can be simply presented by Fig. 4. It is well known that this system is unstable, that
a spectrum of Langmuir waves is excited, and that the system tends to saturate. We
have an example of a typical turbulent regime.
We shall consider the Vlasov equation for the electron distribution function f (z,v, 2)
of  ,0f _en0f _ (131)
ot oz m v
where E represents the electric field of longitudinal Langmuir waves. Ions form an
immovable homogeneous background.
It is convenient to express the electric field E(z,t) of the spectrum in the form of
a discrete spectrum,

E =" Eyexplikz —iw(k)t], (132)
k

where
w = w(k) (133)
is the dispersion relation, given by the linear theory. The complex amplitudes E; are
assumed to vary slowly with time.
We shall further suppose that electron distribution function F(z,v,t) represents

a perturbation of a stationary, spatially independent distribution function Fo(v). We
shall express this function also in a form of discrete modes,

flz,v,t) = folv) + zk:fk explthkr —iw (k) t]. (134)

Let us now summarize the basic assumptions, used in the derivation of the quasili-
near theory. First, let us assume that perturbations fi form only a weak perturbation
of the unperturbed part, i.e.

fo> fi. (135)

Let us further suppose that the direct interaction of modes Ej, E, is negligible,
l.e., that, e.g., mode f; is unaffected by the possible resonant interaction of modes
E(k —q), f;. Let us further assume that the effect of the excited spectrum consists
only in the change of the space-independent part of the distribution function, fo, and
that the changes of Ey, fi are given only by the linear Landau theory. Let us further
assume that the discrete modes E} have random phases, and, in connection with that,
there is no trapped particle effect.

Since the behaviour of the modes is given only by the linear theory, the expression
for fr can be obtained from the Vlasov equation

RO R (136)
Jt Oz m Qv

Considering mode f; in the form

i=grde =", (137)

the solution of the foregoing equation is the same as in the Landau damping approach
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fo =i O )0 (138)

Inserting this result into the Vlasov equation for the unperturbed part fo, and retaining

only the nonlinear term, for f, we obtain the expression
afo € afk e? : 3] 1 afo
_ = — e = — e — _ 1
ot meEkav mzz;EkEkav w—kv dv {1
Let us express ELE_; as
EvE_; = |E) (140)
and let us use the Plemelj formula (see e.g. [13])
h 1 12 L ) — imé( kv) (141)
———————— = P(————) —iwb(wp — kv). :
Vl—Iv%wk-{—il/—-kv wi — kv g

where P means the Cauchy principal value of the integral taken at singularity w;, = kv.
The equation for f; then reads

o _ 0 0k
9t v v )

where .
D=3 Zor|E 8wy — kv). (143)

= m

(The term, proportional to principal value P can be neglected [13]. According to [13],
this term takes into account the interaction of waves with nonresonant particles. It
plays a role in the discussion of the global energy and momentum balance. It can be
proved that the energy, absorbed by resonant particles, is fed by the coherent wave
motion of nonresonant particles and by the electric field).

According to one from our assumptions, the interaction of waves with the plasma
is governed by the linear Landau mechanism (vielding either excitation, or damping),
where function fo takes the role of function fys in the discussion of the linear Landau
description of the interaction. Consequently, the diffusion equation for fo must be
supplemented with the equation for wave amplitudes,

2

ABL o, (144)

It is possible to prove that conservation of energy and of the momentum is fulfilled
for this system (given by equations (142) and (144)) [14], [13].

The mutual interplay between waves and the distribution function of particles fy is

often presented just for the case of the bump-on-tail instability (Fig. 4). The second

maximum of the distribution function (which can be created by a warm electron beam)

22




is the source of the instability. Waves with phase velocities ~ == close to the velocity
of beam particles, forming just the second maximum, but slightly shifted to the region
of the positive slope of the distribution function, are generated. Due to the diffusion.
which is given by the quasilinear diffusion equation (142), these waves act reversely
on the distribution function, flattening the second maximum and creating so-called
plateau. The decrease of the positive slope of the distribution function causes the
decrease of the instability growth rate. Consequently, the instability saturates - see
Figs. 7 a,b,c,d. (This type of saturation is not unique. At the end of this chapter. we
shall briefly discuss the saturation of the instability of the cold plasma - cold beam
system. In this case, the instability saturates due to the trapping of the beam particles
in the generated wave).

