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We have developed and carefully tested a new computer code
to follow the long-term dynamical evolution of a swarm of test
particles in the solar system. This new integrator is approximately
an order of magnitude faster than previously existing codes. The
technique efficiently and accurately handles close approaches be-
tween test particles and planets while retaining the powerful fea-
tures of recently developed mixed variable symplectic integrators.

We use the new code to numerically integrate the orbits of the
known short-period comets (those with periods P < 200 years)
under the influence of the Sun and all the planets except Mercury
and Pluto, for times up to 187 years. It is found under a classifica-
tion based on period that most comets move between Jupiter-
family (P < 20 yr) and Halley-family (P > 20 yr) orbits many
times in their dynamical lifetimes. However, it is found that the
Tisserand parameter, T, does not vary substantially for most com-
ets. Therefore, we adopt a classification originally suggested by
Carusi et al. (1987) that defines Jupiter-family comets (JFCs) as
comets with T > 2 and Halley-family comets (HFCs) as those with
T < 2. In this scheme, less than 8% of comets change families
during the integration and most of those that change tend to remain
near the Tisserand dividing line throughout. Thus, the JFCs (as
defined by the Tisserand parameter) are dynamically distinct from
the HFCs. We find that in our forward integration, 92% of comets
are ejected from the solar system, and that =6% are destroyed by
becoming sun-grazers. The number of sun-grazers is far more than
would be ¢xpected from the existing analytic theories. The median
lifetime of all known short-period comcts from the current time
to ultimate destruction or ¢jection is approximately 4.5 x 10° years.
The very flat inclination distribution of Jupiter-family comets is
found to become more distended as it ages. Since JFCs are dynami-
cally distinct from HFCs, they must have an inclination distribu-
tion, when they first become visible, that is even flatter than that
currently observed. For reasonable values of the physical lifetime
before fading, we calculate that there should be roughly 5-20 times
as many extinct JFCs as currently known JFCs. Our prediction
for the mean cos (i) of the extinct JFCs is consistent with the
existing data on these objects.  © 1994 Academic Press, Inc.

1. INTRODUCTION

Understanding the origin and evolution of comets is
crilical to understanding the origin of the solar system
because comets are thought to be the remnants of the icy
planetesimals that formed Uranus and Neptune, and to a
lesser degree Jupiter and Saturn. Comets may have also
been an important source of the volatiles on the Earth.

Short-period comets (those with periods P less than 200
years, hereafter SPCs) have been of particular interest
recently because of a controversy in the literature con-
cerning their origin. It had been widely believed that SPCs
originated in the Oort cloud and evolved into SPC orbits
through gravitational interactions with the planets (New-
ton 1893; see also Everhart 1972). However, in recent
years several lines of argument have shown that it is not
possible to reproduce the very flat inclination distribution
of the majority of SPCs from a spherical Qort cloud.

Fernandez (1980) was the first to suggest that Jupiter-
family comets (which he defines as those with P < 20
years) originate in a disk of material that lies just beyond
the orbit of Neptune. Duncan ef al. (1988, see also Quinn
et al. 1990, hereafter QTD) showed that many objects
that are initially on low inclination orbits with semimajor
axes near 50 AU cvolve into orbits that are consistent with
those of Jupiter-family comets. They therefore argued that
this disk of comets is the source for the Jupiter family,
Stagg and Bailey (1989) presented counterarguments to

-this idea. Levison {1991) argued that this controversy will
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not be solved until a better understanding of both the
current state and the evolution of the complete short-
period population becomes available.

The distribution of orbital elements of the complete
population of SPCs is uncertain. The sample of short-
period comets is affected by observational biases that tend
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to select objects with small semimajor axes and perihelion
distances and perhaps low inclinations (Kresdk 1981;
Shoemaker and Wolfe 1982). Several attempts have been
made to correct for these biases (e.g., Shoemaker and
Wolfe 1982; Fernandez et al, 1992), but the distribution
of the complete population remains poorly understood.

In addition, the long-term dynamical behavior of short-
period comets is poorly understood and there are only
rough estimates of their dynamical lifetimes. Opik (1963)
calculated the expected dynamical lifetimes of 16 SPCs
using a statistical semianalytic theory. He found that the
median lifetime for his sample is approximately 2.5 X
10° years. There have been many efforts to study the
dynamical behavior of the short-period comets by direct
numerical integration of their orbits (Kazimirchak-Polon-
skaya 1967; Belyaev 1967; Carusi et al. 1985; Nakamura
and Yoshikawa 1991; and Tancredi and Rickman 1992).
However, these integrations have been limited to time-
scales that are much less then the dynamical lifetimes of
these objects, the longest previous integration being about
4000 years. Therefore, none of these integrations have
been able to directly calculate the dynamical lifetimes of
SPCs.

It is only with very recent developments in numerical
techniques and advances in computer hardware that very
long numerical integrations of comet orbits can be
achieved.

In this paper we undertake an integration of the orbits
of all 160 comets known in 1991 with current periods
less than 200 years. The integration extends forward and
backward in time for 107 years. We integrate four orbits
per comet for a total of 640 orbits. In Section 2 we describe
and present tests of our new numerical techniques. Note
that it is not necessary to read this section in order to
understand the results of our integrations. Those readers
not interested in the numerical techniques may skip to
Section 3, where the results are presented. Our concluding
remarks are presented in Section 4.

2. THE RMVS METHOD

2a. Description of the Method

Until recently there has not been a tool that accurately
integrates the orbits of small objects on timescales ap-
proaching the age of the solar system, while also being
able to follow the important, but short-lived close ap-
proaches between these objects and planets. We have
developed a new integrator for this purpose. It is based
on the highly efficient symplectic algorithms pioneered
by Wisdom and Holman (1991, hereafter called WH91).
These technmiques, and variants thereof, are now com-
monly called Mixed Variable Symplectic (MVS) methods
(Saha and Tremaine 1993).

In the MVS method, the Hamiltonian from which the
equations of motion are derived is written as the sum of
two parts,

H= HKepler + Hlmeraclionv

where Hy, ., represents the Keplerian motion of a body
and Hyeracion represents the mutual perturbations of the
bodies on one another. Both Hy, ;.. and Heryerion are in-
tegrable (i.e., the equations derived from each Hamilto-
nian taken alone can be solved analytically). WH91 give
explicit representations for the two Hamiltonians and
show that the solution of the equations of motion for time
At in the true Hamiltonian can be approximated to second
order (Ar*} by first applying one Hamiltonian for At#/2,
then the other for A¢, and then the first again for A#/2. It
is straightforward to show that it is not important in what
order the Hamiltonians are applied.

In the N-body problem discussed here, the application
of the Keplerian part of the Hamiltonian is equivalent to
moving the object along a conic section. The application
of the remaining part is straightforward, because the per-
turbation Hamiltonian is independent of the momentum
and thus the positions of the particles remain unchanged
while the velocities receive small kicks. The procedure
works extremely well as long as the perturbations due to
H\jieaction aT€ small. 1t can be generalized to higher order
{Forest and Ruth 1990; Yoshida 1990; Saha and Tremaine
1993), but the higher order schemes are computationally
more expensive and are superior only when very high
accuracy is required {i.e., when using a much smaller
timestep than is required for the statistical studies of cha-
otic systems described here).

