turbulence [42], and also to the different modes of beat-wave acceleration of electrons
by two laser beams.

In the foregoing, the linear interaction based on resonance w — kv = 0 has been
discussed. Nonlinear Landau damping is based on resonance of the type

W — Wy — (kk - k,)v = 0, (173)

where wg, ki and wi, k; are the frequencies and wave vectors of two waves (or of
two components of the spectrum). The foregoing resonance is usually called the beat
resonance, and the mechanism itself, due to analogy with linear Landau damping, is
called nonlinear Landau damping.

The formalism describing nonlinear Landau damping is rather complicated. It
follows directly from the discussion of the system of kinetic equations for waves,
describing nonlinear wave-plasma interaction and determining resonant mode-coupling
interaction. The mechanism of nonlinear Landau damping is then closest to the case
of three- mode coupling.

The exact approach, describing the mutual mode coupling, forms an important,
but rather extensive part of the plasma turbulence theory, and, therefore, exceeds the
scope of this chapter. For a more thorough study, see, e.g., Kadomtsev [42], Davidson
[43] or Cooc [20]. 2

Due to this complexity, the exact fermalism, describing nonlinear Landau dam-
ping, can, in the initial approach to this problem, somehow cover its interesting
physical meaning. To describe the basic important effects we shall, therefore, use
the instructive approach of Ott and Dum [44].

Let us assume two coherent electrostatic waves with amplitudes ¢, o5, frequen-
cies wy , wy, and wave vectors ki, ka, k1 || ko. Let these waves propagate in a
homogeneous plasma without a magnetic field.

Let the resonant interaction of two waves be given by resonance condition (173)
and assume the linear resonance effect to be negligible. In this case, the following two
conservation laws must be fulfilled:

db,  dU,  dT

= + =T + T 0 (energy) (174)
dP, dP, dP

T 5 T b 0 (momentum). (175)

Here Uiz and Py, are the total energy and momentum of the waves. The mutual
“toupling of both quantities is given by the following relation:

U1,2 = w1,2N1,2; P1,2 = k1,2N1,2- (176)
Here, Ny is the action of the i-th wave. Action IV, is defined as [44]

Eok? 85(1)

; PR T (177)
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where e(V)(k,w) is the linear dielectric constant.
The general discussion of the nonlinear waves-plasma interaction indicates (see,
e.g [44] or [40]) that the total potential (with the background plasma response) is

o(z,t) = @rocos(k1z — wit — 0;) + o0 cos(kyz — wyt — 6;) —

1 (2) . . :
— 510920 Re[e_(l—) exp[—i(wy — wy)t +i(ky — k2)z +1(6, — 6,)]](178)
Here e(? is the nonlinear second-order dielectric constant, defined as
_.2(2)=i2/d kik,
(kl kg) &) mwpe ’l)(w1 — wz) — (kl — k2)v X
0 _1,0F,
X—a';[(LUQ = kzv)_l = (wl = klv) 1]6170' (179)
and Fj is the unperturbed distribution function.
Let the resonant velocity vp be defined as
e
VR = kl — k2 (180)
and let us use the identity
W =uw; — kl - kl'UR =Wy — kz'UR. (181)
Using the transformation
Yy =2 — vgt (182)
and splitting v into
Y=Y+ (183)

where y; is the rapidly varying component of y(t), we can obtain for y, the equation
[44]

d’yo ed%q(yo)_

a2~ 7 dyo (184)
Here ¢eq(yo) is given as
Peg(Yo) = o cos[(k1 — k)yo + 0] (185)
with
Foe MELALEE Oy (186)

2 e mu?
where 8 is the phase angle.

The foregoing equation describes the motion of a particle in a sinusoidal wave of
amplitude ¢y by analogy with the motion of a trapped particle in a wave, described
in Section 3. Frequency wp of well trapped particles is

wp = [ |k = Kl ol (187)
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For time t satisying wpt < 1, the effect of these oscillations can be neglected.
Following the results of O’Neil [8] the relation between 9 and 4€ is then

dt
dT  dP
— 188
a - Far (188)
Inserting this result into equations (174) and (175), yields
dU, w, dT
. = 189
dt W) — wy dt (153}
dU2 Wo dT
= — 190
dit W] — Wwo dt ’ ( )
and, finally,
Y + % = const. (191)
Wi wr

