
Charles University in Prague

Faculty of Mathematics and Physics

DOCTORAL THESIS

Marie Hrudková
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Contents

1 Preface 1

2 Introduction 3

2.1 The planetary formation and migration . . . . . . . . . . . . . . . . . . . . 4

2.2 Statistical properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Transiting exoplanets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.1 Fundamental properties . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3.2 Detection methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.3 The Rossiter-McLaughlin effect . . . . . . . . . . . . . . . . . . . . 13

2.3.4 Transit timing variations . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.5 Planetary atmospheres . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.6 Statistical properties . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4 Radial-velocity measurements . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Other detection methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.1 Direct imaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.2 Gravitational microlensing . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.3 Astrometric method . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5.4 Planets by pulsars . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 BARCOR 25

3.1 The Earth flattening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.2 Expressions for the precession quantities . . . . . . . . . . . . . . . . . . . 27

3.3 Radial-velocity correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Time correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.5 Program tests and error estimates . . . . . . . . . . . . . . . . . . . . . . . 33

4 Photometry of transiting exoplanets 37

4.1 Accurate photometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.1 Systematic noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1.2 Astrophysical sources of systematics . . . . . . . . . . . . . . . . . . 37

4.2 Light-curve modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.1 Uncertainty of best-fitting parameters . . . . . . . . . . . . . . . . . 40

4.2.2 Markov-Chain Monte Carlo simulations . . . . . . . . . . . . . . . . 41

4.2.3 Gelman & Rubin R statistic . . . . . . . . . . . . . . . . . . . . . . 42

4.2.4 Accounting for correlated ‘red’ noise . . . . . . . . . . . . . . . . . 43

5 51 Peg 45

5.1 Iodine cell calibration technique . . . . . . . . . . . . . . . . . . . . . . . . 45

5.2 Observations and data reduction . . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



6 HD 189733 51
6.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.2 Data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.3 Light-curve modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.4.1 Transit timing variations analysis . . . . . . . . . . . . . . . . . . . 56
6.5 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

7 TrES-1 61
7.1 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.2 Data reduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7.2.1 Photometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
7.3 Light-curve modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.4.1 Transit timing variations analysis . . . . . . . . . . . . . . . . . . . 69
7.5 Conclusions and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

8 Conclusions and perspectives 71

List of publications and conference contributions related to this thesis 81



Title: Planets by other suns
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Abstract

Exploring distant planetary systems can help us to understand our own. In this thesis, two

methods are further investigated for this purpose. First, to detect Earth-mass planets high-

accurate measurements of radial velocities and also accurate barycentric corrections are needed.

The program for computing these corrections was developed. The accuracy achieved is few cm s−1

and hundredths of s for radial velocity and time corrections, respectively. The program was used

to compute barycentric corrections of the 51 Peg system, for which measurements with the 2-m

Alfred-Jensch Telescope were taken and analysed. Second, the method of planetary transits was

used for a transit timing study of two transiting exoplanetary systems, HD 189733 and TrES-1.

The data were taken with the 4.2-m William Herschel Telescope and the 2.6-m Nordic Optical

Telescope, La Palma. The program using the Markov-Chain Monte Carlo simulations was written

for a purpose of a transit timing study to derive system parameters, mid-transit times and their

uncertainties. An additional planet in a transiting system perturbs the motion of the transiting

planet, and the interval between the mid-eclipses is not constant. Deviations from the predicted

mid-transit times which can reveal the presence of other bodies in the system were analysed.





Mottoes:

The diversity of the phenomena of nature is so great, and the treasures hidden in the
heavens so rich, precisely in order that the human mind shall never be lacking in fresh
nourishment.

Johannes Kepler

A time would come when men should be able to stretch out their eyes... They should see
the planets like our Earth.

Christopher Wren, Inauguration Speech, Gresham College, 1657
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1 Preface

This thesis collects results obtained during my Ph.D. study program on the topic of ex-
trasolar planetary systems. One of the main subject is the improvement of accuracy of
barycentric corrections, with an application to the extrasolar system 51 Peg. The second
main topic is a determination of mid-transit times of selected transiting extrasolar systems
with subsequent analyses of results.

The overview of the physics and known properties of extrasolar planetary systems is
presented in section §2. Planetary formation and evolution theories in a context with tran-
siting extrasolar planets are summarized in section §2.1. Interesting connections between
planetary system properties and their formation and evolution history may be revealed
via a statistical analysis of known extrasolar systems. This is explored for all and only
transiting extrasolar planets in sections §2.2 and §2.3.6, respectively. Different detection
methods allow discoveries of planets with variety of characteristics due to the fact that
each method is sensitive differently to distinct planetary parameters. Their overview is
given in sections §2.3, §2.4 and §2.5.

In section §3 the program for computations of barycentric radial velocity and time
corrections is presented. The physical background is also explained and the resulting
corrections are compared to those from similar programs.

The photometry of transiting extrasolar planets is discussed in section §4. Difficulties
to obtain accurate photometric measurements are summarized in section §4.1, and the
procedure how the system parameters were computed from a light curve is presented in
section §4.2.

Sections §5, §6 and §7 present an application of previous results to the real data.
The radial velocities of 51 Peg system, to which the barycentric corrections computed in
section §3 were applied, were analysed in section §5. In sections §6 and §7 light curves
of the transiting extrasolar systems HD 189733 and TrES-1, respectively, were modelled
using the procedure presented in section §4.2, and the accurate mid-transit times were
determined. They were further investigated because the deviations from the predicted
mid-transit times can reveal the presence of additional bodies in the transiting system, or
place limits on their existence. The results are summarized in section §8.
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2 Introduction

More than two thousand years ago the Greek philosopher Epicuros speculated that there
are many other inhabited words besides our own in the Universe. In 1584 the Italian
philosopher Giordano Bruno, the proponent of heliocentrism and infinity of the Universe,
published his model, where the Sun was an ordinary star and all other similar stars had
their own planets. Bruno saw a system of sun/star with planets as a fundamental unit of
the Universe. These were one of the first recorded human thoughts about the existence of
extrasolar planets.

First real attempts to detect extrasolar planets began in the first half of the 20th century
using the astrometric method, where low-mass companions can be discovered by periodic
changes in the star position. Strand (1943) published the detection of an extrasolar planet
by 61 Cyg and later van de Kamp (1963) reported the detection of planets by Barnard’s
Star. Both discoveries were based on observations from Sproul Observatory and later
shown to be spurious detections.

Unfortunately, the astrometric method was not the best choice for detecting extrasolar
planets due to an insufficient accuracy of astrometric measurements at that time. However,
observing stars spectroscopically could reveal the existence of a planet by detecting radial
velocity (RV) changes of a parent star due to its orbital motion around a common centre
of gravity. Therefore several groups started to monitor RVs of different star samples. First
promising discovery was published by Campbell et al. (1988), who found evidence of a
probable third body of planetary mass with the period ∼ 2.7 years in the RV residuals of the
spectroscopic binary star γ Cep. Walker et al. (1992) confirmed the period of ∼ 2.52 years,
but found that Ca II emission line index varied with the same period and concluded that
the observed variations are most probably due to star’s rotation. Later, Hatzes et al.
(2003) published a new analysis using four independent data sets spanning more than 20
years, and confirmed the planetary-mass companion with a period of ∼ 2.48 years and a
minimum mass Mp sin i = 1.7 MJ, where Mp is a mass of the planet, MJ is a mass of Jupiter
and i is the inclination of the planetary orbit, defined so that i = 0◦ when the planetary
orbit lies in the plane of the sky.

Other promising detection was published by Latham et al. (1989). They presented a
spectroscopic evidence for a companion to the solar-like star HD 114762 with a period of 84
days and Mp sin i = 11 MJ. They suggested that the companion is probably a brown dwarf,
but may even be a giant planet. The uncertainty in mass is due to the unknown inclination,
i. A brown dwarf is an object which has a sufficient mass to reach a temperature in its
centre needed for a synthesis of deuterium, but not hydrogen. To date no definition of
an extrasolar planet exists. A planet is usually considered as an extrasolar planet if it
orbits around a star other than the Sun, and if its mass is less than the mass needed for a
synthesis of deuterium, which is around 13 MJ for a solar-composition planet.

In 1992, an unexpected planetary system was found by Wolszczan & Frail (1992) around
the millisecond pulsar PSR 1257+12. Planets were discovered via periodic changes in the
pulsar signal arrival times. It is not clear, however, whether they survived the giant star
explosion or were captured later by gravitational forces of the neutron star.
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In 1995, the discovery of an extrasolar planet by the solar-like star 51 Peg was announced
by Mayor & Queloz (1995). This is the milestone of exoplanet studies for many reasons.
First of all, it was a clear evidence of the planetary-mass companion to the solar-like star,
with the mass Mp sin i = 0.47 MJ. Second, the planet was found to orbit very closely to its
parent star with the period of only 4.23 days. It was the time when theories of planetary
system formation and evolution needed to be revised in order to explain the existence of a
planet at such a close distance to its parent star. This discovery was then followed by many
others presenting new planets found spectroscopically. Since then, about 290 out of 3701

extrasolar planets known to date were discovered with this method due to the progress in
instrumentation and data reduction software providing more accurate RV measurements.

Another great success was a discovery of a first planet transiting in front of its parent
star HD 209458 (Charbonneau et al., 2000a; Henry et al., 2000; Mazeh et al., 2000). The
60 transiting extrasolar planets known to date are the only ones for which we know the
key physical parameters such as their mass, radius, and inferred internal structure.

About 30% of all the known extrasolar planets are ‘hot Jupiters’, planets with masses
close to or more than of Jupiter, orbiting typically within 0.1 AU (with orbital periods less
than 10 days for a planet around a solar-type star), where 1 AU is defined as the mean
distance between the Earth and the Sun and is approximately 1.5 × 1011 m. The name
‘hot Jupiters’ comes from their high equilibrium temperature due to the small separations
from their parent stars. Nowadays, also another class of extrasolar planets is observed, so
called ‘very hot Jupiters’, with orbital periods less than 2 days.

2.1 The planetary formation and migration

There are two main theories of giant planet formation. In one of them, initially a rocky core
of several Earth masses forms by planetesimal collisions in a protoplanetary disk, hence
its name the ‘core accretion model’, and then a massive gaseous envelope is accreted, all
on a timescale of less than 1 Myr (Chambers, 2006) or several Myr (Alibert et al., 2005).
According to the competing ‘disk instability model’ planets form by a gravitational collapse
of disk fragments in less than a thousand years (Mayer et al., 2002). Then after a few more
thousand years the dust and planetesimals inside the gaseous protoplanets can settle to
the centre of the protoplanet by local pressure gradients and low mass solid core is formed
(Boss et al., 2002).

It seems that both giant planet formation theories are needed to explain the diversity
of extrasolar planets detected to date. Giant planets with very large core masses are
better explained by the ‘core accretion’, whereas a formation via the ‘disk instability’ could
explain gas giants in very low metallicity systems. Although the ‘core accretion’ is generally
accepted for already three decades (Mizuno, 1980), ‘disk instability’ is only one decade old
as a serious competing theory to ‘core accretion’ (Boss, 2008, 2009).

Nevertheless, none of the two theories can explain the proximity of ‘hot Jupiters’ to
their parent stars. The standard explanation for this is that planets form further out in

1The Extrasolar Planets Encyclopedia: http://exoplanet.eu
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the protoplanetary disk and then migrate towards the parent star. There are different
mechanisms how the planet migration could be initiated and it is still not clear whether
one is dominant (see section §2.3.3).

Terrestrial-type planets play an interesting role in planet formation scenarios. They are
expected to form by the collisional accumulation of the planetesimals in the protoplanetary
disk similarly as rocky cores of giant planets in ‘core accretion model’. According to Zhou
et al. (2005) close-in terrestrial planets are unlikely in the ‘disk instability model’, but
should be abundant in the ‘core accretion model’. Therefore the detection of such close-in
terrestrial planets would distinguish which mechanism for the planet formation is dominant.

2.2 Statistical properties

Formation processes produce a surprising variety of exoplanetary systems: planets with
masses considerably larger than that of Jupiter, planets on highly eccentric orbits, planets
orbiting as close as 4 stellar radii, planets in stellar binary systems, and planets in resonant
multiplanet systems. Understanding such a wide variety is a goal of planet formation theo-
ries. A statistical analysis of known extrasolar systems may reveal interesting connections
between planetary system properties and their formation and evolution history.

The most recent statistical analysis was carried out by Udry & Santos (2007), who
discussed many statistical aspects of extrasolar systems. First, the most direct statisti-
cal property of planet-search programs is the percentage of positive detections. For the
ELODIE program, Naef et al. (2005) estimated for planets with masses more than 0.5 MJ

a corrected fraction of 0.7±0.5% for ‘hot Jupiters’ with P ≤ 5 days, and of 7.3±1.5% for
planets with periods less than 3900 days. In this section we use the most recent data from
J. Schneider’s Extrasolar Planets Encyclopaedia and make an updated statistical research
to Udry & Santos (2007) of the known extrasolar planets.

Other interesting properties directly obtained from RV measurements are the minimum
mass of the companion and its separation from the central star. The first produces a
bimodal distribution, which results from occurence of planets with masses usually less
than 5 MJ and stellar binaries with masses more than 75 MJ. The interval between the
two populations, the ‘brown dwarf desert’, corresponding to masses between ∼ 15 MJ and
∼ 75 MJ, contains only a few objects. In Fig. 1a we display the planetary mass distribution
where the steep rise toward the lowest masses is observed. Exploring planet separations
revealed a high number of planets with periods around 3 days, which is most probably
the result of a planetary migration, and then a rise of a number of planets with increasing
distance from a parent star, which indicates that a large population of yet undetected
Jupiter-mass planets may exist between 3 – 20 AU (see Fig. 1b).

However, as displayed in Fig. 2a, a lack of massive planets on short-period orbits in the
period-mass diagram presented by Udry & Santos (2007) disappeared with recent discov-
eries of transiting planets with masses ≥ 2 MJ and periods of a few days. Nevertheless,
two other relationships proposed by Udry & Santos (2007) are still valid. First, extrasolar
planets with orbital periods longer than about 3 days have eccentricities larger than those
of giant planets in the Solar system, as shown in Fig. 2b. Second, the more massive planets
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Figure 1: (a) Planetary mass distribution in the linear scale with the steep rise toward the lowest
masses. (b) Period distribution shows a high number of planets with periods around 3 days and
then a rise of a number of planets with increasing distance from a parent star. N indicates the
number of exoplanets in each selected interval. Data were taken from J. Schneider’s Extrasolar
Planets Encyclopaedia and all extrasolar planets for which the corresponding quantities are known
were included.



2 INTRODUCTION 7

0 2 4 6

0

5

10

15

20

25

0 1 2 3 4

0

0.2

0.4

0.6

0.8

1

Figure 2: (a) Period-mass distribution shows a presence of planets with masses ≥ 2 MJ and
periods of a few days, and so the lack of massive planets on short-period orbits proposed by Udry
& Santos (2007) is not confirmed. (b) Period-eccentricity diagram where planets with orbital
periods longer than about 3 days have larger eccentricities than shorter period planets. Data were
taken from J. Schneider’s Extrasolar Planets Encyclopaedia and all extrasolar planets for which
the corresponding quantities are known were included.
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Figure 3: Mass-eccentricity diagram revealing that the more massive planets have higher eccen-
tricities than planets with lower masses. Data were taken from J. Schneider’s Extrasolar Planets
Encyclopaedia and all extrasolar planets for which the corresponding quantities are known were
included.

have higher eccentricities than planets with lower masses as presented in Fig. 3. Unfor-
tunately, none of the so far proposed mechanisms inducing eccentricity has been able to
explain the whole observed eccentricity distribution.

Udry & Santos (2007) explored statistical properties of multiplanet systems and con-
cluded that they are the same as for single-planet systems. Therefore the idea that planets
form naturally in multiplanet systems is supported.

The interesting finding that planet hosting stars are systematically metal-rich came soon
after discoveries of first extrasolar planets (Gonzalez, 1997). First detailed spectroscopic
studies (Santos et al., 2001) using the same spectroscopic-analysis technique for stars with
and without planets confirmed the planet-metallicity correlation for the observed extrasolar
systems. Nowadays, the metallicity excess for planet hosting stars is still observed (see
Fig. 4) and its origin from a cloud of gas and dust forming a star and planetary system is
preferred over the process of adding a metal-rich material onto a star once it is formed.
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Figure 4: Stellar metallicity distribution with the rise toward the higher metallicities indicates
that planet hosting stars are systematically metal-rich. N indicates the number of systems in each
selected interval. Data were taken from J. Schneider’s Extrasolar Planets Encyclopaedia and all
extrasolar planets for which the corresponding quantities are known were included.

Observed planet-metallicity connection has an interesting impact on planet formation
theories. According to the ‘disk instability’ model, planetary formation is independent of
the star/disk metallicity, whereas the opposite is truth for the ‘core accretion’, for which
it is easier to form planets from a metal-rich material.

