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Abstract

In the following lectures, a brief introduction into the kinetic theory of
plasma waves and into the interaction of waves rvith plasma particles is presented.

1. THE BOLTZMANN KINETIC EQUATION

In this chapter, lve shall derive the Boltzmann equation, the basic equation of
plasma physics. lVe shall use the approach, commonly called the "BBGI(Y theor.y',

- (aftel Bogolyubov, Born, Green, Iiirkrvood and Yvon). As alreadv mentionecl [1],
this approach is only one among the various theories of the nonequilibrium statistical
mechanics, but it is a systematic and perhaps the most porverful theory.

Let us first summarize the assumptions under rvhich this theory is commonly pre-
sented. Let a plasma be formed by N electrons ancl N singly-charged ions, and let
us considel the ion component to be the uniform background of immobile ions. Let
us asstlme that the particle interaction can be derived from the potential energy / of



the interaction, which for the mutual interaction of trvo charged particles is given as

' :rp=r'n" o":fttri i ( 1 )

rvhere qi, qj are the space vectors of both Coulomb interacting particles, labelled as
i and 1; e is the charge of the electron and es is the permitivity of free space.

Let us define the exact -l/-particie distribution function od electrons .fii""t as [2]

ff f"" '  :  . f i i ' " t(ql,  gl2, . . . ,  gN, pr, p2, .. . ,  piv, t), (2 )

lvhere q;, pi are the generalized coordinates and momenta, respectively, and lvhere I
stands for time. The exact distribution function reads

N
f e r d a t f  

' I - 7 -  
t t

/ rv - - " ' (q ; ,  p ' ,  t )  :  I l6 (q ;  -  q ; ( i ) )  5 (p ,  -  p , ( r ) )
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rvhere 6(z) is the d-function, and where q(t);, p(t)r represent the phase trajectory.
Although J:etact represents formally the exact distribution, its practical importance

is less significant for the follorving reason. The determination of fff,""t requires
the knorvledge of the clynamics of all N particles. The lack of the knowledle of
all initial conditions makes this determination impossible. Therefore, a statistical
representation, based on a probability approach, is more suitable. We shall, therefore,
replace the exact distribution function J:ezact (which is nonzero only at single point of
the phase space) by the probability function over phase space, /.7y,

(3)

where the expression

"fir(q;, p;, t),

/r(q', pr, t) II dq;dp;

cletermines the probabil i ty that the system rvi l l  appear in the
l ldq;dp; around coordinates g;, pi.

The probability distribution function fi,, develops in time,
ville theorem, as

*  d (qr ,  gz ,  . . .Qru ,1) ,

rvhere m is the mass of a particle and / is the potential energy.

(4)

(5 )

phase volume element

according to the Liou-

ofx , 
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I-Iere the Hamiltonian H.nr describes the motion of particles and is given as

(6)
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where A" is a normalization constant. Function fo describes the probability of fincling
the system of s part icles at points gr, . . . ,  g", pr, . . .  p".

We can then obtain from (6)

Let us nolv define the reduced distribution function, ./", as

/ " N
- f"(qr,pr,ez,pz,. . .g",p",t)  = A" I  fx I I  dqrdp;

r i=s+l

.- Pt 0,f"

k; aq'

(8)

(10 )

( 1 1 )

Here lve have used the definition of .f", we have assumed that fi,. vanishes at the
boundary of the phase space, displaced to infinity, and rve have used the fact that
/,v is a symmetric function of the coordinates of particles of the same kind; I/ is the
configuration-space volume of the system. Using further

Here, tr" is the Liouville operator for the s-particle distribution function; the right-
hand side of the ecluation describes the effect of the other electrons.

The simplest - and most frequently used - chain of equations is given by the choice
s : 1. namelv
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rve finally obtain

rvhere

( i2 )

whet'e lve have already used more common variables in velocity- space representation
(t, . represention). Force F1 represents all external and field forces. The fielrl
(electrostatic) force is given by the average electric fielcl, acting on one electron clue
to the effects of other electrons. as

/ t ( " t , v r , f )  :  / ( l )

f r ( r t , v 1 ,  1 2 ,  v z . , t )  -  
/ ( 1 ) / ( 2 )  +  P ( 1 , 2 )

(  13)

(  14)
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where P is the pair conelation function. The foregoing expansion is called the cluster

expansion.If P = 0, the two-partictes distribution firnction is just the product of one-particle
diitribution functions; this means that particles I and 2 are unconelated. Thus P is that part, : i

of -fz which represents the conelation of the particles and is known as the pair conelation

function.

