Per asteroides ad astra

Miroslav Brož
${ }^{1}$ Charles University in Prague, Czech Republic

1. general problems
2. observations
3. our dynamical model (1 of)
4. asteroid families
5. future applications

Five problems

- turbulence
- chaos
- irreversibility
- stochasticity
- $t=0$

Kelvin-Helmholtz instability Pluto code (Mignone et al. 2007)

an inverse problem
(with exceptions)
additional instabilities:
Rayleigh-Taylor
magneto-rotational (Flock et al. 2013)
streaming (Johansen et al. 2007)

ObSERVOTiOnS \leftarrow usually taken @ 4.56 Gyr

- orbital distribution \rightarrow families everywhere: MB, Hildas, Trojans of J \& M, TNOs, irregular moons, ...

Observations (cont.)

- a detail of the Main Asteroid Belt, 124 families in total (according to our review in AIV, Nesvorný et al. 2015)

SDSS colours
Parker et al. (2008)

Eos family
Brož £t Morbidelli (2013)
a "standard" for families \rightarrow N-oocunooe

We use a symplectic integration scheme (Levison and Duncan 1994), denoted as kick-drift-kick, where the 'kick' (actually, a perturbation) is performed as:

$$
\begin{equation*}
\dot{\mathbf{r}}_{n+1}=\dot{\mathbf{r}}_{n}+\ddot{\mathbf{r}} \frac{\Delta t}{2} \tag{3}
\end{equation*}
$$

and the 'drift' corresponds to an analytical solution of the two-body problem (the Sun-asteroid), which involves a numerical solution of the transcendent Kepler equation:

$$
\begin{align*}
M & =E-e \sin E \tag{4}\\
\mathbf{r}_{n+1} & =p(E) \mathbf{r}_{n}+q(E) \dot{\mathbf{r}}_{n} \tag{5}\\
\dot{\mathbf{r}}_{n+1} & =\dot{p}(E) \mathbf{r}_{n}+\dot{q}(E) \dot{\mathbf{r}}_{n} \tag{6}
\end{align*}
$$

0 drift
we account for gravitational perturbations by planets, expressed in the heliocentric frame:

1. kick

$$
\begin{equation*}
\ddot{\mathbf{r}}_{j}=\sum_{i}\left[-\frac{G m_{i}}{r_{i}^{3}} \mathbf{r}_{i}-\frac{G m_{i}}{r_{j i}^{3}} \mathbf{r}_{j i}\right] \tag{7}
\end{equation*}
$$

possibly, the planetary migration, in an analytical way (Malhotra 1995), and also eccentricity damping (Morbidelli et al. 2010):
2. migration

$$
\begin{equation*}
\dot{\mathbf{r}}_{n+1}=\dot{\mathbf{r}}_{n}\left[1+\frac{\Delta v}{\dot{r}} \frac{\Delta t}{\tau_{\mathrm{mig}}} \exp \left(-\frac{t-t_{0}}{\tau_{\mathrm{mig}}}\right)\right] \tag{8}
\end{equation*}
$$

N-body model (cont.)

the Yarkovsky thermal effect (Vokrouhlický 1998, Vokrouhlický and Farinella 1999):

$$
\begin{align*}
f_{X}(\zeta)+\mathrm{i} f_{Y}(\zeta) & =-\frac{8}{3 \sqrt{3 \pi}} \Phi t_{1-1}^{\prime}\left(R^{\prime} ; \zeta\right) \\
f_{Z}(\zeta) & =-\frac{4}{3} \sqrt{\frac{2}{3 \pi}} \Phi t_{10}^{\prime}\left(R^{\prime} ; \zeta\right), \tag{10}\\
\Phi & \equiv \frac{(1-A) \mathcal{E}_{\star} \pi R^{2}}{m_{j} c_{\mathrm{vac}}} \tag{11}
\end{align*}
$$

the YORP effect (Čapek and Vokrouhlický 2004):
4. YORP

$$
\begin{align*}
\dot{\omega} & =c f_{k}(\gamma) \tag{12}\\
\dot{\gamma} & =\frac{c g_{k}(\gamma)}{\omega} \tag{13}\\
c & \equiv c_{\mathrm{YORP}}\left(\frac{a}{a_{0}}\right)^{-2}\left(\frac{R}{R_{0}}\right)^{-2}\left(\frac{\rho}{\rho_{0}}\right)^{-1} \tag{14}
\end{align*}
$$

mass shedding beyond the critical angular frequency (Pravec and Harris 2000):
5. mass shedding $\quad \omega_{\text {crit }}=\sqrt{\frac{4}{3} \pi G \rho}$,
and random collisional reorientations with the time scale (Farinella et al. 1998):
6. collisions

$$
\begin{equation*}
\tau_{\text {reor }}=B\left(\frac{\omega}{\omega_{0}}\right)^{\beta_{1}}\left(\frac{R}{R_{0}}\right)^{\beta_{2}} \tag{16}
\end{equation*}
$$

