

TABLE II
Zeroth-Order Arguments: Indirect Part (External

and Internal Perturbers)

ID Cosine argument Term

4E0.1, 4I0.1 λ′ − λ −1+ 1
2(e2+e′2)+ 1

64(e4+e′4)

− 1
4e2e′2 + s2 − 1

2(e2 + e′2)

× (s2 + s′2)+ s′2 − s2s′2

4E0.2, 4I0.2 2λ′ − 2λ−$ ′ +$ −ee′ + 3
4e3e′ + 3

4ee′3 + ee′s2

+ ee′s′2

4E0.3, 4I0.3 λ′ − λ−Ä′ +Ä −2ss′ + e2ss′ + e′2ss′ + s3s′

+ ss′3

4E0.4, 4I0.4 λ′ − λ− 2$ ′ + 2$ − 1
64e2e′2

4E0.5, 4I0.5 3λ′ − 3λ− 2$ ′ + 2$ − 81
64e2e′2

4E0.6, 4I0.6 λ′ − λ+ 2$ − 2Ä − 1
8e2s2

4E0.7, 4I0.7 λ′ − λ− 2$ ′ + 2Ä − 1
8e′2s2

4E0.8, 4I0.8 λ′ − λ+ 2$ −Ä′ −Ä 1
4e2ss′

4E0.9, 4I0.9 2λ′ − 2λ−$ ′ +$
−Ä′ +Ä −2ee′ss′

4E0.10, 4I0.10 λ′ − λ− 2$ ′ +Ä′ +Ä 1
4e′2ss′

4E0.11, 4I0.11 λ′ − λ+ 2$ − 2Ä′ − 1
8e2s′2

4E0.12, 4I0.12 λ′ − λ− 2$ ′ + 2Ä′ − 1
8e′2s′2

4E0.13, 4I0.13 λ′ − λ− 2Ä′ + 2Ä −s2s′2
ged
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TABLE III
Zeroth-Order Arguments: Functions of Semimajor Axis

i f i

1 1
2 Aj

2 1
8[−4 j 2 + 2αD + α2D2] Aj

3 1
4[−α]Bj−1 + 1

4 [−α]Bj+1

4 1
128[−9 j 2 + 16j 4 − 8 j 2αD − 8 j 2α2D2 + 4α3D3 + α4D4] Aj

5 1
32[16 j 4 + 4αD − 16j 2αD + 14α2D2 − 8 j 2α2D2

+ 8α3D3 + α4D4] Aj

6 1
128[−17j 2 + 16j 4 + 24αD − 24j 2αD + 36α2D2 − 8 j 2α2D2

+ 12α3D3 + α4D4] Aj

7 1
16[−2α + 4 j 2α − 4α2D − α3D2](Bj−1 + Bj+1)

8 3
16[α2]Cj−2 + 3

4 [α2]Cj + 3
16[α2]Cj+2

9 1
4 [α](Bj−1 + Bj+1)+ 3

8 [α2]Cj−2 + 15
4 [α2]Cj + 3

8 [α2]Cj+2

10 1
4[2+ 6 j + 4 j 2 − 2αD − α2D2] Aj+1

11 1
32[−6 j − 26j 2 − 36j 3 − 16j 4 + 6 jαD + 12j 2αD − 4α2D2

+ 7 jα2D2 + 8 j 2α2D2 − 6α3D3 − α4D4] Aj+1

12 1
32[4+ 2 j − 22j 2 − 36j 3 − 16j 4 − 4αD + 22jαD + 20j 2αD

− 22α2D2 + 7 jα2D2 + 8 j 2α2D2 − 10α3D3 − α4D4] Aj+1

13 1
8[−6 jα − 4 j 2α + 4α2D + α3D2](Bj + Bj+2)

