
turbulence [+2], and also to the diferent modes of beat-wave acceleration of electrons
by two laser beams.

In the foregoing, the linear interaction based on resonance e - ku : 0 has been
discussed. Nonlinear Landau damping is based on resonance of the type

uk - et  -  (ko -  k1)u :0, (173)

where uk, kk and c,,r1, k1 are the frequencies and wave vectors of two waves (or of
two components of the spectrum). The foregoing resonance is usually called the beat
resonance, and the mechanism itself, due to analogy with linear Landau damping, is
cailed nonlinear Landau damping.

The formalism describing nonlinear Landau damping is rather complicated. It
follows directly from the discussion of the system of kinetic equations for waves,
describing nonlinear wave-plasma interaction and determining resonant mode-coupling
interaction. The mechanism of nonlinear Landau damping is then closest to the case
of three- mode coupling.

The exact approach, describing the mutual mode coupling, forms an important,
but rather extensive part of the plasma turbulence theory, and, therefore, exceeds the
scope of this chapter. For a more thorough study, see, e.g., Kadomtsev 1421,, Davidson
[a3] or Cooc [20].

Due to this complexity, the exact formalism, describing nonlinear Landau dam-
ping, can, in the initial approach io this problem, somehow cover. its interesting
physical meaning. To describe the basic important effects rve shall, therefore, use
the instructive approach of Ott and Dum [44].

Let us assume two coherent electrostatic waves with amplitudes ?t, gz, frequen-
cies c.r1 , cd2, d,rrd wave vectors k1, kz, kr ll kz. Let these waves propagate in a
homogeneous plasma without a magnetic field.

Let the resonant interaction of two waves be given by resonance condition (iT3)
and assume the linear resonance effect to be negligible. In this case, the following two
conservation laws must be fulfilled:

d U t , d U z , d T

; i +  d r  +  d r : o
dP, dP" dP
; i + d +  d r : 0  

( m o m e n t u m ) .

*o:+H*?,
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(energy) (r74)

( r  / o /

Here U1,2 and P1,2 are the total energy and momentum of the waves. The mutual-coupling of both quantities is given by the following relation:

Ut2:  a t ,zNt ,z i  Pt ,z :  kr ,zNr, r .

Here, 1('is the action of the i-th wave. Action r[ is defined as [44]

(176)

(177)



where s(t)(/c,tu) is the linear dielectric constant.
The general discussion of the nonlinear waves-plasma interaction indicates (see,

e.g [a ] or [a0]) that the total potential (with the background plasma response) is

V@,t) : g1s cos(k1o - art - 0r) * gzocos(k2r - uszt - 0) -

1  ,Q)-'rvtovzo nttfu exp[-f (cu1 - rr)t + i(h - kr), + i(h - 0r)]l{178)

Here e(2) is the nonlinear second-order dielectric constant, defined as

(k,-k2)2€e): *4"1^ff i"
0  , ,  r  \ - l  r  ,  r - t r  O F oxfrl(r, - kru)-'- (r' - k:u)-11;; (tzg)

and ,Fo is the unperturbed distribution function.
Let the resonant velocity up be defined as

u * : =
t u ,  -  N 2  

( 1 8 0 )

and let us use the identitv

u) : u)L - kl - kpn - u2 - k2up. (1S1)

Using the transformation

A : r - u n t  ( 1 8 2 )

and splitting y into

v : yo * ar ( i83)

rvhere y1 is the rapidiy varying component of y(f), lve can obtain for ye the equation
[44]

d'yo _ -dv"r(yo)
ei 

: 
"- ur: (184)

Herc g"o(yo) is given as

v"q(Yo) : Pe cos[(kt - kz)uo * 0] (185)

( is6)

rvibh

rvhere 0 is the phase angle.
The foregoing equation describes the motion of a particle in a sinusoidal wave of

amplitude Po by analogy with the motion of a trapped particle in a wave, described
- in Section 3. Frequency u;a of rveli trapped particles is

u)B : tfit*, - k2leoJl, . (187)

grogzo,eQ) ek1lc2,
9 o : -  

2  t r t r l  *  
t r M 2 J ,
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For time t satisying cust
Following the results of O'Neil [8], the relation between S and S is then

d7 dP
d, 

: r* 
dt 

.  (188)

Inserting this result into equations (174) and (175), yields

and, finally,

d U t _ _  w t  d T
d t  a 1 - a 2 d t

dU, _ az dT

d, a1 - w2 dt'

U r . U 2- + const.
t!1 {n2

(18e)

(1e0)

(1e l )

For c,.'st ( 1, the total change of the kinetic energy of resonant particles is, therefore,
according to [44], and using the analogy with [8],

d ? -  T r , ' , .  , . \  ^  ' n ?  . r o F o , ^ .
; 

