
can be simply presented by Fig. 4. It is well known that this system is unstable, that
a spectrum of Langmuir waves is excited, and that the system tends to saturate. We
have an example of a typical turbulent regime.

We shall consider the Vlasov equation for the electron distribution function f (x, u, z)

( i 3 1 )

lvhere E represents the eiectric field of longitudinal Langmuir lvaves. Ions form an
immovable homogeneous background.

It is convenient to express the electric field E(x,t) of the spectrum in the form of
a discrete spectrum.

E : D Ep explikx - iu(k)tl,
k

'lvhere

a  :  u (k )

is the dispersion relation, given by the linear theory. The complex
assumed to vary slolvly with time.

lVe shall further suppose that electron distribution function F(r, u, t) represents
a perturbation of a stationary, spatial ly independent distr ibution function Fs(u). \ye
shall express this function also in a form of discrete modes,

f(r,r,t) : /s(u) + T fp explikr - i,,) (k) t).
F

Let us now summarize the basic assumptions, used in the derivation of the quasili-
near theory. First, let us assume that perturbaiions fi form only a rveak perturbation
of the unperturbed part, i .e.

fo> f* (  135)
Let us further suppose that the direct interaction of modes Et , Eq is negligible,

i .e., that, e.g., mode /4 is unaffected by the possible resonant interaci ion of mocles
E(k - i l ,  fo. Let us further assume that the effect of the excitecl spectrum consists
only in the change of the space-independent part of the distribution function, /e, and
that the changes of Ep, /6 are given only by the linear Landau theorl'. Let us further
assume that the discrete modes 81, have random phases, and, in connection rvith that,
there is no trapped particle effect.

Since the behaviour of the modes is given only by the l inear theorr., the expression
fol fi- can be obtained from the Vlasov equation

0fr , )fr eEp0f6

E + u A r - ; f r : u  ( 1 3 6 )
Considering mode /6 in the form

fn : fro"tox-iut,

the solution of the foregoing equation is the same as in

9 ! * , Y - ! n % : o
ot or rn Ou

(  132)

(133)
amplitudes E1. are

(  134)

(  r37)
the Landau damping approach
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f k : i "  
Ek= 

%.' r r r ,  -  1r ,  6u '  
(138)

Inserting this resuit into the Vlasov equation for the unperturbed part /s, and retaining
only the nonlinear term, for /e we obtain the expression

\- n 0f* e2

l ' - r# :+ iDErn-o
a
0u

ofo - "
0t rn

7 afo
a - k u  0 u

(13e)

Let us express EpE-a as
ErE-r, : lE*l'

and let us use the Plemelj formula (see e.g. [13])

lim = ,(;+) - in6(u1, - ku).

r'vhere P means the Cauchy principal value of the integral taken at singularity u1, : ku.
The equation for /s then reads

v+o 1111, * iu - Icu

(  110 )

( l 1 l  )

( i t l 2 )

(  143 )

/ 1 4 2 1  
' l

'',vher-e

)fo 0 ^}fo
0t  0u" 0u

D : f 3" Vol' 6(aa - ku).
|  , l L

K

(The term, proportional to principal value P canbe neglected [13]. According to [13],
this term takes into account the interaction of waves with nonresonant particles. It
plays a role in the discussion of the global energy and momentum balance. It can be
proved that the energy, absorbed by resonant particles, is fed by the coherent rvave
motio. of nonresonant particles and by the electric field).

Accolding to one from our assumptions, the interaction of waves rvith the plasma
is governed by the linear Landau mechanism (yielding either excitation, or clamping).
\vhere function /o takes the role of function f u in the discussion of the linear Lanclau
description of the interaction. Consequently, the cliffusion equation for /s must be
supplemented with the equation for ,,vave amplitudes,

ry{ :2tt' lEt'l '
It is possible to plove that conservation of energy and of the momentum is fLrlfillecl
for this system (given by equations (t+2) ancl (1aa)) [14], [13].

