
13 Binary stars evolution

According to what we already know about stellar evolution, it is clear that in a
binary star, the primary, more massive component will evolve faster. If the orbital
period, hence the distance between components, is smaller than a certain limit and
the radius of the star will increase, it will overcome the limit of stability and gas
from the star will start to flow towards the secondary, less massive component of the
binary. It may happen during the evolution on the main sequence, or more likely
during the transition from the main sequence to the giant branch, after hydrogen
is exhauster in the centre. This process alters the equilibrium of the mass-loosing
star and changes its further evolution. Let us first describe, how computations of
the mass transfer are carried out.

13.1 Roche model and Lagrange points

Given the strong concentration of mass towards the centre of a star, it is possible to
use the Roche model for studies of binary stars; even though it is more complicated
compared to a single rotating star. Hereinafter, we assume that mass of the primary
and the secondary components is concentrated in two points, with masses M1 a M2;
we also introduce the mass ratio

q =
M2

M1

. (13.1)

We shall use a non-inertial Cartesian coordinate system, rigidly connected with
the binary star; ω denotes the angular orbital speed of the reference frame. The
origin is in the point M1 and the x axis points from M1 to M2, the y axis is
perpendicular to x and in the orbital plane and the z axis is perpendicular to the
orbital plane. The distance A = 1 between the two points is chosen as the unit of
distance (Fig. 13.1). Let us denote the distance of the centre of mass from points
M1 and M2 as x1 and x2. It holds x1/x2 = M2/M1 and x2 = 1 − x1, from which
we obtain x1 = M2/(M1 +M2).

There are three forces acting on an infinitesimal body with the mass m, located
at an arbitrary point (x, y, z): a gravitational attraction of the two point masses and
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Figure 13.1: Definition of the coordinate system for computation of the potential in the vicinity
of a binary star. The centre of mass T and the axis o of rotation are not in the origin.

a centrifugal force corresponding to the rotation of the coordinate system. These
forces are expressed as

F1 = −G
mM1

|r1|3
r1 , F2 = −G

mM2

|r2|3
r2 , F3 = mω2r3 ,

r1 = (x, y, z) , r2 = (x − 1, y, z) , r3 =

(

x−
M2

M1 +M2

, y, 0

)

.

Denoting also

r1 = |r1| , r2 = |r2| , r3 = |r3| , (13.2)

it is possible to write down a potential of these three forces (F = m∇W ) as

W =
GM1

r1
+

GM2

r2
+

1

2
ω2r2

3
. (13.3)

The angular orbital speed ω can be expressed from the 3rd Kepler law (with A = 1)

ω2A3 = G(M1 +M2) = GM1(1 + q) (13.4)

and for a simpler notation we introduce use a scaled potential instead of W

Ω =
W

GM1

=
1

r1
+

q

r2
+

1

2
(1 + q)r23 = (x2 + y2 + z2)−

1

2 +

+ q((x − 1)2 + y2 + z2)−
1

2 +
1

2
(1 + q)(x2 + y2)− qx+

q2

2(1 + q)
. (13.5)

The equation for equipotential surfaces is then

Ω = C , (13.6)
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Figure 13.2: Potential Ω(x, y, 0) and Ω(x, 0, z) for a binary star with the masses M1 = 4,0M⊙,
M2 = 3,2M⊙ (q = 0,8). The positions of the Lagrange libration points are plotted, as well as the

critical equipotential, over which mass would be transferred (if overflown). The stars are plotted
as spherical, with the radii R1, R2 as they would have on the zero-age main sequence (at the time
t = 0). However, the shape of the surface would not remain spherical, it would rather adapt to a
certain equipotential.

where C denotes a constant corresponding to a certain surface (Fig. 13.2). Let us
note that the shape of equipotential surfaces is a function of a single variable, the
mass ratio q.1

We are again interested in positions, where the resulting force acting on the test
body is zero, or when