The planet-metallicity correlation exists for stars hosting giant planets, but it seems
not to be present for stars harbouring less massive planets. The explanation could be that
a decrease of the disk metallicity will increase the time needed to form planetary cores and
they may not reach enough mass to start a gas accretion. Exploring all these connections
may thus help to understand how the planetary systems form and evolve.
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2.3 Transiting exoplanets

Transiting extrasolar planets have their orbits oriented so that the Earth lies nearly in their
orbital plane. Once during the planet’s orbital period the exoplanet will transit in front
of the stellar disk (primary transit) and/or will be occulted by the stellar disk (secondary
transit or occultation).

2.3.1 Fundamental properties

When a planet transits, fits to the transit light curve provide the planetary orbital inclina-
tion, i, which is used to estimate the planetary mass, Mp, from the minimum mass value,
Mp sin i. This requires accurate RV measurements, as well as an estimate of the stellar
mass, M⋆, which is often the largest source of uncertainties of system parameters derived
from transits. From a transit light curve, the planetary radius, Rp, can be also fitted. Then
the average density and surface gravity can be estimated, which in turn provides funda-
mental constraints on models of planet’s physical structure. Particularly, determination
of the planetary radius should indicate a presence (or absence) of a core of solid material,
which would (or would not) indicate a gas accretion onto a core of ice and rock embedded
in a protoplanetary disk.

Ignoring limb darkening, the four basic observables, displayed in Fig. 5, are the mid-
transit time, Tc, the transit depth, δ, the full duration of the transit, D, and the duration of
totality, d, which is the transit duration between ingress and egress when the whole planet
is projected onto the stellar disk. Ingress (egress) is the time when the planet goes into
(out of) the transit and the stellar disk is covered only partially. From multiple transits or
from RV measurements, the orbital period, P , can be determined. If we adopt the physical
constants recommended by Harmanec & Mayer (2008), the Kepler’s third law becomes:

a3 = 74.48358P 2(Mp + M⋆), (1)

where a is the planetary orbital semi-major axis expressed in solar radii, M⋆ and Mp are in
solar masses, and P is in days. Other parameters like planetary and stellar radius, Rp and
R⋆, respectively, and impact parameter, b, defined as the projected distance between the
planet and star centres in mid-transit time in units of R⋆ (see Fig. 5), can be determined
using formulas given by Seager & Mallén-Ornelas (2003) for light curves of transiting
systems with planets on circular orbits:

δ =

(

Rp

R⋆

)2

, (2)

b =
a

R⋆
cos i, (3)

D =
P

π
arcsin

(

R⋆

a

[

[1 + (Rp/R⋆)]
2 − [(a/R⋆) cos i]2

1 − cos2 i

]1/2
)

. (4)
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Figure 5: Transit light-curve parameters. For the corresponding geometry of the star and the
planet shown on the top, two schematic light curves are shown on the bottom (thin and thick
solid lines). For a planet moving from left to right, first, second, third, and fourth contacts are
indicated with numbers. Displayed for the thick solid light curve are the transit depth, δ, the full
duration of the transit, D, and the duration of totality, d. Also defined are planetary and stellar
radius, Rp and R⋆, respectively, and impact parameter, b. Different impact parameters result in
different transit shapes, as shown for two planet-star geometries.



12 2 INTRODUCTION

However, systematic errors present in data or insufficient data accuracy can lead to
a fundamental degeneracy between the parameters Rp, R⋆ and i. While the planet and
stellar radii can be reduced to preserve the transit depth, the orbital inclination can be
correspondingly increased to preserve the chord length across the star. To overcome this
degeneracy high-accurate transit light curve or a good estimate of R⋆ is needed.

Transiting planets are uncommon; assuming a random orientation of planetary orbits,
the probability, Ptr, that a planet with orbital eccentricity, e, and longitude of periastron,
ω, produces transits visible from the Earth was given by Charbonneau et al. (2007) as
follows:

Ptr = 0.0045

(

1 AU

a

)(

R⋆ + Rp

R⊙

)[

1 + e cos (π
2
− ω)

1 − e2

]

, (5)

which is inversely proportional to a. Therefore, ‘hot Jupiters’ have higher probability of
transits visible from the Earth than the same mass planets on wider orbits, thus almost
all of the known transiting planets to date are ‘hot Jupiters’.

Among about 60 known transiting planets to date only a few least massive have masses
similar to smaller giant planets in the Solar system. The least massive transiting planets
discovered to date are the super-Earth mass planet CoRoT-7 b (Leger et al., 2009), then two
Neptun-mass planets GJ 436 b (Gillon et al., 2007) and HAT-P-11 b (Bakos et al., 2009)
and the Saturn-mass planet HAT-P-12 b (Hartman et al., 2009). The known transiting
planets have radii 5 – 17% of stellar radii, which leads to 0.3 – 3.0% diminution of the
stellar flux detected on the Earth. These transits last for 1 – 4 hours. The only exception is
the recently discovered transiting planet HD 80606b known before from RV searches that
transits in front of its parent star for 11.64 ± 0.25 hours (Winn et al., 2009a).

2.3.2 Detection methods

All transiting planets discovered to date have been detected either photometrically, with a
subsequent confirmation of planetary mass via RV measurements, or by RV-detection of a
planet with a subsequent discovery of photometric transits. The latter has the advantage
that the planetary nature is immediately obvious, however, a considerable observing time
on large telescopes is needed to identify each system. In contrast, transit searches monitor
simultaneously fluxes of a large number of stars followed by search for photometric transits.
Nevertheless, a substantial number of detections turns out to be astrophysical false alarms,
results from transits of binary or multi-star systems. For example, an M-dwarf star eclipsing
a main-sequence F star produces flat-bottomed transit with the duration and depth as for
a transiting planetary system. However, already from low-precision spectra it is possible
to distinguish between the planetary and stellar companion.

Most of the transiting planets have been discovered by small-aperture, wide-field pho-
tometric surveys. Among the most successful are the Wide Angle Search for Planets –
SuperWASP (Pollacco et al., 2006), the Hungarian Automated Telescope Network – HAT
(Bakos et al., 2004), XO (McCullough et al., 2005) and the Transatlantic Exoplanet Sur-
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vey – TrES (Dunham et al., 2004). They typically monitor simultaneously a few hundred
thousand of stars every night and use automatic procedures to detect transit events.

Nearly ten transiting planets have been detected by the Optical Gravitational Lensing
Experiment (OGLE) survey (Udalski et al., 2002), which uses a 1.3-m telescope. The
parent stars of these planets are usually faint (typically V = 16) and large telescopes are
needed for follow-up RV measurements.

Recently, the number of transiting planets increased due to the successful space mis-
sion Convection, Rotation and Transits (CoRoT), that announced the detection of seven
transiting planets to date. In a near future also transiting Super-Earth and Earth-mass
planets are expected to be discovered with the Kepler spacecraft launched in March 2009.

2.3.3 The Rossiter-McLaughlin effect

A transiting system can be further characterized from high-resolution stellar spectra ob-
tained during primary transits. As the planet passes in front of the star, the part of the
rotating stellar disk is occulted which results in a characteristic time-dependent shift of
the photospheric line profiles. The feature is known as the Rossiter-McLaughlin (RM)
effect (McLaughlin, 1924; Rossiter, 1924) and was first observed in the spectra of eclipsing
binaries. From a characteristic RV-curve distortion one can determine the angle between
sky projections of the planet orbital axis and the stellar spin axis, λ (see Fig. 6). This has a
great impact on theories of planet migration as different migration scenarios predict differ-
ent λ. Whereas migration via tidal interactions with a protoplanetary disk is expected to
result in a close spin-orbit alignment (Ward & Hahn, 2003), migration due to planet-planet
scattering would magnify any initial misalignments (Chatterjee et al., 2008) and migration
via Kozai cycles accompanied by tidal friction would produce a broad distribution of final
inclination angles (Fabrycky & Tremaine, 2007).

However, observations of the RM effect provide only a lower limit on the spin-orbit
alignment, λ, because it is the angle between sky projections of the orbital and rotation
axis and inclinations with respect to the sky need to be determined with some other
method. The orbital inclination is usually well known from a transit light curve, but
the stellar spin axis inclination, i⋆, is generally unknown. However, if a parent star is
chromospherically active and exhibits quasiperiodic flux variations, the rotational period,
Prot, can be determined. Using the stellar radius, R⋆, and a projected star rotation rate,
v sin i⋆, measured either from the observed spectral line broadening or from the amplitude
of the RM effect, we can determine the unknown angle i⋆:

sin i⋆ =
Protv sin i⋆

2πR⋆
. (6)

The spin-orbit alignment λ was examined so far for 16 transiting exoplanet systems.
They all were found to have a close spin-orbit alignment with few exceptions. One exception
was the system HD 17156, for which Narita et al. (2008) measured λ = 62 ± 25 deg,
but Cochran et al. (2008) published measurements based on follow up data and found
λ = 9.4±9.3 deg. Later Narita et al. (2009a) superseded the previous claim and published
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Figure 6: Three different cases of possible trajectories of a transiting planet are shown, with the
corresponding RV-curve distortion. All trajectories have the same impact parameter and result in
the same light curve, but they differ in λ, the angle between sky projections of the planet orbital
axis and the stellar spin axis, and produce different RM waveform. The dotted line is for the case
of no limb darkening (ǫ = 0), the solid line is for ǫ = 0.6. Adopted from Gaudi & Winn (2007).

a new value λ = 10.0 ± 5.1 deg. The other exception is the system XO-3, for which two
different values of λ were published. First, using SOPHIE spectrograph at the 1.93-m
telescope of Haute-Provence Observatory Hébrard et al. (2008) measured λ = 70± 15 deg,
but cautioned that additional data were needed to exclude possible systematic errors in
their measurements. Secondly, Winn et al. (2009c) published the value λ = 37.3± 3.7 deg,
based on measurements from HIRES spectrograph on 10-m Keck telescope. The spin-orbit
misalignment was also published for the HD 80606 system (Gillon, 2009; Pont et al., 2009;
Winn et al., 2009a) and the WASP-14 system (Johnson et al., 2009). All three exoplanetary
systems with known spin-orbit misalignment have massive planets on eccentric orbits,
which could be a consequence of a different migration mechanism than for lower-mass
planets on circular orbits. In addition, the WASP-17 and HAT-P-7 systems were found to
have planets on retrograde orbits (Anderson et al., 2009; Narita et al., 2009b; Winn et al.,
2009b), suggesting that there indeed exist distinct modes of planetary migration.

2.3.4 Transit timing variations

Most of the exoplanets detected to date are of Jupiter mass, and neither ground-based
photometric nor RV surveys have reached the accuracy needed to find Earth-mass planets.
However, a chance to detect Earth-mass planets exists via detection of transit timing
variations (TTVs) in the known transiting exoplanet systems. Namely, an additional
planet in the transiting system will perturb the motion of the transiting planet, and the
interval between the mid-eclipses will not be constant. Deviations from the predicted mid-
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transit times can therefore reveal a presence of other bodies in the system, or place limits on
their existence. Short-term variations can reveal the existence of other planets (Agol et al.,
2005; Holman & Murray, 2005), moons (Sartoretti & Schneider, 1999; Kipping, 2009) and
also Trojans (Ford & Holman, 2007), whereas long-term variations can result from orbital
precession induced by another planet (Miralda-Escudé, 2002; Heyl & Gladman, 2007).
Discovery of additional bodies further constrains theories of planetary system formation
and evolution.

Several groups investigated how parameters of the perturbing planet can be determined
from observed TTVs. Agol et al. (2005), Holman & Murray (2005) and Steffen (2006) used
direct N-body integrations of a large sample of planetary systems to fit the observed TTV
signal. However, this approach is computationally time consuming due to the high number
of unknown parameters. Nesvorný & Morbidelli (2008) suggested an alternative method
to solve for possible TTVs based on analytic perturbation theory. They calculate transit
times as a sum over Fourier terms with amplitudes and phases that are explicit functions of
the unknown parameters. The tests showed their approach is ∼ 104 times faster than direct
orbital integrations, but it is not suitable for systems where planets are in mean motion
resonances. However, in the resonant cases Nesvorný & Morbidelli (2008) suggested to
separate first the long-period term, then model the residual short-period signal using the
perturbation theory method as in the nonresonant cases, and finally verify that identified
solutions match both the short- and long-period TTVs.

Ford & Holman (2007) explored how to use TTVs to search for Trojans of transiting
extrasolar planets. Trojans are bodies librating around the Lagrange points L4 or L5 of
the planet that lead/trail the planet by ≃ 60 deg. If there are no other massive bodies
in the system, then the L4/L5 fixed points are stable for circular orbits if the ratio, µ =
(Mp + MT )/(M⋆ + Mp + MT ), where MT is Trojan’s mass, is less than a critical value, µc,
where 0.03812 ≤ µc ≤ 0.03852 (Laughlin & Chambers, 2002). Transit times are the same
for a system without a Trojan and for a system where the transiting planet and Trojan
have equal eccentricities and the Trojan resides exactly at the Lagrange L4/L5 fixed point.
Unless a clear variation is found, TTV analysis alone is not suitable for constraining the
presence of Trojans in transiting systems. In this case, the better approach is to compare
the photometrically observed transit time and the transit time calculated from the RV data
assuming zero Trojan mass, which can reveal a Trojan or place upper limits on its mass
(Ford & Gaudi, 2006b). In case there is a clear TTV caused by a Trojan body, according
to Ford & Holman (2007) the variations would change on the secular timescale with a
libration period Plib ≃ P (4/27)1/2µ−1/2 (Murray & Dermott, 2000), and most probably
would have large amplitudes. TTVs caused by exomoons would have shorter periods due
to a dynamical stability of such systems, and TTVs caused by other planets would have
lower amplitudes unless the perturbing planet is massive and would have been detected
from RV measurements.

The transit timing effect due to exomoons was explored by several different authors
(Sartoretti & Schneider, 1999; Szabó et al., 2006; Simon et al., 2007). Recently, Kipping
(2009) upgraded previous models including orbital eccentricity and introducing a new
observable due to exomoons – the transit duration variation (TDV). According to Kipping
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(2009) the orbital radius of a satellite must lie between the Hill radius, dmax, and the
Roche limit, dmin, in order to maintain a stability. He estimated that the ratio of satellite
to planet orbital period is:

Ps

P
≃

√

χ3

3
, (7)

where χ is some fraction of the Hill radius, dmax, and therefore χ ≤ 1 and Ps < P .
Assuming χ ∼ 1/3 (Barnes & O’Brien, 2002) gives a rough estimate of Ps/P ∼ 1/9 and so
the orbital frequency of the exomoon will always be higher than the sampling frequency
and the period of the exomoon cannot be reliably determined from TTVs solely.

As already pointed out by Sartoretti & Schneider (1999), the TTV amplitude is ∝ Msas,
where Ms and as are satellite’s mass and orbital semimajor axis, respectively. The problem
is that the mass cannot be determined without making an assumption on the distance
at which the exomoon orbits the planet, and the period of the exomoon is not reliably
determined from TTVs.

Kipping (2009) solved this problem by introducing the new observable, TDV. He showed

that the TDV amplitude is ∝ Msa
−1/2
s , and therefore the ratio of TDV to TTV allows to

determine Ms and as. Another benefit is that TDV has a π/2 phase difference to TTV
signal, and thus is a complementary technique. In addition, Kipping (2009) derived that
increasing the eccentricity of the exomoon’s orbit decreases TTV amplitude, but increases
TDV amplitude. He also derived TTV and TDV amplitudes predicted for a variety of
known transiting systems, caused by an Earth-mass exomoon in a circular orbit about the
transiting planet.

To date only a few studies provide evidence of TTV. Dı́az et al. (2008) found TTVs
for the transiting system OGLE-TR-111, suggesting a presence of an Earth-mass planet in
an exterior orbit to the transiting planet, if the orbit of OGLE-TR-111b is eccentric. The
eccentricity needed to explain the observations is not ruled out by the current RV data.
Other evidence of TTV was found by Welsh (2009) for the HD 17156 transiting system
suggesting the presence of a third body. Both discoveries originate from ground-based
observations.

On the other hand, so far no significant TTVs has been found from space observations.
Instead, strong limits were placed on the presence of other bodies in transiting extrasolar
systems HD 209458 (Miller-Ricci et al., 2008a), HD 189733 (Miller-Ricci et al., 2008b)
and CoRoT-2 (Alonso et al., 2009). In a near future, accurate long-time photometry of
transiting extrasolar systems suitable for TTV analyses should be provided by CoRoT and
Kepler space missions.

2.3.5 Planetary atmospheres

There are two main approaches how to study planetary atmospheres of transiting extrasolar
planets. First is the transmission spectroscopy technique, where stellar spectra obtained
during a primary transit, when a planet is transiting in front of its parent star, are divided
by spectra taken just before or after a primary transit, the latter providing spectra of an
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isolated star. The thin planetary atmosphere surrounding the optically thick planet disk
and absorbing part of a star light can thus be indirectly observed. Second approach is the
secondary transit technique, where we seek the difference between a combined spectrum of
a star and a planet, and a stellar spectrum alone when a planet is hidden by stellar disk.

