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Abstract

In the following lectures, a brief introduction into the kinetic theory of
plasma waves and into the interaction of waves with plasma particles is presented.

1. THE BOLTZMANN KINETIC EQUATION

In this chapter, we shall derive the Boltzmann equation, the basic equation of
plasma physics. We shall use the approach, commonly called the "BBGKY theory”
(after Bogolyubov, Born, Green, Kirkwood and Yvon). As already mentioned [1],
this approach is only one among the various theories of the nonequilibrium statistical
mechanics, but it is a systematic and perhaps the most powerful theory.

Let us first summarize the assumptions under which this theory is commonly pre-
sented. Let a plasma be formed by N electrons and N singly-charged ions, and let
us consider the ion component to be the uniform background of immobile ions. Let
us assume that the particle interaction can be derived from the potential energy ¢ of



the interaction, which for the mutual interaction of two charged particles is given as
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where q;, q; are the space vectors of both Coulomb interacting particles, labelled as

2 and j; e is the charge of the electron and ¢ is the permitivity of free space.
Let us define the exact N-particle distribution function od electrons fgFaet as (2]
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where q;, p; are the generalized coordinates and momenta, respectively, and where ¢
stands for time. The exact distribution function reads

N
e (ai, piyt) = 1:[ 6(qi — ai(t)) 8(pi — pi(t)) (3)

where 6(z) is the 6-function, and where q(t);, p(¢); represent the phase trajectory.

Although ff7*¢ represents formally the exact distribution, its practical importance
is less significant for the following reason. The determination of 72t requires
the knowledge of the dynamics of all N particles. The lack of the knowledge of
all initial conditions makes this determination impossible. Therefore, a statistical
representation, based on a probability approach, is more suitable. We shall, therefore,
replace the exact distribution function fgFect (which is nonzero only at single point of
the phase space) by the probability function over phase space, fu,

fN(qiypht)a (4)

where the expression

fn(di pist) [] daidp; (5)
determines the probability that the system will appear in the phase volume element
[1dq;dp; around coordinates q;, p;.

The probability distribution function fy develops in time, according to the Liou-
ville theorem, as

Ofw =N 8fy OH OH
%*Z[afﬁ-[ 9 I-V‘aaf]Y Pa:
S5l 4, P: P: G:

Here the Hamiltonian Hy describes the motion of particles and is given as

]=0. (6)
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where m is the mass of a particle and ¢ is the potential energy.
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Let us now define the reduced distribution function, f;, as

N .
fs(ar, P1, G2, P2, -Qs, Ps, t) = A, /fN dq;dp; (8)
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where A, is a normalization constant. Function f, describes the probability of finding
the system of s particles at points q, ..., q,, p1, ... Ps-
We can then obtain from (6)
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Here we have used the definition of f,, we have assumed that fy vanishes at the
boundary of the phase space, displaced to infinity, and we have used the fact that
fn is a symmetric function of the coordinates of particles of the same kind; V is the
configuration-space volume of the system. Using further

1
A = m (10)
we finally obtain
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Here, L, is the Liouville operator for the s-particle distribution function; the right-
hand side of the equation describes the effect of the other electrons.

The simplest - and most frequently used - chain of equations is given by the choice
s = 1, namely
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where we have already used more common variables in velocity- space representation
(v, r represention). Force F; represents all external and field forces. The field

(electrostatic) force is given by the average electric field, acting on one electron due
to the effects of other electrons, as

= eE(I‘l,t) . aagf'lff( ) dry dv, (]_3)

where
fl(rlvvlvt):f(l) (14)
fa(r1, va, e, vo, t) = f(1)f(2) + P(1,2) (15)
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where P is the pair correlation function. The foregoing expansion is called the cluster
expansion. If P =0, the two-particles distribution function is just the product of one-particle
distribution functions; this means that particles 1 and 2 are uncorrelated. Thus P is that part,
of f, which represents the correlation of the particles and is known as the pair correlation

function.

Inserting this in the Eq. (12), we obtain
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The fourth term in the foregoing equation contains the average electric field experienced by
one electron due to the other electrons and can be written as
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where the electric field is given as
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Consequently, the third and the fourth terms of the equation (15) can be written in the form
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where the term F .represents all external and , field* forces.

