Terrestrial planet formation by torque-driven convergent migration... (rev. 1)

See fargo_terr_20210112.pdf, figs_20210112.pdf, supplement_20210112.pdf, response.txt.

  1. Viscosity-related parameters (ref. #1)
  2. Eccentricity forcing (ref. #1)
  3. Mercury-size protoplanets (ref. #2)
  4. Observational biases (ref. #2)
  5. Pebble flux (ref. #3)
  6. Jupiter influence (ref. #3)
  7. Gas-free evolution (ref. #3)
  8. Condensation sequence (ref. #3)

1. Viscosity-related parameters

viscosity value:

low ν (0.3 times nominal) nominal ν = 1.1e14 cm^2 s^-1 high ν (3.0)
da/dt(m,r)

vicosity slope (in r < 1 au region):

low s1 (-1.0) nominal s1 (-2.0) high s1 (-3.0)
da/dt(m,r)

Note: ν(r) = ν0 (r/1 au)s, s = s1 + (s2 - s1) {1-tanh[(1 au-r)/(0.15 au)]}/2, s2 = +0.5.

2. Eccentricity forcing

nominal ehot = 0.02 no hot-trail forcing, ehot = 0
m(a)
t(a)
The same as Fig. 3, but for 100 simulations (not 50).
t(a)
N_sim(N_pl)
The same as SI Fig. 6, but for migration time scale tau = 0.3 Myr (not 0.2 Myr).

3. Mercury-size protoplanets

nominal Mars-size Mercury-size
m(a)
t(a)
N_sim(N_pl)

4. Observational biases

Size-period relation from Petigura etal. (2013), Fig. 1:

Infrared excess vs. cluster age from Fedele etal. (2010), Fig. 4 and other works:

4. Pebble flux

a(t) plots for sets of 50 (or 100) simulations:

dM_p/dt = 2e-5 M_E/yr 2e-6 M_E/yr 2e-7 M_E/yr
M_tot = 2 M_E,
Mercury- to Mars-size
2 M_E,
lunar-size
1 M_E,
Mercury- to Mars-size
1 M_E,
lunar-size
0.1 M_E,
lunar-size

a(m) for the same sets:

dM_p/dt = 2e-5 M_E/yr 2e-6 M_E/yr 2e-7 M_E/yr
M_tot = 2 M_E,
Mercury- to Mars-size
overgrowth!
2 M_E,
lunar-size
not finished!
1 M_E,
Mercury- to Mars-size
1 M_E,
lunar-size
0.1 M_E,
lunar-size
overgrowth! See 3 Myr.

Nsim(Npl) for the same sets:

dM_p/dt = 2e-5 M_E/yr 2e-6 M_E/yr 2e-7 M_E/yr
M_tot = 2 M_E,
Mercury- to Mars-size
2 M_E,
lunar-size
1 M_E,
Mercury- to Mars-size
1 M_E,
lunar-size
0.1 M_E,
lunar-size

5. Jupiter influence

nominal without Jupiter with Jupiter at 5.2 au with migrating Jupiter (to 2.5 au)
m(a)
t(a)
N_sim(N_pl)

6. Gas-free evolution

nominal constant exponential decay (τ = 5 Myr) long-term evolution
m(a)
t(a)
N_sim(N_pl)
N_col(t)

More complicated giant planet migration (Sandro etal. in prep.); namely scenario "1" from Roig etal. (2016):

7. Condensation sequence

Condensation sequence for the solar composition (Asplund et al. 2009) and an increased abundance of Fe (10 times; red line). The concentrations n (per litre units) of various solid phases and their dependence of decreasing temperature T are shown. A preliminary computation performed by the ArCCoS code (Unterborn and Panero 2017).

Potassium on terrestrial bodies from Nittler etal. (2018), Fig. 2.3:

Potassium on terrestrial bodies from Dauphas etal. (in prep.):


Miroslav Broz (miroslav.broz@email.cz), Jan 7th 2021