The assumption that the planetary perturbations are
small breaks down during a close encounter. This condi-
tion is conventionally said to occur if a body comes within
one Hill radius ry of the planet (cf. Lissauer 1993}, where
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where a, is the semimajor axis of the planet, and M, and
M, are the masses of the Sun and planet, respectively.
Under these circumstances, the acceleration due to the
planet is typically much larger than that due to the Sun.
We therefore perform the MVS separation of the Hamilto-
nian so that the Keplerian part is centered about the planet
rather than the Sun. In this way, we can integrate arbi-
frarily close encounters. In contrast to other methods,
this algorithm is most computationally efficient during
very close encounters, since the perturbations from other
bodies are then sufficiently small that the orbit is very
close to a conic section. Thus, a timestep can be used
which is a substantial fraction of the encounter timescale.
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However, a problem arises in the intermediate region
between one and about three Hill radii from the planet,
where the forces from the Sun and the planet are compara-
ble. For particles in this region we perform a heliocentric
MYVS step, but decrease the timestep of the integration
by some constant, Thus, the code employs multiple time-
steps in a manner which concentrates the computational
effort where it is needed.

Our experience has led us to the following two-tier
approach: If a particle lies within the intermediate zone
at the beginning of a normal timestep or is predicted to
lie within this zone at the end of the timestep, then its
timestep is decreased by a factor of . If a particle lies
within the Hill sphere of a planet at the beginning of a
timestep or is predicted to lie within it at the end of the
timestep then its timestep is decreased by another factor
of n,. The numerical values adopted for the timestep re-
duction factors are guided by experience. We have
adopted n, = 10 and n, = 3. The outer radius of the
intermediate zone was set at 3.5r.

Our use of planet-centered coordinates during close
encounters is reminiscent of, but mathematically distinct
from, previous close encounter algorithms known as regu-
larization methods (see, e.g., Stiefel and Schiefele 1971).
We, therefore, call this technique the Regularized Mixed
Variable Symplectic (RMVS) Method.,

An additional point must be made. In practice, we found
that when our RMVS code was run, most of the CPU
time was spent in evolving the bodies under the Keplerian
Hamiitonian. This procedure requires solving a differ-
enced version of Kepler's equation (see WH91), which
for planet-centered orbits typically involves unbound par-
ticles. We have adopted the algorithms involving univer-
sal variables described in Danby (1988). Several refine-
were incorporated (including an improved
algorithm for near-parabolic cases and a very efficient
treatment of low eccentricity cases) and are available from
the authors upon request.

2b. Tests of the RMVS Code

Testing of a code such as our RMVS integrator is a
very complicated task since it is intended to model chaotic
systems, which do not have analytic solutions. Therefore,
there are no sample problems that we can run that test
all aspects of the code against exact known solutions.
Thus we pursued three avenues of approach to testing
our code: (i) The individual subroutines of the code were
systematically tested before incorporation into the final
code. For very complex routines (such as the force calcu-
lation), independent routines were written by the two
authors and the results checked to ensure that they agreed
to within the computer roundoff. (i) The few special cases
for which there are conserved quantites were used as

tests. Unfortunately, such test are somewhat limited.
They either involve only global parameters (such as con-
servation of energy), which only tests the integration of
the massive bodies, or require very simple planetary sys-
tems (such as the circular restricted three body problem}.
We ensure that the code conserves these quantities to
very high numerical accuracy in all problems of this type
known to us. (iii) A suite of short time duration problems
designed to test the entire RMVS code was run using our
code as well as several other well-established codes. We
verified that the results from our code statistically agreed
with the results from the established codes in each of
these cases.

There are three major sections of the code that had to
be tested: the section that integrates the massive mutually
interacting particles; the part that integrates the orbits of
test particles that are not suffering close approaches; and
the section that integrates the close approach between a
test particle and a planet. We developed several tests for
each of these. Overall, we spent several months designing
and implementing tests that exercised all the aspects of
the code. As an illustration, we now present the results
of a few of these tests.

The part of the code that integrates the mutually inter-
acting particles was tested using the initial masses and
coordinates of the four giant planets and the Sun given
in the classic integration of Cohen et al. (1973, hereafier
called CHO73). With a timestep of 0.! years (which is
typical of that used in the simulations described below),
the total energy was conserved to within one part in 10
and the variations in the planetary orbital elements were
indistinguishable from those published in CHO73 over the
common integration span of | Myr. However, as is typical
of MVS integrators using fairly large timesteps, the exact
phases of Jupiter and Saturn in their orbits were not repro-
duced at the end of the integration (although those of
Neptune agreed to within one part in [0*). This is unlikely
to be important in our statistical study of chaotic test
particles.

A further test of the mutually interacting parts of our
code is presented in Fig. |, where we compare the varia-
tion of the orbital elements of the planets in our comet
integration (points) to that from a more accurate (but much
more CPU-intensive) integration of the same seven-planet
system using a Bulirsch-Stoer scheme (Stoer and Bul-
irsch 1980). The two are indistinguishable. The difference
between the Earth’s eccentricity in the two integrations
is 107" at —10° years.

One of the procedures used to test the section of the
code that integrates the orbits of massless test particles
under the influence of, but not suffering close encounters
with, the planets is to study the behavior of test particles
near resonances. We take an example from Murray and
Fox (1984), who integrated the orbits of test particles near
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FIG.1. The eccentricities of the Earth, Jupiter, and Saturn backward
in time. The solid curves represent the results of an integration using
a Bulirsch-Stoer scheme. The dotted curves represent the results using
our MVS integrator.

the 3:1 resonance with Jupiter. In their integration, the
only planet they included was Jupiter, which was on an
eccentric orbit and thus had no integrals of the motion.
Murray and Fox found that both regular and chaotic orbits
existed near the 3 : 1 resonance. We integrated the orbits
of two of their test particles, the ones shown in their Fig.
5a (regular, hereafter MF5) and Fig. 6a (chaotic, hereafter
MF6). The results of our integrations of the orbits of these
particles are shown in Fig. 2. Figure 2a shows the variation
in the eccentricity as a function of time of MF5. The
dotted and solid curves represent integrations done with
our RMVS code (using a timestep of 1/40 of the test
particle’s arbital period) and a Bulirsch-Stoer code (using
a tolerance of 107% respectively. Note that the two are
indistinguishable. They also agree very well with Murray
and Fox’s integrations. Figure 2b is the same as Fig.
2a but for MF6. Here the two integrations significantly
diverge after about 2000 Jupiter periods. This is to be
expected for chaotic orbits, especially since the Lyapunov
timescale for this orbit is only ~200 Jupiter periods.
We present two illustrative examples of the accuracy

of the full RMVS code. We first integrated the trajectory
of a test particle in the restricted circular three-body prob-
lem for which there exists an analytic integral of the mo-
tion, the Jacobi constant, which can be used as a check
on the integration. The massive bodies had the mass of
the Sun and Jupiter and remained in a circular orbit about
each other with a semimajor axis of 5.2 AU, Several tens
of particles were studied using a timestep of 0.01 Jupiter
periods (similar to the one we employ in the simulations
described below). Figures 3a and 3b show the variation
of the semimajor axis (¢) and eccentricity (e) for the test
particle that had the largest number of close encounters
with Jupiter. As shown in Fig. 3c, the observed changes
in orbital elements seen in this particle were due to close
approaches to Jupiter. Figure 3d shows the fractional
change in the Jacobi constant during this same period of
time. These tests and others suggest that the error in the
Jacobi integral propagates in a manner consistent with a
random walk (i.e., there is no evidence for a systematic
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chaotic orbit. The observed divergence is expected for chaotic orbits,
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FIG. 3. Results of an integration using our new RMVS code. The

behavior of a test particle on a Jupiter-crossing orbit in the circular
restricted three body problem is shown. (a) The semimajor axis. (b) The
eccentricity. (c) Its distance from Jupiter. The variations in the orbital
elements are due to encounters with Jupiter. If the particle falls between
the two dotted lines then the timestep is decreased. If it falls below the
bottom dotted line, the integration is performed in a planetocentric
frame. (d} The fractional error in the Jacobi constant, C.

growth in the error). Our study of many particles suggests
that, with this timestep, the fractional error in the Jacobi
constant is ~107° after 10 close approaches. Thus we
anticipate fractional errors of only ~10~* after 1000 close
approaches.