The right-hand side term in the foregoing equation (15), namely,

Ia¢12 5P 2) -

= dry v,
al‘l

must be therefore expressed by means of some approximation.



and where P(1,2) is called the pair correlation function. (For an uncorrelated distri-
bution of particles (1) and (2), P(1,2) = 0).

The foregoing forms (14), (15) point to one important property of this hierarchy,
namely, that the system of equations is not closed. The equation for function f;
contains function fz, and so on. The system is not closed and some approximations
are therefore required. This procedure will now be outlined.

The foregoing equation is usually written in the following form

Oh , 0K Foh _ 0f
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where term (%‘E)c is called the collision term, or the collision integral
Of , 1 [04120P(1,2)
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is called the Boltzmann kinetic equation.

There exist several approaches which express the collision term explicitly. We shall
mention the approach which fits the plasma physics theory well, the Fokker-Planck
collision term. To penetrate at least partly into this rather complicated part of plasma
physics theory, we shall first remind of some features of the theory of collisions of
charged particles. '

Let us assume that two charged particles with charges e;, e, and masses my, ™Moy
are approaching each other (see Fig.1). For the sake of simplification let us suppose
that the first particle is an electron and the second one is an ion. Due to its large
mass, the ion can be considered as immovable. In this case, the geometry of this
scattering is quite simple. Parameter 7o is called the impact parameter, angle 0 is
called the scattering angle. For the electron with velocity v, mass m, and charge e

and for protons the scattering angle 0, according to the classical theory of Rutherford,
obeys
0 1 7
cot(;) = ;47reomcv To (19)
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where € is the permitivity of free space. The impact parameter for a 90° scatter is
5
To,90° =

(20)

dregm,v?
Due to the large amount of particles within a Debye sphere, the scattering process
represents a cummulative effect of a large amount of weak deflections rather than
the effect of a single close collision. The global effect can be considered as a random
process with a set of small angle deflections A4,
2¢e?

A=t (21)

47Tm v2rgen
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The deflection depends on the impact parameter, ro. Let us first consider the maximum
and minimum impact parameters, Tomaz, and Tomin. Defining the function F(A#)
which describes the probability of the scattering in angle Af, and expressing the
number of scattering centers in a shell of the length L, radius ry, and the thickness
dro, the mean-square deflection, < (Af)? >, is

ama::

< (80 >= [ (p0)F(A0)d(A0) (22)

Abmin

where A4z, A,rin correspond to impact parameters romin, T'maz, respectively. (=
Tmaz Will be determined later on). The mean-square deflection < (AB)? > can be
then determined as (F(A0)d(Af) = nL2rrydrg)

< (A9)? >=

—_— = In (23)
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and where L is the distance traversed by the particle.
This expression diverges for rom.. — oo, and for rgn;, — 0. The first limit
corresponds to the existence of the long-range Coulomb potential ¢

< (24)
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The maximum value of g, Tomqz, can be determined by the effect of Debye shielding.
In a plasma with density n, the perturbation of the electron density (on the background
of immobile heavy ions) causes the perturbation of potential ¢. This potential depends
on space (radial) coordinate 7, the distance from the perturbation, as

é = doexp(—3-). (25)

D

Quantity Ap, the Debye length, is given as

EUI\:T;

Ap =
ne?

(26)
where kT, is the thermal energy of electrons. The shielding is caused by a cload
of particles of the opposite sign (in our case, of ions) close to the locality of the
perturbation. The Debye length is then a measure of the effect of the potential
perturbation. It is therefore quite natural to take romsr = Ap. The second limit,

Tomin, 15 taken as the impact parameter for the deflection of 90°. Accordingly, the
expression for < (Af)? > is

1 nLe!
RV
27 m2vied

< (L6)? > In A (27)



where
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It is then possible to estimate the cross-section oggepr for 90° multiple scattering as

(28)

1 1 et
O90®M = —57 = 5
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InA. (29)
Ratio fj—co—?;i (where oge s is the cross-section of the single scattering) is
—— ~ 8lnA. (30)

Usually for laboratory (and thermonuclear) plasmas InA =~ 20. Consequently, the
effect of small- angle scattering exceeds the effect of large, single scattering.
Let us return to our collisional kinetic equation

of of  FOoF_Of
8t+v8r+m c")v—(at)c’ (31)
where, generally, . 961, 0
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Our aim is now to find the explicit form of collision integral (32). Usually, two
ways to do this are mentioned. The first one consists in finding the explicit form of
the correlation function and, simultaneously, in finding an approximative procedure,
enabling closing of the chain of the BBGKY hierarchy. This approach includes - inspite
of its exactness - a lot of difficult problems. The second way, which is usually used,
in fact omits the discussion of the hierarchy and consists in expressing the collision
integral approximately as a function of distribution function f. This approach is based
on the Fokker-Planck equation; its basic features will now be described.

