A A-B-C of equations

This is an alphabetical list of equations on a undergraduate level, in a easy-to-remember form. It includes rounded physical constants, for order-of-magnitude estimates. At the end, one can find an explanatory supplement. In this part, we do not use a dot product, a cross product, or complex numbers (nevertheless, see Appendix B). A factor in the equations is sometimes denoted simply as a constant K.

$$au \doteq 1.5 \cdot 10^{11} \,\mathrm{m}$$
 (1)

$$A = (Ht)^{\frac{1}{3}} \tag{2}$$

$$A = (Ht)^{\frac{2}{3}} \tag{3}$$

$$A = e^{Ht} (4)$$

$$|\mathbf{B}| = \frac{\mu I}{2\pi r} \tag{5}$$

$$c = \lambda f \tag{6}$$

$$c \doteq 3 \cdot 10^8 \,\mathrm{m \, s^{-1}}$$
 (7)

$$c_{\rm s} = \sqrt{\frac{\gamma kT}{m}} \tag{8}$$

$$e \doteq 3$$
 (9)

$$eV \doteq 1 \cdot 10^{-19} \,\text{J}$$
 (10)

$$|\mathbf{E}| = \frac{U}{x - x'} \tag{11}$$

$$E_0 = mc^2 (12)$$

$$E_{\mathbf{k}} = \frac{1}{2}mv^2 \tag{13}$$

$$E_{\rm g} = -\frac{GMm}{r} \tag{14}$$

$$E_{\rm e} = \frac{k_{\rm e}Qq}{r} \tag{15}$$

$$E_{\gamma} = hf \tag{16}$$

$$E_U = kT (17)$$

$$E_W = Pt (18)$$

$$E_W = F_{\parallel} |x - x'| \tag{19}$$

$$E_W = p(V - V') \tag{20}$$

$$E_Q = mC(T - T') \tag{21}$$

$$E_{ij} \doteq -13.6 \,\text{eV} \left(\frac{1}{i^2} - \frac{1}{j^2}\right)$$
 (22)

$$E_{\alpha} \doteq 28 \cdot 10^6 \,\text{eV} \tag{23}$$

$$f = \frac{1}{T} \tag{24}$$

$$\mathbf{F} = m\mathbf{a} \tag{25}$$

$$\mathbf{F} = m\mathbf{g} \tag{26}$$

$$\mathbf{F} = q\mathbf{E} \tag{27}$$

$$F = qv|\mathbf{B}|\tag{28}$$

$$F = pS (29)$$

$$F = -ky \tag{30}$$

$$F \doteq -mg\varphi \tag{31}$$

$$F = -\frac{GMm}{r^2} \tag{32}$$

$$F = \frac{k_{\rm e}Qq}{r^2} \tag{33}$$

$$F = -\frac{mv^2}{r} \tag{34}$$

$$F = -m\omega^2 y \tag{35}$$

$$F = V(\rho' - \rho)g \tag{36}$$

$$F = KF_{\perp} \tag{37}$$

$$F = K \varrho S v v \tag{38}$$

$$\mathbf{F}_{12} = -\mathbf{F}_{21} \tag{39}$$

$$g = \frac{GM_{\rm Z}}{R_{\rm Z}^2} \tag{40}$$

$$G \doteq 6 \cdot 10^{-11} \,\mathrm{N \, kg^{-2} \, m^2}$$
 (41)

$$h \doteq 6 \cdot 10^{-34} \,\mathrm{J}\,\mathrm{s} \tag{42}$$

$$H \doteq 0.07 \,\mathrm{m \, s^{-1} \, pc^{-1}}$$
 (43)

$$I = \frac{Q}{t} \tag{44}$$

$$I = \frac{1}{R}U\tag{45}$$

$$I = \frac{1}{\omega L} U \tag{46}$$

$$I = \omega CU \tag{47}$$

$$k \doteq 1 \cdot 10^{-23} \,\mathrm{J}\,\mathrm{K}^{-1}$$
 (48)

$$k_{\rm e} \doteq 9 \cdot 10^9 \,\mathrm{N}\,\mathrm{C}^{-2}\,\mathrm{m}^2$$
 (49)

$$m = \varrho V \tag{50}$$

$$m' = \frac{m}{\sqrt{1 - \frac{v^2}{c^2}}} \tag{51}$$

$$m_{\rm p} \doteq 1 \cdot 10^{-27} \,\mathrm{kg}$$
 (52)

$$m_{\rm e} \doteq 1 \cdot 10^{-30} \,\mathrm{kg}$$
 (53)

$$m_{\text{Vega}} \doteq 0 \,\text{mag}$$
 (54)

$$m = m' - 2.5 \log_{10} \frac{\Phi}{\Phi'} \tag{55}$$

$$M_{\rm g} \doteq \left(\frac{kT}{Gm}\right)^{3/2} \rho^{-1/2} \tag{56}$$

$$M_{\rm Z} \doteq 6 \cdot 10^{24} \, \rm kg$$
 (57)

$$M_{\rm S} \doteq 2 \cdot 10^{30} \,\mathrm{kg}$$
 (58)

$$N = \frac{M}{m} \tag{59}$$

$$n \doteq \frac{\sin \alpha}{\sin \beta} \tag{60}$$

$$N = N_0 \exp(-\lambda t) \tag{61}$$

$$\frac{1}{o} = \frac{1}{x} + \frac{1}{x'} \tag{62}$$

$$o = \frac{r}{2} \tag{63}$$

$$\mathbf{p} = m\mathbf{v}$$
 (64)