The second test illustrates the power of the new tech-
nique. Tancredi er al. (1990) found that the comet P/
Helin—Roman-Crockett will suffer a close approach to
Jupiter in the year 2075 that will lead to a temporary
capture of the comet. Figure 4a shows the trajectory of the
comet using a Bulirsch—Stoer integrator. The trajectory is
plotted in a frame that is centered on Jupiter and rotates
so that the Sun is always on the negative x-axis. Figure
4b is the same trajectory using our RMVS integrator with
a timestep of 38 days—the timestep used for most of our
integrations. Note that Fig. 4a and 4b are indistinguish-
able. Indeed, the distance between the two trajectories

as they leave the figure is only 2 x 10°* AU. Figure 4¢
shows the same orbit calculated with the RMVS code,
but with a timestep of half a year (about five times longer)!
Again, this orbit is almost exactly the same as the one
produced by the Bulirsch—Stoer integrator (cf. Fig. 4a).

We emphasize that the above tests are presented only
as examples. Many more tests were run. In particular, a
variety of further comparisons of our code with a Bul-
irsch—Stoer integrator were made to ensure that our rather
complicated bookkeeping when dealing with swarms of
test particles did not introduce any errors. In view of the
chaotic nature of particles undergoing close encounters,
it is obviously impossible to reproduce the details of indi-
vidual orbital evolution beyond an encounter or two, but
tests indicated that up to that time, each particle was
accurately integrated. Furthermore, integrations of
swarms for moderately long times gave similar statistical
behavior in the two codes. Several other confirmations
will be found in Section 3. These include showing that
comet P/Machhoilz becomes a sun-grazer as predicted
by Bailey et al. (1992) and that comet P/Encke behaves
qualitatively the same in a comparison of the RMVS and
the Bulirsch—Stoer integrators. It should be noted,
though, that the RMVS code is typically 5-10 times faster
than the Bulirsch—Stoer integrator for comparable accu-
racy. It is more than an order of magnitude faster than the
commonly used high-order Gauss—-Radau scheme (RAIS,
Everhart 1985).

LI L B B B BN B T T T T T [ T T T T 7

T
A B

Al
o o .
LA L B4 I B B B

=3
LA LA I 74 L L S B B
P I S T N N SV I

AU

FIG. 4. The trajectory of comet P/Helin—-Roman-Crockett during
its 2075 A.D. encounter with Jupiter. The trajectory is plotted in a frame
that is centered on Jupiter and rotates so that the Sun is always on the
negative x-axis. (a) The trajectory was calculated using a Bulirsch—Stoer
integrator. (b) The RMVS integrator was used with AT = 38 days. (¢)
The RMVS integrator was used with AT = § year.
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3. RESULTS

In this section, we present the results of our integration
of the orbits of all known comets that are currently short-
period. The current orbital elements for the comets and
planets were kindly supplied to us by L.. Wasserman and
E. Bowell based on an extended version of the Marsden
(1989) Catalog. In order to obtain better statistics concern-
ing the behavior of the SPC population, four orbits were
integrated for each real comet, One orbit had the initial
position and velocity of the real comet, calculated from
its orbital elements. The other three have initial offsets
in position along the x, ¥, and z directions of +0.01 AU,
respectively. This offset was chosen to account for typical
uncertainties in the currént orbital elements of the comets.
Since their orbits are chaotic, the four orbits separate
quickly and soon become independent of one another, In
all, the orbits of 640 objects were calculated.

The cometary orbits are integrated under the gravita-
tional influence of the Sun and all the planets except Mer-
cury and Pluto. The orbits of the Sun and planets are
integrated in three dimensions as a full N-body system.
The comets themselves are not gravitationally interacting
with each other. We did not include any nongravitational
forces because it is not clear how they vary over such
long time periods, We integrated the system, including
the Sun, planets, and comets, forward and backward in
time for 107 years. We continued to follow a comet until
it either became unbound from the Sun and reached a
distance of 150AU or became a sun-grazer. We define a
sun-grazer as an object with g < 0.01 AU =~ 2R,

Before presenting the results of our integrations we
must first caution the reader on two points. First, since
the comet orbits are planet-crossing and thus chaotic, it
is not possible to accurately determine the long-term fate
of any individual object. However, it is appropriate to
extract statistical information from these integrations
about the behavior of this sample of comets that will
resemble the evolution of the real system. For the remain-
der of this paper we concentrate on the statistical attri-
butes of our integration.

Secondly, we cannot even study the long-term statisti-
cal behavior of the system of comets inte the past for
timescales longer than the Lyapunov time because the
orbits are chaotic and because the phase space available
to the objects is probably much larger than the region
from which they came. To illustrate this point, consider
the analogy of an initially evacuated room with rough
walls and a large open window into which molecules are
injected through a narrow hose. Once the system has
reached a steady-state (i.¢., the number of molecules en-
tering through the hose is equal to the number leaving
through the window), suppose that the position and veloc-
ity of all the particles in the room were recorded. If an

attempt were made to integrate the system backwards,
more particles would leave through the window than
through the hose because, after several reflections off the
walls, the particles would have “‘forgotten’” their initial
states. In our case, injection through the hose corresponds
to injection into a visible SPC orbit, and leaving through
the window corresponds to the many more avenues of
escape available to a SPC. In this light, the backward
integration is statistically equivalent to the forward inte-
gration and should be viewed as another example of the
future behavior of the system. As a result, when we gquote
median timescales and percentages in what follows, we
generally will quote the average of the values in the for-
ward and backward integrations with an uncertainty
which is half the difference between them (i.e., values
will be presented as mean = difference/2). As we will
see, the differences between the forward and backward
integrations are very small. These similarities reinforce
our analogy.

Using our integration, it is possible for the first time to
calculate, by direct numerical integrations, the dynamical
lifetime of SPCs. The upper curve (marked “*ALL”) in
Fig. 5 shows the number of comets remaining in the solar
system as a function of time. We plot these data for both
the forward {right) and backward (left) integrations. The
time it takes to lose half the comets is 4.5 = 0.1 x 10°
years. At the end of each of the 107 year integrations,
10 = 4 of the original 640 objects remain. Of these re-
maining objects, none are on Jupiter-crossing orbits. Six
of them have a > 100 AU and 12 have a > 30 AU. Most
are in very eccentric orbits, but 4 have ¢ < 0.3, Of these
four, three are not on planet-crossing orbits; two are be-
tween Saturn and Neptune and one is between Mars and
Jupiter. One object of particular note is temporarily
trapped near the 1:1 resonance (‘“Trojan point’”) with
Neptune, but it leaves the resonance near the end of the
integration.