The mutual interplay between waves and the distribuiion function of particles .fs is
often presented just for the case of the bump-on-tail instability (Fig. +). fne second
maximum of the distribution function (which can be created by a w.i'm eiectron beam)
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is the source of the instability. Waves with phase velocities = f close ro rht, r-elc,cir-r.
of beam particles, forming just the second maximum, but slightfi. shifred ro rhe region
of the positive slope of the distribution function, are generated. Due to rhe diffusion.
which is given by the quasilinear diffusion equation (142), these \\-a\.e-< acr reversel-r-
on the distribution function, flattening the second maximum and creating so.called
plateau. The decrease of the positive slope of the distribution function cau,<es the
decrease of the instability growth rate. Consequently, the instabilitr- sarurares - see
Fig s 7 a,b,c,d. (This type of saturation is not unique. At the end of this chaprer. rve
shall briefly discuss the saturation of the instability of the cold pla*.ma - cold beam
system' In this case, theinstabil i ty satulates due to the trapping of t lre beam parricles
in the generated rvave).

One of the basic assumptions, required for the quasil inear approacir to be r.al id.
recluires the phases of the waves to be chaotic; any coherence betn-een modes must be
destroyed by phase mixing [t+]. Nevertheless, according to the resuhs of the theorv of
deterministic chaos in non-integrable Hamiltonian ,yri"-. (u,e shall briefl_r' menrion
this interesting phenomenon in separate section), this assumption can be replacecl
by the requirement of sufficient nonlineality of the lvave-particle intelaction. This
reqri irement is fulf i l led in the regime of overlapping of resonances i l5l.  i i6l.  This
legime recluires the fulfilment of the follorving relation (the overlap .r:'te,.ion i

^ t
A : 4tr '(eEn------:-) > 1.

t n k " b u $ n .
( 1 + 5 . 1

Flere A is the overlap parameter, En is the amplitude ancl A, tire \\.a\.e nlirn6er of
the n-th mode of the applied spectrum, and.6urn is the difference betu'een the phase
velocit ies of the neighbouring modes of the spectrum. For the continuous-specrrum
limit, the overlap criterion is alrvays fulfillecl; this fact is often usecl to justifl.the
validity of the quasil inear theory (eLT) in this case [16].

In spite of this important (and nor,v, well- founded) support of the vaiidit ,r- of the
QLT for the instability regime,, the discussions of the global valiciitv of rhe ciuasilinear
approacl-L are still frequent and form an evergreen of the plasma phvsics theor,r.. The
leader is referred to the excellent papel by Cary et al. [16], and also paper.s [12,. and
[17-19], to mention but a ferv. Earl ier this rvas crit ized (r"", e.g., [1] ". 1io1). onj gur"
r ise to other approaches (as, e.g., the Dupre6 theory [21], [20]). I t  can U".uia thar the
theory is still not closed (as the theory of the linear La.ndau damping). Recent more
thorough analytical and numerical siudies (for references, r"" Cor1,Ii6]). clisclssed.
intel alia, different (i.e. larger) values of the diffusion coeffi.cient, in .o-porisol to
the quasilinear approach. It seems that two effects have impor.tant consequences -
the neglection of mode coupling (this coupling plobably leacls to iargel cl iscrerizatiop
of the tulbulent spectrr-rm), and the cl i f ference in the interacl ion character 1or rhe
Gaussian ol non-Gaussian for.m of the rvave spectrum.

On the other hancl, i t  is not sulprising that the problem of plasma tur.bule-nce -
even in its simpie form - is still open; the general problem of tr-ubulelce and chaos
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now represents one of the key problems of physics.
In the foregoing, the plasma without magnetic field has been considered. The

form of the quasilinear diffusion for a magnetizedplasma (i.e., for the plasma in an
external magnetic field) is rather complicated. Analogously to the case of the Landau
damping, the set of possible resonances is nolv given by the resonant condition

a - k11u1- nc-" - 0. ( r{6)

The quasilinear diffusion coeflfrcient must be in this case replaced b1- the diffusion
tensor. For the general form of the diffusion tensor, see e.g. [22].

Let us norv turn to the second important application of the quasilinear theorr' - to
RF quasilinear plasma heating and RF current drive. The basic difference betrveen
the discussion of the selfconsistent model of the quasilinear description of saturarion
of the kinetic instability regime, and the RF heating and RF current drive problems
consists in the fact that, lvhereas under the instability regime \vaves and particles
form a closed system, the RF heating problems represent an open system, in rvhich
the steady-state source [t3] feeds the system u' i th RF power.

To describe quasilinear RF heating and current drive, the best point of cleparture
it is to choose a special type of RF f ielci.  The discussion loses its general character. but
is also less formal. We shall consider a verl'frequently used type of RF fielcl - so calied
lorver hybrid waves (LHW). LHW heating now seems to be a u,el l  understood t1-pe of
RF heating, theoretically as rvell as experimentalll'. Its discussion ivill enable us to
become acquainted rvith almost all problems of RP quasilinear heating and current
dr-ive. Some specificities, 'rvhich appear in the RF-plasma interaction for other tvpes
of rvaves will be mentioned later on.