$$\mathbf{p}' = \mathbf{p} + \mathbf{F}(t' - t) \tag{65}$$

$$|\mathbf{p}| = \frac{E}{c} \tag{66}$$

$$p = -\frac{k}{m} \varrho T \tag{67}$$

$$p = K \left(1 - \frac{\varrho}{\varrho_0} \right) \tag{68}$$

$$p = z\rho g \tag{69}$$

$$p = K\rho^{\gamma} \tag{70}$$

$$P = Fv \tag{71}$$

$$P = \Phi S \tag{72}$$

$$P = UI \tag{73}$$

$$pc = \frac{1 \text{ au}}{\text{tg } 1''} \tag{74}$$

$$q \doteq 1 \cdot 10^{-19} \,\mathrm{C} \tag{75}$$

$$r = a \frac{(1 - e^2)}{1 + e \cos \varphi} \tag{76}$$

$$r_0 = \frac{h^2}{4\pi^2 m_{\rm e} k_{\rm e} q^2} \tag{77}$$

$$r_{\rm g} = \frac{2GM}{c^2} \tag{78}$$

$$R_{\rm Z} \doteq 6 \cdot 10^6 \,\mathrm{m} \tag{79}$$

$$R_{\rm S} \doteq 6 \cdot 10^8 \,\mathrm{m} \tag{80}$$

$$S = 4\pi R^2 \tag{81}$$

$$t = t_* - \alpha \tag{82}$$

$$t_* \doteq 24110 \,\mathrm{s} + \frac{365,2422 + 1}{365,2422} (\mathrm{UT1} - \mathrm{J2000}) + \lambda$$
 (83)

$$t' = \frac{t}{\sqrt{1 - \frac{v^2}{c^2}}}\tag{84}$$

$$t \doteq \frac{1}{H} \tag{85}$$

$$t = (4,567 \pm 0,001) \cdot 10^9 \,\mathrm{r}.$$
 (86)

$$T = 2\pi \sqrt{\frac{m}{k}} \tag{87}$$

$$T = 2\pi \sqrt{\frac{r}{g}} \tag{88}$$

$$T = 2\pi \sqrt{\frac{a^3}{G(M+m)}}\tag{89}$$

$$T = 2\pi\sqrt{LC} \tag{90}$$

$$T_{0 \, \circ \, \mathcal{C}} \doteq 273 \, \mathcal{K} \tag{91}$$

$$T_{\rm S} \doteq 6\,000\,{\rm K}$$
 (92)

$$v = at (93)$$

$$v = \omega r \tag{94}$$

$$v = Hr (95)$$

$$v = \sqrt{\frac{G(M+m)}{r}} \tag{96}$$

$$v = \sqrt{\frac{3kT}{m}} \tag{97}$$

$$V = \frac{4}{3}\pi R^3 \tag{98}$$

$$x = vt (99)$$

$$x = \frac{1}{2}at^2\tag{100}$$

$$x' = x\sqrt{1 - \frac{v^2}{c^2}} \tag{101}$$

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \tag{102}$$

$$y = K\sin(\omega t) \tag{103}$$

$$y = K\sin(kx - \omega t) \tag{104}$$

$$\alpha' = \alpha \tag{105}$$

$$\varepsilon = \frac{x' - x}{x} \tag{106}$$

$$\varepsilon = \alpha (T' - T) \tag{107}$$

$$\lambda j = B \sin \alpha \tag{108}$$

$$\lambda = \frac{K}{T} \tag{109}$$

$$\lambda' = \lambda \left(1 + \frac{v_{\rm r}}{c} \right) \tag{110}$$

$$\mu \doteq 1 \cdot 10^{-6} \,\mathrm{T} \,\mathrm{A}^{-1} \,\mathrm{m}$$
 (111)

$$\pi \doteq 3 \tag{112}$$

$$\sigma = E\varepsilon \tag{113}$$

$$\sigma = 5 \cdot 10^{-8} \,\mathrm{W \,m^{-2} \,K^{-4}} \tag{114}$$

$$\sigma^2 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
 (115)

$$\varphi \doteq \frac{1 \,\mathrm{au}}{r} \tag{116}$$

$$\varphi = 1.22 \, \frac{\lambda}{D} \tag{117}$$

$$\varphi = \frac{d}{o} \tag{118}$$

$$\Phi = \sigma T^4 \tag{119}$$

$$\Phi = \Phi_0 e^{-\kappa \rho x} \tag{120}$$

$$\omega = 2\pi f \tag{121}$$

- (1) astronomical unit
- (2) expansion of space when the universe was dominated by radiation
- (3) expansion of space when the universe was dominated by matter
- (4) expansion of space when the universe *is* dominated by vacuum
- (5) magnetic field around wire with the current I
- (6) speed of waves with the given length and frequency
- (7) speed of light in vacuum
- (8) speed of sound
- (9) Euler number
- (10) electronvolt, unit of energy
- (11) electric field for the given voltage U and distance x x'
- (12) rest energy, annihilation
- (13) kinetic energy, zero value in rest
- (14) gravitational potential energy, zero value in infinity
- (15) electric potential energy, zero value in infinity
- (16) energy of a photon
- (17) energy of a particle
- (18) work done with the power P during the time t
- (19) work done by the force F over the path x x', in the direction of motion
- (20) work done by the pressure p and the change of volume V-V'
- (21) heat needed for a change of temperature T-T' of a body with the mass m
- (22) a difference of energies between levels i, j of the hydrogen atom
- (23) energy released by a thermonuclear reaction in the Sun
- (24) frequency

