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Abstract: In this thesis, we study the influence of non-gravitational perturbations
induced by the Yarkovsky/YORP effect and solar radiation pressure (SRP) on
the orbital evolution of selected asteroids, asteroid families and pairs. These
perturbations are of great importance if one wants to perform precise and long-
term propagation of meter-sized and kilometer-sized bodies. Although they have
found many applications in the Solar System, here, we particularly investigated
how they influence the orbit of near-Earth asteroid (99942) Apophis and what is
their role in the age determination of asteroid families and pairs. Our numerical
simulations showed that the perturbations of Apophis’ orbit caused by the SRP
are orders of magnitude smaller than those produced by the Yarkovsky effect.
The age determination of asteroid families and pairs was another pillar of this
work. Over the past decade it turned out that the Yarkovsky effect must be taken
into account for backward propagation of pair/family members. We modified the
current method for estimating the age of asteroid pairs to be suitable for weakly
convergent cases and discovered 7 young pairs with similar-sized components,
which is in contradiction with the current theory of pair formation. In addition,
we focused on an interesting pair of asteroids - (87887) 2000 SS286 and (415992)
2002 AT49. This pair had ambiguous solution of its age. Nevertheless, using
numerical experiments with synthetic pairs, we were able to determine its correct
age and found that it is currently the youngest known system. Last but not least
we constrained the age of the well-known pair (6070) Rheinland — (54827) 2001
NQ8 and determined the most probable rotational sense of (54827) 2001 NQ8.
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Introduction

This dissertation deals with the dynamics of small bodies of the Solar System
considering the influence of non-gravitational perturbations such as the Yarkovsky
and YORP effects and the solar radiation pressure. More than a century has
passed since Ivan Yarkovsky, a Russian of Polish origin, described the phe-
nomenon that now bears his name. However, it was not until 20 years ago when
the non-gravitational perturbations induced by the Yarkovsky and YORP effects
became a major interest of the scientific community. Since then, both phenomena
have not only been analytically described but also confirmed on selected asteroids
in the Solar System. Although these perturbations are several orders of magni-
tude weaker in comparison to the gravitational influence of planets, they play a
significant role in long-term orbital evolution of meter-sized and kilometer-sized
bodies.

Due to the rotation and non-zero value of the thermal inertia of an asteroid,
there is an asymmetric temperature distribution on its surface and a time lag
between the irradiation and emission of thermal photons. The resulting, relatively
small, reaction force changes the heliocentric orbit of the body, namely its semi-
major axis. As a result, the body spirals either toward or away from the Sun
(Yarkovsky effect). The photons also affect the body by torque (YORP effect),
which leads to acceleration or deceleration of its rotation and a change in the
orientation of the spin axis. Note that the reorientation of the spin axis induced
by the YORP effect also retroactively affects the strength of the Yarkovsky effect.

Both effects have a wide range of applications. In particular, they are consid-
ered in situations where we study long-term orbital history of separate asteroids
or asteroid families and pairs. The deeper we want to delve into the past, the
more important is the accuracy of the Yarkovsky and YORP model that we use
on our journey back in time. An interesting task is, for example, the reconstruc-
tion of post-disintegration evolution of asteroid families and pairs. Assuming that
a certain set of bodies in the Solar System has a common origin, it is necessary
to prove such a hypothesis. For this reason we propagate their orbits back in
time with the view that all of them once meet in a certain space volume. It is
therefore necessary to model, as accurately as possible, the gravitational and non-
gravitational perturbations. These models then contribute to the overall view of
the orbital history of our Solar System.

If turned around, they can also give us an insight into the future. In this
respect, the most interesting for us are near-Earth asteroids (NEAs). It is because
they are under a stronger influence of the Yarkovsky and YORP effects and
also because for some NEAs, both of the effects have already been predicted,
measured, and finally confronted with the theory. Modeling of the Yarkovsky
and YORP effects has also provided for more accurate calculations of future
impact probabilities of near-Earth asteroids.

This thesis deals with some of these applications of non-gravitational pertur-
bations in the Solar System. The following is a brief overview of its structure and
the content of individual chapters.



Chapter 1 focuses on the theoretical background of the Yarkovsky and YORP
effects, which are the central concepts of the dissertation, and discusses their ma-
jor applications in the Solar System. It also introduces important photometric
quantities that are often referred to throughout the dissertation.

Chapter 2 presents our research into the influence of solar radiation pressure
on the orbital evolution of the near-Earth asteroid (99942) Apophis until 2029,
when it will experience a close encounter with the Earth. We used two scattering
models in our study - the Hapke model and the classic Lambert model. We also
compared the influence of the solar radiation pressure on the Apophis’ orbit with
the Yarkovsky effect.

Chapter 3 deals with young asteroid families and pairs, especially with methods
of their identification and age determination. We modified the current method
of age determination to be more suitable for weakly convergent (suspect) cases.
Using our modification we were able to discover 7 asteroid pairs whose members
are similar in size. This finding is, however, in contradiction with the current
theory of pair formation and is discussed in more detail. The end of this chap-
ter is dedicated to the best studied pair (6070) Rheinland — (54728) 2001 NQS.
We examined its age and also modeled different rotational senses of both com-
ponents, seeking the most likely realization. Finally, we reviewed the role of the
Yarkovsky effect in the orbital evolution of (6070) Rheinland — (54728) 2001 NQS.

In Chapter 4, we study an extraordinary pair of asteroids (87887) 2000 SS286
and (415992) 2002 AT49. Our simulations revealed that there are two possible
solutions of its age - either it is older than 50 kyr or younger than 10 kyr, which
would be a record among the well-documented pairs. The question of the real
age of this pair is the main subject of this chapter. We developed a numerical

method by which we were able to decide whether this pair is extremely young or
older than 50 kyr.

As the Yarkovsky and YORP effects can give us an insight into the past, we
also wanted to look back - to the history of understanding of our Solar System.
Appendix B provides a chronological overview of some significant historical mo-
ments in the research of the Solar System since Pre-Antiquity until the present
day. Within this context, we introduce key concepts of the perturbation theory.

Appendix A includes reprints of the author’s articles.

I believe that this dissertation will be of further use to those interested in non-
gravitational perturbations in the Solar System.

Author

In Jevicko, on 25" May 2018



1. Yarkovsky and YORP effects
in the Solar System

The motion of bodies in the Solar System is primarily determined by gravity
of the Sun and planets, where the interaction with planets is considered only as
a minor perturbation.

However, smaller bodies (D < 10 km) are also influenced by non-gravitational
perturbations. On long time scales, these can have a major influence on the
orbital motion. Non-gravitational perturbations include the Yarkouvsky effect,
YORP (Yarkovsky — O’Keefe — Radzievskii — Paddack) effect, Radiation pressure

and the Poynting-Robertson effect. In this chapter, we focus on the former two.

1.1 Yarkovsky effect

The Yarkovsky effect produces a continuous drift da/dt of the semi-major
axis of the orbiting body. It is caused by the delay between the incidence of
the solar radiation on the surface and the subsequent re-radiation to a different
direction. The drift of the semi-major axis has major implications on the long-
term orbital evolution of small Solar System bodies with the size ranging from
~ 10 cm to ~ 10 km.

It is rather surprising that the Yarkovsky effect was introduced into the hall
of fame of major Solar System discoveries as late as the 1990s - almost 100 years
after it had first been published by Ivan Yarkovsky.

1.1.1 Ivan Osipovich Yarkovsky (1844 - 1902)

Ivan Osipovich Yarkovsky was born on 24 May, 1844 in a small military
outpost close to lake Osveya at Belarussia’s northern border. His father, Osip
Janovic, died when Ivan was 3 years old. After death of his father, little Ivan
and his mother left for Moscow, where his mother started working as a governess.
He received elementary education at a parish school and later frequented a mil-
itary school for orphans. He was, however, not admitted to a military technical
college - most likely due to his Polish national minority status. Nonetheless, in
1868, he was admitted to the Institute of Practical Technology (nowadays called
Technological Institute) in St. Petersburg and graduated as a civil engineer in
1872. Subsequently, he married Elena Alexandrovna Sendzikovskaya.

Yarkovsky was travelling extensively after his studies, visiting construction
machine producers in Germany, Belgium and France. He got employed in the
Kiev-Brest railway company and then in Alexandrovsk railway company Moscow-
Brest, for which he worked at different positions for over 20 years. Apart from
that, he became the president of the Russian Technological Society - an orga-
nization supporting technology development in Russia. Yarkovsky was not just
interested in railway technology but also by airfoil aerodynamicd] designed a
ship powered by wave energy, was involved in the development of a rotary printer,

'He passed his interest in aircraft to his son, Vitold, who became a pilot with Ilya Muromec
in St. Petersburg.



jackscrew, combustion furnace and other devices. His curiosity eventually brought
him to the natural sciences.

In his time, it was still believed that ether existed - an omnipresent substance
believed to be the transport medium for gravitational and electromagnetic inter-
action. He believed that an increase in the density of ether could be related to
increasing complexity of matter - probably implying the presence of more com-
plex elements. He was further assured in his opinion after Dmitri Mendeleev
discovered the periodic trends. According to Yarkovsky, the periodic trends illus-
trated that although each atom was created in its “stable form”, the diversity of
atoms that is observed could be a consequence of transitions between atoms and
coupling of ether with matter.

However, Yarkovsky correctly assumed that atoms can be divided into smaller
units and can undergo changes. He exchanged letters about this with Mendeleev
himself, who tended to be of the opposite persuasion. Yarkovsky’s ideas proved
to be correct only after natural radioactivity was discovered, by Henri Bequerel
in 1896.

The discovery of different kinds of stellar spectra in the second half of the 19th
century supported his thoughts about the creation, development and destruction
of stars. He thought that stars grew by attracting ether which can be converted
to matter in their core. According to him, not just stars, but also Earth and
other planets were to grow in size. Yarkovsky was, for a long time, studying
matter, radiation and gravity and he was looking for a complete theory that
would capture these phenomena. Unfortunately, he was wrong in many of these
assumptions and his ideas did not get the interest of the physics community.

However, his work of outstanding importance was published in French in 1888
and is called Kinetic Theory of Universal Gravitation in Relation to the Forma-
tion of the Chemical Elements. In this publication, he not only summarized his
thoughts on ether and the structure of matter but also mentioned an effect nowa-
days called the Yarkovsky effect. Motivated by the thought of omnipresent ether,
he argued that planets are being slowed down by ether as they orbit the Sun. To
prevent them from spiraling towards the Sun, Yarkovsky argued, there had to be
an effect acting against the decceleration of planets by ether. According to him,
this effect was heating up the compressed ether in front of the body that would
then expand on the opposite side of the planet, thereby giving the planet the
necessary acceleration. He supported this idea by the observation of the Great
Comet of 1882 (1882 II) which did not exhibit any decceleration along its orbit.

Due to health problems and family complications, he left the Alexandrovsk
railway company in 1894 and moved with all his 6 children to St. Petersburg.
There, he worked shortly for the Nevsky mechanical and shipbuilding plant be-
fore moving to a smaller town of Dyatkovo and becoming a vice-manager of the
Maltsovov railway engine company.

In 1901, he got ill and started taking treatment abroad - first in Badenweiler,
then Heidelberg. He died of sarcoma in Heidelberg’s faculty hospital in 1902.
During the Russian Revolution of 1917 Yarkovsky’s work got back to Poland, to
the hands of his grandson - Hendryk. The whole archive, however, disappeared
during World War II. The work of Yarkovsky was then re-discovered in a sequence
of coincidences.



An Estonian astronomer Ernst Opik (1893 — 1984), who studied the motion
of small bodies in the Solar System, published a paper, where he noted that a
similar effect of spiraling towards or away from the Sun was earlier suggested by a
Russian civil engineer Yarkovsky around 1900 (see . Ernst Opik was
referring to a pamphlet published in St. Petersburgh that he vaguely remembered
while reading it in Estonia in 1909. Independent of Yarkovsky, a similar effect
was discovered and published in 1952 by a Soviet astronomer Viktor Vladimir
Radzievskii (Radzievskii, |1952)). Though the effect was extensively studied in the
following years, the details about his discoverer have for long remained obscure.

There had been short mentions of Yarkovsky before his lost pamphlet was
discovered, in publications of a Soviet geologist Vladimir B. Neiman (Neiman
et all, and an american astronomer Joseph A. Burns (Burns et al., [1979).
Yarkovsky’s original writing was discovered as late as 2003 by an amateur Dutch
astronomer George Beekman. It was in the library of Sternberg’s Institute in
Moscow. A great deal of information about Ivan Osipovich Yarkovsky can then
be found in Beekman (2006]).
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Figure 1.1: Ivan Osipovich Yarkovsky on an undated photograph and the front
page of his pamphlet. Source: Beekman| (2006)).




1.1.2 The mechanism and the mathematical description

The Yarkovsky effect is a consequence of thermal re-radiatiation of the energy
received from the Sun. This re-radiation causes a relatively small reaction force.
Over a long period, the action of this force changes the heliocentric trajectory
of the body, especially its semi-major axis. Depending on the rotation of an
asteroid, this force then induces Yarkovsky drift either towards or away from the
Sun (Fig. [1.2).

a Prograde rotation b Retrograde rotation

Yarkovsky ' Yarkovsky P

drift drift /

(

"

" Thermal
re-radiation

Orhital motion

Figure 1.2: The origin of the reaction forces F for the case of prograde rotation
(a) and retrograde rotation (b). In both cases, the infrared radiation is emitted

from the afternoon side. Source: (2003)).

The Yarkovsky effect is formally divided into its diurnal and seasonal variant.
Fig. [1.2]illustrates the diurnal Yarkovsky effect depending on the two directions
of rotation. In Fig. [I.3] we can see both the variants in the course of the orbital
cycle. The extent of the Yarkovsky effect certainly depends on many factors such
as the size of the body, its composition and thermal properties, the distance from
the Sun, the orientation of its spin axis, etc.

To calculate the Yarkovsky force, we first have to find the temperature dis-
tribution on the surface of the body. We consider a suitable coordinate system
connected to the body. In general, the scalar field of the temperature T'(r,t) in
point r and time ¢ is given by the heat diffusion equation

pCr 0L (KVT) = i, (1.1)
where K is the thermal conductivity, Cp the heat capacity at constant pressure,
p the mass density and ¢y the rate of heating per unit volumeEl The energy
conservation equation for the surface layer of the body, which then also provides
the boundary condition for the heat equation, takes the form

e(o)oT* + Kny - VT = (1 — Ay (o)) o F, (1.2)

2Typically not considered and set gy = 0.



where n is the unit vector normal to a given surface element dS, pg = n, - ng
is the cosine of the zenith distance of the Sun (the unit vector ng is pointing
towards the Sun), o is the Stefan-Boltzmann constant, €(uo) is the hemispherical
emissivity, Ap(po) the hemispheric albedo, F the collimated flux of Sun’s radiation
and poF'dS the radiant energy absorbed by the surface element dS.

Figure 1.3: An illustration of the diurnal and seasonal Yarkovsky effect. Figure
(a) demonstrates the origin of the reaction force for the case of prograde rotation
with the axis of rotation perpendicular to the orbital plane. For this diurnal
variant, prograde rotation leads to the body spiraling away from the Sun. The
seasonal Yarkovsky effect is shown in figure (b), where the axis of rotation lies in
the orbital plane. The magnitude of the reaction force varies with the orientation
of the northern and southern hemispheres towards the Sun. The thermal inertia in
this illustration was chosen so that the heat delay corresponds to the displacement
in the orbit of 45°. If the radiation illuminates the hemispheres in points A and
C, then the reaction force takes the maximum action in points B and D. For the
seasonal Yarkovsky effect, the body always spirals towards the Sun, regardless of
the rotation direction. Figure adapted from Bottke et al.| (2006)).

Numerical solution for a wire model of an asteroid

In practice we model the Yarkovsky effect by using a wire model of an asteroid
with its surface being composed of many surface elements. In this paragraph we
introduce the local set of coordinates and necessary photometrical quantities. We
also derive and discuss the physical meaning of the terms in the heat equation
(1.1)) and provide equations, which are needed for calculating the Yarkovsky force.

Let us now define a local set of coordinates (local solar frame) with the origin
in the center of a surface element d.S, the base vector e, pointing in the direction
of n; and a vector e, || M, where M = (ng— pon_)/+/1 — p3 is pointing towards
the intersection of the horizon and the meridian passing through the Sun.



The last base vector e, is then chosen so that an orthogonal coordinate system

is obtained (Fig. [L.4).

Figure 1.4: Local orthogonal coordinate system (e, e,, e,) for a selected surface
element in a wire model of the body. Vector e, is identical with the normal unit
vector n,, vector e, has the direction of M = (ng — pon,)/+/1 — p2 and e, is
chosen so that a right-handed orthogonal system is formed. The surface element
is illuminated by a collimated radiant flux F' from the direction n.

Let I(n,ng) = I(u, po,n - ng) be the radiation intensity in the direction n,
which was originally coming from the direction ng, while 4 = cosf = n-n; and
(o = costlyp = ng-n,;. Then, in the coordinate system defined, it must certainly

hold that
V12 V1 — p2cos ¢
ny = 0 n=|./1-pu2sing |, (1.3)

Ho w

where (6, ¢) are the usual spherical coordinates.
The amount of radiant energy scattered by the surface element dS per unit
time into the upper hemisphere €1, is given by the expressionﬂ

dgsca = dS/ :u[(:uv Ho, ¢) dQ) (14)
Q4

where I(p, 1o, ¢) is the intensity of the scattered radiation. The ratio between the
radiant energy scattered by the surface element dS to the upper hemisphere ),
per unit time, and the energy of perpendicular incident radiation to the surface
element dS per unit time is referred to as hemispheric albedo

1

Ap(po) = F_,uo o pd (g, o, @) dS2. (1.5)

3dE, = I,(z,y, z,,0,t) cos 0 dv ds df is the energy emitted in the frequency range [v, v+dv]
by an infinitesimal surface element ds in the direction (¢, 8) to a solid angle df in a time interval
dt (Mihalas, [1978)).

10



Further, we can define the Bidirectional scattering function re..(p, to, @) using
the expression

I(ﬂa M0,¢) = FTSC&(M?MO?QS)' (16)
The hemispheric albedo then takes the form
1
() = o [ it o, 0) (L.7)
Ho Ja,

Now we will describe the physical meaning of the terms in the heat equation (|1.1]).
The thermal energy corresponding to the portion of radiation that is absorbed
by the surface element d.S per unit time is given by

dEabs = FugdS — dS/ pd (1, po, #)dQ = Fo(1 — An(po)) dS, (1.8)
Q4

where, in the case of g < 0, we set d€.,s = 0.

Let us now define the total directional emissivity € as the ratio of the total
flux emitted in a given direction to the solid angle AQ to the total flux emitted in
the same direction by an ideal blackbody using the expression (Brewster} 1992)

I(p, po, @) cos OAQ
_ 1.
¢ I,cos0AQ (1.9)

where [, is the blackbody radiation intensity. In analogy, the total hemispherical
emissivity €y, is defined as the ratio of the total flux radiated to the upper hemi-
sphere to the total flux radiated by an ideal blackbody. This quantity fulfills the
following condition

B fQ+ I(ft, pro, @) cos 0 dS2 1

er(j10) = - = / i o, ) O, (1.10)

where 7, (1, po, @) is the Bidirectional emissivity function. By substituting (1.9))
to (1.10]), we get the following formula for the total hemispherical emissivity

1 1
en(po) = —/Q ecos0dS) = —/Q e ds. (1.11)
+ +

v ™

Using (|1.10) and the Stefan-Boltzmann law, the energy radiated by an element
dS to upper hemisphere €2, per unit time can be expressed asE|

ds | I(u,po,d)cos®dQ = e,(po)oT* dS, (1.12)

Q4

where o ~ 5.67 - 1078 Wm2K~* is the Stefan-Boltzmann constant. The phys-
ical meaning of the terms in the boundary condition ([1.2)) is then described by

expressions (|1.8]), (1.12)) and the Fourier’s law in the form
dQ = Kn, - VT dS, (1.13)

which expresses the amount of heat d() passing through the surface element dS
in the direction —n per unit time.

47‘(‘][, = O’T4.

11



In practical simulation, it is often necessary to make an appropriate choice
to the function r(u, po, ¢). There are simple empirical models and also more
sophisticated models motivated by the physics of the problem. With the simplified
empirical models, separation of variables is usually assumed for r(u, 1o, g)

(1, po, g) = d(p, po) f(9), (1.14)

where cosg = n - ng is the phase angle, f(g) the surface phase function and
d(u, po) the limb-darkening function.

For example, the traditional Lambert model assumes that the scattering of
the radiation has uniform probability in all directions (Lambert, 1759). This
makes the function r(u, 10, ¢) proportional to the cosine of the zenith distance of
the Sun. Thus leads to

A
(i, to, @) = (o) = o (1.15)

where A is the plain albedd]

Other frequently used empirical models include, for example, the Lommel-
Seeliger model (Seeliger, |1887), the Minnaert model (Minnaert, 1941)) or the
Lunar-Lambert model (e.g. Buratti and Veverkal [1983)). These models capture
the reflective properties of surfaces for different albedos. For example, highly
reflective surfaces with the albedo of &~ 1 can be described very well using the
Lambert model. In the case of asteroids with typical albedo of < 0.5, on the
other hand, the Lambert model can serve as a first approximation. For bodies
with the geometric albedo of < 0.20, the Lommel-Seeliger model is more suitable.