Collision term (%{)c can be expressed as the change of distribution function f over
short time element At,

). = ise vt 4 28 = f(x,v, )] (33)

Using probability function (v, At), describing the probability with which a particle

with velocity v, will change its velocity to v+ Av during time element Z5t, the change
in f can be expressed as

flx,v,t+ At) = /f(x,v — Av, (v — Av, Av)d(Av). (34)

(Since function 1 is time-independent, the corresponding probability process is a
Markoff process).



Let us expand the integrand as

f(x,v=Av,t))(v—-Av) = f(x,v,t)(v,Av) — }: E’)f¢) 5, 2

PUfv) A -
+ = Z Buido; A v; A v;. (35)

Prescribing, as usually that the total probability satisfies

/ B(v, Av)d(AV) = 1 (36)
and defining the Fokker-Planck coefficients as
Av; 1 .
<52 >= /¢ B v; d(AV) % (37)
A’U,‘ A v; - _1_
< =t e /¢ Bvi vy d(BV) 75, (38)

we can express the term (%{)C as

Ay oy ASE D 1 P> ) -
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Term < £% > is called the dynamic friction term, term < év,'_\—?ul > is a component

of the d1ffus1on tensor.

The explicit calculation of the friction term and of the components of the diffusion
tensor enables the collision term to be expressed for the case of the single- charge ion
background [4] as

o etlnA Q) 0 (Fans2f(v))
(a_{)c - 5”:‘ 47‘(‘607712[ ( Bvi 2 i % aaviajvj ) (40)
where ,
Hau(v)=(1+ mﬁn) %ﬁv—v)l dv’ (41)
Gp(v) = /fn(v') Iv — v'l oL (42)

Here, m is the mass of a scatteunﬂ (test) particle, m, the mass of a scattered particle;

n labels the particle species. Let us consider the scattering particles under §-function
velocity distribution [2]

f(v1) = ad(v — U) (43)
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and the scattered (field) particles under Maxwellian distribution f(v,)
3

na ma
f(v2) = fu(ve) = 5 exp(= avp); @' =g (44)
Let us define deflection time 1p as
U2
D
T = = 45
o, (45)
ot
where 70 is an estimate of the time, required to achieve isotropy. Considering the

interaction of electrons with protons, the foregoing procedure yields

L 3
2relmi (2kT.)?
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Labelling 72 = 7.; and taking quantity v,; = = to be the electron-ion collision
frequency, we see that v.; decreases with inreasing temperature Considering, e.g., the
thermonuclear parameters (n = 10*°*m =3, kT, = 20keV), and electron-proton plasma,
we obtain v.; &~ 1.8 x 103s71. The frequencies of waves, used for plasma heating, are
in the range v & 10%s™! — 10'2s™}; in these cases, the effect of the collision frequency
1s usually neglected. -

In rough approximation, the collision term

(8f) ~(f— fm)v (47)

where fpr is the Maxwell distribution and v is the collision frequency. This so-
called Bhatnagar, Gross and Krook model fits collisional phenomena in weakly ionized
plasmas. For a fully ionized plasma, the foregoing expression requires [3] some modi-
fication. A special form of the collision term, given by the Lenard-Bernstein model,
is presented in Section 4.

2. THE VLASOV EQUATION AND LANDAU DAMPING

The Boltzmann equation with its collision term describes the plasma behaviour in
a broad region of plasma parameters. Nevertheless, in many applications, the collision
term can be neglected. For this regime, the necessary conditions can be defined as

w > Veis Wpe > Vei. Rk (48)

Here w is the frequency of the wave, whose propagation in plasma is being investigated,
and wy, is the plasma frequency,

Wpe = (49)
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where n is the plasma density.
Neglecting the collision term, we obtain the Vlasov equation
df drof FOf

o T @or Tmov (50)

where F' is the averaged force, acting on particles. Considering F to be the Lorentz
force,

F = ¢[E + v x B] (51)
we obtain the equation, referred to as the Vlasov equation
of drdf g af
A Wil AT — =0. 2
51 ager. i < Blg, =0 (52)

Here, E and B are the averaged electric and magnetic fields, respectively.