- (25) force needed for an acceleration \boldsymbol{a} of a body with mass m
- (26) gravitational force acting on a mass m in the gravitational field \boldsymbol{g}
- (27) electric force acting on a charge q in the electric field \boldsymbol{E}
- (28) magnetic force acting on a moving charge q in the magnetic field **B**
- (29) pressure force on an area S
- (30) string restoring force
- (31) pendulum restoring force
- (32) gravitational force between two masses m, M
- (33) electric force between two charges q, Q
- (34) centripetal force needed for a motion on a circle with the radius r
- restoring force needed for an oscillatory motion with the angular frequency ω
- (36) buoyant force (positive) plus gravitational force (negative), Archimedes law
- (37) friction force, proportional to the force F_{\perp} perpendicular to the base
- (38) friction force, Stokes drag, ϱ the density of air, S the cross section of a body
- (39) law of action and reaction
- (40) gravitational acceleration on the surface of the Earth
- (41) gravitational constant
- (42) Planck constant
- (43) Hubble constant, the speed of expansion of space
- (44) current generated by the flux of charge Q during time t
- (45) current through a resistor for the given voltage U, Ohm law, direct or alternating circuit
- (46) current through a coil, alternating circuit with the angular frequency ω , delayed behind the voltage U
- (47) current through a capacitor, alternating circuit with the angular frequency ω , advanced before the voltage U
- (48) Boltzmann constant
- (49) Coulomb constant
- (50) mass from the density ρ
- (51) relativistic mass
- (52) proton mass
- (53) electron mass
- (54) brightness of Vega
- (55) Pogson eq.
- (56) gravitating mass, Jeans eq.
- (57) Earth mass
- (58) Sun mass
- (186) number of particles
- (60) index of refraction, Snell law
- (61) radioactive decay
- lens eq., where o denotes the focal length, x the object distance, x' the image distance
- (63) focal length of a spherical mirror
- (195) linear momentum
- (65) momentum conservation law
- (66) photon momentum
- (67) ideal gas state eq.
- (68) solid matter state eq.
- (69) hydrostatic pressure
- (70) adiabatic pressure
- (71) power, force, velocity
- (72) power, flux, area
- (73) power, voltage, current
- (74) parsec, unit of distance

- (75) elementary charge
- (76) conic section (ellipse, hyperbola)
- (77) atom radius
- (78) gravitational radius
- (79) Earth radius
- (80) Sun radius
- (81) surface area of a sphere
- (82) hour angle, sidereal time, right ascension
- (83) sidereal time (in seconds), tropical year, UT1 denotes the universal time, J2000 the standard epoch, λ the geographic longitude
- (84) time dilation
- (85) age of the universe
- (86) age of the solar system
- (87) period of a string
- (88) period of a pendulum
- (89) period of a planet orbiting the Sun, Kepler law
- (90) period of an LC circuit
- (91) absolute temperature scale
- (92) temperature on the surface of the Sun
- (93) speed from the acceleration
- (94) speed from the angular speed
- (95) speed from the expansion of space
- (96) Kepler speed
- (97) thermal speed
- (98) volume of a sphere
- (99) distance for a uniform motion
- (100) distance for an accelerated motion
- (101) length contraction
- (102) arithmetic average
- (103) harmonic motion
- (104) wave motion
- (105) law of reflection
- (106) relative length difference
- (107) thermal expansion
- (108) diffraction on a grating
- (109) Wien law
- (110) Doppler effect
- (111) permeability of vacuum
- (112) Ludolph number
- (113) stress, modulus, relative length difference
- (114) Stefan–Boltzmann constant
- $^{(115)}$ standard deviation squared, variance
- (116) parallax
- (117) diffraction limit
- (118) field of view
- (119) black body flux, to half-space
- $^{(120)}$ light absorption, opacity κ
- (121) angular frequency

B A-B-C of equations (cont.)

This is a continuation on a graduate level.

$$\dot{} \equiv \frac{\partial}{\partial t} \tag{122}$$

$$\nabla \equiv \left(\frac{\partial}{\partial x}, \frac{\partial}{\partial y}, \frac{\partial}{\partial z}\right) \tag{123}$$

$$_{,i} = \frac{\partial}{\partial x_i}$$
 (124)

$$\mathbf{a} \cdot \mathbf{b} = (a_1 b_1, a_2 b_2, a_3 c_3) \tag{125}$$

$$\mathbf{a} \times \mathbf{b} = (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1)$$
(126)

$$\dot{a} = \frac{2}{n} \mathbf{a} \cdot \hat{T} \tag{127}$$

$$\dot{a} = -\frac{2}{na} \frac{\partial \mathcal{R}}{\partial \lambda} \tag{128}$$

$$\dot{A}^2 = H_0^2 \left(\frac{\Omega_{\rm m}}{A} + \frac{\Omega_{\rm r}}{A^2} + \Omega_{\Lambda} A^2 + 1 - \Omega_{\rm m} - \Omega_{\rm r} - \Omega_{\Lambda} \right)$$
 (129)

$$A'_{ij} = \frac{A_{ij} - D_{ij} - O_{ij}}{F_{ij} - D'_{ij} - O'_{ij}}$$
(130)

$$A_{21}n_2 + (B_{21}n_2 - B_{12}n_1)\frac{1}{4\pi} \int I_f \varphi_{12} df + C_{21}n_2 - C_{12}n_1 = 0$$
 (131)

$$A_V \doteq 3 E(B - V) \tag{132}$$

$$\nabla \cdot \mathbf{B} = 0 \tag{133}$$

$$\frac{\partial \mathbf{B}}{\partial t} = -\nabla \times \mathbf{E} \tag{134}$$

$$B_f = \frac{2hf^3}{c^2} \frac{1}{e^{\frac{hf}{kT}} - 1} \tag{135}$$

$$\cos c = \cos a \cos b + \sin a \sin b \cos \gamma \tag{136}$$

$$C_{\rm J} = \frac{1}{2}(\dot{x}^2 + \dot{y}^2 + \dot{z}^2) - \frac{1}{2}n^2(x^2 + y^2) - \frac{GM_1}{r_1} - \frac{GM_2}{r_2}$$
 (137)

$$E = M + e\cos E \tag{138}$$

$$E_n = -\frac{k_e q^2}{2r_0} \frac{1}{n^2} \tag{139}$$

$$2\langle E_{\mathbf{k}}\rangle = -\langle E_{\mathbf{g}}\rangle \tag{140}$$

$$\nabla \cdot \mathbf{E} = \frac{1}{\varepsilon} \rho_{\mathbf{e}} \tag{141}$$

$$\frac{\partial \mathbf{E}}{\partial t} = \mu \varepsilon \nabla \times \mathbf{B} - \mu \mathbf{j} \tag{142}$$

$$f(x) = \sum_{i=0}^{\infty} \frac{f^{(i)}(x_0)}{i!} (x - x_0)^i$$
 (143)

