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Abstract. Tomography is the mathematical process of imaging an object via a set of
finite slices. In medical imaging, these slices are defined by multiple parallel X-ray beams
shot through the object at varying angles. The initial and final intensity of each beam
is recorded, and the original image is recreated using this data for multiple slices. I will
discuss the central role of the Radon transform and its inversion formula in this recovery
process.

1. Introduction

Tomography is a means of imaging a two- or three- dimensional object from many one-
dimensional “slices” of the object. In a CT (computerized tomography) scan, these slices
are defined by multiple parallel X-ray beams that are perpendicular to the object. This idea
is shown in Figure 1, where a slice is defined by the dark band surrounding the patient’s
head. A CT scanner makes two measurements: the initial intensity of each X-ray beam, I0,
at the radiation source, and the final intensity of each beam, I1, at the radiation detector.
The changes in intensity for a single beam are dependent on the internal density of the
object along the line the X-ray passes through (we shall go into more detail about exactly
how this process works later in this section). By changing the orientation of the source and
detector we are able to gain more information about the internal density of a single slice by
looking at the corresponding intensity changes. The motivating question for this discussion
is: how do we use the information measured by a CT scanner (the changes in density) to
accurately create a picture of the varying densities along a single slice of our object? If
we are able to recreate a single slice, we can then use multiple slices to get an idea about
the internal structure of our entire object. As a starting point for our discussion, we will
consider a single X-ray beam.

Figure 1. CT Example
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X-rays are a type of electromagnetic radiation, a form of energy that is dependent on
charged particles traveling through space. X-rays have wavelengths between 0.01 to 0.1
nm (1nm = 10−9m) and corresponding frequencies in the range of 3 x 1016 Hz - 3 x 1019

Hz. We will not focus on the physical properties of X-rays all that much, most important
to our discussion is actually the changes in the intensity of a single beam as it comes in
contact with a solid object. When an X-ray is shot through an object it looses some of its
energy to the surrounding medium. This loss corresponds to a decrease in the intensity of
the beam.

Intensity is energy flux averaged over the period of the wave and is dependent on both the
speed of the wave and the energy density (energy/ unit volume) of the wave. By measuring
the initial and final intensities of a single beam, we gain some knowledge about the density
of the medium through which it passed. Intuitively it makes sense that a denser object
(such as bone) would cause a greater change in the intensity of the beam than would a less
dense object (such as human tissue) .

Figure 2. Parallel X-Ray Beam Geometry

What about more complex objects, however? In a CT scan a single X-ray beam cross
through many different materials such as blood, bone, tissue, etc. This causes the density
of the object to vary over the length of the beam and measuring the initial and final
intensities of a single beam in one direction does not give us any information about the
changing densities along the path of the beam, only the overall loss in intensity. The
idea behind tomography is that by measuring the changes in intensity of X-ray beams in
many different directions we might be able to compile enough information to determine
the different densities of our initial medium. To make these varying measurements, we
shall assume a parallel beam geometry. This idea is demonstrated in Figure 2, where we
have multiple parallel beams creating two different slices; first the beams are perpendicular
to the x-axis, then they are rotated through by an angle θ. By changing the angle θ the
beams travel along, we are able to create a new slice. There are other beam geometries
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Figure 3. Shepp Logan Phantom and Sinogram

used in modern CT scanners such as a fan beam or cone geometry, however we shall limit
this discussion to parallel X-ray beams.

The corresponding losses in intensity are given a grayscale value between 0 (black) and 1
(white). A value of 0 corresponds to zero change in intensity and a value of 1 corresponds
to the beam being completely absorbed by the medium. The compilation of these varying
values creates what is known as a sinogram (Figure 3). A sinogram is a graphical represen-
tation of the intensity losses measured by the CT scanner where the vertical axis represents
the distance various beams are from the origin and the horizontal axis represents the angle
at which the slice is measured. Therefore, a single point in the sinogram represents our
measured change in intensity for a given distance and angle. From the information given
in a sinogram we are able to recreate the structure of the original object. In Figure 3 we
see an example of a sinogram created from a “phantom” image. A phantom image is an
object created from predetermined data (i.e., it is a “fake” image). Phantom images are
generally used in the testing process for various reconstruction algorithms to determine
that any errors in the outcome are due to errors in the algorithm itself and not errors
in the data gathering process The Shepp Logan phantom shown in Figure 3 is the most
common phantom used in medical imaging reconstruction.

In order to reconstruct our starting image, however, we need some method of deriving
detailed information about the internal density of the medium from the initial and final
densities of our various x-ray beams. It is nearly impossible to determine the starting
densities of the object merely by inspecting the information shown in the sinogram. Finding
a meaningful and useful solution to this problem will be the point of this paper. In order to
solve this, however, we will need to make several simplifying (but not highly unreasonable)
assumptions about X-ray beams.
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(i) All X-ray beams are monochromatic (each photon in the wave propagates at the
same frequency and with the same energy level E).