14 [α]Bj+1

15 1
4[2α − 4 j 2α + 4α2D + α3D2]Bj+1

16 1
2[−α]Bj+1 + 3[−α2]Cj + 3

2 [−α2]Cj+2

17 1
64[12+ 64j + 109j 2 + 72j 3 + 16j 4 − 12αD − 28jαD − 16j 2αD

+ 6α2D2 − 14jα2D2 − 8 j 2α2D2 + 8α3D3 + α4D4] Aj+2

18 1
16[12α − 15jα + 4 j 2α + 8α2D − 4 jα2D + α3D2]Bj−1

19 1
8[6 jα − 4 j 2α − 4α2D + 4 jα2D − α3D2]Bj

20 1
16[3 jα + 4 j 2α − 4 jα2D + α3D2]Bj+1

21 1
8[−12α + 15jα − 4 j 2α − 8α2D + 4 jα2D − α3D2]Bj−1

22 1
4[6 jα + 4 j 2α − 4α2D − α3D2]Bj

23 1
4[6 jα + 4 j 2α − 4α2D − α3D2]Bj+2

24 1
4[−6 jα + 4 j 2α + 4α2D − 4 jα2D + α3D2]Bj

25 1
8[−3 jα − 4 j 2α + 4 jα2D − α3D2]Bj+1

26 1
2[α]Bj+1 + 3

4 [α2]Cj + 3
2 [α2]Cj+2

TABLE IV
First-Order Arguments: Direct Part

ID Cosine argument Term

4D1.1 jλ′ + (1− j )λ−$ ef27+ e3 f28+ ee′2 f29

+ e(s2 + s′2) f30

4D1.2 jλ′ + (1− j )λ−$ ′ e′ f31+ e2e′ f32+ e′3 f33

+ e′(s2 + s′2) f34

4D1.3 jλ′ + (1− j )λ+$ ′ − 2$ e2e′ f35

4D1.4 jλ′ + (1− j )λ− 2$ ′ +$ ee′2 f36

4D1.5 jλ′ + (1− j )λ+$ − 2Ä es2 f37
4D1.6 jλ′ + (1− j )λ+$ ′ − 2Ä e′s2 f38
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TABLE IV—Continued

ID Cosine argument Term

4D1.7 jλ′ + (1− j )λ−$ −Ä′ +Ä ess′ f39

4D1.8 jλ′ + (1− j )λ−$ +Ä′ −Ä ess′ f40

4D1.9 jλ′ + (1− j )λ+$ −Ä′ −Ä ess′ f41

4D1.10 jλ′ + (1− j )λ−$ ′ −Ä′ +Ä e′ss′ f42

4D1.11 jλ′ + (1− j )λ−$ ′ +Ä′ −Ä e′ss′ f43

4D1.12 jλ′ + (1− j )λ+$ ′ −Ä′ −Ä e′ss′ f44

4D1.13 jλ′ + (1− j )λ+$ − 2Ä′ es′2 f37

4D1.14 jλ′ + (1− j )λ+$ ′ − 2Ä′ e′s′2 f38

TABLE V
First-Order Arguments: Indirect Part (External Perturber)

ID Cosine argument Term

4E1.1 λ′ − 2λ+$ − 1
2e+ 3

8e3 + 1
4ee′2 + 1

2es2 + 1
2es′2

4E1.2 λ′ −$ 3
2e− 3

4ee′2 − 3
2es2 − 3

2es′2

4E1.3 2λ′ − λ−$ ′ −2e′ + e2e′ + 3
2e′3 + 2e′s2 + 2e′s′2

4E1.4 2λ′ − 3λ−$ ′ + 2$ − 3
4e2e′

4E1.5 λ′ − 2$ ′ +$ 3
16ee′2

4E1.6 3λ′ − 2λ− 2$ ′ +$ − 27
16ee′2

4E1.7 λ′ +$ − 2Ä 3
2es2

4E1.8 λ′ − 2λ+$ −Ä′ +Ä −ess′

4E1.9 λ′ −$ −Ä′ +Ä 3ess′

4E1.10 λ′ +$ −Ä′ −Ä −3ess′

4E1.11 2λ′ − λ−$ ′ −Ä′ +Ä −4e′ss′

4E1.12 λ′ +$ − 2Ä′ 3
2es′2

TABLE VI
First-Order Arguments: Indirect Part (Internal Perturber)

ID Cosine argument Term

4I1.1 λ′ − 2λ+$ −2e+ 3
2e3 + ee′2 + 2es2 + 2es′2

4I1.2 λ−$ ′ 3
2e′ − 3

4e2e′ − 3
2e′s2 − 3

2e′s′2

4I1.3 2λ′ − λ−$ ′ − 1
2e′ + 1

4e2e′ + 3
8e′3 + 1

2e′s2 + 1
2e′s′2

4I1.4 λ+$ ′ − 2$ 3
16e2e′

4I1.5 2λ′ − 3λ−$ ′ + 2$ − 27
16e2e′

4I1.6 3λ′ − 2λ− 2$ ′ +$ − 3
4ee′2

4I1.7 λ+$ ′ − 2Ä 3
2e′s2

4I1.8 λ′ − 2λ+$ −Ä′ +Ä −4ess′

4I1.9 λ−$ ′ +Ä′ −Ä 3e′ss′

4I1.10 λ+$ ′ −Ä′ −Ä −3e′ss′

4I1.11 2λ′ − λ−$ ′ −Ä′ +Ä −e′ss′
4I1.12 λ+$ ′ − 2Ä′ 3
2e′s′2
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TABLE VII
First-Order Arguments: Functions of Semimajor Axis

i f i

27 1
2[−2 j − αD] Aj

28 1
16[2 j − 10j 2 + 8 j 3 + 3αD − 7 jαD + 4 j 2αD − 2α2D2

− 2 jα2D2 − α3D3] Aj

29 1
8[8 j 3 − 2αD − 4 jαD + 4 j 2αD − 4α2D2 − 2 jα2D2 −α3D3] Aj

30 1
4[α + 2 jα + α2D](Bj−1 + Bj+1)