: - 
,(r' 

- ,r) ,;" # sgn(fu - kz) ff lr^. (1e2)

Insert ing (192) and (i86) into ( i89), (190), we obtain the nonlinear Landau damping
rate:

1nL : (2ur)-'# : ft fr"r', fff' ssn(k1- kz) fflr* *

' l# **+l'd" (1e3)

Equation (186) can be regarded as a special form of the Manley-Rowe law, describing
the mutual resonant interaction of three waves [+1] (here, the effect of the third
wave is replaced by the resonant particles). For a spectrum of Langmuir waves, the
consequence of this law is the continuous flux of wave energy into the lower k part of
the spectrum. This is the well- known result of Langmuir turbulence evolution [a2].

The validity of criterion (191) is based on the assumptions used. It is of some
interest to look for a regime under which these assumptions are violated. Such
discussions appeared in [++] and in l4S - 471.

(According to the recent results of the weak turbulence theory (see e.g. [48,
49]), together with three-mode coupling and noniinear Landau damping, the third
interaction form has to be included, namely the nonlinear mode-mode coupling
between two kinds of piasma waves, ion sound waves and Langmuir waves. In
this interaction, it is supposed [a8] that the first type of waves satisfies the Landau
resonant condition, and the second type does not obey either linear, or nonlinear



Landau resonance. The growth or damping of this nonresonant mode is given by the
nonlinear interaction with resonant waves, caused solely by the nonlinearity of the
dielectric function of Langmuir waves in the presence of ion-sound turbulence. Also
in this case, the Manley-Rowe relation is fulfilled. This relation can, nevertheless,
be violated, if the wave-particle system forms an open, nonconservative system, with
external sources and sinks both for particles and waves).

The inhomogeneity of a plasma can change the energy of resonant particles. This
effect was discussed in [50 - b2].

Recently, an interesting beat mechanism for particle acceleration was proposed by
Tajima and Darvson [53]. The beat-'rvave acceleration of electrons by tivo laser beams
is based on the interaction of two laser electromagnetic waves with frequencies cor1.2 ancl
rvave numbers I;1,2, propagating through a plasma. Their nonlinear interaction can
generate on their beat a large amplitude plasma (Langmuir) wave, .which accelerates
resonant electrons up to large energies.

7. SATURATION OF BEAM-PLASMA INSTABILITY;
TRAPPED PARTICLES SIDEBAND STUDIES

As follorvs from the foregoing, trapped particles play an important role in a plasma.
In this chapter, rve shall additionally mention trvo interesting effects, connectecl with
particle trapping in a single rvave. We shall shortly discuss the saturation of a beam-
plasma instability by the trapping of beam particles by the generated wave, and the
excitation of sidebands of a large amplitude lvave, generated by trappecl particles in
this lvave. These effects are important both for the theory ancl experiment.

Saturation of a beam-plasma instabil i ty

The simpliest case of beam-plasma interaction can be represented by an electron
beam rvith velocity V, which propagates through a cold homogeneous plasma lvithout
magnetic field. In a 1-D model, the dispersion relation for electrostatic .lvaves in such
system reads [54]

l lele,

, , r 2  , , r 2r_ry_"1,3fu:0.

,  T7€2
a i , :  ;  a - 4 ,  A * t .

' €gTT7" flg TLg

(1e4)

(1e5)

rvhere n6 is the plasma density and n1 is the density of the beam.
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The system is unstable. The most unstable wave has parameters

. a'"-
a : u s r . l L -  r ) ;

2 i

where 7 is the growth rate of this instability.
The saturation of this instability followed from the lvhole set of experiments. It

was found that this saturation is caused by trapping beam particles in the generated
wave; this trapping effect was found in [56], and experimentally verified, e.g., in [67].

The mechanism is simple. The phase velocity of the most unstable wave t upht
satisfies

(  1e7)

The beam, therefore, runs ahead of the \vave. For a small amplitude rvave, the motion
of beam particles is unaffected by this wave. For waves with Iarger amplitudes, the
beam dynamics becomes affected by the electric field of the wave. At the threshold
electric field amplitude [56],

Etr" x #(#,,")' (1e8)

the lvave starts to trap beam particles. In this case, namely, in phase space, the rvave
separatrix just touches the beam (see Fig. 13).

This trapping leads to the destruction of the beam and to the saturation of the
instability. The sequence of trapping of the beam is presented in Fig. 14 taken
from [57]. The problem is treated as a spatial model of generation of a stationary
wave. Coordinate ry is the dimensionless spatial coordinate, coordinate B - g is
the normalized phase of the beam relative to the wave, and coordinate ff is the
dimensionless velocity of beam particles. For q - 9.2, the beam is totally trappecl ancl
the instability is saturatecl. This can be seen in Fig. 15. Here F2 is the dimensionless
energy of the wave; the oscillations of F are caused by particle trapping.