Inserting this in the Eq. (12), we obtain

a/0), - afO, Fr"' ' a/(t)_ | Egphz rkt\.n^,,.-^:t PhzaP\,2)
a, -,t6-; ait-;  art I f fr@c'2diz=:lpff*r*,.  (rs)

The fourth term in the foregoing equation contains the average electric field experienced by
one electron due to the other electrons and can be rwitten as

\

--14 tg$r4),r,, n, = -,E .+
m o v l  - O t l  m  w 1

lvhere the electric field is given as

(-e)E(r,,r) = -19bfQ),tr, ffi,

Consequently, the third and the fourth terms of the equation (15) can be rvritten in the form

/n)
f-W-ra{D Ph, r1\n ctit ={aiQ

m  f f i 1  m f f i t ' 0 4  m f f i t

rv'here the term F iepr.sents all external and ,,field" forces. 
':i

The righrhand side term in the foregoing equation (15), namely,

L fhz aP!,2) crn an.t
l a -

f i -  o \  ov1

must be therefore expressed by means of some approximation.
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and rvhere P(I,z) is called the pair correlation function. (For an uncorrelated distri-
but ion of  par t ic les (1)  and (2) ,  P( l ,2)  :  0) .

The foregoing forms (14), (15) point to one important property of this hierarchy,
namely, that the system of equations is not closed. The equation for function fi
contains function /2, and so on. The system is not closed and some approximations
are therefore required. This procedure .rvill norv be outlined.

The foregoing equation is usually rvritten in the following form

0f ,  ,  _ . } f r ,  Fa"f ,  ,a f
E  + t  a ,  + ;  a "  

:  ( ; ) "

rvhere term (ff). is called the collision term, or the collision integral

, 0 f , ,  I  f 0 d r r A P 0 , 2 ) ,  ,
\  At  ) , :  ;  I  A,  A"  

c l t2o 'Y2 '

a f  , _ . a f  , F a f  , 0 f ,
E - "  a r - ; a " : \ 6 t ) c

(  16)

The equation

(1  7 )

(  18)

is callecl the Boltzmann kinetic equation.
There exist several approaches lvhich express the collision term explicitly. We shall

mention the approach rvhich fits the plasma physics theoly rvell, the Fokker-Planck
collision term. To penetrate at least partly into this rather complicated part of plasma
physics theor-y, lve shall first remind of some features of the theory of collisions of
charged particles.

Let us assume that tlvo charged particles'with charg€s €1, e2 alc), masses rrtr1, TrL2
are approaching each other (see Fig.l). For the sake of simplification let us suppose
that the first particle is an electron and the second one is an ion. Due to its large
mass) the ion can be considered as immovable. In this case, the geometry of this
scattering is quite simpie. Parameter rs is called the impact parameter, angle d is
called the scattering angle. For the electron 'with velocity ?r, mass m" and. charge e
and for protons the scattering angle 0, according to the classical theory of Rutherforcl,
obeys

. , 0 ,  1 .  n
cot( ; ) :  -4T€orr t . r r , ' ro  ( lg)

rt'here es is the per-mitivity of free space. The impact parameter for a g00 scatter is

,  0,90u -
4Tegm"u2 '

(20)

Due to the latge amount of particles rvithin a Deb-ve sphere, the scattering process
represents a cummulative effect of a large amount of lveak deflections rather. than
the effect of a single close collision. The global effect can be considerecl as a ranclom
pl'ocess rvith a set of small angle deflections Ad,

A f  :
4nntru2rg€g

t l
I

e -

n ^ 2
L C

(2r )



The deflection depends on the impact parameter, rs. Let us first consider the maximum
and minimum impact parameterst ro*ox, and rs^;,r. Defining the function F(AA)
which describes the probability of the scattering in angle Ad, and expressing the
number of scattering centers in a shell of the length .L, radius rs, and the thickness
drs, the mean-square deflection, ( (Ag)2 >, is

where A,'rnoJ Af^;n correspond to impact parameter s rrnin, T-rnac,
r-o' will be determined later on). The mean-square deflection
then determined as (F(Ad) d(Ll) - nL2trrsdrs)

I  nLea

(22)

respectively. (r,n;n,
< (AP)'  )  can be

(25)

(27)

< (ad)2  >-
2r ef;m2"ua (23)

ancl where ,L is the distance traversed by the particle.
This expression diverges for rs^o, r co: and for ro-;", --+ 0. The first limit

corresponds to the existence of the long-range Coulomb potential /

l , )r e -o -
4Tes r

(24)

The maximum value of rs, ro^ac, can be determinecl by the effect of Debye shielcling.
In a plasma lvith density n, the perturbation of the electron clensity (on the backgrouncl
of immobile heavy ions) causes the perturbation of potential /. This potential depencls
on space (radial) coordinate r, the distance from the perturbation, as

[,o^", dro 1 nLea , To^o,

J,o^,n ; 
: 

z"Mr^ 
t" 

-;

6:  do"*p(_ i ) .
^D

Quantity )p, the Debye length, is given as

(26)

rvhere kT" is the thermal energy of electrons. The shielcling is causecl by a cloacl
of part icles of the opposite sign (in our case, of ions) close to the locali ty of the
perturbation. The Debye length is then a measure of the effect of the potential
pelturbation. It is therefore quite natural to take romo" - )p. The seconcl limit.
romin, is taken as the impact parameter for the deflection of 900. Accordingly, the
expression for ( (A0)2 > is

< (Ad) '  , :  | l *nn



where

A : 
l' 

i ro*i", = :-. (28)
T1r'.i '" JEJ s€g

It is then possible to estimate the cross-section og1v rvr for 900 multiple scattering as

: :  
t *  

= 1 r r r 1 .
lT rn:u'e6

Ratio ffi 
(nutt"r€ de6c5 is the cross-section of the single scattering) is

osooNI  
=  81nA.

ogoos
(30)

Usually for laboratory (and thermonuclear) plasmas ln A x 20. Consequently, the
effect of small- angle scattering exceeds the effect of large, single scattering.