One of the basic assumptions, required for the quasilinear approach to be valid.
requires the phases of the waves to be chaotic; any coherence between modes must be
destroyed by phase mixing [14]. Nevertheless, according to the results of the theory of
deterministic chaos in non-integrable Hamiltonian systems (we shall briefly mention
this interesting phenomenon in separate section), this assumption can be replaced
by the requirement of sufficient nonlinearity of the wave-particle interaction. This
requirement is fulfilled in the regime of overlapping of resonances (15}, {16]. This
regime requires the fulfilment of the following relation (the overlap criterion

1

= 4r? —_—) > 1.
A=dr (6Enmkn5v;n) 2

(145
Here A is the overlap parameter, E, is the amplitude and %, the wave number of
the n-th mode of the applied spectrum, and v,y is the difference between the phase
velocities of the neighbouring modes of the spectrum. For the continuous-spectrum
limit, the overlap criterion is always fulfilled; this fact is often used to justify the
validity of the quasilinear theory (QLT) in this case [16].

In spite of this important (and now, well- founded) support of the validity of the
QLT for the instability regime, the discussions of the global validity of the quasilinear
approach are still frequent and form an evergreen of the plasma physics theory. The
reader is referred to the excellent paper by Cary et al. [16], and also papers [12], and
[17-19], to mention but a few. Earlier this was critized (see, e.g., [1] or [20]), and gave
rise to other approaches (as, e.g., the Dupreé theory [21], [20]). Tt can be said that the
theory is still not closed (as the theory of the linear Landau damping). Recent more
thorough analytical and numerical studies (for references, see Cary[16]), discussed,
inter alia, different (i.e. larger) values of the diffusion coefficient, in comparison to
the quasilinear approach. It seems that two effects have important consequernces -
the neglection of mode coupling (this coupling probably leads to larger discretization
of the turbulent spectrum), and the difference in the interaction character for the
Gaussian or non-Gaussian form of the wave spectrum.

On the other hand, it is not surprising that the problem of plasma turbulence -
even in its simple form - is still open; the general problem of turbulence and chaos
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now represents one of the key problems of physics.

In the foregoing, the plasma without magnetic field has been considered. The
form of the quasilinear diffusion for a magnetized plasma (i.e., for the plasma in an
external magnetic field) is rather complicated. Analogously to the case of the Landau
damping, the set of possible resonances is now given by the resonant condition

w — kv — nw, = 0. (146)

The quasilinear diffusion coefficient must be in this case replaced by the diffusion
tensor. For the general form of the diffusion tensor, see e.g. [22].

Let us now turn to the second important application of the quasilinear theory - to
RF quasilinear plasma heating and RF current drive. The basic difference between
the discussion of the selfconsistent model of the quasilinear description of saturation
of the kinetic instability regime, and the RF heating and RF current drive problems
consists in the fact that, whereas under the instability regime waves and particles
form a closed system, the RF heating problems represent an open system, in which
the steady-state source [13] feeds the system with RF power.

To describe quasilinear RF heating and current drive, the best point of departure
1t 1s to choose a special type of RF field. The discussion loses its general character, but
is also less formal. We shall consider a very frequently used type of RF field - so called
lower hybrid waves (LHW). LHW heating now seems to be a well understood type of
RF heating, theoretically as well as experimentally. Its discussion will enable us to
become acquainted with almost all problems of RF quasilinear heating and current
drive. Some specificities, which appear in the RF-plasma interaction for other types
of waves will be mentioned later on.

The frequencies of LHW are in the range of 1 — 10GH z, and their wavelength in
the 107 %m range. These waves are launched from outside the tokamak plasma by a
special system of waveguides - the so-called grill. The waves, propagating from the
grill do not form the discrete spectrum, as assumed in the foreging simple model. The
grill radiates a spectrum, continuous in wave numbers k, with some effective width
Nk

Since a tokamak plasma is strongly inhomogeneous, the propagation of LHW must
be treated carefully. LHW belong to the type of waves, the propagation of which is
governed by the eikonal approximation, see e.g. [23]. Whereas frequency w of LHW
is usually prescribed, wave vector k varies according to the eikonal equations (which
are formally identical with Hamiltonian canonical equations). The position r of a ray
and wave vector k are given by the equations

dr 0D dk dD dt oD

d&r 9’ dr o 'dr | ow
where D = 0 is the dispersion equation, which takes into account the space inho-

mogeneity of the plasma, r is the spatial vector, describing the position of the ray,
and 7 is the parameter, whose connection with time ¢ is given by the last equation in

(147)
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(147). (The formal coincidence of ray dynamics (147) with the Hamiltonian canonical
equations may lead - as for all nonintegrable Hamiltonian systems - to the stochasticity
of LHW rays, as has been shown by Wersinger et al. [24] and by Bonoli et al. [23)).