31 1
2 [−1+ 2 j + αD] Aj−1

32 1
8[4− 16j + 20j 2 − 8 j 3 − 4αD + 12jαD − 4 j 2αD + 3α2D2

+ 2 jα2D2 + α3D3] Aj−1

33 1
16[−2− j + 10j 2 − 8 j 3 + 2αD + 9 jαD − 4 j 2αD + 5α2D2

+ 2 jα2D2 + α3D3] Aj−1

34 1
4[−2 jα − α2D](Bj−2 + Bj )

35 1
16[1− j − 10j 2 − 8 j 3 − αD − jαD − 4 j 2αD + 3α2D2

+ 2 jα2D2 − α3D3] Aj+1

36 1
16[−8+ 32j − 30j 2 + 8 j 3 + 8αD − 17jαD + 4 j 2αD − 4α2D2

− 2 jα2D2 − α3D3] Aj−2

37 1
4[−5α + 2 jα − α2D]Bj−1

38 1
4[−2 jα + α2D]Bj

39 1
2[−α − 2 jα − α2D]Bj−1

40 1
2[−α − 2 jα − α2D]Bj+1

41 1
2[5α − 2 jα + α2D]Bj−1

42 1
2[2 jα + α2D]Bj−2

43 1
2[2 jα + α2D]Bj

44 1
2[2 jα − α2D]Bj

TABLE VIII
Second-Order Arguments: Direct Part

ID Cosine argument Term

4D2.1 jλ′ + (2− j )λ− 2$ e2 f45+ e4 f46+ e2e′2 f47

+ e2(s2 + s′2) f48

4D2.2 jλ′ + (2− j )λ−$ ′ −$ ee′ f49+ e3e′ f50+ ee′3 f51

+ ee′(s2 + s′2) f52

4D2.3 jλ′ + (2− j )λ− 2$ ′ e′2 f53+ e2e′2 f54+ e′4 f55

+ e′2(s2 + s′2) f56

4D2.4 jλ′ + (2− j )λ− 2Ä s2 f57+ e2s2 f58+ e′2s2 f59

+ s4 f60+ s2s′2 f61

4D2.5 jλ′ + (2− j )λ−Ä′ −Ä ss′ f62+e2ss′ f63+e′2ss′ f64

+ s3s′ f65+ ss′3 f66

4D2.6 jλ′ + (2− j )λ− 2Ä′ s′2 f57+e2s′2 f58+e′2s′2 f59
+ s2s′2 f67+ s′4 f60
TABLE VIII—Continued

ID Cosine argument Term

4D2.7 jλ′ + (2− j )λ+$ ′ − 3$ e3e′ f68

4D2.8 jλ′ + (2− j )λ− 3$ ′ +$ ee′3 f69

4D2.9 jλ′ + (2− j )λ−$ ′ +$ − 2Ä ee′s2 f70

4D2.10 jλ′ + (2− j )λ+$ ′ −$ − 2Ä ee′s2 f71

4D2.11 jλ′ + (2− j )λ− 2$ −Ä′ +Ä e2ss′ f72

4D2.12 jλ′ + (2− j )λ− 2$ +Ä′ −Ä e2ss′ f73

4D2.13 jλ′ + (2− j )λ−$ ′ −$ −Ä′ +Ä ee′ss′ f74

4D2.14 jλ′ + (2− j )λ−$ ′ −$ +Ä′ −Ä ee′ss′ f75

4D2.15 jλ′ + (2− j )λ−$ ′ +$ −Ä′ −Ä ee′ss′ f76

4D2.16 jλ′ + (2− j )λ+$ ′ −$ −Ä′ −Ä ee′ss′ f77

4D2.17 jλ′ + (2− j )λ− 2$ ′ −Ä′ +Ä e′2ss′ f78

4D2.18 jλ′ + (2− j )λ− 2$ ′ +Ä′ −Ä e′2ss′ f79

4D2.19 jλ′ + (2− j )λ+Ä′ − 3Ä s3s′ f80

4D2.20 jλ′ + (2− j )λ−$ ′ +$ − 2Ä′ ee′s′2 f70

4D2.21 jλ′ + (2− j )λ+$ ′ −$ − 2Ä′ ee′s′2 f71

4D2.22 jλ′ + (2− j )λ− 3Ä′ +Ä ss′3 f81

TABLE IX
Second-Order Arguments: Indirect Part (External Perturber)