Let us return to our coliisional kinetic equation

a f  a f  . F a f  , 0 f ,
a t +  t a r * ;  a " : \ g r ) " '

ogoo IvI :
nLssa

(2e)

(31 )

lvhere, generally,

(32)

Our aim is norv to find the explicit form of collision integral (32). Usually, trvo
lvays to do this are mentioned.-The first one consists in finding the explicit form of
the correlation function and, simultaneously, in finding an approximative procedure,
enabling closing of the chain of the BBGI(Y hierarchy. This approach inciudes - inspite
of its exactness - a lot of difficult problems. The second rvay, lvhich is usually used,
in fact omits the discussion of the hierarchy and consists in expressing the collision
integral approximateiy as a function of distribution function /. This approach is based
on the Fokker-Planck equation; its basic features will now be described.

Collision term (ff)" can be expressed as the change of distribution function / over
short t ime element Al,

r { t " : * lWWcl r2dv2

rTl": frtrt*, v, r * ar) - /(x, v, r)1. (33)

Using probabil i ty function /(v, Al), describing the probabil i ty rvith rvhich a part icle
rvith velocity v, rvill change its velocity to v* Av during time element At, the change
in / can be expressed as

. f (x , ' , r ,1+ At )  :  
J  f  l " ,v  -  Av, t ) * ( "  -  At ,Av)d(Av) . (34)

(Since function r/ is t ime-independent, the corresponding probabil i ty process is a
Markoff process).



Let us expand the integrand as

, f (x, t  -  Ar,  t )rb(u- Ar) _ - f(* , t ,  t ) rh(u,At) -  
+WA 

r,  +

+ 1r a:u='D ^,t +6;6 
/rv; a'ui' (35)

Prescribing, as usually that the total probability satisfies

|  +{",Av)d(Av) :  I

and defining the Fokker-Planck coefficients as

A u ; f 1
.  

n t  , :  J rh  Ar ;  d (Av)*

. A}}, ,: | ,h a,;A u; d(Av)fr,
we can express the term (#)" u.

r#t":-piff. l; a'(. * t /) (3e )

(36)

(37)

(38)

0u;0ui

T e r m a * > i s c a l l e c l t h e
of the diffusion tensor.

The explicit calculation
tensor enables the collision
background [a] as

dynamic friction term, term ( *" > is a component

of the friction term and of the components of the diffusion
term to be expressed for the case of the single- charge ion

tut.:, earnA,_lwtr,)) * !a,(wf("D I,At, , -  +4;WL-----dr,  - t  Ar ihn

H"(r)  :  (1 + Yl  [  - fn(u ' ) , ,  dr '
r n n  J  l v - v l

G,(r) : I f^{u') l ' - t ' ldu' . '!

(40)

rvhere

(41  )

(42)

Here, rn is the mass of a scatteling (test) particle, m, the mass of a scatterecl particle;
n labels the particle species. Let us consider the scattering particles under 6-function
velocity distribution [2]

/ ( ' u t )  : a 6 ( v - U ) (43)



and the scattered (field) particles under Maxwellian distribution /(v2)

f(rrr) : f r,r(vr) :5 exp(-a2ul); o' : 
#.

Let us define deflection time 16r as

(44)

T t 2
n v

t v - -
t  -  

a t t ?o u i
(45)

(46)

where rD is an estimate of the time, required to achieve isotropy. Considering the
interaction of electrons with protons, the foregoing procedure yields

_ znr!*! Qkr")",
nea ln A

_ Dt e i

is usually neglected.
In rough approximation, the collision term

. a f(+).= ( f  -  fnr) ,' 0 t

Labeiling ,Da : r"; and taking quantity uei : 
"l 

to be the electron-ion collision
frequency, we see that u.; decreases lvith inreasing temperature. Considering, e.g., the
thermonuclear parameters (n - lgzo*-s, lcT" : 20keV), and electron-proton plasma,
rve obtain z"; = 1.8 x 103s-1. The frequencies of lvaves, used for plasma heating, are
in the range v = 106s-1 - 1grz"-r; in these cases, the effect of the collision frequency

( 4 i J

where fv is the Maxrvell distribution and y is the coilision frequency. This so-
called Bhatnagar, Gross and Iirook model fits collisional phenomena in lveakly ionized
plasmas. For a fully ionized plasma, the foregoing expression requires [3] some modi-
fication. A special form of the coliision term, given by the Lenard-Bernstein model,
is presented in Section 4.