RF heating (and RF current drive) in a hot plasma is a net effect, given by two
inversely working effects; these effects are represented by Coulomb collisions and by
quasilinear diffusion. Whereas the former effect has a relaxing influence, which drives
the distribution function to Maxwellian form, the quasilinear effect tends to flatten
the distribution function in the resonant region into a plateau. For a statlonary case,
the balance of these two effects gives the resulting form of the distribution function.

To show the procedure, which leads to this stationary case, we shall again consider
the simplest 1D case of the distribution, namely the evolution of the distribution
function f(v,t). This evolution will be now given by the Fokker-Planck equation (in
the Lenard-Bernstein model, approximating the Fokker-Planck term (40)), supple-
mented by the quasilinear term with diffusion coefficient Dgy, namely [26], [13]

il
%:%[y(vf—f—%%)]-l—%DQLg—f. (148)

Here, function f corresponds to function f; in the quasilinear equation(142) and, the-
refore, to the slowly varying part of the exact distribution function, v is the collision
frequency, K is the Boltzmann constant, and Do is the diffusion coefficient, which
must be expressed for the lower hybrid wave spectrum. For usual tokamak parameters
lower hybrid waves can be considered as electrostatic waves, propagating with some
vector k into the plasma. Plasma electrons interact resonantly with the component
of the wave spectrum, which is parallel to the tokamak magnetic field. Let W, be the
spectral energy density of the LHW spectrum, given approximately as

W, ~ L) (149)

)
Vgr

where P(k)) is the spectral power density for the parallel component and v, is the
group velocity (see e.g.[27]). The diffusion coefficient can be expressed as (see [22]

and e.g. [27]) J

me? w? 1

T—TiWr/ By =w. (150)

D oD
€0 M2 W2 |v|||

I =

The stationary solution of the quasilinear diffusion equation (134) can be found in the
form [26], [13] (see Fig. 8)

f(v) = const - exp[—/#fﬁ()]. (131)

Here, KT, ¢ is defined as

KTz = KT, + ?Pazlv)

v(v)

o
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The two last equations obviously indicate that the slope of the distribution function
decreases with increase of Dgz. Consequently, the Landau decrement decreases, as
the input power increases, as was expected.

The power Py, absorbed in the plasma, can be estimated as [13]

Pd = - mv2—DQL—. (153)

Let us suppose that lower hybrid waves propagate into the tokamak plasma with
some asymmetry, favouring one toroidal direction over the other (26], [28]. In this
case, the quasilinear deformation of the distribution function in velocity space will
also be asymmetrical (see Fig. 8). Defining the current density as

+o0
i=—e f(v)vdv (154)

we obviously obtain a net current density ¢ # 0. This is the basic mechanism for
generating the driven current.

This driven current, generated by the absorption of LHW in the plasma, can be
generated with surprisingly large magnitudes. For tokamak reactor plasma, currents
of ~ 10M A or even larger can be achieved. The necessary input power is, of course,
also impressive, ~ 100M .

LHW can interact not only with electrons, but also with thermonuclear alpha
particles. Alpha particles can interact resonantly at the alpha particle cyclotron
harmonics

w — k) — nweq =0 (155)

where we, is the cyclotron frequency of alpha particles, and n is the number of the
resonant harmonics. The interaction of alpha particles with LHW also requires the
quasilinear description. It is necessary to solve the following form of the quasilinear
equation for the alpha particle distribution function £, (see e.g. [27])

aaft“ = >_ Laslfol + Lorlfal + pad(v — va) — vfa. 156)
fa

Here, Lo is the collision operator between alpha particles and other plasma particles,
and Lqy is the quasilinear operator, respecting either the fact that the resonant in-
teraction has the form (141), or the fact that it is possible to simplify the problem,
considering the alpha particles to be unmagnetized, stochastically interacting with
LHW in perpendicular velocities [29], [30]. The term p,6(v — v,) represents the
source of thermonuclearly generated alpha particles, and the last term is the sink,
modelling the escape of alpha particles. In this regime, LHW is absorbed by alpha

particles. This absorption can have a negative effect on the efficiency of the current
drive.
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Besides LHW, also other types of waves are used for plasma heating or current
drive (e.g. ion cyclotron waves or electron cyclotron waves). Here, the interaction
with particles takes place at the cyclotron resonance. Together with the quasilinear
effects, also the intrinsic stochasticity of the interaction has here an important role

(see e.g. [31]).

