Icarus147, 129-144 (2000)

doi:10.1006/icar.2000.6399, available online at http://iww.idealibrary.col D E g

|.®

The Disturbing Function in Solar System Dynamics

Keren M. Ellis and Carl D. Murray

Astronomy Unit, Queen Mary and Westfield College, University of London, Mile End Road, London E1 4NS, UK
E-mail: c.d.murray@gmw.ac.uk

Received June 12, 1995; revised February 28, 2000

The planetary disturbing function is the basis of much analytical
work in Solar System dynamics and series expansions of it that were
derived in the last century are still in common use today. However,
most previous expansions have the disadvantage of being in terms
of the mutual inclination of the two masses. Also, several of the
classical, high-order expansions contain a number of errors. A new
algorithm for the derivation of the disturbing function in terms of
the individual orbital elements of the two masses is presented. It
allows the calculation, to any order, of the terms associated with
any individual argument without the need for expanding the en-
tire disturbing function. The algorithm is used to generate a new
expansion which is complete to fourth-order in the eccentricities
and inclinations, and incorporates a consistent numbering system
for each argument. The properties of the expansion for a selected
argument are discussed, and the use of the expansion is illustrated
using the examples of the Titan—Hyperion 3:4 resonance and the
possible Jupiter—Pallas 18:7 resonance.  © 2000 Academic Press
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1. INTRODUCTION

determined to withink1 km, it seems unusual that there is nc
consistent approach to the use of the disturbing function give
that, effectively, it determines the location of the resonant fe:
ture. Our discovery of a new algorithm to facilitate the derivatiol
of the terms associated with an explicit argument and its subs
quent application to the generation of a fourth-order expansic
makes it appropriate to combine the two by writing a paper ir
corporating these results in a form suitable for a nonspeciali
readership. Therefore the aims of this paper are (i) to present
efficient algorithm to calculate the terms associated with a give
argument and (ii) to present a completely new expansion of tl
disturbing function in a systematic form together with example
of its use. In this section we provide some basic definitions ar
an outline of previous work on the disturbing function.
Consider a mags orbiting a primary of mas#/. in an ellip-
tical path. Let the orbiting mass have position vectalative to
M and assume that the gravitational effect of the primary arist
from a point mass (see Fig. 1). This problem is integrable ar
the orbital elements, e, |, &, and<2, which denote semimajor
axis, eccentricity, inclination, longitude of pericenter, and longi
tude of ascending node, respectively, of the nrmaase constant.
Consider now a third masgy, with position vector’ relative

The Solar System is not just a collection of objects moving i M. and orbital elements’, €, I, ', and’. Assume < r’
arbitrary orbits. It has an intricate dynamical structure that haﬁ/vays. The mutual gravitational force between the two orbi

evolved over time. To understand the structure and evoluti

ffy massesn andm’ results in accelerations in addition to the

of the Solar System we must understand the consequencegQf,qard two-body accelerations dueMg (see Fig. 1). These
Newton’s universal law of gravitation. To do this we must unsqgitional accelerations of the secondary masses with respec

derstand the properties of the perturbing potential experienGgd primary can be obtained from the gradient of the disturbin
by one object due to another; this is also known as the planetgiiction.

disturbing function.

The equations of motion of the two orbiting masses can &

Despite its importance for planetary science, guidance on {hgiien as
properties and practical use of the disturbing function can only

be found in the specialist literature on celestial mechanics. Our

f=VU+R) and "=VU+R) (1)

own experience is that when the disturbing function is encoun-

tered, many authors give resonant arguments and simply Stafere

that the terms in the semimajor axis are “of order unity.” Typi-

cally a reference is given to a textbook on celestial mechanics (Mc 4+ m) ) (M +m)

without any way of knowing which particular arguments are = gr— nd U'= QT (2)
being considered. Invariably these texts fail to provide a clear

presentation, even allowing for inconsistencies in their approaate the central, or two-body parts of the total potential and
and their use of a mutual inclination. In an era when, for exans understood that th& andV’ operators denote that the gra-
ple, the locations of resonant structures in planetary rings candient is with respect to the coordinates of the masandm’,
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130 ELLIS AND MURRAY

The j; are all integers, and and)’ denote the mean longitudes
of each mass. We define the order of the argument as

N = [ji+ jal. 8)

As we shall see in Sect. 3 below, the valuehbfs the same as
the lowest power o, €, |, andl’ that occurs inSor S. Thus,
when we refer to afNth-order expansion we mean an expan:
sion that includes all possible arguments up to and includin
orderN, together with the corresponding terms in powers of th
FIG. 1. The position vectors; andr’ of the two massem andm’ with  gccentricities or inclinations up to and including ténh power.
respect to the central mab4. The angle between the position vectorgis The literature on the disturbing function has a distinguishe
) ) ) ~history. The first paper to be published in th&ronomical Jour-
respectively. Thek andR’ terms in Eq. (1) are the disturbingpg| contained the start of a sixth-order expansion by Peirc
functions which represent the potentials arising from the gra\(&849)_ Le Verrier (1855) produced a seventh-order expansit
tational effects of the external and internal masses respectivglpich was subsequently extended to eighth-order by Boqu
These are given by (1889). Newcomb (1895) carried out work on a seventh-orde
expansion, while Nan and Wallberg (1899) produced a second

_ gm Al r’ (3) order expansion in canonical elements. Brown and Shook (193
[r"—r] rr3 gave a clear derivation of the expansion to second-order in ti

, gm r-r keplerian orbital elements. In more recent times the expansic
R = Ir—r/| —ym (3 (4)  contained in Brouwer and Clemence (1961) has become wide

adopted as a standard, low-order expansion; it is complete
The first term in each of these expressions is called the dirgeird-order in all terms but contains some fourth-order term
term while the second term, which arises from the choice of t&sociated with particular arguments.
origin of the coordinate system, is called the indirect term. If In the expressions foB and S’ in Egs. (5) and (6) in each
the origin of the coordinate system is at the center of mass, tf@fnthese expansions the dependenceacanda’ is given by
there are no indirect terms. means of Laplace coefficients (functionseof= a/a’) and their
At this stage we should point out one peculiarity of the diglerivatives (see, for example, Brouwer and Clemence 1961 a
turbing function as used throughout this paper. The equation faect. 2 below). The compact notation afforded by the use «
the perturbing force is written &= V'R rather than the more Laplace coefficients means that they can be handled easily
usualF = —VR, becauseR is actually the negative of the truecalculations involving the disturbing function.
potential. This is an historical quirk and has no effect on the Another common but undesirable characteristic of all of thes
inherent dynamics of the system. expansions is the use of angles referred to the mutual node
It is clear that it is a trivial task to writ®®k andR’ in terms the orbiting masses, and the mutual inclinatigh of the orbits
of the standard cartesian coordinates of each orbiting mass. Dien by
cartesian equations of motion of the inner perturbed body can
be written in terms of the gradient bf andR as in Eq. (1) and cosJ = cosl cosl’ + sinl sinl’cos’ — Q). (9)
numerical technigues can be used to study the orbit. However, in
many problems it is often more useful to consider the variatidrhis has the advantage of making the resulting size of the expe
of the orbital elements of the perturbed body with time. Hencgons more manageable, but it has the disadvantage of maki
we must express the relevant disturbing function in terms of tetudies of the effect of perturbations on individual inclinations
orbital elements of each body. Such an expansion is achievedinyiodes more difficult.
expandingR or R’ as infinite series of the form As well as their consistent use of a mutual inclination ther:
is a more serious drawback to some of these expansions—th
R=u Z Ha, a,e€,1,1’) cosp (5) contain errors. Most are typographical mistakes that are ea
to identify and correct. For example, following the publication
and of the expansion by Le Verrier (1855), several editions of th
Annales de I'Observatoire de Pariontained corrections to
R =u Z S(a,a,e¢€,1,1) cose, (6) Le Verrier's original text. Murray (1985) pointed out a single
sign error in Le Verrier's work that had not been corrected. Th
wherey =gm, u' =gm’, and early printings of Brouwer and Clemence (1961) contained e
rors in the expansion that were corrected only with the thir
¢ = j1X + jor + jz3' + jaw + |52 + j692. (7) printing in 1971.
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Using mathematical techniques from geophysics and artifictal any desired power of the eccentricities and inclinations. W
satellite theory, Kaula (1962) developed a form of the expansiomesent the algorithm in the next section and in Section 3 w
using Legendre polynomials. This form of the expansion had tpeovide detailed information on the properties of the expansiol
advantage that one could specify an argument of intepesty, In Section 4 we illustrate the use of the expansion by givin
and then isolate only those terms associated with that particidaamples of how the appropriate terms are calculated for tv
argument, avoiding the need to carry out a complete expansispecific cases in Solar System dynamics. A complete fourt
Another advantage was that because the dependerg&oh, order expansion of the direct and indirect parts of the disturbir
andl’ was given in the form of explicit functions, expansions téunction is given in the Appendix; each argument in this expar
any order could be generated for the terms associated with aign has been given a unique identification number for ease
particular argument. This made Kaula’s expansion ideal for useference. Some of the concepts and results developed in t
inanumber of fields (see, forexample, Allan 1969, 1970, Murrgaper, including the fourth-order expansion are made use of |
1982, Dermott and Murray 1983). However, one disadvantalyeirray and Dermott (1999) where the disturbing function an
of Kaula’s work was the absence of Laplace coefficients—tlits properties are examined in some detail. Murray and Dermc
dependence omanda’ appeared as a summation in powera of also derive an expansion (from first principles) of the disturbin
and reduced the compactness and ease of use of the expangiorction complete to second-order in the individual element:

Itis important to recognize that the “classical” expansions afnd provide several analytical and numerical comparisons.
the last century are stillin use today. For example, Goldreich and
Nicholson (1977) used the expansion by Peirce (1849), while 2. EXPANSION OF THE DISTURBING FUNCTION
Wisdom (1982), Murray (1986), ariidlichovsk/ and Melendo
(1986) all used the expansion by Le Verrier (1855) in their work It is unlikely that anyone making use of the planetary dis
on algebraic mappings for asteroid motion at resonance. turbing function requires all the arguments in the expansiol

In one of the first applications of computer algebra to cd? practice the terms associated with only a few arguments a
lestial mechanics Deprigt al. (1971) discovered mistakes infequired. Therefore, although we give a complete fourth-ord:
Delaunay’s lunar theory. Since then a number of authors ha&gPansion in the Appendix for reference purposes, our prima
developed their own software packages for the development@bjective is to produce a new form of the expansion which re
series (see the review by Henrard 1989). For example, BroudRihs the advantages of Kaula's (1962) approach but express
and Smith (1971) (and the references therein) describe a teleierms of Laplace coefficients and their derivatives. Full detail
nique for computing the expansion of the disturbing functio®f the procedure for accomplishing this new derivation will be
Brumberg (1995) made use of a generic Poisson series proce8stlished elsewhere (K. Ellis, in preparation). Here we confin
to show how the disturbing function can be expanded; similg@erselves to giving the explicit form of the series.

methods were employed by Laskar (1991) using Pouari- From Egs. (3) and (4) itis clear that we can write the disturbin
ables. function due to an external perturber as

The need for correct, higher-order expansions and the ability '
to perform complicated, error-free series manipulation by com- R = E(RD + aRe) (20)

puter, led Murray and Harper (1993) to generate an eighth-order

expansion of the disturbing function in the individual orbitaiind that due to an internal perturber as

elements. The expansion was first produced usiaghemat-

ica (Wolfram 1991) and written as a file of integers that was R = ﬁ(aRD + }RI) . (11)
then compared with a similar file produced independently us- a o

ing Maple As a final check the expansion was compared Wimherea = a/a’ is the ratio of the semimajor axes of the two

Kaula’s form of the expansion for a large number of eXp"Ci(Brbits andu = Gm, 1/ = Gm'. The direct part in both cases is
cases. Details of the derivation are given in Harper and Murraxlen ,by ’

(1994).
Our own experience suggests that many members of the Solar R — a 12
System dynamics community find the existing forms of the ex- b=\ (12)

pansion difficult to derive and use. Therefore one of the goals of
this paper is to present a new algorithm for the determination$tt
the terms associated with a given argument in the expansion
of the planetary disturbing function. This obviates the need for
a complete series expansion involving all arguments up to afgflere v is the angle between the two position vectors (se
including a specified order. The expressions for each term iy, 1), we have

volve e, €, |, andl’ (instead of the mutual inclinationd)) as

well as explicit Laplace coefficients (instead of infinite series Re — ra’

. . e E= ———5 COSyr (14)

in the ratio of the semimajor axes) and can be calculated up ar’?

h A2=r2 42— 2rr’ cosy. Since

r-r' =rr’cosy, (13)
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for the indirect part in the case of an external perturber and given by

cosjedy
(1 — 2a cosp + a?)s’

1 .. 1 2
Ri=——2 cosy (15) JH0e) = o /O (19)
for the indirect part in the case of an internal perturber.

| ) ¢ PE wheresis a halfinteger. They can also be written in series form a
We find that the series for the direct paRtp is given by

0 1 s(s+1)---(s+j—-1) . s(s+1j) ,
) (-1 . b (a) = : al |1 i o
RD:Z—H et 2+ 123 1G+1)
i=0 ' . .
s(s+ 1)(s S 1
« v - k¢ (i) : 41_ ;EJ 111))((1 —:—JZ)—F )aA o :| (20)
< {Z - 2; ( )( D Wb,+l(a)}
j=-00
o /2] or, equivalently in terms of elliptical integrals or hypergeomet
” X': f (—1)°2% (2s —4n+ 1)(s — n)! ric functions. In the special case where- 0 the factor outside
g (i —s—D! =~ 22nl(2s — 2n + 1)! the brackets in Eq. (20) is equal to unity. It can be shown the
the series forms of the Laplace coefficient and its derivatives a
. s—2n (s—2n—m)! S’if‘ F () F () always convergent for < 1. Note that there are no Laplace
— “m{s—2n+m)! = s—2n.m.pil/ Fs=2n.m.pf coefficients inRg andR,.
pP= The functions of inclination in all three expressions are de
X : fined by
K,i+j—21—2n—2 k+1 2-2n-2
x Z XIIIJ I2+|J 2n— 2pn+q p(e) XlJr(IﬁZTr )2n|+2£p ' +q’ e (e()
9,9'=—00 1
xcos[{ +j—2—2n—2p +qn —(+j-2-2n Feamp(l) =5
—-2p+Q)r— g’ +qw +(M—s+2n+2p)Q’ min(p,[(s—2n—m)/2]) 2s—4n—2t) [s—2n
X
— (m—s+2n+2p)Q], (16) o (s—2n—m—2t)!'\ t
wherexkm =1 if m=0 and«m =2 if m> 0. The series for the o SifF-2n-me2t | Xm: m\ co¢ |
indirect partsRe andR, are given by g/ 2s-n-2
1 1 min(p—t,s—2n—m—2t+g)
a-m) , s—-2n—-m-2t+g
- Km Fl,m,p(l) Fl,m,p’(l ) X
mZ:O (l + m)! p;O c=max(02p;tfm+g) c
- m-g ~[(s~2n-m)/2]
Z X1 520 (8) X 2op 2h (€) ><<p_t_c>(—1)° smen=m/El, (21)
9,9'=—00
x cos[(1-2p'+ )2 —(1-2p+a)r —d'@'+qw  wheres — 2n=1 in Re andR, and the square brackets denote
1 o / on the integer part of the enclosed expression.
(1-2p —m' +(1-2p—m)Q] (17) ; > \
The functions of eccentricityX®®(e), in all three expres-
and sions are Hansen coefficients (see, for example, Plummer 19:

Jarnigan 1965, and Hughes 1981) which are defined by

-m! :
Km7——— Fimp(l) Fump (1)
Z @+ my! p%io Lm.p Lm.p xa b(e) — glo-bl Z X0+a otp e2 (22)

+00
—21-2 11-2p
> Xilopaq ©) Xioptq(€)
4,9'=—00 where, in thls contexig = max(Q ¢ — b), 8= max(Q b—c),
a,b
« cos[(1—2p' + q) — (1— 2p+ Q) — g’ + qu and the Xy are Newcomb operators which can be definet

recurswely by
—(Q1-2p —mQ' +(1-2p-—mQ]. (18)

i icientel) Xgo =1 (23)
In the expression foRp the coeff|C|entsbi+l(a) are Laplace '

coefficients (see, for example, Brouwer and Clemence 1961) X‘l":g =b-—a/2 (24)
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If d=0, then whereby
6
4eX2y = 2(2b — A)XZ0g + (b —a)X2E. (25) S ji=o0 (33)
i=1
If d#£0, then _ . . o
Hamilton (1994) has investigated the d’Alembert rule and simi
4dX3E = —2(20 + a)X321 — (b 4+ a) X202 lar properties in his comparison of Lorentz resonances with pla
’ ' ' etary gravitational resonances and satellite gravitation
—(c—5d +4+4b+ )X 44 resonances.