The transmission spectroscopy was first theoretically proposed by Seager & Sasselov
(2000), and experimentally confirmed by Charbonneau et al. (2002), who observed sodium
in the atmosphere of the transiting planet HD 209458b. With this technique, astronomers
can learn about atomic and molecular abundances, but less about temperature variations
in the planetary atmosphere.

Secondary transits of two ‘hot Jupiters’, TrES-1b and HD 209458b, were first observed
by Charbonneau et al. (2005) and Deming et al. (2005), respectively, using the Spitzer Space
Telescope in the infrared spectral range, where the ratio of the planet to star flux is the
largest. Photons that are directly emitted or reflected by the planet are observed, which
allows detecting molecular species, but also constraining the temperature and vertical
thermal gradients. In the optical spectral range the planetary albedo can be measured.

Another way how to access temperature and albedo variations is to observe a light
curve of a combined star-planet flux during the whole planetary orbit. However, this is
feasible only with space-based telescopes.

Due to the Spitzer Space Telescope and the Hubble Space Telescope (HST) it was
possible to explore extrasolar planetary atmospheres. However, a secondary transit in
the near infrared was also observed from the ground (de Mooij & Snellen, 2009; Sing &
López-Morales, 2009).

Very similar temperatures on the day and night sides were observed for some transiting
extrasolar planets, while for others the opposite was true. A thermal inversion layer high in
the atmosphere was detected for some of them, but not for others. It became obvious that
at least two different classes of ‘hot-Jupiter’ atmospheres are observed. The explanation
was given by Fortney et al. (2008). They suggested that the so called ‘pM Class’ planets
that are warmer than required for condensation of TiO and VO will have an inversion layer
at low pressure caused by the absorption of incident flux by these molecules. On the other
hand, ‘pL Class’ planets have temperatures below the condensation temperature of Ti and
V bearing compounds and alkalis become important optical absorbers. They have smaller
day/night temperature differences and better energy redistribution.

2.3.6 Statistical properties

Transiting extrasolar planets are the only ones for which we know their masses and radii.
Exploring their properties can thus reveal new interesting characteristics that are unavail-
able for the whole exoplanet sample. Interesting trends between planetary mass or gravity
and orbital period for the known transiting planets were published by Mazeh et al. (2005)
and Southworth et al. (2007). Two classes of ‘hot Jupiters’ were identified by Hansen
& Barman (2007), based on their equilibrium temperatures and Safronov numbers which
essentially measure how efficiently a planet scatters other bodies. We discovered an inter-
esting correlation between the planetary radius and stellar metallicity, as shown in Fig. 7.
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Figure 7: The correlation between the planetary radius and stellar metallicity reveals that stars
with lower metallicities host planets with larger radii. Data were taken from J. Schneider’s Ex-
trasolar Planets Encyclopaedia. We included all transiting extrasolar planets of ‘hot Jupiter’ type
for which the corresponding quantities are known.

Stars with lower metallicities host planets with larger radii, whereas the planetary mass
remains constant. This might be a consequence of planetary formation and evolution pro-
cesses. However, new discoveries are needed to show if these correlations are still valid
with a larger sample of transiting exoplanets.

2.4 Radial-velocity measurements

If a planet is present in a system, a parent star will exhibit periodic RV changes due to
its orbital motion about a common centre of gravity with the semi-amplitude, K, that
is proportional to the minimum planet mass, Mp sin i, and inversely proportional to the
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planet period, P , its eccentricity, e, and the stellar mass, M⋆:

K =

(

2πG

P

)1/3
Mp sin i

(Mp + M∗)2/3

1

(1 − e2)1/2
. (8)

The closer or more massive the planet, the larger the semi-amplitude of the RV variation.
As only the velocity of a star along the line of sight is measured, we only have access
to a minimum planet mass. In the Solar system, Jupiter causes RV changes of the Sun
with the semi-amplitude K = 12.5 m s−1, and the Earth only with the semi-amplitude
K = 0.1 m s−1. Therefore, to detect Earth-mass planets in habitable zones, very accurate
RV measurements are essential.

To date, the most accurate instrument for RV measurements is the European South-
ern Observatory’s (ESO’s) spectrograph High Accuracy Radial velocity Planetary Search
(HARPS) on the 3.6-m telescope at La Silla Observatory that became operational in 2003
(Pepe et al., 2003). It is a fibre–fed, cross–dispersed echelle spectrograph with two fibres,
an object and a reference fibre, that feed the spectrograph with the light coming from the
telescope and the calibration lamps. The fibres are reimaged by the spectrograph optics
onto a mosaic of two CCDs, where two echelle spectra of 72 orders are formed for each
fibre. The main characteristics of HARPS are its outstanding efficiency, spectral reso-
lution of R=115,000 and its extraordinary stability. The stability is achieved by using
the simultaneous ThAr-reference technique, and a strict pressure and temperature control.
Since ambient pressure variations would produce drifts of the spectrograph, it operates in
vacuum.

The HARPS spectrograph offers two options for accurate wavelength calibration: the
default simultaneous ThAr-reference method and the use of the iodine absorption cell.
When using the ThAr-reference method thorium and argon calibration lamps feed one
fibre while object is observed with another fibre. This technique is able to track instru-
mental drifts at a level of 0.1 m s−1 rms. The latter method, based on a use of a iodine
absorption cell, was first proposed by Marcy & Butler (1992) and Valenti et al. (1995).
The superimposed iodine lines provide a highly accurate wavelength scale and the spectro-
graph point spread function (PSF) in situ over the entire echelle format. However, when
a stellar spectrum is superimposed with iodine absorption features, a mean throughput is
only about 50% in average (Pepe et al., 2003). Therefore the ThAr-reference technique is
more efficient and is highly preferred for the extrasolar planet searches with HARPS.

Until recently, the Doppler technique was thought to have reached its final limitations
in measuring RVs and finding extrasolar planets. The intrinsic stellar variations were
believed to be limiting the accuracy of RV measurements to ∼ 1 m s−1. However, HARPS
demonstrated that stars with the intrinsic variability < 1 m s−1 exist, and that their RVs
can be measured at that level of accuracy. On real stars HARPS achieved short-term
accuracy (one night) of 20 cm s−1 and long-term accuracy (years) of the order of 30 −
60 cm s−1, showing that RV method has still a great potential for the future (Pepe &
Lovis, 2008).

Even better RV accuracy will be achieved with the new method using a single frequency
source for a wavelength calibration. The method called ‘astro-comb’ is using an optically
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filtered comb of evenly spaced frequency references, derived from a pulsed laser. In 2005 the
Nobel Prize in physics was awarded for the idea, and the first application to astronomy was
presented by Murphy et al. (2007). Laser frequency combs have good long-term stability,
reproducibility and useful lines in the red to near-infrared range. Recent studies show that
combining a laser frequency comb with a Fabry-Perot filtering cavity enables long-term
RV accuracies of the order of 5 cm s−1, which could allow discoveries of Earth-mass planets
in exoplanetary systems (Li et al., 2008; Walker, 2008). Such a calibration technique is
expected to be deployed at the High Accuracy Radial velocity Planet Searcher of the New
Earths Facility (HARPS-NEF) spectrograph in 2010 at the William Herschel Telescope on
La Palma.

2.5 Other detection methods

Different detection methods allow discoveries of planets with variety of characteristics due
to the fact that each method is sensitive differently to distinct planetary parameters. We
discuss briefly detection methods other than RV measurements and photometric detections
of transits in this section.

2.5.1 Direct imaging

The planets are detected directly using this method via special imaging techniques. The
ratio of a planet to star flux given by Charbonneau & Noyes (2000b) is:

fλ(α) = pλ

(

Rp

a

)2

Φλ(α), (9)

where pλ is the wavelength-dependent geometric albedo and Φλ(α) is the phase function,
for which by definition Φλ(0) = 1. Scaling Eq. (9), Charbonneau & Noyes (2000b) found:

fλ(α) ≃ 9.1 × 10−5pλ

(

Rp

RJ

)2(
0.05 AU

a

)2

Φλ(α). (10)

The Jupiter/Sun reflected-light ratio in the V band viewed at opposition would be f ≃
4×10−9. This ratio dramatically increases for ‘hot Jupiters’, due to their small semimajor
axis. In addition, in a near-infrared or infrared band a planet has the maximum of its own
radiation, and so the ratio of a planet to star flux is the highest.

To detect a faint planet light (reflected or emitted) requires special techniques. One
possibility is the adaptive optics on ground-based telescopes where a wavefront of a natural
or laser guide star’s light is measured to correct an image blurring introduced by the Earth’s
atmosphere. Bracewell & MacPhie (1979) proposed the nulling interferometry technique
where the planetary radiation relative to that from the star is enhanced by placing a
null of an interference pattern on the star. Technique of the angular differential imaging is
another high-contrast imaging method that reduces quasistatic speckle noise and facilitates
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detections of nearby companions. Details can be found in Marois et al. (2006) or Lafrenière
et al. (2007).

Recently, in three systems planets were detected using imaging methods. Smith &
Terrile (1984) discovered a dusty disk by β Pic, and Lagrange et al. (2009) announced a
probable giant planet resolved in this disk. Kalas et al. (2009) published a discovery of a
debris disk and a planet by Fomalhaut and Marois et al. (2008) discovered three planets
orbiting the star HR 8799 (see Fig. 8). This technique is capable to discover giant planets
with large orbital separations, and thus is complementary to RV and photometric searches.

2.5.2 Gravitational microlensing

The effect of a gravitational lens occurs when background and foreground source objects
are aligned. In case of a gravitational microlensing background source stars serve as a light
source used to probe a gravitational field of foreground stars and any planets they host.
This idea was first proposed by Einstein (1936). Due to a relative motion of source and
lens objects a source magnification changes with time and thus a gravitational field of a
foreground object can be explored.

A probability of a lens event is only ∼ 10−6 for background stars in the Galactic
bulge, and therefore fluxes of millions of stars have to be observed every night in order to
detect such events. There are several projects; two of them contributed with extrasolar
planet detections – OGLE (Udalski et al., 2002) and the Microlensing Observations in
Astrophysics (MOA) (Bennett et al., 2008; Dong et al., 2009).

Microlensing is a promising technique with a potential of detecting sub-Earth mass
planets on long-period orbits, and thus is complementary to all the other detection meth-
ods.

2.5.3 Astrometric method

A planet can be deduced from changes of accurately measured star positions. This method
is sensitive to longer-period systems and planets around targets not accessible with RV
surveys, like A or B stars, can be found.

The only astrometric space mission to date, Hipparcos, reached accuracies of 1 mas2

and provided upper mass constraints on several known extrasolar planets. However, for
a long time, there was no planet detected by astrometric method. Only recently Pravdo
& Shaklan (2009) announced a probable first astrometric discovery of an extrasolar giant
planet around a main-sequence star with a mass near the lower limit for a star. They
estimated the planetary mass Mp = 6.4+2.6

−3.1 MJ and the period P = 0.744+0.013
−0.008 years.

Nevertheless, the accuracy of astrometric measurements needed to easily detect extrasolar
planets is still not sufficient. Space missions like Gaia with expected accuracy of 1 µas3 and
a planned launch in 2011 should change the situation. The only remaining problem might

2The milliarcsecond, abbreviated mas, is a unit of angular measurement, equal to 1/1,296,000,000 of a
unit circle.

3The microarcsecond is a unit of angular measurement, equal to 1/1,000 of 1 mas.
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Figure 8: The discovery images of the HR 8799 planetary system after the light from the bright
host star has been removed by angular differential imaging technique. Upper left: A Keck image
acquired in July 2004. Upper right: Gemini discovery image from October 2007. Both planets b
and c are detected at the two epochs. Bottom: A colour image of the planetary system produced
by combining the J-, H-, and Ks-band images obtained at the Keck telescope in July (H) and
September (J and Ks) 2008. The inner part of the H-band image has been rotated by 1 deg to
compensate for the orbital motion of the planet d between July and September. The central region
is masked out in the upper images but left unmasked in the lower to clearly show the speckle noise
level near the planet d. Adopted from Marois et al. (2008).
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be luminous inhomogeneities of a stellar disk causing apparent shifts of a light source, thus
complicating the planet detections.

2.5.4 Planets by pulsars

Planets by pulsars, fast rotating neutron stars, can be revealed via changes of the pulsar
signal arrival caused by a light-time effect due to a companion planet. The pulsar signal
is emitted parallel to the magnetic axis and signal changes can be detected because the
rotational and magnetic axis are not aligned. Normal pulsars have periods around 1 second,
but millisecond pulsars rotate fast due to a material coming from their binary companion.
The high accuracy of a signal timing allows detection of sub-Earth mass planets, or even
moons and asteroids, in such systems. To date four planetary systems are known by
pulsars, and the least massive planet PSR 1257+12b with a mass 0.02 M⊕ was found via
pulsar timing measurements.

However, the origin of planets by pulsars is unknown. One possibility is that planets
formed in original protoplanetary disk and survived the giant explosion. In binary pulsars,
other explanation could be that planets were captured later by gravitational forces of
pulsar, or created from the accretion disk.
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3 BARCOR

To detect changes of tens m s−1 or even smaller in the RV curves high-quality observations
and accurate barycentric RV corrections are needed. At the moment of a star-light arrival to
the observer the Earth orbits the Sun and rotates around its axis, therefore the corrections
for these movements has to be done. Simply, the observed RV is corrected for the motion
of the observer in the direction of observation. Besides, also the time of the light arrival
has to be related to the barycentre of the Solar system.

In 2006 the program BARCOR for computations of barycentric RV and time corrections
written in Fortran 77 was finished. The program uses as an input positions and velocities
of the Earth obtained from the JPL Planetary and Lunar Ephemerides DE405 (Standish,
1998a,b). For the given Julian Ephemeris Date (JED) positions and velocities are computed
by differentiation and interpolation of a set of Chebyshev coefficients. Both positions
and velocities are rectangular and are related to the Earth Mean-equator and dynamical
equinox of the epoch J2000.0 of inertial reference frame. ‘Mean’ indicates that the effects
of nutation are ignored in the definition of the reference frame. The orientation of the
inner planet system of DE405 onto the International Celestial Reference Frame (ICRF) is
accurately determined mainly by the VLBI observations. Compared to the origin of ICRF
it is believed that the orientation of the whole inner planet ephemeris system of DE405 is
accurate to about 0.001 arcseconds. On the other hand, ephemerides of the outer planets
rely almost entirely upon optical observations.

The program BARCOR with some examples of input and output files is available on-
line at http://sirrah.troja.mff.cuni.cz/˜mary. The underlying physics is explained in the
following sections.

3.1 The Earth flattening

The Earth is slightly flattened due to the rotation. The exact shape is complicated, but for
most purposes it can be approximated by an oblate spheroid. In BARCOR the reference
spheroid defined by the World Geodetic System WGS-84 is used. The equatorial radius,
a, is defined as a = 6378137.0 m. The Earth’s polar radius, b, is related to the equatorial
radius by the term called Earth flattening, f :

f =
a − b

a
. (11)

In WGS-84 the flattening is 1/298.257223563, which is a very small deviation from a perfect
sphere. Using this value, the Earth’s polar radius would be b = 6356752.3142 m.

It is convenient to define few terms shown in Fig. 9. The local horizon is a plane which is
tangent to the Earth’s surface at the observer’s position. In the direction from the Earth’s
centre perpendicular to the local horizon at the observer’s position is the local zenith. On
the sphere, this direction is always directly away from the Earth’s centre, however on the
oblate spheroid the flowline of the Earth’s centre and the observer’s position would not
point, except of the equator and the poles, to the local zenith. The geodetic latitude, φ, is
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Figure 9: The cross-section of the oblate Earth, where the oblateness is exaggerated for clarity.
φ and φ’ is the geodetic and geocentric latitude, respectively, a is the equatorial and b is the polar
radius, and ρ is the radius at the observer’s place.

the angle between the local zenith direction and the Earth’s equatorial plane. This angle
is the latitude used on maps and sometimes is also called the geographic latitude. The
geocentric latitude, φ

′

, is the angle between the line connecting the observer’s position,
the Earth’s centre and the equatorial plane. The geocentric radius, ρ, is a distance of the
observer from the Earth’s centre.

The observer’s coordinates are normally given in the geodetic latitude, φ, and we need
to compute geocentric latitude, φ

′

, for the BARCOR usage. The conversion can be carried
out using following expressions. The basic definition of an ellipse is:

(R
′

)2

a2
+

(z
′

)2

b2
= 1, (12)

where

R
′

= ρ cos φ
′

(13)
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and

z
′

= ρ sin φ
′

. (14)

It is clear that

tanφ
′

=
z
′

R′
. (15)

The direction of the normal to the ellipse is given by

tanφ = −
dR

′

dz′
. (16)

After differentiating the equation of the ellipse, we get:

2R
′

dR
′

a2
+

2z
′

dz
′

b2
= 0 (17)

and after rearranging the terms:

z
′

R′
= −

b2

a2

dR
′

dz′
, (18)

which can be written as:

tan φ
′

=
b2

a2
tanφ = (1 − f)2 tan φ = (1 − e2) tanφ, (19)

where e is the eccentricity of the ellipse and e2 = 0.006694 = 2f − f 2.
Now we have the geocentric latitude, but in fact we need to compute R

′

in terms of the
angle φ. It can be shown that:

R
′

= ρ cos φ
′

=
a cos φ

√

1 − e2 sin2 φ
, (20)

where the term 1/
√

1 − e2 sin2 φ is the effect of the Earth flattening.
Karttunen (2003) indicates that the shape defined by the surface of the oceans, called

the geoid, differs from the spheroid by at most 100 m and that the difference φ − φ
′

has a
maximum value 11

′

.5 at the latitude 45◦. The maximum error resulting from omitting the
Earth flattening in the RV correction is ∼ 0,5 m s−1.