∇Ω =

(

∂Ω

∂x
,
∂Ω

∂y
,
∂Ω

∂z

)

= 0 . (13.7)

Expressed in coordinates

∂Ω

∂z
= − 1

2

(

x2 + y2 + z2
)−

3

2 · 2z + q
(

− 1

2

) (

(x− 1)2 + y2 + z2
)−

3

2 · 2z = 0 . (13.8)

This equation implies a solution z = 0. The second equation

∂Ω

∂y
= − 1

2

(

x2 + y2 + z2
)−

3

2 · 2y + q
(

− 1

2

) (

(x− 1)2 + y2 + z2
)−

3

2 · 2y +

+ 1

2
(1 + q) · 2y = 0 , (13.9)

1A similar analysis is done in the celestial mechanics in the three-body problem. Apart from
the centrifugal force, the Coriolis force (Fc = −2mω × v) arises during the transformation of
coordinates. In our stationary case (v = 0) it can be neglected. The equipotential surface are
sometimes referred to as zero-velocity curves.
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Figure 13.3: Function
∂Ω(x,0,0)

∂x
for the mass ratio q = 3,2/4,0 = 0,8 and its roots, which are

the coordinates of the Lagrange libration points L1, L2, L3. Functions for additional values of
q = 10−4, 10−3, 10−2, 0,1, 0,5, 1,0 are plotted by thin lines.

has two solutions. First, let us assume y 6= 0, after reduction of y we obtain

−
1

r3
1

−
q

r3
2

+ 1 + q = 0 , (13.10)

which can be fulfilled only id

r1 = r2 = 1 . (13.11)

This corresponds to two points in the orbital plane, in the vertices of the equilateral
triangles with the points M1, M2. They are called the Lagrange points L4 and L5.

If y = 0 (we are looking for collinear solutions on the x axis), then from the
third equation

∂Ω(x, 0, 0)

∂x
= −

x

|x|3
+

q(x− 1)

|x− 1|3
+ (1 + q)x− q

= −
sgnx

|x|2
+

q sgn(x− 1)

|x− 1|2
+ (1 + q)x− q = 0 (13.12)

we obtain a polynomial of the degree 5 for x (with the parameter q), which has
three real roots (Fig. 13.3). They are usually called L1 (the point between M1

and M2); L2 (located beyond M2) a L3 (located outwards of M1).
As already mentioned for single stars, the importance of equipotential surfaces

is that a star in equilibrium adopts a shape of one of those. The critical surface
containing the point L1 — often called the Roche limit — represents an important
limit for stability of binary stars. A practical prescription how to compute the
dimensions of the critical limit for a given mass ratio is included in the appendix
of Harmanec (1990).
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Physical classification of binary stars. The Roche model offers a criterion for
contemporary physical classification of binary stars as:

1. detached, where both components have dimensions smaller than the critical
surface;

2. semi-detached, in which one component is inside the critical surface and the
other one is just filling it, so that mass is transferred across the point L1;

3. contact, when both components fill of overfill the critical surface and have a
common atmosphere. Alternatively, mass can be lost from the system across
the point L2.

13.2 Calculation of stellar evolution during
mass transfer phase

Distance of binary components. If no mass is lost from the system, we can use
the mass conservation law

M1(t) +M2(t) = K (13.13)

and also the angular momentum conservation law (for its orbital part)

L
.
= Lorb =

M1M2

M1 +M2

AvK =
M1M2

M1 +M2

A
2πA

P
. (13.14)

The latter equation can be modified using the 3rd Kepler law

A3

P 2
=

G(M1 +M2)

4π2
(13.15)

to obtain

L2

orb
= G

M2
1
M2

2

M1 +M2

A , (13.16)

which is further simplified for the constant total mass (13.13) as

A(t)M2

1
(t)M2

2
(t) = C . (13.17)