3/2 From Eg. (22) we see that the lowest poweeafising from
+2(c—d+b) X:(—l)J ( . )X?*bmj. (26) the Hansen coefficient®P(e) is |c—b|. Therefore, by inspection
j=2 ] of the Hansen coefficients mande’ in Eq. (16) we see that
If c<0ord <0, thenX2§ =0. If d > c thenX?§ = X3 .". Xi'i;kiz'fzﬁ'ff&?’(e) = 0(e) (34)
A fourth-order expansion of the direct and indirect parts oftr}fnd
disturbing function was generated by implementing the above
algorithm in Mathematica(Wolfram 1991). A list of possible x:'lt‘zr_lgjé ﬁq—?“—zﬁ(e/) — @(enq/l)_ (35)
arguments was generated for each order (0, 1, 2, 3, 4) and then
the terms associated with each argument were calculated. Tierefore one property of the disturbing function is that the low
resulting file of integers was compared with a similar expansi@st powers oé ande’ are the absolute values of the coefficient:
obtained by carrying out a full expansion using the techniq@é @ andz’, respectively, in the cosine argument.
employed by Murray and Harper (1993); the expansions agreecﬁim“aﬂy, an inspection of the inclination function defined in
in all respects. Generating a full expansion using the new alded. (21) shows that
rithm was found to be an order of magnitude faster than using

_ i AlM—s+2n+2p|
the older method. The full expansions®H, Re, andR, are Fs—2nm p(l) = O(sin ) (36)
given in the Appendix. and
3. USE OF THE DISTURBING FUNCTION Fs_onmp(l) = O(sin™-st2n+201 1), (37)

The expansion of the direct and indirect parts of the disturtherefore the lowest powers of dirand sinl’ that occur in
ing function given in Egs. (16)—(18) appears to be compact bag. (16) are the absolute values of the coefficient@ ahd<’,
at first glance its structure and the number of summationsr@spectively, in the cosine argument.
intimidating. However, it is important to bear in mind that in a Now consider the various summations inherent in Eq. (16
given application we are only interested in generating the terfdg adding Eq. (31) and Eq. (32) we have
associated with particular arguments. _ ) )

Before showing how the number of summations can be re- Js+ls=2p —2p (38)

d“.ce.d' we demonst_rate the relationship between the integerglqa S0js + jg is always even. This places another constraint o
efficients in the cosine argument and the powers of the eccells permissible arguments in the expansion, in addition to tt

tricity anq inclinatiqn in the corr_esponding term. Compari.ngonstraint imposed by the d’Alembert relation. It also implie:
Eq. (7) with the cosine argument in Eq. (16) gives the foIIomehat the sum of the powers of the inclinations is always an eve

relationships between the integers: number and hence that the expansion can never contain an i
i , , o lated, single power of an inclination. This property has also bee
i=6E-2n=-2p+0a)+(+]j-2 -9  (27) jpyestigated by Hamilton (1994).
j2=—-(—-2n-2p+q)—(+j—2 —5) (28) An inspection of the various integers involved in the summz
_ , tions in Eqg. (16) allows us to reduce the range of several of tf
ls3=-0Q (29) summations. LeNpax be the maximum order of the expansion;
ja=q (30) this is the maximum sum of the powers@fe/, I, andl’ that
, , is desired in any one term associated with a given argumel
js=m—(s—2n-2p) (31) Note that we must havlnax> N, whereN is the order of the
je = —mM+ (s—2n—2p), (32) argumentas defined in Eq. (8). The following relationships hol

throughout the calculation,

where we have added and subtracted a termimthe expres- .

sions forj; and j,. Because all the angles in the cosine argu- a=l4 (39)

ment are longitudes, the argument satisfies the d’Alembert rule, q=-js (40)
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Lmax = Nmax — |js| — | ]el (41)
Pmin = —(Is+J6)/2. Prin=0 if js+je<0 (42)
Pmin = 0, Pmin = (Js + j6)/2 if js+je=0 (43)
Smin = MaX(Prmin, Prin: J6 + 2Pmin. —J5 + 2Ppmin)  (44)
imax = [(Nmax— [ ]3| — 1]al)/2], (45)

ELLIS AND MURRAY

of the functions of eccentricity and inclination need only be
evaluated to a finite order which is at most equaNig.x. The
Hansen coefficient ire need only include terms up to order
Nmax— |j3l — | sl — | js] in €; similarly the Hansen coefficient in
€ need only include terms up to ordBlax— | jal — |51 — | sl

in €. TheF inclination function inl need only include terms up
toorderNmax— | j3l — | jal — |jsl in I ; similarly theF functionin

I need only include terms up to ord®max— | jal — | jal — | jel

where, as before, the square brackets in Eq. (45) denote ihe’.

integer part of the expression.

In producing the truncated form of the full expression&y

As well as these global relationships, there are a numberoé have also replaced the upper limit on the summatiof in
intermediate definitions required for the summation. These afi®m ¢ = co t0 £ = £max# 00, Wherelnay is defined in Eq. (41).

This is not part of the general truncation process; it arises fro

Nmax = [(S — Smin)/2] (46) the fact that for values df > £nax all additional contributions to
Mmin = 0 if s, j5 are both even or both odd (47)the summation are zero. This is because
mmin =1 if s, j5are neither both even nor both odd (48) ¢

p=(—jg—mM+s—2n)/2 with p<s—2n

and p> pmin (49)
p=(js—m+s—2n)/2 with p <s—2n

and p' > p, (50)
j=|j2+i—2|—2n—2p—|—q|, (51)

2

k=0

GyAfum=q (53)

where f (x) is any polynomial of degree less than

Most previous expansions did not involve any kior cosl
terms in the inclination parts. Instead the expansions were c:
ried out in terms of sir%l , or, to be more precise, s§17. We
can follow this example by noting that sin=2s+/1 — s? and

Again the square brackets denote the integer part of tf@s! =1—2s”wheres= sin31 and make the appropriate sub-

expression.

stitutions in the definition of thé inclination function given

Note thaty andq’ are determined directly from the coefficientd" Eq./ (21). This requires an additional series expansios in
of @ andw’ in the argument of interest, and remain fixed ove@nds’) and permits a direct comparison with the expansion
all the summations. This removes the infinite summation ovi¥urray and Harper (1993).

all values ofg andq’ in Eqg. (16). On the other hang, and p’

Now consider the indirect part for an external perturber (se

change withs, n, andm but the relationships given in Egs. (49)EQ- (17)). A comparison of Egs. (7) and (17) gives the followin

and (50) always hold.
We can now rewrite Eq. (16) as

Imax

(@) (-1
Ro=2 i

1
251

s—2n

>k

m=0

) i—s (_1)5225
X Fs,gn,m,p(| ) stzn,m, p’(l ); m

T (25 — 4n + 1)(s — n)!
¢ 22'nl(2s — 2n + 1)!

(s—2n—m)!
(s —2n+ m)!

>

S=Smin N=

Lmax

>
=0

Xl X b )

(1) <
£! k2=0: ot i3

(i)c_lyafiy-bﬁh(a)

x €os[j1A" + oA + js' + jaw + 5@+ j62],  (52)

where, as beforeg, =1 if m=0 and«ky, =2 if m> 0.
In the form of the expansion foRp given in Eq. (52) above,

it is understood that the summations involved in the definitions

relationships between the integers:

ji=1-2p+0q (54)
jo=-(1-2p+aq) (55)
ja=—-0 (56)
ja=q (57)
js=—(1-2p —m) (58)
je=1—2p—m. (59)

An analysis of the integers involved in the expansion of thi
indirect part gives the following relationships:

q=a (60)
q =-is (61)
p=_(j2+jat+1)/2 (62)
p=—(j1+Js—1)/2 (63)

m=js—2p +1 (64)
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and the expansion itself can now be written 3. By looking at the appropriate order terms in the expar
sion of Rp, determine the value of the integgrwhich gives
Re— —& (1—m)! agreement with the desired argumefat,
ET Q+m)! 4. Calculate the combination of Laplace coefficients for the
Nl i o value of j to give the explicit form of the term of interesiRp)
x Frmp()Fump (1) X2, 2 4@ X 22 () say.

x cosfj1r’ + jor + jsw’ + jaww + j5 + j6R], (65) 5. 'Decide \{vhether an gxternal or an internal perturbatio
is being considered. This is determined by the nature of tt

where each of the quantitigs p/, andm must be integers and Problem. o _
equalto 0 or 1. Ifthese conditions are not satisfied then the giverP- ! the perturbation|is external, then look at the appropriat
argument does not appear in the expansion of the indirect pQFZer terms in the expansion of the indirect p&, and isolate

As with the direct part we can reduce the extent of the serig&natching argument, if it exists, and read off the correspondir
expansions in powers of the eccentricity and inclination, and tifdirect term(Re).