3.2 Expressions for the precession quantities

To compare astronomical observations with calculated places of celestial objects one has
to refer either the observed or the calculated position to the same reference coordinate
system. The effects like precession, nutation, aberration and parallax need to be taken
into account.
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In Fig. 10 we display the celestial sphere with mean ecliptics and equators for two
epochs. εF is an arbitrary fixed epoch or a basic epoch and εD is the mean epoch of date.
P 0 and P represent the mean pole of the Earth’s equator at epochs εF and εD, respectively,
while C0 and C represent the ecliptic pole at these two epochs. The vernal equinox at εF

is denoted by Υ0 and the mean equinox of date is denoted by Υ.
The equatorial precession quantities ζA, zA and θA displayed in Fig. 10 are the most

appropriate angles to precess from a fixed equinox and equator at epoch εF to the mean
equinox and equator of date εD. The transformation in equatorial rectangular coordinates
can be clearly seen from Fig. 10:

(x, y, z)εD
= (x, y, z)εF

Rz(ζA)Ry(θA)Rz(zA) = (x, y, z)εF
A, (21)

where

Rz(α) =





cos α sin α 0
− sin α cos α 0

0 0 1



 (22)

is a rotation by the angle α about z axis and analogically

Ry(α) =





cos α 0 sin α
0 1 0

− sin α 0 cos α



 (23)

is a rotation about y axis. After matrix multiplications the elements of the matrix A are
obtained:

a11 = cos ζA cos θA cos zA − sin ζA sin zA

a12 = cos ζA cos θA sin zA + sin ζA cos zA

a13 = cos ζA sin θA

a21 = − sin ζA cos θA cos zA − cos ζA sin zA

a22 = − sin ζA cos θA sin zA + cos ζA cos zA (24)

a23 = − sin ζA sin θA

a31 = − sin θA cos zA

a32 = − sin θA sin zA

a33 = cos θA.

The IAU precession-nutation model used before 2000 was composed of the IAU 1976
precession (Lieske et al., 1977) and IAU 1980 nutation (Wahr, 1981; Seidelmann, 1982).
Lieske et al. (1977) developed expressions for the precession quantities at epoch J2000.0 as
a function of the revised fundamental astronomical constants adopted by the International
Astronomical Union at the XVI. General Assembly in Grenoble. The development of the
usual precession quantities depends upon the dynamical motion of the ecliptic pole relative
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Figure 10: Celestial sphere with mean ecliptics and equators shown for two epochs, a fixed epoch
εF and an epoch of date εD. P 0 and P represent the mean pole of the Earth’s equator and C0

and C represent the ecliptic pole at these two epochs. The vernal equinox at εF is denoted by Υ0

while the mean equinox of date is denoted by Υ. Adopted from Lieske et al. (1977).

to a fixed ecliptic, due to planetary perturbations, and upon the dynamical motion of
the celestial pole due to luni-solar torques on the oblate Earth. However, the IAU 1976
precession model has a number of limitations (Capitaine et al., 2003).
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In 2000 IAU adopted new resolution and recommended previous models to be replaced
since 2003 January 1 by the IAU 2000 precession-nutation model, specifically by the MHB
2000 model provided by Mathews et al. (2002). MHB 2000 model includes a new nutation
series for the non-rigid Earth and corrections to the precession rates in longitude and
obliquity. This model is oriented with respect to the International Celestial Reference
System (ICRS) through a fixed 3D rotation between the mean equatorial frame at J2000.0
and the Geocentric Celestial Reference System (GCRS). This rotation, called the ‘frame
bias’, includes the numerical values for the pole offset at J2000.0 that MHB 2000 specifies
and the equinox offset at J2000.0 that MHB 2000 does not specify. The equinox offset
has only a second-order effect on the final transformation between celestial and terrestrial
coordinates, however, in fact, it is dynamically inconsistent and the theory suffers, except
of the improvements in the precession rates, from the same limitations as the IAU 1976
precession. The only corrections that have been applied in the IAU 2000 model are the
MHB corrections to precession rates in longitude and obliquity, but the expressions used
for the motion of the ecliptic and other quantities of precession still remained the same
as in Lieske et al. (1977). Woolard & Clemence (1966) remarked that the motion of the
equator and ecliptic are kinematically independent, but the motion of the equator depends
dynamically upon the variations of the disturbing forces caused by changes in the positions
of the Sun, the Moon and other planets in the Solar system. Hence the improvement of
the model for the precession of the equator requires also the use of an improved model for
the ecliptic.

An improved IAU 2000 precession model was realized by Capitaine et al. (2003). They
have clearly separated precession of the equator and precession of the ecliptic and obtained
the developments of the quantities through two independent approaches. One of them uses
the expressions for the primary precession angles to derive equatorial precession angles:

ζA = 2
′′

.650545 + 2306
′′

.083227t + 0
′′

.2988499t2

+ 0
′′

.01801828t3 − 0
′′

.000005971t4 − 0
′′

.0000003173t5

zA = −2
′′

.650545 + 2306
′′

.077181t + 1
′′

.0927348t2

+ 0
′′

.01826837t3 − 0
′′

.000028596t4 − 0
′′

.0000002904t5

θA = 2004
′′

.191903t− 0
′′

.4294934t2 − 0
′′

.04182264t3

− 0
′′

.000007089t4 − 0
′′

.0000001274t5,

(25)

where t is the elapsed time in Julian centuries since J2000 of the Terrestrial time (TT) and
is defined by:

t = ( TT − 2000 January 1d 12h TT)/36525, (26)

with TT in days. It would be correct to use the Terrestrial dynamical barycentric time
(TDB) instead of TT, but the difference TDB – TT is well below the required accuracy.

Another necessary quantity is an improved expression for the Greenwich Mean Sidereal
Time (GMST), because it directly depends on the precession in right ascension. Capitaine
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et al. (2003) derived the formula with a resolution of 0.1 microsecond:

GMST = UT1 + 24110.5493771 + 8640184.79447825tu
+ 307.4771013(t− tu) + 0.092772110t2

− 0.0000002926t3 − 0.00000199708t4

− 0.000000002454t5 s,

(27)

where tu is the UT1, the proper rotational time of the Earth, expressed in Julian centuries
since J2000.

In 2006 the IAU recommended the precession theory of Capitaine et al. (2003) for the
precession of the equator and the ecliptic, and it is the one used in BARCOR.

3.3 Radial-velocity correction

The equatorial coordinate system is defined by the xy plane which is consistent with the
Earth Mean-equator related to the fixed epoch J2000.0 of inertial reference frame, so that
x axis points to the vernal equinox of epoch J2000.0. Perpendicular to the xy plane is the
Earth rotational axis z. The projected Earth velocity in the equatorial coordinate system
is:

Vx = V orb
x + V rot

x

Vy = V orb
y + V rot

y (28)

Vz = V orb
z ,

where Vx, Vy and Vz are sums of velocities V orb
x , V orb

y and V orb
z , caused by the Earth orbital

motion, and V rot
x , V rot

y and V rot
z , caused by the Earth rotation. Since z axis is the Earth

rotational axis, V rot
z = 0.

The velocity of the observer due to the Earth rotation, V rot, is:

V rot =
2πk

24 · 3600 · 1000

(

h +
6378137

√

1 − e2 sin2 φ

)

cos φ (km s−1), (29)

where h is the altitude of the observatory above the sea level (in meters), φ is the geodetic
latitude, and e2 = 2f − f 2, where f is the Earth flattening (see section §3.1). k is the ratio
of the mean solar to the mean sidereal day and equals:

k = 1.002737909350795 + 5.9006 · 10−11t − 5.9 · 10−15t2, (30)

where t was defined in Eq. (26). GMST is computed using Eq. (27) and the Local Mean
Sidereal Time (LMST) is:

LMST =

(

GMST

86400
−

l

360

)

2π (rad), (31)
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where l is the longitude of the observatory (in degrees, positive to east).
The projected velocity of the observer due to the Earth rotation, V rot, in the equatorial

coordinate system is:

V rot
x = −V rot sin (LMST)

V rot
y = V rot cos (LMST) (32)

V rot
z = 0.

To compute the RV barycentric correction, RVcorr, the Earth velocities Vx, Vy and Vz in
Eqs. (28) have to be projected to a line of sight of the observer. The simplest way is using
spherical coordinates that are defined as following:

x = cos α cos δ

y = sin α cos δ (33)

z = sin δ,

where α and δ are right ascension and declination of the object at the epoch of the coor-
dinates and have to be corrected for the precession, as described in section §3.2. Then the
projections p1, p2 and p3, of the velocity Vx, Vy and Vz, respectively, to a line of sight of
the observer, are:





p1

p2

p3



 =





a11 a12 a13

a21 a22 a23

a31 a32 a33









x
y
z



 = A





x
y
z



 , (34)

where A is the precession matrix from Eq. (21), and the parameter t in Eqs. (25) is:

t = ( TT − EKV)/36525. (35)

EKV is the epoch of the coordinates in time units (Julian Date) that can be generally
different from J2000.0.

The Earth velocity components computed from the JPL’s ephemerides are related to
the epoch J2000.0, therefore they have to be precessed from the epoch J2000.0 to the time
of the observation:





V orb
x

V orb
y

V orb
z



 =





a11 a12 a13

a21 a22 a23

a31 a32 a33









V JPL
x

V JPL
y

V JPL
z



 , (36)

where V JPL are velocities from JPL’s ephemerides and the parameter t is the same as in
Eq. (26). Finally, the RV barycentric correction, RVcorr, is:

RVcorr = Vxp1 + Vyp2 + Vzp3 (37)

with Vx, Vy and Vz defined in Eqs. (28).
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3.4 Time correction

The geocentric Julian Date is computed using the modified function GEO written by
J. Vondrák in 2001. Positions and velocities obtained from the JPL Planetary and Lunar
Ephemerides DE405 are computed using a Julian Ephemeris Date, JED, which is based
on the dynamic Terrestrial time, TT, and is defined as:

JED = TAI +
32.184

86400
= UT1 + △T +

32.184

86400
(d). (38)

TAI is the Atomic time and △T is a correction resulting from a non-uniformity of the Earth
rotation. It is the difference between the uniformly passing time TT and the Earth rota-
tional time UT1. △T is determined from observations of the International Earth Rotation
Service. UTC is the coordinated Universal time UT and the difference TAI − UTC = n
changes by adding leap seconds to ensure | UT1 − UTC| < 0.8 s.

The barycentric coordinates of the Earth in the equatorial coordinate system computed
from the JPL Planetary and Lunar Ephemerides are related to the epoch J2000.0 as well
as the Earth velocity components. In case the star coordinates are given in the epoch other
than J2000.0 the precession from that epoch to the epoch J2000.0 has to be done:





x2000

y2000

z2000



 =





a11 a12 a13

a21 a22 a23

a31 a32 a33









x
y
z



 . (39)

The formula is similar to Eq. (34), but here the parameter t is:

t = (J2000 − EKV)/36525 (40)

with both J2000 and EKV expressed in Julian Dates. The barycentric correction of the
time, Tc, is:

Tc = L(Cxx2000 + Cyy2000 + Czz2000) (d), (41)

where Cx, Cy and Cz are individual barycentric coordinates of the Earth computed from
the JPL’s ephemerides and L is a time that takes for a light to pass one Astronomical Unit
in vacuum:

L =
499.004782

86400
(d). (42)

3.5 Program tests and error estimates

There are two approaches how to compute barycentric corrections. One of them is an
analytical theory using developments of series of many terms and another is numerical
integration of N-body system. An analytical theory is used in the program BRVEL written
by Yang & Amor in 1984, who utilized procedures of Stumpff (1977, 1979, 1980). Another
procedure using an analytical theory is AABER1 written by Ron & Vondrák (1986) for the
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α (h)
δ (◦) 0 4 8 12 16 20 21 22 23

90 35 39 34 36 36 37 35 39 37
6/1985 7/1992 7/1992 7/1992 7/1992 7/1992 7/1992 7/1992 7/1992

-90 44 43 47 47 46 45 47 42 46
12/1994 12/1994 12/1994 12/1994 12/1994 12/1994 12/1994 12/1994 12/1994

70 33 44 46 44 25 23 25 28 31
5/2003 7/1992 8/2002 8/2002 8/2002 3/1998 3/1998 4/2002 5/2003

-70 51 31 35 53 64 58 56 56 54
2/1996 2/1996 12/1994 12/1994 12/1994 12/1994 2/1996 2/1996 2/1996

50 49 52 57 59 40 38 39 45 48
5/2002 5/1991 8/2002 9/2002 10/1997 1/1991 4/2002 4/2002 4/2002

-50 63 32 36 59 73 69 70 69 66
3/1988 2/2006 8/1994 11/2000 12/2000 2/1988 2/1988 2/1996 3/1988

30 61 60 61 70 51 54 55 60 61
5/2002 5/1991 8/2000 9/2002 10/1997 1/1991 2/1988 3/1988 4/2002

-30 74 47 51 62 77 79 80 78 78
3/1988 7/2000 8/2000 11/2000 12/2000 2/1988 2/1988 3/1988 3/1988

10 70 61 66 72 66 71 72 75 75
4/1988 7/2000 8/2000 9/2002 12/2002 2/1988 2/1988 3/1988 3/1988

-10 77 58 63 65 74 79 80 81 82
3/1988 7/2000 8/2000 9/2002 12/2002 2/1988 2/1988 3/1988 3/1988

Table 1: BARCOR testing. The two numbers for each α and δ are the value (in cm s−1) and the
date of a maximum difference of RV corrections between the programs BARCOR and BRVEL.

computation of the Earth barycentric velocity components. However, the most accurate
theory is the JPL Planetary and Lunar Ephemerides using numerical N-body integrations.

Stumpff (1980) compared the Earth barycentric velocity components computed using an
analytical theory with the JPL’s ephemeris DE96 and found a maximum error 42 cm s−1.
Ron & Vondrák (1986) compared their velocity components with the JPL’s ephemeris
DE200 and declared the maximum error 17 cm s−1. Using JPL’s Planetary and Lunar
Ephemerides with the accuracy of the velocity components about few cm s−1, which is
achieved by the continuous measurements of the Earth-Moon distance by the laser teleme-
ter with the accuracy of 1 – 2 cm, makes BARCOR very accurate, with the accuracy of
RV correction of few cm s−1.

To find out more details about the accuracy of RV corrections we compared results
from BARCOR and BRVEL. We computed RV corrections using both programs over the
complete range of right ascensions α from 0 to 24 h, and declinations from −90◦ to +90◦,
for the first day of each month and years 1980 – 2006. In Table 1 the two numbers for each
α and δ are the value and the date of a maximum difference of RV corrections between
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Figure 11: The graphical representation of the differences in RV corrections between the programs
BARCOR and BRVEL.

the two programs. The RV corrections were computed for the Observatory Ondřejov in
the Czech Republic (longitude 0h59m8.s1, latitude +49◦54

′

38
′′

, altitude 528 m) and for the
epoch of the coordinates J2000.0. In the epoch B1950.0 the differences between the two
programs appears even smaller.

In Fig. 11 the results from Table 1 are displayed. The maximum difference between RV
corrections from the programs BARCOR and BRVEL occurs near the celestial equator and
right ascension 22 – 23 h. The differences correspond to the error estimates by Stumpff
(1980). We found the discrepancy in differences at the declination δ = −90◦ and +90◦.
The differences should be the same for all values of right ascension, because it is always
the same point – the Earth north or south pole. In this case BARCOR is consistent, but
BRVEL is not.

To find out the barycentric time correction accuracy the Barycentric Julian Dates
(BJD) computed by BARCOR and BRVEL were compared and the very small maximum
difference of 0.0000003 d ∼ 0.03 s was found.
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The BARCOR’s accuracy of RV corrections of few cm s−1 is good enough for expected
high accurate RV measurements obtained using the ‘astro-comb’ calibration technique
in the future. However, apart of problems raising from the intrinsic variability of the
target itself, there are few complications. First of all, the geographic position for the RV
correction should be chosen carefully. The difference between RV corrections computed for
the spectrograph position and the telescope tube position can be up to few tens of cm s−1

depending on the size of the telescope tube and telescope pointing. Second, due to changes
in the Earth atmosphere it is difficult to determine accurately the mid-exposure time. In
an extreme case when the mid-exposure time is off by one minute, the RV correction error
can be 1 m s−1 for a star close to a horizon and 0.1 m s−1 for a star close to a meridian.
One should be aware of all these issues when high accurate RV measurements are required.
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4 Photometry of transiting exoplanets

When a new transiting extrasolar planet is discovered, system parameters can be deter-
mined from its light curve. Different combinations of system parameters result in a different
shape of a light curve, and best-fitting parameters can be found from the best agreement
between the data and the model. However, good quality light curves are needed and
getting accurate photometry from the ground is not an easy task. Systematic errors in
photometric measurements and also data reduction and light-curve modelling techniques
have influence on resulting system parameters. In this chapter we discuss some aspects of
accurate photometry in section §4.1 and show how to compute system parameters from a
light curve in section §4.2.