5. INTERACTION OF PARTICLES WITH WAVES IN THE INTRINSIC
STOCHASTICITY REGIME

In discussing the validity of the quasilinear theory, we have touched on the problem
of the deterministic chaos of the non-integrable Hamiltonian systems. The overlap
criterion, enabling the requirement of chaotic phases of the waves to be avoided, has
been used there. The overlap criterion is among the results, obtained from the study
of near-integrable Hamiltonian systems. In this section, we shall briefly mention
the facts, which lead to this criterion. For a more thorough acquaintance with this
problem, we recommend the excellent monography of Lichtenberg and Lieberman [32].
Short reviews have appeared, e.g., in [33-35].

The deterministic chaos in non-integrable Hamiltonian systems is closely related
to the modern ergodic theory, especially to transformations, which possess the mixing
property. An example of this transformation is the baker’s transformation, which is
presented in Fig. 9. If we were to follow a point through a set of these transformations,
we would soon be lost. It was recognized this type of transformation is suitable
for modelling chaos. The theory of ergodic systems is well-founded,and the loss of
correlation during these transformations, which is sign for the origin of chaos, has
been proved mathematically.

Poincaré studied the dynamics, given by the following Hamiltonian

H2H0+H1; H0>>H1, (157)

where the Hamiltonian represents the nonlinear oscillator Ho, which is perturbed by
a small perturbation H;. The coordinate system action J - angle w is usually used
(for the symbolics, see again e.g. [7]). The foregoing Hamiltonian can, therefore, be
written in the following form

H = Ho(J) + Hy(J, w), (158)

considering only the one-dimensional problem. Hamiltonian H(J,w) (158) is integra-
ble, if there exists a generating function that enables (144) to be expressed in a cyclic
form H(J). If there is no such generating function, the Hamiltonian is assumed to be
non-integrable. For small perturbations H;, the Hamiltonian is called near-integrable,
or weakly non-integrable.
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Let us now consider that Hamiltonian (158) is weakly non-integrable, and let us
monitor the phase trajectories close to the separatrix of Hamiltonian Ho. Already
Poincaré found the behaviour of these trajectories to be extremely complicated (see
Fig. 10). Close to the separatrix, frequency w,,. of the unperturbed Hamiltonian H,

o,
oJ

Wose = (139)
is strongly nonlinear. Perturbation H; yields a set of nonlinear resonances. System
(158), close to the separatrix, passes through these resonances, it is strongly unstable
there, and due to its nonlinearity behaves quite erratically. The intensive analytical
study of these weak non-integrable systems have brought very interesting conclusions.
Close to the separatrix, an infinite number of resonances exists. It can be proved that
the Hamiltonian is really non-integrable in this region. The dynamics, represented by
some difference mapping for discrete time elements is identical with the dynamics of
the systems with mixing, and, consequently, the dynamics is chaotic in this region in
the same sense as the chaos of the systems with mixing.

Let us now express the above mentioned dynamics in a model, which is very close
to plasma physics. Let us consider a homogeneous plasma without any magnetic
field, through which two electrostatic (Langmuir) waves with potentials ©(©® and o)
propagate:

©® = o cos(koz — wot) (160)
M = o) cos(kyz — wyt) (161)
(we have again used the one-dimensional system of coordiate x and momentum Dz)-

Let us further suppose that g > ¢; and let consider the following Hamiltonian

1
Hy = %pz + ewp cos(kox — wot). (162)

The total Hamiltonian, describing the behaviour of particles in these two waves can
be expressed as

= Ho + €Y1 COS(kl.I? = U.)lt) = HQ + Hl- (163)

Hamiltonian (163) is identical with the Hamiltonian H, (105), which describes the
dynamics of trapped particles. The discussion of H, disclosed that particles, trapped
in the wave, oscillate with a strongly nonlinear frequency. It is well known that the
dynamics of these particles can be expressed in the action-angle representation (see
e.g. [32]), where J and w for trapped particles are i

J:RSB&%%I—HM&H (164)

w:%K&”W@x) (163)
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Here,

RA= 2me<,90; ksing = sinQ, (166)
k2 2
and K(k), E(k) are total elliptic integrals of the first and second kind, F is the
incomplete form of K, and Q = koz.
Using this transformation and excluding the time dependence by means of extended
phase space [32], we can finally express our Hamiltonian (163) in the form

]TI = ]—[0(.], Jl) + I?l(J, Jl,w, T.UI), (167)

where J; = —H, w, = t. This is already the form of Hamiltonian (158), for which the
dynamics of the phase trajectories close to the separatrix has been discussed.