(ii) All X-ray beams have zero width.

(iii) X-ray beams are not subject to refraction (they do not scatter when they come
into contact with a surface) or diffraction (they do not bend when they come into
contact with a surface).

While these assumptions are not entirely accurate, they are close enough to reality so that,
for our purposes, we can take them as fact. Actual CT scanners use corrective algorithms
to deal with the refraction and diffraction of some particles in the beam.

The amount of energy lost by an X-ray beam as it travels through a medium is specific
to that medium and in particular depends on the density of the medium. We wish to be
able to somehow classify the density of the medium in terms of the amount of energy it
causes an X-ray beam to lose. This characteristic of a medium is known as it’s attenuation
coefficient.

As hinted at earlier in our discussion of the changes in intensity through bone versus tissue,
denser objects have a higher attenuation coefficient than less dense objects. In objects of
uniform density, the attenuation coefficient is constant for all points P = (x, y). Most
interesting objects, however, are not of a uniform density and therefore have a varying
attenuation coefficient over a range of P values. Therefore, what we really desire is a
means of determining an equation for A(P ) which accounts for the varying densities of our
medium.

This thesis describes one solution to the inverse problem of solving for the attenuation
coefficient in medical imaging. In Section 2 we offer a mathematical model for X-ray
tomography and in Sections 3 and 4 we discuss the Radon transform and a parametrization
method which presents us with a link between our measured data and the attenuation
coefficient we wish to solve for. In Section 5 we introduce the Fourier transform which is a
necessary part of the inversion process because of the key role it plays in the Central Slice
Theorem discussed in Section 6. Sections 7 and 8 discuss an inversion process known as the
backprojection formula and a means of increasing the accuracy of inversion, while Section
9 addresses the discretization of the formulas used previously to make them applicable to
real world data.

2. A Mathematical Model for X-Ray Tomography

Now that we have an idea of the physical model for CT scans, we shall take a closer look at
the mathematical model we will use to determine the attenuation coefficient of our object.
In order to do that, however, we will need more mathematical rigorous definitions for the
intensity and attenuation coefficient of an object.
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Definition 2.1. For a given energy level E of an X-ray beam and a rate of photon prop-
agation N(x), the intensity of the beam, I(x), at a distance x from the origin is defined
as

I(x) = N(x) · E. (2.1)

Definition 2.2. The proportion of photons absorbed per millimeter of substance at a dis-
tance x from the origin is known as the attenuation coefficient, A(x), of the medium.

We know the initial and final intensities, I0 and I1, of a single beam. What we want is to
be able to use these intensities to determine the attenuation coefficient over the path of the
beam. Fortunately, we are find a relationship between these two values in the Beer-Lambert
Law.

Definition 2.3. The Beer-Lambert Law states that for a monochromatic, non-refractive,
zero-width X-ray beam that transverses a homogenous material along a distance x from the
origin, the intensity I(x) is given by

I(x) = e−A(x)x. (2.2)

As it stands, this equation is not all that useful to us. It gives the attenuation coefficient
at a certain point in relation to the intensity at that point, but we only know the value
of the intensity at points outside our object. What we really want is to be able to find
some relationship between the attenuation coefficient inside our object and the change in
intensity of the beam. To do this, we shall manipulate equation (2.1) slightly.

Differentiating (2.1) we see:

dI

dx
= −A(x)I(x).

Let I(x0) = I0 be the initial intensity at x0 and I(x1) = I1 be the final intensity at x1. We
therefore are able to see that

∫ x1

x0

dI

I(x)
= −

∫ x1

x0

A(x)dx,

which, after integration, yields

ln

(
I1
I0

)
= −

∫ x1

x0

A(x)dx.

When multiplied by -1 this gives us a very nice final equation relating the initial and final
intensities with the attenuation coefficient
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ln

(
I0
I1

)
=

∫ x1

x0

A(x)dx. (2.3)

Therefore, what CT scan algorithms actually solve for is not the density function of the
material but rather its attenuation coefficient. Logically this is not altogether surprising
because it seems reasonable that there is a strong relationship between the density of an
object and the proportion of photons it attenuates. From now on we shall not concern
ourselves with the difference between the density function and the attenuation coefficient
of a material and shall discuss them interchangeably.

3. Geometry of Medical Imaging

Before going into further analysis of solving equation (2.2) it will be useful for us to spend
some time describing the coordinate system that we will be using. The problem with a
Cartesian coordinate system is that it is unable to handle vertical lines with an infinite
slope (and we certainly do not want to exclude all vertical lines from our CT scan), and a
polar coordinate system does not easily lend itself to systems dependent on parallel lines.
Therefore we adopt a “point normal” parameterization for a line. We are all familiar with
the idea that a line l in R2 can be represented by the equation ax + by = c where a, b, c
∈ R and a2 + b2 6= 0. One could say that a, b, and c parameterize l. Knowing

√
a2 + b2 6=

0, we can rewrite the standard equation of a line in the following format

a√
a2 + b2

x+
b√

a2 + b2
y =

c√
a2 + b2

.