2. THE VLASOV EQUATION AND LANDAU DAMPING

The Boltzmann equation rvith its collision term describes the plasma behaviour in
a broad region of plasma parameters. Nevertheless, in man)' applications, the collision
term can be neglected. For this regime, the ne.eessary conditions can be defined as

a D u" ; ;  are D t /e i .  (4S)

Here c,' is the frequency of the wave, lvhose propagation in plasma is being investigated,
and c.ro" is the plasma frequency,

ne2t

€OTT'1"
(4e)



where n is the plasma density.
Neglecting the collision term, rve obtain the Vlasov equation

A f ,  d r O /  , F A f  n
at  -  d t  a , .  - ;au :  ' '

where F is the averaged force, acting on particles. Considering F to be the
force,

F : q [ E * v x B ]

we obtain the equation, referred to as the Vlasov equation

H.a#  +LF*vx  B tH : (52)

Here, E and B are the averaged electric and magnetic fields, respectir,'ely.
The Vlasov equation is the equation, used most frequentiy in discussing different

features of the plasma kinetic theory, especially in high-temperature plasma physics.
It is rvorthwile mentioning some important properties of this equation. The first

one follolvs from the fact that the collision term has been neglected. The equation,
therefore, has the form of the continuity equation in phase space, analogous to the
Liouville equation. The time derivative of ,f, #, is zero along the phase space
trajectory, given by' 

dr dv g ,_
. i , : t ;  a , = ; t n + v x B l .  ( b 3 )

Consequently, the density of particles in phase space duling their motion along their
trajectories does not change. (On the contrary, term (ff)" l0 changes the part icle
density on the phase space trajectory).

The second important property is given by the fact [i] that trajectories (53) are
the characteristics of partial differential equation (52). Consequentlr., any function
of the constants of motion is the solution of the Vlasov equation. (For example,
if E : B : 0, the total kinetic energy is a constant of the motion. Therefore,
f : . [( l"ruz), and, e.g., , f  :  exp(#) are also solutions of the Vlasov ecluation).

The Vlasov equation depends on the electric and magnetic fields E, B, and these
quantities are given by charge densities and by currents, florving through the plasma.
It is, therefole, necessary to couple the Vlasov equation lvith the system of N{axrvell
equations

v.E(x,r) :  
T !  |  nf".v,t)d3v

(50)

Lorentz

(51  )

VxH: P w lvf,(x,v,f)d3v + rrf l

Y ' B : o
AB

VXE;  :  _E

I

(54)  - :

l oD/

(JOJ

(5 i )



B = ppoH.

Expressing charge p and current j densities as

(58)

(5e)

(60)

(61)

(62)

(63)

(61)

( 65)

defining density no as

and total charge p as

lve obtain

P : I P ,

i :Do, fv f ,d}v, ,

n . :  I  f d ' t u

p:Du I  f ,a "u

v x H :  j

V X E  _

AE
t eo-;;

ot

AB

V ' E :  
P
€6

ot
The necessity of this selfconsistent solution causes the main difficulties in the

plasma kinetic theoly. The problem itself is nonlinear, and it is necessary to solve a
set of coupled partial differential equations. Moreover, lvaves, which can appear in a
plasma have - just due to this coupling - a rather complicated polarization, in many
cases quite unlike the simple polarization of an electromagnetic rvave, propagating in
vacuum.

Due to these complications, we shall confine ourselves to the following simplest
case' We shall assume a spatially homogeneous plasma without external electric and
magnetic fields. We shall assume that ions form an uniform immobile background,
and discuss only the changes of the electron clistribution function. (The concept of
the ion's immobility - rvith regard to the electron component - is justified by the iarge
ratio fij). Further, rve shall assume that the perturbation of the electron clistribution
function , generating the space charge, lvill be only one-dimensional, that there rvill
be no fluctuating magnetic field and, consequently, that the discussed rvaves lvill only
have the electric component. These assumptions enable us to choose, from the set of
waves possibly existing in plasmas, the simplest case - the electrostatic (longituclinal,
Langmuir, potential) waves; the electric fielcl of these waves can be derived from the
potential function. Under these assumptions, the electric fielcl of the rvave, E, satisfies
E ll k' and the perturbation of the velocity, v satisfies v ll k, rvhere k is the rvave
vector.

1 0



The set of coupled equations, describing the evolution of the perturbation of the
electron distribution function, can then be simplified to the following pair of equations
(considering z to be the space coordinate, x ll E and u, = 1) the velocity coordinate)

eE 0f
(66)

(67)

m 0 u

af af
- + ? t - _

0 t ' - 0 r
p f

v . E :  - L  I  f d 3 v
€ o J

u+P+ikvfi(k,v,r) -

: s

Here, the first equation is the one-dimensional Vlasov equation, the second equation
is the Poisson equation.

The system is obviously nonlinear, and it is necessary to use some perturbation
approach. Considering only small perturbations, rve can express the distribution
function as the sum of the unperturbed part /s : 

"fo(u) and of the perturbation
f { x ,u , t )

f : fo * ft /t < ,fo. (6s)

Perturbation fi depends not only on the velocity, but also on coordinate r and on time
t. The unperturbed part is time-independent, and because the piasma is supposed
to be homogeneous, /s is also space-independent. Therefore, /6 generates no electric
field, Eo : g.