$$f_{;i} = f_{,i} \tag{144}$$

$$f^{i}_{;j} = f^{i}_{,j} + f^{k} \Gamma^{i}_{kj} \tag{145}$$

$$f^{ij}_{;k} = f^{ij}_{,k} + f^{lj}\Gamma^{i}_{lk} + f^{il}\Gamma^{j}_{lk}$$
 (146)

$$f_i = g_{ik} f^k (147)$$

$$f_{\rm G} = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$
 (148)

$$f_{\rm L} = \frac{\gamma}{\pi} \frac{1}{(x-\mu)^2 + \gamma^2} \tag{149}$$

$$f_{\rm P} = \frac{\lambda^k \,\mathrm{e}^{-\lambda}}{k!} \tag{150}$$

$$f_{\rm Ny} = \frac{1}{2\delta} \tag{151}$$

$$\int_{V} \nabla \cdot \mathbf{f} dV = \oint_{S} \mathbf{f} \cdot d\mathbf{S}$$
 (152)

$$\int_{S} \nabla \times \mathbf{f} \cdot d\mathbf{S} = \oint_{S} \mathbf{f} \cdot d\mathbf{s}$$
 (153)

$$F(\omega) = \int_{-\infty}^{\infty} f(t) e^{i\omega t} dt$$
 (154)

$$\mathbf{F} = m\ddot{\mathbf{r}} \tag{155}$$

$$\mathbf{F} = -2\vec{\omega} \times \mathbf{v} \tag{156}$$

$$\mathbf{F} = (Q_{\text{abs}} + Q_{\text{sca}}) \frac{1}{c} \Phi S \left(\hat{r} - \frac{\mathbf{v} \cdot \hat{r}}{c} \hat{r} - \frac{\mathbf{v}}{c} \right)$$
 (157)

$$\mathbf{F} = -\frac{2}{3} \frac{1}{c} \int \epsilon \sigma T^4 d\mathbf{S} \tag{158}$$

$$F = \frac{2GMm}{r^3}R\tag{159}$$

$$g_{ik} = \mathbf{e}_i \mathbf{e}_k \tag{160}$$

$$g_{ik} = \begin{pmatrix} -c^2 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 1 & 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$$
 (161)

$$g_{ik} = \begin{pmatrix} -c^2(1 - r_{\rm g}/r) & 0 & 0 & 0\\ 0 & (1 - r_{\rm g}/r)^{-1} & 0 & 0\\ 0 & 0 & r^2 & 0\\ 0 & 0 & 0 & (r\sin\vartheta)^2 \end{pmatrix}$$
(162)

$$g_{ik} = \begin{pmatrix} -c^2 & 0 & 0 & 0\\ 0 & A^2(1 - Kr^2)^{-1} & 0 & 0\\ 0 & 0 & (Ar)^2 & 0\\ 0 & 0 & 0 & (Ar\sin\vartheta)^2 \end{pmatrix}$$
(163)

$$g^{ik} = (g_{ik})^{-1} (164)$$

$$H = \frac{p^2}{2m} - \frac{GMm}{q} \tag{165}$$

$$H = \frac{p^2}{2m} - \frac{k_e e^2}{q} \tag{166}$$

$$H + H \leftrightarrows H^*$$
 (167)

$$H + \gamma \stackrel{\leftarrow}{\Longrightarrow} H^*$$
 (168)

$$H + \gamma \stackrel{l}{\hookrightarrow} p^+ + e^-$$
 (169)

$$H^- + \gamma \leftrightarrows H + e^- \tag{170}$$

$$I(\vec{\alpha}) = I_0 \left[1 + \Re \left(\mu e^{ik\vec{\alpha} \cdot \vec{B}} \right) \right]$$
 (171)

$$I_f \equiv \frac{\mathrm{d}E}{\mathrm{d}t\mathrm{d}S\cos\vartheta\mathrm{d}\Omega\mathrm{d}f} \tag{172}$$

$$\frac{1}{c}\frac{\partial I_f}{\partial t} + \hat{k} \cdot \nabla I_f = j_f \rho - \kappa_f \rho I_f \quad \text{pro } \forall \hat{k}$$
 (173)

$$I_f = I_f(0) e^{-\kappa_f \rho x} + S_f(1 - e^{-\kappa_f \rho x})$$
 (174)

$$I = \frac{U}{R} \tag{175}$$

$$\dot{I} = \frac{U}{L} \tag{176}$$

$$\int I \, \mathrm{d}t = UC \tag{177}$$

$$\sum_{i=1}^{N} I_i = 0 \tag{178}$$

$$j_f \varrho = \frac{hf}{4\pi} n_2 A_{21} \varphi_{12} \tag{179}$$

$$j_f \varrho = \kappa_f^{\rm sca} \rho \frac{1}{4\pi} \int I_f d\Omega \tag{180}$$

$$\mathbf{L} = \mathbf{r} \times \mathbf{p} \tag{181}$$

$$\dot{\mathbf{L}} = \mathbf{M} \tag{182}$$

$$\frac{\mathrm{d}L_R}{\mathrm{d}R} = 4\pi R^2 \varrho \,\varepsilon \tag{183}$$

$$\frac{\mathrm{d}M_R}{\mathrm{d}R} = 4\pi R^2 \varrho \tag{184}$$

$$\mathbf{M} = \mathbf{r} \times \mathbf{F} \tag{185}$$

$$N = \sqrt{S} \tag{186}$$

$$N = \sqrt{N_{\text{star}}^2 + N_{\text{sky}}^2 + N_{\text{dark}}^2 + N_{\text{readout}}^2 + N_{\text{discrete}}^2}$$
 (187)

$$N = \int N_i d\vec{\Gamma} \tag{188}$$

$$N_i = \frac{g_i}{e^{\frac{E_i - \mu}{kT}} - 1} \tag{189}$$

$$N_i = \frac{g_i}{e^{\frac{E_i - \mu}{kT}} + 1} \tag{190}$$

$$\frac{N_i}{N_j} \stackrel{\text{lte}}{=} \frac{g_i}{g_j} e^{-\frac{E_{ij}}{kT}} \tag{191}$$

