
Equilibrium and stabilitY

Hyd roma gnetic equilibrium

An equilibrium is a state in which all the forces are balanced, so that a time-independent

solution is possible. The equilibrium is stable or unstable according to whether small

perturbations of the equilibrium are damped or amplified.
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Hydrodynamic Rayle igh-Taylor  instabi l i ty
supported by a l ight  one.

g

of a heavy f lu id

For the discussion of stability is necessary first to find an equilibrium and only after that to
discuss its stability. The equilibrium problem is a nonlinear complicated problem. The
discussion of stability consists in the discussion of the equation of motion for small deviation
from the equilibrium state. These equations are linear and, therefore, solvable and easier to
treat them.

Let us start with some general concepts of the plasma equilibrium. For that, we shall use the
MHD equations of motion in its simplest form:

For a steady state, rve have
- :

Y p = j x B

Adding the Maxrvell equation

.  -  1 /
c ' Y x B = J /
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we shall be able to derive some important features,

A. The first equation (1) states that there is balanee of forees hetrveen the pressure-graelient
force and the Lorentz force. The following picture brings an explanation. The azimuthal

e.uirerrt j

e*= i  *  E  - vp

( 1 )

(2)



(so called diamagnetic current) just balances the outward force of expansion. Its magnitude
can be found by means of the vector multiplication by ,E of the first equation (the condition
of the equilibrium)

j ,  =8"!P =(KT, + KT"\B"yn
Bt Bz

(3)

From the MHD fluid view-point, the diamagnetic current is generated by the Vp force across

^B ; the resulting current is just suffrcient to balance the forces on each element of fluid and
stop the motion.

In a finite-B plasma, the diamagnetic current
significantly decreases the magnetic f ield,
keeping the sum of the magnetic and particle
pressures a constant.

B. Equation (1) tells thatT- and B are each perpendicular to Yp. Since
perpendicular to Vp, they must lie on the surfaces of constant p .

j and E are

p = coNST.

Both the i  and B vectors l ie on conslant-pressure surfaces.



C. Consider the component of Eq. (1) along the field line. It is

! =o
OS

where s is the coordinate along the field line. For constanrt KT ,this means that in
hydromagnetic equilibrium the density is constant along a fieldline of force.

Magnetic pressure

Let us substitute Eq.(2) into Eq. (l). We obtain

vp = ror' (v* F)" E = 
"or'l(B.v)B 

- 1o u'f
L '  2  I

After some algebra

(  t  
"  " \  

. . t / -  \ *
V[l + :eoc'B' 

)= 
eoc"\B.Y )8.

In most cases, the right-hand size vanishes. Then

p *Lrgr2 82 = const.
L

' l n .

The term 1tyc'B' is the magnetic field pressure.
z

The ratio B of the particle pressure and of the magnetic pressure is sometimes used

nl xr
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u
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Usually, its magnitude is of the order 10-3 - l0-l .

Instabilities

Classification:

l. Streaming instabilities - penetration of two fluids. The drift energy is used to excite
waves, and the oscillation energy is gained at the expense of the drift energy in the
unperturbed state.

2. Rayleigh-Taylor instability - in plasmas with a density gradient or with a sharp



boundary under the influence of an external nonelectromagnetic force (e.g.,
gravitational force). This force drives the instability. An example - instability of a
heavy fluid supported by a light one.

3. Universal instabilities - plasma is not in perfect thermodynamic equilibrium as long as
it is confined. The plasma pressure tends to make the plasma expand, and the
expansion energy can drive an instability. This kind of free energy is always present in
any finite plasmas.

4. Kinetic instabilities - if the distribution of particles is not Maxwellian, there is a
deviation from thermodynamic equilibrium and instabilities can be driven by the
anisotropy of the velocity distribution.

Examples:

I. TWO STREAM INSTABILITY

Let us consider a uniform plasma, in which ions are stationary and electrons have a

velocity ig relative to the ions. Let the plasma be cold, and without magnetic field.

Then the linearized equations of motion are

M"o+= enoEr

l- a- 
-1

*rolry+ (ls.vp"1 l= -rroE,
L o t  I

The term (l"t.V)to has been dropped because we assume fg to be uniform. The term

0o.V)trt does not appear because we have taken i;o = 0.

Let us take the electrostatic wave in the form

E, = E''i(to-'t)io

where f6 is the unit vector in the x:direction, parallel to ft,ig . The foregoing equations
. :give

- i aMns i i 1=enoEt  i i t  =  * t *oM

mno(iot+ikvg\ iet=-enaEl i ,  "  
Eis

' t=-  *  61 -15vg '

Since the velocities i;t are in the x-direction, we can omit the subscription x .