The second group, which is more motivated by the physics, includes the class
of Hapke models (Hapke| 1981} 1984} 1986, 2002, 2008, 2012). Moreover, Hapke
models have been recently improved and made more accurate. This includes,
for example, considering multiple scattering (Hapke, 2002) on grains with an
anisotropic phase function and considering the coherent backscatter opposition
effect (CBOE) on particles larger than the wavelength of the incident radiation.
Other improvements, especially with regard to the influence of the porosity of the
planetary regolith were presented in [Hapke| (2008]) and |Helfenstein and Shepard
(2011). Other analytical models used both in photometry and spectroscopy in-
clude the Shkuratov model (Shkuratov et al., |1999) or the Lumme-Bowell model
(Lumme and Bowell, |1981)). An exhaustive overview of all the models used is
provided in |Li et al.| (2015)). In the next chapter, the widely-used Hapke’s single-
scattering approximation is discussed in relation to the perturbation of the orbit
of the asteroid (99942) Apophis.

Let us calculate the non-gravitational perturbation forces. The photons of
incident radiation are either scattered from the surface of the body but a part
of them is also re-radiated in the thermal spectrum. Following from the third

Newton law, both the effects must contribute to the change of momentum of
the body.

5Which is equal to hemispheric albedo.
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After some algebra, it can be shown that the infinitesimal non-gravitational forces
acting on the surface element dS are given by

Afyen = —g(KfcanL + K3®M) dS, (1.16)
dfy, = —%W(K{hnl + Ki"M) dS, (1.17)
while
K1 (o) = /Q+ 127 sea(f5 pho, 0) dS2, (1.18)
K3%(po) = /m A/ 1 — pi? cos Preca(i, o, @) dS2, (1.19)
and
K™ (o) = %/m 12 (s pro, ¢) dS2, (1.20)
K3 (ko) = %/m /1 — 2 cos dro (1, o, ¢) dSQ. (1.21)

In the case of the Lambert model, Ki(10) = 204, K{*(1o) = %€, K5%(119) = 0,
K (uo) = 0. The resulting dynamical effects are, in complete, given by integral

summations
fsca_/dfsca fth _/ dfth7 (122)
S i

where we either integrate over the illuminated area S or over the whole sur-
face S’. Similarly, for the non-gravitational torques (the YORP effect), it formally
holds that

Toca = / r x dfia Ty, = / r x dfy,, (1.23)
s '

where r is the position vector of the surface element dS.

Let us note that the perturbation effects of the radiation forces in the visible
range are very small and even vanish in the case of circular orbits. However, the
perturbations induced by thermal forces fi;, are of application interest, especially
in relation to the changes of the semi-major axis. The Gaussian perturbation
equation for the semi-major axis takes, in the approximation e — 0, the form

(Bertotti et al., [2003))
da 2
—=—(f-e,+0(e)), 1.24
= = ) (124)
where n is the mean motion and f the perturbing force. The unit vector e, =
e, X e, lies in the osculating plane of the trajectory. Here, e, is the unit vector
pointing along the angular momentum vector and e, the unit vector in the radial

direction®l
SFrom figure (Fig. , it is apparent that f - e, = — fy.
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Linear model for finding the surface temperature 7°(0,¢)

To investigate the influence of the Yarkovsky effect, it is first necessary to
determine the temperature distribution on the surface of the body. In general, this
is achieved by solving the heat equation ((1.1)) in a coordinate system connected
with the moving body in the form

or

i kV*T =0, (1.25)

where Kk = % is the so-called thermal diffusivity. This simplified formulation
p

of the heat equation holds, as long as we disregard the dependence of p, Cp and
K on temperature. If we assume small temperature fluctuations AT within the
volume of the body, we can introduce constant values of these quantities, taken
at an average temperature T, .

Let us first consider a 1D case, i.e. T'(r,t) — T'(x,t), where x is the depth. To
simplify the subsequent calculations, especially equation , it is advantageous
to introduce the following coordinate scaling: © — 2’ = x/l; (Spencer et al.
1989; Lagerros, 1996b)), t — ¢ = e = t) (Vokrouhlicky, 1998a). The imaginary
unit fulfills i = /—1 and w = 27 f, where f is the rotational frequency of the
body. The physical meaning of [, is the penetration depth of the thermal wave,
as shown further. Using this new set of coordinates, it must then hold that

0T («',¢) _ r OPT(2', ()

T T o o (1.26)

and, therefore,
oT(2',¢) _ 0*T(2',()
o ox2

as long as the scale parameter is [, \/E

Owing to the periodic nature of the incident radiant flux, we can assume that
the temperature will also vary periodically in a given point. For this reason, it is
reasonable to assume the expression for T'(2’, () (and AT'(z',()) in the separated
form of the Fourier series

i (1.27)

T(a',¢) = Tay + AT (2, ) = Toy + Y Tu(2')C", (1.28)
Tt0
where ¢ = y/—1 is the imaginary unit and 7, respective Fourier coefficients.

Substituting to ((1.27)) yields the differential equation
OAT (x',¢)  O*AT(a',()

) = 1.29
ZC ag 8(1,’/2 ) ( )
which transforms to the equation for the n-th Fourier coefficient
T, (z")
If we consider the boundary condition T},(c0) = 0, the solution is
Tn(z') = T, (0)e~ Vi, (1.31)
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Consequently, by taking equations (1.31]) and - we obtamﬂ

T(a/,t) = Toy + Z T, (0)e V3% e/t /5e0n), (1.32)

n=—0oo

n#0

the real part of which is

400
T(2',t) = To + ZTn(O)e*\/gm/ cos (nwt — \/gail + ¢n), (1.33)
n=1

where ¢,, = —nwty is the corresponding phase angle (Lagerros, 1996b)). In the
original coordinates (z,t), we obtain the real part in the form

T(x,t) = Tav+§T (0)e V2T cos (nwt— \les +¢n) (1.34)

Looking at the expression above, it is apparent that the penetration depth of the
thermal wave [, is a measure of the exponential attenuation of temperature.

To obtain the Fourier coefficients 7T,,(0), a boundary condition for the heat
equation is necessary. Therefore, we re-formulate the equation , SO thatﬁ

(u0)oTH0,1) — K (8ng’ “)O = A€ G ), (135)

while we assume the energy flux to a surface element also in the form of a Fourier
series

+oo
& (1o, ¢ Z En(10)C" = Enw + AE (10, () = Ewv + Y Enlmo)¢". (1.36)
n=—oo n;;(c))o

In the following expressions, for brevity, we do not explicitly specify the depen-
dency on pg. If we use the linear approximation T* ~ T, +4T3 AT, the equation

(1.35) takes the form

T(x,t
eoT +4eaT3 AT(0,t) — K <%) =[1—- A&y +[1 —AJAE.  (1.37)
X 0
The first two terms at both sides of the equation are equal, which gives
T (z,t
4eaT3 AT(0,1) — K ( g; )) = [1 — AJAE. (1.38)
0

A simple calculation reveals that it holds

<8Téi’ t))o = —(+i)y f Tn(O)\/g et (1.39)

S

o
+00 ‘
AT(0,8) = Y T, (0)e™ =),
o

Ti = e/ and Vin = /Y /n = (1/v2)(1 +i)y/n
8The sign with the term K (%)0 changed with regard to the equation (1.2]) because in this
case the coordinate x is the depth.
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Substituting (1.39) to (1.38)), we obtain the expression for the Fourier coefficient
T,(0) and after using 7,,(0) in we get the solution for T'(z,t).

Let us briefly demonstrate, for instance, the complete solution of the 1D prob-
lem for the eigenfrequency (n = 1). Even though we use just one frequency, this
simple solution provides a basic insight into major qualitative characteristics of
the Yarkovsky effect. In this case it holds that

E(t) = Euy + Eret10), (1.40)

and
T,(0) = (1—-A)&

- . (1.41)
dea T3, + (1 +4)K %i

After some algebra we get

(1-A)& 1 (1 -A)& 1 i

T1(0) = = 1.42
1(0) deoT3 14+ S +1iS deoT3 /1 +2S + 2526 ’ ( )
where tany = —His and S = \/%&2050;3 . Here, 1 is the contribution to the

total phase. Substituting ([1.42)) to (1.32]) it holds for the surface layer that

(1-4)& 1 ez‘w(ptﬁ%).

T(0,8) = Thy +
(0.%) deaT3, /1+28 + 252

(1.43)

From this result it is easy to see that the non-zero value of the thermal conductiv-
ity K results in the phase shift 1)/w which causes a delay between the irradiation
and the corresponding increase of the surface temperature (see Fig. [1.2)). The
solution containing all the T},(0) terms can be found in [Capek| (2007).

In many cases, a 1D model is sufficient for solving the dynamical action of
the Yarkovsky effect. Especially with numerical simulation, we often use 3D
wireframe models of the body, whereupon the body’s surface is divided into a
large number of triangular surface elements, e.g. using the Delaunay triangula-
tion method. For each of these elements, we solve the contribution to the total
Yarkovsky drift of the body using the 1D approximation. For small Solar System
objects, it is reasonable to expect that the solar radiation is the only source of
energy. Then we can imagine that the body consists of a practically isothermal
core and the temperature fluctuations happen exclusively in a relatively thin sur-
face layer. If the penetration depth of the heat wave [; is much smaller than the
dimensions of the body, then this approximation is well-justified. This criterion
is usually met for bodies larger than ~ 20 m, unless they exhibit large thermal
inertia I' = /pCK. Thus, for each surface element of the body, we numerically
solve the 1D heat equation. Then we obtain the resulting Yarkovsky force as the
superposition over all the surface elements (Capek and Vokrouhlicky, 2005).
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Linear spherical 3D model of the Yarkovsky effect

The ideal solution of the problem would certainly be a complete 3D analytical
theory, which would reliably determine the temperature distribution inside a body
and calculate the resulting Yarkovsky force. Unfortunately, the complexity of
some of the calculations require certain simplifications regarding the shape of
the body.

On the other hand, there are works that capture, to a varying extent, some
special cases for solid spherical bodies. They typically consider two classical
variants of the Yarkovsky effect - the diurnal and seasonal (Fig. [L.3), which were
first discussed in |Rubincam| (1995, 1998) and |Farinella et al. (1998). For instance,
Vokrouhlicky| (1998a) provides an analytical theory valid for the diurnal variant
of the Yarkovsky effect using the linear approximation on a spherically rotating
bodyﬂ, which is further extended in [Vokrouhlicky| (1998b)) to an oblate spheroid.

The most general self-consistent linear theory of Vokrouhlicky] (1999) considers
both the rotation of the body with the angular frequency w,; and its revolution
around the Sun with the angular frequency wye,. According to this theory, the
drift of the semi-major axis da/dt depends both on wyo and wyey. The diurnal and
seasonal variants of the Yarkovsky effect then appear only in the limiting case of
“rot >> 1. This limit is fulfilled for most cases in the Solar System. It can also
bevshown that the relative contribution of the newly appearing terms dependent
both on wye and wyey to the diurnal Yarkovsky drift is smaller than 1073, This
conclusion then justifies the use of traditional limit variants of the Yarkovsky
effect for most problems in the Solar System.

In this paragraph, we are going to derive the form of Yarkovsky force and
its consequence on semi-major axis perturbation. Before we do that we will
derive the thermal parameter ©, an important quantity needed for calculating
the Yarkovsky force. Let us to introduce additional variable scaling in the heat
equation (Spencer et al.,[1989). Let 7" =T/T., &' = £/E. and a = 1 — A, where
T, is given by the expression eoT? = a&,. It also holds that AT" = AT/T, and
T. = /2T, (see [Rubincam, (1995, [1998)). The flux &, corresponds to the solar
radiation flux at the current location of the body. We have

« (aAT(x,g)

V2eaT3AT(0,¢) — s )zaAg. (1.44)
0

By simple calculation, we obtain

V2AT(0,¢) — (1.45)

K (6AT($,C)) :aAglé'*
0

eoT3 ox eaTs

*

The final form of the boundary condition for the heat equation, this time in the
scaled variables, is then given by

V2AT'(0,¢) — © <%> = A&, (1.46)
0

where © = fﬁ is the so-called thermal parameter.

9For an axis of rotation preceding around the angular momentum vector, Vokrouhlicky
(1998b) applies a numerical solution.
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We also assume constant angular distance 6, of the Sun from the axis of rota-
tion. This practically means considering only the diurnal variant of the Yarkovsky
effect because this angle changes due to orbiting around the Sun. An extended
solution, which includes also the seasonal Yarkovsky effect or a combination of
both can be found either in [Vokrouhlicky| (1999) or Spitale (2001]).

It is advantageous to introduce two coordinate systems: (a) a system co-
rotating with the body and (b) a non-rotating system fixed with respect to the
position of the Sun (Fig. [1.5). The system (a) is defined in such a manner that
the axis z points along the axis of rotation of the body. The x-axis is chosen so
that in ¢ = 0, the Sun lies in the zz plane. The y-axis is then perpendicular to
x and z. In this system of coordinates, we define the usual spherical coordinates
(r,0,¢), where r = 0 in the centre of the body, the angle € points away from the
spin axis and the angle ¢ points from the x axis in the positive direction.

The non-rotating system (b) points with its Z-axis also along the body’s axis
of rotation. However, the X axis merges with the x axis only at t = 0. The
choice of Y-axis again forms an orthogonal system. Let the spherical coordinates
be (r,9, ). It is then apparent that (¥, ¢) = (6, ¢ + w ).

Figure 1.5: An illustration of the co-rotating system zyz as opposed to the XY Z
system. Direction to the Sun is denoted ny. We assume that the body rotates
around the principal axis of the inertia tensor with the angular velocity w. The
angle between w and ng is 6.

The normal vector n; in the point (0, ¢) is given by the expressionlfl
n, (0, ¢) = (sinf cos ¢, sin § sin ¢, cos §)*, (1.47)
and for ng it holds that

ny (0o, t) = (sin by cos wt, — sin Gy sin wt, cos by), (1.48)

10Tp the co-rotating system.

18



which can be expressed as follows, using the complex notation

%C sin 90 %C sin 00
nyg = | s¢sinty | + [ 5¢sindy | (1.49)
cos 6y cos 6y

while * denotes a complex conjugate vector. The dot product of these vectors
then expresses the energy flux &£ to a surface element at the position (6, ¢) in
time ¢

g/ = HJ_(H, ¢) : 1’10(90, C)a (150)

where we assume the shadowing condition & =0 if n; - ng < 0.
Similar to the 1D case, it is necessary to solve the heat equation. However,
now we do so in spherical coordinates. Let 7’ = r/l, and ( = e™'. It can be

shown that (1.25]) takes the form

 OAT (.06, i{ 9 (Tﬂi

¢ “ o\ o

) + A8, ¢)} AT'(r,0,6,¢),  (1.51)

where

1 o (. 0 1 02
A(H, ¢) = Sin 0 |:% <SlIl ‘9%) + _SIDQT&] . (152)
The boundary condition is, in the linear approximation

V2AT'(R',0,6,¢) + © <8AT’(2/71,9’ i O) = AL (1.53)
R/

As often in mathematical physics, where fundamental equations are solved in
spherical coordinates, we express £'(6y, 0, ¢,() and AT'(1’,0, ¢, () in the form of
spherical harmonics.

E' =" an(b0,)Yur(0,0) = &, + AE', (1.54)
n>0 k=—n

n

where AE" = > > au(6o, Q)Yur(0,¢). It follows from the orthogonality of
n>1k=—n
spherical harmonics that

ank:/g;gl(e(be?(ba C) T;,kk:(ea ¢)d97 (155)

while it is necessary to keep in mind that we integrate only across the illuminated
part €2. This is because obviously £ = 0 in the non-illuminated region. For a
general angle 6, it is problematic to find the integration area (2.

However, we can benefit from Wigner’s D-matrices which enable rotation
of spherical harmonics by angles «, 3,7 and take the form Df;l,m(a,ﬁ,’y) =
e~eqd! (B)e""™. Here, d’ , presents minor Wigner d-matrices, usually spec-
ified in classical literaturelﬂ (e.g. [Wigner} 1959).

HThe strategy for calculating the a,x coefficients is to perform the integration across the
hemisphere for the case of 6y = 0 and apply Wigner’s D-operator on the spherical function
Y,k (0, ¢) where the corresponding Euler angles are « = 0,8 = 6y, = 0. Therefore a,, =

n

fQ+ 6/(079?¢7<) Z Dzuk(ao)yrjm’(a(b) ds.

m'=—n
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Let us highlight that in our problem, the coefficients a,x(6y, () can further be
separated to the form a,.(6y, () = bur(fo)C*. The meaningful terms correspond
to n = 0 (monopole) and n =1 (dipole terms). It holds that

™ ™ ™ .
bo() = Qgp = %, bl() = \/;COS 90, bl:l:l = :F\/ESIH 90. (156)

VT 1

Since agoYoo = %5+ 3 Tm = , it is apparent that this monopole term corresponds

to &, because it must hold that E=1+AE.
Similar to the source terms &', AE’ respectively, the AT'(r', 0, ¢, () term can
also be expressed using spherical harmonics. Let

AT'(r,0,6,¢) = Z t 0,0), (1.57)

n>1k=—n

where we can perform an additional separation ¢, (1, () = 7/, (r')¢*. The subse-
quent procedure would again be based on solving the heat equation (1.51]) with

the corresponding boundary conditions (1.53)) and it is discussed in Vokrouhlicky
(1998a)). It can be shown that in a first approximation, it holds that

1
V2(1 4 \)
n b11(0o)C

1+ Z50(V=iR)
where C.C. denotes a complex conjugate expression and A = ©/y/2R’. Similarly

in the system fixed with regard to the Sun, where we do not expect an explicit
temporal dependence ¢

AT (R,0,¢,() = {bm(eo)Ym(& o)

Yi1(0,¢) + C.C.} , (1.58)

1
m {b10(90)3/10(197 ©)

N b11(6o)
1+ 250 (V=iR)

The fraction in the second term of this expression can be assumed to take the form

1 _ A(z)+1iB(x)
14+ 2p(z)  C(x)+iD(z)

1+

where z = v/—iR' and z = v/2R'. It then certainly holds that z = (1 — i)x.

Let us now specify the intermediate steps leading to the explicit forms of
functions A(z), B(z),C(z) and D(x). It can be shown that the complex function
¥ (z) is related to the spherical Bessel function of the first order j;(z) by the
expression (Vokrouhlicky, [1998al)

AT'(R',9,¢) =

Y (9, ) + c.o.} . (1.59)

= E(x)e"®), (1.60)

U(z) = - %jl(z)—l. (1.61)

If ji(z) = 9% — <2 then

(22 — 3)sinz + 3z cos 2

Y(z) = (1.62)

sin 2z — zCos 2
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After a brief calculation, it turns out that

1 B P(2)
TF 20() PO QR (1.63)

where
P(2) = (¥ — 1) —iz(e*™ + 1),

A
Q) =1x

x [(2% = 3)(e®” — 1) + 3iz(e** + 1)] . (1.64)
It is easy to show[F that P(z) = A(z) + iB(x), C(z) = A(z) + Re{Q(z)} and
D(z) = B(z) + Im{Q(z)}. Then

Alx) = —(z+2) — [(x — 2) cosz — wsin ], (1.65)
B(z) = —x —€e®[xcosz + (x — 2) sinz], (1.66)

C(z) = Ax) + HL)\{?)(:U +2)+e*[3(x — 2)cosx + x(x — 3)sinx]}, (1.67)

D(z) = B(z) + {z(x 4+ 3) —e"[z(x — 3) cosz — 3(x — 2)sinx]}. (1.68)

I+ A

1.1.3 Consequences on the dynamics

It is apparent that the Yarkovsky effect acts on the osculating orbit of the body
through additional perturbing acceleration. For a quantitative description of the
Yarkovsky force, it is necessary to know the form of the function ry,(u, po, @)
. Our further considerations are based on Lambert’s model. We start with
the known relation between the energy and the momentum of a photon £ = pc,
where c is the speed of light.

Let us imagine the situation (Fig. |1.4)), when the surface element dS radiates
in time dt a packet of radiation d£ in the direction n to the solid angle df2. The

corresponding change of momentum of the body is then 2 = —19Ep Tt certainly

dt T cdt
holds that
dp 1
= =~ 1(0.60,¢) cos6.dS dn (1.69)
c
or, analogously
dp 1 2
9B L1 o o dS dom.. (170)

The change of the momentum of the body after radiating in all the directions
from the surface element d.S is then
dp

1 I
Pl ds nL/ I(p, pro, ) p? dQ = —dS n, - T (i, o, @) p® dS2, (1.71)
C O+ Cc Jo+

while we expect that it holds in the Lambert model that ry, = € = const. The
Yarkovsky acceleration day is then

4
3 mc

dSn. (0, 9). (1.72)

12We remind that sinz = - (e”* — e™%) and cosz = 1 (e’* + 7).