Consequently, our linearized system of the Vlasov and Poisson equations reads

0 f ' , _ } f t  e ^ 7 f o
E + "a; 

- 
r}.B,fr:O (6e)

.E r  :  - *  
|  f , d ' v .  (70 )

This system was originally solved by Vlasov [5]. Nevertheless, inspite of the apparent
simplicity of these equation, the complete and correct solution has been given only
by Landau [6]. Landau damping is perhaps the most important phenomenon of ]righ-
temperature plasma physics.

The usual approach starts with the application of Fourier analysis and of Laplace
transforms. Let us first Fourier-analyze both equations (in rvhat follovs we shall omit
the vector labell ing). Using

-fr(k,',r, , : 
I.f,(*, 

t, t)-e-ik*dx

Er(k, q : 
I 

Er(x, t)e-ik*d,x

- 0 .

( 7 1  )

(i2)

(73 )

lve obtain
eE1(k,  t )  a/s(v)

0v

1 1



Let us define [1]
Fo(z) :

F  ( k , u , t ) :

We then convert (73) to read

I nol 5(u -r..f ) a'

I nb,v,t) 6(u- r.'f l a".

(74)

(i5)

(76)

(77)

( 78)

(7e)

> 0 .

(81)

rvith

Er(k,il: 4 [ pr!r,u,t)d,u.
e6k J

Let us nolv apply the Laplace transform

Fr(k,n,p) -  
Io* 

rr(r ,u,t)e-ntd,t

Er(k,d :  
Io 

Er(k,t)e-ntdt

rvhere R"(p) ) rot and lvhere E1 and F1 are assumed to have the form e,ot for t
The Laplace transform of (76) reads

@ * ikerr(k,r,p) - "E'tF'i l  9IP : Ft(k,u,r : o). (80)

Y#A +ikF,(k,u,t) - *r,&,tff =o

0u

Using (70), (77-80), rve can express E1(fr,p) as

Er(k,r): # | ,r@,u,p) au:;ffi^ lry+Eg ^
lvhere

D(k, p)- 1 - + t 9!9 -]-- 0,.
e s m k J  0 u  p * i k u

(82)

Function D is called the plasma dielectric function.
The expression for Er(k,t) rvill be determined by means of the inverse Laplace

transform
1 ra*ioo

Et(k, t )  :  _ I  npt ,p)  eo'  dp.  . - :
2ir  J"- i ln

(83  )

While the approach, leading to the expression for E1(k,p) creates no problems, the
invelse Laplace transform requires the discussion of the singularities, appearing in
the foregoing expression. Landau found that its careful analysis yields an:important
correction of the original Vlasov solution. A thorough discussion of the properties
of the form of Er(k,p) (81) indicates that, under the assumption that ff i ,  7'1 are

12



analytic functions of u, the only singularities which determine the time asymptotic
solution of. E{k,t) are poles defined as

Labelling these poles
sufficiently large time

D  _ _ 0

io2 ,  )Fa

1 -  " ' ;  I  ' a " , -  d u = 0 .
es rn |  J  p l zku

as p; and the residues of B1(,b,p) at
l, the asymptotic form of E1(lc,t) can

,lt,g fr1f, t) : D Rierit.
I

Expressing further pr. as
p i ( k ) :  - ; a (k ) i  -  t ( k ) i ,

the time-asymptotic form of electric field E1(,1,t) becomes

,ljg -Et (,1, t; : D Rie-i'(k)it1(k)1t .
J

For 7; ) 0, the osciliations are asymptotically damped. On
an instability appears.

Frequencies cul and decrements l; are determined by the

D ( k , p )  :  O .

Landau found the correct rvay of integrating of (85).
Let us fir'st discuss the dispersion relation

rvith the soiution

(84)

(85)

these poles as ft;, for a
then be expressed as

(86)

(87)

(88)

the contrary, for 1j z-0,

dispersion equation

(8e)

(e l )

(e2)
are undamped

(e3)

1 _  i " '  I A F o _ I  ) - , _
e s m k l  u r * * d u : o

for ft = 0, i.e. for the infinite rvavelength limit. In this case we obtain from (g0)
dispersion equation valid for this approximation

D : 7 * # : o

p :  * . i u ,p .

Consequently, in this lorvest approximation, the plasma oscillations
,,vith the basic frequency

l;7Q : u P : V . * '

(e0)

the
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Integrating integral in (85) by parts, assuming that f 
( p and expanding fraction

,1,, . we obtain
P+|Eu '

p2 '  
t . ,  2 ikur +  

e o m e r J F o ( u ) l l - ; -
3kzu2

p2 l d " (e4)

(e6)

(e8)

(ee)

(  100)

Taking

as the first approximation and

p: Liwp* ic,r( l )  (gb)

considering Fg(u) to be Maxwellian, .i!'e obtain

c . , r ( l )  
3 ' n ' o:  t t :prK-Ab.