For wpt < 1, the total change of the kinetic energy of resonant particles is, therefore,
according to [44], and using the analogy with [§],

dTr w g OF,
dat _5(‘*’1 — wy) W, 210_7? sgn(ky — k;) _—O/UR (192)

Inserting (192) and (186) into (189), (190), we obtain the nonlinear Landau damping
rate:

AU w2 9eM) 0F,
= (2U7) 1—d—tl- = 1’(’3 (eok? BE) L sgn(ky — k) o % Jug x
e@ ek k
X =) + — ‘Pgo' (193)

Equation (186) can be regarded as a special form of the Manley-Rowe law, describing
the mutual resonant interaction of three waves [41] (here, the effect of the third
wave is replaced by the resonant particles). For a spectrum of Langmuir waves, the
consequence of this law is the continuous flux of wave energy into the lower k part of
the spectrum. This is the well- known result of Langmuir turbulence evolution [42].

The validity of criterion (191) is based on the assumptions used. It is of some
interest to look for a regime under which these assumptions are violated. Such
discussions appeared in [44] and in [45 - 47].

(According to the recent results of the weak turbulence theory (see e.g. [48,
49]), together with three-mode coupling and nonlinear Landau damping, the third
nteraction form has to be included, namely, the nonlinear mode-mode coupling
between two kinds of plasma waves, ion sound waves and Langmuir waves. In
this interaction, it is supposed [48] that the first type of waves satisfies the Landau
resonant condition, and the second type does not obey either linear, or nonlinear
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Landau resonance. The growth or damping of this nonresonant mode is given by the
nonlinear interaction with resonant waves, caused solely by the nonlinearity of the
dielectric function of Langmuir waves in the presence of ion-sound turbulence. Also
in this case, the Manley-Rowe relation is fulfilled. This relation can, nevertheless,
be violated, if the wave-particle system forms an open, nonconservative system, with
external sources and sinks both for particles and waves).

The inhomogeneity of a plasma can change the energy of resonant particles. This
effect was discussed in [50 - 52].

Recently, an interesting beat mechanism for particle acceleration was proposed by
Tajima and Dawson [53]. The beat-wave acceleration of electrons by two laser beams
is based on the interaction of two laser electromagnetic waves with frequencies wy,2 and
wave numbers k; o, propagating through a plasma. Their nonlinear interaction - can
generate on their beat a large amplitude plasma (Langmuir) wave, which accelerates
resonant electrons up to large energies.

7. SATURATION OF BEAM-PLASMA INSTABILITY;
TRAPPED PARTICLES SIDEBAND STUDIES

As follows from the foregoing, trapped particles play an important role in a plasma.
In this chapter, we shall additionally mention two interesting effects, connected with
particle trapping in a single wave. We shall shortly discuss the saturation of a beam-
plasma instability by the trapping of beam particles by the generated wave, and the
excitation of sidebands of a large amplitude wave, generated by trapped particles in
this wave. These effects are important both for the theory and experiment.

Saturation of a beam-plasma instability

The simpliest case of beam-plasma interaction can be represented by an electron
beam with velocity V', which propagates through a cold homogeneous plasma without

magnetic field. In a 1-D model, the dispersion relation for electrostatic waves in such
system reads [54]

O, S (194)
w2 e kV)y
Here, -
W, = E:;e; a= Z—;; Z—; <1. (195)

where ng is the plasma density and n, is the density of the beam.
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The system is unstable. The most unstable wave has parameters

CX% Wpe \/g L
= wpe(l = ;;_—): k ~ Vp; 7= wpe'é'%—as (196)

where 7 is the growth rate of this instability.

The saturation of this instability followed from the whole set of experiments. It
was found that this saturation is caused by trapping beam particles in the generated
wave; this trapping effect was found in [56], and experimentally verified, e.g., in [67].

The mechanism is simple. The phase velocity of the most unstable wave, Vph,
satisfies

Vph = % <V. (197)

The beam, therefore, runs ahead of the wave. For a small amplitude wave, the motion
of beam particles is unaffected by this wave. For waves with larger amplitudes, the

beam dynamics becomes affected by the electric field of the wave. At the threshold

electric field amplitude [56],
me ,

Eth ~ ﬁ(gwpc)z (198)

the wave starts to trap beam particles. In this case, namely, in phase space, the wave
separatrix just touches the beam (see Fig. 13).