$$f(v) \stackrel{\text{lte}}{=} \sqrt{\frac{2}{\pi}} \left(\frac{m}{kT}\right)^{3/2} v^2 e^{-\frac{mv^2}{2kT}}$$

$$\tag{192}$$

$$p \stackrel{\text{lte}}{=} \frac{1}{3}aT^4 \tag{193}$$

$$p = \frac{1}{c} \int I \cos^2 \theta \, \mathrm{d}\Omega \tag{194}$$

$$p = \frac{1}{3V} \int N_i v |\mathbf{p}| d\vec{\Gamma}$$
 (195)

$$\frac{\mathrm{d}p}{\mathrm{d}R} = -\frac{GM_R\varrho}{R^2} \tag{196}$$

$$\frac{\mathrm{d}p}{\mathrm{d}R} = -\frac{G}{R^2} \left(M_R + 4\pi R^3 \frac{p}{c^2} \right) \left(\rho + \frac{p}{c^2} \right) \left(1 - \frac{r_\mathrm{g}}{R} \right)^{-1} \tag{197}$$

$$\frac{\mathrm{d}p}{\mathrm{d}T} = \frac{l_{\mathrm{h}}}{T(V' - V)} \tag{198}$$

$$P_{20}(\cos \vartheta) = \frac{1}{2} (3\cos^2 \vartheta - 1)$$
 (199)

$$p(B|A) = p(A|B)\frac{p(B)}{p(A)}$$
(200)

$$p = \int \Psi \Psi^* dV \tag{201}$$

$$p + p \rightarrow D + e^+ + \nu_e \tag{202}$$

$$e^+ + e^- \to 2\gamma \tag{203}$$

$$D + p \to {}^{3}He + \gamma \tag{204}$$

$$^{3}\text{He} + ^{3}\text{He} \rightarrow \alpha + 2\text{p}$$
 (205)

$$\dot{p} = -\frac{\partial H}{\partial q} \tag{206}$$

$$\dot{q} = \frac{\partial H}{\partial p} \tag{207}$$

$$\delta Q + \mu dN = dU + \delta W \tag{208}$$

$$r_{\rm H} = a \left(\frac{m}{3M}\right)^{1/3} \tag{209}$$

$$\mathcal{R}_{21} = -\frac{Gm_1}{r_{12}} + \frac{Gm_1}{r_1^3} \mathbf{r}_1 \cdot \mathbf{r}_2 \tag{210}$$

$$\langle \mathcal{R}_{21} \rangle \doteq C_0 + C_1(e_1^2 + e_2^2) + C_3 e_1 e_2 \cos(\varpi_1 - \varpi_2)$$
 (211)

$$R_{ik} - \frac{1}{2}Rg_{ik} + \Lambda g_{ik} = \frac{8\pi G}{c^4}T_{ik}$$
 (212)

$$R^{l}_{ijk} = \frac{f_{i;jk} - f_{i;kj}}{f_{l}} \tag{213}$$

$$R_{ik} = R^l_{ilk} (214)$$

$$R = g^{ik}R_{ik} (215)$$

$$R_z(\varphi) \equiv \begin{pmatrix} \cos \varphi & -\sin \varphi & 0\\ \sin \varphi & \cos \varphi & 0\\ 0 & 0 & 1 \end{pmatrix}$$
 (216)

$$\mathbf{r}' = R_z(\Omega) \times R_x(i) \times R_z(\omega)\mathbf{r}$$
 (217)

$$\ddot{\mathbf{r}} + G(M+m)\frac{\mathbf{r}}{r^3} = 0 \tag{218}$$

$$Re = \frac{xv}{v} \tag{219}$$

$$S_{\text{adu}} = \int \frac{\Phi_f S t_{\text{exp}}}{h f} T Q \eta \, df \qquad (220)$$

$$\mathbf{S} = \nu \nabla \mathbf{v} \tag{221}$$

$$\dot{\mathbf{S}} = E \nabla \mathbf{v} \tag{222}$$

$$S_f \equiv \frac{j_f}{\kappa_f} \tag{223}$$

$$S_f \stackrel{\text{lte}}{=} B_f \tag{224}$$

$$t' = \gamma \left(t + \frac{\beta}{c} x \right) \tag{225}$$

$$\frac{\mathrm{d}T}{\mathrm{d}R}\Big|_{\mathrm{rad}} = -\frac{3\kappa\varrho L_R}{16\pi a c R^2 T^3} \tag{226}$$

$$\frac{\mathrm{d}T}{\mathrm{d}R}\Big|_{\mathrm{ad}} = \frac{1}{C_{n}\rho} \frac{\mathrm{d}p}{\mathrm{d}R} \tag{227}$$

$$\left| \frac{\mathrm{d}T}{\mathrm{d}R} \right|_{\mathrm{ad}} < \left| \frac{\mathrm{d}T}{\mathrm{d}R} \right|_{\mathrm{rad}} \tag{228}$$

$$T^{ik} = \begin{pmatrix} \rho c^2 & 0 & 0 & 0\\ 0 & p & 0 & 0\\ 0 & 0 & p & 0\\ 0 & 0 & 0 & p \end{pmatrix}$$
 (229)

$$u = \frac{1}{c} \int I d\Omega \tag{230}$$

$$\frac{\partial u}{\partial t} = \chi \nabla \cdot \nabla u \tag{231}$$

$$\frac{\partial^2 u}{\partial t^2} = c^2 \nabla \cdot \nabla u \tag{232}$$

$$u = A e^{i(\mathbf{k} \cdot \mathbf{r} - \omega t)} \tag{233}$$

$$U = -\frac{GM}{r} \sum_{\ell=0}^{n} \sum_{m=-\ell}^{\ell} \left(\frac{R}{r}\right)^{\ell} P_{\ell m}(\cos \vartheta) \left[C_{\ell m} \cos(m\varphi) + S_{\ell m} \sin(m\varphi)\right]$$
 (234)