Opik (1963) calcnlated the expected dynamical lifetimes
of 16 SPCs using a statistical semianalytic theory. His
sample included a wide range of objects with periods
ranging from 3.3 years (P/Encke) to 120 years (P/Swift-
Tuttle). He found that the median lifetime for his sample
is approximately 2.5 x 10° years. We find that this sample
has a median lifetime of 4.6 x 10° years in our integrations.
There is no correlation between his lifetimes and ours for
individual objects. The ratio of his dynamical lifetimes to
ours range in values between (.03 and 8000, Typically,
his lifetimes are an order of magnitude larger than ours.

3a. Semimajor Axis Distribution Evolution

We now discuss the evolution of our comets’ semimajor
axis distribution. It has been typical in the literature to
divide SPCs into two families: Jupiter-family and Halley-
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family comets. Many authors (see, e.g., Fernindez et al.
1992) define a classical Jupiter-family comet (hereafter
JEFC[P]} as one with a period less than 20 years and a
Halley-family comet (HFC[P]) as one with a period be-
tween 20 and 200 years. (We use the notation **[P]” to
indicate that the distinction is based on period. We show
in the next section that a dynamically more descriptive
classification into Jupiter and Halley families can be made
using the initial Tisserand parameter rather than period).
The two families defined on the basis of period can be
distinctly seen in Fig. 6, which shows the current inclina-
tions of the comets in our sample as a function of their
current semi-major axes. The dotted line represents the
division between JFC[P]s and HFC[P]s. It can be clearly
seen in the figure that the JFC[P]s have a much flatter
inclination distribution than the HFC[P]s. The mean cos
(1) of the JFC[P]s is 0.951 (corresponding to i = 18°) while
the mean cos(§) = 0.427 (i = 65°) for HFC[P]s.

Since the JFC[P]s tend to have more frequent and lower
velocity encounters with Jupiter than the HFC[P]s, one
would expect that JFC[P]s would have much shorter dy-
namical lifetimes. The dashed curves (marked JFC(P <
200} in Fig. 5 show the number of JFC[P]s as a function
of time in our integrations. The time it takes for the num-
ber of comets to decrease 1o half the original number is
1.69 = 0.01 X 10* years—over an order of magnitude
shorter than that of the population of comets as a whole.
Approximately 95% of the JFC[P]s became HFC[P]s once

they leave the Jupiter-family, while 3% are directly
gjected from the solar system and 2% become Sun-grazers
(g < 0.01 AL,

The dotted curve in Fig. 5 shows the number of
HFC[P]s as afunction of time. As ¢an be seen, the number
of HFC[P]s increases for the first =10° years. These are
objects that evolve from the Jupiter-family to the Halley-
family via close encounters with Jupiter. Since the Tisser-
and parameter (which is a relationship between a, e, and
i)-is conserved for most of these objects during this en-
counter, afterward they must have large perihelion dis-
tances and thus they are unlikely to be observed. The
mean g of objects becoming HFC[P]s from the Jupiter-
family is 4.6 AU; only 5% of them have g = 2.5 AU.
Note that since most of these objects are not *‘visible,”’
they will not affect the observed inclination distribution
of the Halley-family. Also, although the observed number
of JFC[P]s is much larger than the observed number of
HFC[Pls, it is ¢lear from this discussion alone that the
true number of HFC[P]s must be much larger than the
number of JFC[P]s.

Our integration shows that JFC[P]s and HFCI[P]s de-
fined on the basis of period are not dynamically distinct
objects. Based on_period alone, the median SPC moves
between the two families 12 + 1 times. For example, Fig.
7 shows the dynamical evolution of the comet P/Temple-
Swift. We must emphasize that this figure is only illustra-
tive; it cannot be used to predict the long-term behavior
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of this particular comet because its orbit is chaotic. Figure
74 shows the evolution of the comet’s semimajor axis
over its entire lifetime. The dashed line represents the
boundary between JFC[P]s and HFC[Pls. Note that the
comet moves back and forth across this boundary several
times, especially in the backward integration. It is im-
portant to note that when this comet is visible, it is always
a JFC[P].

In our initial sample of comets, 89% are JFC[P]s. We
find that in both our integrations, 91% of all our comets
become JFC[P]s at some point in their lives. Thus we
predict that approximately six of the known HFC[P] com-
ets will at some point in the future become JFC[Pls. The
typical comet in our integration spends 22% of its time
as a JFC[P](median value).

We have seen that a classification of SPCs into families
based solely on the basis of period is not very illuminating
from a dynamical point of view. We turn to a better diag-
nostic next.

3b. Evolution of the Tisserand Parameter

As we discussed in Section 2b, in the circular restricted
three-body problem, there exists an integral of the motion

for any test particle—the Jacobi integral. Although Jupiter
is not on a strictly circular orbit (nor is it the only planet),
one can calculate for each comet an approximation to the
Jacobi integral called the Tisserand parameter which is
often found to be roughly constant during short-term inte-
grations. Following the usual convention we define an
object’s Tisserand parameter to be T = gjfa +
2V(1 — e€alay cos(i), where a; is Jupiter’'s semimajor
axis. Note that objects with T > 3 cannot cross Jupiter’s
orbit in the circular restricted case, being confined to
orbits either totally interior or totally exterior to Jupiter.

Figure 8 shows the initial value of T for each comet in
our survey versus its initial semimajor axis. The vertical
dotted line represents the dividing line between conven-
tionally defined JFC[P]s and HFC[P]s. The upper curved
line shows the value of T versus a for a comet with g =
2.5 AU and i = 0, while the lower curved line is the
minimim possible value of T versus g for prograde orbits
(corresponding to an orbit with e = 1 or i = 90°), Low-
inclination objects with g > 2.5 AU would lie in the upper
right corner of the diagram, and the apparent absence of
such objects in the data is largely a selection effect since
objects with perihelia beyond 2.5 AU are difficult to de-
tect. In addition, it is not physically possible for prograde
comets to lie below the bottom curve. These constraints
explain what otherwise appears to be a fairly strong corre-
lation between T and a seen in the figure and thus the
correlation is not significant.

As described above, we have found that the classical
distinciton between Jupiter and Halley families is unen-
lightening, since objects switch classes frequently during
their dynamical lifetimes. Carusi and Valsecchi (1987)
have proposed that a dynamically more meaningful classi-
fication would be to classify a comet as being of the Jupiter
family if it has T > 2 and of the Halley family if 7 < 2, The
horizontal dashed line in Fig. 8 shows the new dividing line
and we see that only three objects are reclassified under
this new system (i.e., comets P/IRAS, P/Machholz, and
P/Tuttle are now considered Halley-family objects.) The
power of this classification lies in the fact that we find in
our integrations that for most comets T is well enough
conserved during their dynamical lifetimes that the vast
majority of them do not change families.