The frecluencies of LHW are in the range of 1- 70GHz, and their ivavelength in
the 10-2nz range. These waves are launchecl from outside the tokamak plasma b1' a
special system of rvaveguides - the so-called grill. The rvaves. propagating from the
gri l l  do not form the disclete spectrum, as assumed in the foreging simple model. The
gli l l  ladiates a spectrum, continuous in r,vave numbers k, -tvith some effective rviclth
4fr.

Since a tokamak plasma is strongl,v inhomogeneous, the propagation of LH\\r must
be treated carefully'. LFI\,V belong to the type of waves, the propagation of rvhich is
governed by the eikonal approximation, see e.g. [23]. Whereas frequency cu of LHW
is usually prescribed, wave vector k varies according to the eikonal equations (n.hich
are formally identical rvith l iamiltonian canonicai ecluations). The posit ion r of a ra1'
ancl rvave vector k are given by the ecluations

dr  AD dk

. l r :  a k ;  , l t :

rvhere D : 0 is the disper.sion ecluation,
mogeneity of the plasma, r is the spatial
and r is the parameter, rvhose connection

AD dr AD-  
a ,  ; . l , - : - a ,

rvhich takes into account the
vector, describing the posit ion
rvith t ime I is given by the iast

( 1 4 i )

space inho-
of the rar',

equat ion in

n , l
L =



(147). (The formal coincidence of ray dynamics (1a7) with the Hamiltonian canonical
equations may lead - as for all nonintegrable Hamiltonian systems - to the stochasticity
of LHIV rays, as has been shown by Wersinger et al. l2+l and by Bonoli et al. [2il)-

RF heating (and RF current drive) in a hot plasma is a net effect, given bl. t"o
inversely working effects; these effects are represented by Coulomb collisions and b-r-
quasilinear diffusion. Whereas the former effect has a relaxing influence. which drives
the distribution function to Maxwellian form, the quasilinear effect tends to flatten
the distribution function in the resonant region into a plateau. For a stationarv case.
the balance of these two effects gives the resulting form of the distribution function.

To show the procedure, which leads to this stationary case, rve shall again consider
the simplest 1D case of the distribution, namely the evolution of the disrribution
function f (r,t). This evolution will be now given by the Fokker-Planck equation (in
the Lenard-Bernstein model, approximating the Fokker-Planck term (40)), supple-
mented by the quasilinear term with diffusion coefficient Dqr, namel.u* [26], [13]

(  l {s)

Here, function / corresponds to function /s in the quasilineal equation(142) and. the-
refore, to the slorvly varying par-t of the exact distribution function, rz is the collision
freqnency, If is the Boltzmann constant, and Dqt is the cliffusion coefficient. rvhich
must be expressed for the lower hybrid lvave spectrum. For usual tokamak parameter.s
lolver hybrid waves can be considered as electrostatic rvaves, propagating rvith some
vector k into the plasma. Plasma electrons interact lesonantly with the component
of the \,vave spectrum, which is parallel to the tokamak magnetic field. Let lll; be the
spectral energy density of the LHw spectrum, given approximately as

lv1'  = P(frt t) '  
(119)

Ds,

r'vhere P(kf f ) is the spectral power density for the paraliel component ancl u". is the
group veloci ty (see e.g.[27]) .  The cl i f fusion coeff ic ient can be expressed as (see [22]
and e .g .  [27 ] )

zr e2
D n ,  :

en fn?
( 1 5 0 )

(134) can be found in rheThe stationary solution of the quasilinear diffusion equation
form [26], [rt] (see Fig. 8)

f  (u )  :  cons t .exp [ -  [  = , ! '  ,  , ] .I  L  l  I iT "11@) ' -

I-Iele, IiT"y 1 is defined as

( 1 5 1 )

H: ftvor. +ffit* #r,"H

u J t

, -z TlWr f k11u11: r'1.
*p  l u l l l|  " |

( 1 5 2  )



The trvo last equations obviously indicate that the slope of the distribution function
decreases rvith increase of. Dgz. Consequently, the Landau decrement decreases, as
the input power increases, as was expected.