same modifications apply. 7. If the perturbation is internal, then look at the appropriat
The equivalent expression for the indirect part due to an jRfder terms in the expansion of the indirect p&i, and isolate
ternal perturber is amatching argument, if it exists, and read off the correspondir
indirect term(R,).
(1 — m)! 8. If the perturbation is external then
R = —kme—"
= T m)!
Ny =2~ 2= Ljrt] /
XFump(1) P ()X 0@ X (E) (R) = £ (1Ro) +a(Re)) (67)

x COS[j1A" + jor + jsw' + jaww + 52 + j6€2]. (66)
The same restrictions o, o/, andm apply. 9. If the perturbation is internal then
In reality, the expansions G2p, R, andR, are infinite se-
ries. However, in practice we are only interested in terms that , " 1
are appropriate for a particular problem. Thus we need to iso- (R) = a <“<RD) + ;m'))' (68)
late the relevant terms from the expansion, ignoring all other
nonrelevant terms; effectively this assumes that the remaining
terms produce On|y Short_period effects which average out t0|t|S important to note that other terms may also have to be co
zero. This is known as the averaging principle and it is the basi§lered. For example, if the 2:1 resonance is being studied wi
of much analytical work in Solar System dynamics. What comfourth-order expansion, then the contributions from argumen
stitutes a relevant term is not always obvious, but some genef@ntaining4’ — 2, 61" — 3i, and 8. — 41 (and their negatives)
principles apply. A study of the dynamics of an object movshould also be included since they are associated with resonan
ing C|Ose to ap+ q . p resonance W|th a perturber W0u|d re.at almOSt the same |Ocati0n and can make Signiﬁcant Contrib
quire the isolation of those arguments with=+(p+q) and tionsifthe eccentricity is large enough. Furthermore, any expa
j»=Fp. For example, if we were interested in studying motiofion above the first-order should also include the secular terr
close to the 5:4 resonance we would isolate those terms as¥Bich contain second- and higher-order terms in the eccentri
ciated with arguments that containedf 5 41 and —5)" + 4A ities and inclinations. These arise from arguments of order
(i.e., p+q==5, q==+1). which do not contain the mean longitudes. For example, inspe
We now consider the procedure for determining the appréion ofthe Appendix shows thatthe arguments 4D0.1,4D0.2, ar
priate averaged termR> or <R/) in the disturbing function' 4D0.3 in Table | Wlthj =0 will give rise to arguments without
based on the fourth-order expansion given in the AppendtRe mean longitudes where the associated terms contain ter
or the eighth order expansion given by Murray and Harp6f order 2 ine, €, s, ands’; all remaining secular terms are of
(1993). This procedure is also given in Murray and Dermo@fder 4 or higher and there are no contributions from the indire

(1999). terms.
Derivation of the disturbing function should not be considere

1. Decide which particular combination ofangl¢ss j12'+ an end in itself. The actual value & is unimportant because
joA + jsm’ + jaw + j5Q + |62, is applicable to the problem we are interested only in the terms in its series expansion whi
at hand; this requires knowledge of the physical problem undeill make significant contributions to the force acting on the
investigation. perturbed body. To calculate the resulting changes in orbital el

2. Determine the ordeN = |j; + j2|, of the argument. This ments due to particular terms we need to make use of Lagrang
is just the absolute value of the sum of the coefficients ahd planetary equations (see, for example, Brouwer and Clemen
Ain ¢. 1961).
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4, EXAMPLES ( 1)5225
X FsmO(l) I:SmO(l )27”

In order to demonstrate the use of the fourth order expansion (i —hm
givenin the Appendix as well as the algorithm givenin Section 3, (- 1)5
we now consider two examples. In each case we show how the Z Z ( >( 1)a'D b(”l(o[)x“rk 3
averaged resonant terms can be obtained using each method.
Again we stress that if the derived expressions are to be used in
a study of the motion of the objects then it may be necessary to

include the secular as well as the resonant terms.

% X;(I+k+l).3(e() COS[4)L/ — 3)\‘ — ZU/]a (71)

where D =d/du. If we consider the terms arising from tak-
ing ¢ =—(4\ —3x—o’) we haveq’'=—1, =0, Lmax=4,
Prmin =0, Phin =0, Smin =0, imax=1; we can also deduce that

The saturnian satellites Titan and Hyperion are involved intbe only permissible values of p, andp’ aren=0, p=0, and
3:4 resonance where the librating resonant argument is p’=0. Hence,

L @) (-1) (s—m)!
(RD>_ = Z il 22i+1 Z (25)| Z m(s+m)l

where the primed quantities refer to Hyperion and the unprimed =0

4.1. The Titan—Hyperion 3:4 Resonance

d=4\—3r—w, (69)

ones refer to Titan. Because the mass of Titan is so large, it E N E | (—1)32%

is customary to neglect the perturbations of Hyperion on x Fsmo(l) Fsm.ol )Z( s— Nt

Titan. Note that this is a first-order resonance with an inter-

nal perturber. The eccentricity of Hyperion’s orbitls=0.104 4 ¢ K tmen() itk—3
and this value is forced on the orbit as a result of the pertur- 2; Z ( )( 1fa'D* b (“)X €

bations from Titan. Thus an expansion to order 1 is unlikely

to be sufficient to model the system; consequently we will de- x X473l cos[a — 3n — ). (72)
rive a fourth-order expansion for this particular resonant argu-
ment. The required inclination functions are given without approxi-
The appropriate resonant argument from the Appendix nisation by Fooo(l)= Foo00(l’)=1, Fr10(l)=1-s? and
4D1.2 in Table IV withj = 4. This gives F110(l")=1-s2 The required Hansen coefficients @{e?)
andO(e’®) are given by
1
— (3)
(o) = | 3e17 +a0I(0) X3(e) = X25%(e) = 1 - 9¢? (73)
1 3 -13 -1,-3 179 3
+ geze’[—252— 200D + 1102D? + o*D%b¥() X, (€)= X3 E) = —e“ -3¢ (74)
1 1,3 _ yl-3 _
+ 1—6e(3[—358— 260D + 132°D? + oD% (a) X37(e) = X237 (@) =1— 762 (75)
2
-23 —-2,-3 /3
1 X;73(€) = X573(€) = 4¢ — 24¢ (76)
— 7€(8 + 78 +a?D] (b(@) + b)) } "
2 2
X3%e) = X23%e) =1- ¢ (77)
x cos[4 — 3% — o], (70) 2
9
- X;33€) = X 373(¢) = =€ — 24¢° (78)
where the operatdD denotes dda and wheres= sin3l, s = 2
sin%l’. There are no indirect terms for this argument to this ng(e) = xfg?’(e) =1-—6€e (79)
order and sdR’) = (Gm/a"){Rp). 43 43 "
Now consider the derivation using the algorithm discussed in Xy (€)= XIy(€) = 5¢' — 22¢ (80)
Sections 2 and 3. From the definitiongpt +(412 — 3L — @) 430N _ yA-3a a4
and the relationships given in Egs. (39)—(51), we hgie 1, X37@) = XI5 (e) = 1-4¢ (81)
d=0, tmax=4, Pmin="0, Pin =0, Smin=0, imax=1; we can —53/\ _ yw—5-3/4 11 _ g—
also deduce that the only permissible values,gb, andp’ are Xy (€)= X4 7€) = 2 2° 8 (82)
n=0, p=0, andp’=0. Hence, ~ 3
X336 = X>5%(e) =1— Ee2 (83)

L@ (1) | (s —m)!
(Ro)y =) i Zra® Z (Zs)l Z s+ m) X ¥E) = X237 (e) = 6e — 2_1 (84)
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There are no indirect terms in the expansion associated withEgs. (34)—(37) the functioifrz 3 3(1) will produce terms of
this argumentand s®R’) = (Gm/a")((Rp), + (Rp)_). There-  O(1°) andX3+k 12(e) will produce terms of)(e®). Thus we are
sulting expansion agrees with that obtamed above using ttencerned only with the lowest order terms in all function eval
Appendix. uations. This means that we can q(nore the higher order terr

A good orbital theory of Hyperion is notoriously difficultin Fz3o(1") =15+ O(1'?) andX )18(e/) 1+ O(€?) for
to achieve (see, for example, the study by Message 1993)k 0, 1, ...5. We have
is beyond the scope of this paper to investigate this further
and we content ourselves with the derivation of some of the

_ 6
higher-order terms which would be appropriate to include in Fazs(l) = 1% (88)
any analytical investigation of the perturbations on Hyperion’s %312 1577149 89
orbit. & =" (89)
1473703
4.2. The Jupiter—Pallas 18:7 Resonance X3H(e) = — 960 e’ (90)
As an example of a higher order resonance argument for which 512 7280077 ¢
there is no existing, general literal expansion, we consider one X7 =~—3g10 ¢ (1)
of the terms relevant to a description of the motion of minor 1486337
planet 2 Pallas. If andn denote the mean motions of Jupiter X81%(g) = — 510 (92)
and Pallas, respectively, then from observation, 10842187
X2 = - —— ¢ (93)
187 — 7n = —0.45 year . (85) 3840
xB12() — 409031 (04)
7 —_— )
This implies that Jupiter and Pallas are close to an 18:7 reso- 120

nance. To 11th order there are 182 arguments associated with
this resonance. In order to illustrate the use of our algorithm vaad the resulting expression f(iRp) is
derive the terms associated with just one of these arguments,
namely oS
(Rp) = _ﬁé4731447’3 +116336%'D + 11095@°D?
¢ =18\ — 7» — 5z — 6Q. (86)
+5130°D% + 115 D* + «®Db ()
Applying the definitions givenin Egs. (39)—(45) gives: —5, x COS[18. — 7A — 5z — 69. (95)
0’ =0, €max=5, Pmin=3, Prin=0, Smin =3, imax=3. Since
Smin = imax the only contribution will come fromh =s=3 and
hencel =0. Similarly, sincenmax=[(s — 3)/2]=0 we must  Application of the algorithm given in Sections 2 and 3 for
haven=0. Hence, from Eq. (49) the only valid value @f the indirect parts shows that none exist in this case; furthe
is p=23; hencem=3 and so from Eq. (50p’' =0; we also More, there are no indirect terms associated with any of the 1.
havej = 15. We can now write the simplified form of Eq. (52)Possible arguments to 11th order at this resonance. Thereft
as the averaged part of the disturbing function for this argument
given by(R) = (Gm'/a’){Rp). Note that this example was cho-
sen to |Ilustrate the calculation of a high-order term; we do nc
( )( 1 ZD[bgl/g)(a)Fa,s,g(l) imply that this particular argument is likely to be the dominan
one at the 18:7 resonance.