ID Cosine argument Term

4E2.1 λ′ − 3λ+ 2$ − 3
8e2 + 3

8e4 + 3
16e2e′2 + 3

8e2s2

+ 3
8e2s′2

4E2.2 λ′ + λ− 2$ − 1
8e2 − 1

24e4 + 1
16e2e′2 + 1

8e2s2

+ 1
8e2s′2

4E2.3 2λ′ −$ ′ −$ 3ee′ − 9
4ee′3 − 3ee′s2 − 3ee′s′2

4E2.4 λ′ + λ− 2$ ′ − 1
8e′2 + 1

16e2e′2 − 1
24e′4 + 1

8e′2s2

+ 1
8e′2s′2

4E2.5 3λ′ − λ− 2$ ′ − 27
8 e′2 + 27

16e2e′2 + 27
8 e′4 + 27

8 e′2s2

+ 27
8 e′2s′2

4E2.6 λ′ + λ− 2Ä −s2 + 1
2e2s2 + 1

2e′2s2 + s2s′2

4E2.7 λ′ + λ−Ä′ −Ä 2ss′ − e2ss′ − e′2ss′ − s3s′ − ss′3

4E2.8 λ′ + λ− 2Ä′ −s′2 + 1
2e2s′2 + 1

2e′2s′2 + s2s′2

4E2.9 2λ′ − 4λ−$ ′ + 3$ − 2
3e3e′

4E2.10 2λ′ − 3$ ′ +$ 1
4ee′3

4E2.11 4λ′ − 2λ− 3$ ′ +$ − 8
3ee′3

4E2.12 2λ′ −$ ′ +$ − 2Ä 3ee′s2

4E2.13 λ′ − 3λ+ 2$ −Ä′ +Ä − 3
4e2ss′

4E2.14 λ′ + λ− 2$ −Ä′ +Ä − 1
4e2ss′

4E2.15 2λ′ −$ ′ −$ −Ä′ +Ä 6ee′ss′

4E2.16 2λ′ −$ ′ +$ −Ä′ −Ä −6ee′ss′

4E2.17 λ′ + λ− 2$ ′ +Ä′ −Ä − 1
4e′2ss′

4E2.18 3λ′ − λ− 2$ ′ −Ä′ +Ä − 27
4 e′2ss′
4E2.19 2λ′ −$ ′ +$ − 2Ä′ 3ee′s′2



DISTURBING FUNCTION 141
TABLE X
Second-Order Arguments: Indirect Part (Internal Perturber)

ID Cosine argument Term

4I2.1 λ′ − 3λ+ 2$ − 27
8 e2 + 27

8 e4 + 27
16e2e′2

+ 27
8 e2s2 + 27

8 e2s′2

4I2.2 λ′ + λ− 2$ − 1
8e2 − 1

24e4 + 1
16e2e′2 + 1

8e2s2

+ 1
8e2s′2

4I2.3 2λ−$ ′ −$ 3ee′ − 9
4e3e′ − 3ee′s2 − 3ee′s′2

4I2.4 λ′ + λ− 2$ ′ − 1
8e′2 + 1

16e2e′2 − 1
24e′4 + 1

8e′2s2

+ 1
8e′2s′2

4I2.5 3λ′ − λ− 2$ ′ − 3
8e′2 + 3

16e2e′2 + 3
8e′4 + 3

8e′2s2

+ 3
8e′2s′2

4I2.6 λ′ + λ− 2Ä −s2 + 1
2e2s2 + 1

2e′2s2 + s2s′2

4I2.7 λ′ + λ−Ä′ −Ä 2ss′ − e2ss′ − e′2ss′ − s3s′ − ss′3

4I2.8 λ′ + λ− 2Ä′ −s′2 + 1
2e2s′2 + 1

2e′2s′2 + s2s′2

4I2.9 2λ+$ ′ − 3$ 1
4e3e′

4I2.10 2λ′ − 4λ−$ ′ + 3$ − 8
3e3e′

4I2.11 4λ′ − 2λ− 3$ ′ +$ − 2
3ee′3

4I2.12 2λ+$ ′ −$ − 2Ä 3ee′s2

4I2.13 λ′ − 3λ+ 2$ −Ä′ +Ä − 27
4 e2ss′

4I2.14 λ′ + λ− 2$ −Ä′ +Ä − 1
4e2ss′

4I2.15 2λ−$ ′ −$ +Ä′ −Ä 6ee′ss′

4I2.16 2λ+$ ′ −$ −Ä′ −Ä −6ee′ss′

4I2.17 λ′ + λ− 2$ ′ +Ä′ −Ä − 1
4e′2ss′

4I2.18 3λ′ − λ− 2$ ′ −Ä′ +Ä − 3
4e′2ss′

4I2.19 2λ+$ ′ −$ − 2Ä′ 3ee′s′2

TABLE XI
Second-Order Arguments: Functions of Semimajor Axis

i f i

45 1
8[−5 j + 4 j 2 − 2αD + 4 jαD + α2D2] Aj

46 1
96[22 j − 64j 2 + 60j 3 − 16j 4 + 16αD − 46jαD + 48j 2αD

− 16j 3αD − 12α2D2 + 9 jα2D2 + 4 jα3D3 + α4D4] Aj

47 1
32[20 j 3 − 16j 4 − 4αD − 2 jαD + 16j 2αD − 16j 3αD − 2α2D2

+ 11jα2D2 + 4α3D3 + 4 jα3D3 + α4D4] Aj

48 1
16[2α + jα − 4 j 2α − 4 jα2D − α3D2](Bj−1 + Bj+1)

