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Abstract

In this work, we construct a new model for the collisional evolution of the main asteroid belt. Our goals are to test the scaling law
of Benz and Asphaug (1999) and ascertain if it can be used for the whole belt. We want to find initial size-frequency distributions
(SFDs) for the considered six parts of the belt (inner, middle, ‘pristine’, outer, Cybele zone, high-inclination region), and to verify
if the number of asteroid families created during the simulation matches the number of observed families as well. We used new
observational data from the WISE satellite (Masiero et al., 2011) to construct the observed SFDs. We simulate mutual collisions
of asteroids with a modified version of the Boulder code (Morbidelli et al., 2009), where the results of hydrodynamic (SPH)
simulations of Durda et al. (2007) and Benavidez et al. (2012) are included. Because material characteristics can significantly affect
breakups, we created two models — for monolithic asteroids and for rubble-piles. To explain the observed SFDs in the size range
D = 1 to 10 km we have to also account for dynamical depletion due to the Yarkovsky effect. The assumption of (purely) rubble-pile
asteroids leads to a significantly worse fit to the observed data, so that we can conclude that majority of main-belt asteroids are
rather monolithic. Our work may also serve as a motivation for further SPH simulations of disruptions of smaller targets (with a
parent body size of the order of 1 km).
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1. Introduction

The collisional evolution of the main asteroid belt is studied
for more than 60 years (Dohnanyi (1969), Davis et al. (1979)
etc.). The first collisional model was created by Dohnanyi
(1969) and its important result was that the final slope of the
cumulative size-frequency distribution for asteroids in a colli-
sional equilibrium will be close to −2.5. An overview of pre-
vious modelling of the main belt and subsequent advances can
be found in a relatively recent paper by Bottke et al. (2005),
so that we shall not repeat it here. Nevertheless, it worth to
mention another development, which is an attempt to merge a
classical particle-in-a-box collisional model with (parametric)
results of smooth-particle hydrodynamic (SPH) codes as done
in Morbidelli et al. (2009). We are going to use this kind of
method in this work.

Every collisional model should comply with two important
constraints: 1) the size-frequency distribution (SFD) of main
belt at the end of a simulation must fit the observed SFD; 2) the
number of asteroid families created during this simulation must
fit the observed number of families. It is important to note, that
the models were improved in the course of time not only due
to the progress of technology or new methods but also thanks
to an increasing amount of observational data. In this work, we
could exploit new data obtained by the WISE satellite (Wide-
field Infrared Survey Explorer; Masiero et al., 2011), specifi-

cally, diameters and geometric albedos for 129,750 asteroids.

Moreover, several tens of asteroid families are observed in
the main belt as shown by many authors (Zappalà et al., 1995;
Nesvorný et al., 2005; Nesvorný, 2010; Brož et al., 2013;
Masiero et al., 2013). The lists of collisional families are also
steadily improved, they become more complete and (luckily)
compatible with each other.

In order to fully exploit all new data, we created a new
collisional model in which we divided the whole main belt to
six parts (see Section 2 for a detailed discussion and Section 3
for the description of observational data). Our aims are: 1) to
check the number of families in individual parts of the belt —
we use the list of families from Brož et al. (2013) (which in-
cludes also their physical properties) with a few modifications;
2) to verify if a single scaling law (e.g. Benz and Asphaug,
1999) can be used to fit the whole asteroid belt, or it is nec-
essary to use two different scaling laws, e.g. one for the inner
belt and second for the outer belt; 3) and we also test a hy-
pothesis, if the main belt is mostly composed of monolithic or
rubble-pile objects.

In this paper, we assume that all families observed to-
day were created in the last ∼ 4 Gyr (without any influence
of the late heavy bombardment dated approximately 4.2 to
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Figure 1: A definition of the six parts of the main asteroids belt according to the
semimajor axis a and the inclination I: inner, middle, ‘pristine’, outer, Cybele
zone and high-inclination region.

3.85 Gyr ago).1 We thus focus on an almost steady-state evolu-
tion of the main belt, without any significant changes of colli-
sional probabilities or dynamical characteristics. This is differ-
ent from the work of Bottke et al. (2005).

We model collisions with the statistical code called Boul-
der (Morbidelli et al., 2009) that we slightly extended to ac-
count for six populations of asteroids (Sections 5, 6). As
mentioned above, the Boulder code incorporates the results
of the SPH simulations by Durda et al. (2007) for monolithic
DPB = 100 km parent bodies, namely for the masses of the
largest remnant and fragment and an overall slope of fragment’s
SFD. For asteroids larger or smaller than DPB = 100 km a sim-
ple scaling is used.

Material characteristics definitely have significant influence
on mutual collisions (e. g. Michel et al., 2011; Benavidez et al.,
2012). Therefore, we also run simulations with rubble-pile ob-
jects, which are less firm (refer to Section 7). A set of simu-
lations analogous to Durda et al. (2007) for rubble-pile targets
with DPB = 100 km was computed by Benavidez et al. (2012).

First, we try to explore the parameter space using a simplex
algorithm while we keep the scaling law fixed. Considering
a large number of free parameters and the stochasticity of the
system, we look only for some local minima of χ2 and we do
not expect to find a statistically significant global minimum.
Further possible improvements and extensions of our model are
discussed in Sections 8 and 9.