(1) &
(Ro)+ 720Z ¢ 2

k=0
% F3 3 O(l )x3+k lZ(e) Xl (4+k) lB(e()

x cos[18" — 7o — 5w — 69]. (87) 5. DISCUSSION

In order to complete the calculation we need to investigate theOur overriding aim in this work is to present a new, workable
possibility that there are terms associated with the negativeadforithm for producing expansions of the planetary disturbin
our original argument, namely=—(18\" — 7> — 5@ — 692). function to any order in the eccentricities and inclinations o
In this case inspection of Egs. (39)—(51) shows that there arebmth objects. This obviates the need for the major expansio
contributions andRp)_ =0. of the last century which, although they are still in use, have

We require only two evaluations of the inclination functiomumber of drawbacks and contain errors. In particular we ha
and 12 evaluations of Hansen coefficients. Although our emew developed the capability to produce a high-order expa
pansion is to 11th order, according to the approximations giveion for only those arguments of interest in a particular proble!
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in Solar System dynamics. It is our hope that this work, and TABLE |

the fourth-order expansion given in the Appendix, will provide Zeroth-Order Arguments: Direct Part
Solar System dynamicists with a clearer understanding of the :

disturbing function, its use, and its applications. D Cosine argument Term

We do not pretend that the algebraic effortinvolved in generzng ;. j,_ j, f1+ (@ + €+ (2 +52) Fs
ating and manipulating such expansions is trivial. However, an + eyt P2 fg 4 &4 gt (252
underlying assumption of this work is that software packages + e 4+ 252 4 ¢252) 1

for algebraic manipulation will become even more widespread, 4 (s* + 5% fg + 252 fo
powerful, and affordable than they already are. For our own pur- _ . 3
4D0.2 N —jrt+ o —w e€ f1g+ e3¢ f11 + e€3 f1o
poses we have developed a packag®lathematica\Wolfram ed(s? 4 7)1
1991), which implements the algorithm given here and contains 3

a number of useful routines for generating and manipulating tH&0-3 14 — i+ —@ sS f1a +S(€ + %) fis
series involved. The package is available free of charge to inter- +58(% + %) 1o
ested researchers and further information can be obtained frotR0.4 j1' — jA + 20 — 2w efe?fiy
the second author. 4D0.5 jA' — jA+2m —2Q e?s*f1g

4D0.6 N —jr+ @ +@ —2Q eds?fig

4D0.7 jN — jA+ 20 —2Q €252 59

APPENDIX 4D08 N —jA420 - -Q  €ssfx

H 4 H / /
In Section 2 we outlined an algorithm for obtaining an expansion of thé'20-9 1 —jA+ @' —w — Q' +Q eéss

disturbing function,R. Here we give a literal expansion of the direct part, 4D0.10 jA' = jA+ @' —w + Q' — Q e€ss fy3

Rp, and the indirect part for an external perturbBg, and an internal per- 4D0.11 j) — jA+ @' + @ — Q' — Q e€ss fy

turber, Ry, complete to fourth-order in the eccentricities and inclinations of4p0.12 jx' — ji + 25’ — Q' — Q@ €2s9 fog

the two bodies. T_he .notgtlon' is the same as that usgq in Secnong 2 ar_1d450'13 iV = A+ 20 — 2 €252 f1g

where the expansion is given in terms of Laplace coefficients and their deriva- L, , , 2

tives. The use of the disturbing function is described in the main text of thig20-14 12" — jA + @’ + @ — 20 eesfio

paper. 4D0.15 A — jA+ 2w — 20 €252y
In our expansion each cosine argument has been labeled for the order of #i80.16 j1' — ji + 2Q' — 2Q2 §25'2 26

expansion (4 in this case) followed by a letter denoting that the term is associated

with the direct (prefix D) or indirect (prefix E or I) part of the disturbing function.

The next character denotes the order of the argument, i.e., the absolute value of

the sum of the coefficients of and, and hence the order of the resonance

associated with that argument. The final number identifies the argument. These TABLE )
are ordered with priority being given to those involving oatyw’, ©2, and$?’ in Zeroth-Order Arguments: Indirect Part (External
that order. This means that terms involvimgccur before those involving, etc. and Internal Perturbers)
This follows the procedure adopted by Murray and Harper (1993). For example;
4D3.4 denotes the fourth possible argument of the third-order direct part of ID Cosine argument Term
the fourth order expansion. The entry for this argument should be interpreted
as 4E0.1,4101 X — A —1+3(E+€?)+ L (et +e4)
1 - 16262+ 2 - 1(& + €?)
(Rp) = e’34—8[—6+ 29j —30j2 + 8j% + 6aD — 21jaD x (s? +52) + 52 — %52
. ’r_ R _ 3 3,43 2
L 12]%D — 362D + 6ja?D? + &® Dby V(a) 4E0.2,4102 2 -2 —ow' 4w e€ + 363 + Jedd + eds
3 +e€s’?
x cosfj)' + (3 — )i — 3w], (96) 4E0.3,4103 X —1—-Q +Q —2s¢ + €?ss + €259 + 3¢/
+sg8
whereD qlenotesthe differential operator d/df we considerthe§ame arggmgnt 4E0.4, 4104 N — A — 2w + 2w _ 61492‘5/2
forapartlcularvall_Je of , then we must also Iool_( gt the expansion ofthe |nd_|rect 4E0.5, 410.5 33— 20 420  — giezefz
part for any matching arguments. For examplg,# 4 and we are dealing with ) s
an external perturber then we must also include the argument 4E3.7. The tottE0.6, 4106 A" — A + 20 —2Q - Sezs
contribution of this argument to the averaged part of the disturbing function is4E0.7, 410.7 1’ — A — 2=’ + 2Q —éefzs2
then 4E0.8,4108 X —A+20 —Q —Q jé’ss
’ ’
(R) = S [~a+ oo) + B b0) + o b P “2edsd
4E0.10,410.10 V' — 2 — 2w’ + Q'+ Q  3€?ss
+ %3 d‘is bD(a )} cos[4. — 1 — 3w']. (97) 4E0.11, 410.11 A/ — A + 2w — 2§ —1e?s?
4E0.12,410.12 ) — A — 200’ + 22 — 16292
Tables I-XIX below give all arguments and associated terms in an expansiorfE0.13, 410.13 1/ — A — 2Q' 4-2Q —s?s'2

of the disturbing function complete to fourth-order. The expansion is arranged
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TABLE I

Zeroth-Order Arguments: Functions of Semimajor Axis

fi

1 1A
2 3[~4j? + 20D + a?D?] A
3 i[—alBj_1+ 3[—a]Bj
4 sl —9i% + 16)* — 8)2aD — 8j22?D? + 40°D° + a* D A
5 £[16j* + 42D — 16j%aD + 140?D? — 8j%a?D?
+82°D% + «* DY A|
6 5l —17j% + 16j* + 240D — 24j2aD + 3602D? — 8j22?D?
+120°D3 + oD A
A[—20 + 4j20 — 40?D — ®D?|(Bj_1 + Bj1)
[e?ICj—2 + 3[?IC) + F[e?ICj2
110d(Bj-1+ Bj11) + 3[?|Cj 2+ L[?IC) + 3[e?]Cj 42
10 3[2+6j +4j2 — 2aD — &?D?|Aj 11
1 5[—6] — 26j2 — 36j° — 16{* + 6jaD + 12j%aD — 40?D?
+7ja?D? + 8j202D? — 6¢°D% — «*D* Aj 11
12 5[4+ 2j — 222 — 36)% — 16)* — 4aD + 22jD + 20j%aD
—220°D? 4+ 7j?D? + 8j202D? — 100°D° — o*D* Aj 11
13 3[-6ja — 4j2a + 4a?D + o«3D?|(B; + Bj2)
14 [«]Bj+1
15 3[20 — 4j%a + 402D + o®D?|Bj 11
16 3[=alBj1 + 3[-?IC + 3[—e?ICj12
17 &[12+ 64j + 109j2 + 72j° + 16j* — 124D — 28ja D — 16j2aD
+6a2D? — 14ja?D? — 8)2a2D? + 843D + a* D4 Aj 42
18 A[120 — 15ja + 420 + 822D — 4ja?D + °D?|Bj_1
19 1[6ja — 4j%x — 4a?D + 4ja?D — o®D?]B;
20 E[3jo +4j% — 4ja?D + «D?|Bj 41
21 2[-120 + 15ja — 4j%0 — 802D + 4ja?D — o®D?]Bj_;
22 3[6jo + 4j2a — 402D — o®D?] B;
23 3[6jo +4j20 — 442D — o®D?]Bj 2
24 3[-6ja + 4j%a + 40%D — 4ja?D + a®D? B,
25 3[-3ja — 4j2%a + 4jo?D — &°D?|Bj 41
26 3le]Bji1+ 3[e?IC) + 3[e’IC)s2
TABLE IV
First-Order Arguments: Direct Part
ID Cosine argument Term
4D1.1 iV+A-h—w efy7 4+ 3 fog + ee? fg
+e(s? +5?)fa
4D1.2 V+@A-jr—’ eff31+e2e/f32+e’3f33
+€(s2+59)fay
4D1.3 V+AL-t+ o -2m e?€ fa5
4D1.4 V+A-r -2+ ed?fzg
4D1.5 IVHA-Dr+o -2 es fa7
4D1.6 IVHA-Dr+o —2Q €s? fag
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TABLE IV—Continued