49 1
4 [−2+ 6 j − 4 j 2 + 2αD − 4 jαD − α2D2] Aj−1

50 1
32[20− 86j + 126j 2 − 76j 3 + 16j 4 − 20αD + 74jαD − 64j 2αD

+ 16j 3αD + 14α2D2 − 17jα2D2 − 2α3D3 − 4 jα3D3
−α4D4] Aj−1
TABLE XI—Continued

i f i

51 1
32[−4+ 2 j + 22j 2 − 36j 3 + 16j 4 + 4αD + 6 jαD − 32j 2αD

+ 16j 3αD − 2α2D2 − 19jα2D2 − 6α3D3 − 4 jα3D3

−α4D4] Aj−1

52 1
8[−2 jα + 4 j 2α + 4 jα2D + α3D2](Bj−2 + Bj )

53 1
8 [2− 7 j + 4 j 2 − 2αD + 4 jαD + α2D2] Aj−2

54 1
32[−32+ 144j − 184j 2 + 92j 3 − 16j 4 + 32αD − 102jαD

+ 80j 2αD − 16j 3αD − 16α2D2 + 25jα2D2 + 4α3D3

+ 4 jα3D3 + α4D4] Aj−2

55 1
96[12− 14j − 40j 2 + 52j 3 − 16j 4 − 12αD − 10jαD

+ 48j 2αD − 16j 3αD + 6α2D2 + 27jα2D2 + 8α3D3

+ 4 jα3D3 + α4D4] Aj−2

56 1
16[3 jα − 4 j 2α − 4 jα2D − α3D2](Bj−3 + Bj−1)

57 1
2 [α]Bj−1

58 1
8[−14α + 16jα − 4 j 2α + 4α2D + α3D2]Bj−1

59 1
8[2α − 4 j 2α + 4α2D + α3D2]Bj−1

60 3
4[−α2]Cj−2 + 3

4 [−α2]Cj

61 1
2[−α]Bj−1 + 3

4 [−α2]Cj−2 + 15
4 [−α2]Cj

62 [−α]Bj−1

63 1
4[14α − 16jα + 4 j 2α − 4α2D − α3D2]Bj−1

64 1
4[−2α + 4 j 2α − 4α2D − α3D2]Bj−1

65 1
2[α]Bj−1 + 3[α2]Cj−2 + 3

2 [α2]Cj

66 1
2[α]Bj−1 + 3

2 [α2]Cj−2 + 3[α2]Cj

67 1
2[−α]Bj−1 + 15

4 [−α2]Cj−2 + 3
4 [−α2]Cj

68 1
96[4− 2 j − 26j 2 − 4 j 3 + 16j 4 − 4αD − 2 jαD + 16j 3αD

+ 6α2D2 − 3 jα2D2 − 2α3D3 − 4 jα3D3 − α4D4] Aj+1

69 1
96[36− 186j + 238j 2 − 108j 3 + 16j 4 − 36αD + 130jαD

− 96j 2αD + 16j 3αD + 18α2D2 − 33jα2D2 − 6α3D3

− 4 jα3D3 − α4D4] Aj−3

70 1
8[−14jα + 4 j 2α − 8α2D − α3D2]Bj−2

71 1
8[−2 jα + 4 j 2α − α3D2]Bj

72 1
8[−2α − jα + 4 j 2α + 4 jα2D + α3D2]Bj−1

73 1
8[−2α − jα + 4 j 2α + 4 jα2D + α3D2]Bj+1

74 1
4[2 jα − 4 j 2α − 4 jα2D − α3D2]Bj−2

75 1
4[2 jα − 4 j 2α − 4 jα2D − α3D2]Bj

76 1
4[14 jα − 4 j 2α + 8α2D + α3D2]Bj−2

77 1
4[2 jα − 4 j 2α + α3D2]Bj

78 1
8[−3 jα + 4 j 2α + 4 jα2D + α3D2]Bj−3

79 1
8[−3 jα + 4 j 2α + 4 jα2D + α3D2]Bj−1

80 3
2[α2]Cj

81 3
2[α2]Cj−2
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TABLE XII
Third-Order Arguments: Direct Part

ID Cosine argument Term

4D3.1 jλ′ + (3− j )λ− 3$ e3 f82

4D3.2 jλ′ + (3− j )λ−$ ′ − 2$ e2e′ f83

4D3.3 jλ′ + (3− j )λ− 2$ ′ −$ ee′2 f84

4D3.4 jλ′ + (3− j )λ− 3$ ′ e′3 f85

4D3.5 jλ′ + (3− j )λ−$ − 2Ä es2 f86

4D3.6 jλ′ + (3− j )λ−$ ′ − 2Ä e′s2 f87

4D3.7 jλ′ + (3− j )λ−$ −Ä′ −Ä ess′ f88

4D3.8 jλ′ + (3− j )λ−$ ′ −Ä′ −Ä e′ss′ f89

4D3.9 jλ′ + (3− j )λ−$ − 2Ä′ es′2 f86

4D3.10 jλ′ + (3− j )λ−$ ′ − 2Ä′ e′s′2 f87

TABLE XIII
Third-Order Arguments: Indirect Part (External Perturber)