We now define ω = (ω1, ω2) =
(

a√
a2+b2

, b√
a2+b2

)
which we can see is a point lying on the

unit circle S1, for (
a√

a2 + b2

)2

+

(
b√

a2 + b2

)2

= 1.

This furthermore implies that ω = (cos θ, sin θ) for some θ ∈ [0, 2π). Letting t =
(

c√
a2+b2

)
,

we see that we can rewrite l using the inner product 〈z, ω〉 where z = (x, y) ∈ R2. In other
words, we have shown that:

〈z, ω〉 = xω1 + yω2

=
a√

a2 + b2
x+

b√
a2 + b2

y =
c√

a2 + b2

= x cos θ + y sin θ = t
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Note that in the above equations t and θ are fixed and determine a specific line l in
the plane. We therefore can say that t and θ parameterize a line lt,θ and that z determines
specific points on the line l. In other words:

lt,θ =
{
z ∈ R2 : 〈z, (cos θ, sin θ)〉 = t

}
. (3.1)

Figure 4. Parameterized line lt,θ

Figure 4 offers a visual of what we have done to parameterize the space of all lines We
can imagine that the combination of θ and t define a point (t cos θ, t sin θ) in space and
that as z varies we travel up and down our desired line lt,θ. The line lt,θ is the line that is
perpendicular to the vector 〈t cos θ, t sin θ〉 through the point (t cos θ, t sin θ).

We now offer an alternative definition for a specific point on the line lt,θ (although this may
seem a bit redundant now, this additional notation will become useful in future derivations).
To do this, we note that 〈− sin θ, cos θ〉 is perpendicular to 〈cos θ, sin θ〉. Therefore we can
describe a particular point (x, y) on lt,θ in terms of a real number s as follows:

(x(s), y(s)) = 〈t cos θ, t sin θ〉+ 〈−s sin θ, s cos θ〉 , for s ∈ R.
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In the above equation, each t and θ determine a particular line l. This leads to an alternative
definition for the set of points that make up a line lt,θ:

lt,θ = (x(s), y(s)) = {(t cos θ − s sin θ, t sin θ + s cos θ) : s ∈ R} . (3.2)

4. The Radon Transform

We are ready to introduce some mathematical tools that will be central to solving for the
attenuation coefficient in equation (2.3).

Definition 4.1. For a function f(t, θ) defined on R2 with compact support the Radon
transform of f , denoted by Rf , is defined for t ∈ R and θ ∈ (0, 2π] as

Rf(t, θ) =

∫ ∞
−∞

f(x(s), y(s))ds. (4.1)

A function with compact support is one that takes the value zero everywhere outside of
a compact set. This is a reasonable requirement for a medical imaging problem because
we are only dealing with finite areas (or slices) of some object. Recall that our goal is to
determine the attenuation coefficient of our object which is related to the object’s density.
Therefore, since we are only dealing with finite slices, there will be some finite region
outside of which the attenuation coefficient must equal zero.

The Radon transform offers a means of determining the total density of a certain function
f along a given line l. This line l is determined by an angle θ from the x-axis and a distance
t from the origin as described in equation (3.1). As shown in Figure 5 if we take the Radon
transform along multiple lines at varying angles (here θ1 and θ2), we are able to determine
multiple density functions for our object. Intuitively we can interpret the Radon transform
as a “smeared” version of our initial object. Suppose the blob like region represented in
Figure 5 were an ink blot; if we were to smear this blot along varying lines in the direction
θ1, we can expect that the wider regions of the ink blot would correspond to a larger region
than smaller regions, which is exactly what we see.

The integralRf(t, θ) represents the right half of equation (2.3). Recall that in this equation

A(x) is unknown and ln( I0I1 ) is measured information. In other words, ln( I0I1 ) is the Radon
transform, and therefore the Radon transform represents known, measured data.
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Figure 5. Radon Transform for θ1 and θ2

The goal now is to find some type of inversion formula for the Radon transform that will
allow us to recover our starting function f (or, in the context of medical imaging, A(x)).
To do this, it will be useful to note several properties of the Radon transform.

Properties 4.2. For real constants α, β, and continuous functions f and g on R2 with
compact support:

(i) R(αf + βg) = αRf + βRg

(ii) Rf(t, θ) = Rf(−t,−θ)

(iii) Rf(t, θ) =

∫ ∞
−∞

f(x(s), y(s))ds =

∫ ∞
−∞

f(t cos θ − s sin θ, t sin θ + s cos θ)ds

Property (i) tells us that the Radon transform is linear, (ii) that it is even, and (iii)
utilizes the equivalent geometric expressions used in the previous section to create different
expressions for the same transform which we will use interchangeably depending on which
best suits our needs.

We furthermore define the natural domain of the Radon transform as the set of functions
f on R2 such that

∫ ∞
−∞
|f(x(s), y(s))|ds <∞.