ID Cosine argument Term
4D1.7 IVHA-h—m - +Q essfag
4D1.8 IVHA-h—m+Q —-Q essfa
4D1.9 IV+A-+m—-Q —Q ess$fy
4D1.10 V+L-j—o -9 +Q €'ss fs
4D1.11 IV+A-j—o'+Q -Q €'ss fy3
4D1.12 V+Al-jt+o —-Q —-Q €'ss fyy
4D1.13 VA - AT -2 es?fay
4D1.14 V@A - At -2 €s?fsg

TABLE V
First-Order Arguments: Indirect Part (External Perturber)

ID Cosine argument Term
4EL1 N -2+ @ ~let+ 86+ led? + led + leg?
4E12 NV -w 3e— 2ed? - 3eg — Seg?
4E13 2 —r-w’ —2¢/ + &% + 3€8 + 2¢/s? + 2’52
4E14 2 -3 -o'+2o —3e%¢
4E15 NV -20'+w 2ea?
4E16 ¥ -2 -20'+w —2led?
4EL7 M+ w-2Q 3eg
4E18 N -2%+wm-Q+Q  —ess$
4E19 N -—w-Q'+Q 3ess
4E110 V4o -Q' —-Q —3ess
4E111 2 -r-w' —-Q'+Q  —4ess
4E112 V4w —2Q 3eg?
TABLE VI

First-Order Arguments: Indirect Part (Internal Perturber)

1D Cosine argument Term
411 V-2t @ —2e+ 36® + e6? + 26 + 2es?
412 a-o’ 3¢ - 3%¢ — 3es? - 3¢s2
413 2 -r-w’ —le+ 1% + 2e + Jes? + 1es?
414 Ao -20 et
415 ' -3 - +2m -Hee
416 I -2-20'+w —3ed2
417 At o -2Q 3es?
418 N -24+w-Q+Q —dess
419 -’ +Q-Q 3¢'ss
4110 rt+o' -Q -Q —3¢sg
4111 ' -r-o' - +Q  —€sd
4112 4w’ — 29 3es2
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TABLE VII

First-Order Arguments: Functions of Semimajor Axis

fi

27 i[-2j — aD]A|
28 A[2] — 10j2 + 8j% + 30D — 7jaD + 4j%aD — 2¢2D?
—2ja?D? — o®DIA|
29 2[8j° — 20D — 4jaD + 4j%aD — 44?D? — 2ja®?D? — o®DO] A
30 o+ 2j +?D](Bj-1 + Bj41)
31 i[-1+2j +aD]Aj_1
32 2[4 — 16) + 202 — 83 — 4aD + 12jaD — 4j2aD + 30?D?
+2ja?D? +a3D3 A1
33 H[—2— j +10j2 - 8j% + 2aD + 9jaD — 4j2aD + 522D?
+2ja?D? + a®D3 A} 4
34 i[-2ja — o«?D](Bj_2 + Bj)
35 &1~ —10j2—8j% —aD — jaD — 4j2aD + 30?D?
+2ja?D? — a3D%Aj 11
36 A[-8+32j —30j2 +8j% +8aD — 17jaD + 4j%xD — 4a?D?
—2ja?D? — &®D3 A,
37 3[-5¢ + 2jo — &?D]Bj_1
38 3[-2ja + o?D]B;
39 i[-a - 2jo — @?D]Bj_1
40 i[-a - 2jo — @?D]Bj11
41 1[50 — 2ja + ¢?D]Bj_1
42 1[2ja +a?D]Bj_>
43 i[2ja + «?D]B;
44 i[2ja — «?D]B;
TABLE VI
Second-Order Arguments: Direct Part
ID Cosine argument Term
4D2.1 iV+@2- A -2w €? a5 + € f46 + €262 47
+€X(s? + 5?) fug
4D2.2 V+Q2--—w —w € f49 + €3¢ 5o + ed3 iy
+ed(s? +5?9)fs,
4D2.3 INV+R2-jr -2’ €2 f53+ €225y + €% fs5
+€?(s2 4 8?) fs56
4D2.4 V+EER=-jr—2Q 2 f57+€282 f53+e{282f59
+s* fgo + 252 gy
4D2.5 V- —-Q s¢ fa+ €2s8 fog+ €25 foy
+ 5% fg5 + 553 fg
4D2.6 IV+2=-jr -2 2574+ €252 fgg+ €252 59

+ 5252 fg7 + 5™ fe0

TABLE VIII—Continued

ID Cosine argument Term
4D2.7 V+@2-j+o —3w e3¢ feg
4D2.8 IV +QR-r—-3w +@ ed3 fgo
4D2.9 INV+Q2- -+ —-2Q e€s? fo
4D2.10 IV+R-ihto - —2Q eds?fy
4D2.11 VR 20 —Q +Q e?ss 7,
4D2.12 IVH+R-jh-204+Q -Q e?ss fr3
4D2.13 V+R-W-—o - - +Q e€ss fr,
4D2.14 IV+R-W-—o —m+Q-Q e€ss f7s
4D2.15 IV+R-W—o' +tm - -Q e€ss f7g
4D2.16 IV+R-into —m - -Q edss fr7
4D2.17 IVHEQR-i—20 —Q +Q €?sd frg
4D2.18 IV+R-A—20'+Q —Q €2ss frg
4D2.19 IVEQR-A+Q -39 s35' fgo
4D2.20 IV +QR-i—w o -2 e€s?fyg
4D2.21 IV+QC-ito - -2 eds?f;y
4D2.22 IVHEQR-A-32 +Q sg3fg;

TABLE IX

Second-Order Arguments: Indirect Part (External Perturber)

ID Cosine argument Term

4E21 N -3\ 42w —3?+ 3t + Sefe? + 3e%S?
+ 36?52

4E22 N +Ar-2w —3? — L&t + fxefe? + e
+ §€2s?

4E23 2 - -w 3e€ — Jed® — 3eds? — 3eds?

4E24 N+ - 20 16?4 Lefe? - Lty Le?s?
+ 3252

4E25 3/ -1 -2’ — L2 4 222 4 ety Ze2g?
+ %7e/23/2

4E2.6 N +r-2Q —s? + 16?s? + /252 + §%5'2

4E2.7 N H+A-Q - Q 2ss — €?ss — €2s8 — % —s¢°

4E2.8 AN 42 -2 -52+ 1?52 + 1e252 + 2572

4E29 2 -4 -ov'+3w —2e%¢

46210 2 -3’ +w zeed

4E211 4 -2 -30'+w —See®

4E212 2 -w' +w —2Q 3eds?

4E213 V-3 +20 - Q' +Q —3e’sd

4E2.14 N +A—-2m - Q +Q —2e’sg

4E215 2 - - -Q'+Q  6Gedss

4E216 2 -+ -Q' —-Q  —6edss

4E217 N +A-20'+Q -Q  —je%s

4E218 ¥ —r-20' -Q+Q —Ze?ss

4E219 2 -w'+w -2 3eds'?2
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TABLE X

Second-Order Arguments: Indirect Part (Internal Perturber)

ID Cosine argument Term
412.1 N —3h+ 2w —Z 4 Lt Zee?
27 2 27 2
+ §GZS + gezs’
422 N+ri-2o -1 — et + LePe? + 1e?s?
1 2
+ 3es’
412.3 2-o -w 3e€ — Je%¢ — 3eds? — 3eds?
412.4 N+A— 20 —1e? 4+ Lefe? — Lt Le?s?
1202
+ g€
412.5 A —r—20 —3e2 4 3efe? 4 St + 26282
322
+ 5€°s
412.6 A+ A —2Q —5? + 1e?s? + €252 + 5252
412.7 NAr—Q —Q 2s§ — e?sg — ¢?sd — &3¢ — 53
412.8 VoA =20 -52+ 1?52 + 1€%52 + %572
412.9 2 +w' —3w ie’e
4210 -4 -o'+30 -8e%¢
4211 A -2 -3o' +@ —Zeds
4212 240 -o-2Q 3eds?
4213 N -3%+20-Q+Q  —Ze’sg
41214 N4i-20 -Q +Q —1e?sg
4215 2A-o' -w+Q-Q Bedss
4216 240 - -9 -Q —6edss
4217 N4+ri-20'+Q -Q —1e?%sg
4218 3 -ri-20' -Q+Q  —3e%sd
4219 240 -o -2 3eds'?
TABLE XI