$$\nabla \cdot \nabla U = 4\pi G \varrho \tag{235}$$

$$\sum_{i=1}^{N} U_i = 0 (236)$$

$$\frac{\partial \mathbf{v}}{\partial t} + \mathbf{v} \cdot \nabla \mathbf{v} = -\frac{1}{\rho} \nabla p + \frac{1}{\rho} \nabla \cdot \mathbf{S}$$
 (237)

$$x' = \gamma(x - Vt) \tag{238}$$

$$\frac{X}{1-X} = \frac{(2\pi m_{\rm e}kT)^{3/2}}{h^3} \frac{n}{n_{\rm e}n_{\rm p}} e^{-\frac{E_{\rm i}}{kT}}$$
(239)

$$\frac{\partial^2 x^i}{\partial \tau^2} + \frac{\partial x^j}{\partial \tau} \frac{\partial x^k}{\partial \tau} \Gamma^i_{kj} = 0 \tag{240}$$

$$\alpha + \alpha \stackrel{\leftarrow}{\Longrightarrow} {}^{8}\mathrm{Be}^{*}$$
 (241)

$$^{8}\mathrm{Be}^{*} + \alpha \to {}^{12}\mathrm{C} \tag{242}$$

$$\sin \alpha = \sin \beta \frac{\sin a}{\sin b} \tag{243}$$

$$\beta \equiv \frac{v}{c} \tag{244}$$

$$\gamma \equiv \frac{1}{\sqrt{1 - \frac{v^2}{c^2}}} \tag{245}$$

$$\Gamma^{i}_{kj} = \frac{1}{2} g^{im} \left(g_{mk,j} + g_{mj,k} - g_{kj,m} \right) \tag{246}$$

$$\langle \Delta x \rangle \langle \Delta p \rangle \ge \frac{\hbar}{2}$$
 (247)

$$\kappa_f \varrho = \frac{hf}{4\pi} (n_1 B_{12} - n_2 B_{21}) \varphi_{12} \tag{248}$$

$$\kappa_f^{\text{abs}} = \frac{3(1-A)}{4r\rho_{\text{d}}} \tag{249}$$

$$\lambda' = \lambda \left[1 + \frac{g(y' - y)}{c^2} \right] \tag{250}$$

$$\mu = \frac{\int I(\vec{\alpha}') e^{ik\vec{\alpha}' \cdot \mathbf{B}} d\alpha'}{I_0}$$
 (251)

$$\nu = \alpha c_{\rm s} z \tag{252}$$

$$\frac{\partial \varrho}{\partial t} + \mathbf{v} \cdot \nabla \varrho = -\varrho \nabla \cdot \mathbf{v} \tag{253}$$

$$d\tau_f \equiv \kappa_f \rho dx \tag{254}$$

$$\Phi = \int I \cos \theta d\Omega \tag{255}$$

$$\Phi(1-A) - K\nabla u \cdot \hat{n} - 4\epsilon\sigma u^4 \stackrel{\text{lte}}{=} 0$$
 (256)

$$\chi^2 \equiv \sum_{i=1}^n \left(\frac{y_i - f(x_i)}{\sigma_i}\right)^2 \tag{257}$$

$$\mathrm{i}\hbar\frac{\partial\Psi}{\partial t} = \frac{\hbar^2}{2m}\nabla\cdot\nabla\Psi - \frac{k_\mathrm{e}Qq}{r}\Psi \tag{258}$$

$$\Psi_{n\ell m} = \sum_{n=0}^{\infty} \sum_{\ell=0}^{n} \sum_{m=-\ell}^{\ell} K e^{-\frac{r}{nr_0}} \left(\frac{2r}{nr_0} \right)^{\ell} L_{n-\ell-1}^{2\ell+1} \left(\frac{2r}{nr_0} \right) Y_{\ell m}(\vartheta, \varphi)$$
 (259)

⁽¹²²⁾ partial derivative with respect to time

operator of gradient (čes. stoupání), $\nabla \cdot$ divergence (rozbíhavost), $\nabla \times$ rotation (stáčení)

⁽¹²⁴⁾ partial derivative with respect to coordinate

- (125) dot (scalar) product, $|\boldsymbol{a} \cdot \boldsymbol{b}| = ab \cos \alpha$
- (126) cross (vector) product, $|\boldsymbol{a} \times \boldsymbol{b}| = ab \sin \alpha$
- (127) Gauss eq., a change of an orbital element due to an acceleration, transversal component, unit $(m s^{-1})$, hence the mean motion n
- (128) Lagrange eq., a change of an orbital element due to a perturbation (potential), unit
- (129) Fridman eq., matter, radiation, and dark energy state equations (A^{-3}, A^{-4}, A^{0}) , remainder from normalisation (A = 1)
- (130) reduction of a CCD image, dark, offset, flat
- (131) collisional equilibrium, emission, absorption, stimulated emission, collisions, level populations in non-lte
- (132) extinction vs. reddening, $E(B-V) = B-V (B-V)_0$
- (133) Maxwell eq., closed magnetic field lines
- (134) Maxwell eq., electro-magnetic field, $\mathbf{B} \perp \mathbf{E}$, factor 1, minus convention
- (135) Planck eq., local thermodynamic equilibrium, "black body", common exponential e $^{-\cdots}$, or e $^{+\cdots}$ in the denominator, -1 due to an expansion (e $^x \doteq 1 + x + \cdots$), unit (J s $^{-1}$ m $^{-2}$ Hz $^{-1}$), hence hf and f^2/c^2
- $^{(136)}$ spherical law of cosines, similar as planar
- (137) Jacobi integral of the 3-body problem, speed, centrifugal, potential terms
- $^{(138)}$ Kepler eq., transcendental in E
- (139) energy levels of the hydrogen atom, electric energy at the Bohr radius r_0
- (140) virial theorem, bound state, total energy $\langle E_{\rm k} \rangle + \langle E_{\rm g} \rangle$ negative
- (141) Maxwell eq., electric field lines emanating from charges, ε permittivity (čes. pronikavost)
- (142) Maxwell eq., electro-magnetic field, units must be different for opposite derivatives, factor $\mu\varepsilon = 1/c^2$, μ permeability (čes. prostupnost), from $\mathbf{B} \to \mathbf{E}$, charge transport (\mathbf{j}) also changes field (\mathbf{E}) , minus convention
- (143) Taylor series, nth derivative, if not ∞ , approximation in a limited range
- $^{(144)}$ covariant derivative of a scalar, scalar is independent on the basis \boldsymbol{e}_i
- (145) covariant derivative of a vector, Christoffel symbol, correction depends on all vector components (sum over k), remaining indices remain, minus if covariant $(f_{i:j})$
- (146) covariant derivative of a tensor, simply two indices, two corrections
- (148) Gauss distribution, thermal broadening
- (149) Lorentz distribution pressure broadening
- (150) Poisson distribution photon statistics, k number of photons, $\lambda=t/\bar{t},\,\bar{t}$ mean time between 2 photons
- (151) Nyquist frequency, maximum at a given sampling, aliasing if $f > f_{\rm Ny}$
- (152) Gauss theorem
- (153) Stokes theorem
- (154) Fourier transformation
- (155) 2nd Newton law
- (156) Coriolis force, in a non-inertial frame!
- (157) radiation pressure force, Doppler effect, Poynting–Robertson effect
- (158) Yarkovsky effect force, thermal emission
- (159) tidal force, gradient times scale
- $^{(160)}$ covariant metric, basis vectors components, functions of coordinates
- (161) Minkowski metric, flat spacetime
- (162) Schwarzschild metric, black hole
- (163) Fridman–Lemâitre–Robertson–Walker metric, homogeneous universe, expansion of the spatial coordinates, $K \simeq 1/R^2$ curvature, positive or negative
- (164) contravariant metric, inverse of
- (165) hamiltonian of the 2-body problem, total energy $E_{\rm k}+E_{\rm p},$ coordinate q, conjugate momentum p
- (166) hamiltonian of the hydrogen atom, ditto