That is, we restrict our domain to the set of absolutely integrable functions.
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We have now devised a new way of stating our initial problem of solving for the attenuation
coefficient function A(x) in a mathematical framework. The Radon transform is the math-
ematical name for equation (2.3). Therefore to recover A(x), we need to find an inversion
formula for the Radon transform. Unfortunately, there is no single straightforward answer
to this solution. To get an actual inversion formula we will have to delve into some more
advanced mathematics.

5. The Fourier Transform

Definition 5.1. For a given absolutely integrable function f on R the Fourier Transform
of f , denoted by Ff is defined for every real number ξ as

Ff(ξ) =

∫ ∞
−∞

f(x)e−2πixξdx. (5.1)

Although it might not seem relevant at the present, we will make extensive use of the
Fourier transform and its inverse formula in our search for a solution to our medical imaging
problem. The Fourier transform is used frequently in signal analysis and offers a means of
changing a function of time into a function of frequency, the variable x represents time in
seconds and the variable ξ represents the frequency of the function in Hertz. There exists
an alternate definition that uses the angular frequency, ω, where ω = 2πξ, giving us

Ff(ω) =

∫ ∞
−∞

f(x)e−iωxdx. (5.2)

We will primarily deal with this second definition of the Fourier transform throughout our
discussion as it is the form more commonly used in engineering and medical imaging.

We now note that compactly supported functions are a subset of a larger space of functions,
the Schwartz Space (S(Rn)), which consists of all infinitely differentiable functions on Rn
such that for all k, l ≥ 0:

sup
x∈Rn

∣∣∣∣xk ∂l∂xl f(x)

∣∣∣∣ <∞
These functions are also known as rapidly decreasing functions. Henceforth we shall assume
that S denotes the two dimensional Schwartz space (S(R2)) since that is the dimension we
are interested in for our attenuation problem.

We limit our discussion to functions within S because there are several nice properties
about this domain. The first is that within this domain there exists a bijective relationship
between the Fourier transform and its inverse; the second is that the Fourier transform of
a Schwartz function is still a Schwartz function; and the third is that we are allowed to
change the order of integration for multiple integrals if f ∈ S.
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As we did with the Radon transform, we shall list several properties of the Fourier trans-
form.

Properties 5.2. For real constants α and β and absolutely integrable functions f and g:

(i) F(αf + βg) = αF(f) + βF(g)

(ii) Ff(ω) <∞

As was hinted at earlier, we will also make use of the inverse Fourier transform.

Definition 5.3. For an absolutely integrable function f we define the inverse Fourier
transform of f , denoted by F−1f , evaluated at x as

F−1f(x) =
1

2π

∫ ∞
−∞

f(ω)eiωxdω.

This immediately leads us to the following theorem.

Theorem 5.4. For a function f ∈ S the Fourier Inversion Theorem states that, for
all x:

F−1(Ff)(x) = f(x).

So far, we have only addressed the Fourier transform in one dimension. There exist cor-
responding definitions in higher dimensions, although for our purposes we will only utilize
the two dimensional analogs.

Definition 5.5. For an absolutely integrable function g defined on R2, the 2 dimensional
Fourier transform of g, denoted by F2g, is defined for all (X,Y ) ∈ R2 as

F2g(X,Y ) =

∫ ∞
−∞

∫ ∞
−∞

g(x, y)e−i(xX+yY )dxdy. (5.3)

We similarly define the inverse Fourier transform on R2.

Definition 5.6. For an absolutely integrable function g defined on R2 the 2 dimensional
inverse Fourier transform at a point (x, y), denoted by F−12 g(x, y) is given as

F−12 g(x, y) =
1

4π2

∫ ∞
−∞

∫ ∞
−∞

g(X,Y )ei(xX+yY )dxdy. (5.4)

6. The Central Slice Theorem

There is just one more big theorem we need to discuss before we can begin the actual
process of inverting the Radon transform and recovering our attenuation coefficient. The
central slice theorem gives us a remarkable relationship between the two dimensional Fourier
transform and the one dimensional Fourier transform of the Radon transform.
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Theorem 6.1. For an absolutely integrable function f defined on R2 and all S ∈ R and
θ ∈ [0, 2π),

F2f(S cos θ, S sin θ) = F(Rf)(S, θ).

Proof. We first recall that the two dimensional Fourier transform of f(x, y) is given by:

F2f(x, y) =

∫ ∞
−∞

∫ ∞
−∞

f(x, y)e−iS(x cos θ+y sin θ)dxdy (6.1)

We now implement a change of variables here according to the coordinate system we defined
in section 3. Recall that when we parameterized the line lt,θ we discovered that we could
say the following for s ∈ R:

x(s) = t cos θ − s sin θ, y(s) = t sin θ + s cos θ, t = x cos θ + y cos θ

Looking at the determinant of the Jacobian for x(s) and y(s):

det

 ∂x
∂t

∂x
∂s

∂y
∂t

∂y
∂s

 = 1

we see that we can say that dsdt = dxdy. We therefore rewrite the right half of equation
(6.1) in terms of the variables s, t

∫ ∞
−∞

∫ ∞
−∞

f(t cos θ − s sin θ, t sin θ + s cos θ)e−iStdsdt.