2. A definition of the six parts of the main belt

We divided the main belt to six parts (sub-populations) ac-
cording the orbital elements (the semimajor axis a and the incli-
nation I, Figure 1). Five parts separated by major mean-motion

1This is an approach different from Brož et al. (2013), where (at most)
5 large (DPB > 200 km) catastrophic disruptions were attributed to the
LHB. Nevertheless, there was a possibilty (at a few percent level) that all
the families were created without the LHB. So our assumptions here do not
contradict Brož et al. (2013) and we will indeed discuss a possibility that
the number of post-LHB families is lower than our ‘nominal’ value.

resonances with Jupiter are well-defined — if an asteroid enters
the resonance due to the Yarkovsky effect (Bottke et al., 2006),
its eccentricity increases and the asteroid becomes a near-Earth
object. Consequently, vast majority of large asteroids do not
cross the resonances2 and we do not account for resonance
crossing in our model. The sixth part is formed by asteroids
with high inclinations, sin Ip > 0.34. This value corresponds
approximately to the position of the ν6 secular resonance.

Namely, the individual parts are defined as follows:

1. inner belt – from a = 2.1 to 2.5 AU (i.e. the resonance 3:1);
2. middle belt – from 2.5 to 2.823 AU (5:2);
3. ‘pristine’ belt – from 2.823 to 2.956 AU (7:3);
4. outer belt – from 2.956 to 3.28 AU (2:1);
5. Cybele zone – from 3.3 to 3.51 AU;
6. high-inclination region – sin I > 0.34.

For a and sin I we preferentially used the proper values from
the AstDyS catalogue (Asteroids Dynamic Site; Knežević and
Milani, 2003)3. For remaining asteroids, not included in Ast-
DyS, we used osculating orbital elements from the AstOrb cat-
alogue (The Asteroid Orbital Elements Database)4.

3. Observed size-frequency distributions

To construct SFDs we used the observational data from the
WISE satellite (Masiero et al., 2011)5. For asteroids not in-
cluded there we could exploit the AstOrb catalogue (i.e. data
from IRAS; Tedesco et al., 2002). For remaining asteroids, we
calculated their diameters according the relation (Bowell et al.,
1989)

D = 100.5(6.259−log pV)−0.4 H , (1)

where H denotes the absolute magnitude from the AstOrb cata-
logue and pV the (assumed) geometric albedo. We assigned
albedos to asteroids without a known diameter randomly,
by a Monte-Carlo method, from the distributions of albedos
constructed according to the WISE data. For each part of the
main belt, we constructed a distribution of albedos separately.
The resulting observed SFDs are shown in Figure 2. We can
see clearly that the individual SFDs differ significantly in terms
slopes and total numbers of asteroids.

To verify a validity of this method, we perform the follow-
ing test (for the whole main belt). We assume a known set of
diameters. We then assign albedos randomly to the individual
diameters according to the distribution of WISE albedos. We

2For very small asteroids (D . 10 m) we must be more careful. Never-
theless, if an asteroid is able to cross the resonance between e.g. the pristine
and the middle belt (i.e. increasing the population of the middle belt) then
another asteroid is able to cross the resonance between the middle and the
inner belt (decreasing the population of the middle belt). The crossing of
the resonances essentially corresponds to a longer time scale of the dynam-
ical decay, which we shall discuss in Section 8.

3http://hamilton.dm.unipi.it/astdys/
4ftp://ftp.lowell.edu/pub/elgb/astorb.html
5http://wise2.ipac.caltech.edu/staff/bauer/NEOWISE pass1/
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Figure 2: The observed cumulative size-frequency distributions N(>D) of the
six parts of the main belt. We used the observational data from the WISE satel-
lite (Masiero et al., 2011) and the AstOrb catalogue for their construction. For
asteroids which have no albedos in the WISE database, we assigned albedos by
a Monte Carlo method from the distribution of WISE albedos.

calculate the values of the absolute magnitudes H by the inver-
sion of Eq. (1). Now, we try to reconstruct the SFD from H
and pV . The new ”unknown“ values of diameters are computed
according Eq. (1) and for the values of pV we test three follow-
ing options: 1) a fixed albedo pV = 0.15; 2) the mean value
pV = 0.13 (derived from the distribution of WISE albedos);
3) for H < 15 mag we used the known albedos, for other bod-
ies we assigned albedos by the Monte-Carlo method as above.
The known SFD and the three reconstructed SFDs are shown in
Figure 3.

The largest uncertainties of the reconstruction are given by
the method of assignment of geometric albedos, but we verified
that the third method is the best one and that these uncertainties
are much smaller than the differences between individual SFDs
as seen in Figure 2.

Another possible difficulty, especially for asteroids with di-
ameters D < 10 km, is the observational bias. In Figure 2,
we can see that for sizes smaller than some Dcomplete the total
number of asteroids remains constant. We also probably miss
same asteroids with Dcomplete < D < 10 km. These objects
are less bright than the reach of current surveys: LINEAR (Stu-
art, 2001), Catalina6, Spacewatch (Bottke et al., 2002), or Pan-
STARRS (Hodapp et al., 2004). Nevertheless, for D > 10 km
we need not to perform debiasing and neither for smaller as-
teroids we do not account for the bias, because the range of
diameters D where we fit out model is limited (see Table 4).