4.1 Accurate photometry

Achieving photon-noise photometry is a difficult task as many systematic effects, or system-
atics, can disturb photometric measurements. The resulting photometric accuracy depends
on a combination of two kinds of a noise. First, the photon noise, is always present and
can be described by Poisson distribution. It is uncorrelated ‘white’ noise and averages
down as (1/N)1/2, where N is the number of measurements. The other noise component
almost always present in transiting data is a correlated ‘red’ noise (low-frequency noise)
which remains constant for specific N , corresponding to changes in airmass, seeing, tem-
perature, telescope tracking, flat-field errors and/or other effects, varying gradually over
timescales from one to a few hours, a typical transit duration. All these effects introduce
some covariance between individual light-curve points.

4.1.1 Systematic noise

The detection-significance statistic for transit surveys in the presence of the ‘red’ noise was
first presented by Pont et al. (2006). Pont et al. (2007a) examined a level of correlated
noise for major photometric wide-field surveys and concluded that the ‘red’ noise causes
the standard deviation of the mean to be 2 – 3 times larger than expected for only uncor-
related noise over transit-duration timescales. They also found that for larger telescopes
the ‘red’ noise is independent of magnitude, whereas for small-aperture telescopes it is
proportional to the photon noise. However, surprisingly they found no relation between
the survey depth (deep or shallow surveys) and the ‘red’-noise amplitude.

4.1.2 Astrophysical sources of systematics

In addition to instrumental and atmospheric sources of systematic noise other possible
source is the influence of star spots. The light curve can be distorted if the planet transits
in front of a spot or due to intrinsic variability of the star, which complicates any transit
timing analysis. The system parameters and the mid-eclipse times derived can then be
affected by an inappropriate fitting model. To overcome this problem, one needs to obtain
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Figure 12: Theoretical ingress part of a light curve for HD 189733 transiting exoplanet sys-
tem computed using formulas of Mandel & Agol (2002) and limb darkening coefficients for the
Strömgren y filter from the tables of Claret (2000). The solid line corresponds to 5,000 K, a real
estimated temperature of HD 189733 (Bouchy et al., 2005). If a planet during ingress transits a
‘plage’ region that is 250 K warmer than the surrounding photosphere, the shape of a light curve
is slightly changed (the dashed line).

a light curve over the whole planet orbital period to reveal the presence of star spots.
However, this can only be carried out from the space.

An accurate photometry can be also affected by regions on the stellar surface that are
hotter than the surrounding, the so called ‘plage’ regions. If the planet would transit these
regions during ingress or egress, a light curve would be asymmetric and one should use
different limb darkening coefficients for different parts of the light curve. However, this
subtle effect was not observed yet, or was not found due to noise and systematic errors in
the data. For example, the Sun’s ‘plage’ regions are only ∼ 100 K warmer then the nearby
photosphere. In Fig. 12 we display theoretical light curves using limb darkening coefficients
for two different temperatures of HD 189733, the star harbouring a transiting planet. The
solid line corresponds to 5,000 K, whereas the dashed line to 5250 K. Despite of a subtle
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difference, the effect might be observable with the Kepler satellite or future photometric
missions.

4.2 Light-curve modelling

To estimate the system parameters we used a parametrized model where we assumed a
circular orbit around the centre of mass to calculate the separation of the planet and star
centres, z, normalised to stellar radius, as a function of time, t, that elapsed from the
mid-transit time:

z =
a

R⋆

√

sin2

(

2πt

P

)

+ cos2 (i) cos2

(

2πt

P

)

, (43)

where a, R⋆, P and i were defined in section §2.3.1. We assumed a quadratic limb darkening
law:

Iµ

I0
= 1 − u1(1 − µ) − u2(1 − µ)2, (44)

where I is the intensity, µ is the cosine of the angle between the line of sight and the
normal to the stellar surface, and u1 and u2 are the linear and quadratic limb darkening
coefficients. Initially we used a non-linear limb darkening law in a form:

Iµ

I0
= 1 − c1(1 − µ1/2) − c2(1 − µ) − c3(1 − µ3/2) − c4(1 − µ2), (45)

where c1 to c4 are four non-linear limb darkening coefficients. However, the computational
time is higher when using non-linear limb darkening coefficients, and also the quality of
ground-based photometry is not good enough to determine independently all four coeffi-
cients, c1 to c4.

The best-fitting light-curve parameters can be obtained via minimization of the function
χ2:

χ2 =
N
∑

i=1

[

fi(obs) − fi(theor)

σi

]2

, (46)

where fi(obs) is the flux observed at time i, σi is the corresponding flux uncertainty,
and fi(theor) is the fraction of the stellar flux occulted by the planet calculated from the
normalised separation, z, and the planet-to-star radius ratio, ρ, using the analytic formulas
of Mandel & Agol (2002).

In our light-curve program parameters that can be derived are: planetary and stellar
radius, orbital inclination and mid-transit times. For good-quality data it is also possible
to obtain limb darkening coefficients. Another possibility is to fit for additional parame-
ters related to the normalisation of each light-curve. Finally, using Eqs. (2), (3) and (4)
additional parameters can be derived – a transit depth, duration and impact parameter.

The two studied transiting systems, HD 189733 in section §6 and TrES-1 in section
§7, have the transiting planet on a circular orbit. However, ∼ 25% of transiting planets
found to date are on eccentric orbits for which Eqs. (2), (3) and (4) given by Seager &
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Mallén-Ornelas (2003) are no longer valid. Moreover, Barnes (2007) computed that transit
detection probabilities are higher by a factor of (1 − e2)−1 for eccentric systems, which
means that analysing light curves for eccentric transiting planets will become common.
The most elaborate model including planet’s orbital eccentricity was presented by Kipping
(2008). They derived projected star-planet separation, z, for an eccentric planetary orbit
which can be directly used as an input into the equations of Mandel & Agol (2002), and so
the limb darkening can be included. Seager & Mallén-Ornelas (2003) recommended to use
an independent measurement of the stellar mass in order to determine the stellar radius. In
addition, Kipping (2008) shown that eccentricity, e, and longitude of periastron, ω, must
also be determined by an independent observation for eccentric systems, before the stellar
radius can be determined. Using new analytic model for an eccentric orbit Kipping (2008)
also investigated the asymmetry of the light curve, the shift in the mid-transit time and
the effect of eccentricity on the ingress and egress slopes.

4.2.1 Uncertainty of best-fitting parameters

Methods to estimate uncertainties of best-fitting parameters are the following:

1. Constant-∆χ2 boundaries – First, χ2 is evaluated at points on a grid in the param-
eter space near to the maximum likelihood estimate of the model parameters. Then
confidence intervals are calculated by finding the boundary along which χ2 is con-
stant. However, many evaluations of χ2 are needed, particularly when the number
of parameters is large, and therefore this technique is not practical.

2. Bootstrap resampling – The fitting technique is applied repeatedly to many sets of
simulated data, generated by adding Gaussian random values to the actual data
points. Each set of simulated data represents a possible set of measured values.
Applying the same fitting procedure to actual and simulated data provides the dis-
tribution of best-fitting parameter values. For each synthetic data set we need to
determine best-fitting parameters, and therefore a computational time can be large.
Moreover, resulting uncertainties depend on simulated data, which do not necessarily
estimate the true distribution.

Agol & Steffen (2007) used the Monte Carlo bootstrap simulation of the errors where
the residuals between the model and the data are shifted by a random number of
points for each transit so that the correlations are maintained. The shifted residuals
are added to the best-fitting model and re-fitted, which is repeated many times to
give an estimate of the errors including systematic effects and correlated noise.

3. Markov-Chain Monte Carlo (MCMC) – MCMC allows for correlated and non-Gaussian
uncertainties in fitted parameters and it is more efficient computationally, particu-
larly for high-dimensional parameter spaces. Moreover, calculating the next step in
a chain is much faster than performing an additional minimization with resampled
data.
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4.2.2 Markov-Chain Monte Carlo simulations

Comparison of the bootstrap resampling and MCMC simulation gives similar results (Hol-
man et al., 2006). We used MCMC simulations (Tegmark et al., 2004; Ford, 2005, 2006a;
Holman et al., 2006) to estimate uncertainties of fitted parameters in our data. The goal
of the MCMC method is to generate a chain of states sampled from a desired probability
distribution. We used the Metropolis-Hastings algorithm (Ford, 2005) where chains are
created as follows. First, each chain is initialized with parameters created by adding ±1 –
5σ to their previously determined best-fitting values, where σ is a parameter uncertainty.
A trial state, xnew, is generated from the old state, xold, according to a candidate transition
probability function, q(xnew|xold). Then χ2(xnew) for the trial state and χ2(xold) for the
current state are calculated using the χ2 fitting statistic according to Eq. (46). The new
parameter set is accepted if χ2(xnew) < χ2(xold), or accepted with a probability:

p = exp

[

χ2(xold) − χ2(xnew)

2

]

(47)

if χ2(xnew) > χ2(xold).
We used a Gaussian distribution centred around x generated from the modification of

the function GASDEV (Press et al., 1992). Our transition probability function is:

q(xnew
µ |xold

µ ) =
1

√

2πβ2
µ

exp

[

−
(xnew

µ − xold
µ )2

2β2
µ

]

, (48)

where µ stands for one chosen parameter. The scale factors, β, has to be chosen indi-
vidually for each parameter. If trial states are chosen with too large dispersion, a large
fraction will be rejected, and the chain will remain at each state for several trials which
will slow down the convergence. If trial states are chosen with too small dispersion, then
the small step size will cause that the chain behaves like a random walk. Unfortunately, for
multidimensional parameter spaces, it is not always obvious how to change scales to obtain
a desired acceptance rate. Therefore, we used the Metropolis-Hastings algorithm within
the Gibbs sampler, where the parameters are altered in the next trial state according to
randomly generated permutations of the model parameters. Particularly, randomly chosen
parameter at each step, xµ, is altered according to Eq. (48) and all the other parameters
are left unchanged. The scale factors, β, were chosen so that ∼ 44% of parameter sets
were accepted (Gelman et al., 2003; Ford, 2006a). For each night, 10 independent chains
were created, with the length of at least 100,000 points per each chain to ensure the chain
convergence. The first 20% of each chain was discarded to minimize the effect of initial
conditions.

We used MCMC simulations to determine both best-fitting parameters and their un-
certainties. This was possible because we had observations of transiting extrasolar systems
where the initial estimate of the orbital parameters was known. The best-fitting value was
computed as the mean value of the probability distribution, x̄µ, and the 1σ uncertainty
according to the 68% confidence limits:

(x̄µ − 0.99446 σ, x̄µ + 0.99446 σ), (49)
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where σ is the standard deviation and the number 0.99446 tells that 68% of values lies
closer than 0.99446 σ from the mean value and can be derived using the theory of statistics
and probability. Using the mean value and the standard deviation to estimate best-fitting
parameters and their uncertainties is a good choice as the resulting probability distribution
was always close to Gaussian distribution.

4.2.3 Gelman & Rubin R statistic

The convergence of generated chains was checked using the Gelman & Rubin (1992) R
statistic, where the mean of the empirical variance of each parameter within each chain
has to be close to the variance of the mean of the same parameter across the chains, which
means that for a given fitted parameter all possible values in a parameter space are explored
in each chain.

Following Gelman et al. (2003) and Ford (2006a), we denote our fitted parameter as
xic at each iteration indexed by i of each chain indexed by c. We have Nc chains, each of
the length Lc, that includes all the accepted parameter values without the first 20%. The
mean value of xic in each chain is:

x̄.c =
1

Lc

Lc
∑

i=1

xic (50)

and the average of the variances of xic within each chain is:

W (x) =
1

Nc

Nc
∑

c=1

1

Lc − 1

Lc
∑

i=1

(xic − x̄.c)
2. (51)

The mean value of the parameter from all the chains is:

x̄.. =
1

Nc

Nc
∑

c=1

x̄.c =
1

LcNc

Nc
∑

c=1

Lc
∑

i=1

xic (52)

and the variance of the single chain means is:

B(x) =
Lc

Nc − 1

Nc
∑

c=1

(x̄.c − x̄..)
2. (53)

Then the estimate of the variance of xic using a weighted average of W (x) and B(x) is:

var(x) =
Lc − 1

Lc

W (x) +
1

Lc

B(x). (54)

Using these quantities, we can write an estimate of R(x) as:

R(x) =

√

var(x)

W (x)
. (55)
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When the individual chains approach convergence, R(x) approaches 1 from above.
In our MCMC simulations we checked R(x) for each fitted parameter regularly after

first 100,000 steps in each chain to find out whether all chains converged, and the process
was terminated when R(x) < 1.01. Usually the convergence was achieved after 100,000
steps in each chain.

4.2.4 Accounting for correlated ‘red’ noise

To estimate appropriate error bars in our data accounting for any correlated noise, we used
a procedure similar to that of Gillon et al. (2006) and Narita et al. (2007). Initially we
assigned the same error bars to all the data points including only Poisson noise. Then
the differences between the data and the model were found and the data error bars were
rescaled to satisfy the condition χ2/NDOF = 1.0, where NDOF is the total number of
measurements in each light curve. We assumed that our initial model is a good description
of a light curve. The amplitude of systematic trends in photometry was estimated from
the standard deviation over one residual point, σ1, and from the standard deviation of the
average of the residuals over N successive points, σN . We solved the following system of
two equations given by Gillon et al. (2006):

σ2
1 = σ2

w + σ2
r , (56)

σ2
N =

σ2
w

N
+ σ2

r , (57)

to obtain the amplitude of the ‘white’ noise, σw, and the ‘red’ noise, σr. The error bars were
then adjusted by multiplying by [1 + N(σr/σw)2]1/2 and these rescaled uncertainties were
used for the subsequent fitting procedure. To account properly for the systematic errors,
the resulting multiplying factor was computed as the average of values using different N
in the range 15 – 30 minutes (the typical time scale of ingress and egress).
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5 51 Peg

In my diploma thesis (Hrudková, 2005) we discovered possible changes in the observed
minus calculated values (O−C) of the 51 Peg system. To verify these changes we needed
more RV measurements of this system. They were collected using the coudé echelle spec-
trograph on the 2-m Alfred-Jensch Telescope in Thüringer Landessternwarte Tautenburg,
Germany, in October and November 2007.

5.1 Iodine cell calibration technique

To calibrate stellar spectra Griffin & Griffin (1973) suggested to pass the star light through
an absorbing medium before it enters the spectrometer, therefore superimposing reference
absorption lines that have the same instrumental shifts and distortions as the stellar spec-
trum. Several groups tried this approach with different absorbing media, leaving the iodine
absorption cell as the best candidate. Marcy & Butler (1992) and later Valenti et al. (1995)
presented a method how to use a iodine absorption cell to determine accurately RV of each
stellar spectrum. This method was incorporated in echelle spectrograph in Tautenburg
and was used for 51 Peg observations.

As explained by Marcy & Butler (1992), a star light passes through the iodine ab-
sorption cell, superimposing iodine lines on the stellar spectrum. The resulting composite
spectrum enters the echelle spectrometer where it is convolved with the instrumental pro-
file. The principle of the method is based on the fact that the observed shift of a stellar
spectrum consists of the actual Doppler shift and a small spurious shift due to instrumen-
tal effects. These spurious shifts appear in iodine lines as well, and can then be applied
as a correction to the observed shift of a stellar spectrum. The spurious shifts can be
caused by several reasons, e. g. movements of the photocentre of the telescope pupil at the
spectrograph slit, mechanical instabilities of the spectrograph and/or thermal variations.

The method was incorporated in Tautenburg as follows. First, it is necessary to find
the true intrinsic stellar spectrum of 51 Peg, Is(λ). For this reason we observed a stellar
spectrum Is,o(λ) with a high signal-to-noise ratio and without a iodine cell. It can be
considered as a template stellar spectrum. We get:

Is,o(λ) = Is(λ) ⊗ PSF, (58)

where PSF is the instrumental profile function in two-dimensional images, and the symbol
⊗ represents convolution. Right after this template observation one spectrum of the hot B
star with a iodine cell is observed. Because the B star does not have any absorption lines
in the wavelength range covered by iodine absorption lines, the B star light serves only as
the light source and we get observed iodine spectrum II2,o(λ):

II2,o(λ) = II2(λ) ⊗ PSF. (59)

II2(λ) is the true intrinsic iodine spectrum. It was obtained using a iodine cell on the
Fourier-Transform Spectrometer (FTS) on the Kitt Peak National Observatory and has a
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Table 2: The list of observations of the 51 Peg system. The UT Date is the date of the beginning
of each night. A number of observations is the total number of exposures made.