The Vlasov equation is the equation, used most frequently in discussing different
features of the plasma kinetic theory, especially in high-temperature plasma physics.

It is worthwile mentioning some important properties of this equation. The first
one follows from the fact that the collision term has been neglected. The equation,
therefore, has the form of the continuity equation in phase space, analogous to the
Liouville equation. The time derivative of f, %{, is zero along the phase space
trajectory, given by

%:vr %ér%E+vxm. (53)
Consequently, the density of particles in phase space durmg their motion along their
trajectories does not change. (On the contrary, term ( “)c # 0 changes the particle
density on the phase space trajectory).

The second important property is given by the fact [1] that trajectories (53) are
the characteristics of partial differential equation (52). Consequently, any function
of the constants of motion is the solution of the Vlasov equation. (For example,
if E = B = 0, the total kinetic energy is a constant of the motion. Therefore,
if = f( mv?), and eg., f= exp(;”k?) are also solutions of the Vlasov equation).

The Vlasov equation depends on the electric and magnetic fields E, B, and these
quantities are given by charge densities and by currents, flowing through the plasma.
It is, therefore, necessary to couple the Vlasov equation with the system of Maxwell

equations
E(x,t) = Z& /fo,(x, v, t)d>v (54)
« €o

vxH = an/vfo,(x,v,t)d v+ ean (55)
- ot

VB = (56)
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VXE = —W (O{)



B = ppoH. (58)

Expressing charge p and current j densities as

p=2_ pa (59)

=Y [viadv, (60)

defining density n, as

and total charge p as

we obtain
vE=~2 (63)
€0
. J0F

VXH=J+60—B—{ (64)

0B
E=— 5
VA 51 (65)

The necessity of this selfconsistent solution causes the main difficulties in the
plasma kinetic theory. The problem itself is nonlinear, and it is necessary to solve a
set of coupled partial differential equations. Moreover, waves, which can appear in a
plasma have - just due to this coupling - a rather complicated polarization, in many
cases quite unlike the simple polarization of an electromagnetic wave, propagating in
vacuum. '

Due to these complications, we shall confine ourselves to the following simplest
case. We shall assume a spatially homogeneous plasma without external electric and
magnetic fields. We shall assume that ions form an uniform immobile background,
and discuss only the changes of the electron distribution function. (The concept of
the ion’s immobility - with regard to the electron component - is justified by the large
ratio %), Further, we shall assume that the perturbation of the electron distribution
function , generating the space charge, will be only one-dimensional, that there will
be no fluctuating magnetic field and, consequently, that the discussed waves will only
have the electric component. These assumptions enable us to choose, from the set of
waves possibly exis*t-':mg in plasmas, the simplest case - the electrostatic (longitudinal,
Langmuir, potential) waves; the electric field of these waves can be derived from the
potential function. Under these assumptions, the electric field of the wave, B, satisfies

E || k, and the perturbation of the velocity, v satisfies v || k, where k is the wave
vector.
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The set of coupled equations, describing the evolution of the perturbation of the
electron distribution function, can then be simplified to the following pair of equations
(considering z to be the space coordinate, x || E and v, = v the velocity coordinate)

of Of eEdf

Tl (66)

vE=-= [ fdv (67)

€o
Here, the first equation is the one-dimensional Vlasov equation, the second equation
is the Poisson equation.

The system is obviously nonlinear, and it is necessary to use some perturbation
approach. Considering only small perturbations, we can express the distribution
function as the sum of the unperturbed part fo = fo(v) and of the perturbation
fi(z, v, t)

f=ftfiy f<fo (68)
Perturbation f; depends not only on the velocity, but also on coordinate z and on time
t. The unperturbed part is time-independent, and because the plasma is supposed
to be homogeneous, f, is also space-independent. Therefore, fy generates no electric
field, Eo = 0.

Consequently, our linearized system of the Vlasov and Poisson equations reads

Oh , Oh ep 9fo _
'ﬁ‘a—t—-l—vax—mElav—O (69)
E, =% 3
‘ VEI—‘ EO/fldV. (70)

This system was originally solved by Vlasov [5]. Nevertheless, inspite of the apparent
simplicity of these equation, the complete and correct solution has been given only
by Landau [6]. Landau damping is perhaps the most important phenomenon of high-
temperature plasma physics.