6http://www.lpl.arizona.edu/css/
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Figure 3: A test of three reconstructions of a ”known“ SFD. Diameters were
calculated according to Eq. 1 and for values of pV we try to use: 1) pV = 0.15
(blue line), 2) pV = 0.13, i.e. the mean value from the distribution of WISE
albedos (red line), and 3) we used albedos from WISE for H < 15 mag; for
other bodies we assigned albedos by a Monte-Carlo method according to the
distribution of WISE albedos (green line). We can see that the third method is
the best one.

4. Collisional probabilities and impact velocities

To model the collisional evolution of the main belt by the
Boulder code we need to know the intrinsic probabilities pi
of collisions between individual parts and the mutual impact
velocities vimp. The values of pi and vimp were computed by
the code written by W.F. Bottke (Bottke and Greenberg, 1993;
Greenberg, 1982).

We calculated pi’s and vimp’s between each pair of asteroids
of different populations. We used first 1,000 asteroids from
each population (first according to the catalogue nomenclature).
We checked that this selection does not significantly influence
the result. From these sets, we computed the mean values pi,
vimp (for vimp only if pi , 0). We checked that the distributions
are relatively close to the Gauss distribution and the computa-
tions of the mean values are reasonable.

We found out that the individual pi and vimp differ signifi-
cantly (values from 0.35× 10−18 to 11.98× 10−18 km−2yr−1 and
from 2.22 to 10.09 km s−1) — see Table 1. The collision proba-
bility decreases with an increasing difference between semima-
jor axis of two asteroids (the lowest value is for the interaction
between the inner belt and the Cybele zone, while the highest
for the interactions inside the inner belt). The highest impact
velocities are for interactions between the high-inclination re-
gion and any other population.

The uncertainties of pi are of the order 0.1 × 10−18 km−2yr−1

and for vimp 0.1 km s−1. Values computed by Dahlgren (1998),
pi = 3.1×10−18 km−2 yr−1 and vimp = 5.28 km s−1 (mean values
for the whole main belt), are in accordance with our results.
However, it seems to be clear that considering only a single
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Table 1: The computed mutual impact velocities vimp and the intrinsic colli-
sional probabilities pi between individual parts of the main asteroid belt.

interacting pi vimp

populations (10−18 km−2 yr−1) (km s−1)
inner – inner 11.98 4.34

inner – middle 5.35 4.97
inner – pristine 2.70 3.81
inner – outer 1.38 4.66

inner – Cybele 0.35 6.77
inner – high inc. 2.93 9.55
middle – middle 4.91 5.18
middle – pristine 4.67 3.96
middle – outer 2.88 4.73

middle – Cybele 1.04 5.33
middle – high inc. 2.68 8.84
pristine – pristine 8.97 2.22
pristine – outer 4.80 3.59

pristine – Cybele 1.37 4.57
pristine – high inc. 2.45 7.93

outer – outer 3.57 4.34
outer – Cybele 2.27 4.45

outer – high inc. 1.81 8.04
Cybele – Cybele 2.58 4.39

Cybele – high inc. 0.98 7.87
high inc. – high inc. 2.92 10.09

value of pi and vimp for the whole main belt would result in an
systematic error of the model.

5. A construction of the model

In this Section, we are going to describe free and fixed input
parameters of our model and the principle how we explore the
parameter space.

The initial SFDs of the six parts of the main belt are described
by 36 free parameters — six for every part: qa, qb,qc, d1, d2 and
nnorm. Parameter qa denotes the slope of the SFD for asteroids
with diameters D > d1, qb the slope between d1 and d2, qc the
slope for D < d2 and nnorm is the normalization of the SFD at d1.

We must also “manually” add biggest asteroids, which
likely stay untouched from their formation, to the input SFDs:
(4) Vesta with a diameter 468.3 km (according to AstOrb) in
the inner belt, (1) Ceres with a diameter 848.4 km (AstOrb) in
the middle belt, and (2) Pallas with a diameter 544 km (Masiero
et al., 2011) in the high-inclination region. These asteroids are
too big and “solitary” in the respective part of the SFD and con-
sequently cannot be described by the slope qa.

The list of fixed input parameters follows: collision proba-
bilities and impact velocities from Section 4; the scaling law
parameters according to Benz and Asphaug (1999); initial
(−4 Gyr) and final (0) time and the time step (10 Myr).

5.1. The scaling law
One of the input parameters is the scaling law described by a

parametric relation

Q?
D =

1
qfact

(
Q0ra + Bρ rb

)
, (2)
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Figure 4: The scaling law for basaltic material at 5 km/s (black line). The red
line represents the scaling law for rubble-pile bodies, with which we work in
Section 7.

where r denotes the radius in cm, ρ the density in g/cm3. Q?
D is

the specific impact energy required to disperse half of the total
mass of a target. A scaling law which is often used is that of
Benz and Asphaug (1999) (Figure 4), which was derived on the
basis of SPH simulations. Parameters in Eq. 2, corresponding
to Benz and Asphaug (1999), are listed in Table 2.

5.2. A definition of the χ2 metric

To measure a match between our simulations and the obser-
vations we calculate χ2 prescribed by the relation

χ2 =

n∑
i=1

(
syni − obsi

)2

σ2
i

, (3)

where syni denotes the synthetic data (i.e. results from Boul-
der simulations) and obsi denotes the observed data, σi is the
uncertainty of the corresponding obsi. The quantities syni and
obsi are namely the cumulative SFDs N(>D) or the numbers
of families Nfamilies. More exactly, we calculate χ2

sfd firstly for
96 points in the cumulative SFDs of the six populations and we
add χ2

fam for the numbers of families in these populations. To
minimize χ2 we use a simplex numerical method Press et al.
(1992).