21



The complete contribution from all the surface elements is obtained by integration

over the whole surface of the body™

ay = _2%/T4(R797¢7 C)nl(ea ¢) s
~ _§3T3 /AT (R,0,6,0)n. (0, 6)dS. (1.73)

For illustration, we will now calculate the Z-coordinate of the Yarkovsky force
fz acting on the unit mass of the body in the XY Z coordinate system. We will
use (L.73) and the result of (1.59). It, therefore, holds that
2 €0
=~ [ TYR.Y (9, 0)dS
Fo= =g [ TR0,
8 €0

~ ___T3 / AT(Ra 197 @)an(f‘?a 80) ds =

4

— - —T3T, _cosby /0082 VdS =
3 me V2(1+ ) Js
leo, , ,cosby

=———T,R 29dQ =
3me * 1—1—)\/SCOS

4ov _ cos b
=—— 1.74
9 14N ( )

while ® = T R?E, /me. In a similar manner, it can be shown that

4o _sin 6y

_ %
fx+ify 9 1+

where Fp = E(V2R') adr = §(v/2R'). Considering that fx and fy are functions
of A\, they must depend on © and R’. The equations for fx and fy can be derived
in a rather complicated manner, whereupon

Egpe Pr (1.75)

doe . 14+ %0
=—— 0 1.76
Ix g Psin T2 § a0 (1.76)
and A o
fy = ——2 P sin b, s (1.77)

9 1 +2I{1@+/{2@2.
The coefficients k1, ko and k3 are the functions of R'. Let us outline the derivation
of these functions. We first compare (1.76]) and (1.77) with the equation (.75
which yields

1 _ 1+I€1@
R BE(x)e @} — 1.78
e{1+)\ (z)e } 1+ 2k10 + k0%’ (1.78)
1 k30
I E(x)e ) § = s . 1.
m{1+>\ (z)e } 1+ 2610 + .02 (1.79)

From ([1.60)), it follows that

(AC+BD) (BC AD

— ‘ — i (x)

13The term T. provides a zero contribution after integrating over the whole surface of the
body and, therefore, does not contribute to the overall Yarkovsky effect.
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and, therefore

x (AC+BD): 14 k10 (1.81)
x+ 0O \ C%+ D2 1+ 2k10 + k02’ '

x <AD — BC’) _ K3© ' (1.82)
x+0 \ C?+ D? 1+ 2Kk10 + k0?2

Let us now turn our attention to equations ([1.65)-(1.68|) and define functions
C'(z) and D'(z) so that

©
C=A+—=C D=2B D' 1.83
i +0 ta +0 (1.83)
while it apparently holds that

C'(z) = 3(x +2) + €*[3(x — 2) cosz + z(x — 3) sinz], (1.84)
D'(x) = z(x + 3) — e*[z(x — 3) cosx — 3(x — 2) sin z]. (1.85)

Substituting ((1.83)) to ((1.81)) and (1.82) we obtain

A%(z) + B*(x) + A(x)C'(z) + B(z)D'(x
) = S B MO D) )

z[A?(z) + B?(x)

_ A%(z) + B*(x) + C*(x) + D"*(x) 4+ 2A(x)C"(x) 4+ 2B(z) D' (x)
() = 2[A2(2) + B(2)) , (L87)

rs3(z) = , (1.88)

also keeping in mind that z = v/2R'. Applying (1.76) and (I.77) in (1.24) we
easily show that the diurnal Yarkovsky drift is

da 8a ® Er sindp
a). T T 9n 1o o 1.89
<dt)d On Ixa 7T (€) (1.89)
or ] . .
a o K3
dt),” 9n 1.
(dt>d 9 n 1+ 260 + K02 cosy +O(e), (1.90)

where v is the obliquity.
Let us also mention the seasonal Yarkovsky drift (Vokrouhlicky, [1999)

da\  4a® Egr sindp
dt s_ 9n 14X

sin?y + O(e) (1.91)
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or

da 4o O k30, .y
dt),” 9n @ 1.92
(dt)s 9 n1+2,§1@n+,€2@%sm v+ O(e), (1.92)
where 7 is the mean motion and 0,, = fa\g .

Thus, the Yarkovsky drift depends on the composition of the body or the com-
position of the surface layer, the distance from the Sun, the obliquity, the diameter
of the body and other thermophysical parameters. It is then technically impossi-
ble to graphically illustrate the complete general characteristic of the Yarkovsky
effect. However, if we limit ourselves to a smaller set of input parameters, we can
plot the values of the Yarkovsky drift for selected cases (Fig. |1.7)).
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Figure 1.6: The dependence of the functions k1, Ko, k3 on R’ according to expres-

The dependence on obliquity v

For the sake of further considerations, let us note that thanks to R’ > 0, the
values of functions ky(z), ko(z) and k3(z) are positive. It is then apparent from
the dependence of the semi-major axis drift on the obliquity v that (a) for the
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Figure 1.7: The upper figure shows the mean change of the semi-major axis Aa
for asteroids in the inner main belt in the period 1 Myr. Both variants of
the Yarkovsky effect were considered. The heat capacity was, in this case,
C, = 680 J kgt K~!. The density of the surface layer and the bulk density were
1.7 g cm ™3 and 2.5 g cm 3, respectively. The period of rotation was for the chosen
asteroid diameter D [m] calculated from the expression P = 5(D/2) s (Farinella
et al., [1998), which well captures the observed distribution of rotation periods of
fragments formed by laboratory disintegration of smaller bodies (&~ 20 cm) and it
is also in good agreement with observations of actual asteroids. Plotted are the
cases of different thermal conductivities K = 0.001,0.01,0.1 and 1.0 W m~—! K.
Let us note that at lower values of thermal conductivity K ~ 0.001 m~* K=, cor-
responding to regolith-covered bodies, the diurnal variant of the Yarkovsky effect
is dominant. At higher values of K, the seasonal variant is dominant (Farinella
et al., [1998). The lower figure demonstrates the mean change of the semi-major
axis during the estimated collisional lifetime of the asteroids (Bottke et al., [2005)).
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diurnal variant, prograde rotation implies da/dt > 0, while retrograde rotation
implies da/dt < 0 and (b) for the seasonal variant, da/dt < 0 is valid for both the
prograde and retrograde rotation. The diurnal Yarkovsky drift takes extremal
values if the spin axis lies (7 = 90°) or is perpendicular (y = 0° V vy = 180°) to
the orbital plane. The seasonal Yarkovsky drift is zero if v = 0° and maximum
if v = 90°.

The dependence on size R

Let us first consider the limit case of large bodies R’ >> 1 (bodies larger than
units of meters) with the corresponding penetration depth ;. If R — oo then
kK1 — 1, kg — 1/2 and k3 — 1/2. In this limit, the dependence of the semi-
major axis drift on the size R can only originate from the term ® = 7R, /mc
where m ~ R® and, therefore, da/dt ~ 1/R (cf. Fig. [L7). If R’ << 1, then
ki ~ 1/R', kg ~ 1/R? and k3 ~ R’ in the limit of R' — 0. Consequently, it is
evident that da/dt ~ R? which is consistent with the expected result, whereupon
the Yarkovsky effect should vanish for very small bodies. The maximum drift is
achieved for R’ ~ 1.

The dependence on heliocentric distance d

Let us independently analyze the diurnal and seasonal variant of the effect.
For the diurnal variant, we assume the usual situation of large © and R’. We then
easily see that da/dt ~ ®/(n©). The power of four of the subsolar temperature T
depends on the sunlight flux E, which decreases with the square of distance d?.
From this, it immediately follows that T, ~ 1/d"/?. From the dependence of
the thermal parameter on the subsolar temperature © ~ 1/73, it follows that
© ~ d*?2. The product n® is then virtually independent of the distance d and
the term where the distance has the main impact is ® ~ 1/d?. Finally, we can
say that for the diurnal variant, it approximately holds that da/dt ~ 1/d?.

For the seasonal variant, one has to take more caution. Firstly, an approx-
imation similar to the previous case (i.e. da/dt ~ ®/(n©,)) is not justified in
all cases. For example, for the Kuiper belt bodies, the penetration depths of the
thermal wave can reach up to I, =~ 0.1 km, which prevents us from using the limit
R' — oo. The da/dt drift for the seasonal variant is, therefore, rather flat and
corresponds approximately to ~ d.

p [kg/m’] K [W/m/K] C [J/kg/K]

Basalt 3500 2.65 680
Iron-rich 8000 40 500
Regolith-covered 1500 0.0015 680

Table 1.1: Thermal parameters of some materials. Source: |[Farinella et al.| (1998).

1.1.4 Detection and selected applications

Let us first mention some key information about the detection of the Yarkov-
sky effect. It is apparent from the previous section that the Yarkovsky effect
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has long-term influence on the semi-major axis of the body. The effect causes
both radial and transversal shift in the body’s orbit. Consider the perturbation
equation (e.g. Danby| [1992)

dn  3nda

dt  2adt’
where n is the mean motion. The change of the mean anomaly AM during a
time interval At is given by

(1.93)

3nda 9

AM = 1o (At)“. (1.94)
The Yarkovsky drift da/dt then induces transversal and radial shifts in the orbit
AT ~ anAM and Ar ~ aeAM/n, where n = /1 —e?. Let us note that the
observations do not allow us to directly measure the secular changes of the semi-
major axis. However, it is possible to measure a shift in its trajectory. The first
body, for which the Yarkovsky effect was predicted and then measured was the
near-Earth asteroid (6489) Golevka. Vokrouhlicky et al.| (2000) predicted, from
the then-available radar and astrometric data, the positions of Golevka during
its close approach to Earth in 2003. They made the prediction in two versions -
one without and one with considering the Yarkovsky effect. Radar observations
and the subsequent analysis of Golevka’s orbit (Chesley et al., 2003) showed
very good agreement with the prediction involving the Yarkovsky effect and a
significant deviation between real trajectory and the trajectory calculated from
the purely gravitational model.

Another body, for which the Yarkovsky effect was detected using a range
of optical methods is (152563) 1992 BF (Vokrouhlicky et al., 2008). There were
optical observations available from years 1992-2005 and 4 observations from 1953.
The whole data set could not be, however, fitted by a purely gravitational model,
unless the Yarkovsky effect was included.

With time, the number of successful detections grew, as well as the number of
suspected cases, for which it might be possible to detect the Yarkovsky effect in
future (Chesley et al., 2008; [Nugent et al., 2012 |Farnocchia et al |2013b)). These
works are clearly a big motivation for observational astronomy. Note that the
most accurate measurement was achieved for the asteroid (101955) Bennu. The
smallest body, for which the Yarkovsky effect was detected is 2009 BD (D = 4 m),
among the largest are (2100) Ra-Shalom and (4179) Toutatis (Nugent et al.
2012; [Farnocchia et al., 2013b). A more comprehensive list can be found in
Vokrouhlicky et al| (2015a) and |Chesley et al.| (2016)).

To make a preliminary test if and to what extent the Yarkovsky effect influ-
ences the orbital evolution of an asteroid, its available astrometric data is fitted
using an additional transversal component of acceleration ar = A, /r?, where 7 is
the heliocentric distance (Farnocchia et al., 2013b). This method is very advan-
tageous because it allows us to detect the Yarkovsky effect and the semi-major
axis drift without knowing the exact thermophysical parameters of the object.

Transport of meteoroids and NEAs from the main belt

The first studies that considered the Yarkovsky effect as the possible cause of
meteoroid transport from the main belt towards the Earth are |Opik (1951) and
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Figure 1.8: On the left are the radar observations and the computer model of the
near-Earth asteroid (6489) Golevka (Source: NASA). On the right is the radar
measurement of Golevka’s position from the Arecibo Observatory in comparison
to the prediction of a purely gravitational model and the model including the
Yarkovsky effect. Plotted are also the corresponding confidence bands (3¢) for
each of these models. Source: |Chesley et al.| (2003)).

Peterson| (1976]). Today’s view on the transport mechanisms due to the Yarkovsky
effect, however, originates from more recent analyses by [Farinella et al. (1998]),
Vokrouhlicky and Farinella (2000) and Bottke et al.| (2000b)).

If we considered direct transport of meteoroids by spiraling towards the Sun
as a consequence of the Yarkovsky effect, it would appear that e.g. for meter-
sized objects, this effect would happen at non-realistic time scales. The bodies
would, furthermore, have to have uncommon thermophysical parameters. On the
first sight, it could then seem that the Yarkovsky effect cannot be responsible for
migration of main belt objects towards the Sun.

Let us consider a rather different mechanism, i.e. transport of meteoroids to
orbital resonant regions. The capture of objects by strong resonances, such as
the J3/1 resonance or the secular resonance vg leads to significant perturbations
to their orbits. [Vokrouhlicky and Farinella (2000) have shown that meteoroids
and asteroidal fragments which have been created from collisions in the inner
or central parts of the main belt could have been, due to the Yarkovsky effect,
transported to these orbital resonance regions. The capture of an object in a
resonance leads to an increase in the eccentricity of its orbit, which can intersect
the orbits of the inner planets. In most cases, the eccentricity grows to such
an extent (e — 1) that the object either finishes its journey in the Sun or is
scattered by the planets. Approximately 1% of these bodies collide with the
Earth or the Moon.

The transport model mentioned above can also effectively explain the distri-
bution of CRE (cosmic ray exposure) values of meteorites (Fig. [L.9). It is also
capable of explaining, why the measured CRE values are larger than the expected
residence time of the bodies in the resonances. This is because the fragments are
already under the influence of the cosmic radiation when they are being trans-
ported to the resonance. Using this model, we can also explain why the exposure
times are almost an order of magnitude higher for iron meteorites compared to
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Figure 1.9: Measurements of the exposure times of L-chondrites (yellow his-
togram). The red line illustrates the results from the numerical propagation of
fragments escaping the parent asteroid (8) Flora, considering the Yarkovsky force
(Vokrouhlicky and Farinella, [2000). The gray line illustrates the same but with-
out taking into account the Yarkovsky effect. It is apparent that the model (red)

well describes the real data (yellow). Taken from: (2006)).

Collisions in the main belt produce a number of fragments which are exposed
to cosmic radiation during four stages. They (I) travel from the point of their
origin to the resonance, (II) remain in the resonance for some timd'} (IIT) gradu-
ally change their orbits which start intersecting Earth’s orbit, (IV) take collision
course with the Earth and collide with it. The Yarkovsky effect then not only
increases the number of NEAs but also maintains the flux of meteoroids to the
collision course with Earth.

Morbidelli and Vokrouhlicky| (2003)) simulated the origin of kilometer-sized
NEAs due to the influence of Yarkovsky and YORP effects on the main belt
objects. To address this task, one has to know the cumulative distribution of
absolute magnitudes of NEAs and MBAs. The cumulative distribution of the
main belt objects fulfills N(< H) ~ 10" where v = 0.25 and 15.5 < H < 18
(Morbidelli and Vokrouhlicky|, [2003; [Jedicke and Metcalfe| [1998). For NEAs in
the same range of H, it holds that v = 0.35 (Rabinowitz et al., 2000} Bottke|
et al., 2000a; Stuart), 2001)). [Morbidelli and Vokrouhlicky| (2003) found that the
flux of new fragments to the resonant regions J3/1 and vg is 150 — 200 objects in
1 Myr. The model that the authors used gives for the NEAs ~ = 0.33, which is
a very good agreement.

Let us note that the Yarkovsky effect influences the overall structure of the
main belt and the orbital evolution of individual populations. It can also supply
the non-stable parts of the resonance regions with new bodies. Let us, for in-
stance, mention the 2/1 resonance with Jupiter (a ~ 3.27 au). In this resonance,

1Up to 50% of smaller (~ 1 m) regolith bodies can even jump over the 3/1 resonance.
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no objects were originally expected. In 1935, however, a minor planet (1362) Gri-
qua was discovered in this region, being the first in tens and hundreds of newly
discovered objects. In the present day, we distinguish 3 fundamental populations
in the J2/1 resonance, classified according to their lifetimes. They are (a) the
stable population (Zhongguo), (b) marginally stable population (Griqua) and (c)
unstable population (Zulu). While the stable populations exhibit lifetimes of up
to~ 4 Gyr (Chrenko et al.| 2015)), the objects on the unstable trajectories within
this resonance are being gradually supplied by the Yarkovsky effect from Themis
family (Broz et al., 2005). [Broz and Vokrouhlicky (2008) have shown that po-
tential collision families would be, in the 2/1 resonance with Jupiter, scattered in
no more than 1 Gyr. It would not then be possible to identify the older of these
objects as clusters in the space of orbital elements. At present, however, 370
bodies in 2/1 resonance with Jupiter are known (Chrenko et al., 2015). Broz and
Vokrouhlicky| (2008) have also studied the action of the Yarkovsky effect in the
resonances. They found that a systematic increase of eccentricity in resonances
helps objects with D < 20 km escape the resonance, rather than the semi-major
axis drift.

At this point, however, let us keep in mind that the strong coupling between
the Yarkovsky and YORP effects can, in future, reveal several weak points in
these considerations. These would be primarily situations, when the obliquities
would change rapidly or when there would be tumblers among the mentioned
populations. It is also not unambiguously decided, where the L-chondrites, LL-
chondrites and H-chondrites originated. It is expected that the LL-chondrites
come from the Flora family (or directly the (8) Flora), L-chondrites from the
Gefion family and H-chondrites from the asteroid (6) Hebe.

Physical properties of asteroids

Let us, for a moment, disregard the dependence of the Yarkovsky drift on the
distance from the Sun. In that situation, it is evident that the semi-major axis
drift da/dt depends on a number of thermophysical properties of the object, such
as its diameter, mass, obliquity, angular velocity, thermal conductivity, etc. If
only da/dt is known, we can use the expression , limit the value of cos~y
and decide whether the object rotates in the prograde or retrograde direction.

The situation is, of course, better if the pole orientation or the angular fre-
quency of rotation w is known. Knowing cosy and the diameter D, we can
constrain other physical properties of the object, especially the thermal param-
eter ©. The diameter of the body can be obtained either directly, from radar
observations or derived from the taxonomic type or albedo measurements. Con-
sequently, the space of free parameters comprises the volumetric mass density
p and the thermal inertia I'. This situation was investigated by (Chesley et al.
(2014)) for the case of (101955) Bennu asteroid.
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Figure 1.10: The dependence of the volumetric mass density of (101955) Bennu
on the value of thermal inertia I". The full gray line denotes the solution for p and
I with da/dt = const., assuming a smooth surface and detailed information about
the object’s shape. The full black line denotes the solution for a rough surface.
The dashed lines mark the uncertainty of this solution. Note that |Chesley et al.
(2014) found p = 1180 kg m~3 for the smooth surface and p = 1260 4 70 kg m—3
for the rough surface. The uncertainty of these values includes the uncertainty
in the diameter of the body, the obliquity and the thermal intertia. Taken from:
Chesley et al.| (2014)).

Let us mention that the asteroid (101955) Bennu is the target destination
of the OSIRIS-REx probe, which was launched in 2016 and is aiming to collect
samples from the surface and bring them back to Earth. The expected duration
of the mission is 7 years. Other bodies, for which the mass density p was obtained
using the model of Yarkovsky effect and radar thermophysical measurements are
(1862) Apollo (Rozitis et al., [2013]), (1620) Geographos (Rozitis and Green, |2014])
and (29075) 1950 DA (Rozitis et al.| 2014)E|.

The Yarkovsky effect also explains the excess of retrograde rotators among
NEAs (La Spina et al., 2004). This observation probably originates in the loca-
tion of the v resonance in the inner part of the main belt. Objects that drift
towards this resonance come predominantly from the outer parts, which implies
da/dt < 0 and, therefore, cosy < 0 (Morbidelli and Vokrouhlicky, 2003).

15n the case of the rubble-pile asteroid (29075) 1950 DA, the influence of cohesive forces
acting among individual grains was also studied. These forces apparently act against the cen-
trifugal force and prevent the object from disintegrating.
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Asteroid families and pairs

Members of asteroid families and pairs exhibit similar spectral properties and
values of orbital elements. In the space of orbital elements, they form more
or less numerous clusters. It is thought that they are remnants of catastrophic
collisions or disintegration of parent asteroids in the past. Since their formation,
the fragments have been under the influence of both the gravitational and non-
gravitational perturbations. However, within the last few years it has become
possible to constrain the age of a number of asteroid families and pairs using the
modeling of the Yarkovsky/YORP effect. Formally, we can divide the families into
young ones (tuge < 10 Myr) and old ones (tage > 10 Myr). Very young asteroid
families and pairs are discussed in detail in Chapter 3. In this paragraph, we
only mention some applications of the Yarkovsky effect when studying the older
asteroid families.

As opposed to methods used for determining the age of very young asteroid
families (see Chapter 3), it is not possible to reconstruct secular angles (w, (2)
of members of old families, due to deterministic chaos. At the very least, we
can build on the proper elements a,,e,, %, which can be understood as quasi-
integrals of motion (Knezevi¢ et al. 2002). Even though deterministic chaos
also gradually perturbs the proper elements, the element a, for kilometer-sized
asteroids is governed primarily by the Yarkovsky effect.

The role of the Yarkovsky effect in the age determination and orbital evolution
of asteroid families was first studied for the families Koronis (Bottke et al., [2001)
and Eos (Vokrouhlicky et al., 2006b). The Koronis family occupies two principal
regions in the proper elements space with two different values of e,, but similar
values of i, (Fig. . It turns out that the border correponds to the position of
the secular resonance g+2g5; —3gs. Numerical propagation of synthetic fragments
of the Koronis family spanning over 700 Myr and including the Yarkovsky effect
was done by Bottke et al. (2001). Note that Bottke et al. (2001)) scaled their
size to be &~ 3 times smaller than the current values to reduce the computational
timeEG]. This allowed him to reach the expected age of Thee € [2.5,3.0] Gyr
(Marzari et al., [1999; Greenberg et al. [1996]) and analyze the post-disintegration
evolution of the family members (Fig. [I.11)). Bottke et al,| (2001) showed that
drifting fragments of the Koronis family pass through the resonance g+ 295 — 3¢s
and their eccentricities increase almost by a step-function (by the value ~ 0.025),
while the values of their inclinations remain unchanged.

The Eos family ( > 4000 members) is located in the range a, € [2.99, 3.03] au,
e, € [0.01,0.13] and ¢, € [8°,12°]. The majority of the fragments is located be-
tween the resonances J7/3, J9/4 and the secular resonance z; = ¢ — g + s— Se.
The strong resonance J7/3 bounds the family from the inside, the weaker reso-
nance J9/4 from the outsideE]. After the disruption of the parent body@, the
family took a rather compact shape in the space of orbital elements. With time,
some of the asteroids drifted towards the J7/3, others towards the J9/4 resonance.