Figure 9 shows a histogram of the range of variation of
T during the dypnamical lifetime of each comet in our
forward integrations. The median change is 7 is 0.44 =
0.02. We find in fact that only 8% change families during
their dynamical lifetimes. Most that change are initially
near the dividing line at T = 2—less than 2% switch from
T<15toT> 25 Asanexample, Fig. 10 shows the
temporal variation of T for the comet P/Tempel-Swift,
whose orbital element evolution is plotted in Fig. 7. The
relatively small variations in T should not be construed
as implying that this comet is always totally controlled by



26 LEVISON AND DUNCAN

100 L—I I 1 1 LI 1T I TT I T T
=)
& Elbd A 3
L ! i
- : A -
1
1 1 I | I l | I | | Lt 3 ] 11| ‘ 11 | J. ) N
—ax10° -2x10®° ¢ 2x10°  4x10°  ex10°
40 T | LR I L [ T 1 T I T 17T I L I L
[ ‘ 1
L ! ]
C j ]
30 — , .
L ! ]
N . i
= | -
E - ' 3
3 20 — _
10 —
C . C]
I
0 _I ‘ | I - I 1 1 1 i L1 | l i1 1 I 1 11 I Il -I.
-4x10° -2x10° ¢ 2x10°  4x10®  ex10°
time {years)

T T T T 1 LI L T 1771 L
w0 T i =
- ! 3
- | -
C | ]
- | -
5
5 1 — pu—
=3 r ! ]
- 1 -
r ' ]
r ! N
L ! ]
- : -
I
| X B -
I
1 | | | - i i 1 1 | P41 I | -l [ | | I L1 1
-4x10° -2x10° ¢ 2x10*  4x10®  ex10®
1 1 T I T T TN, T I LI LI [ T I T T 7
300 — —
= =
5 | i
Ey 200 —
3 - -
3 B ]
100 | —
0 _I I INDY 1 11 ' I 11l | | l 1.1 :
—-4x10° -2x10* o 2x10®°  4x10®  ex10°
time (years)

FIG. 7. The behavior of comet P/Tempel-Swift over its entire dynamical history. (2} Semimajor axis. The dotted line is at P = 20 years. (b}
Perihelion distance. The dotted line represents the limit of visibility limit (¢ = 2.5 AU) set by Quinn er al. (1990). (¢) Inclination. (d) Argument

of perihelion.

Jupiter, however. Indeed, the comet spends considerable
time with pericenter nearer to Saturn’s orbit than Jupiter’s
in an orbit which is dynamically similar to Chiron’s (for
which T = 3.35). Objects with g > 6 AU cannot come
within Jupiter’s Hill sphere and so cannot suffer a strong
encounter with the planet. For the entire set of comets,
the median fraction of time spent as a JFC with g > 6
AU is 48%, so Chiron-like phases are quite common, This
illustrates one drawback of the new classification—some
comets in the solar system that are not crossing Jupiter
will be classified as JFCs. Clearly, some modification of
this definition is in order. Perhaps including only objects
with T < 3 or adding a condition based on the appearance
of their orbits (such as their being Jupiter-crossing) is
appropriate. We will leave this topic to future discussions
and will continue employing the definition stated above.

As we have mentioned, only a modest fraction of com-
ets change families in the new classification scheme, so
it is appropriate to reexamine the issue of the dynamical
lifetime against ejection or sun-grazing of the comets in
the simulation. This is shown in Fig. 11, where we see
that the median lifetime of the JFCs is 3.25 = 0.06 x 10°
yr. By contrast, the median lifetime of the HFCs is about
three times longer, 1.00 = 0,01 x 10° years,

In general, we find the advantages of a classification
based on the initial Tisserand criterion to be very compel-
ling. So, although there are some problems with the defi-
nition suggested by Carusi and Volsecchi (1987), we adopt
it in what follows.

3c. Perihelion Distance Evolution

The current perihelion distance distribution of comets
is strongly peaked toward small values. This is most likely
due to a strong observational bias against the discovery
of comets with large perihelion distances because they
are less active and do not pass close to the Earth. Quinn
et al. (1990) define a **visible’’ comet as one with g =< 2.5
AU. If a comet has a g greater than this value then,
they argue, it is not likely to become bright enough to be
discovered. Indeed, only 14% of the known short-period
comets have g larger than this value and none of them
are HFCs. For this paper, we adopt this definition of
visibility.

We find that the perihelion distance of a comet can
change drastically over its lifetime. In both our forward
and backward integrations, the typical comet is visible
(g < 2.5 AU) for only 7% (median value) of its lifetime
during which it becomes visible a total of 10 times. For
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example, Fig. 7b shows the evolution of the pernhelion
distance of the typical comet P/Tempel-Swift. The
dashed line in the figure represents the visibility boundary.
Notice that the comet becomes visible and invisible sev-
eral times during its lfetime, using the criterion based
on q.

In Fig. 12a we show a histogram of the time at which
each comet that begins with g < 2.5 first evolves either
to an orbit with ¢ > 2.5 or changes family. The solid
histogram is for all SPCs, the dotted histogram refers to
JFCs, and the dashed histogram to HFCs. The median
time for this to occur in each group is given in the first
row of Table L.

In Fig. 12b we plot histograms for the same groups of
the integrated time spent in a ‘‘visible® state (i.¢., with
g < 2.5). The second row of Table I gives the median
integrated time with g < 2.5 for the three groups.

One of the most interesting aspects of the perihelion

distance evolution is that a surprisingly large number of
comets (6% of the comets in the forward integration and
5% of the comets in the backward integration) become
sun-grazers, which we define as ¢ < 0.01 AU = 2R,. We
find that comets of either family can become sun-grazers.
Indeed, sun-grazing comets can have semimajor axes be-
tween 2 and 28 AU.

Bailey er al. (1992) noted that there is a class of orbits
which show relatively short-lived phases in temporary
sun-grazing states with extremely small g. The objects in
this class spend the majority of their time at inclinations
near 90° and in much less eccentric orbits. Bailey ef al.
(1992) point out that comet P/Machholz is a typical exam-
ple of this class and indeed we find that it and its clones
exhibit this behavior in our simulations. Figure 13 shows
the behavior of w, g, and i as functions of time for P/
Machholz. Note that the plunge to small ¢ cccurs as @
passes through 90° or 270°,

The sun-grazing behavior described in the work of
Bailey et al. can be understood as a secular effect due
to the influence of Jupiter alone. By averaging over the
mean motions of both Jupiter (when approximated as
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if it were on a circular orbit) and the comet, the resulting
equations of motion for the comet admit three integrals
of the motion—the semimajor axis g, the square of
the component of angular momentum perpendicular to
Jupiter’s orbit (conventionally written as ® = (1 —
e?)cos? i), and a third integral which is essentially the
averaged Hamiltonian, K(Quinn et al. 1990, Bailey er
al. 1992), For the case in which the comet’s semimajor
axis is much smaller than Jupiter’s the third integral is
given by K = €5 sin® i sin® w — 2). Obviously, the
range of variations in ¢ is set by the values of the
integrals at any given time.

In the real Solar System the values of the approximate
integrals change either gradually due to the secular effects
of the other planets, or occasionally rapidly due to strong
encounters with a planet. P/Machholz is an extreme ex-
ample in that it begins in a nearly sun-grazing orbit and
its values of the approximate integrals become those of
a sun-grazer within a time of only three times the period
of precession of w. Of the comets in our simulation,

roughly 6% become sun-grazers at some point in their
forward evolution. (Indeed P/Halley and one of its three
clones become sun-grazers in our integrations.) However,
only P/Machholz begins in an initial state which allows
its perihelion distance to evolve to less than 0.1 AU via
the averaged effects of Jupiter alone.