Second-Order Arguments: Functions of Semimajor Axis

fi

45
46

47

48

49
50

2[-5j +4j% — 20D + 4jaD + o?DY Aj

&[22] — 642 + 60j° — 16j* + 16D — 46ja D + 48j2aD
—16j3«D — 120?D? + 9ja?D? + 4ja3D? + «* DY A,

2[20j% — 16j* — 40D — 2jD + 16j%aD — 16j3xD — 202D?
+11ja?D? + 40°D% + 4ja® D8 + o* DY A

%[Za + ja —4j%a — 4ja?D —013D2](Bj71 + Bj11)

3[-2+6j —4j?+ 20D — 4jaD — «?D?|Aj_1

2[20 — 86j + 126j2 — 76j° + 16j* — 200D + 74j D — 64j2aD
+16j3aD + 140?°D? — 17ja®?D? — 203D% — 4ja®D3
—o*DY A1
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TABLE X1—Continued

fi

51

52
53
54

55

56
57
58
59
60
61
62
63
64
65
66
67

68

69

70
71
72
73
74
75
76
7
78
79
80
81

S[—4+ 2] +22)2 — 36)% + 16]* + 4aD + 6jaD — 32j2aD
+16j3aD — 202D?2 — 19ja?D? — 6a3D3 — 4j3D3
—a4D4]Aj,1

2[-2jo + 4j2x + 4j?D + «°D?|(Bj_2 + Bj)

3[2-7) +4j2—2aD +4jaD + a?D?Aj_,

S[—32+ 144j — 184j2 + 923 — 16j* + 32¢D — 102D
+80j2aD — 16j3aD — 1602D2 + 25j?D? + 403D3
+4ja®D® + &*DY A2

&[12 — 14j — 40j2 + 52j°% — 16j* — 124D — 10ja D
+48j2aD — 16j3aD + 6a2D? 4 2702 D? + 8a3D3
+4jo®D3 + oD Aj 2

E[3jo — 4j% — 4ja?D — «3D?|(Bj_3 + Bj_1)

3[a]Bj 1

3[-140 + 16ja — 4j2a + 40?D + ®D?]Bj_;

[20 — 4j2a + 402D + o®D?|Bj_;

3[—e?ICj 2 + 3[-oC;

3[—alBj_1+ 3[—e?]Cj 2 + Y[-a?|C;

[-a]Bj-1

[14e — 16ja + 4j%x — 40?D — &°D?|Bj_1

3[—20 + 4j%a — 40D — o®D?|Bj_3

%[Ol] Bj_1 + 3[¢?]Cj_2 + %[az]Cj

1[a]Bj_1 + 3[0?ICj_2 + 3[?IC|

3l—elBj 1+ L[-o?Cj 2 + 3[-o?C;

&[4 —2j —26j2 — 4j% +16j* — 4aD — 2jaD + 16j%«D
+602D? — 3ja?D? — 2¢3D% — 4jo®D® — «*D Aj 11
=[36 — 186j + 238j2 — 108j° + 16j* — 36a D + 130jD
—96j2aD + 16j3xD + 18x?D? — 33ja?D? — 623D3

—4ja®D3 — o*DYAj_3

i[-14jo + 4j%x — 8a%D — «®D?|Bj_»

3[-2ja + 4j2%a — «°D?]B;

2[—20 — jo +4j% + 4ja?D + o3D?|Bj_;

20 — ja +4j%a + 4ja?D + o3D?|Bj41

3[2jo — 4j2¢ — 4ja?D — «°D?Bj_,

3[2ja — 4j%x — 4jo®D — «°D?|B;

3[14j — 4j2x + 82?D + o®D?|Bj_,

3[2ja — 4j%x +o®D?B;

3[-3ja + 4j%a + 4jo?D + «°D?]|Bj_3

3[-3ja + 4j2%a + 4jo?D + «°D?|Bj_1

3e?Cy

3[e?ICj—2
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TABLE XII
Third-Order Arguments: Direct Part
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TABLE XV

Third-Order Arguments: Functions of Semimajor Axis

ID Cosine argument Term i fi
4D3.1 V+@B-r-3w e3fgo 82  A[-26j +30j2 - 8j% — 92D + 27jaD — 12j%aD + 6a?D?
4D3.2 V+@B-j—o - 2w e?e fg3 —6]0!2D2—013D3]Aj
4D3.3 IV+@B-j-20 -w ed?fg, 1 ) 5 s ) . S
4D3.5 IVHG@- - —20 e fgg +6ja?D2+a®D3Aj 1
4D3.6 JW+@E=h -’ —2q €s’fer g4 L[g— 32j +30j%— 8} — 8D + 23D — 12j2aD + 4a?D?
4D3.7 jk’+(3—j)k—w—Q’—Q eS$f88 —G-QZDZ—QSDS]A'
4D3.8 IVHB— - - —Q ess fgo J i-2
4D3.9 V4+@- - -2 es?fgg 85  A[—6+29) —30j2 + 8% + 60D — 21jaD + 12j2¢D — 3¢?D?
4D3.10 V4+@=jr—o -2 €s?fg; +6ja?D2 +a3D3]A| 3
86  1[3¢ —2ja —?D]Bj_1
87  1i[2jo+e?D]Bj_»
1r_ ; 2 )
TABLE XIII 88  3[-3a+2ja+a?D]Bj_1
89  1[-2jo —a?D]Bj_>

Third-Order Arguments: Indirect Part (External Perturber)

ID Cosine argument Term
4E3.1 A —4)+ 3w —1et
4E3.2 V+24 - 3w -
4E3.3 2 +i-o -2 —1e%e
4E3.4 N+ -20' - —ed?
4E3.5 ¥V -20' -w 8lee?
4E3.6 2+ -3’ —te?
4E3.7 4 — -3’ — 10
4E3.8 V422 —w —2Q —leg
4E3.9 2 +r—w —2Q —2¢'s?
4E3.10 N+2%—o -2 -Q ess
4E3.11 V+r-w - -Q 4e'ss
4E3.12 V42— -2 —leg?
4E3.13 24— -2 —2¢'s?

TABLE X1V

Third-Order Arguments: Indirect Part (Internal Perturber)

ID Cosine argument Term
413.1 N — 4+ 3w — %3
413.2 N +2h 3w -1
413.3 3 - -2w 8¢
413.4 2 +r-—w - 2w — e
413.5 V+2-20 - —led?
413.6 2+ — 3w’ - e
413.7 4 — -3’ —1e®
413.8 V+2—w—-2Q —2eg
413.9 2/ +i—z —2Q —1es?
413.10 Vt2—w—-Q - Q dess
413.11 2 +r—o' -Q -Q e'ss
413.12 N+ —w —20 —2es?
413.13 2+ 21— =20 —1es2

by the order of the argument, i.e., the absolute value of the sum of the coe
ficients of the mean longitudes in each argument. Tables I-lll, Tables IV-VII
Tables VIII-XI, Tables XII-XV, and Tables XVI-XIX contain the arguments
and terms for the zeroth-, first-, second-, third-, and fourth-order argument
respectively. The full, fourth-order expansiorffor R’) should be considered
as the sum of the direct and indirect terms for an external (or internal) perturb

over all values of the integqr.

TABLE XVI
Fourth-Order Arguments: Direct Part

ID Cosine argument Term
4D4.1 [P ¢y e* 9o
4D4.2 V4+@ - - -3 e3¢ fo;
4D4.3 V@G- -2 - 2w e?e?fgy
4D4.4 iV +@—-A-30 - edd fg3
4D4.5 V4@ = A — s’ &4 foq
4D4.6 VH@— -2 —2Q €?s? fgs
4D4.7 V@ -—ih—w —w —2Q e€s? fop
4D4.8 V@ —r—2w —29Q €252 fyy
4D4.9 VA @G- A —4Q s*fog
4D4.10 V@G- -2 -Q —-Q €?ss fgg
4D4.11 N+l -j—o - —-Q —-Q e€ss fig0
4D4.12 VH@B-—ih-20 —Q —Q €?s< f101
4D4.13 V4@ - - -3 s3 f102
4D4.14 V@ — A — 2w — 29 e?s'2 fgg
4D4.15 V+@—-—o - -2 e€ds? fgg
4D4.16 V4@ = r -2 —2Q €252 fg7
4D4.17 VA @G = A -2 -2 §25'2 103
4D4.18 VA@-A-3Q0 -Q ss3f102
4D4.19 PV A= r -4 % fog
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Fourth-Order Arguments: Indirect Part (External Perturber)

TABLE XIX
Fourth-Order Arguments: Functions of Semimajor Axis

ID Cosine argument Term i fi

4E4.1 A —BA + 4w — 1%t 90  51,[—206j +283j2 — 120j° + 16j* — 64xD + 236jaD

4E4.2 N+ 30— 4w 135" —168j2aD + 32j3aD + 48x2D? — 78ja®’D?

4E4.3 2 +2—w — 3w - e’ +24j202D? — 120D + 8ja®D® + a* D4 A

4E4.4 V43— 20 — 2w -5 efe? 91 &[-64+ 238] — 274j2 + 116j° — 16j* + 64D — 206jaD

4E4.5 3 +A—20 20 ~2e2e? +156j2aD — 32j3aD — 3602D? + 69ja2D2 — 24j2¢2D?2

4E4.6 2+ -3 —w —Ledd +100°D3 - 8j®D® — o*DYA|_4

4E4.7 4 -30' - 8ee? 92 LI52—224) + 2592 — 112j3 + 16j* — 524D + 176jwD

4E4.8 3+ — 4o’ — 1€ —144j%4D + 32j3%D + 2602D? — 60ja2D? + 24j202D?