The power Pa, absorbed in the plasma, can be estimated as [13]

(153)

Let us suppose that iolver hybrid rvaves propagate into the tokamak plasma rvith
some asymmetry, favouring one toroidal direction over the other [26], [28]. In this
case, the quasilinear deformation of the distribution function in velocity space rvill
also be asymmetrical (see Fig. S). Defining the current density as

f *co

i :  -e 
J_* f  t  )rau \  ro+ /

rve obviously obtain a net current density i + 0. This is the basic mechanism for
generating the driven current.

This driven cnrrent, generated by the absorption of LHW in the plasma, can be
generated rvith surprisingly large magnitudes. For tokamak reactor plasma, currents
of x I0hIA or even larger can be achieved. The necessary input po\ver is, of conr.se,
also impressive, x 100fu1W.

LHW can interact not only rvith electrons, but also lvith thermonuclear alpha
particies. Alpha particles can interact resonantly at the alpha particle cyclotron
harmonics

a -  knuu -  na. -  :0
i l  t l ( r D a )

u'hete cu.o is the cyclotron frequency of alpha particles. and n is the number of the
resonant harmonics. The interaction of alpha particles rvith LHW also requires the
quasilinear description. It is necessary to solve the follorving form of the quasilinear
ecluation for the alpha part icle distr ibution function /* (see e.g. [22])

po: ' i  
|  *rr*or"#

af"
0t

:  t  L,plf,) * Leil f , l  * p.6(u- u") - ufo.
9#a

(  156)

Here, LoB is the coll ision operator betlveen alpha part icles and other plasma part icles,
and Lgr is the quasil inear operator, respecting either the fact that the resonant in-
teraction has the form (141), or the fact that i t  is possible to simplif-v the problem,
considering the alpha part icles to be unmagnetized, stochastical ly interacting rvith
LFI\\ |  in perpendicular velocit ies [29], [30]. The term pod(, - uo) represents the
soul 'ce of thermonuclearly generated alpha part icles, and the last term is the sink.
moclelling the escape of alpha particles. In this regime, LH\\/ is absorbed b1' alpha
pai-ticles. This absorption can have a negative effect on the efficiencv of the current
drive.
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Besides LHW, also other types of waves are used for plasma heating or current
drive (e.g. ion cyclotron waves or electron cyclotron waves). Here. the-interaction
rvith particles takes place at the cyciotron resonance. Together u,ith the quasilinear
effects, also the intrinsic stochasticity of the interaction has here an important role
(see e .g .  [31 ] ) .

5. INTERACTION OF PARIICLES WITH WAVES IN THE INTRINSIC
STOCHASTICITY REGIME

In discussing the validity of the quasilinear theory, we have touchecl on the problem
of the deterministic chaos of the non-integrable Hamiltonian systems. The or.erlap
criterion, enabling the requirement of chaotic phases of the waves to be avoided, has
been used there. The overlap criterion is among the results, obtained from the stud1.
of near-integrable Hamiltonian systems. In this section, ,we shall briefly mention
the facts, which lead to this criterion. For a more thorough acquaintance q,ith this
problem, we recommend the excellent monography of Lichtenberg and Lieber-man [32].
Short reviews have appeared, e.g., in [83-35].

The deterministic chaos in non-integrable Hamiltonian systems is closely lelated
to the modern ergodic theory, especially to transformations, which possess the mixing
property. An example of this transformation is the baker's transfolmation, g,hich is
presented in Fig. 9. If we rvere to follow a point through a set of these transformations,
rve rvould soon be lost' It rvas recognized this type of transformation is suitable
for modelling chaos. The theory of ergodic systems is well-founded,and the loss of
correlation during these transformations, which is sign for the origin of chaos. has
been proved mathematically.

Poincar6 studied the dynamics, given by the following Hamiltonian

H : Ho f- Hi Ho D Hr, ( l5i)

whele the Hamiltonian represents the nonlinear oscillator f16, lvhich is pertur.becl bi,
a small perturbation f4. The coordinate system action J - angle w is usuail l 'used
(for the symbolics, see again e.g. [7]). The foregoing HamiltonLn can, therefole, be
rvlitten in the followins form