16The fragments then drift ~ 3 times faster.
"Though some of the bodies did pass this bound during the evolution of the family.
18 After an impact, the fragments typically spread at velocities in the range of tens m/s.
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Figure 1.11: Koronis family in proper elements space. Blue lines denote the
simulated post-disintegration evolution of 210 synthetic fragments influenced by
the Yarkovsky effect. The current distribution of the Koronis family members
is marked by yellow points. The resonant regions J5/2, J7/3 and g + 295 — 3gs
are shown. When passing through the resonance g + 2¢g5 — 3¢gs (=~ 2.92 au), a
marked increase in eccentricities is observed. We see a good agreement between
the simulated evolution and the current state. Taken from Bottke et al. (2001]).
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Figure 1.12: Distribution of the Fos family members as obtained from the Hier-
archical clustering method (HCM) for V, < 50 m s~! (Bendjoya and Zappala,
2002)). Resonance regions J7/3 and J9/4 are shown. Adapted from [Vokrouhlicky
et al.| (2006b)).

Upon entering the J7/3 resonance, marked perturbations to the eccentrici-
ties and inclinations were introduced and trajectories of some of the members
were driven to cross the trajectories of the inner planets. For this reason, we do
not observe any large group of Eos family members below this resonance region.
Asteroids drifting towards J9/4 are also being scattered but to a much smaller
extent than J7/3. This means that a certain percentage got beyond this reso-
nance. Apart from that, some of the Eos family members are trapped in secular
resonance z;. Vokrouhlicky et al. (2006b) estimated the age of the Eos family
to be 1.37035° Gyr by analyzing the distribution of (a,, H). Let us note that
many families exhibit a V-shaped relation between a, and H, because smaller
fragments drift further away from the parent body (Fig. . This effect can
be interpreted by the action of the Yarkovsky force on their post-disintegration
evolution. Immediately after the impact, it can be expected that smaller frag-
ments escape at higher velocities and also that they are under stronger influence
of the Yarkovsky/YORP effect. The model of [Vokrouhlicky et al.| (2006b) as-
sumes isotropic distribution of the disintegration velocities of the fragments and
gradual re-orientation of their spin axes as a consequence of collisions. The in-
put parameters of the model are: (i) the initial velocity of 5 km sized fragments
(V(D) =V - 3 (ii) the age Thee € [0.2,2.0] Gyr, (iii) the extent of the YORP
effect cyorp and (iv) the thermal conductivity K. The results of a number of
repeated simulations with different input parameters are then compared with
the current distribution (a,, H). Eventually, cases exhibiting the best agreement
are recorded. Broz and Morbidelli (2013) made a small correction in the age of
the Eos family and found T, € [1.5,1.9] Gyr. They also found that the halo
around this family is formed mostly by the scattering of objects which get to the
J9/4 resonance due to the Yarkovsky effect.

Other families that have been studied are the Agnia (= 2.79 au) and Padua
(=~ 2.75 au) families (Vokrouhlicky et al., 2006a; |Carrubay, [2009)), located in the
central parts of the main belt and close to the z; resonance, as well as the Tina
family (= 2.79 au) close to the secular resonance v (Carruba and Morbidelli,
2011). In the outer part of the main belt, we can find, for instance, the Sylvia
family located in a rather less dense Cybele zone (Vokrouhlicky et al., [2010).
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Figure 1.13: The distribution of the Fos family members (black points) in the
(ap, H) space according to the HCM method (V. < 50 m s™'). Grey points
denote background asteroids. The lowered concentration of objects in the middle
can be a consequence of the YORP effect which, upon disintegration, changes
the obliquities towards extremal values. This, in turn, leads to a larger value of
the Yarkovsky drift da/dt and the escape of the bodies towards the wings. The
limiting H ~ 17 corresponds to 1-2 km sized fragments. Source: Vokrouhlicky
et al.| (2006D).

From the interdisciplinary perspective, the Baptistina family (x= 2.26 au)
is certainly of interest. Its age was estimated by [Bottke et al. (2007) to be
Twe = 160750 Myr. [Bottke et al| (2007) found that the fragments of this
family approached the J7/2 and M5/9 resonances due to the influence of the
Yarkovsky/YORP effect. These resonances increased their eccentricities to such
an extent, that they could intersect the orbits of terrestrial planets. One of the
fragments of this family could have impacted the Earth, creating the Chicxu-
lub CraterF_g] (P =~ 90 %), later another could have created the Tycho crater on
the Moon (P =~ 70%). A more recent study of Masiero et al.| (2012) discusses
a rather broader interval of ages. Considering the volumetric mass density of
~ 1.3 g cm™3, it seems probable that the age is around ~ 80 Myr while for
p € [1.6,2.8] g cm™3, the range of possible ages is 140-320 Myr. However, if
the age were indeed close to 80 Myr, it would be complicated to make the frag-
ments intersect the Earth’s orbit within 15 Myr after the family formation. This
controversial topic is discussed in |Delbo’ et al.| (2012).

198]ightly less than 65 million years ago.
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1.2 YORP effect

1.2.1 Initial remarks

The YORP abbreviation ( Yarkovsky—O’Keefe—-Radzievskii—Paddack) was first
introduced in |[Rubincam, (2000) and corresponds to the initials of the names of
notable astronomers who established the basics of the modern theory of Yarkovsky
and YORP effect (Radzievskii, 1952; Paddack, (1969, 1973; |Paddack and Rhee|
1975; |O’Keefe|, 1976)). In the section about the Yarkovsky effect, we discussed
not only the theory but also the orbital implications. The main emphasis was
put on studying the perturbations to the semi-major axis. To construct a linear
analytical theory of the Yarkovsky effect, we assumed the asteroids to be spherical.

The assumption of a smooth spherical body, however, excludes the existence
of a torque caused by radiation leaving the body’s surface. The situation does
change markedly if we use a more realistic irregular shape.

Asymmetric radiation from the surface then causes a weak torque, which af-
fects the rotation of the body and, therefore, obviously influences the Yarkovsky
effect. The long-term non-gravitational perturbations then result from the cou-
pling between the Yarkovsky and YORP effect.

1.2.2 The mechanism and the mathematical description

Let us consider an infinitesimal surface element of an arbitrary asymmetrical
body. If radiation leaves this surface element, either by scattering or thermal
emission, a reaction force df appears. This force acts, in the case of an isotropic
model (rgea(fto), 7n(fto0)) in the direction opposite to the normal n;. If df has
a non-zero angle with the position vector r of the surface element, then it con-
tributes to the total torque. Let us remind the formal relations

TSC& = / r X dfsca Tth = / r X dfth; (195)
S ’

where S is the illuminated surface and S’ the total surface area of the body. Note
that dfy., and dfy, are given by the expressions and .

Let w be the angular rotation frequency of the asteroid and e the unit vector
pointing along the axis of rotation. Let us assume that the asteroid rotates around
the shortest axis of the inertia tensor I with respect to which it has the moment
of inertia C'. We can then write for the angular momentum L

L = Cwe. (1.96)
The rate of change of the angular momentum equals the total torque
dL
— =T. 1.97
dt ( )

Let us define the projection T, = T - e of the torque T to the direction of the
spin axis e. By a straightforward calculation (Rubincam), [2000), we can see that

dw T,

= s 1.
de T—(T-e)e

= = 7 1.

dt Cw (1.99)



Figure 1.14: An illustration of vector e pointing along the axis of rotation and
the definition of base vectors e, 1, e 5 in the equatorial plane of the asteroid. The
angle between the projection of vector e to the plane of orbit and the nodal line
is /2 — (¢ + Q). Source: [Capek and Vokrouhlicky] (2004).

The orientation of vector e can be expressed using angles (¢, 1, 2) where € is
the angle between vector e and the normal unit vector to the orbital plane N, 1)
is axial precession and (2 is the longitude of the ascending node. We can easily
see that in the orbital plane with z-coordinate along the nodal line, vecor e is
given by

e = (sinesin (¢ + Q),sinecos (¢ + Q), cose), (1.100)

from which it follows, according to ([1.99)), that
de T -ey T.

— = = 1.101
dt Cw Cw’ (1.101)
dw T - €9 Tw
- = = —— 1.102
dt Cw Cw’ (1.102)
where
N. — N
el = (N-eJe - N ej)e ; (1.103)
sin e
N
0= SN (1.104)
sin e

Let us note that the total torque T is influenced, apart from the YORP effect
itself, also by the gravitational interaction and inertial forces which are a conse-
quence of the motion of the reference system (Vokrouhlicky and Capek, 2002). Tt
turns out that the gravitational and inertial terms dominate in the perturbations
of the precession length 1 and have a decisive influence on the projection 7.
Their long-time contribution to Ty and T, is, however, negligible compared to
the YORP effect. The YORP effect makes a major contribution to the secular
changes of the angular velocity w and obliquity e.
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1.2.3 Detection and selected applications

Although the YORP effect is a relatively weak perturbation, it has been de-
tected for a number of asteroids in the past years. This has been achieved mainly
by optical photometry and radar observations.

In general, we want to obtain the dependence of the sidereal period (or side-
real angular velocity) on time from the observations. There is a straightforward
expression for the angular velocity

w(t) = wy + wt, (1.105)

where wy is constant in time. Phase ¢ then fulfills o = g + wot + (1/2)wt®. The
quadratic term is then fitted (Fig. [1.15]).
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Figure 1.15: Additional phase A¢ = (1/2)(dw/dt)AT? according to measure-
ments taking place from July 2001 to august 2005 for the asteroid (54509) YORP.
Source: Taylor et al. (2007)).

The first conclusive observation of the YORP effect was performed on a near-
Earth co-orbiting asteroid (54509) YORP (Taylor et al., 2007; Lowry et al., 2007)).
The measurements revealed the pole orientation to be (180°, —85°) in the ecliptic
longitude and latitude and sidereal angular velocity wy = 42582.41+0.02 deg/day
at the initial epoch 0" UT, 27 July 2001. The measurements from several consec-
utive years have shown that the asteroid’s rotation is accelerating. More specifi-
cally, from the quadratic fit of the measured data (Fig. , it was found that
dw/dt = (2.0 4+ 0.2) x 10~* deg/day?.

Other successful cases of detection of the YORP effect include the asteroids
(1862) Apollo (Kaasalainen et al., 2007; [Durech et al., [2008b), (1620) Geographos
(Durech et al.| 2008a)), (1865) Cerberus, (3103) Eger (Durech et al.,[2012), (25143)
Itokawa (Lowry et all, [2014) and more.
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The very first numerical model of the YORP effect was the Rubincam’s model
(Rubincam, 2000) which took several approximations. It considered only Lam-
bertian thermal emission, neglected scattering and assumed K = 0. The tested
objects were placed on circular orbits and were rotating around the shortest
principal axis of the inertia tensor. Rubincam’s model was later extended in
Vokrouhlicky and Capek] (2002) and [Capek and Vokrouhlicky| (2004). (Capek and|
'Vokrouhlicky| (2004) already included solutions of the heat equation for different
values of the thermal conductivity. The heat equation was solved in a 1D approx-
imation for each triangular facet of the body composed of many tetrahedrons.

Relatively recently, both analytical and semi-analytical theories of the YORP
effect were formulated (Nesvorny and Vokrouhlicky, 2007, [2008; Breiter and|
Michalskal, 2008). These were, for some time, in a good agreement with the
numerical models mentioned above and modeled the shapes of the bodies using
spherical harmonics. Nesvorny and Vokrouhlicky] (2007) developed an analytical
theory of the YORP effect for close-to-spherical bodies, with which they could
explain some of the observations.

The theories of the YORP effect showed that?”] T, = 0 for the obliquities
€ ~ 55° and € ~ 125°. In agreement with the above, let us for instance mention
the results of |Slivan| (2002) and [Slivan et al.| (2003) who revealed 4 members
of the Koronis family (out of 10 chosen candidates) with obliquities € ~ 55°.
Their observations can be explained by the coupling of the YORP effect and the
spin-orbit resonance sg (Vokrouhlicky et al., 2003). The value € ~ 55° is even a

consequence of the balance between gravitational moments and moments caused
by the YORP effect.
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Figure 1.16: An example application of the analytical YORP effect theory accord-
ing to Nesvorny and Vokrouhlicky| (2007) to a near-Earth asteroid 1998 KY .
Left: The shape according to the work - contours denote constant longtitude
and latitude values and meet on the poles. Right: The dependence of T, on the
obliquity e. The full line is the analytical solution, the dashed line the numeri-
cal model of |Capek and Vokrouhlick}'f| (]2004[). It is apparent from the plot that
the analytical and numerical solutions show good agreement and also that the
value T} is zero at € ~ 55°. In this case, C is the principal moment of inertia,
p = 2.8 gcm? and a = 1.23 au. Source: Nesvorny and Vokrouhlicky| (2007).

29Here, we refer to averaging over the rotational and orbital period.
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Figure 1.17: An application of the analytical theory of the YORP effect accord-
ing to Nesvorny and Vokrouhlicky| (2008)) to the near-Earth asteroid 1998 KYag.
Plotted is the dependence of T. on the obliquity e for different values of the ther-
mal conductivity K. The full highlighted line corresponds to K = 0, the other
full lines correspond to K from 107 to 1 W m~! K~!. The dotted line comes
from the numerical solution for K = 0 (Capek and Vokrouhlicky|, 2004)). Compare
with Fig. [1.16] Source: [Nesvorny and Vokrouhlicky] (2008)).

The work of Nesvorny and Vokrouhlicky| (2007)) was extended by their follow-
ing work |[Nesvorny and Vokrouhlicky| (2008) which studied the influence of the
YORP effect on the obliquity, again for the case of close-to-spherical bodies. Bre-
iter et al.| (2010) expanded the class of analytical models of the YORP effect by
a solution of the heat equation for close-to-spherical bodies in the limit of radii R
comparable to the penetration depth [,,. They concluded that the YORP effect is,
for small objects, proportional to the inverse radius ~ 1/R which is in contrast
to the earlier models (~ 1/R?). The most recent semi-analytical model which
includes both the YORP effect and the diurnal Yarkovsky effect?!] was developed
by |Golubov et al.| (2016)).

Let us note that at the same time, other semi-analytical models of the YORP
effect were developed (Scheeres|, [2007b; [Scheeres and Mirrahimi, 2008). They also
assumed rotation around the principal axis of the inertia tensor and took into
account non-zero values of thermal inertia. None of the models mentioned above,
however, included surface inhomogeneities such as craters, boulders, slopes, etc.

Overall, it is apparent that the whole issue is rather complicated and a num-
ber of effects influencing the rotation of small Solar System bodies have to be
considered. For this reason, numerical models currently seem more fitting, as
they allow to capture a plethora of effects. In this regard, the work of Statler
(2009) is of importance, because it discusses the influence of craters, boulders
and other surface irregularities. Statler| (2009)) concluded that the YORP effect is
strongly dependent on the character and the positions of surface structures and
cannot be calculated correctly unless the detailed topography is known.

2180 far for convex objects.
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The YORP effect certainly also depends on the chosen scattering model. This
was investigated by Breiter and Vokrouhlicky| (2011). They studied the role of
anisotropically scattered and anisotropically emitted thermal radiation in contrast
to the isotropic Lambert model. For larger values of albedo, they discovered that
the non-isotropic (Hapke) model gives, with regard to the Lambert model, rather
different values in the change of obliquity and comparable values in the change
of the rotation frequency.

Very sophisticated numerical models were constructed, for instance, by Rozitis
and Green (Rozitis and Green, 2012, [2013)). They discovered that rough surfaces
reduce the efficiency of the YORP effect for any value of obliquity. In their works,
they also included the role of self-heating, whereupon the surface elements can
absorb not only solar radiation but also radiation from other surface elements.
The authors also gave some attention to shielding effects and concluded that self-
heating and shielding have substantial influence on the resulting YORP effect.
Their work also presents a concise summary of the history and basic characteris-
tics of earlier models.

Other recent models (Golubov and Krugly, 2012; |Golubov et al., 2014)) discuss
the so-called TYORP effect (T stands for tangential). This refers to sideways ra-
diation of meter-sized objects. These objects were approximated by walls placed
on the asteroid surface (Golubov and Krugly, |2012)). By using the 1D approxi-
mation of the heat equation, they revealed that the thermal radiation from the
western wall exceeds the radiation from the eastern wall. This asymmetry also
contributes to the total torque. Transition from the 1D model to a 3D model with
a more realistic shape (spherical boulders) was achieved in |Golubov et al.| (2014]).
In the past few years, it seems very promising to model the thermophysical prop-
erties of asteroids using the finite element method also for realistically-shaped
boulders (Sevecek et al. [2015, 2016). According to contemporary knowledge
we can conclude that the YORP effect tends to slightly speed up the rotation
of asteroids.

With time, the research also started focusing on more complex cases - the
so-called tumblers - i.e. asteroids which do not rotate around any principal axis
of the inertia tensor. Their rotation is, generally, composed of two (or more)
rotation periods and it can be described by 2-dimensional Fourier series (Pravec
et al., 2005).

The rotation of tumblers is, however, an energetically inefficient excited state
of rotation with higher energy. It results in periodical loading of the body, internal
friction, heating up and, therefore, energy dissipation. Gradual energy dissipation
leads to damping of the rotation and transitioning to a lower energy state in
which the object eventually rotates only around the shortest principal axis ¢ of
the inertia tensor. With respect to this axis, the object takes the maximum value
of the moment of inertia I.. The mentioned effect occurs on the time scale 7 [Gyr],
which is given by (see Harris| [1994))

P3

T = Bp2

(1.106)

where P is the period of rotation in hours, D is the mean diameter in km and
K =17+ 2.5 is an empirical constant[g_fl

22More recent models provide K ~ 38 (see [Pravec et al., 2005; Breiter et al., 2012).
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Figure 1.18: Distribution of rotation frequencies for MBA /MC with diameters
3 - 15 km. The dashed line corresponds to the average value in the range
f € [1,95] d'. For f < 1d?!and f > 9.5 d™!, we observe a deviation
from the uniform distribution. Source: Pravec et al. (2008]).

Asteroids with a diameter larger than 40 km exhibit approximately Max-
wellian distribution of rotational speeds (Pravec et al. 2008) which is rather
intuitive because their rotational states are mostly governed by collisions. The
YORP effect is, in this case, negligible. Observation data however show that
the distribution of rotational speeds for smaller bodies is no longer Maxwellian.
Pravec et al.| (2008) found that for the main belt asteroids (MBA) and Mars-
crossing asteroids (MC) with D € [3, 15] km, one observes (a) uniform distribution
for the frequencies f € [1,9.5] d7!, (b) an increase in the number of asteroids for
f<1d7} and (c) a decrease for f > 9.5 d™L.

The question remains, how to interpret the cases (a), (b) and (c¢). Regard-
ing (a): It turns out that the uniform distribution is a consequence of the YORP
effect. From Capek and Vokrouhlicky] (2004), it is apparent that the time deriva-
tive of the frequency is not a function of frequency for a body which rotates
around the principal axis of the inertia tensor. This means that for any initial
distribution of frequencies, the YORP effect smears this distribution towards a
uniform one. A detailed description can be found in Pravec et al. (2008). Regard-
ing (b): the explanation here is more complicated and takes into account different
scenarios. An increase in the number of slow rotating bodies is probably caused
by the fact that asteroids are created more often or remain for a longer time in
the mode of slow rotators. It is also possible, that for slower rotation, the time
derivative of the frequency is no longer independent of frequency and the YORP
effect is weakened. This could lead to a longer residence in this rotational mode.
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Regarding (c): The loss of fast rotating bodies can be explained by rotational
fission of some of them.

The YORP effect also plays an important role in the distribution of obliquities
of asteroids. According to the theory of|Capek and Vokrouhlickyi (2004), obliquity
converges to 0° or 180°, when the thermal conductivity is non-zero. |Hanus et al.
(2013) have analyzed more than 300 selected light curves and found that the
ecliptical latitudes of the main belt objects statistically prefer values closer to 90°
or —90°. Thus, in this case, the YORP theory is consistent with observations.

Let us note that the research is also shifting towards binary asteroids. If the
secondary rotates synchronously with regard to its orbit around the primary, the
thermal radiation from its surface should cause an acceleration or deceleration of
its rotation (see Cuk and Burns, 2005). Owing to tidal forces, this leads to an
increase or decrease of the orbital radius. A recent analytical theory of the BY-
ORP effect was developed by McMahon and Scheeres| (2010). From their work,
we can conclude that knowing the shape of the secondary and the obliquity of the
binary, the BYORP effect is described by a single parameter B (BYORP coeffi-
cient). The sign of this parameter indicates whether the primary and secondary
are approaching each other or getting further away>} At present, however, the
main obstacle in modeling the BYORP effect is the lack of information about the
shape of the secondary asteroid.

Let us mention that the YORP effect has also a major influence on the origin
and orbital evolution of asteroid pairs and families. In this regard, we would like
to direct the reader to Chapter 3. The state of the art of the Yarkovsky and
YORP effects can then be found in |Vokrouhlicky et al.| (2015a).

1.3 Conclusion

In this chapter, we provided a basic introduction to the theory of the Yarkovs-
ky and YORP effects which play a significant role in the long-term orbital evolu-
tion of meter-sized and kilometer-sized bodies. Non-gravitational perturbations
induced by the Yarkovsky effect are mainly caused by (i) asymmetric temper-
ature distribution on the surface of an asteroid and (ii) by a time lag between
the irradiation and emission of thermal photons, resulting in a relatively small
reaction force which changes the heliocentric orbit of the body, namely its semi-
major axis. An asteroid which is mainly under the influence of diurnal variant of
the Yarkovsky effect spirals either toward or away from the Sun, depending on
the obliquity. In case of the seasonal variant of the Yarkovsky effect, we always
expect spiralling toward the Sun.

The incident, emitted and scattered radiation cause a torque that leads to an
acceleration or deceleration of the rotation and a change in the orientation of the
spin axis. The YORP effect is responsible for the creation of binary asteroids,
young asteroid families and asteroid pairs and also for long-term preference of
asteroid obliquities towards 0° and 180°.

However, for a precise modeling of both effects, the thermophysical properties,
shape and detailed topography of the body are of great importance.