4E4.9 5/ — A — 4w’ —$dg4 — 8¢°D% 4 8ja®D% + «* D4 A

4E4.10 MRS = 2w =20 —ge2§2 93 L[-36+186] — 2382+ 108]3 — 16j* + 362D — 146jD

4E4.11 242w w — 2 _2532 , +132j20D — 32j3D — 18¢2D? + 51ja2D? — 24j22D?

4E4.12 3 +A—20 —2Q — 22  6a3D3 — 8a%D% — *DYA, s

4E4.13 M43 20 - Q - Q 3e?sg . _ s 3 4 .

AE414 Vi w w8 pedsd 94 m[24—.1461+21-11 — 104j3 + 16j —.24aD+116jaD
, . 2702 —120j%0D + 32j%«D + 1202D? — 42j¢?D? + 24J26?D?

4E4.15 3 +r-20—Q —Q 2e2sg 40D + 81D 4 4 DY A,

4E4.16 N+ 3% - 20 — 20 ~3e?s? e i

AEA1T 24— —ar — 2 _eds? 95  L[160 — 17ja + 4j%a — 802D + 4je®D + «°D?|Bj_1

4E4.18 3 44— 20 — 20 —Ze2g2 96  §[10j —4j% +4¢?D — 4je®D — o°D?|Bj ,

Throughout the definitions of the functions of semimajor axis in Tables Ill,
VII, XI, XV, and XIX the following notation is used:

Aj = bé”(a)

TABLE XVIII

(98)

Fourth-Order Arguments: Indirect Part (Internal Perturber)

ID Cosine argument Term
414.1 ) — 5\ + doo _%245&
414.2 N 43\ — 4w -z
414.3 Hh — o' — 3w 8e3e(
414.4 A +20—w' — 3w _%2e3e/
414.5 N 4+3\ -2’ — 2w _g_zlezelz
414.6 3 +i-20 -2 —Ze%e?
414.7 2 +2% -3 - - Sedd
414.8 3 44— 4o R
414.9 5/ — A — 4w’ 1254
414.10 N +3% -2 —2Q ~ 222
414.11 2+ - —w—2Q —eds?
414.12 3 +1—2m' —2Q —3e2¢?
414.13 N43—20-Q -Q 25y
414.14 2+ - —w—-Q -Q 2edss
414.15 I +r-20 —Q —Q 3e/%sg
414.16 N+ 3k — 20 — 20 —-2ePg?
414.17 2 4+2h—w —w —2Q _edg’?
414.18 A+ A — 2w — 20 7%6,25/2

97  A[-3jo+4j2%x +4ja?D +o°D?|Bj_3

98  3[«?Cj_2

99  i[-160 +17jo — 4j%x + 842D — 4ja?D — «°D?]Bj_1
100 3[-10j« + 42 — 4a?D + 4jo?D + &°D?]Bj_

101 3[3j — 4j%x — 4ja?D — «°D?]Bj_3

102 3[-e?|Cj_2

103 J[e?ICj_

B = b{(@) (99)
2
Cj = bV(). (100)

Note that these definitions differ from those of Brouwer and Clemence (1961

ACKNOWLEDGMENTS

We thank Dima Fon-Der-Flaass for providing the proof of the identity giver
in Eq. (53) and Andrew Sinclair for pointing out the errors in the early printings
of Brouwer and Clemence’s expansion. Keren Ellis thanks the former Scien
and Engineering Research Council (SERC) for the award of a Postgradu:
Studentship. Carl Murray is grateful to the SERC and the Particle Physics a
Astronomy Research Council for the award of an Advanced Fellowship.

REFERENCES

Allan, R. R. 1969. Evolution of the Mimas-Tethys commensurabilkg-
tron. J.74, 497-506.

Allan, R. R. 1970. On the evolution of commensurabilities between nature
satellites. IlBymposia Mathematica l(Istituto Nazionale di Alta Matematica
Roma). Academic Press, London.

Boquet, F. 1889. Bveloppement de la fonction perturbatrice, calcul des term
du huitéme ordreAnn. Obs. Paris, Mm.19, B1-B75.



144 ELLIS AND MURRAY

Broucke, R., and G. Smith 1971. Expansion of the planetary disturbing function.des perturbations des mouvements desgiEsmAnn. Obs. Paris, Mm.1,

Celest. Mech4, 490-499. 258-331.

Brouwer, D., and G. M. Clemence 196Methods of Celestial Mechanics Message, P. J. 1993. On the second order long-period motion of Hyperio
Academic Press, New York. Celest. Mech. Dyn. Astrob6, 277—284.

Brown, E. W., and C. A. Shook 193Blanetary TheoryCambridge Univ. Press, Murray, C. D. 1982. Nodal regression of the Quadrantid meteor stream: A
Cambridge. analytical approachcarus49, 125-134.

Brumberg, V. A. 1995Analytical Techniques of Celestial Mechanigringer, Murray, C. D. 1985. A note on Leverrier's expansion of the disturbing function
Berlin. Celest. Mech36, 163-164.

Deprit, A., J. Henrard, and A. Rom 1971. Analytical lunar ephemeris: Delaunay#rray, C. D. 1986. The structure of the 2:1 and 3:2 jovian resonaftsis
theory.Astron. J.76, 269-272. 65, 70-82.

Dermott, S. F., and C. D. Murray 1983. Nature of the Kirkwood gaps in tHdurray, C. D., and S. F. Dermott 1998olar System Dynamic€ambridge
asteroid beltNature301, 201-205. Univ. Press, Cambridge.

Goldreich, P., and P. D. Nicholson 1977. The revenge of tiny Mirahdaure Murray, C. D., and D. Harper 1993. Expansion of the planetary disturbing func
269, 783-785. tion to eighth order in the individual orbital elemen@VW Maths Note4&5.

Hamilton, D. P. 1994. A comparison of Lorentz, planetary gravitational, arféwcomb, S. 1895. A development of the perturbative function in cosines ¢
satellite gravitational resonancésarus 109, 221-240. multiples of the mean anomalies and of angles between the perihelia a

common node and in powers of the eccentricities and mutual inclinatior
Astron. Papers Am. Ephers. 5-48.

Norén, G., and J. A. Wallberg 1899. Entwickelung derstisfunktion durch
kanonische elementfversigt af Kongl. Vetens-Akad. Forhandling@y

Harper, D., and C. D. Murray 1994. Disturbing function expansions. Special
issue of theMaple Tech. News(December 1994), 24-28.

Henrard, J. 1989. A survey of Poisson series procesSetsst. Mech45, 245—

253. 941-961.

Hughes, S. 1981. The computation of tables of Hansen coefficieefesst. Mech. - peirce, B. 1849. Development of the perturbative function of planetary motior
25,101-107. Astron. J.1, 1-8, 31-36.

Jarnagin, M. P. 1965. Expansions in elliptical motiéstron. Pap. Am. Ephem. Plummer, H. C. 1918An Introductory Treatise on Dynamical Astronamy
Naut. Alm.18, 1-659. Cambridge Univ. Press, Cambridge.

Kaula, W. M. 1962. Development of the lunar and solar disturbing functions f@jidlichovsk/, M., and B. Melendo 1986. Mapping for 5/2 asteroidal commen-
a close satelliteAstron. J.67, 300-303. surability.Bull. Astron. Inst. Czechos37, 65-80.

Laskar, J. 1991. Analytical framework in Poinearariables for the motion of Wisdom, J. 1982. The origin of the Kirkwood gaps: A mapping technique fo
the solar system. IRredictability, Stability, and Chaos in N-Body Dynamical asteroidal motion near the 3/1 commensurabifistron. J.87, 577-593.
SystemgA. E. Roy, Ed.), pp. 93-114. Plenum Press, New York. Wolfram, S. 1991Mathematica. A System for Doing Mathematics by Computer

Le Verrier, U. J.-J. 1855. &/eloppment de la fonction qui sert de base au calcul Addison-Wesley, Redwood City, CA.



	1. INTRODUCTION
	FIG. 1.

	2. EXPANSION OF THE DISTURBING FUNCTION
	3. USE OF THE DISTURBING FUNCTION
	4. EXAMPLES
	5. DISCUSSION
	APPENDIX
	TABLE I
	TABLE II
	TABLE III
	TABLE IV
	TABLE IV—Continued
	TABLE V
	TABLE VI
	TABLE VII
	TABLE VIII
	TABLE VIII—Continued
	TABLE IX
	TABLE X
	TABLE XI
	TABLE XI—Continued
	TABLE XII
	TABLE XIII
	TABLE XIV
	TABLE XV
	TABLE XVI
	TABLE XVII
	TABLE XVIII
	TABLE XIX

	ACKNOWLEDGMENTS
	REFERENCES