Parameter )p is the Debye length

I o : (ei)

Whereas solution (93) corresponds to simpleplasma oscillations, solution (95) describes
the clispersion relation of plasma (longitudinal, electrostatic, Langmuir) waves

Nevertheless, expansion (9a) provides no possibility of finding the damping rate, 7.
For this purpose, it is necessary to discuss the full expression (90). The integration
path crosses the pole at u : T Vlasov neglected this resonance pole and only
considered the pr-incipal part of integral (90), leading to the foregoing dispersion.
Landau, rvho carried out the integration properly, included this resonance effect. Since
E(k,p) in (81) rvas originally defined only for Rep > 0, it was necessary to find
the correct analytic continuation of the integral in dispersion relation (90) also for
Rep < 0. Landau founcl the proper rvay of integration along a special path (nolv
called the Landau countour - see Fig. 2), passing half-rvay around and belorv the
pole. The proper integration enables (90) to be expressed as

. , t)  :  *a,o(l  +|u's'7.

:  r :# t r  l : : * r=a,+r , f f i tu : | t ,

T -, ^u2r / \
f  n l u l : . / - 2  2 I i T av \  '  \ l  ) r l ( T  

-

rvhere P is the pt'incipal part of the integral. Considering Fo to be the N,Iaxrvellian
dist l ibution (/ i  is the Boltzmann constant, 4 is the electron temperature)
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lve obtain the dispersion relation in the form

r - - 4-,', -3k2 IiT" 1t
p rL ' -  f  *  t - r,lTrfti+#!"*p(##n)(10 i )

using definition (87), the Landau damping d.ecrement ,y comes out as

I (  102)

Reverting to expressions (86) and (87), the positive sign of 7 expresses the damping.
Consequently, Langmuir waves, which penetrate through the piasma with jVlaxlvellian
velocity distribution are ahvays damped. According L 1OO1- and to the Maxrvellian
distribution in Fig. 3, the damping corresponds to the negative slope of the clistribution
function. On the contrary, the distribution with the positive slope can cause an
instability. An example of such a distribution (the so callecl bump-in-1ail distribution)
is shorvn in Fig. 4; this distribution can be realizecl by a lvarm beam of electrons,
rvhich propagate thlough the lvlaxrvellian plasma and which has average velocity 26.
The instability can be fed by the group of electrons, rvhich form the pJsitive slope of
the distr ibution function.

Let us norv retuln to the case of damping. Since the clamping is the effect of the
singularity

a  -  k u : O ,  ( i 0 3 )
the damping is caused by the interaction of waves with resonant particles, i.e. nith
particles 'whose velocity is equal to the phase velocity of the wave. These particles
are, therefore, able to exchange their energy rvith the wave.

This is the ke.v mechanism of the rvave-particle interaction. Nevertheless, this
mechanism itself cloes not explain the clamping effect. For the physical explanation,
several models have been proposed. Ivlost of them overlap in the follolving picture.

Let us consider an electron, rvhose velocity is slightly higher than the ph-ur" velocitl-
of the lvave. This particle lvill be deceleratecl by the lvave, ancl lvill, therefore, impart
a part of its kinetic energy to the wave. A particle, moving slorver, will drarv energ].
from the wave. The total energy balance ancl, therefore, the damping or the instabilit!.
of the wave: rvill depend on the number of particles lvith velocities lower ancl higher
than the phase velocity of the wave. Obviously, if there is a larger number of particles
moving slorver than the amount of particles moving faster, the net energy balance
signals that the u'ave must be damped. This is exactly the case of Lanclau clamping,
cl iscussed for the N,laxrvell ian distr ibution ancl presentecl in Fig. 3.

It  is therelore possible to conclude that the opposite case, i .e. the case rvith the
posit ive slope of the distr ibution function, lvi l l  cause an instabil i ty, energy being trans-
mitted from electrons to the rvave. This case is outl ined in Fig. 4 for the bump-on-tai l
instability, rvhele obviously an excess of resonant particles lvith higher velocity causes

l " u ) D . 1^t : 
U s (fr)")t "*P[-2(k IDF

3
2
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the instability. This effect is well based theoretically, and has been verified by a set
of different types of experiments.

3. TRAPPED PARTICLES AND THEIR INFLUENCE ON LANDAU
DAMPING

The linearization of the Vlasov and Maxwell equations requires an infinitesimally
iorv perturbation(and, therefore, an infinitesimaily low amplitude of the rvave). In
this case, the velocity of the particle, which interacts with the perturbation, can
be considered as unaffected by the perturbation and therefore constant. In fact, it is
necessary to expect the perturbation to have a finite level and, therefore, the amplitude
of the corresponding lvave to be finite, too. The lvave rvith the finite amplitude
will cause a change of the particle velocity, and, consequently, the mechanism of
Landau damping rvill cease to be linear. This lvill result in the appearance of a
new phenomenon - particle trapping. This effect is not only of basic importance
for the validity of Landau damping concept, but naturally creates a cause for the
saturation of important instabilities. Nforeover, the trapped particles represent a
typical case of a nonlinear osciilator. The model of the nonlinear oscillator forms a
key paradigma fol the discussion of the deterministic chaos in Hamiltonian systems,
and has important consequences for the validity of the quasilinear approximation of
lvave-particle interaction, as lvill be discussed later on. lVe shall, therefore, mention
this effect more thoroughly.