ID Cosine argument Term

4E3.1 λ′ − 4λ+ 3$ − 1
3e3

4E3.2 λ′ + 2λ− 3$ − 1
24e3

4E3.3 2λ′ + λ−$ ′ − 2$ − 1
4e2e′

4E3.4 λ′ + 2λ− 2$ ′ −$ − 1
16ee′2

4E3.5 3λ′ − 2$ ′ −$ 81
16ee′2

4E3.6 2λ′ + λ− 3$ ′ − 1
6e′3

4E3.7 4λ′ − λ− 3$ ′ − 16
3 e′3

4E3.8 λ′ + 2λ−$ − 2Ä − 1
2es2

4E3.9 2λ′ + λ−$ ′ − 2Ä −2e′s2

4E3.10 λ′ + 2λ−$ −Ä′ −Ä ess′

4E3.11 2λ′ + λ−$ ′ −Ä′ −Ä 4e′ss′

4E3.12 λ′ + 2λ−$ − 2Ä′ − 1
2es′2

4E3.13 2λ′ + λ−$ ′ − 2Ä′ −2e′s′2

TABLE XIV
Third-Order Arguments: Indirect Part (Internal Perturber)

ID Cosine argument Term

4I3.1 λ′ − 4λ+ 3$ − 16
3 e3

4I3.2 λ′ + 2λ− 3$ − 1
6e3

4I3.3 3λ−$ ′ − 2$ 81
16e2e′

4I3.4 2λ′ + λ−$ ′ − 2$ − 1
16e2e′

4I3.5 λ′ + 2λ− 2$ ′ −$ − 1
4ee′2

4I3.6 2λ′ + λ− 3$ ′ − 1
24e′3

4I3.7 4λ′ − λ− 3$ ′ − 1
3e′3

4I3.8 λ′ + 2λ−$ − 2Ä −2es2

4I3.9 2λ′ + λ−$ ′ − 2Ä − 1
2e′s2

4I3.10 λ′ + 2λ−$ −Ä′ −Ä 4ess′

4I3.11 2λ′ + λ−$ ′ −Ä′ −Ä e′ss′

4I3.12 λ′ + 2λ−$ − 2Ä′ −2es′2
4I3.13 2λ′ + λ−$ ′ − 2Ä′ − 1
2e′s′2
MURRAY

TABLE XV
Third-Order Arguments: Functions of Semimajor Axis

i f i

82 1
48[−26j + 30j 2 − 8 j 3 − 9αD + 27jαD − 12j 2αD + 6α2D2

− 6 jα2D2 − α3D3] Aj

83 1
16[−9+ 31j − 30j 2 + 8 j 3 + 9αD − 25jαD + 12j 2αD − 5α2D2

+ 6 jα2D2 + α3D3] Aj−1

84 1
16[8− 32j + 30j 2 − 8 j 3 − 8αD + 23jαD − 12j 2αD + 4α2D2

− 6 jα2D2 − α3D3] Aj−2

85 1
48[−6+ 29j − 30j 2 + 8 j 3 + 6αD − 21jαD + 12j 2αD − 3α2D2

+ 6 jα2D2 + α3D3] Aj−3

86 1
4[3α − 2 jα − α2D]Bj−1

87 1
4[2 jα + α2D]Bj−2

88 1
2[−3α + 2 jα + α2D]Bj−1

89 1
2[−2 jα − α2D]Bj−2

by the order of the argument, i.e., the absolute value of the sum of the
ficients of the mean longitudes in each argument. Tables I–III, Tables IV–
Tables VIII–XI, Tables XII–XV, and Tables XVI–XIX contain the argumen
and terms for the zeroth-, first-, second-, third-, and fourth-order argum
respectively. The full, fourth-order expansion ofR (orR′) should be considered
as the sum of the direct and indirect terms for an external (or internal) pert
over all values of the integerj .