The usual approach starts with the application of Fourier analysis and of Laplace
transforms. Let us first Fourier-analyze both equations (in what follovs we shall omit
the vector labelling). Using

filk, v, t) = / filx, v, 8)e™ "% dx (71)
E,(k,t) = / E, (x, t)e~dx (72)
we obtain
dfi(k, v, 1) eE;(k, 1) 8fo(v)

Y +ikvfi(k,v,t) — e 0. (73)
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Let us define [1]

v
Fo(u) = / folv) 8(u — k-T) dv (74)
Fi(k,u,t) = / filk, v, ) 6(u — k-f’];) dv. (75)
We then convert (73) to read
0F(k,u,t) | e OFy(uw)
o e tkFi(k,u,t) — mE1(k,t) T 0 (76)
with
Ey(k,¢) /Fl k,u,t)d (77)
Let us now apply the Laplace transform
Fy(k,u,p) = /°° Fy(k, u,t)e Pdt (78)
0
Ey(k,p) = / = Ey(k, t)ePtdt (79)
0

where Re(p) > z¢, and where E; and F are assumed to have the form e®t for ¢ > (.
The Laplace transform of (76) reads

(p+ iku) Fiy(k,u, p) — SELEP) OFolw) _ o), (80)
m Ou
Using (70), (77-80), we can express E;(k,p) as
ze Fi(k,u,t =0)
b k, / d 1
Ev(k,p) /Fl wip) i eokD(k P) p+iku ¢ (81)

where
1e? 0Fp(u) 1

Dik,p) =1 - eomk du p+iku

du. (82)

Function D is called the plasma dielectric function.

The expression for E;(k,t) will be determined by means of the inverse Laplace
transform

Ey(k,t) = I/UHOOE(k,p)e”tdp. (83)

21T Jo—ico
While the approach, leading to the expression for E;(k, p) creates no problems, the
inverse Laplace transform requires the discussion of the singularities, appearing in
the foregoing expression. Landau found that its careful analysis ylelds an- important
correction of the original Vlasov solution. A thorough discussion of the properties
of the form of E;(k,p) (81) indicates that, under the assumption that & 9k | Fy are
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analytic functions of u, the only singularities which determine the time asymptotic
solution of Ey(k,t) are poles defined as

D=0 (84)

or

eomk /p + zku . (85)

Labelling these poles as p; and the residues of E;(k,p) at these poles as R;, for a
sufficiently large time ¢, the asymptotic form of E;(k,t) can then be expressed as

tlgg Ei(k,t) = ZRje”jt. (86)
’
Expressing further p; as
pi(k) = —1w(k); — v(k);, ’ (87)

the time-asymptotic form of electric field E,(k,t) becomes

lim Ey(k, 1) ZR e miwlk)jt-a(k))t (88)

For 7; > 0, the oscillations are asymptotically damped. On the contrary, for i< 0,
an instability appears.
Frequencies w; and decrements v; are determined by the dispersion equation

s
D(k,p) = 0. (89)

Landau found the correct way of integrating of (85).
Let us first discuss the dispersion relation
‘i62 0Fo 1

= eomk J Ou p+ tku g (%0)

for k= 0, i.e. for the infinite wavelength limit. In this case we obtain from (90) the

dispersion equation valid for this approximation

w2
D=1+-2=0 (91)
D
with the solution
P = Eiwp. (92)

Consequently, in this lowest approximation, the plasma oscillations are undamped
with the basic frequency
ne?

W=w, = St (93)



Integrating integral in (85) by parts, assuming that %% « p and expanding fraction

P
p+1iku, we obtain
2 . k2 2
14— /Fo(u)[l L 32—“ —..]du. (94)
€ommp pr p
Taking
p = iw, + iw® (95)

as the first approximation and considering Fy(u) to be Maxwellian, we obtain

3

w) = iwp§k2A2D. (96)
Parameter Ap is the Debye length
] (97)
P

Whereas solution (93) corresponds to simple plasma oscillations, solution (95) describes
the dispersion relation of plasma (longitudinal, electrostatic, Langmuir) waves

w(k) = Lw,y(1 + gk2/\2). (98)
Nevertheless, expansion (94) provides no possibility of finding the damping rate, 7.
For this purpose, it is necessary to discuss the full expression (90). The integration
path crosses the pole at u = if. Vlasov neglected this resonance pole and only
considered the principal part of integral (90), leading to the foregoing dispersion.
Landau, who carried out the integration properly, included this resonance effect. Since
E(k,p) in (81) was originally defined only for Rep > 0, it was necessary to find
the correct analytic continuation of the integral in dispersion relation (90) also for
Rep < 0. Landau found the proper way of integration along a special path (now
called the Landau countour - see Fig. 2), passing half-way around and below the
pole. The proper integration enables (90) to be expressed as

du + ir——

w
= ~oo Ou u—% du /U_E]’