The χ2 prescribed by Eq. (3) is clearly not a “classical” χ2,
but a “pseudo”-χ2, because we do not have a well-determined
σi. 7 Using χ2 we can only decide, if our model corresponds to
the observations within the prescribed uncertainties σi. Specifi-
cally, we used σi = 10 % obsi for the SFDs (similarly as Bottke
et al., 2005) and σi =

√
obsi for the families. 8

7We cannot use a usual condition χ2 ≈ n or the probability function
q(χ2 |n) to asses a statistical significance of the match between the synthetic
and observed data.

8We prefer to use cumulative values N(>D) instead of differential, even
though the bins are not independent of each other. The reason is more-
or-less technical: the Boulder code can create new bins (or merge existing
bins) in the course of simulation and this would create a numerical artefact
in the χ2 computation.
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Table 2: Parameters of the scaling law according to Benz and Asphaug (1999) (see Eq. 2). Parameters qfact, Q0 and B are the normalization parameters, a and b
characterize the slope of the corresponding power law. The procedure how we obtained the parameters for rubble-pile bodies is described in Section 7.1.

ρ Q0 a B b qfact
(g/cm3) (erg/g) (erg/g)

basalt 3.0 9×107 −0.36 0.5 1.36 1.0
rubble-pile 1.84 9×107 −0.36 0.5 1.36 13.2

Table 3: The list of asteroid families in individual parts of the main belt ac-
cording to Brož et al. (2013) and Walsh et al. (2013). Only families with the
diameter of the parent body DPB > 100 km and the ratio of the largest rem-
nant/fragment to the parent body MLF/MPB < 0.5 are listed.

belt Nfam families
inner 3 Erigone Eulalia New Polana

middle 8 Maria Padua Misa
Dora Merxia Teutonia

Gefion Hoffmeister
pristine 2 Koronis Fringilla
outer 6 Themis Meliboea Eos

Ursula Veritas Lixiaohua
high inc. 1 Alauda

Six values of χ2
fam would have only small influence on the

total χ2. Therefore, we used a weighting for families, wfam =

10, because the numbers of families are important indicators
for us. Different numbers of synthetic families would mean,
besides other things, a different structure of the main belt in the
space of proper orbital elements.

We focused on families with the diameter of the par-
ent body DPB ≥ 100 km and the ratio of the largest
remnant/fragment to the parent body DLF/DPB < 0.5
only (i.e.catastrophic disruptions), though the Boulder code
treats also cratering events, of course. The numbers of ob-
served families Nfam in individual parts are taken from Brož
et al. (2013), except for the inner belt, where two additional
families were found by Walsh et al. (2013) (i.e. three families
in total, see Table 3).

In order to avoid complicated computations of the observa-
tional bias we simply limit a range of the diameters D1 to D2
where χ2 is computed (see Table 4) and we admit a possibility
that χ2 is slightly increased for D approaching D2. We esti-
mated D1 and D2 for each popu-lation separately from the
observed SFDs shown in Figure 2.

6. Simulations for monolithic objects

We can expect a different evolution of individual populations
as a consequence of their different SFDs, collision probabilities
and impact velocities. Therefore, in this Section we are going
to run simulations with a new collisional model with six popu-
lations.

6.1. An analysis of an extended parameter space

First, we explored the parameter space on larger scales and
started the simplex with many different initial conditions (see

Table 5: The changes of input parameters between cycles and steps of the sim-
plex within one cycle. d1, d2, qa, qb, qc a nnorm denote the same parameters as
in Table 4. For the middle and outer belt, which are more populous, we used
∆nnorm = 15 and δnnorm = 5.

d1 d2 qa qb qc nnorm
(km) (km)

cycles ±15 ±6 ±0.3 ±0.6 ±0.6 ±6; 15
steps 5 2 0.1 0.2 0.2 2; 5

Figure 5). The calculation had 36 free parameters, as explained
above. To reduce the total computational time, we change the
same parameter in each part of the main belt with every initial-
isation of the simplex. For example, we increase all param-
eters qa1, qa2, qa3, qa4, qa5, qa 6 together and then we search
for a neighbouring local minimum with the simplex which
has all 36 parameters free — we call this one cycle. In to-
tal, we run 36 = 729 cycles (i.e. initialisations of the simplex),
for each parameter we examined 3 values (the input value
from Table 4 and two surrounding values — as described
in Table 5). The maximum permitted number of iterations of
the simplex was 300 in one cycle (and we verified that this is
sufficient to find a χ2 value which is already close to local min-
imum). In total, we run 218,700 simulations of the collisional
evolution of the main belt.

The input parameters are summarised in Table 4, while the
changes of parameters between cycles and the steps of simplex
within one cycle are listed in Table 5.

The minimum value of χ2, which we obtained, is χ2 = 562,
but we found many other values, that are statistically equiv-
alent (see Figure 6 as an example). Therefore, we did not
find a statistically significant global minimum. The pa-
rameters qb1−b6 seem to be well-determined within the pa-
rameter space, parameters qa1−a6, d1 1−6, d2 1−6 and nnorm 1−6
are slightly less constrained. For the remaining parameters
qc1−c6 we essentially cannot determine the best values. This
is caused by the fact that the ‘tail’ of the SFD is created
easily during disruptions of larger asteroids, so that initial
conditions do not matter.