Comet P/Encke is an interesting example of a comet
which becomes a sun-grazer over a much longer timescale
than P/Machholz and only after a long period of what
appears to be a secular decrease in g. The evolution of
its orbital elements is shown in Fig. 14. Note that the high
frequency jitters seen in the plots of g and i are in fact
the analytic secular oscillations described above. The
long-term variations seen in the figure are the eventual
cause of P/Encke becoming a sun-grazer. It is striking
that the inclination swings from nearly zero to 180° and
back several times during the integration and that the
eccentricity of the comet is 1.000 when i = 90°, Further-
more, the three clones of P/Encke also became sun-graz-
ers and showed qualitatively similar long-term variations
in{and g

As a check on the sensitivity of P/Encke’s orbit to
initial conditions, we integrated 19 additional Encke
clones which were initially offset in position by ~1077
AU in random directions. We found the same sort of
behavior for all these objects even though the Lyapunov
timescale for P/Encke was calculated to be about 100
years, while the median lifetime before becoming a sun-
grazer was ~ 1.4 x 10° years. Nor are the results an artifact
of the RMVS code, since integrations of P/Encke’s orbit
(and its 19 clones) with a Bulirsch—Stoer code showed
the same behavior with the same median lifetime. There
are several other comets in our catalog which show evolu-
tion in ¢ and { which drives the orbit into the sun-grazing
phase. However, most do not show smooth, apparently
secular drifts for as extended a period as P/Encke. This
is because of close approaches to planets. An analytic
explanation for this long-term ‘‘secular’ behavior re-
mains a problem to be pursued in the future. Valsecchi
has pointed out that P/Encke may be currently near the
vg secular resonance. However, this is not certain because
the locations of the secular resonances are not known for
eccentricities as large as P/Encke’s (cf. Morbidelli and
Henrard 1991).

Finally, let us consider the case of Near-Earth Objects,
which have been classified as objects with ¢ < 1 and
T > 3 (i.e., Earth-crossing but not Jupiter-crossing; see,
e.g., Weissman et al. 1989). Note that P/Encke is cur-
rently part of that population. We find in our simulations
that 3 = | of the 640 SPCs that were not initially NEQs
spent some fraction of their dynamical lifetimes as NEOs,
For these objects, the total time spent as an NEO was
10°~10° years. Thus, SPCs can be a source of at least
some of the NEOs (also cf. Wetherilt 1991).
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3d. The Evolution of the Inclination Distribution

In this subsection we discuss the behavior of the inclina-
tion distribution of the SPCs. As discussed earlier, Fig.
6 shows that the HFCs and the JFCs have very different
inclination distributions. Of particular importance is the
very flat inclination distribution of the JFCs. It has been
argued that much of the inclination difference may be due
to observational biases in the discovery of these objects
(Kresak 1981). However, Shoemaker and Shoemaker
(1993, hereafter S893) have argued that since comets with
g = 1 AU are not strongly affected by observational biases
and since the differences in inclination distribution persist
when only these objects are considered, the differences
seen for the complete sample cannot be entirely due to
observational biases.

The observed differences in the inclination distributions
have been at the center of the controversy over the origin
of SPCs and have been used to argue that JFCs and HFCs
are dynamically distinct systems that have different ori-
gins (see review by Levison 1991). Quinn et al. (1990)
argue that while HFCs are most likely captured long-

- period comets, it is not possible to reproduce the very
flat distribution of JFCs in this manner. They argue that
JFCs must have come from a source that is intrinsically
flat. They suggest that the source is a trans-Neptunian
belt of comets as first proposed by Fernandez (1980)—the
Kuiper belt. However, S593 point out that some meteor
streams (Olsson-Steel 1988) and some extinct comets are

observed with semimajor axes similar to JFCs but high
inclinations. Thus, they argue that high inclination JFCs
must exist which have remained undiscovered. $S93 fur-
ther argue that the existence of these high inclination JFCs
is inconsistent with the Kuiper belt being the source for
most of these objects.

5893 also present an alternative to the Kuiper belt sce-
nario. They argue that perhaps most visible JFCs are
objects which behave like P/Machholz (see our discussion
of the behavior of the sun-grazing phenomenon in Section
3c). That is, although they are most easily discovered at
small g when they have small /, they may actually spend
most of their time at high inclination and much lfarger ¢
where they are not be active. If so, the observed very flat
distribution in i for the visible JFCs would be a misleading
result due to a strong selection effect. Thus, understand-
ing the dynamical evolution of these high inclination ob-
Jjects is pivotal to the question of whether the Kuiper belt
is the source of JFCs. We will concentrate on this question
in the remainder of this subsection.

Figure 15 shows the mean cosine of the inclination of
the surviving JFCs as a function of time for both our
forward and backward integrations. The solid curve
shows this value for all comets in the family, while the
dotted curve includes only the visible members (g < 2.5
AU). The data for the HFCs are not presented because
the mean cos(/) does not significantly change over the
integrations. As discussed above, the symmetry seen in
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this diagram is due to the chaotic nature of the orbits. In
an infinitely accurate calculation with infinitely precise
initial conditions and non-gravitational forces, all our
comets could be traced back to their origin. Since the
orbits are chaotic and diverge exponentially in time, it is
not possible to recover their initial distribution.

TABLE I
All JFC HFC
Time to first g > 2.5 AU 1.5 x 10 1.0 x 108 1.9 x 10°
Total time visible 9.6 x 10° 8.5 x 10? 4.4 x 10

Note. Times are in years.

£ 1
300 A -
T ]
3 - -
EY C B
100;
Q
[+] 2000 4000 6000 BCOO 10000 12000 14000
=)
4
o
o by by v by by by e by |
a 2000 4000 6000 8000 10000 12000 14000
T ‘ 1 |
a0 -~
B0 ;
- ]
L -
el
= a9 ]
20 E
N P PR SRR I EPINI RPN B
Q 2000 4000 8000 leles] 10000 12000 14000
time (years)
FIG. 13. The temporal behavior of comet P/Machholz. (a) Argument

of perihelion. (b) Perihelion distance. The dotted line is at 2 solar radii.
(¢) Inclination.

Perhaps the most significant result seen in Fig. 15 is that
the inclination distribution of the visible Jupiter-family
comets thickens as a function of time on timescales on the
order of 10° years. These data suggest that the inclination
distribution of dynamically older visible JFCs is less flat
than that of younger comets. Here we define ‘‘dynamical
age” as the length of time since the comet was first in-
jected onto an orbit with T > 2 and ¢ = 2.5. In addition,
this result implies that if comets physically age and be-
come extinct, the resulting distribution of extinct visible
JFCs will have a more extended inclination distribution
than the active ones.