23The conditions for establishing a possible stable orbit are discussed in|lJacobson and Scheeres
(2011b).
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2. Non-gravitational

perturbations of the asteroid
(99942) Apophis

In this chapter, we discuss the influence of non-gravitational perturbations on
the orbital evolution of near-Earth asteroid (99942) Apophis. We also present,
to a great extent, results of the publication by |Zizka and Vokrouhlicky| (2011b),
in which we studied perturbations of the orbit as a consequence of solar radi-
ation pressure (see Paper 1 in the Appendix A). Numerous works have been
published since the discovery of Apophis in 2004. They mostly focused on the
detailed thermophysical description and corresponding radiation-based pertur-
bations. We, therefore, aim to provide a broader interpretation of the current
research related to this uncommon body.

2.1 The discovery and basic properties

Apophis was discovered on 19 June 2004 by the astronomers Roy A. Tucker,
David J. Tholen and Fabrizio Bernardi in the Kitt Peak, Arizona, National Ob-
servatory.
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Figure 2.1: A schematic illustration of the orbit of near-Earth asteroid (99942)
Apophis (black trajectory) in the heliocentric coordinate system. Pictured are
also trajectories of Mercury (red), Venus, Earth and Mars (purple).
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The motivation behind the naming of the asteroid comes from the discov-
erers’ favorite TV series - Stargate SG-1. In this series, Apophis is a powerful
Goa’uld with an overwhelming desire to destroy the Earth. The origin of the name
Apophis itself, however, comes from an Egyptian mythological figure - Apep.

a [au] h k P q A [deg]
0.9226169083 -0.093583093 0.167083513 -0.011874844 -0.026596914 186.603144
Uncertainty
oa oh ok op oq o\
2.3-10710 5.3-107° 6.3-107° 9.1-107° 7.1-107° 9.3-1077

Table 2.1: Non-singular orbital elements (MJD 58000.0) of Apophis’ nomi-
nal orbit according to AstDyS (http://hamilton.dm.unipi.it/astdys/). Let
us note that a is the semi-major axis, (h,k) =  e(sinw,cosw) and
(p,q) = tan(i/2)(sinQ,cosQ). Further, A\ = w + M is the mean longi-
tude, M is the mean anomaly, (2 is the longitude of the ascending node, w is the
longitude of the pericenter, e is the eccentricity and ¢ is the inclination.

Immediately after the first observations, it was apparent that the object is
of great interest and it was further observed the very next day - 20 June 2004.
Further observations were, however, prevented by technical difficulties and poor
weather conditions. In the meantime, the elongation was decreasing until Apophis
got out of sight for several months. It was re-discovered in December 2004 by
a team of astronomers from the australian Siding Spring Observatory (Gilmore
et al.; 2004). Their observations have shown that Apophis is a potentially dan-
gerous asteroid with the impact probability of ~ 2.7% in April 2029. After the
archive images of Apophis were published (Gleason et al., 2004)) and the trajec-
tory was made more accurate, the chance of an impact in 2029 was ruled out.
The trajectory was made more accurate, among other data, also by using the
Arecibo observatory radar measurements in 2005, 2006 and 2012-2013.

The distance between the Earth’s centre and Apophis was, for the closest ap-
proach in 2029, determined to be Deye & 6 Rgarn (Giorgini et al., 2008). However,
despite the rather accurately established trajectory, an uncertainty remained with
regard to Apophis’ next close approach in 2036. New astrometric measurements
considered by |Chesley et al.| (2009) have reduced this uncertainty by as much
as 50% and provided new values of impact probabilities. Even so, they did not
conclusively rule out the possibility of an impact in 2036.

Let us note that, apart from the gravitational perturbations, the future impact
probabilities also depend on weak non-gravitational perturbations, which can
manifest as large orbital uncertainties after the close approach in 2029. In this
regard, the Yarkovsky effect is of key importance (see|Chesley, 2006). Its influence
was also discussed by Bancelin et al. (2012)), who have not, however, included it
in their calculations.

Farnocchia et al.| (2013a)) used the Monte Carlo method to model the possible
orbital evolutions of Apophis, considering both the nominal-orbit uncertainty and
the Yarkovsky effect. The gravitational part of their model included interactions
with the Sun, planets, Moon, Pluto and 25 chosen asteroids. The test particles
were propagated until 2029 and then projected to the corresponding b - plane.
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By looking at the positions of the keyholesﬂ7 Farnocchia et al.| (2013al) analyzed
the impact probabilities after 2029. Let us remind that the b - plane intersects the
centre of the Earth and is perpendicular to the vector of the geocentric velocity
of the projectile V, (see Opik, 1976)). In the b-plane, we define the coordinates
(&€,m,¢), where ¢ increases along T, 7 along S, and ¢ along —R (see Fig. 2.2).

In order to find the keyholes in the b-plane for 2029, |[Farnocchia et al. (2013a))
propagated the trajectories of virtual asteroids densely covering the LOVE| until
the year 2113 and recorded very close approaches and collisions with the Earth.
In total, they found 20 significant keyholes for which they calculated the impact
probabilities. Most significant was the keyhole related to a possible impact in
2068, which could happen with the probabilityﬂ IP ~ 2-1075. The probability of
an impact in 2036 was estimated by Farnocchia et al.| (2013a)) to be IP & 7-107?,
which is orders of magnitude less than the one in 2068.

B-PLANE | TO INCOMING
ASYMPTOTE T S INCOMING

/ ASYMPTOTE

HYPERBOLIC PATH
OF AN ASTEROID

V. TRAJECTORY PLANE
0

Figure 2.2: An illustration of the reference b-plane, which goes through the scat-
tering body. The b-plane is perpendicular to the asymptotic trajectory and inter-
sects it in point B. We define a local base {R, S, T'} with the origin in the Earth’s
center, where S || Vo, T lies in the ecliptic plane and R is perpendicular to S
and T. Vector B lies in the plane of the projectile’s trajectory and it holds that
B L S. The distance of B from the center is the so-called impact parameter b.
Adapted from Doody| (2009).

We have seen in the previous chapter, that the Yarkovsky drift da/dt strongly
depends on thermophysical properties of the body. However, for almost 10 years
after Apophis was discovered, some of the key properties necessary for precise
modeling of the Yarkovsky effect were not known. Most importantly, the orien-
tation of the pole and the shape of the body were still uncertain. This missing
information has been filled by Pravec et al.| (2014) and Miiller et al.| (2014)).

!The term keyhole was first used by |Chodas| (1999). If a projectile passes through this small
region in the b-plane, it is put on a future impact trajectory.

2= Line of Variation. LOV characterizes the orbital uncertainty (Milani et al., 2005).

3We mention nominal impact probabilities according to [Farnocchia et al. (2013a)).
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Figure 2.3: An overview of the keyholes found in the b-plane for 2029 according to
Farnocchia et al.| (2013a). The horizontal axis is the coordinate ¢ and the y axis
corresponds to the distance of the closest approach for a specific date, expressed
in Earth’s diameters Rg. The reason why only the ¢ coordinate is plotted is
that the orbit uncertainty of Apophis projected into the 2029 b-plane is orders of
magnitude larger in the ¢ coordinate than in the other coordinates.

Pravec et al. (2014) found that Apophis does not rotate exclusively along
the shortest axis of the inertia tensor, as assumed in the earlier models, but
it exhibits a weak tumbling. At the same time, the authors used photometric
measurements made between December 2012 and April 2013 to find its shape,
which is close to an elongated ellipsoid (see Fig. and [2.5). They have also
shown that the rotational state of (99942) Apophis can be characterized by the
rotational period P, = 263 £ 6 h and the precession period P, = 27.38 & 0.07 h.
According to Pravec et al.| (2014), Apophis rotates in a retrograde direction with
the angular momentum oriented towards (250°, —75°)E] in the ecliptic coordinates.
The absolute magnitude was found to be H = 19.09 £ 0.19 mag.

Since the discovery of Apophis, rather different values of its effective diam-
etelﬂ have been mentioned in literature. The most recent studies are, however,
providing increasingly accurate data with smaller relative errors. From the first
estimations, the diameter of Apophis was expected in the range 320 — 970 m.

4The confidence band with regard to the nominal orientation of the angular momentum is
approximately elliptical with the semimajor axis &~ 27° and the semiminor axis of ~ 14°.
5The diameter of a volume-equivalent sphere.
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Delbo’ et al.| (2007a) used polarimetric observations and found the geometric
albedo to be py = 0.33 & 0.08. They also determined the absolute magnitude as
H = 19.7 + 0.4 mag, which corresponds to the diameter of 270 + 60 m. A few
years later, Farnocchia et al| (2013a)) carried out simulations while taking into
account the observations from the Herschel Space Observatory and used D.g =
325 £ 15 m. Similar value was obtained by Miiller et al.| (2014) who determined
the effective diameter of Apophis as 375" ]3 m and constrained the thermal inertia
['sothat I' € [250, 800] Jm~2s7%? K~!. They also calculated the most probable
value I' ~ 600 J m~2 s7%5 K~! which approximately corresponds to a regolith
layer with lower thermal conductivity interspersed with cliffs and boulders. Note
that Miller et al.| (2014)) discussed the striking similarity in the size and thermal
inertia of (99942) Apophis with (25143) Itokawa, which could be evidence of

Apophis having the rubble-pile structure. These authors found py, = 0.30f8j82.

Figure 2.4: The shape of near-Earth asteroid (99942) Apophis according to Pravec
et al. (2014). Shown is the situation in January (left) and March (right) of
2013 when Apophis was observed by the PACS photometer and spectrometer
at the Herschel Space Observatory. The situation on the left and on the right
corresponds to the phase angle of 60° before and after opposition, respectively.
The x, y, z axes indicate the co-rotating coordinate system. The yellow line points
towards the Sun, the green line towards the Vernal equinox.

Let us note that lower values of thermal inertia were recently obtained by
Licandro et al| (2016) who found the following parameters of (99942) Apophis:
D € [380,393] m, py € [0.27,0.29] and T' € [50,500] J m™2 s7%5 K~! and
determined more up-to-date values of the Yarkovsky drift. Later, Yu et al.| (2017)
published comparable results of the thermal inertia I' = 1007350 J m~2 s7%> K~L.
According to | Yu et al.|[(2017), the surface of Apophis is covered by coarse-grained
regolith. They also came up with the hypothesis that Apophis may be one of
Vesta’s fragments, which has been delivered from the main belt by the Yarkovsky
effect. The new information about the rotational state and the thermophysical
properties (Pravec et al., [2014; Miller et al.; 2014)) were adopted by [Vokrouhlicky
et al.[ (2015b]) who modeled the orbital evolution of Apophis under the influence of
the Yarkovsky effect. This topic is discussed in the last paragraph of this chapter.
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Figure 2.5: The same geometrical situation as in figure [2.4. The upper pair
shows the solar flux to individual surface elements of the asteroid. The lower pair
demonstrates the temperature distribution on the surface obtained by

(2014) using a thermophysical model TPM (Lagerros| [19964), (1997, [1998).
Adapted from Miiller et al| (2014).

2.2 The influence of solar radiation pressure

The asteroid (99942) Apophis still remains in the interest of astronomers, even
though the collisions with Earth in 2029 and 2036 have been practically ruled
out. It is, beyond doubt, a unique body which has been consistently receiving
attention since it was discovered. In this paragraph, we provide a more detailed
account of our results related to the influence of the solar radiation pressure
(SRP) on the orbital evolution of (99942) Apophis until its close approach to
Earth in 2029 (=~ 38000 km). It is largely based on the publication by
and Vokrouhlicky (2011b]) which can be found in Appendix A (Paper 1). Note
that in our case we studied only the influence of incident and reflected radiation.
Nonetheless, all gravitational and non-gravitational perturbations manifest in the
orbital uncertainties in the 2029 b-plane.

(Giorgini et al, (2008)) studied the influence of SRP in a zeroth-order approx-
imation and found that this type of non-gravitational perturbation is several
times smaller than perturbations caused by the Yarkovsky effect. On the other
hand, Rubincam| (2007) obtained a different result by analytically calculating
the orbital YORP effect for a non-symmetrical hemisphere-shaped object, tak-
ing the approximation of zero thermal inertia. He derived an expression for the
change in along-track position Ad due to orbital YORP effect and showed that
Ad = 0.61325sin B[T'(yr)]*> km. Here, T is the time in years and (3 the angle
between the spin axis and the principal axis of the elliptical orbit (see Fig. [2.6)).
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In the extreme case (7" = 20 yr, sin # — 1), Rubincam obtained Ad ~ +245 km
which is comparable with the Yarkovsky effect-induced perturbation (~ £250 km)
(Chesley, 2006). Let us, however, stress that Rubincam’s work includes a small
mistake in the equation (33), which is given in the form

da 2@w—8ﬂ%eCm
dt 3mcpRan

>2$nﬁ, (2.1)

a

while the square Ofvﬂ' in the denominator is omitted. The equation should then
take the form (see Zizka and Vokrouhlicky, [2011bj)

da 2@%—8ﬂ%eG@
dt 3m2epRan

>2$nﬁ. (2.2)

a

The change in along-track position Ad = 0.61325sin [T (yr)]* km then reduces
to Ad = 0.19520 sin 8[T'(yr)]?. This gives a maximum shift of ~ +78 km. Be as
it may, the discrepancy between |Giorgini et al.| (2008) and |[Rubincam (2007)
motivated us to study the SRP effect on Apophis more thoroughly.

(> (c

(o A

Figure 2.6: A hemispherical asteroid orbiting the Sun. The spin axis lies in the
orbital plane. The angle between the principal axis of the osculating ellipse and
the spin axis is 8. The variable f is the true anomaly. Source: |Rubincam (2007).

Solar radiation pressure (SRP)

The solar radiation incident on the asteroid surface is (i) partially scattered
(mostly in the visible part of the spectrum) and (ii) partially absorbed and re-
radiated in the infrared part of the spectrum. Both these effects lead to a change
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in the object’s momentum. Let us remind of the expressions (1.16)) and (1.22]),
which describe the perturbation forces as a consequence of the scattered radiation

fsca:/dfscaa (23)
S

F
fyen = S (Kin, + K5*M) dS, (2.4)
where
K1 (o) = /Q+ 12T sea (11, 10, @) A2, (2.5)
K;ca<lu0) = /+ 1% 1 - :u2 COs ¢Tsca(ﬂ> Ho, ¢) dQ (26)
0

Here ¢ is the speed of light and F' is the solar radiation flux at the heliocentric
distance r of Apophis. We also include the shadow function ¥ which is equal to 1
if a surface element is illuminated and equal to 0 if not. The form of the function
Tsea (i po, @) defined in depends on the radiation model used. We included
the perturbation force f., of the scattered radiation and also the perturbation
force fi,. of the incident radiation in our model. It holds for the resultant force
fSRp that

fSRP = fsca + finc; (27)
where

F
finc = - SJ_

ng, (2.8)

and S| is the cross-section of the object in the direction ny towards the Sun.
Since Apophis moves along an eccentric orbit, it is found at different heliocentric
distances along its trajectory. From the dependence F' ~ r~2, it is evident that the
magnitude of the perturbation force |fsgp| changes during one revolution about
the Sun. In addition, short-term changes in the perturbation force |fsgp| are
caused by the rotation of the asteroid, because the cross-section S, periodically
varies in time. These effects have to be captured and evaluated in each integration
step. Formally, we can write

S| = / (dS - ng)S(R, ng), (2.9)

where we integrate over the illuminated area Sy. The vector dS = n, dS points
outwards from the surface element dS. In our simulation, the shape of the body
was represented by a wire-frame polyhedron and the integration was substituted
by summation over the corresponding surface elementsﬂ

The shadow function X (R,ng) depends on the overall shape of the body,
on vector ny and matrix R. Matrix R is a transformation matrix between the
inertial ecliptic system and the body-frame system. The shadowing effect was
also included in our simulations - we investigated to what extent the shadowing
influences the result.

6The area Sy is a set of surface elements, for which the necessary illumination condition
(dS - ng > 0) is met. However, meeting this condition does not exclude elements which are in
the shadow. The shadowing effect is captured by function X.
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We used an algorithm described in Appendix 2 in Capek (2007) Its com-
plexity is O(N?) because we iterate through N surface elements and for each of
them, we search NV — 1 elements to find those which are in the shadowﬂ

Our simulations are, however, not only limited to a narrow set of simple ge-
ometrical shapes of Apophis (sphere, ellipsoid) but they also capture the orbital
evolution of a number of convex and non-convex bodies with different pole ori-
entations. Apart from the classical Lambert scattering model, we also consider a
more sophisticated Hapke model. Finally, we will compare and discuss the results
obtained using these two models.

Radiation models

When modeling the influence of SRP on the orbital evolution of Apophis,
we numerically propagated the whole class of convex and non-convex bodies and
considered both the classical Lambert model

2
Faalpt o, 6) = LA = Ki (o) = SpoAAKE™ =0, (210)

and the Hapke bi-directional scattering model in the single-scattering approxi-
mation (e.g., [Hapke| 1981} 2002)

= o (0 BoBs(@)P() + H(p) Hipo) = 1), (2.11)
where Bg(«) is the backscatter function, H(z) is the Chandrasekhar H-function,
w is the single-scattering albedo and P(«) is the Henyey-Greenstein phase func-
tion which describes the angular scattering properties of an average surface parti-
cle. The phase angle « is the angle between ng and the direction of the scattered
sunlight n. Finally, the By is the so-called opposition surge amplitude parame-
ter, which is the ratio of the light scattered by an average regolith grain particle,
divided by the total light backscattered at zero phase angleﬂ Note that the
backscatter function Bg(«) captures the so-called opposition effect. This effect is
observed as an increase of the brightness of those parts of the surface that have
the phase angle approaching zero (see Fig. . The backscatter function takes
the form

Tsca (,u’ Ho, ¢)

Bg(a) = [1 4 (1/hg) tan (a/2)] ", (2.12)
where hg is the backscatter width. The Chandrasekhar H-function is approxi-
mated in our calculations by the expression

1+2
H(x) + 2x

1t 2yx’
where v is given by v = v/1 — w. For our purposes, we assume P(«) to take the
form of the Henyey-Greenstein phase function
1-— 92
Pla) = 2.14
(@) (14 2gcosa+ g2)3/2’ (2.14)

(2.13)

"Available at http://sirrah.troja.mff.cuni.cz/"davok/.

8Some optimization has been achieved in the preprocessing phase. The algorithm can be
sped up e.g. by pre-calculating and identifying shadowed elements in advance for different
orientations of the ng vector.

9For a fully opaque particle, By = 1.
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where g is an anisotropy parameter (¢ € [—1,1]). It holds that (a) g < 0 as
long as backscattering dominates, (b) g = 0 as long as the scattering is isotropic
and (c¢) g > 0 when forward scattering dominates. The presented Hapke model,
therefore, has four free parameters (w, By, hs, g). These can be found, in some
cases, from high-quality photometry or their mean values can be deduced from
the asteroid’s spectral class (Helfenstein and Veverka, [1989).

Figure 2.7: Opposition effect observable on the surface of (25143) Itokawa, which
was visited by the Japanese Hayabusa probe. Source: JAXA.

The geometric (physical) albedo A, is another widely-used photometric prop-
erty. It expresses the ratio of the actual brightness of the body to the brightness
of a Lambertian disc with the same cross-section and distancd™l Let us consider
a Cartesian system of coordinates Ozyz with the origin in a sphere with radius R.
Let us then illuminate and observe the sphere from direction z. An infinitesimal
surface element on the sphere fulfills dS = R?sin 6 df d¢. The amount of radiant
energy Egpp, reflected from the illuminated hemisphere to a unit solid angle in the
direction of z is

Esph = / Frsca(,um Ho, O) COS 9 dS; (215>
S+

where we integrate over a hemisphere. After a short manipulation, we obtain

1
Esph = 27TR2F/ Tsca(MOu Ko, O)/vb(] dﬂO' (216>
0
Similarly, we express Ep., for the Lambert disc (pg =1, A =1)
Eram = TR Fri(uo) = TR2F™ A = R?F, (2.17)
T

The geometric albedo can then be calculated as

1
A, = 27r/ Tsea (o, fo, 0) o dito. (2.18)
0

10We assume that both the body and the Lambertian disc are observed at zero phase angle
(corresponds to opposition).
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Let us further define the Bond albedo

1
Ap = 2/ toAn (o) dpto, (2.19)
0

where Ay, is the hemispheric albedo . The Bond albedo expresses the ratio
between the energy of radiation scattered by a spherical object in all directions
and the energy of the incident radiation (e.g. Hapke, 2012).

In our simulation, we used A; = 0.33 £ 0.08 (Delbo’ et al., [2007a). By sub-

stituting (2.11]) to (2.18)) one would obtain

1 1 w
g:§T0(1+§7’0)+§[

A (14 By)P(0) — 1], (2.20)
where ro = (1 —~)/(1 4+ ). This relation then constrains the values of Hapke
parameters (w, By, hg, g).

When studying the orbital evolution of Apophis until 2029, we used two radi-
ation models: (a) the Lambert model with the albedo A = 0.2 and (b) the Hapke
model with the set of parameters w = 0.5, g = —0.35, hy, = 0.02 and By = 0.97
which lead to A; = 0.34. Let us note that the choice of Hapke’s variables is not
unambiguous. Our values correspond to a rather higher slope parameter GG in the
IAU H — G system. The transformation relations between the slope parameter
G and the Hapke parameters can be found in [Verbiscer and Veverkal (1995). For
a typical value of G =~ 0.15, we could also use w = 0.34, g = —0.27, hy = 0.05 and
By = 1.98 which leads to a practically identical value of the geometric albedo A,.
The described choice does not, however, have a statistically significant influence
on our simulation results, as opposed to the previous set.