The differences between simulated and observed SFDs
and numbers of families for individual populations corre-
sponding to χ2 = 562 are shown in Figures 7 and 8. We can
see that the largest differences are for the inner and outer
belt. Note that it is not easy to improve these results, e.g.
by increasing the normalization nnorm4 of the outer belt, be-
cause this would affect all of the remaining populations too.

The parameters of the initial SFDs for the minimal χ2

are summarised in Table 6. Comparing with Table 4, the
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Table 4: The input parameters describing the SFDs of the six parts of the main belt: qa denotes the slope of the SFD for asteroids with diameters D > d1, qb the
slope between d1 and d2, qc the slope for D < d2 and nnorm is the normalization of the SFD at d1. Nfam denotes the number of observed families and D1 and D2 the
range of diameters in the SFD, where the χ2 is calculated.

population d1 d2 qa qb qc nnorm Nfam D1 D2
(km) (km) (km) (km)

inner 90 20 −3.9 −2.1 −3.6 20 3 250 3
middle 105 18 −4.3 −2.3 −3.6 75 8 250 3
pristine 100 13 −3.6 −2.4 −3.6 21 2 250 5
outer 80 20 −3.7 −2.5 −3.5 90 6 250 5

Cybele 80 15 −2.5 −2.0 −2.8 17 0 250 6
high-inclination 100 20 −3.9 −2.2 −3.5 30 1 250 5

Figure 5: A set of 729 synthetic size-frequency distributions (for six parts of the main belt), which served as starting points for the simplex algorithm and subsequent
simulations of collisional evolution. Thin lines (with various colours) denote the synthetic SFD’s, while the thick lines corresponds to the observed SFDs. Note that
we tested quite a large range of possible initial conditions. The number of simplex steps was limited to 300 because the convergence to a local minimum is difficult
due to the stochasticity of the collisional evolution. The total number of collisional simulations we ran was thus 729 × 300 = 218,700.
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statistically equivalent, but as we can see, more statistically-equivalent results
correspond to the value of qa4 ' −4.0.

best initial slopes qa1−6 and qc1−6 are both steeper and they
exceed the value −3.5 derived by Dohnanyi. The SFD of
the Cybele zone is significantly flatter than the SFDs of the
other populations.

6.2. A detailed analysis of the parameters space

We also tried to explore the parameter space in detail —
with smaller changes of input parameters between cycles
and also smaller steps of the simplex. The best χ2 which
we found is however statistically equivalent to the previous
value and we did not obtain a significant improvement of the
SFDs. Parameters are not well-constrained in this limited
parameter space, because the simulations were performed
in a close surroundings of a local minimum and the simplex
was mostly contracting. An even more-detailed exploration
of the parameter space thus would not lead to any improve-
ment and we decided to proceed with a model for rubble-
pile asteroids.

7. Simulations for rubble-pile objects

The material characteristics of asteroids can significantly in-
fluence their mutual collisions. We can modify the Boulder
code for rubble-pile bodies on the basis of Benavidez et al.
(2012) work, who ran a set of SPH simulation for rubble-
pile DPB = 100 km parent bodies. We used data from their
Fig. 8, namely diameters of fragments inferred for simula-
tions with various projectile diameters and impact veloci-
ties.

7.1. Modifications of the Boulder code for rubble-pile bodies

We need to modify the parameters of the scaling law first. For
the density of asteroids, we used ρ = 1.84 g/cm3 as Benavidez
et al. (2012). We determined the specific impact energy Q∗D
required to disperse half of the total mass of a D = 100 km
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Figure 8: The differences between simulated and observed numbers of families
Nfam in individual populations, corresponding to χ2 = 562. Sigma denotes
the uncertainty of the observed number of families. The results of simulations
with monoliths. The simulated and observed numbers of families are consistent
within the uncertainties.
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energy Q of the projectile for rubble-pile bodies. We mark with lines: the value
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rubble-pile target from the dependence of the mass of the largest
remnant MLR as a function of the kinetic energy of projectile

Q =

1
2 Mprojectilev2

imp

Mtot
, (4)

where Mtot = Mtarget + Mprojectile (see Figure 9). Q∗D is then
equal to Q corresponding to MLR/Mtarget = 0.5. So the result is
Q∗D = (9 ± 1) × 107 erg/g and the corresponding parameter qfact
in the scaling law is then 13.2 ± 1.5 (calculated according to
Eq. (2) with ρ = 1.84 g/cm3, r = 5×106 cm, parameters Q0, a,
B and b remain same as for the monolithic bodies). The scal-
ing law for rubble-pile bodies was already shown graphically in
Figure 4.

We must also derive new dependencies of the slope q(Q) of
the fragments’ SFD and for the mass of the largest fragment
MLF(Q) on the specific energy Q of the impact. The cumulative
SFDs of the fragments cannot be always described with only a
single slope. We thus divided the fragments according to their
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Figure 7: The observed (black line) and simulated (green line) SFDs and the differences between them for the simulation with χ2 = 562. Sigma denotes the
(prescribed) uncertainty of the observed SFD. This result is for the simulation with monoliths. The largest differences are for the inner and outer belt.