2 | .
1:‘%[1)/ OF 1 ko (99)

where P is the principal part of the integral. Considering Fy to be the Maxwellian
distribution (K is the Boltzmann constant, T, is the electron temperature)

m _ mu?
Fo(u) = = e T (100)
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we obtain the dispersion relation in the form

w? 3k* KT, T, m swlp mp?
_ Yy KL, [T 3 Wp =R 1
I=-20 7 T > (®T) h XP(5p KT (101)

Using definition (87), the Landau damping decrement v comes out as

T W 1 3
7= \/g(k)\p)ff exP[_é(T)\D—P —5l (102)

Reverting to expressions (86) and (87), the positive sign of v expresses the damping.
Consequently, Langmuir waves, which penetrate through the plasma with Maxwellian
velocity distribution are always damped. According to (99) and to the Maxwellian
distribution in Fig. 3, the damping corresponds to the negative slope of the distribution
function. On the contrary, the distribution with the positive slope can cause an
instability. An example of such a distribution (the so called bump-in-tail distribution)
is shown in Fig. 4; this distribution can be realized by a warm beam of electrons,
which propagate through the Maxwellian plasma and which has average velocity ug.
The instability can be fed by the group of electrons, which form the positive slope of
the distribution function.

Let us now return to the case of damping. Since the damping is the effect of the
singularity

w—kv=0, (103)

the damping is caused by the interaction of waves with resonant particles, i.e. with
particles whose velocity is equal to the phase velocity of the wave. These particles
are, therefore, able to exchange their energy with the wave.

This is the key mechanism of the wave-particle interaction. Nevertheless, this
mechanism itself does not explain the damping effect. For the physical explanation,
several models have been proposed. Most of them overlap in the following picture.

Let us consider an electron, whose velocity is slightly higher than the phase velocity
of the wave. This particle will be decelerated by the wave, and will, therefore, impart
a part of its kinetic energy to the wave. A particle, moving slower, will draw energy
from the wave. The total energy balance and, therefore, the damping or the instability
of the wave, will depend on the number of particles with velocities lower and higher
than the phase velocity of the wave. Obviously, if there is a larger number of particles
moving slower than the amount of particles moving faster, the net energy balance ]
signals that the wave must be damped. This is exactly the case of Landau damping,
discussed for the Maxwellian distribution and presented in Fig. 3.

It is therefore possible to conclude that the opposite case, i.e. the case with the
positive slope of the distribution function, will cause an instability, energy being trans-
mitted from electrons to the wave. This case is outlined in Fig. 4 for the bump-on-tail
instability, where obviously an excess of resonant particles with higher velocity causes
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the instability. This effect is well based theoretically, and has been verified by a set
of different types of experiments.

3. TRAPPED PARTICLES AND THEIR INFLUENCE ON LANDAU
DAMPING

The linearization of the Vlasov and Maxwell equations requires an infinitesimally
low perturbation(and, therefore, an infinitesimally low amplitude of the wave). In
this case, the velocity of the particle, which interacts with the. perturbation, can
be considered as unaffected by the perturbation and therefore constant. In fact, it is
necessary to expect the perturbation to have a finite level and, therefore, the amplitude
of the corresponding wave to be finite, too. The wave with the finite amplitude
will cause a change of the particle velocity, and, consequently, the mechanism of
Landau damping will cease to be linear. This will result in the appearance of a
new phenomenon - particle trapping. This effect is not only of basic importance
for the validity of Landau damping concept, but naturally creates a cause for the
saturation of important instabilities. Moreover, the trapped particles represent a
typical case of a nonlinear oscillator. The model of the nonlinear oscillator forms a
key paradigma for the discussion of the deterministic chaos in Hamiltonian systems,
and has important consequences for the validity of the quasilinear approximation of
wave-particle interaction, as will be discussed later on. We shall, therefore, mention
this effect more thoroughly.