Let us consider a monochromatic electrostatic (Langmuir) rvave rvith potential 9c,

g : ? o c o s ( k . r - " ' , t t d ) , (104)

lvhere c,.', k are the frequency and the lvave vector of the lvave, respectively, ancl lvhere
r is the space vector. Let us consider the simplest case of a homogeneous plasma
rvithout magnetic field, and let us identify the direction of the wave propagation rvith
the direction of the z-coordinate of the Cartesian system. The Hamiltonian of a
particle in the field of this wave reads

T ,
H, : 

2*p"" 
- e\cscos(kx - wt)

vvith / : 0. Variables r, p, are the canonically conjugated coordinate ancl momentum,
respectivell'.

Let us use canonical translormations lvith generating function, Fr(t), {') 1fo. .y.r,-
bo l ics ,  see e.g. [7 ] )

r ' r ( r ) - # , 0 "  - r t ) * x m U)
t

( 1 0 5 )

(106)
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F;4 - PQu -ffr,
and let us apply them to the foregoing Hamiltonian.
Hamiltonian in the form

1
H : * P ' - " ? o c o s k Q

lvhere
p x : P + * i ;  , = e * 7 r .  ( 1 0 9 )

This Hamiltonian is identical with the Hamiltonian of the mathematical nendulum.
For

(107)

We then obtain the new

(108)

both coordinates Q, P
Then for AQ*o" 44 1,
rviih the equation

lvhere

rvhere

#. 'LoQ 
- -o

H a " p o (110)

oscillate. Let us label the amplitude of oscillations as Q^o,.
the foregoing Hamiltonian describes the harmonic oscillations

(  1 1 1 )

( 1  1 2 )

is the angular frequency of the harmonic oscillations, of oscillations of the so-called well
trapped particles. For generally trapped (but still librating) particles, the frequency
of oscillations depends on the energy of the oscillations,

T  , . r .  r - 1t iB : ano 
rtt 

(K/ 
-,

u
2 k 2 : 1  +  "

e9o

and rvhere 1( is the total elliptic integral of the first kind.
The lvell knolvn phase space picture of trajectories of particles with the dynamics,

described by Hamiltonian (108) is presented in Fig. 5. Whereas the trapped (os-
cillating, librating) particles form closed trajectories, the untrapped particles form
unclosed P-Q trajectories. The untrapped and trapped particles are separated by the
separatrix, crossing the e-coordinate axis.

Let us norv return to our prollem of Landau damping. As has already been said,
one of the basic assumptions of the analysis consists in the requirement that u : cotlstt
rvhich can be exactly satisfied only for an infinitesimally small rvave amplitude. For a
finite amplitude, the particles start to oseillate, as has just been shorvn. Therefore, for
a finite amplitude, the Landau proceduie is vaiid in the time interval Af , for rvhich

(1  13)

(114)
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the change of u can be considered negligible. This interval can be estimated using
trapped particle dynamics. The period of the well trapped particle oscillations, rosc,

.r*
i  -  

o t '  
- g *

, o s c  -

ttBo
( 1 1 5 )

is considered to be a rvell founded measure of the validity of the Landau damping
procedure. This procedure is obviously valid under the assumption that the ',vave is
damped during a period shorter than ro"". The condition for this is usually

17ror" D I (1  16)

lvhere 7r, is the Landau damping rate (Landau decrement). For 2ro"" ( 1, the
nonlinear effect lvill be achieved even before a substantial part of the lvave energy is
absorbed.

The effect of trapping on Landau damping was discussed by O't\eil [8]. Using
an analytical approach, based on the carefully taking into account the effect of
generally trapped and untrapped particles (briefly mentioned above), O'Neil found
that the expression for Landau damping in the case of waves ivith a finite amplitude
is applicable at the beginning of the interaction, for times shorter than ro".. The
actual damping rate tencls to decrease asymptotically to zero. Beside this damping.
the lvave amplitucle oscillates lvith a frequency close to &:6s. For the instantaneous
value of the rvave decrement, 7(t), O'Neil found the follorving estimate

lo* 
'rtDa, N rosc^tL. (1  17 )

This expression can, therefore, be used to estimate the total amount of energy of finite
amplitude waves, absorbed in a collisionless plasma. The motion of trapped particles
is shorvn in Fig. 6 (the complicated evolution is caused by the nonlinearity of the
frecluency of trapped particles). The oscillation of the rvave amplitude gc is also shorvn
in F ig.  6 .