Table 6: The parameters describing the initial SFDs (for time t = −4 Gyr) of the six parts of the main belt for which we obtained the best fits of the observed SFDs
(χ2 = 562). d1, d2, qa, qb, qc and nnorm denote the same parameters as in Table 4 and are rounded to two decimal places.

population d1 d2 qa qb qc nnorm
(km) (km)

inner 90.07 20.03 −4.20 −2.10 −4.20 20.03
middle 105.07 18.03 −4.60 −2.30 −4.20 75.07
pristine 100.07 13.03 −3.90 −2.30 −4.20 21.03
outer 80.07 20.03 −4.00 −2.50 −4.10 90.07

Cybele 80.07 15.03 −2.80 −2.00 −3.40 17.03
high-inclination 100.07 20.03 −4.20 −2.20 −4.10 30.03
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diameters to small (D < 10 km) and large (D > 10 km) and we
determined two slopes. Then we calculated the mean value and
we used the differences between the two values as error bars
(see Figure 10).

If a collision between asteroids is not energetic enough (i.e.
a cratering), then only a little of the mass of the target is dis-
persed to the space. In this case, the largest body is called the
largest remnant. The second largest body, which has a much
lower mass, is called the largest fragment. If a collision is
catastrophic, the first two fragments have comparable masses
and in this case, the largest body is called the largest fragment.
For some of the SPH simulations outcomes it can be difficult to
determine the largest fragment. The error bars in Figure 11 cor-
respond to the points, which we would get if we choose the
other of the two above-mentioned possibilities as the largest
fragment.

The parametric relations we determined for rubble-pile bod-
ies are the following:

q(Q) = −6.3 + 3.16
(

Q
Q?

D

)0.01

exp
(
−0.008

Q
Q?

D

)
, (5)

MLF

Mtot
(Q) =

0.6

13
(

Q
Q?

D

)−1.2
+ 1.5 Q

Q?
D

. (6)

When we approximate scattered data with functions, we must
carefully check their limits — for decreasing impact energy we
need MLF to approach zero and the slope q staying negative
and not increasing above 0. These conditions are the reasons
why our functions do not go through all of the data points (not
even within the range of uncertainties). This problem is most
pronounced for the dependence of MLF(Q) for small Q (Figure
11). Nevertheless, we think that it is more important that the
functions corresponds to the data for high Q’s, because highly-
energetic collisions produce a lot of fragments and they influ-
ence the SFD much more significantly.

7.2. A comparison of results for monoliths and rubble-piles
We explored the parameter space in a similar way as for

monoliths: with 729 different initial SFDs (i.e. 729 cycles),
the maximum permitted number of iterations 300 and 218,700
simulations in total. The changes of parameters between cycles
and the steps of the simplex within one cycle are same as for
simulations with monolithic bodies (see Table 5).

The minimum χ2 which we obtained was 1,321. The dif-
ferences between the simulated and observed SFDs and the
numbers of families for individual populations corresponding
to χ2 = 1, 321 are shown in Figures 12 and 13. These values
are significantly higher than what we obtained for monoliths
(χ2 = 562 at best). Given that the set of initial conditions was
quite extensive (refer to Figure 5), we think that this difference
is fundamental.

It seems that, at least within our collisional model, we can
preliminarily conclude that the main belt does not contain
only rubble-pile bodies, because otherwise the corresponding
fit would not be that worse than for monoliths (see Figures 7
and 8 for a comparison).
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Figure 10: The slope q of the SDF of fragments as a function of the impact
energy Q/Q∗D for the rubble-pile parent bodies with DPB = 100 km. The hor-
izontal axis is in a logarithmic scale. The SFD of fragments is characterized
by two slopes (for fragments D < 10 km and D > 10 km) and we calculated
the mean value. The displayed uncertainties of q are the differences between
real and mean values. The horizontal error bars are given by the uncertainties
of Q∗D. The grey line corresponds to the dependence for monoliths (Morbidelli
et al., 2009), which we used in Section 6.
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of Q∗D. The grey line corresponds to the dependence for monoliths (Morbidelli
et al., 2009) which we used in Section 6.
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It would be interesting to run a simulation with two differ-
ent population of the main belt — monolithic and rubble-pile
bodies. Also because Benavidez et al. (2012) concluded that
some asteroid families were more likely created by a disruption
of a rubble-pile parent body: namely the Meliboea, Erigone,
Misa, Agnia, Gefion and Rafita. Such simulation remains to be
done.

8. Improvements and extensions of the model

We think that the match between our collisional model and
the observational data as presented in Sections 6 and 7 is not
entirely convincing. In this Section we thus try to improve the
model by the following procedures: i) We use a longer ‘tail’
of the SFD (down to D = 0.01 km), which is a straightforward
modification. Nevertheless, the longer tail means a significant
increase of the required CPU time (which is proportional to
N2

bins). ii) We account for the Yarkovsky effect whose timescales
for small bodies (D . 0.1 km) are already comparable to the
collisional timescales (see Section 8.1). iii) We do not converge
all 36 free parameters at once but we free only 6 of them (d1,
d2, qa, qb, qc and nnorm for one population only) and proceed
sequentially with six parts of the main belt (see Section 8.2).

8.1. Dynamical decay caused by the Yarkovsky effect

In order to improve the Boulder code and use a more com-
plete dynamical model, we try to account for the Yarkovsky
effect as follows. We assume that the Yarkovsky effect causes a
dynamical decay of the population which can be described by
the following relation

N(t + ∆t) = N(t) exp
(

∆t
τYE

)
, (7)

where N(t) denotes the number of bodies at time t, ∆t the time
step of the integrator and τYE is the characteristic timescale.