H : H o ( J ) + H r ( J , . ) , (158 )
considering only the one-dimensional problem. Hamiltoni an H(J,u.,) (158) is integra-
ble, if there exists a generating function that enables (144) to be expr"rr"i in u cl.clic
foLm I/(J). If there is no such generating function, the Hamiltonian is assumed to be
non-integrable. For small perturbations 111, the Hamiltonian is called near-inteelable.
or- rveakly non-integrable.
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Let us now consider that Hamiltonian (158) is weakly non-integrable, and let qs
monitor the phase trajectories close to the separatrix of Hamilton-ian f/s. Already
Poincar6 found the behaviour of these trajectories to be extremely compiicated (see
Fig' 10)' Close to the separatrix, frequency ,')o,. of the unperturbed Hamiltonian I/q

w o s c  - ( l5e)

is strongly nonlinear. Perturbation I1r yields a set of nonlinear resonances. S-r.stem
(158)' close to the separatrix, passes through these resonances, it is strongll'unstable
there, and due to its nonlinearity behaves quite erratically. The intensiJe analytical
sbudy of these weak non-integrable systems have brought very interesting conclusions.
Close to the separatrix, an infinite number of resonances exists. It can b-e prored that
the Hamiltonian is really non-integrable in this region. The clynamics, represented by.
some difference mapping for discrete time el"m"ni. is iclentical rvith the d;-namics of
the systems with m_rxing, and, consequently, the dynamics is chaotic in this region in
the same sense as the chaos of the systems with mixing.

Let us now express the above mentioned dynamics in a model, rvhich is verv close
to plasma physics. Let us consider a homogeneous plasma rvithout any magnetic
field, throngh which two electr:ostatic (Langmuir) waves with potentiais 9(o) urri ,(r)
propagate:

p(o) - cps cos(frsz - ,ot)

g(1) :  91cos( fur -  wr t )

0Ho
AJ

( 1 6 0 )

( 1 6 1 )
(rve have again used the one-dimensional system

Let us further suppose that gs ) pr and let
of coordiate z and momentum p,).
consider the follorving Hamiltonian

* 
"gocos(A6r 

- rot). (  162)

The total Hamiltonian, describing the behaviour of particles in these t,rvo *,aves ca.
be expressed as

H : Ho I 
"Vrcos(k1z 

- , ' l t)  - Ho * Hr. ( 1 6 3 )

Ho - 
*ri

T
ff- - ; ^

z

Hamiltonian (163) is identical r,vith the Hamiltonian IJ" (105), rvhich clescribes the
dynamics of trapped particles. The discussion of 11, disclosed that particies. trapped
in the lvave' oscillate lvith a strongly nonlinear frequency. It is weil knorvn that the
dynamics of these particles can be expressed in the action-angle representation (see
e.g. [32]), where J and tu for trapped particles are

t : o:tE(r.) - (r - r'?)r(r)l (16+)

(  165 )(r-1)r(ry, r<).
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FIere,

1Y -zrevo; ksin l  :  , i r  $, (166)

and K(k), E(k) are total el l ipt ic integrals of the f irs[ and second kind, l l  is the
incomplete form of K, and Q = kox.

Using this transformation and excluding the time depenclence by means of extended
phase space [32], rve can finally express our llamiltonian (163) in the form

f-t = 17o11,J,)+ I7{J,J1,7n,,lu.y), (167)

t v l t e r e  J r = - f l , u r : t .  T h i s i s a l r e a d y t h e f o r m o f  H a m i l t o n i a n ( 1 5 8 ) , f o r r v h i c h t h e
cly'namics of the phase trajectories close to [he separatrix has been discussed.

The behaviour of phase trajectories in the separatrix region is usually depictecl in
the form of stochastic layer. Within this layer, the thickness of rvhich is proport ional
io the magnitr-rcle o[ the perturbation ]/1, the representative points undergo a motion
rvlr iclr can be identif ied'rvith dif lusion. For the original coordinaLe rt p"t and for the
system moving at velociby ff ,  i .e., at the phase velocity of the rvave rvith potential
gs, the stochastic layer is depicted in Fig. 11.

\\/e do not usualiy deal u' i lh a pair of waves of form (163), btr l  rvith a spectrum
(for simplicity, rvi lh a discrete spectrum; lhe general ization for a continuous spectrum
presenls no problems). In this case, perturbation methods cannot be applied. Zaslavs-
kii and Chirikor' [36] found a stritable phenomenological approach for this case. The_y
expectecl the cl i f fusion to appear in a broacler region of phase space, i f  the separatrices
of the neighbouring rvavcs make contact (see Fig. 12); in this casc, the r.esonance
concli t ions of the neighbouling rvaves rvi l l  overlap. This idea has been verif iecl in a
seb of numerical experiments. (Tl ie analyt ical approach, rvhich uses the perturbation
anal- '-sis, can clescribe the chaotic behaviour of the phase [rajectol ies onl-v in the region
closc to the separatrix. ' Ib sttrcly the chaotic motion in a lalge-scalc, thc numerical
simtrlat ion on computers is unavoiclable).

