
7 Henyey numerical method

for the integration of stellar

interior

Currently, the numerical solution of stellar structure equations is usually performed
by a method of complete linearisation, which was first suggested by Henyey et al.
(1959) and which was later used also for computations of stellar atmospheres.

7.1 Method of complete linearisation

The method of complete linearisation consists of the following steps:

1. a discretisation of the equations;

2. supplying of the boundary conditions in the centre;

3. a construction of the outer boundary conditions, consisting of: (a) an estimate
of the luminosity L∗ and the effective temperature Teff ; (b) a calculation of
three models of the photosphere and sub-surface layers; (c) a solution for
coefficients of the linear functions R1(P1, T1), L1(P1, T1);

4. a linearisation of the equations;

5. an iterative calculation of a stationary model;

6. performing a time step in case of an evolutionary model.

Discretisation. The very first step is a transition from differential to difference

equations, in other words a discretisation of the problem. We divide whole stellar
interior (i.e. the volume, where matter is in a fully ionised state) to a sufficient
number of concentric shells and number them from the surface to the centre by
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the index j = 1 . . .N (Fig. 7.1), we choose e.g. N = 200. This way we determine
discrete values Mj of the formerly continuous independent variable MR.

We replace derivatives of the continuous functions R,P, LR, T on the left-hand
sides of the equations by differences of variables Rj , Pj , Lj, Tj between neighbouring
shells j and j+1. Instead of we write their arithmetic means between the j-th
and (j+1)-th shells.1For example, for the equation of the hydrostatic equilibrium
we have (after all terms were moved to the left)

dP

dMR

+
GMR

4πR4
≃

Pj − Pj+1

Mj −Mj+1
+

1

2

(

GMj

4πR4
j

+
GMj+1

4πR4
j+1

)

= 0 . (7.1)

We have four stellar structure equations for each pair of shells , so we can arrange
a whole set of equations, which we abstractly denote

Gij = 0 , (7.2)

where i = 1 . . . 4 and j = 1 . . .N − 1. It is 4(N−1) equations for 4N unknowns
Rj , Pj , Lj, Tj . Clearly, we will have to add some more equations.
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Figure 7.1: Discretisation of a stellar interior to N concentric shells. The sub-surface layers and
the photosphere are also plotted as dashed.

Boundary conditions in the centre. A rewrite of the boundary conditions (??)
and (??) is very simple

LN = 0 , (7.3)

RN = 0 . (7.4)

The number of equations then increases to 4N−2.

1Or we can substitute average values of the variables to the right-hand sides, 1

2
(Rj + Rj+1),

etc.
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Method of complete linearisation 7.1

Outer boundary conditions. The boundary conditions on the surface are more
complicated thought, because it is impossible to prescribe a certain value for R1,
P1, L1 or T1, as we would wrongly restrict the solution! Instead, for the given
mass M∗ of the star we ’guess’ three pairs of values for the luminosity and the
effective temperature

L∗, T
(1,2,3)

eff , (7.5)

in the surroundings of the expected position of the star on the HR diagram. We
then compute three photospheric models (from τ = 0 to τ ≃ 2/3) and obtain three
sets of values

R1, P1, L1, T
(1)
1 ,

R1, P1, L1, T
(2)
1 , (7.6)

R1, P1, L1, T
(3)
1 ,

which we use to compute coefficients α1, β1, γ1 and α2, β2, γ2 of the linear functions
of two variables

R1 = α1P1 + β1T1 + γ1 , (7.7)

L1 = α2P1 + β2T1 + γ2 . (7.8)

by the least-squares method. These two equations are in turn used as the boundary
conditions. Indeed, this is clever — we prescribe only the approximate relations
between variables R1 = f1(P1, T1), L1 = f2(P1, T1), not the values of variables!
Finally, we have 4N equations for 4N unknowns, but we are not done. The set is
strongly non-linear and it not possible to solve it with simple methods.