- (167) collisional excitation, deexcitation, bound-bound, quantized
- (168) radiative excitation, deexcitation, bound-bound, quantized
- (169) ionisation, recombination, bound-free, not quantized
- (170) hydrogen anion, bound-free, not quantized
- (171) interferometric fringes, in the focal plane (α) , μ complex visibility, $\Re \mu$ contrast, $\Im \mu$ phase, if $\mu = 1$ unresolved, otherwise $\mu(\mathbf{B})$
- (172) monochromatic intensity, unit $(J_{s-1}m^{-2} H_{z-1})$
- (173) radiation transfer eq., temporal evolution, advection, emission, absorption, all directions \hat{k} interrelated due to scattering (j_f) !
- (174) formal solution of the radiation transfer eq., stationary, absorption, emission (along the same path), input intensity I(0) is even non-lte!
- $^{(175)}$ Ohm law, I on the l.h.s., because we choose U (and R), cf. easy-to-remember symmetry of $R,\,L,\,C!$
- (176) inductance (coil) in a non-stationary circuit, \dot{I} on the l.h.s, because..., I creates **B**
- (177) capacitance (capacitor) in a non-stationary circuit, $\int I dt$ on the l.h.s, because..., Q is accumulated
- (178) Kirchhoff circuital law, charge conservation
- (179) emission coefficient, line transition, Einstein coefficient, A_{21} emission, corresponding concentration, $\phi_{12}(f)$ line profile
- (180) emission coefficient, scattering, all directions \hat{k} interrelated
- (181) angular momentum (čes. moment hybnosti)
- (182) 2nd Newton law for rotation
- (183) 3rd stellar structure eq., thermal equilibrium, stationary ($\delta Q = 0$, $\mathrm{d}U = 0$, $\delta W = 0$), specific power ε (W kg⁻¹), neutrino cooling ($-\varepsilon_{\nu}$)
- (184) 1st stellar structure eq., continuity
- (185) torque (čes. moment síly)
- $^{(186)}$ photon noise, for e^- , not adu! i.e., the smallest number of quanta
- (187) sources of noise, star itself, sky, dark, readout, discretisation
- $^{(188)}$ number of particles from the distribution function
- (189) Bose–Einstein distribution, bosons $(\gamma, W^{\pm}, Z^{0}, D, \alpha)$
- (190) Fermi-Diract distribution, fermions (p⁺, n, e⁻, ν, u, d, T)
- (191) Boltzmann distribution, level populations in local thermodynamic equilibrium
- (192) Maxwell-Boltzmann distribution, $|\mathbf{v}|$ (not v_x)
- (193) radiation pressure, $a = 4\sigma/c$, state eq. for *
- (194) radiation pressure, 2nd moment
- (195) pressure from the distribution function, collisions proportional to concentration n, velocity v (frequency), linear momentum $|\boldsymbol{p}|$ (pressure force)
- (196) 2nd stellar structure eq., hydrostatic equilibrium, pressure gradient, gravity
- (197) Tolman-Oppenheimer-Volkoff eq., relativistic hydrostatic equilibrium, p/c^2 as a source of gravity, M_R corrected similarly, keeping units (kg), Schwarzschild r_g as in the metric
- (198) Clausius—Clapeyron eq., phase transitions on the P(T) diagram, $l_{\rm h}$ specific heat of evaporation or melting, V'-V corresponding change of volume (negative for H₂O!)
- $^{(199)}$ a Legendre polynomial
- $^{(200)}\,$ Bayes theorem, conditional probability of $p(A\,{\rm and}\,B)$
- $^{(201)}$ quantum probability, Ψ normalisation
- (202) proton-proton chain, weak interaction
- (203) proton-proton chain, annihilation
- (204) proton-proton chain, strong interaction
- (205) proton-proton chain, strong interaction
- (206) Hamilton eq., conjugate momenta
- (207) Hamilton eq., generalized coordinates