The functions K;(uo) and K5(po) that appear in the expression for the
perturbation force depend on the zenith distance of the Sun and should
be evaluated in each integration step. In the case of the Hapke model, we pre-
computed K5 (p9) and K5 () to speed up the whole calculation (see Fig. [2.8)).
We chose a sufficiently dense meshm of discrete values and obtained the K§(u)
and K5(po) by linear interpolation. Let us remind that, in the case of the
Lambertian model, K;(ug) = 2p0A A K5 = 0 where the albedo was chosen
ad? A = 0.2.

Used shape models for Apophis

Pravec et al.| (2014)) used photometric observations to deduce the shape of
the asteroid (99942) Apophis (see Fig. [2.4). However, at the time of our study,
its actual shape had not been known yet. In addition, the information about
the pole orientation and the rotation speed were lacking. Our calculations were,
therefore, based on a set of synthetically generated bodies - random Gaussian
spheres (see [Muinonen, 1998 Muinonen and Lagerros, 1998 Vokrouhlicky and
Capek, 2002) which well reflect the real shapes of asteroids in the main belt. We
also assumed that Apophis rotates around the shortest axis of the inertia tensor
with the rotational period Ty, = 30.5 h (Behrend et al., [2005). The direction of
the spin axis was chosen randomly for each of the many repeated simulations.

"The pp was sampled in the [0, 1] interval.
12Equal to Bond albedo Ap as well as the hemispheric albedo Ap,.
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Figure 2.8: Functions Ki(ug) and Ks(uo) for a set of Hapke parameters
w= 0.5,9g=-0.35h, = 0.02 and By = 0.97. The gray linear function with the
slope (2/3)Ap approximates very well (Ap = 0.2) the function Kj(u). Source:
Zizka and Vokrouhlicky: (2011b).

Specifically, we propagated 200 random Gaussian spheres created according
to [Vokrouhlicky and Capek| (2002) and Capek and Vokrouhlicky| (2004). Each
sphere had 10 randomly chosen values of obliquity. Altogether, we numerically
integrated 2000 bodies from March 2010 to April 2029. Note that our synthetic
bodies had the density oﬂ p=2gcm 3. The size of each Gaussian sphere was
scaled so that its volume was equal to that of a sphere with 270 m in diameter.
Thus our results are statistical in nature since the rotational state and the shape
of Apophis were not known at the time. Nonetheless, the results are significant
because they capture the influence of SRP on the orbital evolution of Apophis
until 2029 and also provide a relative comparison of the influence of SRP and the
Yarkovsky effect. They also constrain possible values of the close-approach (CA)
distance of Apophis when only SRP is taken into account. In addition, the actual
shape of Apophis should follow our statistical results.

Since the Gaussian spheres are represented by polyhedrons, it is necessary to
use a mathematical tool for finding their fundamental characteristics (see [Dobro-
volskis, 1996; Capek, 2007)).

13Since the density of Apophis was not known, we used the density of the asteroid (25143)
Itokawa (Abe et al., [2006]).
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Each polyhedron can be divided into a set of partial tetrahedrons with the
origin in point O and vertices E;, F;, G;. These vertices form the i-th triangular
surface element on its surface (see Fig. [2.9). Let us now mention some of the key
expressions. The center of mass t; of the i-th surface element and the center of
mass r; of the i-th tetrahedron are given by

Fi
G,
E,

Figure 2.9: A tetrahedron with vertices O, E;, F;, G;, the center of mass t; of the
triangular facet and the center of mass r; of the tetrahedron.

For the normal vector pointing outwards from the i-th surface element, it holds

that )
n; = §(Fi - E;) x (G; - Ey), (2.23)

while the total surface area of the body S is given by S =>".S; = > . |n;|.

Let us define the parameter v; which denotes the number of surface elements
with the index j # ¢ intersected by a line in the direction of t,. If we solve a
linear equation for the j-th surface element

ti = ClEj + bFJ + CG]', (224)

which gives the result a > 0 Ab > 0 A c > 0, then vector t; does, indeed,
intersect the surface element. For convex bodies, it certainly holds that v; = 1.
A contribution of i-th tetrahedron to the total volume can be calculated using
the expression

1
V; = g(—l)”ﬁl\Ei ‘. (2.25)
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The total volume of the body is then obtained by a straightforward summation
V' =>",Vi. The center of mass of the whole body at the assumption of uniform
bulk density is

1
r=o Z Vir;. (2.26)

To define a coordinate system co-rotating with the body, it is beneficial to
find the principal axes of the inertia tensor I. It is also convenient to comupute
the vectors E;, F;, G; with respect to the center of mass of the body. We then
have E; - E; — r, F; — F; — r, G; — G; — r. The components of the inertia
tensor I; of the i-th tetrahedron are given by (see Dobrovolskis, [1996)

Iiwz = Piyy + Pzzz Iiyz - _Piyza (227)
L. = Pipw + Piyy [imy = _Pixy> (229)
where
V;
Piji = /;—O(QEjEk+2Fij+2Gij+Eij—l—Eij+Eij+Eij+Fij+Fij).
(2.30)

The overall inertia tensor is then obtained by summation over all tetrahedrons
I=) 1. (2.31)

Once the inertia tensor I is known, it is no longer difficult to find its principal
axes and the corresponding moments of inertia.

Apart from the Gaussian spheres, we also repeated our simulations for 16
actual shapes of near-Earth asteroidﬁ. Each of the real shapes was propagated
50 times with a different pole orientation. Thus, we modeled the orbital evolution
of 800 bodies in total, again from March 2010 to April 2029. It is important to
mention that the results did not differ notably from the results obtained by using
Gaussian spheres only.

Numerical simulation strategy

We used an open source package OrbFit]®] which includes a highly accurate
Radau-Everhart integrator of the 15th order. In this package we implemented
our numerical model of the radiation pressure. Let us now summarize the key
points of our numerical simulation.

1. For each Gaussian sphere we pre-calculated all the important parameters, such
as the total surface area .S, the volume V' and the position of the center of mass r.

2. We expressed the vertices coordinates E;, F;, Gj relative to the center of mass r.
After determining the inertia tensor I including the principal axes e,,e,, e, we
transformed the normal vectors n; and the vertices into the basis {e,, e,, e, }.

1 Available at http://echo.jpl.nasa.gov/links.html.
15 Available at http://adams.dm.unipi.it/orbfit/.
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3. After a random choice of the angular velocity vector w, we defined orthonor-
mal bases B = {&,n,(} and B’ = {&¢,n,{’} where w || ¢ || ¢’ and let the

basis B’ rotate at the angular frequency of w = % relative to the basis B with
Pt = 30.5 h. It then holds that
&' = cos (wt)€ + sin (wt)n, (2.32)
n' = —sin (wt)€ + cos (wt)m, (2.33)
¢ =< (2.34)

4. The position of Apophis is given by a heliocentric vector * = (x1, z9, x3),
which naturally points in the opposite direction than vector ny pointing from
Apophis towards the Sun. We expressed the components of x in the B’ basis as

Ty = 11§, + 12, + 3, (2.35)
Th = T177, + 22, + T30, (2.36)
'y = 21, + 2(, + 3C, (2.37)

and calculated the unit vector ny which is in the co-rotating frame B’ given by

mg = — (a7, 25, 25)/ v/ (21)? + (w3)? + (25)*. (2.38)

5. In each time step we determined the flux F = F,,/2* and decided which
of the surface elements met the necessary condition of illumination n; - ng > 0.
Consequently, we chose only those that were not shadowed.

6. Then either Lambertian or Hapke radiation model was used. For the -th
illuminated surface element, we found the contribution (dfy.); to the resulting
force f.., and calculated f,., = Zf\il(dfsca)i.

7. In each time step we calculated the cross-section of the body S, the force fi,.
and the resulting perturbation force f = f,., + fi,c caused by both incident and
scattered radiation.

8. The perturbation acceleration a has, in the original basis, the components

1

ap = p—v(fxf; + Ly + £, (2.39)
1

ay = p—v(fz§; + fumy, + 12G,), (2.40)
1

a, = p_V(fa:€; + fynl + fC0). (2.41)

9. Finally, the resulting perturbing acceleration aiy is given by the sum of grav-
itational interaction and SRP

Ayt = g + A. (2.42)
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At this point, we summarize the statistical results that were obtained by
propagation of the Gaussian spheres up to the point of the closest approach to
Earth on April 13, 2029. We also briefly studied the hypothetical case of Apophis
having a spherical shape. It can be shown that, for a spherical body and the
Lambertian scattering, it holds that (see |[Vokrouhlicky and Milani, 2000])

F 4
fapp — — fL (1 n §A) np. (2.43)

As a control test, we carried out two sets of numerical integrations. First,
we calculated the force fspp analytically in each integration step using (2.43).
Then, we constructed a wire-frame model of a sphere with 7200 surface elements,
repeated the propagation and calculated fsgp numerically using the procedure
described above. We also tried various orientations of the spin axis and in both
approaches, we obtained identical distributions of recorded close approach (CA)
distances in 2029. This simple test assured us that our algorithm should be im-
plemented properly. In parts (a) to the figures below, we show the results that
consider both the incident and scattered radiation. Parts (b) include the results
caused exclusively by scattering. Note that without taking the SRP into account,
Apophis will encounter Earth at a minimum nominal distance of 38046.825 km.
The CA distances of Gaussian spheres are therefore given relative to this nomi-
nal value. We also compare the results obtained by the Lambertian and Hapke
models. Finally, Fig. shows the CA distances for real asteroid shapes.

The results

We studied the influence of incident and scattered radiation on the orbital
evolution of (99942) Apophis from March 2010 to April 2029. We focused our
attention especially on the distribution of close-approach distances between the
Gaussian spheres and the Earth. The outcome of our study clearly shows that
the role of the incident and scattered radiation in the orbital evolution of Apophis
is more than an order of magnitude lower than the perturbations caused by the
Yarkovsky effect (see |Giorgini et al., 2008; |Vokrouhlicky et al., 2015b)).

Furthermore, we did not observe any significant difference between applying
the Lambert and Hapke model. The results also did not change when includ-
ing the shadowing of individual surface elements - either in the case of Gaussian
spheres or in the case of radar observation-based models. Note that if only scat-
tering is considered, the CA distribution is symmetrical around zero. However,
after taking the incident radiation into account, the encounter distances are in-
creased by approximately 4 km.

Let us note that if we modeled the orbital evolution of Apophis using its
actual shape and rotational state, the result should lie within the set of solutions
obtained.

We are also convinced that the more recent value of the effective diameter of
375 m (Pravec et al. 2014) would lead to an even narrower CA distribution. It
is also important to bear in mind that the year 2029 is now only 11 years away,
as opposed to the original 19 years, meaning that the SRP will simply act for a
shorter period.
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Figure 2.10: The distribution of close-approach (CA) distances between 2000
propagated Gaussian spheres and the Earth on 13 April 2029. The CA distances
are related to the nominal trajectory of Apophis (see the text). Part (a) shows
the results obtained when including both incident and scattered radiation, part
(b) shows results obtained by considering only the scattered radiation. We used
the Lambertian model with the albedo of 0.2. The effective diameter of all the
bodies was equal to 270 m and the density was set to 2 g cm™>. In part (a), the
mean CA distance is ~ 4 km with the standard deviation of ~ 2 km. In part
(b), the mean CA distance is &~ 0 km and the standard deviation is ~ 1.1 km.
Source: |Zizka and Vokrouhlicky (2011b)).

Pravec et al.| (2014) have shown that Apophis does not rotate around any
of the principal axes of the inertia tensor. This is rather different from our as-
sumption. However, we still assume that tumbling will not have any significant
influence on the results obtained.
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Figure 2.11: Similar to Fig. 2.10] Instead of the Lambertian model, the Hapke
model was used. The parameters of the Hapke model are w = 0.5, g = —0.35,
hs = 0.02 and By = 0.97. In part (a), the mean CA distance is ~ 4 km
with the standard deviation of ~ 1.7 km. Part (b) gives the mean CA distance
of ~ 0 km with the standard deviation of ~ 0.9 km. Source: [Zizka and Vokrouh-
licky]| (2011D).
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Figure 2.12: The distribution of CA distances with respect to the nominal orbit on
13 April 2029. We used 16 actual asteroid shapes derived from radar observations
(top) and each of them propagated for 50 random pole orientations. The data is,
therefore, based on 800 different configurations. We used the Hapke model and
included the influence of incident and scattered radiation. The lower part of the
figure shows, for reference, mirrored data from the upper part of Fig. 2.11] Note
that the mean CA distance in the upper part is again =~ 4.0 km with standard
deviation of =~ 1.3 km which is somewhat lower than 1.7 km. The distribution is
normalized to the most occupied bin. Source: Zizka and Vokrouhlicky| (2011b).

To conclude, we expect that the perturbations in the orbital evolution of
Apophis caused by incident and scattered radiation will play an important role
primarily in future sophisticated models which should be able first to precisely
capture the influence of the Yarkovsky and YORP effects. In the first approxi-
mation, it is, therefore, possible to neglect the effect of SRP. On the other hand,
kilometer-sized uncertainties of the CA distance are still significant with respect
to the keyhole sizes. This might be a very good motivation for re-calculating the
whole problem for the actual shape of Apophis and its updated rotational state.
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2.3 The influence of the Yarkovsky effect

Although the collision with Earth has been practically ruled out for the next
few decades, there still exists a non-zero impact probability after the year 2060.
In the previous paragraph, we mentioned that the Yarkovsky effect significantly
participates in the perturbations of the Apophis’ orbit. Note that it produces an
order of magnitude larger orbital perturbations than the solar radiation pressure
(Zizka and Vokrouhlicky, 2011b)). With time, Yarkovsky-induced perturbations
manifest in the orbital uncertainties that are larger than those caused by obser-
vational uncertainties (see (Chesley, 2006; Farnocchia et al. 2013aj Vokrouhlicky
et al., [2015D).

Chesley (2006) and [Farnocchia et al| (2013a)) studied the fingerprints of all
possible orbital realizations of Apophis in the 2029 b-plane due to the Yarkovsky
effect. They neglected the effect of SRP and carried out a number of repeated
propagations with the thermophysical parameters (obliquity, effective diameter,
etc.) chosen from the respective intervals of their limit values. A few years later,
Vokrouhlicky et al.| (2015b)) used a new solution of the shape and rotational state
of Apophis (Pravec et al. 2014; Miller et al., |2014) and provided a more up-
to-date model of its dynamical evolution. Their results also revised the impact
probabilities after 2029. We will briefly outline how they modeled the Yarkovsky
effect and what are its major consequences on the values of future impact prob-
abilities.

Finding that Apophis does not rotate around any of the principal axes of the
inertia tensor (NPA rotator = Non Principal Axis rotator) and that it exhibits
weak tumbling, brought a major turnaround to the previous studies. The solu-
tions in which we assume a body rotating around the shortest axis of the inertia
tensor, therefore, do not correspond to the actual rotational state.

Let us remind that in the case of NPA rotators, we typically use Euler angles
®,0,1 to indicate the direction of the angular velocity vector w (see Fig. .
These angles capture the transformation between the inertial system (X,Y,Z)
and the non-inertial body-frame systemE] (',y',2"). In principle, the motion of
a NPA rotator can be described using 8 parameters. First, knowing the initial
conditions is important - it is necessary to know the values of angles ¢y and 1, for
an epoch tg. The Euler angle 6 depends on other parameters (see Kaasalainen,
2001). We place the moment of inertia vector L along the Z axis and describe
its direction by the ecliptic longitude A; and the ecliptic latitude §;. Other
parameters that need to be known are I, = A/C and I, = B/C, where (A, B, C)
are the principal moments of inertia. Let us also note that the shortest axis ¢
precedes around the vector L. Finally, we also need to know the period of rotation
Py, and the period of precession P,. The specified parameters can be determined
from photometric measurements using inversion methods (see Kaasalainen, 2001;
Pravec et al) 2005). In the case of Apophis, Pravec et al.| (2014) found that
Br = —T75° A = 250°, P, = 27.38 £0.07 h, P, =263 £ 6 h, I, = 0.611) % and
I, = 0.96575:99

Vokrouhlicky et al| (2015b), however, considered another fundamental pe-
riod P,.,, which corresponds to the period of Apophis’ revolution around the Sun
(assuming undisturbed trajectory).

16Basis vectors of this system correspond to the eigenvectors of the inertia tensor.
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Figure 2.13: The coordinate system (z’,y’, z’) connected with the rotating body.
It is constructed from the initial state 2’ = X, v =Y, 2/ = Z by applying a
sequence of three operations: (I) rotation around the axis z’ by the precession
angle ¢ in the clockwise direction, (II) rotation around the tilted axis z’ by
the nutation angle 6 and (III) rotation around the tilted axis z’ by the spin
angle ©. The inertial system (X,Y,Z) can be connected with the moment of
inertia vector L. Vector L does not change its orientation as long as the total
torque acting on the body is zero. The vector pointing towards the vernal equinox
then lies in the X' Z plane.

The periods P, and P, can be formally included in the diurnal variant of
the Yarkovsky effect while the P,,;, would correspond to the seasonal variant (see
Section . Even though analyzing the influence of the Yarkovsky effect on
the orbital evolution of Apophis is, practically, a numerical task, the method of
solving the heat equation requireslﬂ the period P, to be divisible by both P
and Py. Vokrouhlicky et al. (2015b]) achieved this by slightly varying the semi-
major axis of Apophis and by a small change of parameters specifying Py, and P,.

In their study, the model of Apophis is represented by a polyhedron with a
total of 2024 surface elements (Pravec et al., 2014)). For each of these elements,
classical numerical methods (see (Capek and Vokrouhlicky, 2005; (Capek, 2007
were applied to solve the heat equation. Note that [Vokrouhlicky et al| (2015b
neglected the heat transfer between the surface elements as well as the effect of
mutual irradiation.

ITA periodical solution of the heat equation is expected.
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The heat equation was solved in 1D approximation with a single spatial coor-
dinate z pointing from the surface element inside the body. Assuming a periodical
solution with the period P,,, we are interested in the domain D = (0, Z) x (0, Pyp)
where Z is the maximum depth considered, which was chosen as 15 times the
penetration depth hop = /K Pop/2mpC. Let us remind that K is the thermal
conductivity, p the bulk density and C' the heat capacity of the surface layer (see
Section [1.1.2). The boundary conditions are: (i) T(0,z) = T(Pow, 2), (ii) the
Neumann condition (07'/0z).—z = 0 expressing the existence of an isothermal
core at the depth of z > Z and (iii) Robin boundary condition for the surface el-
ement eo’7| i:O) — K(0T'/0z),—0 = E(t) where E(t) is the absorbed radiant energy
(see Eq. . Vokrouhlicky et al.| (2015b) took the thermal conductivity from the
range K € [0.01,1] W m~! K=! and set the integration step size dt to 3 s. The
depth was divided into dz; ~ dze®' segments, where j and dz =3 x 1073V K m
denote the j-th grid point and the initial step at the surface. For smaller val-
ues of the thermal conductivity K, the interval dz was further reduced because
of the small penetration depth hg. Specifically, the initial step dz in that case
corresponded to (1/100)h.

The effect of shadowing was also studied. Although the model of Apophis
is convex, |Vokrouhlicky et al.| (2015b) slightly modified its shape to make it
a little non-convex. Then by direct tracing of solar rays, they identified the
shadowed facets for which they set E(t) = 0. An important result of their study
is that the shadowing effect changes the semi-major axis drift only in the order
of a few percent, as opposed to the situation without shadowing. The heat
equation was solved using the Finite Difference Method. |[Vokrouhlicky et al.
(2015b) used the discretization scheme for the region D with constant time step
dt and exponentially growing step in the z coordinate. The numerical iterative
solution was stopped if the relative temperature difference was less than ~ 0.1%
in all the points within the grid D. The result of the whole process is the surface
distribution of temperature. Next, they chose the Lambertian model and for each
surface element they calculated the contribution to the overall Yarkovsky force.
Let us outline the main steps in their computational strategy.

The perturbation force caused by the thermal emission from the i-th surface
element takes the well-known form Af; = —(2/3)(ecT/c)AS; where € is the
emissivity and AS,; the normal oriented outwards from the facet. The resulting
perturbation force at time ¢ is the sum of contributions from all the surface
elements and it holds that f(¢) = )  Af;. By using the Gaussian perturbation
equation, we then find the time derivative of the semi-major axis %. It is also
useful to average the flj—‘; over one orbital period P, as follows

<2_j> _ Pib /0 " oyt (2.44)

Note that Vokrouhlicky et al.| (2015b)) neglected the existence of shape irregu-
larities with characteristic dimensions smaller than the size of surface elements
(i.e. boulders, craters, slopes, etc.).

65



Thermal inertia (S| units)
200 500 1000

~14 -12 -10 -8 -6

da/dt (x 107* au/Myr)

-16

0.01 0.1 1
Thermal conductivity (W/m/K)

Figure 2.14: Secular drift of the semi-major axis (22} of the asteroid (99942)
Apophis caused by the Yarkovsky effect. The dependence covers the thermal
conductivity values from the range K € [0.01,1] W m~! K~! with other ther-
mophysical parameters being constant (see the text). The full line presents the
solution of both the A and B versions which are not distinguishable in the pre-
sented scale. The full black highlighted section captures the interval of expected
thermal conductivities (Miller et al., [2014). The gray arrow corresponds to the
surface thermal inertia of I' = 600 (SI). The dashed curve shows the analytical
solution for a spherical body with 375 m in diameter and the rotational period
of 30.56 hours (see [Vokrouhlicky, [1999) which is on a circular orbit with pole ori-
entation fixed at ecliptic coordinates of (250°, -75°). Source: |Vokrouhlicky et al.|

(2015h).