Let us consider a monochromatic electrostatic (Langmuir) wave with potential ¢,

© = @o cos(k-r — wt + @), (104)

where w, k are the frequency and the wave vector of the wave, respectively, and where
r is the space vector. Let us consider the simplest case of a homogeneous plasma
without magnetic field, and let us identify the direction of the wave propagation with
the direction of the z-coordinate of the Cartesian system. The Hamiltonian of a
particle in the field of this wave reads

1
H, = %pi — epocos(kz — wt) (105)

with ¢ = 0. Variables z, p, are the canonically conjugated coordinate and momentum,
respectively.
Let us use canonical transformations with generating functions FQ(I), Fz,(Q) (for sym-
bolics, see e.g.[7])
(1) _ P

FS —k—(k:z—wt)—i-:zm% (106)
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and let us apply them to the foregoing Hamiltonian. We then obtain the new
Hamiltonian in the form

F{® = pow _ (107)

Tl = —l—P2 — ey cos kQ (108)
2m
where w w
pI=P+mZ‘-; :E:Q+7c-t. (109)

This Hamiltonian is identical with the Hamiltonian of the mathematical pendulum.
For

H < epq (110)

both coordinates @, P oscillate. Let us label the amplitude of oscillations as @z

Then for kQ . < 1, the foregoing Hamiltonian describes the harmonic oscillations
with the equation

sz
F-l—wéoQ:O (111)
where
e Ji2
Wpo = i (112)
m

is the angular frequency of the harmonic oscillations, of oscillations of the so-called well

trapped particles. For generally trapped (but still librating) particles, the frequency
of oscillations depends on the energy of the oscillations,

wp = wBo';:I&,(k)—l, (113)
where .
k=14 — (114)
epo

and where K is the total elliptic integral of the first kind.

The well known phase space picture of trajectories of particles with the dynamics,
described by Hamiltonian (108) is presented in Fig. 5. Whereas the trapped (os-
cillating, librating) particles form closed trajectories, the untrapped particles form

unclosed P-Q trajectories. The untrapped and trapped particles are separated by the
separatrix, crossing the z-coordinate axis.

Let us now return to our prgblem of Landau damping. As has already been said,
one of the basic assumptions of the analysis consists in the requirement that v = const,
which can be exactly satisfied only for an infinitesimally small wave amplitude. For a
finite amplitude, the particles start to oscillate, as has just been shown. Therefore, for
a finite amplitude, the Landau procedure is valid in the time interval At, for which
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the change of v can be considered negligible. This interval can be estimated using
trapped particle dynamics. The period of the well trapped particle oscillations, 7,4,

2
T = PP fod e (115)
wWBo epok?

is considered to be a well founded measure of the validity of the Landau damping
procedure. This procedure is obviously valid under the assumption that the wave is
damped during a period shorter than 7,,.. The condition for this is usually

YLTosc 2> 1 (116)

where v, is the Landau damping rate (Landau decrement). For .7, < 1, the
nonlinear effect will be achieved even before a substantial part of the wave energy is
absorbed.

The effect of trapping on Landau damping was discussed by O’Neil [8]. Using
an analytical approach, based on the carefully taking into account the effect of
generally trapped and untrapped particles (briefly mentioned above), O’Neil found
that the expression for Landau damping in the case of waves with a finite amplitude
is applicable at the beginning of the interaction, for times shorter than 7,,.. The
actual damping rate tends to decrease asymptotically to zero. Beside this damping,
the wave amplitude oscillates with a frequency close to wpg. For the instantaneous
value of the wave decrement, ¥(¢), O'Neil found the following estimate

/ Y(t)dt = ToseTL- (117)
o]

This expression can, therefore, be used to estimate the total amount of energy of finite
amplitude waves, absorbed in a collisionless plasma. The motion of trapped particles
is shown in Fig. 6 (the complicated evolution is caused by the nonlinearity of the
frequency of trapped particles). The oscillation of the wave amplitude ¢ is also shown
in Fig. 6.

Let us now shortly mention the Vlasov theory of small-amplitude waves, which
propagate in a plasma in an external uniform magnetic field. The orbits of particles are
due to their gyration rather complicated; the corresponding wave-plasma interaction
is then described by a complicated form of the dispersion relation. For the general
form of the dispersion relation, see, e.g. [3] or [2]. In this chapter, we shall give
only an outline of this derivation of the dispersion relation for the electrostatic waves,
propagating in a magnetized plasma; we shall follow [9].