Because eiSt has no dependence on s, we are able to rearrange the above integral as follows:

∫ ∞
−∞

(∫ ∞
−∞

f(t cos θ − s sin θ, t sin θ + s cos θ)ds

)
e−iStdt.

This inner integral is exactly the Radon transform of f(t, θ), implying that

∫ ∞
−∞

(Rf(t, θ))e−iStdt.

Which in turn is the Fourier transform of Rf(S, θ), and we conclude our proof. �
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The central slice theorem (also known as the Fourier slice theorem or the slice projection
theorem) is a link between the one and two dimensional Fourier transforms. The theorem
tells us that the one dimensional Fourier transform of a projected function (the Radon
transform) is equal to the two dimensional Fourier transform of the original function taken
on the slice through the origin parallel to the line we projected our function on. This idea
is demonstrated in Figure 3. In the left part of the figure we start with a function F (x, y)
and apply the Radon transform to get a projection g to which we then apply the Fourier
transform, receiving the orange G function at the top of the figure. In the right half we take
the 2 dimensional Fourier transform of the orange slice of F (x, y) parallel to the projection
line. This 2 dimensional Fourier transform also equals the orange G function depicted at
the top of the image.

Figure 6. Central Slice Theorem

This theory can also be extended to higher dimensions, but for our purposes in solving the
inverse problem of finding the attenuation coefficient the two dimensional interpretation
will suffice.

7. The Backprojection

We are now finally ready to make a first attempt at recovering our attenuation coefficient
function. Recall that, physically speaking, the Radon transform Rf(t, θ) gives us the total
density of the object f along a line lt,θ. We have determined this density by measuring the
initial and final intensities of an X-ray beam shot through the object along this line. By
doing this along multiple different lines, we are able to create a single slice of our starting
object and by varying the angle θ of these X-rays we are able to define many slices.
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If we are somehow able to ”backproject” these densities onto the plane, perhaps we will be
able to recreate our starting object. Intuitively we can think of this process as taking the
sinogram data and “unsmearing” it back onto the plane.

Definition 7.1. Let h = h(t, θ). We define the backprojection, Bh, at a point (x, y) as

Bh(x, y) =
1

π

∫ π

0
h(x cos θ + y sin θ, θ)dθ.

Applying this backprojection formula to the Radon transform, we receive the follow-
ing:

BRf(x, y) =
1

π

∫ π

0
Rf(x cos θ + y sin θ, θ)dθ. (7.1)

In the context of medical imaging, f represents our attenuation coefficient function.

We are able to backproject over the slices we have measured. As demonstrated in Figure 7,
backprojecting in only a few directions θ is an incredibly inaccurate way of recreating even
a simple object. However, even if we significantly increase the number of backprojections
we use (say to 1000 directions), there is still a large amount of noise blurring our recreated
image. As it turns out, no matter how many directions we try to backproject in, we will still
not be able to perfectly recreate our image using the backprojection formula of equation
(7.1). For this process to be at all useful, we will need to derive a way to filter out some
of the noise the backprojection formula seems to create in our picture and get a smoother
representation of our object.

To this end, we define a filtered backprojection formula.

Theorem 7.2. For an absolutely integrable function f defined on R2

f(x, y) =
1

2
B
{
F−1 [|S|F(Rf)(S, θ)]

}
(x, y). (7.2)

Proof. We first note the fact that, for the 2 dimensional Fourier transform and its inverse:

f(x, y) = F−12 F2f(x, y)

=
1

4π2

∫ ∞
−∞

∫ ∞
−∞
F2f(X,Y )ei(xX+yY )dXdY. (7.3)

We now will use a change of variables from Cartesian (X,Y ) to polar coordinates (S, θ)
where X = S cos θ and Y = S sin θ with S ∈ R and θ ∈ [0, π]. This gives the following
Jacobian determinant:
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Figure 7. Backprojection of a Square in 5, 25, 100, and 1000 Directions

det

 ∂X
∂S

∂X
∂θ

∂Y
∂S

∂Y
∂θ

 = |S|

Which tells us that dXdY = |S|dSdθ. Incorporating this new change of variables equation
(7.2) becomes:

1

4π2

∫ π

0

∫ ∞
−∞
F2f(S cos θ, S sin θ)eiS(x cos θ+y sin θ)|S|dSdθ.