TABLE XVI
Fourth-Order Arguments: Direct Part

ID Cosine argument Term

4D4.1 jλ′ + (4− j )λ− 4$ e4 f90

4D4.2 jλ′ + (4− j )λ−$ ′ − 3$ e3e′ f91

4D4.3 jλ′ + (4− j )λ− 2$ ′ − 2$ e2e′2 f92

4D4.4 jλ′ + (4− j )λ− 3$ ′ −$ ee′3 f93

4D4.5 jλ′ + (4− j )λ− 4$ ′ e′4 f94

4D4.6 jλ′ + (4− j )λ− 2$ − 2Ä e2s2 f95

4D4.7 jλ′ + (4− j )λ−$ ′ −$ − 2Ä ee′s2 f96

4D4.8 jλ′ + (4− j )λ− 2$ ′ − 2Ä e′2s2 f97

4D4.9 jλ′ + (4− j )λ− 4Ä s4 f98

4D4.10 jλ′ + (4− j )λ− 2$ −Ä′ −Ä e2ss′ f99

4D4.11 jλ′ + (4− j )λ−$ ′ −$ −Ä′ −Ä ee′ss′ f100

4D4.12 jλ′ + (4− j )λ− 2$ ′ −Ä′ −Ä e′2ss′ f101

4D4.13 jλ′ + (4− j )λ−Ä′ − 3Ä s3s′ f102

4D4.14 jλ′ + (4− j )λ− 2$ − 2Ä′ e2s′2 f95

4D4.15 jλ′ + (4− j )λ−$ ′ −$ − 2Ä′ ee′s′2 f96

4D4.16 jλ′ + (4− j )λ− 2$ ′ − 2Ä′ e′2s′2 f97

4D4.17 jλ′ + (4− j )λ− 2Ä′ − 2Ä s2s′2 f103

4D4.18 jλ′ + (4− j )λ− 3Ä′ −Ä ss′3 f102
4D4.19 jλ′ + (4− j )λ− 4Ä′ s′4 f98
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TABLE XVII
Fourth-Order Arguments: Indirect Part (External Perturber)

ID Cosine argument Term

4E4.1 λ′ − 5λ+ 4$ − 125
384e4

4E4.2 λ′ + 3λ− 4$ − 3
128e4

4E4.3 2λ′ + 2λ−$ ′ − 3$ − 1
12e3e′

4E4.4 λ′ + 3λ− 2$ ′ − 2$ − 3
64e2e′2

4E4.5 3λ′ + λ− 2$ ′ − 2$ − 27
64e2e′2

4E4.6 2λ′ + 2λ− 3$ ′ −$ − 1
12ee′3

4E4.7 4λ′ − 3$ ′ −$ 8ee′3

4E4.8 3λ′ + λ− 4$ ′ − 27
128e′4

4E4.9 5λ′ − λ− 4$ ′ − 3125
384 e′4

4E4.10 λ′ + 3λ− 2$ − 2Ä − 3
8e2s2

4E4.11 2λ′ + 2λ−$ ′ −$ − 2Ä −ee′s2

4E4.12 3λ′ + λ− 2$ ′ − 2Ä − 27
8 e′2s2

4E4.13 λ′ + 3λ− 2$ −Ä′ −Ä 3
4e2ss′

4E4.14 2λ′ + 2λ−$ ′ −$ −Ä′ −Ä 2ee′ss′

4E4.15 3λ′ + λ− 2$ ′ −Ä′ −Ä 27
4 e′2ss′

4E4.16 λ′ + 3λ− 2$ − 2Ä′ − 3
8e2s′2

4E4.17 2λ′ + 2λ−$ ′ −$ − 2Ä′ −ee′s′2

4E4.18 3λ′ + λ− 2$ ′ − 2Ä′ − 27
8 e′2s′2

Throughout the definitions of the functions of semimajor axis in Tables
VII, XI, XV, and XIX the following notation is used:

Aj = b( j )
1
2

(α) (98)

TABLE XVIII
Fourth-Order Arguments: Indirect Part (Internal Perturber)

ID Cosine argument Term

4I4.1 λ′ − 5λ+ 4$ − 3125
384 e4

4I4.2 λ′ + 3λ− 4$ − 27
128e4

4I4.3 4λ−$ ′ − 3$ 8e3e′

4I4.4 2λ′ + 2λ−$ ′ − 3$ − 1
12e3e′

4I4.5 λ′ + 3λ− 2$ ′ − 2$ − 27
64e2e′2

4I4.6 3λ′ + λ− 2$ ′ − 2$ − 3
64e2e′2

4I4.7 2λ′ + 2λ− 3$ ′ −$ − 1
12ee′3

4I4.8 3λ′ + λ− 4$ ′ − 3
128e′4

4I4.9 5λ′ − λ− 4$ ′ − 125
384e′4

4I4.10 λ′ + 3λ− 2$ − 2Ä − 27
8 e2s2

4I4.11 2λ′ + 2λ−$ ′ −$ − 2Ä −ee′s2

4I4.12 3λ′ + λ− 2$ ′ − 2Ä − 3
8e′2s2

4I4.13 λ′ + 3λ− 2$ −Ä′ −Ä 27
4 e2ss′

4I4.14 2λ′ + 2λ−$ ′ −$ −Ä′ −Ä 2ee′ss′

4I4.15 3λ′ + λ− 2$ ′ −Ä′ −Ä 3
4e′2ss′

4I4.16 λ′ + 3λ− 2$ − 2Ä′ − 27
8 e2s′2

4I4.17 2λ′ + 2λ−$ ′ −$ − 2Ä′ −ee′s′2
4I4.18 3λ′ + λ− 2$ ′ − 2Ä′ − 3
8e′2s′2
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TABLE XIX
Fourth-Order Arguments: Functions of Semimajor Axis