Linearisation. We can solve the whole set of equations in such a way that we sim-
ply estimate or ’guess’ the values of variables Rj , Pj , Lj , Tj (then the equations (7.2)
would not hold), but we replace all them with “the guesses plus small corrections”
in Eqs. (7.2)

Rj → Rj +∆Rj ,

Pj → Pj +∆Pj ,

Lj → Lj +∆Lj ,

Tj → Tj +∆Tj , (7.9)

and we linearise the whole set as2

Gij + dGij = 0 , (7.10)

2It is not sufficient to linearise individual variables, e.g. (Rj +∆Rj)2
.
= R2

j
+2Rj∆Rj , because

there are products and quotients in the equations.
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where

dGij =
∂Gij

∂Rj

∆Rj +
∂Gij

∂Pj

∆Pj +
∂Gij

∂Lj

∆Lj +
∂Gij

∂Tj

∆Tj +

+
∂Gij

∂Rj+1
∆Rj+1 +

∂Gij

∂Pj+1
∆Pj+1 +

∂Gij

∂Lj+1
∆Lj+1 +

∂Gij

∂Tj+1
∆Tj+1 . (7.11)

We compute the partial derivates easily from the original equations, e.g.

∂G23

∂R3
=

∂

∂R3

[

P3 − P4

M3 −M4
+

1

2

(

GM3

4πR4
3

+
GM4

4πR4
4

)]

= −

GM3

2πR5
3

. (7.12)

Iterations. The set (7.10) of 4N linear equations with 4N unknowns ∆Rj ,∆Pj ,∆Lj

and ∆Tj can be solved easily (e.g. by the Gauss elimination method or better meth-
ods optimised for solutions of band matrices). The obtained corrections of original
estimates are used to derive more precise estimates

R
(2)
j = R

(1)
j +∆R

(1)
j ,

P
(2)
j = P

(1)
j +∆P

(1)
j ,

L
(2)
j = L

(1)
j +∆L

(1)
j ,

T
(2)
j = T

(1)
j +∆T

(1)
j , (7.13)

and the set (7.10) is solved again for ∆R
(2)
j ,∆P

(2)
j ,∆L

(2)
j ,∆T

(2)
j . We repeat the

iterations until a required precision is reached (i.e. ∆Rj ,∆Pj ,∆Lj,∆Tj are small).
If our model would result in values L∗, Teff outside the range of our original esti-
mates (7.5), we have to return to point 3, of course.

Time step. If we compute a stellar evolution, i.e. a temporal sequence of sta-
tionary models, we choose the time step ∆t between two consecutive models and
compute new chemical composition according to a discretised form of the rela-
tion (??)

Yj(t+∆t) = Yj(t) +
∑

i

αiǫi(ρj , Tj, Xj , Yj , Zj)∆t , (7.14)

whereas in convective zones we perform an averaging according to the relation (??),
we only replace integrals with sums.

7.2 Limits of discretisation

It is instructive to try, how the discretisation can be pushed to the extreme. Let
us take for example the equation of hydrostatic equilibrium in the form

dP

dR
= −

GMRρ

R2
. (7.15)
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If we replace the derivative on the left-hand side with a difference between the
centre and the surface (we divide the star to mere two shells), we obtain

Pc − 0

0−R∗

= −

(

GMR

R2

)

mean

ρmean = −

1

2

GM∗

R2
∗

M∗

4
3πR

3
∗

, (7.16)

with respect to the fact that the gravitational acceleration in the centre is After
rearrangement, we obtain an estimate of the central pressure in the star

Pc =
3GM2

∗

8πR4
∗

. (7.17)

If we substitute the observed values M∗ and R∗ for the Sun, we obtain the pressure
approximately 1,34 · 1015 [cgs], while the value inferred from the precise model
of the Sun is 2,269 · 1017 [cgs]. It is a rather substantial difference. There is a
comparison of the model and the estimates for several masses of stars in Table 7.1.
It is interesting thought that the relation between the logarithm of calculated and
estimated pressure is almost precisely linear. We see that the estimates demonstrate
a decrease of the central pressure with the increasing star mass , in accord with
realistic models. Using a sport terminology: a certain estimate that the pressure
in the interior is very high is all right, even with this crude discretisation, and we
even correctly qualitatively estimate how the pressure depends on mass.

Table 7.1: A comparison of the calculated central pressure and estimates.

star mass logPc (model) logPc (estimate)
(M⊙) [cgs] [cgs]

1 17,356 15,128
7 16,609 14,709

25 16,275 14,518
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