This trapping leads to the destruction of the beam and to the saturation of the
instability. The sequence of trapping of the beam is presented in Fig. 14 taken
from [57]. The problem is treated as a spatial model of generation of a stationary
wave. Coordinate 7 is the dimensionless spatial coordinate, coordinate 8 — o is
the normalized phase of the beam relative to the wave, and coordinate %”3 is the
dimensionless velocity of beam particles. For n = 9.2, the beam is totally trapped and
the instability is saturated. This can be seen in Fig. 15. Here F? is the dimensionless
energy of the wave; the oscillations of F' are caused by particle trapping.

Trabped particle sideband instability

Let us consider a homogeneous plasma without magnetic field and a large- ampli-
tude electrostatic wave, propagating through this plasma. This wave will trap some
plasma electrons. The oscillation of these trapped particles can generate an instability.
Kruer et al. [58] found the dispersion relation for this instability to be

wr 1 1 w? f"

g = ]_ — = BN — N
07— B erhe) ek —Zhow—2we) Tl T amg (199)

]l =

Here wy, ko are parameters of the large- amplitude wave, wr is the plasma frequency

of the trapped particle, Q) = w — k&=, vr is the thermal velocity, and wg is given as
ekf", where Ej is the amplitude of the original wave. Is was found that the

Wy =
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instability generates two sidebands with frequencies, symmetrically shifted relative to
the frequency of the original wave. This shift Aw is approximately

Aw= wpg (200)

A similar symmetry was also observed for wave numbers.

The saturation is caused by detrapping. Trapped particles in the large- amplitude
wave can be detrapped by sideband waves with sufficiently large amplitudes. For the
1-D case, this detrapping was discussed, e.g., in [59, 60]. The excitation of sidebands
and its saturation seems to be very important in free-electrons lasers (FEL) and in
gyrotrons. Here, of course, the waves are electromagnetic waves. Sideband excitation
and saturation was discussed, e.g., in [61-63], see Fig. 16.

CONCLUSION

In the foregoing text, a short review of some basic parts of the plasma kinetic
theory (or, rather, an introduction to it) has been presented. In many aspects, the
plasma kinetic theory does not represent a closed system, but rather an extremely
broad topic, which is still developing. This concerns especially the nonlinearity or
turbulence problems. Moreover, we have seen that also even rather old solutions (like
the quasilinear approximation), are still subject to some criticism. The more the
reason for this brief review not providing an exhaustive account of the plasma kinetic
theory. We have therefore concentrated only on problems, which a reader, who is not
an expert in this branch of the plasma physics, or who is a beginner therein, might
often come across. Readers interested in a more thorough study of the mechanisms
mentiond, or in other effects, which we had to omit, either due to their complexity,
or simply due to the limited extent of this contribution, are referred to our list of
references, or to further lectures of this School.
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Orbit of an electron colliding with an ion. From [64].
Landau countour. From (3].

Maxwellian distribution function. From [3].

Bump-in-tail distribution function. From [2].

Phase space trajectories of trapped and untrapped particles.

Motion of trapped particles in a potential trough of the electrostatic wave,
and its influence on the wave amplitude. From [42].

- Evolution of the bump-in-tail distribution function g(v) and of the generated

wave spectrum €(v). At the beginning of the instability, a peaked wave
spectrum is generated. During the evolution of the instability, function g(v)
in the resonance regime tends to be flattened, whereas the spectrum e(v)
becomes broader. From [64].

. Velocity distribution function F(w) ( where w is the normalized velocity),

initially Maxwellian, under the influence of an unidirectionally launched
LHW. Fig. 8b is the enlargement of Fig. 8a. The flattening of the distribu -
tion function causes the current drive. From [66].

Baker’s transform.

Phase space trajectories close to the separatrix of a near-integrable (weakly
non-integrable) Hamiltonian system.

Stochastic layer.
Examples of non-overlapping and just contacting separatrices.
Trapping of beam particles into the generated wave. From [56].

Trapping of beam particles during the beam-plasma instability. 7 is the
spatial dimensionless coordinate, 8 — ¢ is the normalized phase of the beam
relative to the wave, and %ﬁ is the dimensionless velocity of beam particles.
From [57].

Saturation of an instability in the trapping regime of beam particles. F? is

. the dimensionless wave energy. From [57].

16.

Growth rate v of the trapped particle sideband instability, plotted as a
function of wave number % of the instability. From [58].
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