The behaviour of phase trajectories in the separatrix region is usually depicted in
the form of stochastic layer. Within this layer, the thickness of which is proportional
to the magnitude of the perturbation H,, the representative points undergo a motion
which can be identified with diffusion. For the original coordinate z, p,, and for the
system moving at velocity Wy 1.e., at the phase velocity of the wave with potential
o, the stochastic layer is depicted in Fig. 11.

We do not usually deal with a pair of waves of form (163), but with a spectrum
(for simplicity, with a discrete spectrum; the generalization for a continuous spectrum
presents no problems). In this case, perturbation methods cannot be applied. Zaslavs-
kii and Chirikov [36] found a suitable phenomenological approach for this case. They
expected the diffusion to appear in a broader region of phase space, if the separatrices
of the neighbouring waves make contact (see Fig. 12); in this case, the resonance
conditions of the neighbouring waves will overlap. This idea has been verified in a
set of numerical experiments. (The analytical approach, which uses the perturbation
analysis, can describe the chaotic behaviour of the phase trajectories only in the region
close to the separatrix. To study the chaotic motion in a large-scale, the numerical
simulation on computers is unavoidable).

According to them, the condition under which the diffusion will appear in a discrete
spectrum can really be roughly identified with the condition of contact of neighbouring
scparatrices. And this is indeed expressed by formula (145). A more exact study
nevertheless shows that the generated chaos is strongly inhomogencous in the phase
space. This is perhaps onc of the effects, which complicates the quasilinear description.
On the other hand, the extreme complexity of the dynamics shows that the theory of
deterministic chaos is still open to further discussions; <

We have so far discussed only the simplest dynamics of particles, moving in a
spectrum of waves with no magnetic field. The existence of an external magnetic field
generates new effects. A considerable amount of work has already been done with
homogeneous and mirror fields (see references in [32]). Tor a tokamak magnetic field,
new interesting effects appear in the interaction of the RF field with toroidally trapped
particles (bananas). Here, stochasticity even induces the space (radial) diffusion. For

this, see e.g. [31], [37-39).
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6. NONLINEAR LANDAU DAMPING

The mechanism of nonlinear Landau damping is usually discussed together with
the description of resonant wave-mode coupling; it thus belongs to a broader set of
different types of nonlinear wave-plasma interaction, commonly referred to as weak
plasma turbulence.

As already mentioned, the quasilinear theory neglects resonant mode coupling.
Without this neglection, a new set of phenomena appears.

The full expression for the evolution of the mode of the distribution function, f;,

reads
s 9fy
ot v’
where, obviously, the right- hand side contains the resonant interaction of mode Ej_,
and of mode f; with mode fi. For k£ = 0, we obtain the usual form of the quasilinear

approach, the evolution of fo.
For, e.g.,

+thvfr = — ZEK (168)

Wi = Weeg T+ Wy 5 kk = kk_q + kq, (169)

the three modes may interact in resonance. The mutual interaction of this wave
system is described by the closed system of kinetic equations for the waves, derived
from the kinetic equations for modes of the particle distribution function, f, and
from the Maxwell equations (see, e.g. [22]). (As an example of such coupling, the
interaction of two Langmuir waves with different w, &, and of the ion sound wave can
be mentioned (see, e.g. [22]). As a consequence of the resonant conditions and of
the form of the kinetic equations, the following interesting conservation law for the
energies of waves, U;, can be derived (see, e.g., [40])

U U
el S8 =2 = const. (170)
' o
U U
“L 4 23— const. (171)
Wy s
U U.
22 22— const. (172)
W w3

(This conservation law, called the Manley-Rowe relation, was originally derived by
Manley and Rowe [41] for parametric ampllﬁcrs) This law determines the way in
which wave gnergy is transformed. ,

The nonlinear Landau damping interaction describes the interaction of two modes;
the resonant interaction is mediated by resonant particles (unlike the case of resonant
three- mode coupling, when the interaction is given only by the resonant coupling of
three modes).

The mechanism of nonlinear Landau interaction is closely connected with the
phenomenon of weak Langmuir turbulence, which can result in strong Langmuir
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