UT Date N. of obs. Exp. time Comment
(s)

2007 October 19 6 300 seeing 5 – 6 arcsec
2007 October 21 3 300 high humidity
2007 October 27 1 600 cloudy for most of the night
2007 October 28 3 450 seeing ∼ 2 arcsec
2007 October 29 6 600 – 900 cloudy for most of the night
2007 October 30 8 600 seeing ∼ 2 arcsec
2007 October 31 2 600 seeing ∼ 1.5 arcsec
2007 November 4 2 600 seeing ∼ 2.5 arcsec

resolution of 1,000,000. Knowing II2,o(λ) and II2(λ) we are able to determine PSF , and
then using Eq. (58) we are able to determine Is(λ).

Each stellar spectrum observed with a iodine absorption cell Io(λ) can be written as:

Io(λ) = k [Is(λ + ∆λs)II2(λ + ∆λI2)] ⊗ PSF, (60)

where ∆λs and ∆λI2 are the shifts of the star spectrum and a iodine transmission function.
The constant k is proportional to the exposure time of the observation. Knowing Is(λ) from
the template stellar spectrum and the FTS iodine spectrum the non-linear least-squares
technique is employed to determine ∆λs, ∆λI2 , k and PSF . The final corrected Doppler
shift ∆λ is given by:

∆λ = ∆λs − ∆λI2 . (61)

Since the PSF may be a function of a wavelength, the analysis is done on small pieces
of spectrum covering typically 2 – 4 Å at all locations over the echelle. Usually there are
∼ 120 chunks and the RV is determined in each chunk separately, by solving the Eq. (60).
The resulting RV is determined using σ-clipping algorithm. It is worth mentioning that
in Tautenburg PSF is modelled via the sum of five displaced Gaussians. The central
Gaussian has three free parameters (its width, high and position) and the four satellite
Gaussians have two free parameters (their positions). Therefore in each chunk there is in
total eight free parameters to be solved – five to determine PSF and then ∆λs, ∆λI2 and
k.

5.2 Observations and data reduction

In total we got observations for 8 nights out of 14 in October and November 2007 – see
Table 2 for the list of observations. We used coudé echelle spectrograph in Thüringer
Landessternwarte Tautenburg (TLS) in VIS channel with a iodine cell inserted. The wave-
length coverage of VIS channel is 4700 – 7400 Å, but when using a iodine cell the useful
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area is only 5000 – 6300 Å due to the limited presence of iodine lines. The slit width was
set to 1

′′

.2, providing a two-pixel resolution of about 67,000. The dispersion was 0.04 Å per
pixel, and a resolution in RV ∼ 2.2 km s−1.

The Moon could affect observations for all the nights due to the scattered Moon light,
unfortunately there is no way to see what effect the Moon light had. The exposure times
were chosen so that the signal-to-noise ratio of at least 80 for each spectrum was achieved.

The data were reduced using a pipeline written by E. Guenther with the help of IRAF4

procedures for overscan correction, bias subtraction, flat-field correction, wavelength cali-
bration and spectral normalisation. The wavelength calibration was done using Thorium-
Argon calibration images taken usually before and after the one night of observations.

RVs were computed using the program RADIAL used in Tautenburg based on the
solution of Eq. (60) according to the procedure described in section 5.1. The accuracy of
our RV measurements was 7 – 24 m s−1, and the mean accuracy 14 m s−1 was achieved.

5.3 Results

We used the program FOTEL (Hadrava, 1990, 1998, 2004) to be consistent with the pre-
vious analysis (Hrudková & Harmanec, 2006). First we determined the epoch using all RV
measurements from Tautenburg and fixed other system parameters according to Hrudková
& Harmanec (2006). After the first FOTEL solution we excluded obvious outliers and
determined the epoch again. The final RV curve is displayed in Fig. 13 and the resulting
epoch is T = 2454400.8625±0.0511 d. Using the ephemeris given by Naef et al. (2004), the
resulting (O−C)= 0.0060 ± 0.0511 d. Including this additional value the analysis similar
to Hrudková & Harmanec (2006) was done. The (O−C) values were used as an input to
FOTEL and two periods presented in Hrudková & Harmanec (2006) were tried in order
to confirm or reject any (O−C) variations. The following parameters were allowed to be
free during the FOTEL solution: the orbital period, the epoch of periastron, eccentricity,
the longitude of periastron and RV semi-amplitude. The resulting parameters were used
to compute solutions plotted in Fig. 14.

In Hrudková & Harmanec (2006) we concluded that the interpretation of (O−C)
changes in terms of the light-time effect due to a presence of a distant third body can
be safely excluded since the semi-amplitude of the (O−C) deviations of 0d.063 would im-
ply an unrealistically large mass. Therefore, we examined the possibility that 51 Peg is a
pulsating star.

If the 250-d period is a beat period of two close oscillations, then the candidate for the
second oscillation period is either

4d.16032 (4d.16−1 = 4d.23−1+250d.00−1)
or 4d.30373 (4d.30−1 = 4d.23−1-250d.00−1).

As non-radial pulsations were excluded by Hatzes et al. (1998) due to the lack of the
spectral variability, the most likely explanation was that the 4d.23 period is indeed the

4The Image Reduction and Analysis Facility (IRAF) is distributed by the National Optical Astronomy
Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc.,
under cooperative agreement with the National Science Foundation.
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Figure 13: Individual RVs from Tautenburg with their uncertainties overplotted with the theoretical
RV curve based on epoch T = 2454400.8625 ± 0.0511 d and system parameters determined by
Hrudková & Harmanec (2006).

orbital period of a planet and the 4d.16 or 4d.30 period is a multiple of a synodic period or a
forced oscillation. However, combining different RV sets is quite tricky, because the velocity
amplitudes can vary between the different sets and all RVs suffer from night corrections
different for each instrument and season.

The resulting (O−C) value determined using RVs from Tautenburg is too small to
support any expected (O−C) variations. Moreover, for both expected periods P = 252
and 829 d the (O−C) from Tautenburg measurements is in a phase where one would not
expect (O−C) close to zero in case the signal is real. Summarizing all together, we did
not find any evidence supporting the idea presented by Hrudková & Harmanec (2006).
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Figure 14: The resulting (O−C) folded using two periods: P=252 (top) and 829 d (bottom). The
(O−C) determined using RVs from Tautenburg is displayed with the box symbol.
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6 HD 189733

The HD 189733 transiting system is one of the best studied systems from the ground.
HD 189733 is a bright star of spectral type K1.5 V with magnitude V=7.67 which is orbited
by a transiting Jupiter-mass planet in a period of ∼ 2.22 days (Bouchy et al., 2005), and
which also has a distant mid-M dwarf binary companion (Bakos et al., 2006a). In 2006
HD 189733 was observed with the MOST (Microvariability and Oscillations of STars)
satellite and these data were used to search for the existence of other bodies in the system.
First, Croll et al. (2007) searched for transits from exoplanets other than the known hot
Jupiter, with the result that any additional close-in exoplanets on orbital planes near that
of HD 189733b with sizes ranging from about 1.7 – 3.5 R⊕, where R⊕ is the Earth radius,
are ruled out. Second, an analysis of transit timing variations (TTVs) in these data has
been carried out by Miller-Ricci et al. (2008b) who found that there are no TTVs greater
than ±45 s, which rules out planets of masses larger than 1 and 4 M⊕, where M⊕ is the
Earth mass, in the 2:3 and 1:2 inner resonances, respectively, and planets greater than
20 M⊕ in the outer 2:1 resonance of the known planet and greater than 8 M⊕ in the 3:2
resonance.

Analyses of transit times similar to Miller-Ricci et al. (2008b) have been carried out for
other transiting planetary systems. Steffen & Agol (2005) found no evidence for a second
planet in the TrES-1 system, excluding planets down to Earth mass near the low-order,
mean-motion resonances of the transiting planet. Similarly, Gibson et al. (2009a) and
Gibson et al. (2009b) found no evidence for additional planets down to sub-Earth masses
in the interior and exterior 2:1 resonances of the TrES-3 and HAT-P-3 systems.

To measure times of mid-transits with sufficient accuracy to detect terrestrial mass
planets requires high quality photometry, free of systematic effects. HD 189733 is known
to have surface spots; Pont et al. (2007b) observed two spot events in HST data when
the flux during the transit changed by 1 and 0.4 mmag. The presence of surface spots on
HD 189733 complicates any transit timing analysis (Miller-Ricci et al., 2008b), as discussed
in section §4.1.2.

Instrumental effects during transit ingress or egress can also influence the accuracy
and determination of transit times. For example, if the transit light curve is not properly
normalised so that all data points in egress have a flux level that is slightly too high,
the transit time earlier than the correct one will be determined. Correct normalisation is
especially problematic for partial transit light curves.

It is also important to have a light curve that is well-sampled during both ingress
and egress, because the transit timing information is contained in these parts. When using
large telescopes for such a bright star, only short exposure times are needed to get sufficient
signal-to-noise and to avoid saturation, and so the cadence of observation is higher. For a
given data accuracy, higher cadence leads to more accurately determined transit times.
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Table 3: Observations of the HD 189733 system. The UT date is the date of the beginning of
each night. The cycle number is in periods from the ephemeris given by Agol et al. (2009). For
some nights the exposure time was changed during the observations; this is indicated by the second
value in parentheses. The data rms is per exposure for the ratio of intensities of the target and
comparison stars. The barycentric mid-transit times of the HD 189733 system are given with
uncertainties defined as 68 % confidence limits.

Telescope UT date Cycle CCD Exposure Data Mid-transit time O−C Comment
no. window rms

(pixels) (s) (mmag) (BJD - 2450000) (s)
NOT 2006 July 18 -155 [1040:200] 2.5 2.9 3935.55805 ± 0.00028 38 ± 25
NOT 2006 August 07 -146 [1040:200] 2.5 2.6 3955.52509 ± 0.00014 26 ± 12
NOT 2006 August 27 -137 [1040:200] 2.5 (3.0) 2.7 3975.49194 ± 0.00021 −2 ± 18
WHT 2007 August 17 +23 [1071,546] 10.0 4.6 4330.46305 ± 0.00042 −79 ± 36
WHT 2007 September 17 +37 [1071,546] 3.0 (3.5) 4.4 4361.52352 ± 0.00044 −43 ± 38
NOT 2008 June 07 +156 [1040:200] 3.5 (3.0) 2.6 4625.53404 ± 0.00038 −35 ± 33 partial
NOT 2008 June 18 +161 [1040:200] 3.5 2.3 4636.62768 ± 0.00018 31 ± 15
NOT 2008 July 08 +170 [1040:200] 3.5 (4.0) 2.4 4656.59451 ± 0.00012 1 ± 11
NOT 2008 July 17 +174 [1040:200] 3.5 (3.0) 3.4 4665.46951 ± 0.00029 62 ± 25
NOT 2008 July 28 +179 [1040:200] 3.0 2.3 4676.56188 ± 0.00019 18 ± 16
NOT 2008 August 26 +192 [1655:200] 3.5 2.7 4705.40332 ± 0.00019 15 ± 16
NOT 2008 September 15 +201 [1655:200] 2.5 2.9 4725.37064 ± 0.00053 28 ± 49 partial

6.1 Observations

We observed eight full and two partial transits of HD 189733 with the 2.6-m Nordic Optical
Telescope (NOT), La Palma, Spain, using ALFOSC (the Andalucia Faint Object Spectro-
graph and Camera), and two full transits using the AG2 camera on the 4.2-m William
Herschel Telescope (WHT) of the Isaac Newton Group (ING), La Palma, Spain (Table 3).

ALFOSC has a 2048 × 2048 back-illuminated CCD with scale 0.19 arcsec/pixel and
field of view (FOV) 6.5 × 6.5 arcmin2. To reduce the readout time of each exposure and
the duty cycle of observation we windowed the CCD with the window sizes summarized in
Table 3. We used a Strömgren y filter to minimize effects of colour-dependent atmospheric
extinction on the differential photometry and the effect of limb darkening on the transit
light curves. We defocused the telescope typically to 3.4 arcsec, spreading the light inside
full width at half maximum (FWHM) of the PSF over ∼ 250 pixels, in order to minimize
the impact of pixel-to-pixel sensitivity variations, and to prevent saturation. Exposure
times were chosen to keep counts below 50,000 per pixel to avoid saturation of features
such as hot spots and speckles in the defocused stellar images, and to ensure data linearity.
The typical exposure time for the NOT data was 3 s (Table 3).

AG2 is a frame-transfer CCD mounted at the folded Cassegrain focus, based on an ING-
designed autoguider head. The FOV is 3.3× 3.3 arcmin2 and the scale is 0.4 arcsec/pixel.
We used a Kitt Peak R filter and defocused the telescope to 10 and 12 arcsec for the
two nights, spreading the FWHM-light over ∼ 490 and 700 pixels, respectively. The
corresponding exposure times were 10 and 3 s.

The mid-time of each exposure was converted to the BJD using the program BARCOR
(see section §3). We use BJD, because for this system the Heliocentric Julian Date would
accumulate an error of up to 4 seconds.
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6.2 Data reduction

Bias subtraction, flat-field correction and aperture photometry was performed using stan-
dard IRAF procedures.

To ensure a signal-to-noise in excess of 1,000 in our Strömgren y-filter flat fields for
the NOT data we generated a master flat field for each night using individually weighted
normalised flat fields from the entire observing season combined with weights W = 1−D/S,
where D is the time interval between each night and date of observation, and S is the
season length. Applying flat-field corrections has only a minor effect on the resulting NOT
photometry, because of the heavily defocused PSF.

We determined master flat fields with a signal-to-noise greater than 1,000 for both WHT
nights. However, we identified a position-angle dependent scattered light component in the
flat fields, which introduced systematic noise in our WHT photometry. Therefore we did
not apply flat-field corrections.

We used the star 2MASS 20003818+2242065 as our comparison star for the WHT data.
In our NOT data there are two available comparison stars, 2MASS 20003818+2242065 and
2MASS 20003286+2241118. We found the ratio of their measured intensities varies by a
few mmag with time, as the telescope tracks across the meridian. This variation correlates
with small drifts in the positions of the stars on the CCD, suggesting that some light is
being lost from the aperture around one of the stars due to the wings of the PSF drifting
out of that aperture. A similar variation is seen for the ratio of the intensities of 2MASS
20003286+2241118 and out-of-transit HD 189733, but not for 2MASS 20003818+2242065
and HD 189733, suggesting that it is light from 2MASS 20003286+2241118 which is being
lost. This star is the farther of the two from HD 189733, and we conclude that the variation
in measured intensity is due to a combination of the small drifts in stellar position on the
CCD, and the variation of the defocused PSF across the FOV. We therefore used only the
comparison star which is closer to HD 189733.

We used circular, equal diameter, photometric apertures for both HD 189733 and the
comparison star. A range of aperture sizes was tried and that producing the minimum
noise in the out-of-transit data was adopted and fixed during each night. The aperture
radius for all stars ranged from 18 – 29 pixels for different NOT nights and the typical
FWHM was around 18 pixels (3.4 arcsec). For the two WHT nights the aperture radius
was 28 and 30 pixels, respectively, and the corresponding FWHM was 25 and 30 pixels (10
and 12 arcsec).

We ensured the apertures tracked small drifts in the stellar positions on each image by
using a large centroiding box of size 4× FWHM. During each night drifts in the stellar
positions on the CCD were less than 7 (NOT) and 4 pixels (WHT). The sky background
was subtracted using an estimate of its brightness determined within an annulus centred on
each star with a width of 10 pixels. For each night, differential photometry was computed
by taking the ratio of counts from HD 189733 to the counts from the comparison star.
We normalised our data using linear fits that were computed together with other system
parameters as described in section §6.3.
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The normalised unbinned NOT light curves and binned WHT light curves, averaged
into 10-second bins to have the same cadence as the NOT data, are shown in Fig. 15 along
with their best-fitting models, residuals and data error bars, as derived in section §6.3.

6.3 Light-curve modelling

To estimate the system parameters we used a parametrized model described in section
§4.2. For the NOT data we allowed the limb darkening coefficients to be free parameters,
in order to include possible errors in the limb darkening coefficients into our final system
parameters and mid-transit times. For the WHT data we adopted values u1 = 0.4970 and
u2 = 0.2195 from the tables of Claret (2000) and fixed them in the subsequent analysis.
These correspond to the Johnson R filter which has similar characteristics as the Kitt Peak
R filter used.