- (208) 1st law of thermodynamics, Q heat added to the system and μdN chemical reactions (sum of) can either increase the internal energy U, or the system can perform some work W
- $^{(209)}$ Hill radius, proportional to r, the 3rd square root of m's as in Kepler
- (210) perturbation function, cartesian coordinates, as potential, direct term, indirect term (in \hat{r}_1 , projected to \hat{r}^2 , renormalized)
- (211) perturbation function, orbital elements, after expansion and averaging over λ , λ'
- Einstein eq., curvature (measured by R_{ik}), minus curvature due to coordinates, plus cosmology term, energy–momentum–stress as a source of gravity, units m⁻¹
- (213) Riemann tensor, a difference of two vector translations (along jk and kj), sum over l
- $^{(214)}$ Ricci tensor, just a sum over l
- (215) Ricci scalar, contraction by the metric
- (216) rotation matrix, rotation of a vector, not of a base, counter-clockwise
- $^{(219)}$ Reynolds number, advection/viscosity (as in N.–S.), ∇ approximated as "1/x"
- (217) orbit orientation, argument of pericentre, inclination, longitude of the ascending node; "argument" from pericentre, "longitude" from a fixed direction
- $^{(218)}$ the 2-body problem, in *relative* coordinates, hence the sum of masses
- (220) signal in analog-digital units, factors are the number of photons, transmission, quantum efficiency (e⁻), and amplification (adu).
- (221) deviatoric stress tensor, liquid, stress only if moving, kinematic viscosity
- $^{(222)}$ deviatoric stress tensor, solid, stress even if not moving, Young modulus
- (223) source function
- (224) Kirchhoff radiative law, source function in the local thermodynamic equilibrium
- (225) Lorentz transformation, both coordinates, factors γ , β , units s
- (226) 4th stellar structure eq., radiative, opaque layer of gas, steep gradient, flux always multiplied by κ , surface area (R^2) , and derivative of S.–B. (T^3) in the denominator
- (227) 4th stellar structure eq., convective, adiabatic ($\delta Q = 0$), simple relation (dT, dP), same units (C_p , V).
- (228) Schwarzschild criterion, opaque is always/convective, shallow is more efficient
- (229) energy-momentum-stress tensor, fluid, comoving frame $(u^i = 0)$
- (230) radiative energy density, 0th moment, over solid angle, $\iint \sin \vartheta d\vartheta d\varphi$
- (231) heat diffusion eq., thermal diffusivity $\chi = K/(\rho C)$, conductivity $(W m^{-1} K^{-1})$, capacity $(J kg^{-1} K^{-1})$, flux $\vec{\Phi} = -K\nabla T$, divergence of $(-\nabla \cdot \vec{\Phi})$
- (232) wave eq., speed of light (or sound), 2nd derivatives
- (233) planar wave, complex notation
- (234) geopotential, 0th term monopole (point mass), 1st dipole (centre of mass), 2nd quadrupole, associated Legendre polynomials, spherical functions
- (235) Poisson eq., $\mathbf{F} = -\nabla U$
- (236) Kirchhoff circuital law
- (237) Navier–Stokes eq., temporal evolution, advection, pressure, stress, i.e., a difference $(\nabla \cdot \mathbf{S})$ of viscous forces $(\mathbf{S} = \nu \nabla \mathbf{v})$ in neighbouring layers, hence 2nd derivative
- (238) Lorentz transformation relative speed V, factors γ , β , units m
- (239) Saha eq., $X = n_e/n$, n = N/V, ratio of ionized to recombined, common exponential, ratio of relevant concentrations, term with m³ units, no c
- (240) geodetic eq., as $\mathbf{F} = m\mathbf{a}$, 2nd derivative, proper time, affine connection (m⁻¹), same units
- $^{(241)}$ 3- α reaction, unstable beryllium
- (242) 3- α reaction, only a fraction
- (243) spherical law of sines, as planar $\sin \alpha/a$
- (244) relativistic factor
- (245) relativistic factor
- (246) Christoffel symbol, $g_{ik;j} = 0$, i.e., the metric does not change, if we compensate for the metric change, the r.h.s. of the affine connection, if Γ unknown, we need to invert it, hence

- g^{im} , one upper index is summation, one lower index is summation, only 3 combinations of (j, k, m), minus if asymmetric
- (247) uncertainty principle, the operators of momentum (\hat{p}) and coordinate (\hat{x}) do not commutate $(\hbar/2)$ is a remainder
- (248) gas opacity, line transition, Einstein coefficients, B_{12} absorption, B_{21} stimulated emission (negative a.), corresponding concentrations, $\phi_{12}(f)$ line profile
- (249) dust opacity, absorption, geometric ($\lambda \ll 2\pi r$), unit m² kg⁻¹, cross section of spheres $N\pi r^2$, per unit mass
- (250) gravitational redshift, Pound & Rebka (1959)
- (251) van Cittert–Zernike theorem, interferometric visibility, the Fourier of the source $(I(\alpha'))$, spatial frequencies $\mathbf{B}/\lambda \equiv (u,v)$, in "cycles per baseline"
- (252) α -parametrisation of viscosity, unit m² s⁻¹, maximum speed and maximum size of vortices, Shakura & Sunyaev (1969)
- (253) continuity eq., temporal evolution, advection, expansion
- (254) optical depth, thick $(\tau \gg 1)$ vs. thin $(\tau \ll 1)$
- (255) radiative flux, 1st moment, sometimes $1/(4\pi)$ factor
- (256) thermal equilibrium on a surface (BC), irradiation, conduction, emission
- (257) comparison of observations with the model, σ_i uncertainties, N-M degrees of freedom, cf. probability p that the value of χ^2 is that high only by chance
- (258) Schrödinger eq., temporal evolution, diffusion of Ψ , confinement by U, weighting by Ψ , i due to a wave solution $e^{i(\mathbf{k}\cdot\mathbf{r}-\omega t)}$, units of \hbar (J s)
- (259) wave function of the hydrogen atom, Laguerre polynomials, quantum numbers n, ℓ , m, exponential cut by the Bohr radius (r_0) , atom is bound, higher energy levels (nr_0) , special function, spherical function, i.e., orbitals (s, p, d, ...), for p, e^- oscillates in a figure ∞ , 8, ..., a state is a superposition