i f i

90 1
384[−206j + 283j 2 − 120j 3 + 16j 4 − 64αD + 236jαD

− 168j 2αD + 32j 3αD + 48α2D2 − 78jα2D2

+ 24j 2α2D2 − 12α3D3 + 8 jα3D3 + α4D4] Aj

91 1
96[−64+ 238j − 274j 2 + 116j 3 − 16j 4 + 64αD − 206jαD

+ 156j 2αD − 32j 3αD − 36α2D2 + 69jα2D2 − 24j 2α2D2

+ 10α3D3 − 8 jα3D3 − α4D4] Aj−1

92 1
64[52− 224j + 259j 2 − 112j 3 + 16j 4 − 52αD + 176jαD

−144j 2αD + 32j 3αD + 26α2D2 − 60jα2D2 + 24j 2α2D2

− 8α3D3 + 8 jα3D3 + α4D4] Aj−2

93 1
96[−36+ 186j − 238j 2 + 108j 3 − 16j 4 + 36αD − 146jαD

+ 132j 2αD − 32j 3αD − 18α2D2 + 51jα2D2 − 24j 2α2D2

+ 6α3D3 − 8 jα3D3 − α4D4] Aj−3

94 1
384[24− 146j + 211j 2 − 104j 3 + 16j 4 − 24αD + 116jαD

− 120j 2αD + 32j 3αD + 12α2D2 − 42jα2D2 + 24J2α2D2

− 4α3D3 + 8 jα3D3 + α4D4] Aj−4

95 1
16[16α − 17jα + 4 j 2α − 8α2D + 4 jα2D + α3D2]Bj−1

96 1
8[10 jα − 4 j 2α + 4α2D − 4 jα2D − α3D2]Bj−2

97 1
16[−3 jα + 4 j 2α + 4 jα2D + α3D2]Bj−3

98 3
8[α2]Cj−2

99 1
8[−16α + 17jα − 4 j 2α + 8α2D − 4 jα2D − α3D2]Bj−1

100 1
4[−10jα + 4 j 2α − 4α2D + 4 jα2D + α3D2]Bj−2

101 1
8[3 jα − 4 j 2α − 4 jα2D − α3D2]Bj−3

102 3
2[−α2]Cj−2

103 9
4[α2]Cj−2

Bj = b( j )
3
2

(α) (99)

Cj = b( j )
5
2

(α). (100)

Note that these definitions differ from those of Brouwer and Clemence (19
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ti

,

a

t

a

c

.

f
a

rion.

: An

ion.

unc-

s of
and

tion.

tion.

y

en-

for
144 ELLIS AND

Broucke, R., and G. Smith 1971. Expansion of the planetary disturbing func
Celest. Mech.4, 490–499.

Brouwer, D., and G. M. Clemence 1961.Methods of Celestial Mechanics.
Academic Press, New York.

Brown, E. W., and C. A. Shook 1933.Planetary Theory. Cambridge Univ. Press
Cambridge.

Brumberg, V. A. 1995.Analytical Techniques of Celestial Mechanics. Springer,
Berlin.

Deprit, A., J. Henrard, and A. Rom 1971. Analytical lunar ephemeris: Delaun
theory.Astron. J.76, 269–272.

Dermott, S. F., and C. D. Murray 1983. Nature of the Kirkwood gaps in
asteroid belt.Nature301, 201–205.

Goldreich, P., and P. D. Nicholson 1977. The revenge of tiny Miranda.Nature
269, 783–785.

Hamilton, D. P. 1994. A comparison of Lorentz, planetary gravitational,
satellite gravitational resonances.Icarus109, 221–240.

Harper, D., and C. D. Murray 1994. Disturbing function expansions. Spe
issue of theMaple Tech. Newsl.(December 1994), 24–28.

Henrard, J. 1989. A survey of Poisson series processors.Celest. Mech.45, 245–
253.

Hughes, S. 1981. The computation of tables of Hansen coefficients.Celest. Mech.
25, 101–107.

Jarnagin, M. P. 1965. Expansions in elliptical motion.Astron. Pap. Am. Ephem
Naut. Alm.18, 1–659.

Kaula, W. M. 1962. Development of the lunar and solar disturbing functions
a close satellite.Astron. J.67, 300–303.

Laskar, J. 1991. Analytical framework in Poincar´e variables for the motion o
the solar system. InPredictability, Stability, and Chaos in N-Body Dynamic

Systems(A. E. Roy, Ed.), pp. 93–114. Plenum Press, New York.

Le Verrier, U. J.-J. 1855. D´eveloppment de la fonction qui sert de base au calc
MURRAY

on.

y’s

he

nd

ial

for

l

des perturbations des mouvements des plan`etes.Ann. Obs. Paris, Ḿem.1,
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