To compute our model we folded all the NOT light curves of full transit except for
the night 2008 July 17 which displays obvious systematic changes during transit. In our
photometry we cannot easily distinguish spot effects from systematic instrumental errors;
to do so would require the instrumental systematic noise to be much less than the pre-
dicted spot signatures. We fitted simultaneously planetary and stellar radius, Rp and R⋆,
respectively, the orbital inclination, i, two limb darkening coefficients, u1 and u2, transit
time, T0,n, and additional two parameters for each night n – the out-of-transit flux, foot,n,
and a time gradient, tGrad,n. These two parameters were allowed to be free to account
for any normalisation errors in the data. For each change of R⋆, the stellar mass, M⋆,
was recomputed using the scaling relation R⋆ ∝ M

1/3
⋆ . We fixed the planetary mass value

Mp = 1.15±0.04 MJ (Bouchy et al., 2005), adopted a period P = 2.21857503±0.00000037 d
(Agol et al., 2009), and using Kepler’s third law we updated the orbital semi-major axis
for each choice of M⋆.

We ran MCMC simulations with the Metropolis–Hastings algorithm to estimate the
best-fitting parameters and their uncertainties (see section §4.2.2). We added a Gaussian
prior placed on M⋆ into Eq. (46):

χ2 =
N
∑

i=1

[

fi(obs) − fi(theor)

σi

]2

+
(M⋆ − M0)

2

σ2
M0

. (62)

Here we adopted the stellar mass M0 = 0.82 M⊙ and its uncertainty σM0
= 0.03 M⊙,

estimated from stellar spectra by Bouchy et al. (2005). Adding the Gaussian prior on M⋆

ensures that errors in the stellar mass, which are the greatest source of uncertainty when
deriving the system parameters and transit times, are taken into account.

To estimate appropriate error bars in our data we proceeded as described in section
§4.2.4. We assigned the same error bars to all the data points including only Poisson
noise. An initial MCMC analysis of the folded NOT light curves was used to estimate the
parameters Rp, R⋆, i, u1, u2, T0,n, foot,n and tGrad,n. The first model light curve was used
to find the differences between the data and the model for each individual night. Then we
rescaled the error bars to satisfy the condition χ2/NDOF = 1.0, where NDOF is the number



6 HD 189733 55

Figure 15: Differential photometry of the HD 189733 system over-plotted with the best-fitting
model (solid line) from the MCMC fit. The residuals and 1σ error bars are also plotted, offset
by a constant flux for clarity. The phase was computed using best-fitting transit times presented
in Table 3. The photometry for NOT data is unbinned and for WHT is binned in time with 10
second bins to give the similar cadence as for NOT data for clarity.
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of measurements in each light curve. For the night of 2008 July 17, the nights of the two
partial transits (2008 June 07 and 2008 September 15) and for the WHT light curves (2007
August 17 and 2007 September 17) we adopted our first model and ran MCMC analysis
to find initial parameters T0, foot and tGrad for each night independently. Then we rescaled
the error bars similarly as before. Compared to the initial model, we found that for the
NOT data errors are higher by factors of 2.3 – 3.4 than errors including only Poisson noise,
and for the WHT data by factors of 4.6 and 4.4 for the two nights, respectively. The data
rms errors per exposure are presented in Table 3. The predicted rms due to photon noise,
which is dominated by the fainter comparison star, and to atmospheric scintillation, is
∼ 2.5 mmag for the NOT data and ∼ 3 mmag for the WHT data.

To create our final model, we proceeded as before but this time including systematic
noise in our data according to section §4.2.4 and therefore properly estimating parameter
uncertainties. We ran MCMC using the folded NOT light curves and fitting the parameters
as described earlier. We created 10 chains, each with length 2,000,000 points in order to
achieve convergence. Ultimately, we used our final model to find individual mid-eclipse
times and two normalisation parameters for the night of 2008 July 17, the nights of the
two partial transits (2008 June 07 and 2008 September 15) and for the WHT light curves
(2007 August 17 and 2007 September 17).

6.4 Results

The final system parameters are presented in Table 4 and are consistent within ∼ 2σ error
bars with the previously published values (Bakos et al., 2006b; Pont et al., 2007b; Winn
et al., 2007a; Miller-Ricci et al., 2008b). The resulting limb darkening coefficients for the
NOT data were u1 = 0.46 ± 0.10 and u2 = 0.35 ± 0.13.

The resulting barycentric transit times can be found in Table 3. The uncertainties
are defined as 68% confidence limits. To compute the observed-minus-calculated values
(O−C) we used the ephemeris given by Agol et al. (2009):

Tc(E) = HJD (2454279.436741± 0.000023) + (2d.21857503± 0d.00000037)× E. (63)

The resulting O−C residuals together with all the other previously published values (Bakos
et al., 2006b; Pont et al., 2007b; Winn et al., 2007a; Miller-Ricci et al., 2008b; Knutson
et al., 2009) are plotted in Fig. 16. Our observations did not bring any refinement of
the ephemeris and we confirm that presented by Agol et al. (2009). For the night 2006
August 07 a transit timing measurement of HD 189733 was also presented by Miller-Ricci
et al. (2008b) from the MOST data and it is consistent within 2σ error bars with our
measurement.

6.4.1 Transit timing variations analysis

The mean O−C for all our observations which span more than two years is 5 ± 38 s,
where the quoted error is the rms scatter in the O−C values and is slightly larger than the
average O−C uncertainty ∼ 25 s. None of our O−C measurements is a significant outlier.
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Figure 16: Top: NOT and WHT O−C residuals of mid-transit times of the HD 189733 system
including both partial (star symbol) and full transits (filled circle symbol). Middle: Previously
published values plotted together with NOT and WHT results. Filled squares: Bakos et al. (2006b),
ground-based; filled triangles: Pont et al. (2007b), HST; open squares: Winn et al. (2007a),
ground-based; open circles: Miller-Ricci et al. (2008b), MOST; open triangles: Knutson et al.
(2009), Spitzer; filled circles and stars: this work. Bottom: The same as the middle but zoomed
for clarity. The cycle number is in periods from the ephemeris given by Agol et al. (2009). Our
timing measurements are the most accurate from known ground-based observations of the system.
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Table 4: System parameters of HD 189733. The uncertainties are 68% confidence limits.

Parameter Symbol Value Units
Planet radius Rp 1.142 ± 0.014 RJ

Star radius R⋆ 0.755 ± 0.009 R⊙

Orbital inclination i 85.70 ± 0.03 deg
Planet/star radius ratio ρ 0.1556 ± 0.0027
Total transit duration Td 1.807 ± 0.023 h
Impact parameter b 0.667 ± 0.009

The two largest O−C values for the nights 2007 August 17 and 2008 July 17 coincide with
obvious systematic changes during the transit (see Fig. 15) and both have the same or
larger uncertainty than the average value. Therefore the rms scatter in the O−C values
of 38 s is a good estimate for placing limits on the presence of other planets in the system.

This conclusion was used to place mass limits on the existence of planets on orbits
interior and exterior to HD 189733b. First, the mass, semimajor axis and eccentricity
of the putative perturbing planet was selected. The orbital inclination was set so that
HD 189733b and the perturbing planet have coplanar orbits. The two-planet system was
then numerically integrated by D. Nesvorný using the Bulirsch-Stoer integrator (Press et
al., 1992). He determined all mid-transit times of HD 189733b over a time-span of 500
days, an interval long enough to cover at least 14 orbits of all perturbing planets we can
exclude, and used these data to estimate TTVs. The mass, initial semimajor axis and
initial eccentricity of the perturbing planet were varied to determine the TTV amplitude
for different planetary configurations.

Fig. 17 shows the range of the inner and outer planet’s orbits that produce TTVs
smaller/larger than ±38 s and are thus compatible/incompatible with our TTV observa-
tions of the HD 189733 system. The shaded area in Fig. 17 excludes a range of possible
eccentricities and semimajor axes for a putative 1 Earth-mass (top) and 2 Earth-masses
(bottom) inner (left) and outer (right) planet in the system. Our observations of the
HD 189733 system show no evidence for the presence of planets down to 1 Earth mass in
the 2:1, 3:2 and 5:3 exterior resonance orbits, planets down to 1 Earth mass in the 1:2,
1:3, 2:3 and 2:5 interior resonance orbits, and planets down to 2 Earth masses in the 1:4
interior resonance orbit with HD 189733b. However, not all of these resonant orbits are
Hill stable. We computed Hill stability according to Eq. (21) of Gladman (1993) for both
inner and outer perturbing planet and displayed the result in Fig. 17 using thin solid line.
For the inner/outer perturbing planet all the orbits on the left/right to the thin solid line
are Hill-stable, which means that close approaches between two planets are forbidden. For
the rest of the parameter space the Hill stability of the system is unknown; the system still
may be Hill-stable.

Nesvorný (2009) showed that the TTV signal can be significantly amplified for planetary
systems with substantial orbital inclinations of the transiting and perturbing planet and/or
in the case of transiting planet in an eccentric orbit with an anti-aligned orbit of the
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Figure 17: A numerical survey of the HD 189733 system showing 38-s TTVs caused by an inner
(left plots) and outer (right plots) 1 Earth-mass planet (m2 = 3 × 10−6 M⊙, top) and 2 Earth-
masses planet (m2 = 6 × 10−6 M⊙, bottom) was carried out by D. Nesvorný. The shaded area
excludes a range of possible eccentricities and semimajor axes for a putative 1 and 2 Earth-masses
inner/outer planet in the system based on our observational non-detection of TTVs greater than
±38 s. We do not display plots for Jupiter-mass planets as these would easily be detected in
radial velocity searches. The thick solid line shows a boundary where a collision between the two
planets can occur. It is defined so that the apocentre/pericentre of the inner/outer perturbing
planet equals to the semi-major axis of the transiting planet. The thin solid line represents a Hill
stability computed according to Gladman (1993). Credit Nesvorný.
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perturbing planetary companion. Therefore for most orbital architectures of exoplanetary
systems we determine the perturber’s upper mass from our TTVs under the assumption
of coplanar orbits of transiting and perturbing planets.

Madhusudhan & Winn (2009) found an upper limit of 22 M⊕ for a Trojan in the
HD 189733 system. In addition, Croll et al. (2007) searched for Trojan transits in MOST
photometry, assuming similar inclinations of the Trojan’s and transiting planet’s orbits,
and concluded that Trojans with a radius above 2.7 R⊕ should have been detected with
95% confidence. Using a mean density of ρ ∼ 3 000 kg m−3, this corresponds to 11 M⊕.
Our TTVs show no evidence for Trojans with masses higher than 5.3 M⊕ if their libration
amplitudes are similar as for Trojans orbiting near the Sun-Jupiter Lagrange points (Ford
& Holman, 2007).

Kipping (2009) predicted TTV amplitude of 1.51 s and TDV amplitude of 2.94 s for an
Earth-mass exomoon in a circular orbit about HD 189733b. Increasing the eccentricity of
the moon’s orbit decreases TTV amplitude, but increases TDV amplitude. However, for
the HD 189733 system these variations are too small to be detectable in our data.

6.5 Conclusions and discussion

Miller-Ricci et al. (2008b) found no TTVs greater than ±45 s in MOST data, and excluded
super-Earths of masses larger than 1 and 4 M⊕ in the 2:3 and 1:2 inner resonance, respec-
tively, and planets greater than 20 M⊕ in the outer 2:1 resonance of the known planet and
greater than 8 M⊕ in the 3:2 resonance. Miller-Ricci et al. (2008b) assumed that the orbit
of the perturbing planet is circular and that additional planets in eccentric orbits would
produce stronger perturbations. However, Nesvorný (2009) showed that an eccentric planet
can produce stronger or weaker perturbations depending on the relative angular position
of its orbital pericentre. Therefore we did not assume the circular orbit for the perturbing
planet and our approach is more rigorous.

Our observations of the HD 189733 system spanning more than two years show no
evidence for the presence of planets down to 1 Earth mass in the 2:1, 3:2 and 5:3 exte-
rior resonance orbits, planets down to 1 Earth mass in the 1:2, 1:3, 2:3 and 2:5 interior
resonance orbits, and planets down to 2 Earth masses in the 1:4 interior resonance orbit
with HD 189733b. Our results place the strongest limits to date on the presence of other
planets in this system. We also discuss the possible presence of Trojans in the system, and
conclude that the highest limit on a Trojan mass is 5.3 M⊕ if its libration amplitude is
similar as for Trojans orbiting near the Sun-Jupiter Lagrange points.
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7 TrES-1

Alonso et al. (2004) reported a detection of a transiting Jupiter-sized planet orbiting TrES-
1, a relatively bright (V=11.79 mag) K0 V star. First TTV analysis of this system was
carried out by Steffen & Agol (2005), who analysed the set of transit times given in Char-
bonneau et al. (2005). They found no evidence for a second planet in the system, and
excluded planets down to Earth mass near low-order, mean-motion resonances with the
transiting planet. In 2006 Winn et al. (2007b) used KeplerCam on the 1.2-m telescope at
the Fred L. Whipple Observatory (FLWO) on Mt. Hopkins, Arizona. They observed three
full transits of TrES-1 and improved the ephemeris given by Alonso et al. (2004). Another
full transit observation was reported by Narita et al. (2007) together with measurements of
the Rossiter-McLaughlin effect from the RV curve. Three transits of Winn et al. (2007b)
and one of Narita et al. (2007) show the possible TTV trend, which led us to observe
TrES-1 in 2007. The results were reported by Hrudková et al. (2009). In this section, we
present a new analysis of 2007 data together with data taken in 2006.

Rabus et al. (2009) presented features on light curves of the TrES-1 system that can
be explained by the presence of star spots on TrES-1 surface or a second transiting planet
in the TrES-1 system. If TrES-1 is an active star the light curve can be distorted if the
planet transits in front of a spot or due to intrinsic variability of the star. In case a
second transiting planet is present in the TrES-1 system, the light curve is affected if the
two transiting planets have the same or similar orbital inclination and one transits the
other. The system parameters and derived mid-eclipse times can then be affected by an
inappropriate fitting model. Dittmann et al. (2009) published a tentative detection of a
starspot on TrES-1 during two consecutive transits and concluded that the brightening
anomalies they observed are unlikely due to a double transiting planet as suggested by
Rabus et al. (2009).

Gillon et al. (2008) presented several well known ‘rules of thumb’ for an accurate dif-
ferential CCD photometry. Their main points for observational and reduction strategy are
following:

1. The good basic calibration of raw images is important. A major issue is the quality
of flat fields.

2. Good choice of a reduction method is essential.

3. In order to minimize an effect of inter-pixel variability, it is required to keep stars at
the same pixel positions during observations, therefore a good guiding is necessary.

4. It is important to choose properly an optimal pointing because a flux of reference
stars is a key factor in a differential photometry.

5. One should properly estimate sources of a noise in order to optimize the duty-cycle
of observations.

In addition to Gillon et al. (2008) we present new ‘rules of thumbs’ in section §7.2.1 based
on our data analysis.
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Table 5: Observations of the TrES-1 system. The UT date is the date of the beginning of each
night. The cycle number is in periods from the epoch given by Eq. (65). The data rms is per
exposure for the ratio of intensities of the target and comparison stars. The barycentric mid-
transit times are given with uncertainties defined as 68 % confidence limits.

Instr. UT Date Cycle Exp. No. Comp. Data rms Mid-transit time O−C Comment
(s) (mmag) (BJD) (s)

AG3 2006 May 12 -9 1 3 3.5 2453868.57234 ± 0.00027 3 ± 23
AG3 2006 May 15 -8 1 3 3.5 2453871.60224 ± 0.00035 -12 ± 30
AG3 2006 May 18 -7 1 1 3.0 2453874.63263 ± 0.00037 15 ± 32
AG3 2006 August 08 +20 1 1 3.4 2453956.44553 ± 0.00023 94 ± 20
AG3 2006 August 11 +21 1 1 2.5 2453959.47530 ± 0.00044 67 ± 38 CCD problem
AG2 2007 September 12 +152 5 3 2.3 2454356.41480 ± 0.00037 55 ± 32
AG2 2007 September 15 +153 10 1 1.6 2454359.44415 ± 0.00045 -8 ± 39
AG2 2007 September 18 +154 10 1 1.5 2454362.47360 ± 0.00027 -62 ± 23

7.1 Observations

We observed eight full transits of TrES-1 with frame-transfer CCDs AG2 and AG3 on the
4.2-m William Herschel Telescope (WHT) of the Isaac Newton Group (ING), La Palma,
Spain (Table 5). Five transits were observed in 2006 and three transits in 2007. AG3 and
AG2 are ING-designed autoguider heads with E2V CCD, the field of view 3.3×3.3 arcmin2

and the scale 0.4 arcsec/pixel.

AG3 is mounted at the Nasmyth focus of the WHT. During observations it was not
possible to guide and therefore drifts in the stellar positions on the CCD were 10 – 20 pixels.
We used a Wratten 25 R filter to minimize colour-dependent atmospheric extinction on
the differential photometry and an effect of limb-darkening on transit light curves. The
FWHM of stellar images ranged from 4 – 7 pixels. The exposure time for all images was
1 second.

AG2 is mounted at the folded Cassegrain focus of the WHT. Autoguiding ensured that
during each night drifts in the stellar positions on the CCD were less than 3 pixels. We
used a Kitt Peak R filter. We defocused the telescope typically to 4 arcsec, spreading the
FWHM-light over more than 300 pixels, in order to minimize the impact of pixel-to-pixel
sensitivity variations, and to prevent saturation. We acquired 5 and 10 second exposures
(Table 5).