Let us norv shortly mention the Vlasov theory of small-amplitude rvaves, rvhich
propagate in a plasma in an external uniform magnetic field. The orbits of particles are
clue to their gyration rather complicated; the corresponding rvave-plasma interaction
is then described by a complicated form of the dispersion relation. For the general
form of the dispersion relation, see, e.g. [3] or [2]. In this chapter, rve shall give
only an outline of this derivation of the dispersion relation for the electrgstatic rvaves.
propagating in a magnetized plasma; rve shall follorv [9].

Let us suppose that the electrostatic {vave has its potential 91

? t : ? t o e x p ( i k . r - i c u t )

and let the lvave vector k has the perpendicular and the parallel component,

, k : k r y o * k l l z o

(1 1s)

(11e)

ego lc2 '
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(for simplicity, rve express the perpendicular component of k by the component kr).
Let the homogeneous magnetic field B : Bozo has its field lines parallel to the z-
coordinate. Let us express, as usually, the distribution function / for eiectrons in the
form

r. -f (r, v, t) : je(v) * f1(r, v, t)

where /s is the unperturbed part of / and fi is the perturbation. The \/lasov
for fi takes in this case the form

(120)

equation

(121 )

(r22)

(123)

Using the methods of characteristics (LHS part of Eq. (121) can be written in the
form of the total time derivative, following the unperturbed trajectory of the particle
in the r, v space), the solution of (121) can be expressed as

# . " * -avxB # : - *o r ,#

.fr(r, t, t) : -* 
f*Orr{t' ,t1 . ff at' .

Expressing
(h,pr) :  ( - f ro ,  Pro)exp i (k"z  I  kuy -  u t ) ,

and nsing (I22), we can obtain the expression for fi in the form

f t(u) : -ftoro 
l_*0, [exp i[h,(z' - z)*ko(a' -y) -r(t '  -t)] l  x

u n,irr. ̂ .' 7fo , ,- ̂ ,' )fo lx'  zzltsD! 
W 

* K=u. 
Au?l '

The particle's trajectories can be expressed as

u'! : 'ulcos(ar"r f  r/ ' )

(124)

(125)

, ' "  :  u" ,  (126)
rvhere r : t ' -1, lvhere us is the perpenclicular component of the velocity v ancl rvhere
a" : + is the cyclotron frequency.

After the integration, rve obtain

y' - y - 9l1.ir,1, 
", * rh) - sin r/]; ,'

"  ( r ) ^ '  '

usiqg the identity 
n=+oo

"i lsino 
_ 

t J^(l)"r^t,

ancl using the Poisson equation, ru" oU,lin Th" .lirp".rion

-  u  -  , r  --  -  w z t .

r:(+)

(r27)

(12s)

relation in the form

tp 1

l t ' + S o ' t  " r
? . m :

1 = e  ' l  J
lo,io,,* p,o"ffi+n,"ffi):0. (12e)- kru, - fla,
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As expected, the resonant condition has nolv more rich form

u) - nu)c - k"u" :9. (  130)

expressing the effect of the particle gyration by means of the cyclotron harmonics.
The solution of the dispersion relation is then given by the same procedure, as in

the case without magnetic field.

3. THE QUASILINEAR THEORY

The quasilinear theory represents the simplest form of the theories, which describe
the nonlinear interaction of rvaves with a plasma, and forms a part of the theory of
rveak turbulence. Originally, in the pioneering papers of Drummond ancl Pines [10]
and of Vedenov, Velikhov and Sagdeev [11], the quasilinear theory rvas used to desc.libe
the saturation (or relaxation) of kinetic plasma instabilities. The mechanism seemed
to be simple - the grorving instability affects the velocity distribution function in a
such lvay that the slope of the unstable part of the distribution function clecreases,
thus also decreasing the instability decrement.

The problem itself initiated a broad discussion of nonlinear and turbulent pheno-
mena; the quasilinear theory is an important milestone in the development of these
theories.

There exists yet another motivation for the quasilinear description of lvave-plasma
interaction - radiofrequency(RF) heating of plasma, and RF current drive. RF heating
is used as an auxiliary source of porver, suitable for heating plasma up to D-T ignition
temperatutes. RF current drive, lvhich can appear as a consequence of the absorption
of RF \vaves in the plasma, can substitute the inductive tokamak current. RF plasma
heating and RF current drive, are the typical effects of the interaction of RF fielcls
u' i th plasmas under kinetic regime.

Since the discussion of the selfconsistent evolution of instabil i t ies ancl of RF
plasma heating differ slightly in the definition of the problem, rve shall describe both
approaches separately.

For the investigation of the evolution of plasma turbulence rvithin the frame of
the quasilineat theory, the interaction of a lvarm electron beam, penetrating through
a plasma, bump-on-tai l  instabil i ty, is the prototype example [t2]. Generally, the
quasil inear descript ion of this folm of the interaction represents a rather complicated
problem. To describe the basic features of the quasil inear theory (QLT), the discussion
of the 1D (one-dimensional) model of the beam-plasma interaction for the case of a
homogeneous plasma rvithout magnetic field is sufficient.

Let us therefore assume that the distr ibution function depends on space coorcl ina-
te r, on velocity u and on t ime l.  The bump-on-tai l  instabil i ty distr ibution function

20
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