Table 7: The parameters of the Yarkovsky-driven decay which are dependent
on the zone of the main asteroid belt: ∆a is half of the zone size (or a typi-
cal distance from neighbouring strong mean-motion resonances), ρ denotes the
(bulk and surface) density assumed for respective bodies.

∆a ρ
zone AU kg m−3

inner 0.2 2,500
middle 0.1615 2,500
pristine 0.0665 1,300
outer 0.162 1,300

Cybele 0.105 1,300
high-I 0.135 1,300

We can compute the semimajor-axis drift rate da/dt, for both
the diurnal and seasonal variants of the Yarkovsky effect, using
the theory of Vokrouhlický (1998), Vokrouhlický and Farinella
(1999) and the (size-dependent) time scale is then

τYE(D) =
∆a

da/dt(D)
, (8)

where ∆a is the range of semimajor axis given by the positions
of major mean-motion resonances which are capable to remove
objects from the respective populations. It differs for different
zones of the main belt, of course (see Table 7).

In the thermal model, we assume the following parameters:
the thermal conductivity K = 0.01 W m−1 K−1 for D > DYE, i.e.
a transition diameter, and 1.0 W m−1 K−1 for D ≤ DYE, thermal
capacity C = 680 J kg−1 K−1, Bond albedo A = 0.02, infrared
emissivity ε = 0.95. Remaining thermal parameters, namely
the densities, are summarized in Table 7.

We tested five different models (assumptions):

1. low thermal conductivity K = 0.01 W m−1 K−1 only, i.e.
DYE = 0 km, fixed rotation period P = 5 h;

2. both low/high K with DYE = 200 m, again P = 5 h;
3. the same K(D) dependence, but size-dependent spin rate

ω(D) = 2π
P0

D0
D , P0 = 5 hour, D0 = 5 km;

4. ω(D) = 2π
P0

(
D
D0

)−1.5
, P0 = 2 h, D0 = 0.2 km (see Fig-

ure 14);
5. we used Bottke et al. (2005) time scales.

We then computed the Yarkovsky timescales τYE(D) (Fig-
ure 15) and constructed a ‘testing’ collisional model in order
to check the influence of the dynamical decay on the evolu-
tion of the main belt SFD. Note that for small sizes D . 1 km,
τYE(D) can be even smaller than corresponding collisional
timescales τcol(D).

The results of models 1 and 2 are clearly not consistent with
the observed SFD (see Figure 16). The results of 3, 4 and 5
seem to be equivalent and consistent with observations, how-
ever, we cannot distinguish between them. We can thus exclude
‘extreme’ Yarkovsky drift rates and conclude that only lower or
‘reasonable’ drift rates provide a reasonable fit to the observed
SFD of the main belt.
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Figure 12: The observed (black line) and simulated (green line) SFDs and the differences between them for the simulation with total χ2 = 1, 321. Sigma denotes
the adopted uncertainty of the observed SFD. The results from simulation with rubble-piles.
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8.2. Subsequent fits for individuals parts of the main belt
In order to improve our ‘best’ fit from Section 6 (and 7),

we ran simplex sequentially six times, with only 6 param-
eters free in each case, namely d1, d2, qa, qb, qc, nnorm
for a given part of the main belt. We included a longer
tail (Dmin = 0.01 km) and the Yarkovsky model discussed
above.9 The number of simplex iterations was always lim-
ited to 100.

We shall not be surprised if we obtain a χ2 value which
is (slightly) larger than before because we changed the
collisional model and this way we moved away from the
previously-found local minimum. At the same time, we
do not perform that many iterations as before (600 vs.
218,700), so we cannot ‘pick-up’ the deepest local minima.

For monoliths, we tried to improve the ‘best’ fit with
χ2 = 562. However, the initial value at the very start of
the simplex was χ2′ ' 803 (due to the changes in the col-
lisional model) and the final value after the six subsequent
fits χ2′′ = 520. This is only slightly smaller than the previ-
ous χ2 and statistically equivalent (χ2′′ ' χ2). We interpret
this as follows: our simplex algorithm naturally selects deep
local minima. It seems that the lowest χ2 (for a given set of
initial conditions) can be achieved by a ’lucky’ sequence of
disruptions of relatively large bodies (DPB & 100 km) which
results in synthetic SFD’s and the numbers of families best
matching the observed properties. Of course, this sequence
depends on the ‘seed’ value of the random-number genera-
tor.

To conclude, our improvements of the collisional model
do not seem significant and the χ2 values are of the same or-
der. This can be considered as an indication that we should

9This more complicated model runs about 10 times slower, because we have
both larger number of bins to account for smaller bodies and a shorter time step
to account for their fast dynamical removal. It is thus not easy to run a whole
set of simulations from Sections 6 and 7 again.

probably use an even more complicated model. (Neverthe-
less, there is still a significant difference between monoliths
and rubble-piles and the assumption of monolithic structure
matches the observations better.)

8.3. Simulations with various scaling laws

So far we used the scaling law of Benz and Asphaug
(1999) for all simulations. In this Section, we are going to
test different scaling laws. Similarly as Bottke et al. (2005),
we changed the specific impact energy Q∗D of asteroids with
D > 200 m (see Figure 17, left). For each scaling law we
ran 100 simulations of the collisional evolution with differ-
ent random seeds. The initial parameters of SFDs are fixed
and correspond to the best-fit initial parameters found in
Section 6.