The mid-time of each exposure was converted to BJD using the program BARCOR
(see section §3).

7.2 Data reduction

Bias subtraction, flat-field correction and aperture photometry was carried out using stan-
dard IRAF procedures.

We applied a master flat field created for each night separately to the AG3 data. For
the AG2 data we did not apply flat-field corrections due to a position-angle dependent
scattered light component, which introduced noise in our photometry.



7 TRES-1 63

In order to include all the stellar light into the aperture we ensured the apertures
tracked drifts in the stellar positions on each image by using a large centroiding box of size
4× FWHM.

A differential photometry was obtained using circular apertures. Different aperture
sizes were tried; that producing the minimum noise in the out-of-transit data was adopted
and fixed during each night. For the AG3 data the aperture radius ranged from 18 – 29
pixels for TrES-1, and 13 – 19 pixels for the comparison stars. We included the nearby
faint stars into the aperture of TrES-1. The brightest star included is ∼ 5 mag fainter than
TrES-1, and as we did not see any influence on the resulting light curves, we assumed all
the light coming from TrES-1 itself. For the AG2 data we used circular, equal diameter,
photometric apertures for both TrES-1 and the comparison stars. The aperture radius was
30, 29 and 29 pixels for the three nights, respectively. Our comparison stars were 2MASS
J19041058+3638409, 2MASS J19040934+3639195 and 2MASS J19040792+3640116. It
was 2MASS J19041058+3638409 when only one comparison star was used for a differential
photometry (see Table 5 and section §7.2.1). The sky background was subtracted using
an estimate of its brightness determined within an annulus centred on each star with a
width of 5 – 10 pixels. For each night, a differential photometry was obtained by taking
the ratio of counts from TrES-1 to the mean counts (the counts) from the comparison stars
(the comparison star). The light curves were normalised using a polynomial function of
low degree (up to third degree).

The normalised light curves, averaged into 0.5-minute bins for clarity, are shown in
Fig. 19 along with their best-fitting models, residuals and data error bars, as derived in
section §7.3.

7.2.1 Photometry

To obtain an accurate photometry a master bias reproducing correctly bias level changes
and a good quality master flat field is needed. If the bias is not subtracted from an image
thoroughly, a residual bias, δ bias(x,y), is left and the de-biased flat-fielded image is:

I(x, y) = T (x, y) + B(x, y) +
δ bias(x,y)

QE(x, y)
. (64)

Here I(x, y) is the image, T (x, y) is a target, B(x, y) is a background and QE(x, y) is a
quantum efficiency, all quantities depending on spatial coordinates x and y on the CCD.
Provided the bias error is constant, that is δ bias(x,y) = constant(x, y), and quantum effi-
ciency is flat, the effect of the residual bias should be taken out in the background sub-
traction when performing a differential photometry. On the other hand, if the background
changes, that is δ bias(x,y) 6= constant(x, y), a differential photometry can be affected.

In our differential photometry we identified features with sizes of up to few mmag lasting
for up to few tens of minutes. To verify if these features could be caused by background
changes, we summed all images over the typical feature duration to get a high signal-to-
noise image. These ‘superflat’ images were then compared and we concluded that we do
not see background changes big enough to explain features with sizes of up to few mmag.
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In addition to short time-scale features, slow variations are evident for nearly all tran-
sits. An example can be seen in Fig. 18, where we display a photometry for the AG3 night
2006 August 11. A different raw flux behaviour of different comparison stars is obvious.
Particularly, the comparison star No. 1 (2MASS J19041058+3638409), the closest to TrES-
1 on the CCD, has a different raw flux course during the night than comparison stars No. 2
and 3 (2MASS J19040934+3639195 and 2MASS J19040792+3640116), which are on the
other half of the CCD than TrES-1. The ratio of fluxes of comparison stars No. 2 and 3 is
flat, therefore we can rule out a variability of these two stars. We rule out the variability
of the comparison star No. 1 as we did not see any signs of variability on any of the nights.
However, the ratio of fluxes of the comparison star No. 1 to comparison stars No. 2 and
3 is not constant and the change corresponds to a mount position angle (MNTPA) of the
field rotator.

In Fig. 18 we plot vertical lines when changes in the photometry coincide with drifts
in the stellar positions. When the field shifts on the CCD, it implies a movement of the
beam relative to reflecting surfaces in a light path. This may induce small changes in
the measured relative brightness of two stars, if there is a flexure of the light inside the
optical system. In case of AG3, both short and long-term systematics can be explained by
a combination of optical imperfections of a field rotator consisting of five optical elements,
two lenses and three mirrors formed in a K-shape, and the drifts in stellar positions during
the night. We used only one comparison star for our differential photometry when different
comparison stars had different flux behaviour (see Table 5).

Based on our experience, we recommend additional ‘rules of thumb’ to these of Gillon
et al. (2008):

1. Field rotator is needed for instruments on telescopes with an altazimuth mount.
To avoid rotator optical imperfections instruments on telescopes with an equatorial
mount should be preferred.

2. To avoid a use of mirrors with a non-uniform reflectivity over the surface instruments
placed in a direct Cassegrain focus should be favoured.

7.3 Light-curve modelling

To estimate mid-transit times we used a parametrized model described in section §4.2.
We adopted a stellar mass M⋆ = 0.89 ± 0.05 M⊙ and a planetary mass Mp = 0.76 ±
0.05 MJ, estimated from stellar spectra by Sozzetti et al. (2004). We assumed a period
P = 3.0300737±0.0000026 d (Winn et al., 2007b) and using Kepler’s third law we computed
and in a subsequent analysis fixed the orbital semi-major axis.

We did not find any suitable tabulated limb darkening coefficients for the Wratten 25
R filter. We used values a = 0.28 and b = 0.21 (see below). For AG2 data we used
a = 0.4396 and b = 0.2598 from the tables of Claret (2000), corresponding to the Johnson
R filter which has similar characteristics as the Kitt Peak R filter used.
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Figure 18: Photometry for the night 2006 August 11. From top to bottom: raw flux of
TrES-1, comparison star No. 1 (2MASS J19041058+3638409), comparison star No. 2 (2MASS
J19040934+3639195), relative flux of TrES-1 to comparison star No. 1, relative flux of TrES-1 to
flux of all three comparison stars, relative flux of comparison star No. 1 to No. 2 and 3, relative
flux of comparison star No. 2 to 3, airmass, mount position angle (MNTPA) and drifts in the
stellar positions on CCD during the night. We plot vertical lines when changes in the photometry
coincide with drifts in the stellar positions (see section §7.2.1 for an explanation).
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Figure 19: Differential photometry of the TrES-1 system. WHT AG3 and AG2 light curves of
the TrES-1 system after binning in time with 0.5 minute bins are over-plotted with the best-fitting
model (solid line) from the MCMC fit. The residuals and 1σ error bars are also plotted, offset by
a constant flux for clarity. The phase was computed using best-fitting transit times presented in
Table 5.
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We ran MCMC simulations with the Metropolis–Hastings algorithm as described in
section §4.2.2 to estimate the best-fitting mid-transit times and their uncertainties. The
scale factors were chosen so that ∼ 43 − 46% of parameter sets were accepted.

We used system parameters derived by Winn et al. (2007b) to create our model light
curve. Initially we fitted limb darkening coefficients for our AG3 data, as we did not find
any suitable tabulated values for the Wratten 25 R filter. Unfortunately, data were not
of a quality sufficient to fit a and b independently, and generated chains did not converge.
We used values a = 0.28 and b = 0.21 for z band filter presented by Winn et al. (2007b).
However, the light-curve shape is very sensitive to a choice of limb darkening coefficients,
which in turn has the influence on the derived mid-transit times. Therefore we computed
mid-transit times for few different values of limb darkening coefficients, and found differ-
ences between new and originally derived times of up to 8 seconds. We accounted for this
error in the resulting transit time uncertainties presented in Table 5.

To account for any normalisation errors in the data we allowed the parameters of the
polynomial function to be free in our MCMC simulations. However, except of the night
2006 May 18, the chains did not converge (R(x) < 21; see section §4.2.3). Thus the only
free parameter in the subsequent analysis was the mid-transit time for each night and two
parameters of the linear fit for the night 2006 May 18, the out-of-transit flux, foot,n, and a
time gradient, tGrad,n.

To estimate appropriate error bars in our data we proceeded as in section §4.2.4. Com-
pared to the model we found that errors are higher by factors of 1.5 – 2.3 for AG2 and 2.5
– 3.5 for AG3 than errors including only Poisson noise. The data rms errors per exposure
are presented in Table 5 and due to the presence of systematic errors they are higher by
0.5 – 1.5 mmag than errors expected from predicted sources of noise.

7.4 Results

The resulting barycentric transit times can be found in Table 5. The uncertainties are 68%
confidence limits plus errors accounting for a priori choice of limb darkening coefficients.
To compute the observed minus calculated values (O−C) we used the epoch given by Winn
et al. (2007b):

Tc(E) = HJD (2453895.84297± 0.00018) + (3d.0300737 ± 0d.0000026)× E. (65)

The resulting O−C residuals together with all the other previously published values
(Charbonneau et al., 2005; Narita et al., 2007; Winn et al., 2007b) are plotted in Fig. 20.

Using our data and the data by Charbonneau et al. (2005), Narita et al. (2007) and
Winn et al. (2007b)5 we are able to determine the most accurate ephemeris to date. We
fitted a weighted linear fit to the transit times as a function of epoch where weights were in-
versely proportional to the squares of rms errors of individual transit times. Our ephemeris
is:

Tc(E) = HJD (2453895.84327± 0.00011) + (3d.0300727 ± 0d.0000012)× E. (66)

5We excluded the same 2 timing measurements as Winn et al. (2007b) that were based on observations
of only part of the transit.



68 7 TRES-1

-300 -200 -100 0 100

-0.005

0

0.005

0.01

0 50 100 150

-100

-50

0

50

100

Cycle number

Figure 20: Top: O−C residuals of mid-transit times of the TrES-1 system including all the pre-
viously published data and WHT data. Open squares: Charbonneau et al. (2005); filled triangles:
Narita et al. (2007); open triangles: Winn et al. (2007b); filled circles: this work. Bottom: The
same as the top but zoomed for clarity. The cycle is in a number of periods from the epoch given
by Eq. (65).
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Figure 21: A numerical survey of the TrES-1 system carried out by D. Nesvorný shows 80-s TTVs
caused by an inner (left plot) and outer (right plot) 5 Earth-masses planet (m2 = 15×10−6 M⊙).
The shaded area excludes a range of possible eccentricities and semimajor axes for a putative
5 Earth-masses inner/outer planet in the system based on our observational non-detection of
TTVs greater than ±80 s. The thick solid line shows a boundary where a collision between the
two planets can occur (the same as in Fig. 17). The thin solid line represents a Hill stability.
Credit Nesvorný.

7.4.1 Transit timing variations analysis

The mean O−C= 17 ± 48 s for all our observations, where the quoted error is the rms
scatter in the O−C values and is larger than the mean O−C uncertainty ∼ 30 s. However,
the rms scatter is less than 2σ significant and we did not find any conclusive evidence of a
perturbing body in this system.

Our observations of the TrES-1 system show no evidence of TTVs larger than about
±80 s. We used this conclusion to place mass limits on the existence of planets on orbits
interior and exterior to TrES-1b similarly as in section §6.4.1. We determined all mid-
transit times of TrES-1b over a time-span of 500 days, an interval long enough to cover at
least 14 orbits of all perturbing planets we can exclude, and used these data to estimate
TTVs.

Figure 21 shows the range of the inner and outer planetary orbits that produce TTVs
smaller/larger than 80 seconds and are thus compatible/incompatible with our TTV ob-
servations of the TrES-1 system. The shaded area in Fig. 21 excludes a range of possible
eccentricities and semimajor axes for a putative 5 Earth-masses inner/outer planet in the
system. Our observations show no evidence for an outer planet down to 5 Earth masses
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in the 2:1 and 3:2 exterior resonance orbits with TrES-1b and for the majority of possible
eccentricities of the perturber orbit (see Fig. 21) an inner planet down to 5 Earth masses
in the 1:2, 1:3 and 2:3 interior resonance orbits with the transiting planet.

Not all of the resonant orbits are Hill stable. We computed Hill stability similarly as
for the HD 189733 system (see section §6.4.1) and displayed it in Fig. 21 with thin solid
line. The same as for the HD 189733 system applies to the TrES-1 system about eccentric
or inclined perturbing planets (Nesvorný, 2009).

Madhusudhan & Winn (2009) found an upper limit of 9.9 M⊕ for a Trojan in the TrES-1
system. Our TTVs show no evidence for the existence of Trojans with masses higher than
8.3 M⊕ if their libration amplitudes are similar as for Trojans orbiting near the Sun-Jupiter
Lagrange points (Ford & Holman, 2007).

Kipping (2009) predicted TTV amplitude of 3.07 s and TDV amplitude of 5.97 s for
an Earth-mass exomoon in a circular orbit about TrES-1b. Increasing the eccentricity of
the moon’s orbit decreases TTV amplitude, but increases TDV amplitude. However, for
the TrES-1 system these variations are too small to be detectable in our data.

7.5 Conclusions and discussion

The accuracy of our measurements could be better in the absence of systematics in our
data or in case of their proper elimination. Then we would be able to identify any possible
stellar activity features that are now hidden in the data noise/systematics and a proper
analysis taking into account a stellar activity improving the mid-transit time accuracy
could be done.

Our observations show no evidence for an outer planet down to 5 Earth masses in
the 2:1 and 3:2 exterior resonance orbits with TrES-1b and for the majority of possible
eccentricities of the perturber orbit (see Fig. 21) an inner planet down to 5 Earth masses
in the 1:2, 1:3 and 2:3 interior resonance orbits with the transiting planet. We found no
evidence for the existence of Trojans with masses higher than 8.3 M⊕ if their libration
amplitudes are similar as for Trojans orbiting near the Sun-Jupiter Lagrange points (Ford
& Holman, 2007).

Based on our data analyses, we recommend additional ‘rules of thumb’ to these of Gillon
et al. (2008): for a high accurate ground-based photometry instruments on telescopes with
an equatorial mount placed in a direct Cassegrain focus should be favoured.
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8 Conclusions and perspectives

During my Ph.D. studies I intended to better understand distant planetary systems by
improving and investigating two fields – barycentric corrections and light-curve modelling.
In addition I explored statistical properties of extrasolar planets which may reveal inter-
esting connections between planetary system properties and their formation and evolution
history.

I have improved the accuracy of barycentric corrections of radial velocity and time
to a few cm s−1 and a few hundredths of s, respectively. This can have a great impact
for a future, when the expected accuracy of radial-velocity measurements is of the order
of cm s−1 and thus an accurate correction is essential.

I observed new radial velocities of the 51 Peg system to verify the possible changes in
the observed minus calculated values of this system. I did not find any evidence supporting
expected variations.

I have developed the program for light-curve modelling of transiting extrasolar systems.
I have used the Markov-Chain Monte Carlo simulations to estimate system parameters,
mid-transit times and the uncertainties. Reliable determination of mid-transit times is
crucial for further investigation of deviations from the predicted mid-transit times, which
can reveal the presence of additional bodies in the system, or place limits on their existence.
Discovery of such bodies would further constrain theories of planetary system formation
and evolution.

I reduced the data of two extrasolar transiting systems, HD 189733 and TrES-1. I
modelled light curves using the Markov-Chain Monte Carlo simulations and the resulting
mid-transit times were used to search for additional bodies. I did not find any evidence of
additional bodies in these two systems due to still limited sets of data, but constraints on
their existence were placed.

The observations of the HD 189733 system spanning more than two years show no
evidence for the presence of planets down to 1 Earth mass in the 2:1, 3:2 and 5:3 exterior
resonance orbits, planets down to 1 Earth mass in the 1:2, 1:3, 2:3 and 2:5 interior reso-
nance orbits, and planets down to 2 Earth masses in the 1:4 interior resonance orbit with
HD 189733b. These are the strongest limits to date on the presence of other planets in this
system. The highest limit on a Trojan mass is 5.3 M⊕ if its libration amplitude is similar
as for Trojans orbiting near the Sun-Jupiter Lagrange points.

Limits on additional bodies are less constraining for the TrES-1 system. The obser-
vations show no evidence for an outer planet down to 5 Earth masses in the 2:1 and 3:2
exterior resonance orbits with TrES-1b and for the majority of possible eccentricities of
the perturber orbit an inner planet down to 5 Earth masses in the 1:2, 1:3 and 2:3 interior
resonance orbits with the transiting planet.

Non-detection of additional bodies in the HD 189733 and TrES-1 systems might indicate
that bodies more massive than ∼ 1 M⊕ are not common in systems with the ‘hot Jupiter’.

To achieve a reliably determined mid-transit time a good quality photometry is nec-
essary. Therefore I tried to understand systematic errors in the data and concluded that
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instruments on telescopes with an equatorial mount placed in a direct Cassegrain focus
should be preferred for this purpose.
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