Tbapped part icle sideband instabil i ty

Let us consider a homogeneous plasma lvithout magnetic field and a large- ampli-
tude electrostatic rvave, propagating through this plasma. This lvave will rrap some
plasma electrons. The oscillation of these trapped particles can generate an instability.
I(rr-rer et al. [58] found the dispersion relation for this instability to be

t r=f f ;  , : ro" fo!

upt , :7  .  r .

(1e6)

l .
l r

, r ( k - 2 k s , u - 2 r o ) t '

Here L's, k6 are parameters of the large- amplitude'!vave) c.ra is the plasma frequency
of the trapped particie, f) = c,.'- kff., ua is the thermal velocity, and c.r6 is given as

, lvhere Ee is the amplitude of the original lvave. Is lvas found that the

. u 1  . 1
t - _ 4 t _ _ I-  

0 2  - , , : 2 " ' e  y ( k , u )  
' €L:r =** (1ery
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instability generates two sidebands with frequencies, symmetrically shifted relative to
the frequency of the original wave. This shift Ac.r is approximately

A u = u 6 (200)

A similar symmetry lvas also observed for wave numbers.
The saturation is caused by detrapping. Trapped particles in the large- amplitud.e

'lvave can be detrapped by sideband lvaves with sufficiently large amplitudes. For the
l-D case, this detrapping was discussed, e.g., in [59, 60]. The excitation of sidebands
and its saturation seems to be very important in free-electrons lasers (FEL) and in
gyrotrons. Here, of course, the rvaves are electromagnetic waves. Sideband excitation
and saturation lvas discussed, e.g., in [01-03], see Fig. 16.

CONCLUSION

In the foregoing text, a short review of some basic parts of the plasma kinetic
theory (or, rather, an introduction to it) has been presented. In many aspects, the
plasma kinetic theory does not represent a closed system, but rather an extremely
broad topic, rvhich is still developing. This concerns especially the noniinearity or
turbulence problems. IVloreover, lve have seen that also even rather old solutions (like
the quasilinear approximation), are still subject to some criticism. The more the
reason for this brief revielv not providing an exhaustive account of the plasma kinetic
theory. We have therefore concentrated only on problems, .which a reacler, who is not
an expert in this branch of the plasma physics, or lvho is a beginner therein, might
often come across. Readers interested in a more thorough study of the mechanisms
mentiond, or in other effects, lvhich rve had to omit, either due to their complexity,
or simply due to the limited extent of this contribution, are referrecl to our list of
references, or to further lectures of this School.
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Fis. 3.
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Fig. 5.

Fis. 6.

Fig. 7.

Figure captions

Orbit of an electron colliding with an ion. From [64].
Landau countour. From [3].
Maxwellian distribution function. From [B].
Bump-in-tail distribution function. From [2].
Phase space trajectories of trapped and untrapped particles.

Motion of trapped particles in a potential trough of the electrostatic wave
and its influence on the wave amplitude. From [42].

Evolution of the bump-in-tail distribution function g(u) and of the generated
wave spectrum e (u). At the beginning of the instability, a peaked wave
spectrum is generated. During the evolution of the instability, function g(u)
in the resonance regime tends to be flattened, whereas the spectrum e(u)
becomes broader. From [64].

Velocity distribution function F(.) ( rvhere r.u is the normalized velocity),
initially Maxrvellian, under the influence of an unidirectionally launched-
LHw. Fig. 8b is the enlargement of Fig. 8a. The flattening of the distribu -
tion function causes the current drive. From [66].

Baker's transform.

Phase space trajectories close to the separatrix of a near-integrable (iveakly
non-integrable) Hamiltonian system.

Stochastic layer.
Examples of non-overlapping and just contacring separatrices.
Trapping of beam particles into the generatecl rvave. From [56].

Trapping of beam particles during the beam-plasma instability. 4 is the
spatial dimensionless coordinate, B - g is the normalized phase of the beam
relative to the wave, and ff is the dimensionless velocity of beam particles.
From [57].

Fig.  8.

Fig. 9.

Fig.  10.

Fig.  11.
Fig.  12.
Fig.  13.

Fig.  14.

Fig.  15.
. :

Fig.  16.

Saturation of an instability in the trapping regime of beam particles. F2 is
the dimensionless wave energy. From [57].

Grorvth rate 7 of the trapped particle sideband instability, plotted as a
function of rvave number k of the instability. From [5g].
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