It is possible to predict the number of extinct visible
JFCs and their inclination distribution using our integra-
tion, The details of this calculation are given in Appendix
A and the results are shown in Fig. 16. Figure 16a shows
the ratio of extinct to active visible JFCs as a function of
the physical fading time of a JFC. Since it is believed that
the fade time is between ~2000 and ~10,000 years {cf.
Rickman 1991), we predict that this ratio is between 5 and
20. The number of visible JFCs currently in our sample is
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116, so we predict that there are between 600 and 1200
extinct JFCs with g = 2.5 AU. Figure 16b shows the mean
cos(i) for the comets which are active, extinct, and a
combination of both for the visible JFCs as a function of
fading time. Note that the predicted mean cos(i) of the
extinct objects is ~0.89 and is approximately independent
of the fade time for fade times larger than a few thousand
years. This value corresponds to an inclination of 27°.
S$893 present a table of the orbital elements of all the
known extinct SPC candidates. Of the 15 discovered ob-
jects, all of them have g < 2 AU and 14 have
2=T=3and 4° < i < 42°. The mean cos(i) for the
latter subsample is 0.881, which agrees very well with our
prediction.

Although we have shown that a population of extinct
high inclination JFCs does arise from a flatter distribution
of active comets, we have not addressed the question of
the origin of the high inclination objects. There are three
possible reasons for this conditien te exist: (i) a secular
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i — g evolution of comets exists so that they are visible
only when at low inclinations ($593), (i) low inclination
visible JFCs are removed from the visible Jupiter-family
earlier than high inclination ones, and (iii) JFCs are scat-
tered to higher inclination due to encounters with the
planets. As stated above, if the first scenario is correct,
then JFCs come from a distribution that is much thicker
than the observed JFCs. This scenario is therefore more
consistent with the Qort cloud than with the Kuiper belt
as the source of the JFCs. If either the second or the third
scenario 1s correct, then the source of the observed JFCs
is as flat as or flatter than the observed JFCs, This is more
consistent with the Kuiper belt than with the Oort cloud
as their source. We now investigate each of these explana-
tions separately.

(i) As discussed above, it might be argued that perhaps
most visible JFCs are objects which evolve in ¢ and / like
P/Machholz. That is, they have small perihelion distances
only when their inclination is small. If so, the observed
very flat distribution in i for the visible JFCs would be
misleading. We present two lines of arguments that show
that very few SPCs are currently in states like that of
P/Machholz.

First of all, our discussion of the sun-grazing phenome-
non showed that the state of low i/ and small g occurs
when the argument of perihelion w is near 90° or 270°,
(Quinn et al. 1990, Bailey er af. 1992). In reality, visible
SPCs have a distribution in @ which is strongly peaked
near 0 and 180° (see Section 3d), which is clearly inconsis-
tent with most comets evolving from a much higher incli-
nation via this mechanism.

Second, the existence of the three approximate inte-
grals in our earlier discussion allows us to calculate the
range in § and g induced by the averaged behavior of
Jupiter. Figure 17 shows the results of that calculation,
where a dot indicates the current values of i and g for
each prograde comet and the line through each dot gives
the range of those quantities predicted by the theory.
Except for P/Machholz, P/IRAS, and P/Tuttle (which are
represented by the three curves in the upper left of the
diagram), the comets are not generally expected to vary
appreciably in g due to the averaged effects of Jupiter
alone. Furthermore, it appears that most of the objects
have actually been found near the peaks of their expected
ranges in i, This is to be expected from the theory, which
predicts (in the absence of observational biases) that an
object spends most of its time near maximum { and g and
quickly passes through i = 0. There is no object in the
known sample of SPCs for which we expect the averaged
effects of Jupiter to cause a significant increase in its
inclination and perihelion distance. Thus, the selection
effect proposed by S593 does not appear to explain the
observed flattened distribution of visibie JFCs.

It might still be argued that this simple analytic theory
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FIG. 17. The evolution of perihelion distance and inclination (solid
curves} for all SPCs based the secular effect due to the influence of
Jupiter alone (Bailey er al. 1992). The dots show the current location
of these comets. .

does not accurately predict the behavior of the JFCs, and
that there may be another secular effect that produces a
strong correlation between g and i, If such an effect ex-
isted then there should be an observed correlation be-
tween a comet’s inclination and its perihelion distance in
our integration. In particular, objects with large g should
have high i. We test this hypothesis by first dividing peri-
helion distance into 10 equally spaced bins for ¢ < 5 AU.
During the integration, we record the inclination of every
comet as a function of its current perihelion bin. Figure
18a shows the mean cosine of the inclination of all JFCs
within a bin as a function of the bin’s mean perihelion
distance. If this theory were correct, we would find that
larger values of ¢ would imply farger {. This trend is not
observed. Thus, the conjecture of §S93 is not consistent
with our integration.,

(ii) Another possible explanation for the increase in
inclination observed in our integration is that low inclina-
tion objects may have shorter dynamical lifetimes than
objects with large i. If so, the low inclination objects
would be removed first from the system and thus the
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population’s mean inclination would increase. To test this
possibility, in Fig. 18b we plot the initial inclination of
each comet as a function of the total length of time spent
as a visible JFC. If this scenario were true, we would
expect to see a correlation between a comet’s lifetime
and its inclination, which is not observed.

(ii1) The final explanation is that the orbits of individual
comets may tend to evolve to higher inclinations due to
nonsecular effects such as close approaches to the plan-
ets. In this scenario, the decrease in the mean cos(i) (in-
crease in mean {) observed in the system is a result of
dynamical relaxation. If this were correct, then we would
expect that, on average, the mean inclination that a comet
has during its time as a visible JFC would be larger than
its current inclination. In Fig. 18¢, we plot these two
values for the 640 comets in our integration. Approxi-
mately 71% of the comets fall above the diagonal line,
implying that, on average, the inclination of a comet does
increase with respect to time.

Thus it appears that the reason that the mean inclination
of our sample of comets increases is because the inclina-
tion of individual comets tend to tncrease. In addition,
this increase is not due to known secular effects coupled
with observation biases. This type of behavior can be
seen in the orbit of the comet P/Tempel-Swift. Figure 7¢
shows the inclination of this comet as a function of time.
Note that the inclination seems to vary in a manner ¢onsis-
tent with a random walk. This supports the conclusions
of Quinn et ai. (1990) that comets injected into the visible
Jupiter-family must be in low inclination orbits.

3e. Other Orbital Elements

JFCs have two interesting characteristics in their orbital
element distribution that must still be discussed. These
are shown as the solid histograms in Fig. 19. Figure 19a
shows a histogram of the aphelion distances of IFCs, Q,
which are strongly peaked near the semimajor axes of
Jupiter. Approximately 73% of them have ( between 4.2
and 6.2 AU. Figure 19b shows a histogram of the argument
of perihelion, w. It can be seen that the argument of perihe-
lion is strongly concentrated near 0 and 180°. Approxi-
mately 74% of known JFCs have @ within 45° of these
two values, A value of o = 0 or 180° implies that when
the comet passes through the plane of the solar system,
it is also at either perihelion or aphelion.