A number of unknowns

i... "mass-less" particles, i... massive bodies

- $N_{\text {TP }} \boldsymbol{r}_{\mathrm{i}}, \boldsymbol{v}_{\mathrm{i}}, \boldsymbol{r}_{\mathrm{i}}, \boldsymbol{v}_{\mathrm{i}}, m_{\mathrm{i}}, m_{\mathrm{i}}, \boldsymbol{\tau}_{\text {mig }}, \Delta v, D_{\mathrm{i}}, \rho_{\mathrm{i}}, \rho_{\text {surf, }} K, C, A_{\text {Bond }^{\prime}} \varepsilon, c_{\text {YORP }}$ $\lambda_{\mathrm{i}}, \beta_{\mathrm{i}}, \omega_{\mathrm{i}}, f_{\mathrm{k}^{\prime}} g_{\mathrm{k}^{\prime}} B, \beta_{1^{\prime}} \beta_{2^{\prime}} D_{0^{\prime}} D_{\mathrm{PB}}, \rho_{\mathrm{PB}}, v_{\mathrm{imp}^{\prime}} \varphi_{\mathrm{imp}}{ }^{\prime} f_{\mathrm{imp}} \omega_{\mathrm{imp}}$
- 32 (!) a-priori unknown ICs and parameters
- not speaking about Monte-Carlo or SPH models yet...
- time step $\Delta t \rightarrow$ discretisation error \leftarrow usually smaller)
- beware of (formal) uncertainties $\&($ possible) systematics

[^0]
going to C
 Application A: Individual families

- Eos family (Brož \&t Morbidelli 2013) $\rightarrow N$-body models are essential for family identifications!
- core vs halo, K-type taxonomy, distinct from background
- Yarkovsky drift da/d t vs scattering in e, i by resonances

B: Statistics of families

all known, at least

- ages span 4 Gyr (Brož et al. 2013, Bottke et al. 2015) \leftarrow OK
- set of catastrophic disruptions $D_{\mathrm{PB}}>100 \mathrm{~km}$ seems complete
- "new" families mostly $D_{\mathrm{PB}}<100 \mathrm{~km}$, or cratering events

\uparrow
parent-body sizes
estimated by scaling (Durda et al. 2007)

C: Late heavy bombardment ofteme

- no problems producing $D_{\mathrm{PB}}>200 \mathrm{~km}$ families (Brož et al. 2013)
- but 5 times more $D_{\mathrm{PB}}>100 \mathrm{~km}$ families \leftarrow breakups of trans-neptunian comets at low q \& secondary collisions

Levison et al. (2009)

Future applications

- 3-dimensional heat diffusion in meteoroids \& boulders (FEM)
- important results for (25147) Itokawa (Ševeček et al. 2015)
thermal torque (YORP effect)

Future applications (cont.)

- protoplanetary disks \S solid planetesimals vs resonances
- preliminary results in Chrenko \& Brož (2015)

minimum-mass solar nebula
$r / H=0.05$
$\nu=10^{-5}$
FARGO code Masset (2000)

Future applications (end)

\downarrow smoothed particle

- SPH simulations of collisions (Rozehnal et al. submitted)
- improve scaling of SPH models ($D_{\text {PB }}>$ and $<100 \mathrm{~km}$)

$$
\begin{aligned}
& D=100 \mathrm{~km} \\
& \mathrm{~d}=30 \mathrm{~km} \\
& v=15 \mathrm{~km} / \mathrm{s} \\
& \varphi=30^{\circ} \\
& N_{\text {SPH }}=1.5610^{5} \\
& \text { SPH5 code } \\
& \text { Benz \& Asphavg (1994) }
\end{aligned}
$$

Textbooks (in prep.)

- Hydrodynamics in Astronomy protoplanetary disks (FVM), circumplanetary disks, asteroid collisions (SPH), cratering, heat diffusion (FEM), mount elasticity, ...
- Astronomical Measurements statistics, signal to noise, geometrical optics, diffraction, CCD electronics, superconductive detectors, polarimetry, interferometry, radiotelescopes, particle detectors, ...

Comments of the referees

- asteroids $£$ stars
- details vs general
- a convex approximation
- paradigm shift (Brož \&t Rozehnal 2011, Brož \&t Morbidelli 2013)
- contradiction vs opportunity (Cibulková et al. 2014)

[^0]: a similar N-body model for multiple stars, e.g. V505 Sgr (Brož et al. 2010), ξ Tau (Nemravová et al. in prep.) with χ^{2} and simplex to fit minima timings (TTV), radial velocities RV \& speckle-interferometry