Accorcl ing to them, thc concli t ion under rvhich the difusion rvi l l  appear. in a discrete
spcctlt tm can really be roughly iclentif ied rvith the conclibion of contact of neighbouring
separalr ices. And this is incleecl expressed by formula ( la5). A more exacL sbud-v
ucvcrtheless shorvs that the generatecl chaos is strongly inhomogeneous in the phase
space. This is perhaps onc of the eflec[s, rvhich complicates thc quasil inear descript ion.
On the other hancl, the ex[reme complexity of the dynamics shorvs that the theory o[
cleterminist ic chaos is st i l l  open to furbher cl iscussions; I

We have so far discussed only the simplest dynamics of part icles, moving in a
spcctrum of rvaves rvith no magnctic f ield. The existence o[ an external magnetic f ield
generates ne*' elTects. A considerable amount of rvork has already been done rvith
homogeneous and mirror f ields (see references in [32]). For a tokamali magnetic f ielcl,
nerv interesting effects appear in the interaction of the RF f ield rvith toroiclal ly trapped
particles (bananas). I lere, stochasticity even induces the space (racl ial) cl i f iusion- Iror
t l r is ,  sec e.g.  [31] ,  [37-39] .
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6. NONLINEAR LANDAU DAMPING

The mechanism of nonlinear Landau damping is usually discussed together rith
the description of resonant rvave-mode coupling; it thus belongs to a broader sct of
different iypes of nonlinear rvave-plasma interaction, commonly referred to as werlr
plasma turbulence.

As already mentioned,
Without this neglection, a

The full expression for
reads

the quasilinear theory neglects resonant mode coupling.
nerv sei of phenomena appears.
the evolution of the mode of the distr ibution function, [,

cons t . ( i 7 0 )

( 1 7 1 )

(1 i2 )

( l6s)

rvhere, obviously, the r ighi- hand side contains the resonant inberaction of mode Es-,
and of mode /o rvith mode ft.  For [ = 0, rve oblain the usual form of the quasil inear
approach, the evolution of /e.

For ,  e .g. ,
(Jl : L,'t-g * Ue i l ' t : i i r - c * l ' q , (16e)

the three modes may interact in resonance. The mutual interaction of this rvave
system is described by the closecl sysiem of kinebic ecluations for the wa\:es) derived
from the kinetic ecluations for modes of the part icle distr ibution function, f i ,  and
from the ivlaxrvell  ecprations (see, e.g. [22]). (As an example of such coupling, the
interaction of trvo Langmuir waves u'ith different o', ft, ancl of the ion sound wave can
be menlioned (see, e.g. [22]). As a consequence of the resonant condit ions and of
the form of the kinetic equations, the fol lorving interesting consen'al ion larv for the
energies of rvaves, U;, can be derived (see, e.g., [40])

of* ' l  r '  '  e' i 'Ek-"+!e'
E + z 8 v l k : i ?  o u

U''---: +
(t-'l

U r , U t
:  consL.

C.'1 @'3

Uz Us
:  con-sL.

a2 @3

(This conservation larv, cal led the Nianley-Rorve relation, rvas originall_r, derived b1'
i \ ' Ianlcy ancl Rorve [+i] for pararnetric amplif iers). This larv cletermines the rvaf in
rvlr ich \vavc gnergy is transformecl. '

The nonlinear Landau damping interaction describes the interaction o[ t* 'o modes;
the resonanL inlerac[ion is mediated by resonant part icles (unlike the case of resonant
lhree- mode coupling, rvhen the interaction is given'only by the resonant coupling of
three modes) .

The mechanism of nonlinear Lanclau interaction is closely connected rvith the
phenomenon of rveak Langmuir turbulence, rvhich can result in slrong Langmuir

U z _
Ln2
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Dirrriburion funcrlon near the bump of the tail

Initial specuum of plasma waves

Fig. 7a.

Distriburioo funcrion near rhe bump of the tail for which 0fl0v >0

Peaked wave spectrum



Effectr of the dl,ffuti,on on rhe dlrrrl,butl,on

Wtdening of the rpecrrum

Fig.  7c.

Flattening of rhe distributioo funcrion

Fis. 7d.

Eroadeoing of  the vave specrrum
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