It is easily shown (Kresdk 1981) that & comet coming
in from the outer regions of the solar system that is scat-
tered by Jupiter into an orbit with g = 2.5 AU must have
5= = 6 AU, because of the approximate conservation
of the Tisserand invariant during the encounter. In addi-
tion, since these comets have had a recent encounter with
Jupiter, and since their Qs are approximately equal to the
semimajor axis of Jupiter, then the comet must be very
near the plane of the solar system when it is at aphelion.
This implies that o is approximately 0 or 180° (e.g., see
Kresdk 1981). This suggests that most of the JFCs have
just recently been captured into the visible Jupiter-family
via a close approach to Jupiter,

The above conclusion is confirmed by the behavior of
the Q and w distribution of our comets as a function of time.
Figures 19a and 19b show the @ and w distribution for visi-
ble JFCs at various times in our integration. The dotted
histogram represents the distribution 2000 years in the fu-
ture and the dashed histogram at 20,000 years in the future.
The amplitude of the peaks in both figures substantially de-
creases in 20,000 vears. Thus the peaks in the observed
distribution imply that the observed population of JFCs is
not ina steady state. This can also be seenin Fig. 7d, which
shows the temporal behavior of the argument of perihelion
for the comet P/Tempel-Swift. There is no tendency for
the comet to have w close to 0 or 180°. Indeed, over almost
all of its lifetime @ circulates rather than librates.

The only possible explanation for the observed strong
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concentration of orbital elements is that many of the ob-
served JFCs are objects that have only recently been
scattered into the visible Jupiter-family. The observed
peaks in Q and « implies that most of the visible JFCs
have recently sutfered a close approach with Jupiter. This
idea is consistent with several previous numerical integra-
tions (Karm and Rickman 1982, Tancredi and Lindgren
1992). Note that this result does not supply any informa-
tion about the number of times that comets have visited
the visible Jupiter-family before the present one, and thus
we cannot conclude anything about the dynamical age of
the observed comets.

IV. CONCLUSIONS

We have developed and carefully tested a new inte-
grator for solar system dynamics that is roughly an order

of magnitude faster than previously existing methods. We
have used the code to integrate backward and forward
the orbits of all the current short-period comets (hereafter
SPCs) for up to 107 years under the influence of the Sun
and all the planets except Mercury and Pluto. Four orbits
were integrated for each comet, slightly varying the initial
positions of the clenes. Our key results are as follows:

(1) The median dynamical lifetime of an SPC (as mea-
sured by the length of time before half are ejected or
become sun-grazers) is 4.5 = 0.1 x 10° years,

(2) If defined solely on the basis of period, Jupiter-
family comets (P < 20 years) and Halley-family comets
(20 << P << 200 years) are not dynamically distinct objects.
When classified in this way, a comet moves between the
families a median of 12 = 1 times in its dynamical history.
This is consistent with the results of other authors who
performed integrations over much shorter periods of time
(Lindgren 1991, Nakamura and Yoshikawa 1991).

(3) If defined on the basis of the Tisserand parameter
T with respect to Jupiter (Carusi and Valsecchi 1987),
Jupiter-family comets (JFCs, T > 2) and Halley-family
comets (HFCs, T < 2) tend to be dynamically distinct, It
is striking that over 92% remain in the same Tisserand
family throughout their dynamical lifetimes, and that the
vast majority of those that do change families tend to
remain near the dividing line throughout.

{(4) The median number of times that JFCs change from
orbits with g << 2.5to ¢ > 2.51s 10. A typical comet spends
less than 7% (median value) of its dynamical lifetime with
g < 2.5. Since objects with perihelia beyond 2.5 AU are
difficult to detect, this implies that there are more than
10 times more undetected JFCs than there are visible
JFCs. Of those visible now, half will evolve to states with
g > 2.5 in roughly 10° years.

(5} A surprising fraction (5.5 = 0.8%) of comets become
sun-grazers, Of particular note, we predict with high prob-
ability that P/Encke will become a sun-grazer. The median
lifetime of P/Encke is approximately 10° years. We see
evidence of a new “‘secular’” behavior in P/Encke and
some other comets that acts on a longer timescale and is
of a different nature than the previously known averaged
effects of Jupiter alone. This behavior may be associated
with resonances with the planetary secular frequencies.

(6) Roughly 0.3% of SPCs spend some time in Earth-
crossing orbits with T > 3 (non-Jupiter-crossing), i.e.,
become what are commonly called Near Earth Objects.

(7) The very flat initial inclination distribution of JFCs
is observed to thicken as it ages. This is due to the inclina-
tion of individual comets increasing with time. For reason-
able values of the physical fading time of comets (2000
to 10,000 years), we predict that there should be 5-20
times more extinct visible (g <.2.5 AU) JFCs than active
visible JFCs. The extinct population is significantly less
flattened than the active group, having a mean cos(i) of
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0.88, consistent with the observations of a group of extinct
JFCs by $593.

{8) We show that the most likely explanation for the
evolution in inclination is that the JFCs originate in a
flattened distribution such as the Kuiper Belt.

{9) The evolution of the distribution in the argument of
perihelion @ and the aphelion distance @ suggests that
much of the current population of visible JFCs have rela-
tively recently been scattered into a visible orbit (g < 2.5
AU) by Jupiter.

The (400 Megabyte) database from the simulations de-
scribed here may be obtained by contacting the authors.
In addition, a printed catalog is available which plots the
evolution of the orbital elements of all the objects in the
study.
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APPENDIX A

In this appendix we develop the mechanics for interpre-
ting the behavior of the inclination distribution seen in
our integrations (see Section 3¢). Using these integrations,
it is possible to predict the number of extinct visible (g =
2.5 AU) Jupiter-family comets (JEC) and their inclination
distribution as functions of their physical lifetime.

Define 7 as the age of a visible JFC. By this we mean
the length of time since the comet was first injected into
an orbit with g = 2.5 AU and T = 2. Define {{i, 7) as
the number of comets in the visible Jupiter-family with
inclination i between i and i + di and whose age is between
7and 7 + dr. If there were no physical aging and comets
did not become extinct, then the observed inclination
distribution would be

£t =0 = [ G, dr. (A1)
1]

Note that in the situation where comets do become ex-
tinct, &(7; ¢+ = 0) is the current inclination distribution of
both the active and extinct JFCs with g = 2.5 AU. If we
model the effects of physical aging by assuming that all
comets remain active for #; years, after which they are
permanently extinct, then the inclination distribution of
the active visible JFCs is

Ereiivelin 1 = 0) = j L(i. )dr.
]

Our integrations follow the dynamical behavior of the
known population of JFCs. Since we are not injecting any
new comets into the system, at some time, ¢, we see the
inclination distribution of the set of objects with ages
between ¢ and ¢ + f;. Therefore, the observed inclination
distribution of objects in our integration is

t+i;

£G:0= [ L nar,

t

Clearly, the observed inclination distribution of both
active and extinct JFCs with ¢ = 2.5 (Eq. (Al)) is

£ 1=0)= | L(i,r)dr

o3

ZIr

I
= [t mydr+ [ 1, 7+ -
[\ t

Gy

+ | dindr+

nlg

N

£(i; nty),

n=0

where £(i; nt;) can be determined for each n directly from
our integrations. With a similar argument we find that the
observed inclination distribution for the extinct comets
is

fex[inct(i; t=0)= ; {(H ntf)-

Note that the sum starts at 1 here, rather than at 0 as in
the calculation of £(i; ¢ = 0). In this way, we can assume
any value of 4 and perform the sums using the data stored
from our integrations.

The total number of both active and extinct JFCs cui-
rently in the solar system is then

New= [ 4,005t = 0)di.
0

Also the mean cos{i) of the distribution of these comets
is
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1
le

mean cos(i) = fca(i; t=0)cos( di.
]

Similar integrals exist for the population that only consists
of extinct comets. It is these values that are discussed in
Section 3c.
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