In order to decide which scaling laws are suitable, we can
simply compare the resulting synthetic SFDs and the num-
bers of families to the observed ones. It is clear that if we
increase the strength of D ' 100 km bodies by a factor of 10
or more, the number of synthetic families (namely catas-
trophic disruptions with DPB ≥ 100 km) is much smaller
than the observed number (usually 4 vs 20, see in Figure 17,
middle). On the other hand, if we decrease the strength by
a factor of 10, the synthetic SFDs exhibit a significant deficit
of small bodies with D < 10 km due to a collisional cascade
(especially in the inner belt, see Figure 17, right). Moreover,
the number of synthetic families is then significantly larger,
of course.

These results lead us to the conclusion, that the ‘extreme’
scaling laws (i.e. much different from Benz and Asphaug
1999) cannot be used for the main asteroid belt. This result
is also in accord with Bottke et al. (2005).

9. Conclusions

In this work, we created a new collisional model of the evo-
lution of the main asteroid belt. We divided the main belt to six
parts and constructed the size-frequency distribution for each
part. The observed SFDs differ significantly in terms slopes and
total numbers of asteroids. We then ran two sets of simulations
— for monolithic bodies and for rubble-pile.

In the case of monoliths, there seem to be (relatively
minor) discrepancies between the simulated and observed
SFD’s in individual parts of the main belt, nevertheless,
the numbers of families (catastrophic disruptions) corre-
spond within uncertainties. On the other hand, the χ2

value for rubble-pile bodies is more than twice as large be-
cause there are systematic differences between the SFD’s
and the (mean) number of rubble-pile families is substan-
tially larger (usually 30 or more) than the observed ones
(20 in total). We can thus conclude that within our collisional
model, monolithic asteroids provide a better match to the ob-
served data than rubble-piles, even though we cannot exclude
a possibility that a certain part of the population is indeed of
rubble-pile structure, of course.
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We tried to improve our model by: (i) introducing a longer
‘tail’ of the SFD (down to D = 0.01 km;10 (ii) incorporating
the Yarkovsky effect, i.e. a size-dependent dynamical decay;
(iii) running many simulations with different random seeds, in
order to find even low-probability scenarios. Neither of these
improvements provided a substantially better match in all parts
of the main belt at once.

However, we can think of several other possible reasons,
why the match between our collisional model and the observed
SFD’s is not perfect:

1. There are indeed different scaling laws for different parts
of the main belt. This topic is a natural continuation of our
work (and a detailed analysis is postponed to a forthcom-
ing paper).

2. The scaling of the SPH simulations from DPB = 100 km by
one or even two orders of magnitude is likely problematic.
Our work is thus a motivation to study disruptions of both
smaller (DPB ' 1 km) and larger (400 km) targets. Simi-
lar sets of SPH simulations as in Durda et al. (2007) and
Benavidez et al. (2012) would be very useful for further
work.

3. To explain the SFD of the inner belt, namely its ‘tail’, we
would need to assume a recent disruption (during the last
∼ 100 Myr) of a large parent body (DPB & 200 km). On
the other hand, there must not have occurred a recent large
disruption in the middle or the outer belt, otherwise the
synthetic SFD is more populous than the observed one. It
is not likely, that all such conditions are fulfilled together
in our model, in which collisions occur randomly.

4. When we split the main belt into 6 parts, the evolution
seems too stochastic (the number of large events in indi-
vidual part is of the order of 1). It may be even useful
to prepare a ‘deterministic model’, in which large disrup-
tions are prescribed, according to the observed families
and their ages. Of course, the completeness of the family
list and negligible bias are then crucial.

10Plus the so-called ‘negative’ (invisible) tail implemented in the Boulder
code to prevent artificial waves on the SFD.

5. We can improve the modelling of the Yarkovsky/YORP ef-
fect, e.g. assume a more realistic distribution of spin rates
(not only the ω(D) dependence, Figure 14) and perform an
N-body simulation of the orbital evolution to get a more
accurate estimate of the (exponential) time scale τYE(D).
It may be difficult to estimate biases in the ω(D) plot, be-
cause the dataset is heterogeneous.

6. May be, the intrinsic collisional probabilities pi were sub-
stantially different (lower) in the past, e.g. before major
asteroid families were created.

7. Some of the mutual impact velocities vimp, especially with
high-inclination objects, are substantially larger than the
nominal 5 km s−1, so the outcomes of these collisions are
most-likely different. On the other hand, these collisions
are usually of lower probability and the high-inclination
region is not that populous, so that this effect has likely a
minor contribution only.

8. There might be several large undiscovered families, or in
other words, the lists of DPB ≤ 100 km families (Brož et
al., 2013, or Masiero et al., 2013) might be strongly bi-
ased, because comminution is capable to destroy most of
the fragments.11

9. Possibly, parent-body sizes DPB of the observed fami-
lies are systematically underestimated or their mass ratios
MLR/MPB of the largest remnant to parent body are offset,
even though they were determined by best available meth-
ods (Durda et al. 2007, Tanga et al. 1999).

The topics outlined above seem to be good starting points for
(a lot of) further work.
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Zappalà, V., Bendjoya, P., Cellino, A., Farinella, P., Froeschlé, C., Aug. 1995.
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