Let us suppose that the electrostatic wave has its potential ¢,

1 = @roexp(tk - r — iwt) (118)
and let the wave vector k has the perpendicular and the parallel component,

k= kyyo+ kyzo (119)
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(for simplicity, we express the perpendicular component of k by the component k,).
Let the homogeneous magnetic field B = Byzp has its field lines parallel to the z-

coordinate. Let us express, as usually, the distribution function f for electrons in the
form

% fr,v,t) = fo(v) + fi(r,v, 1) (120)

where fo is the unperturbed part of f and fj is the perturbation. The Vlasov equation
for f; takes in this case the form
0h  Oh e pOh_ _e_ 0f

ot T Vor m B oy T TR Veig,

Using the methods of characteristics (LHS part of Eq. (121) can be written in the
form of the total time derivative, following the unperturbed trajectory of the particle
in the r, v space), the solution of (121) can be expressed as

(121)

fi(r,v,t) = ——/ T (r,t) - afo (122)
Expressing
(fi,01) = (fi0,p10) exp i(k.z + kyy — wt), (123)
and using (122), we can obtain the expression for f; in the form
A0 = ~Zew [ lexp ilk(z — 2) + k1) -t ~ 1]} x
9fo + 0fo
x 2ilkyvy 5 Gy v Zav’;']' (124)
The particle’s trajectories can be expressed as
v; = vy cos(w.T + V) (125)
v, = v, (126)
where 7 = ' —¢, where v, is the perpendicular component of the velocity v and where
we = B is the cyclotron frequency.
After the integration, we obtain
y —y = :—J‘[sin(wc'r + 1) —siny); Z —z=uv,T. (127)
Using the identity
k n=+o00o
1'151:10 Z .] m.9 (128)
and using the Poisson equation, we obtain the dispersion relation in the form
Ja(55) af 0f,
k2 + 8r? /d do, o — e L g, GJ0 o, 01 2
+ 8= ._“ vidv ) —-kzvz—nwc[ zvzavz—i-n Ui} 0 (129)
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As expected, the resonant condition has now more rich form
w — nw. — kv, = 0. (130)

expressing the effect of the particle gyration by means of the cyclotron harmonics.
The solution of the dispersion relation is then given by the same procedure, as in
the case without magnetic field.

3. THE QUASILINEAR THEORY

The quasilinear theory represents the simplest form of the theories, which describe
the nonlinear interaction of waves with a plasma, and forms a part of the theory of
weak turbulence. Originally, in the pioneering papers of Drummond and Pines [10]
and of Vedenov, Velikhov and Sagdeev [11], the quasilinear theory was used to describe
the saturation (or relaxation) of kinetic plasma instabilities. The mechanism seemed
to be simple - the growing instability affects the velocity distribution function in a
such way that the slope of the unstable part of the distribution function decreases,
thus also decreasing the instability decrement.

The problem itself initiated a broad discussion of nonlinear and turbulent pheno-
mena; the quasilinear theory is an important milestone in the development of these
theories.

There exists yet another motivation for the quasilinear description of wave-plasma,
interaction - radiofrequency(RF) heating of plasma, and RF current drive. RF heating
1s used as an auxiliary source of power, suitable for heating plasma up to D-T ignition
temperatutes. RF current drive, which can appear as a consequence of the absorption
of RF waves in the plasma, can substitute the inductive tokamak current. RF plasma
heating and RF current drive, are the typical effects of the interaction of RF fields
with plasmas under kinetic regime.

Since the discussion of the selfconsistent evolution of instabilities and of RF
plasma heating differ slightly in the definition of the problem, we shall describe both
approaches separately.

For the investigation of the evolution of plasma turbulence within the frame of
the quasilinear theory, the interaction of a warm electron beam, penetrating through
a plasma, bump-on-tail instability, is the prototype example [12]. Generally, the
quasilinear description of this form of the interaction represents a rather complicated
problem. To describe the basic features of the quasilinear theory (QLT), the discussion
of the 1D (one-dimensional) model of the beam-plasma interaction for the case of a
homogeneous plasma without magnetic field is sufficient.

Let us therefore assume that the distribution function depends on space coordina-
te z, on velocity v and on time t. The bump-on-tail instability distribution function
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