And using the central slice theorem we see that the above equation is in fact equal to

1

4π2

∫ π

0

∫ ∞
−∞
F(Rf(S, θ))eiS(x cos θ+y sin θ)|S|dSdθ. (7.4)

Now let us take a closer look at the inner integral of equation (7.4) and note the following:
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∫ ∞
−∞
F(Rf(S, θ)eiS(x cos θ+y sin θ)|S|dS

=2π

(
1

2π

∫ ∞
−∞
F(Rf(S, θ))eiS(x cos θ+y sin θ)|S|dS

)
=2πF−1 [|S|F(Rf)(S, θ)] (x cos θ + y sin θ, θ)

That is, the inner integral of equation (7.4) is 2π times the inverse of the Fourier transform
of |S|F(Rf)(S, θ) at the point (x cos θ + y sin θ, θ). We are then able to see that (7.4) in
fact equals

1

2π

∫ π

0
F−1 [|S|F(Rf)(S, θ)] (x cos θ + y sin θ, θ)dθ.

Finally we see that the above integral is 1
2 the backprojection given in definition (7.1) for

F−1 [|S|F(Rf)(S, θ)]. We therefore simplify the above equation to

1

2
B
{
F−1[|S|F(Rf(S, θ)]

}
(x, y).

Which leads us to our desired conclusion that

f(x, y) =
1

2
B
{
F−1[|S|F(Rf)(S, θ)]

}
(x, y).

�

The important factor in this formula is the |S| multiplier that occurs between the Fourier
transform and its inverse. Without this factor these two terms would cancel each other out
and we would be left with the standard backprojection formula for the Radon transform
we encountered earlier which, as we saw, does not directly give us back f(x, y). We call
this additional |S| a filter to the Radon transform, giving us the name for the filtered
backprojection formula.

8. Convolution and Low Pass Filters

Here we shall examine the role of the filtering factor |S| in the filtered backprojection
formula given in equation (7.2). In order to do that, however, we must first introduce the
notion of the convolution of two functions.

Definition 8.1. For two integrable functions f , g defined on R we define the convolution
of f and g, denoted by f ? g, as
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(f ? g)(x) =

∫ ∞
−∞

f(t)g(x− t)dt

where x ∈ R.

We can easily extend this definition to 2 dimensional space. For polar functions, we only
take the integral over the radial variable while for Cartesian functions we integrate over
both variables. Explicit definitions are given as follows:

Definition 8.2. For integrable polar functions f(t, θ) and g(t, θ) we define the convolu-
tion of f and g as

(f ? g)(t, θ) =

∫ ∞
−∞

f(s, θ) · g(t− s, θ)ds

For integrable functions F , G on R2, we define the convolution of F and G as

(F ? G)(x, y) =

∫ ∞
−∞

∫ ∞
−∞

F (s, t) ·G(x− s, y − t)dsdt.

Convolution is a mathematical method of averaging one function, f , with the shifting of
another function, g. In the convolution f ?g, the function g is translated across the function
f and the resulting function is dependent on the area of overlap during this translation.
In a sense we can view g as a filter we are using to average f over a certain interval. The
filtering function acts as a smoother for the noisy data given by the original function.

Properties 8.3. For integrable functions f , g, h on R and constants α, β ∈ R:

(i) f ? g = g ? f

(ii) f ? (αg + βh) = α(f ? g) + β(f ? h)

(iii) Ff · Fg = F(f ? g)

(iv) (Bg ? f)(X,Y ) = B(g ?Rf)(X,Y ).

We now reconsider the filtered backprojection formula from theorem (7.2):

f(x, y) =
1

2
B
{
F−1[|S|F(Rf)(S, θ)]

}
(x, y).

This is, admittedly, a rather ugly equation to deal with. Fully expanded it would include
several infinite integrals, which is problematic since we are only dealing with a finite set
of data. It would be nice if we could somehow further simplify this to a more useful form.
To that end, we shall make a seemingly odd assumption. Suppose that there was some
function, call it φ(t), whose Fourier transform equaled our filtering factor |S|. That is,
suppose we had a function φ(t) such that Fφ(S) = |S|. More simply put, suppose we knew
of a function whose Fourier transform equaled the absolute value function. Then we would
be able to rewrite the backprojection as
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f(x, y) =
1

2
B
{
F−1[Fφ · F(Rf)(S, θ)]

}
(x, y). (8.1)

However the right half of equation (8.1) contains a product of Fourier transforms, which
we know to be equal to the convolution of the functions being transformed as shown in
property (iii). We therefore have

f(x, y) =
1

2
B
{
F−1[F(φ ?Rf)(S, θ)]

}
(x, y).

But this is merely the inverse Fourier transform of the Fourier transform, which we know
returns our starting function. This leads us to the much simpler filtered backprojection
formula

f(x, y) =
1

2
B(φ ?Rf)(x, y). (8.2)

Equation (8.2) looks much nicer than our original filtered backprojection formula and
doesn’t seem that difficult to apply. Physically speaking, Rf is our measured data and
(8.2) only requires us to filter it with our new function φ and then apply the backprojection
formula which is a relatively straightforward integral.