We can now ask a logical question, when the distance between the two stars will
be minimal. In the last Eq. (13.17) we eliminate the mass M2 using Eq. (13.13)

A(M1) = CM−2

1
(K −M1)

−2 (13.18)
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Figure 13.4: Distance of a binary star components with the initial masses M1 = 4M⊙, M2 =
3,2M⊙ during mass transfer, depending on the mass M1 (according to Eq. (13.18)). Evolution of
this binary computed for a realistic mass transfer is plotted in red — the original mass transfer
q = M2/M1 = 0,8 has been more than reversed (to the value q = 1,89).

and we look for the mass M1, when the derivative of this function with respect
to M1 is zero. We obtain

dA(M1)

dM1

= −2CM−3

1
(K −M1)

−2 + 2CM−2

1
(K −M1)

−3 = 0 , (13.19)

which after simplifications leads to

−(K −M1) +M1 = −K + 2M1 = 0 (13.20)

or

M1 = M2 . (13.21)

We see that the distance between the stars, in the case of conservative

mass transfer, is minimal, when the masses of the two bodies are just

equal. If matter flows from the more massive components to the less massive
(M1 > M2), the distance becomes smaller; if the flow is opposite (M1 < M2), or
after the mass ratio has been reversed, respectively, the distance becomes larger
(Fig. 13.4).

Non-conservative mass transfer.

Model of stellar interior.

6



Selected results of binary stars modelling 13.3

Figure 13.5: HR diagram for the primary component of a binary 4M⊙ and 3,2M⊙. Additional
parameters of the binary at the beginning of mass transfer are: radii R1 = 4,78R⊙, R2 = 2,47R⊙,
spectral types B7 III and B8 V, a distance between components A = 11,95R⊙ and an orbital
period P = 1,785 d. The zero-age main sequence (ZAMS, dash-dotted line) is indicated twice —
for two different chemical compositions: X = 0,602, Y = 0,354 and X = 0, Y = 0,956. The
evolution is shown before, during and also after mass transfer. The transfer proceeds between
points 2 and 11; individual points are described in the text. Models ends in point 18, because the
former secondary star would reach the Roche limit in this phase and a flow back to the former
primary would start. Reprinted from Harmanec (1970).

13.3 Selected results of binary stars
modelling

Example of a binary star 4M⊙ and 3,2M⊙.

13.4 Binary stars versus observations,
evolutionary paradox

Evolutionary paradox. The key problem, which was necessary to explain by mod-
els of mass transfer in binaries, was the evolutionary paradox of semi-detached

systems . When sufficient number of binaries were observed and their basic physical
properties were determined, they were subsequently classified in 1950’s to detached,
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Figure 13.6: Rate of mass transfer −dM/dt ([dM/dt] = 10−5 M⊙) vs. time t ([t] = 106 years) for
the binary 4M⊙ and 3,2M⊙. Reprinted from Harmanec (1970).

semi-detached and contact systems. It turned out that in all cases, the Roche
limit in semi-detached systems is filled by the less massive secondary component
(Fig. 13.7). However, it was known that according to the theory of stellar evolution,
the more massive component should evolve and expand faster to the Roche limit.
The observations seemed to indicate just the opposite.

With a great physicists intuition, Crawford (1955) suggested a possible solution
to the paradox. He postulated that the more massive component will indeed evolve
faster and mass will be exchanged, which reverses the original mass ratio. (His
hypothesis was opposed by Czech astronomer Zdeněk Kopal.) It took more than
10 years, until the Crawford hypothesis was confirmed by calculations of mass
transfer. The point is that the initial phase of mass transfer, during which the
original mass ration reverses, proceeds so fast compared to other phases that we
have only little chance to observe such a system.

Be stars.

Eccentric orbits.

Magnetic polars.
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Figure 13.7: Scheme of a semi-detached system, in which the less massive secondary component
fills its Roche lobe. Taken from the work of Crawford (1955).
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