The equation of continuity for ion give



+-e6V.i;1 
=o k ienok ̂

n i l=-n1V1=--- - ;L  .
o M a

The other terms in V.(nn;) vanish because Yno - ioi = 0. The electron continuity equation is

+- 
ngY.i"1+ (vo.v)n", = o

( t ot + ilcv g)n d * iknsv 
"1 

= 0

Since the unstable waves are high-frequency oscillations, we may not usethe plasma
approximation, but we must use Poisson's equation

v.Et =L(n,r- n"t) .
Eg

Then

,kEf-+.----l-leg l-Mr' m\at-k il' )

This then gives the dispersion relation

.  lm tM 1  I'='o-l & . @w)
This is the algebraic equation of the fourth order. After some complicated algebra, we obtain
the increment of the order

THE "GRAVITATIONAL". "RAYLEIGH-TAYLOR'' INSTABILITY

. In a plasma, a Rayleigh-Taylor instability can occur because the magnetic field acts as a light
fluid supporting a heavy fluid (the plasma). In curved magnetic fields, the centrifugal force
on the plasma due to particle motion along the curved lines of force acts as an equivalent
"gravitational" force.



To treat the simplest case, consider a plasma boundary lying in the y-z plane.

vno
PLASMA O e

VACUUM

Let there be a density gradient Vrzg in the -x direction and a gravitational field ! in the -x

direction. Let KT; = KTe = 0 and let the magnetic field Eg (in the -z direction) is constant.
In the equilibrium state, the ions obey the equation (obtained form the fluid equation of
motion)

Uns(ls.V)nt = ensis* Fe + Mnog.

For v-6 constant, and taking the cross-product of the foregoing equation with E6, we obtain

v o = M  8 " l o  = - , g  i l ^u  e  B o '  a r l o '

Here, f)" is the ion cyclotron frequency.

The drift of electrons can be neglected due to the limit 
/u - 0 .

Let us assume that the boundary of the plasma is perturbed by a ripple as seen in the
following picture.

t

A plasma surface subject to a gravit

I '
at iona l  ins tab i l i t y .

0)

(2)
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The drift v9 will cause the ripple to grow. The drift of ions oauses a charge to builcl up on tire
sides of the ripple and an electric field develops rvhich changes sign along the axis 1t .The
ripple grows as a result of these properly phased f o E dr.ifts.



To find the growth rate, we shall use the usual linearized analypis for waves propagating in
the y direction, p = kno. The perturbed equation of ion,s motign reeds:

, . t  , f  O ,M(ns+n1t#t* +v-1)+(% *u,)v(vo *0,)l = ebo*rr)[Er +(re +;1),.81]+
+ M@o +n)E 

G)

Multiplying (l) by ,*"il., we obtain

Iul(ns+,o1Xls.vh = r(no +nrFo xEs + Mbo+nr)8. (4)

Let us subtract the foregoing equation from Eq. (3) and neglect second-order terms.We then obtain

r ^ -  I  
'  

t,,ol}*(%.vFr l=,no(t, *;1 ,Es).
l - o ,  J  

- "

For perrurbation of the form exp[i (tV _ ort)]we have

tuI(a -rro)rr = ir(Et)+ v, * Es

For E-. = 0 and for

the solution is 
Q"2 tt ('- k')t

E,* =f; ,,, = -t" -Ps-*l (5)'o

The conesponding quantity for electrons vanishes in the linit 
/r+ 0. For the electrons,

rv'f therefore have .:

8 , ,  /ver= 
7no, !"y =0. (6)

The perturbed equation of continuity for ions offers:

+rY"(,,0,,0)n(ro.v)r1 
-r.r;1 v.i ;s.r (;, , ,v)16 r r;s\ i .F1 -r v.(rr1i,)=6

't



The zeroth-order term vanishes since ig is perpendicular to Vng and the term n1 V.f6

vanishes if i0 = const. The first-order equation for ions is, therefore,

- i  a t n l + i k v g  n 1 1 - v i ,  n g '  + i  k n g v i ,  = 0 .  ( 7 )

The electrons follow a simpler equation, since t"o =0 and "", =0. Then

- ia t  ry*v"*  ng =0 (8)

We use there the plasma approximation and we have assumed that n1 = flet. This is possible
because the unstable waves are of low frequency.

Equations (5) and (7) yield

( r -kro)nt* , ! ! - ro '  + i  k  nsg:Y! t4-=0.  (8)' B g Q c B 0

Equations (6) and (8) yield

.Eu |  ^  E, '
@ tx r  * t - nn  =0  "Y  - l@n l' Bg v - 

Bo ,o'

Lert us substitute this into Eq. (8). We obtain after some algebra

ot (, -kuo)= -vsQ.rs'=1- .
ng

Substitutingthere for v6 from Eq. (2),we obtain aquadratic equation for at

,2 - k vo o) - s(ro' t ,s)- o.

This eives

The instability requires

, =I*o * rlf,or,o, * sbo' ,,r)1'

- r"o/o 'rlok2uoz

with the growth rate



This instability is sometimes called a "flute" instability . The surface of constant density
resembles fluted Greek column - see the picture

A "flute" instabil itv.
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Geometry of an Alfvdn wave propagating along Bo.

"  4 u r  =  E r  x B o l ' f ,
Relatio_n among the oscillating quantities
gerated) distortion of the lines of forc..

in an Alfvdn wave and the (exag-
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