Unfortunately, there is no such function φ whose Fourier transform is exactly equal to the
absolute value. Consider the function Fφ:

Fφ(ω) =

∫ ∞
−∞

φ(x)e−iωxdx

We can see that, as ω → ∞, Fφ(ω) → 0 (note the negative exponential). However, for
the absolute value function, |ω|, as ω → ∞, |ω| → ∞. Therefore we, are unable to find a
function φ such that for all ω, Fφ(ω) = |ω|.

All our previous work was not in waste, however. Let us consider what type of functions
we have restricted our interest to. We are only looking at our function on a finite interval
and are in fact assuming it to be zero outside of that interval. If we extend this idea
to the Fourier transform, we find that we want to focus our attention on band limited
functions.

Definition 8.4. A function φ is said to be a band limited function if, for some real
number L > 0:

Fφ(ω) =

∫ ∞
−∞

φ(x)e−iωxdx = 0 for all ω /∈ [−L,L] (8.3)

The filtering factor |S| serves to magnify the F(Rf) term in the original filtered backpro-
jection formula (7.2). In practice F(Rf) is very sensitive to high frequencies. By focusing
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our attention on the lower frequencies via a band limited function φ, we are able to avoid
this issue. Our goal will be to replace S with what is known as a low pass filter (denoted
by S′) which takes into account the affects of lower frequencies but attenuates higher fre-
quencies. This function S′ needs to have compact support and be of the form S′ = Fφ (on
a compact interval).

The cost of using this S′(ω) is that we no longer have the equality shown in equation (8.2).
Rather, we receive the following:

f(x, y) ≈ 1

2
B(F−1S′ ?Rf)(x, y). (8.4)

Generally speaking, most low pass filters are of the form S′(ω) = |ω| · F (ω) · uL(ω) where
L > 0 defines the region we are filtering over. Different functions for F determine the
precise characteristics of the filer, and uL(ω) is defined as follows:

uL(ω) =

{
1 if |ω| ≤ L
0 if |ω| > L

We shall introduce two common filters used in digital imaging and signal processing, the
Ram-Lak filter and Hann filter.

The Ram-Lak filter :

S′(ω) = |ω| · uL(ω) =

{
|ω| if |ω| ≤ L
0 if |ω| > L

The Ram-Lak filter is the basis for many of the other filters used in signal analysis for it is
simply replaces the F (ω) function with the constant 1 function. Other filters, such as the
Hann filter, generally consist of multiples of sin or cos to filter out unwanted noise.

The Hann filter :

S′(ω) = |ω| · 1

2

(
1 + cos

2πω

L

)
· uL(ω)

The Hann filter uses the Hann function
(
1 + cos 2πω

L

)
as its F (ω) and its effectiveness

is demonstrated in the sinogram and backprojection of Johann Radon shown in Figure
5.

Figure 8. Sinogram and Hann Filter Backprojection for 10, 100, and 1000
Backprojections
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9. Discrete Version

Thus far we have been dealing almost exclusively with continuous integrals for the Radon
transform, Fourier transform, and backprojection formulas. In practice, however, we only
have a finite set of data to work with Therefore we will need to form discrete versions of
all the formulas we have used in our filtered backprojection.

A discrete function is one that is only defined on a countable set. For our purposes, we
shall be looking at discrete functions defined on finite sets (the set being composed of the
lines we took our intensity measurements on). Let gn denote the discrete function g at
the value n. Because we know this discrete function at a finite set of points, say N , we
can say that g = gn : 0 ≤ n ≤ N − 1. If we wish to extend this definition to all integers,
we can simply “repeat” our function over and over again; that is, we can make it periodic
with period N . This extension will be useful for some of the discrete formulas we will
encounter.

Suppose we are taking measurements at P different angles θ and that for each angle have
2 ·M + 1 beams spaced a distance d apart. Then we can define particular values θk and tj
as

θk =

{
kπ

P
: 0 ≤ k ≤ P − 1

}
,

tj = {j · d : −M ≤ j ≤M} .

Which allows us to define particular line as ltj ,θk . We therefore define the discrete Radon
transform as follows:

Definition 9.1. For an absolutely integrable function f and 0 ≤ k ≤ P and −M ≤ j ≤M ,
(P,M > 0), we define the discrete Radon transform of f, denoted RDf , as

RDfj,k = Rf(tj , θk). (9.1)

To implement the filtered backprojection formula (8.4), we shall also need to define the
convolution of two discrete functions.