'Vokrouhlicky et al.| (2015b) used two models to simulate the Yarkovsky effect,
denoting them A and B. In model A, they set [, = 0.61042 and in model B
I, = 0.60710. In both cases, they maintained the nominal value [, = 0.965
(Pravec et al. 2014). These values were chosen so that the following ratios are
integers: Po, /Py = 280 and P,/ Py = 29 for P, = 319.5972 days for model A
and Po,/P, = 288 for model B. The solution A then corresponds to a smaller
semi-major axis and the solution B to a larger semi-major axis. For this reason,
it was necessary to re-calibrate the value of the Solar constant to be consistent
with the actual heliocentric distance of Apophis. The shape model of Apophis
(Pravec et al., [2014) was scaled so that its total volume equals to the volume
of a sphere with diameter D = 375 m (Miiller et al. |2014). Other nominal
parameters used in the work by Vokrouhlicky et al. (2015b) are the thermal
capacity C' = 680 J kg=! K1, the surface and volume density 2 g cm™3, the
Bond albedo A = 0.14 and the emissivity e = 1 — A = 0.86. All of them are
based on the mean values of distributions presented in Farnocchia et al.| (2013a)).
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Figure 2.15: Statistical distribution of the mean semi-major axis drift Z—?> accord-
ing to Vokrouhlicky et al. (2015b). The horizontal lines are 1o and 30 confidence
levels. Let us note that the distribution is non-symmetrical with the peak at
—11.8 x 10~* au/Myr, the mean value of —12.8 x 10~* au/Myr, the 1o confi-
dence interval of [~15.7, —8.6] x 107* au/Myr and the 30 confidence interval
of [-26.4, —3.4] x 107* au/Myr.

Vokrouhlicky et al.| (2015b)) found (see Fig. that the secular drift of the
semi-major axis <‘é—‘;> for the thermal conductivities K € [0.01,1] W m™! K™ is
in the range from —15 x 107 au/Myr to —11 x 10~* au/Myr. Note that the dif-
ference with regard to the analytical solution is approximately 15% which proves
that the analytical theory according to [Vokrouhlicky| (1999) is a good zeroth ap-
proximation also for realistic bodies. In other words, the numerically found drift
of Apophis %> is 0.85-times the result of the analytical solution. However, note
that owing to a number of uncertain or limited thermophysical parameters of the
asteroid, it is practically impossible to find the exact value of <%>. On the other
hand, the study of Apophis’ orbital evolution can still provide results of statisti-
cal/probabilistic nature. By using the analytical theory of the Yarkovsky effect
(see [Vokrouhlicky, 1999), |Vokrouhlicky et al.| (2015b) calculated the probability
distribution of the <‘2—‘Z> values for all acceptable thermophysical parameters of
Apophis (Muller et al., [2014; |Pravec et al.,2014)). The conclusions of this analysis
are summarized in Fig. [2.15] which also includes the role of surface roughness in
the enhancement of the Yarkovsky effect. In the next section, we briefly demon-
strate how these results affected the future impact probabilities.
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Future impact probabilities of Apophis

As already mentioned at the beginning of this chapter, the Yarkovsky effect
is the dominant non-gravitational perturbation of the Apophis orbit. Let us note
that all plausible gravity-only solutions manifest as only ~ 1 s in the uncer-
tainty of the closest approach time in 202@, while the uncertainty due to the
Yarkovsky effect is roughly tens of seconds. The perturbations caused by incident
and scattered radiation are rather insignificant (Zizka and Vokrouhlicky, 2011b).
In order to see if the available astrometric data of Apophis reveal the Yarkovsky
effect, Vokrouhlicky et al.| (2015b)) modelled this perturbation by additional tan-
gential acceleration ar in the form ar = Ay/ r2 where r is the heliocentric distance
in au (see Marsden et al., [1973; [Farnocchia et al., [2013a,b)). They fitted the rel-
evant astrometric and radar observations and limited the value of A, so that
Ay = (=51 £28) x 107 au d~2. Let us now consider the Gaussian equation for
the semi-major axis drift (see Murray and Dermott|, 1999)

9o _ 2 (pesinf+T01 2.45

g—m[ esin f + T(1 4 ecos f)], (2.45)
where n is the mean motion, e the eccentricity, f the true anomaly, R the radial
and T the tangential component of the perturbation acceleration. The expression
can be rewritten in the form[

By substituting T, we obtain

da ~ 2av1— e?

dt nr

Aag(r), (2.47)

where g(r) = 1/r%. Let us further follow the approach presented in [Farnocchial
et al.| (2013b)) and average the drift da/dt over the orbital period

1 Pop 1 _ 52 Porb
da _ / (dajdt)dt = == 4, / 9) . (2.48)
dt Porb 0 T 0 r

If we employ the following relation between the differentials dt and df (see|[Murray

and Dermott, [1999)

df B na
= m_(l + ecos f), (2.49)

we obtain

<d_a> _a —62)A2 /02”g(r>(1 +ecos f)Ldf (2.50)

dt nm
- e?) /27T 1 -1
= A, i r2(1 +ecos ) df (2.51)
. 2(1 — 62)_/42
== (2.52)

18 At the confidence level of 3c.

19Considering only the tangential component T of the perturbation acceleration. Further-
more, we used the equation of an ellipse in the polar form r = a(1 — e2)/(1 + ecos f).
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while p = a(1 — €?) is the semilatus rectum. Therefore, it holds for the A,

parameter
1 a \2 da
Ay = = (—) 1—e?) (22 92.53
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Figure 2.16: Probability density function of the A, parameter (see Eq. [2.53]).
The gray curve denoted (1) captures the statistical results obtained by fitting the
observation data. The curve (2) was obtained by semi-analytical modeling (see
the text). The full curve is a combination of both methods. Source:

et o) @UTSE)

Employing the statistical distribution of the semi-major axis drift (see Fig.
in the equation practically provides a semi-analytical probabilistic dis-
tribution of the A, parameter. The resulting probability distributions of the A,
obtained by fitting the astrometric data and by the semi-analytical method de-
scribed above are compared in Fig. 2.16] [Vokrouhlicky et al.| (2015b) used a com-
bined distribution of the A, parameter to calculate the ephemerides of Apophis
and also to revise the future impact probabilities.

The analysis of impact probabilities was, again, performed in the b-plane with
the coordinates (€2029, (2029) (see Section[2.1]). The emphasis was put especially on
the (o009 coordinate which is affected by the Yarkovsky—induced@ perturbations
most strongly.

20 Above all, the clones generated within the uncertainty ellipsoid of Apophis orbit disperse
along the orbit due to the Yarkovsky effect which is reflected in the uncertainty of the close
approach moment.
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Figure 2.17: The gray curve denotes the probability density function of the vari-
able (5929 obtained from the purely gravitational solution of the asteroid’s orbital
evolution. The maximum of this distribution is equal to 0.07 km~! and it lies
outside the plotted scale. The nominal value of (y is (5 = 47667 km. The black
curve shows the same, only this time, the Yarkovsky effect was considered. The
vertical lines indicate the positions and the widths of the keyholes. By multiplying
the width of the keyhole by the probability density, we obtain the correspond-
ing impact probability (see Tab. . It is apparent that the Yarkovsky effect
causes a shift of the nominal value of the coordinate (5029 by ~ 300 km. Source:
Vokrouhlicky et al.| (2015b)).

Positions of the keyholes as well as their impact probabilities are summarized in
Fig. and Tab. 2.2

Currently, it seems that the close encounter in 2068 is potentially most dan-
gerous (IP &~ 6.7 x 107%). Note that the orbital evolution after 2029 cannot be
found accurately, because we do not know how the rotational state of the asteroid
will change during the close approach with the Earth.

In future, however, new corrections and improvements of the current results
are to be expected. This is mostly thanks to fortunate conditions for further astro-
metric and radar measurements which will happen in 2020 and 2021 (Farnocchia
et al., 2013a). Then we can also expect that the range of possible Yarkovsky
drifts obtained by fitting the astrometric data will provide better results than the
physical modeling of the Yarkovsky effect. On the other hand, the modeling is
also likely to be improved, especially thanks to the close approach to Earth in
March 2021. At that point, it will be possible to make detailed photometric ob-
servations and better constrain some thermophysical parameters (especially the
pole orientation and the thermal inertia of the surface).
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Date TBD C2029 — Co [km]  Width [m] PDF x1073 [km~!] IP x10~6

2060-04-12.6 -241 0.03 3.3 0.1
2065-04-11.8 -237 0.08 3.2 0.3
2068-04-12.6 -230 2.25 3.0 6.7
2076-04-13.0 -224 0.19 2.8 0.5
2077-04-13.5 -230 0.06 3.0 0.2
2078-04-13.8 -236 0.07 3.2 0.2
2091-04-13.4 -236 0.07 3.2 0.2
2103-04-14.4 -230 0.18 3.0 0.

Table 2.2: Parameters of the (99942) Apophis keyholes in 2029. For each impact
epoch, the table lists the position of the respective keyhole, its width, the proba-
bility density function (PDF) for (5029 — (o and the impact probability (IP). Note
that (o = 47667 km.

2.4 Conclusion

This chapter dealt with the influence of the Yarkovsky effect and solar radi-
ation pressure on the orbital evolution of near-Earth asteroid (99942) Apophis
until 2029, when it will pass Earth approximately ~ 38000 km away. We found
that the change in the close approach distance due to the solar radiation pressure
is in the order of hundreds of meters to kilometers for both the Hapke and Lam-
bert scattering model, being roughly two orders smaller than the change induced
by the Yarkovsky effect. Even though our results are negative in a way, they
might be valuable for those who model the orbital evolution of selected bodies
under the influence of non-gravitational perturbations. In these models, the solar
radiation pressure can thus be neglected in the first approximation which would
shorten the computational time.

As we did not have any information about the shape and rotational state
of Apophis, we used a set of random Gaussian spheres and assumed random
orientations of their spin axes in our simulation. Recently, however, the shape of
Apophis has been determined, so it would be interesting to recalculate the whole
problem even though we do not expect any significant differences compared to
our results.

Let us note that the orbital evolution of Apophis considering the influence of
the Yarkovsky effect was a subject of some monothematic studies which benefit
from new information about its shape and rotational state. All of them confirmed
that the dominant non-gravitational perturbation is the Yarkovsky effect. New
models are, therefore, able to accurately revise and improve the impact probabil-
ities of this near-Earth asteroid.
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3. Young asteroid families and
pairs

Families and pairs of asteroids are remnants of a fragmentation of larger par-
ent bodies. In this chapter, we will focus primarily on very young families and
pairs not exceeding ~ 2 Myr in age. Asteroid families and pairs present a unique
physical laboratory where one can test hypotheses about their origin, investi-
gate their age and, in some cases, even reconstruct the break-up event. Younger
systems are, in this regard, more suitable than older ones since the members
of older families have been under longer lasting influence of gravitational and
non-gravitational perturbations. We briefly discuss young families and provide a
detailed account of asteroid pairs and their selected representatives. We will es-
pecially focus on a very young and compact pair (6070) Rheinland — (54827) 2001
NQ8. The next chapter is then dedicated to the youngest asteroid pair (87887)
2000 SS286 — (415992) 2002 AT49. We note that the author of this dissertation
contributed by his calculations to determining the age of selected asteroid pairs
in |[Vokrouhlicky et al.| (2011)), |[Pravec et al. (2013), Polishook et al.| (2014), Galad
et al.| (2014) and |Pravec et al.| (2016). He also modified the classical method for
finding the age of asteroid pairs to be more suitable for weakly convergent cases
(see [Zizka and Vokrouhlicky, 2011a, or Appendix A, Paper 2).

3.1 Young asteroid families

The research on asteroid families practically started already at the beginning
of the last century with the works of Hirayama (1918] |1922)) in which the first
members of the Koronis, Eos and Themis families were identified. Over the
years, their number rapidly grew and other new families were discovered (see
Nesvorny et al., [2015). In the last decade the research into asteroid families has
rapidly accelerated especially owing to sky surveys such as Sloan Digital Sky
Survey (SDSS), Wide-field Infrared Survey Explorer (WISE) or AKARI All-Sky
Survey which provided valuable data about the physical properties of the main
belt asteroidsﬂ (Ivezi¢ et al., [2001; Mainzer et al. 2011; [Usui et al., |2013)).

Studying the dynamics of asteroid families provides insight into extreme colli-
sions and asteroid fragmentation in the Solar System. The fragments after these
energetic events are nowadays observed as separate asteroids which form clusters
in the orbital elements space, indicating that they probably share a common ori-
gin. Young families are, however, more suitable if we want to determine their
age, because the gravitational and non-gravitational perturbations act on their
members for a much shorter period of time, compared to the older families.

Our attention in this chapter is focused on very young asteroid families and
pairs with age not exceeding ~ 2 Myr. However, note that a slightly older, but
still young Karin family was the first discovered in this class (Nesvorny et al.|
2002)). Its age is estimated to be T,4 ~ 5.75 Myr and it was probably formed in

IEspecially broadband photometry has enabled mineralogical classification of tens of thou-
sands of asteroids and provided information about their albedos and sizes. The WISE mission
was succeeded in 2010 by the NEOWISE mission, focused primarily on NEAs.
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an impact of a ~ 5.8 km sized projectile to a ~ 33 km sized parent body. The
impact velocity was approximately 5 — 6 km s~! and after this collision about 100
family members larger than ~ 2.5 km were created (Nesvorny et al., 2006b)).

3.1.1 Family identification

The classical method for asteroid family identification consists of three steps:
(i) calculation of proper (or osculating) elements for a chosen set of asteroids, (ii)
identification of clusters or groups in the space of these elements and (iii) analysis
of their statistical significancd?’}

As already mentioned, asteroid families are created by fragmentation of parent
bodies. We assume that for a vast majority of fragments, their relative velocities
just after the break-up event are considerably smaller than orbital velocities. Af-
ter the disintegration, we then expect that the family members will orbit together
in a cluster. However, with time, they start drifting apart as a consequence of
both gravitational and non-gravitational perturbations. For a short time though,
the fragments are rather apparent as clusters in the space of osculating elements
(a,e,i,0,w).

To describe older asteroid families, we use proper elements (ay, €,,7,) which
represent quasi-integrals of motion (see [Knezevié et al.,[2002)). They can be calcu-
lated from osculating elements by suppressing the periodical oscillations caused
by gravitational perturbations. This can be done either analytically using the
perturbation theory (see Milani and Knezevi¢, 1990, |1994) or numerically by in-
tegration of asteroid orbitf] (Knezevié and Milani, 2000; Knezevi¢ et al., |2002).
The identification of old families is then based on the Hierarchical Clustering
Method (HCM) (Zappala et al.; 1990; Bendjoya and Zappalaj, [2002)), which intro-
duces the following metric in the proper elements space

da,

d* = (na,)? [ka <—) + ko (0ep)* + ki(84,)? | (3.1)

ap

where na, is the heliocentric velocity of an asteroid on a circular orbit with semi-
major axis a,, (da,,de,, di,) is the separation vector of neighboring bodies and
ko = 5/4 and k. = k; = 2 are the weighting factors (see Zappala et al., [1990).
Let us note that clustering algorithms can also benefit from information about
the color and/or albedo. The homogeneity of asteroid families with regard to
the color or albedo is summarized for example in [Ivezi¢ et al.| (2001) or Parker
et al.| (2008). These references mostly utilize data from SDSS and WISE surveys.
For example, thanks to the SDSS survey, the asteroids in the S-complex can be
distinguished from the C/X-complex bodies (Nesvorny et al., 2005)). Similarly,
the data from the WISE/NEOWISE surveys allowed us to distinguish high-albedo
asteroids from the low-albedo ones (Masiero et al., [2013)).

2There might be interlopers into the families - asteroids that have similar values of the orbital
elements. These asteroids can be ruled out for example by working in an extended space. In
other words, we extend the space of orbital elements with physical parameters such as the color
and/or albedo (see [Parker et al.; 2008} Masiero et al [2013; |Carruba et al., |2013]).

3Proper elements of numbered and non-numbered multi-opposition asteroids are provided
by AstDyS database which is available at http://hamilton.dm.unipi.it/astdys/.

73



These populations can then be treated separately by the HCM method. A more
general approach, however, includes the color and/or albedo directly in the d
metric, practically creating a modified HCM method in a four- or five-dimensional
space (see Parker et al., [2008; (Carruba et al., [2013)). For instance, we can define
the distance d’ as follows

dl2 = d2 + (nap)g[krl (501)2 + ]{32((502)2], (32)

where the distance d is given by the expression and the parameters C and
Cy are diagnostic colors based on the SDSS observations (see [Ivezié¢ et al., 2001;
Nesvorny et al., 2005). The coefficients k; and ky are again weighting factors and
should be chosen reasonably with regard to the k,, ke, k; coefficients (Nesvorny
et al., 2006a). Let us note that the albedo py, which can be obtained, for instance,
from WISE measurements, can also act as an additional parameter

d"™ = d” + (na,)*k,(5pv)>. (3.3)

It is obvious that with each added dimension, increasingly strict requirements are
imposed on the family members.

However, in the case of very young asteroid families, we may assume that the
trajectories of individual members have not undergone such dramatic changes
due to gravitational and non-gravitational perturbations. Typically, gravitational
perturbations from planets cause dispersion of secular angles @ and €2 on the time
scale of & 1 — 2 Myr (see Nesvorny et al., [2015; Nesvorny and Vokrouhlicky|
2006). The clustering methods of identification can then directly use the osculat-
ing elements. These do change in time as well but we may expect that very young
families with T}, < 2 Myr will appear as clusters even in the 5-dimensional space
of osculating elements. Let us note that we do not expect any clustering in the
mean anomaly M because the Keplerian shear spreads individual fragments with
disintegration velocities dv = 1 — 100 m s~! around the Sun on the time scale
of &= 300 — 30000 years (see Nesvorny et al., [2015).

Nesvorny and Vokrouhlicky (2006)) introduced the following metric in oscu-
lating elements

2 2
(nia) =k, ((L_a) + ke(6€)* + ki(6sind)? + ko (0Q)? + ky (6w)?, (3.4)
where n is again the mean motion and (da, de, dsin i, dww, §2) vector separating two
neighboring bodies. From linear perturbation theory (see Brouwer and Clemence),
1961)), it follows that the precession speeds of secular angles €2 and w should be
about the same. We therefore assume that kg ~ k5. In addition, Nesvorny
and Vokrouhlicky| (2006) empirically found that the best results in identifying
young clusters are achieved by choosing kq = k = 1075, The first application
of the metric function d in 5D space (a,e,i,),w) was presented by Nesvorny
et al. (2006¢), who discovered the Datura family. In the same year, Nesvorny and
Vokrouhlicky| (2006)) recognised other three new clusters (Emilkowalski, 1992 YC2
and Lucascavin) exhibiting d € [20, 40] m s and to them they did not find
any additional members with d € [40,200] m s~!. Let us note that other forms
of metric functions can be found in Rozek et al.| (2011)).

After identifying clusters in orbital elements space using the HCM method,
it is necessary to decide, whether they really represent real families or whether
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they are just a consequence of random fluctuations in the asteroid distribution in
the orbital elements space.

The problem of statistical significance of asteroid clusters was first addressed
by |[Nesvorny and Vokrouhlicky (2006)). They created 320,000 synthetic asteroid
belts and within each of them they randomly spread 316599 bodied’ Then they
applied the HCM method onto each synthetic asteroid belt. In any of the syn-
thetic belts, they did not find clusters containing at least three members with
d < 50 m s~!. From the above, it is thus evident that the clusters should not be
a result of random fluctuations but that they probably share a common origin.

An estimation of the formation probability of a random cluster with at least
three members is rather straightforward. We divide the synthetic asteroid belt
into M cells of the same size. Let each cell occupy in the 5D space (a, e, i, w, Q)
a volume comparable to the volume of the studied cluster. Further, let N be the
number of asteroids in the synthetic belt. The probability of finding at least 3
asteroids in one cell is then given byf]

D5 = @) % (3.5)

Nesvorny and Vokrouhlicky| (2006)) chose, when analysing the Emilkowalski,
1992 YC2 and Lucascavin clusters the conservative value of M =~ 10'2. For
N ~ 3% 10°, one obtains p3 ~ 10~® according to (3.5]). This is, in fact, the reason
why the authors did not find a single cluster with at least three members in the
320,000 runs of the algorithm.

3.1.2 Finding the age of very young families

After we identify a young family in the 5D space, the question of its age
immediately arises. To find the real age of young asteroid families, we can use
a direct numerical integration of individual members’ orbits into the past. Let
us note that during the backward propagation, it is not sufficient to just rely
on nominal orbits. Apart from the orbital uncertainties and deterministic chaos,
the dynamical evolution of family members is also influenced by gravitational
and non-gravitational perturbations. Thus, all these effects have to be taken into
account during the simulation.

Nesvorny and Vokrouhlicky| (2006), therefore, took the following approach.
For each family member, they generated, within the 1o interval of its orbital
uncertainty, 20 geometrical clones and to each of them attributed 41 admissible
values of the Yarkovsky drift da/dt (yarko clones). The drifts da/dt uniformly
covered the interval [—|da/dt|max, |da/dt|max], where |da/dt|max and —|da/dt|max
are the limit values corresponding to the obliquities v = 0° and v = 180° (see
Section 1.1.3 and the equation ) Overall, each fragment is thus represented
by 820 test particles. It has to be noted that the maximum drift |da/dt|max is
determined individually for each fragment, considering its estimated thermophys-
ical properties. In the zeroth approximation, |da/dt|m.x can be computed from
the linear theory of the Yarkovsky effect.

4This number corresponds to the number of asteroids listed in the AstOrb catalogue on
March 1, 2006.
"We assume M >> N.
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Note that due to the Yarkovsky-induced semi-major axis drift, all clones sub-
sequently spread around the Sun and after a sufficiently long time, their mean
anomalies uniformly cover the interval [0°,360°]. This effect is known as the
Keplerian shear. Let us briefly describe its role.