Definition 9.2. For two N-periodic discrete functions f and g, we define the discrete
convolution of f and g, denoted f?̄g, as

(f?̄g)m =

N−1∑
j=0

fj · g(m−j), for m ∈ Z (9.2)

Clearly, we shall also need the discrete Fourier transform.
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Definition 9.3. Given an N-periodic discrete function f we define the discrete Fourier
transform of f , denoted FDf , as

(FDf)j =

N−1∑
k=0

fke
i2πkj/N for j = 0, 1, ..., (N − 1). (9.3)

It is worth noting that the N -periodicity of f allows us to replace the bounds in the
summation by any set of integers of length (N − 1). Given the above definition, it should
not come as a surprise that we define the discrete inverse Fourier transform as follows:

Definition 9.4. Given an N-periodic discrete function g the discrete inverse Fourier
transform of g, denoted F−1D g, is defined as

(F−1D g)n =
1

N

N−1∑
k=0

gke
i2πkn/N , for n = 0, 1, ..., (N − 1). (9.4)

We note that several of the same properties of the Fourier transform we defined in the
continuous setting also apply to the discrete case with slight modifications:

Properties 9.5. For N-periodic discrete functions f and g:

(i) FD(f?̄g) = (FDf) · (FDg)

(ii) FD(f · g) = 1
N (FDf)?̄(FDg)

(iii) F−1D (FDfn) = fn for all n ∈ Z

We are now ready to attack the discretization of the backprojection formula itself. Recall
that the backprojection formula was defined as an integral from 0 to π over dθ. In the
discrete case we have replaced this continuous dθ with kπ/P for 0 ≤ k ≤ (P − 1). This
leads to the following definition for the discrete backprojection:

Definition 9.6. Given a discrete function h we define the discrete backprojection of
h, denoted BDh, as

BDh(x, y) =

(
1

N

)N−1∑
k=0

h(x cos
kπ

N
+ y sin

kπ

N
, kπ/N). (9.5)

Recall our final form for the filtered backprojection formula in equation (8.4)

f(x, y) ≈ 1

2
B(F−1S′ ?Rf)(x, y).

To form the discrete version of this equation, we see that we need to apply the following
formula:
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f(x, y) ≈ 1

2
BD(F−1D S′?̄RDf)(x, y).

And now, we run into a slight problem. RDf is measured data based on the initial and
final intensities of a single X-ray beam. We defined the locations of different beams (and
therefore different slices) using a coordinate system perpendicular to polar coordinates
based on discrete angles θ and distances t. Looking at equation (9.5), however, we see
that we will need to sum over h at various points (x, y) in the Cartesian coordinate system
to create a rectangular grayscale grid that represents our original object. The polar and
Cartesian coordinate systems do not necessarily match up as nicely as we wish them to,
and therefore we must interpolate the missing data points. Interpolation is the process of
making a continuous (or at a minimum piecewise continuous) function out of a discrete set
of values. There are many different ways to interpolate a function (cubic spline, Lagrange,
etc.), each with it’s own set of gains and drawbacks. For our purposes we shall define a
general type of interpolation based on a weighting function W which determines how we
shall choose our interpolated points. We will not define a particular weighting function,
W , since the details of how the values are interpolated is not as important to us as is the
knowledge that we are able to fill in the “gaps” in our data.

Definition 9.7. For a given weighting function W and an N-periodic discrete function g,
the W -interpolation of g is defined as

IW (g)(x) =
∑
n

g(n) ·W
(x
d
− n

)
, for −∞ < x <∞. (9.6)

Now that we have covered all the various parts of equation (8.2) in a discrete setting and
dealt with the interpolation issue, we are able to give a discrete reconstruction algorithm
to solve for the attenuation coefficient using a discrete set of data.

Here we are interpolating the function (F−1D S′)?̄(RDf)(jd, kπ/N) (that is, are filling in
the gaps after filtering the Radon transform). Let us define this interpolated function as
I. This leads to the following reconstruction formula:

f(xm, yn) ≈ 1

2
BD
(
(F−1D S′)?̄(RDf)

)
(jd, kπ/N)

≈ 1

2
BDI(xm, yn)

=
1

2N

N−1∑
k=0

I
(
xm cos

kπ

N
+ yn sin

kπ

N
,
kπ

N

)
. (9.7)

Equation (9.7) accounts for the discrete nature of our real world data and addresses the
issues (such as not enough data) that arise from only having a finite number of measure-
ments.
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We therefore offer the following completed algorithm for solving the inverse problem of CT
scan medical imaging using the Radon transform.

(1) Given a set 2 ·M + 1 X-ray beams each spaced a distance d apart, measure the
initial and final intensities, (I0, I1), of each beam.

(2) Repeat this process for P different angles θ.

(3) Choose a filter function F−1D S′.

(4) Choose a weighting function for interpolation, IW (g)(x)

(5) Apply the reconstruction formula described in equation (9.7)

10. Conclusion

We have shown the mathematical background for the images created by CT scans and ex-
plained the central role of the Radon (and consequently Fourier) transform in this process.
While the algorithm described here is not the only method for reconstructing a three-
dimensional image from projected two-dimensional slices, it did serve as a starting point
for research into the field of medical imaging. In particular, there are reconstruction meth-
ods based on a specific function which mimics the backprojection formula [4] or there are
recent numerical algorithms which are much more efficient in reconstruction [1], although,
as in our method derived here, every option has it’s own strengths and weaknesses.
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