An infinitesimally small change of the mean anomaly dM caused by an in-
finitesimally small change of the mean motion dn is given by dM = tdn. If it
holds that dn = g—’; da, we obtain

M — (%) (%) Lt (3.6)

From the third Kepler law, it follows that % = —%% After substituting this
equation into , we see that the mean anomaly difference between two clones
is given b
3 [1lda 9
|AM| = 1 LL dt} nt. (3.7)

The maximum Yarkovsky drift for approximately kilometer-sized asteroids
has the order of magnitude da/dt ~ 2 x 107* au Myr~—! (see Morbidelli and
Vokrouhlicky,, 2003). Using equation , we can see that the complete shear
of clones along an orbit in the main belt takes roughly ~ 200 — 300 kyr. On the
other hand, the dispersion of secular angles 2 and @ occurs at longer time scales
(Nesvorny and Vokrouhlickyl, 2006]).

Thus, during the backward propagation of the clones, Nesvorny and Vokrouh-
licky| (2006]) focused mainly on the secular angles. They used a freeware sym-
plectic integrator SWIFT-MVS (Levison and Duncan| 1994) into which they im-
plemented the Yarkovsky effect-caused perturbations. For each member of the
Emilkowalski, 1992 YC2 and Lucascavin cluster, they generated a set of geomet-
rical and Yarkovsky clones and propagated these clones from MJD 2,453,700.5
for 2 Myr into the past. They selected a specific cluster and in each time step of
the backward propagation calculated the function AV (), which is defined as

AV (t) = nav/ky (sin iAQ)2 + ko (eAw)2, (3.8)
where
(AQ)2 = Z (6Qijkl>2/Npair57 (Aw)Q = Z <5wijkl)2/Npairs' (39>
i£§,12l>z @Zf-,ﬁgz

Here, for instance, 02, is the difference in the €2 angle between the i-th clone of
the k-th fragment and the j-th clone of the [-th fragment. We sum over all clone-
clone combinations (i # j) and take into account all pairs of fragmentsﬂ Npairs-
The parameters ki, ko are again weighting coefficients. |Nesvorny and Vokrouh-
licky| (2006) used k; = 1 and ko = 1/2 and showed that if they are comparable,
their specific values do not influence the age distribution of the family. If the
convergence criterion AV (t) < Viax A AM < Mpax 18 met (Vipax, Mmax are
pre-estimated individually for each cluster), then the time of convergence t is
recorded. From the distribution of ¢, we can determine the age T}, of the family.

6We assumed da/dt = const. and n = const.
"The results, however, do not change if we use only pairs with the largest fragment.
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The threshold of the ejection speed V.« can be estimated from the distri-
bution of proper elements a,, e, and i, within the studied cluster (see Nesvorny
and Vokrouhlicky, 2006, for further details). Usually, Viax has the order of mag-
nitude ~ m s~!. Note that an artificial increase of V., gives a less conservative
distribution of possible ages, whereas its decrease leads to rather restrictive re-
sults. Regarding the M.« value, Nesvorny and Vokrouhlicky| (2006]) typically
use Mp.x = 1° — 10°. Lower values of M., would probably face the problem of
insufficient number of clones.

However, some young families were also studied directly in Cartesian space.
For instance, when solving the age of the Datura family, [Vokrouhlicky et al.
(2017a)) calculated in each integration step the relative distances and velocities
between clones of individual fragments and clones of the largest family member.
These were then compared with the characteristic Hill radius Ry;; and the escape
velocity Vi of the parent body. They found that at least in the case of Datura
family, the previous method practically gives identical distribution of possible
ages as the similar method in Cartesian space.

Let us note that the characteristic radius of the Hill sphere can be obtained

iz i\ P
9 n
diameter of the parent body, G is the gravitational constant, p; is the density of

the parent asteroid and p is the gravitational parameter of the Sun. The escape

from Ry ~ aDlé ( where a is the semi-major axis, D; is the estimated

velocity is given by the equation Vg, =~ Dlé (%“Gpl)l/z (see Pravec et al., 2010).

3.1.3 Selected examples of young families

The first-discovered families with ages in the range of 1-10 Myr were (i) the
lannini cluster (1 - 5 Myr), (ii) the Karin cluster (5.75 £ 0.05 Myr) and (iii) the
Veritas family (8.2 & 0.1 Myr) (see Nesvorny et al., 2002, 2003; Nesvorny and
Bottkel 2004). During the past decade, however, 14 new asteroid families younger
than ~ 3 Myr have been found. Three of them were recently identified by Pravec
et al. (2018). The rest was revised and updated by Vokrouhlicky et al. (2016)),
Vokrouhlicky et al| (2017a) and [Pravec et al.| (2018).

The first-discovered family with an age less than 1 Myr was the Datura family
(Nesvorny et al., 2006¢)). It was then followed by the discovery of small clusters
(14627) Emilkowalski, (16598) Brugmansia = 1992 YC and (21509) Lucascavin
(Nesvorny and Vokrouhlicky, 2006). Five clusters (6825) Irvine, (10321) Rampo,
(18777) Hobson, (39991) Iochroma and (81337) 2000 GP36f| were discovered by
Pravec and Vokrouhlicky| (2009)). The most recent cases also include the clusters
(20674) 1999 VT1 (Novakovi¢ et al., 2014), (2384) Schulhof (Vokrouhlicky and
Nesvorny, [2011)) and a triplet of clusters (11842) Kap’bos, (22280) Mandragora
and (66583) Nicandra (Pravec et al., 2018).

From what we know today about young asteroid families, it is apparent that
each of them is unique, in a way. Many have been, therefore, a subject of multi-
topic publications. Since a complete account of all young families including a
detailed physical description would exceed the extent of this work, we only briefly

81t was uncertain whether the (18777) Hobson asteroid belonged to the Hobson cluster. This
was confirmed by Rosaev and Plavalova (2017). The cluster (81337) 2000 GP36 turned out to
be a part of a larger cluster (2384) Schulhof (Vokrouhlicky and Nesvorny, 2011)).
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discuss the three youngest representatives - (16598) Brugmansia, (22280) Man-
dragora and (39991) Iochroma. Note that in the following text, the distance d in
the space of osculating or proper elements will be related to the largest body.

) a = (b
Ef (e) (A

P 1

'6',, 'go
g2 g [
'E & < S
= g % - I'

o L iy

2

1

-1

—-400

2

1

-1

Nodal Longitude (deg)
0

2

Perihelion Longitude (deg)
0

-2

Figure 3.1: Convergent solutions of the Emilkowalski cluster which consists of
asteroids (14627) Emilkowalski, (126761) 2002 DW10 and (224559) 2005 WU178.
Part (a) shows the resulting distribution of possible ages, the other parts show the
best convergent solutions of the asteroids (126761) 2002 DW10 (red) and (224559)
2005 WU178 (blue). Parts (b), (¢) and (d) demonstrate the time evolution (into
the past) of the mean anomaly AM, the longitude of the ascending node A and
the longitude of the pericenter Aw relative to the asteroid (14627) Emilkowalski.
Taken from Nesvorny and Vokrouhlicky] (2006).

(16598) Brugmansia cluster

The Brugmansia cluster was discovered in 2006 and originally, it was estimated
to be 50-250 kyr old (Nesvorny and Vokrouhlicky], 2006)). It consists of asteroids
(165980) Brugmansia, (190603) 2000 UV80 and (218697) 2005 TT99.
conﬁrmecﬂ that there is no other multi-opposition asteroid in the
vicinity of this cluster with d < 87 m s™!. Backward propagation of its members
showed that the convergent solutions for the pairs (165980) Brugmansia - (190603)
2000 UV80 and (165980) Brugmansia - (218697) 2005 TT99 overlap in the time
interval 120 — 230 ky. According to [Pravec et al. (2018)), the separation of the
primary from the secondaries thus probably occurred 17015 thousand years ago
(see Fig. . Let us note that at a relatively large distance of d = 87 m s~!, there

9Choosing k, = 5/4,ke = k; =2 and ky = kg = 10~* in the metric (3.4)).
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is another asteroid - (84329) 2002 TU51. This body, however, most likely belongs
to the background population because its clones do not show any convergence with
the clones of (165980) Brugmansia.
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2 a B 16598 - 190603 (13830 encounters)
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= 1000
.
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Figure 3.2: Brugmansia cluster. The distribution of convergent solutions be-
tween secondaries (190603) 2000 UV80 and (218697) 2005 TT99 and the primary
(16598) Brugmansia. In this cluster Ry &~ 1063 km and Ve &~ 2.6 m s~!. Con-
vergence criteria were set to be less strict - specifically 7. < 10Rgin A Vrel < 2Vige
where 1. and v, are the distance and relative velocity between the clones of a
secondary and clones of the primary. Taken from Pravec et al.| (2018).

(22280) Mandragora cluster

The Mandragora cluster was discovered by Pravec et al.| (2018) during their
search for asteroid pairs. This cluster currently contains 19 asteroids. Let us
describe how individual members were discovered. The closest pair of the cluster
consists of asteroids (324154) 2005 YN176 and (459310) 2012 GZ32 which are
separated in the 5D space (a,e,i,w,Q) by the distance d ~ 7.1 m s™1.
complemented this pair with two other bodies (including the pri-
mary (22280) Mandragora). The newly created system of three secondaries then
appeared to be a good candidate for a young family since the distances between
all of them did not exceed 35 m s~!. This ensemble was further extended by 6
more asteroids (we do not list them here explicitly) with[’d € [82,161] m s~1.

Consequently, Pravec et al.| (2018) used the HCM method to inspect also the
wider surrounding of the primary (22280) Mandragora. They found 7 additional
bodies with distances of 45-65 m s~! in the proper elements space, which corre-
sponded to 322 - 2094 m s~ ! in the osculating elements space. This difference is,
possibly, caused by the fact that the cluster is close to the J9/4 resonance. Later,
two other candidates were discovered at the distances 13 and 31 m s~! in the
proper elements space, extending the whole ensemble to the current 19 members.

ONote that their distance relative to the original secondaries did not exceed 100 m s~!.
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The affiliation of the whole ensemble to a single family was then confirmed by
backward numerical propagation of geometrical and Yarkovsky clones. Individual
convergent solutions between the secondaries and the primary overlap in the
interval 100 - 1000 kyr in the past and the age of the family is estimated to be
250750 kyr. The Hill radius and the escape velocity of the parent body are in
this case Ry ~ 2499 km and Ve = 5.2 m s™'. Pravec et al, (2018) again used
less conservative criteria of convergence 1o < 20Rgin A Vpel < 4V
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Figure 3.3: Iochroma cluster. An illustration of the distribution of convergent
solutions between the secondaries and the primary (39991) Iochroma. In this
cluster Ry = 879 km and Vi, = 2.3 m s~ 1. The convergence criteria were set so
that r. < 10Rgm A Vrel < 2Vese Where 7. and v, are the distance and relative
velocity between the clones of a secondary and clones of the primary. Taken from
PPravec et al.| (2018).

80



(39991) Iochroma cluster

This cluster consists of 5 asteroids - the primary (39991) lochroma and 4
secondaries. Its discovery was first published in 2009 by [Pravec and Vokrouhlicky
(2009). Note that in this case, they did not find any other multi-opposition
asteroids closer than 100 m s~!. The distribution of convergent solutions between
the secondaries and the primary overlap in the interval 90-390 kyr and the age is
estimated to be 1907309 kyr.

3.1.4 Formation of young families

In today’s view, young asteroid families are created by either (i) rotational fis-
sion of the parent body due to the YORP effect, followed by subsequent rotational
fission of the new secondary/secondaries (fission origin) or (ii) as a consequence
of a projectile hitting the parent object (impact origin).

Let us consider a rubble-pile asteroid which disrupted into N fragments. It
can be shown (see [Scheeres, 2016&) that the total energy of such a system reads

N
1

E= w1 w+— M;M;v;j - v + , 3.10

J;QC : 11];1 i Vi lelj (3.10)

where w, is the critical angular velocity at which the fragments start to escape

the parent asteroid, M is the total mass of the system, I;, M; are the inertia

tensor and the mass of the j-th fragment and wv,;, U;; are the relative velocity
and potential energy between the ¢-th and j-th component. It holds that

/ / dmqdm; (3.11)
lez pil’

where (3;, 3; are the integration regions of the i-th and j-th component. We define
the free energy of the system as the total energy minus the self-potentials Uy;.
If the free energy is positive, all secondaries can escape the parent body (Scheeres|,
2002, |2016Db).

According to the hypothesis (i), family members are produced by rotational
fission of the parent asteroid (e.g. due to the YORP effect), followed by subse-
quent fragmentation of the secondary /secondaries. This mechanism was proposed
by [Jacobson and Scheeres| (2011a). At first, disruption of the parent body cre-
ates a proto-binary system and thanks to spin-orbit coupling, the free energy is
temporarily stored in the rotational energy of the components and in the kinetic
energy of their relative motion. If too much energy is stored in the relative mo-
tion, the distance of the components keeps increasing and the system falls apart.
If too much energy is stored in the rotational motion of the secondary, it can be
further fragmented. The positive free energy leads to a possible escape of one or
more secondaries from the system.

The hypothesis (ii) which considers the impact origin of young families is
presented in [Vokrouhlicky et al.| (2017a)). According to this hypothesis, the origin
of very numerous populations of secondaries is rather a consequence of cratering
of the parent body than its catastrophic disruption. Vokrouhlicky et al.| (2017al)
estimated that there are up to ~ 300 fragments of the Datura family with the
diameter > 200 m. Such a numerous population can hardly be created by gradual
rotational fission of the secondaries.
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3.2 Young asteroid pairs

In this section, we briefly discuss the general theory of asteroid pairs, espe-
cially the methods of their identification and age determination. We also present
the best studied pair (6070) Rheinland — (54827) 2001 NQ8. The author of
this thesis contributed to the age solution of this pair in the work of [Vokrouh-
licky et al| (2011)) and also modified the classical method of age determination
(Vokrouhlicky et al., 2008) to be more suitable for poorly convergent cases (see
Zizka and Vokrouhlicky, 2011al or Appendix A, Paper 2).

Asteroid pairs did probably form a single parent body in the past. This body
disrupted into two (and potentially more) pieces which are nowadays observed as
separate asteroids on similar heliocentric orbits.

The population of asteroid pairs was discovered by [Vokrouhlicky et al. (2008)
by comparing cumulative distributions N (< d) of real and randomly generated
asteroidsE] in the main belt. For the analysis, [Vokrouhlicky et al. (2008) used
~ 370,000 available trajectories with semi-major axes in the range [1.7,3.6] au
and arc lengths longer than 10 days. Note that for a random distribution of orbits
in the 5D space of osculating elements, we expect the theoretical dependence

N(< d) ~ d° (see Fig. [3.4).

3.2.1 Identification and statistical analysis of young pairs

Identification of young asteroid pairs is, in many aspects, similar to the identi-
fication of young families (see Section [3.1.1]). [Vokrouhlicky et al| (2008) identified
pairs in 5D space (a, e, i, w, §2) using the expression (3.4) with the weighting co-
efficients k, = 5/4, k. = k; = 2 and kq = k, = 107°. At this point, let us note
that the choice of weighting factors kg and k, plays a key role in the pre-selection
of young pairs, because higher values of the kg and k, coefficients increase the
sensitivity of the metric d to the changes of secular angles (692)? and (dzw)? which
are smaller for young pairs than for older ones.

Probability of close orbits occurrence

Even though the orbits of the primary and secondary are very close, it is nec-
essary to express the probability that one is not dealing with a random fluctuation
in the space of osculating elements. This problem was addressed by |Vokrouhlicky
et al. (2008)) and |Pravec and Vokrouhlicky| (2009).

Let us define the local density of orbits n = n(a, e, 7,2, @) in the 5D space of
osculating elements by the equation v = nV', where v is the number of orbits in
the boxlﬂ with volume V' = d®. The probability p,(d) of finding n trajectories in
a 5D box with the volume d® follows the Poisson distribution

pu(d) = —ve™, (3.12)

where we set n = 2 for asteroid pairs.

"N (< d) is the number of pairs with the distance in 5D space smaller than d.
12The side lengths of the 5D cube are chosen so that Aa = d/(nv/k,), Ae = d/(navk.), ...
for a given distance d. Then V = d° = \/kakekilmkw(naf%AeA siniAQAw.
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Figure 3.4: Cumulative distribution N(< d) for an ensemble of real asteroids
(black symbols) and randomly generated orbits in the main belt (gray sym-
bols). The error intervals show the uncertainty of d derived from orbital un-
certainties of the primaries and secondaries. The fitted power-law function
holds N(< d) ~ d*'. The observed excess of the real cumulative distribu-
tion (d <10 m s™') cannot be a consequence of randomly generated orbits. It is
thus probable, that the pairs from this part of distribution have the same origin.
Taken from [Vokrouhlicky et al.| (2008]).

The probability of occurrence of n trajectories in any volume V' is then expressed
by a 5-dimensional integral

Pod) = Y puld) = ¥ / e dv. (3.13)

n!

Since we assume a small v, it approximately holds that e™ = 1 and the equation
above takes the form

Pn(d) ~ 1 <,'7n> Vvtﬁt (314>

~ m Mnr—1 ’
where (n™) is " averaged over the main belt, Vi, is the volume of the main belt
and M is the number of cells for which it holds that M = V. /V .
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If we assumed a constant density 7, the equation (3.14)) would take the form

1 N
Py~ e
with N being the total number of orbits in the main belt. Applying the expression
(3.15) to asteroid pairs (n = 2) immediately yields

_ 1IN 2
NS
Vokrouhlicky et al.| (2008) made a specific estimation of P,(5) for the distance of
5 m s~!, assuming a constant density 1. Originally, they covered the main belt
(N = 370000) with M =~ 10" cells and using the expression found that
P5(5) ~ 0.002.

Vokrouhlicky et al.| (2008), however, also modeled a more realistic situation
and attempted to express the probability Py(d) for a non-constant orbit den-
sity n. Considering the uniform distribution of secular angles within large fami-
lies, they only assumed the density 7 in the form 1 = n(a, e, 7). The dependency
of n(a,e,i) was found numerically by sampling the main belt region in the in-
tervals Aa = dgmootn/ nvkq for a given smoothing distance dgmootn. Then they
calculated the occurrence probability of close orbits for different Aa values. For
Aa = 0.1 au and Aa = 0.01 au they obtained P»(5) ~ 0.01 and P,(5) ~ 0.03,
respectively. It is apparent that P (5) slightly increases as the step Aa decreases.
This means, that even if P(5) is still relatively small, it reaches higher values
in close and compact systems, such as young asteroid families. To conclude, the
probability that a close pair with d = 5 m s~! is merely a result of a random
orbit fluctuation is in the order of a few percent or less.

(3.15)

Py(d) (3.16)

Local density of orbits around a pair

An extended method which considers also the local density of orbits around a
pair was presented by |[Pravec and Vokrouhlicky]| (2009). Pravec and Vokrouhlicky
(2009) showed that the expected number of pairs P»(V) in a population of N
asteroids is given by

PV = Po(d) = ¥ (i)5e(f%>5, (3.17)

2 \ Ry
where s
15
Ry, = 3.18
’ (87r277) ’ (3.18)

while 7 is the local density of orbits around the pair. |Pravec and Vokrouhlicky
(2009) investigated the occurrence of asteroid pairs separately in 6 specific zones
(Hungaria, Inner main belt, Central main belt, Outer main belt, Cybele, Hilda).
For a candidate pairiT_g] in a specific population, they calculated d/R,. Conse-
quently, they determined the number of expected (FP») and found (N,) pairs. If
P,/N, << 1, then one can assume that the candidate is a real pair. [Pravec
and Vokrouhlicky| (2009) used this methodology to identify tens of statistically
significant cases which do not belong to any known asteroid family.

3They took the threshold distance value of d = 36 m s~ .
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3.2.2 Finding the age of young pairs

The standard approach for finding the age of asteroid pairs is based on the
backward propagation of clone clouds representing orbital and thermophysical
uncertainties of the primary and secondary, focusing on close encounters between
particular clones (Vokrouhlicky et al.l 2008]).

The clones must, above all, (i) represent the orbital uncertainty of each mem-
ber resulting from astrometric measurements (geometrical clones) and (ii) take
into account the uncertainty of the Yarkovsky drift da/dt (Yarkovsky clones)
resulting from incomplete or limited information about the member’s thermo-
physical properties and size (see Chapter 1).

We require that the geometrical clones represent, in the space of osculating
elements (a, e, i, 2, w, M), the orbital uncertainty ellipsoids centered on the nom-
inal orbits of the primary and secondary. Generating of the geometrical clones
follows the equation for multi-dimensional normal distribution. Let e* be, for a
certain epoch Tp, the nominal (best-fit) trajectory derived from astrometric ob-
servations. Furthermore, let the covariance matrix 3 locally describe the normal
distribution of plausible orbital realizations e. The infinitesimal probability of
finding a trajectory in the volume d°e around e is then dN(e) = p(e)d®e, where
the probability density p(e) is given by the expression (e.g. |Gentle, 2006; Milani
and Gronchil 2010)

1 1 T

ple) = ——exp |—=(e—€*)"' X (e—e€")|. 3.19
(e) 2n)5 5 ) ( ) (3.19)
Thus, we have to use as many various orbital realizations as possible, because
each of them can represent the real orbital solution. Generating of the geometrical

clones can be done using the expression (see (Gentle, 2006)
e=T"z+e*, (3.20)

where z is a 6-dimensional vector whose components are random deviates of
the standard normal distribution and T is a [6 x 6] matrix. Matrix T obeys
TTT = ¥ and it can be determined by Cholesky decomposition of matrix 3.
While creation of geometrical clones is, in a way, straightforward, the generating
of Yarkovsky clones requires a more specific approach, because each asteroid has
unique thermophysical parameters.

The uncertainties of thermophysical parameters of the primary and secondary
allow different values of their Yarkovsky drifts. We, therefore, must assign to
each geometrical clone a set (let say NNy) of plausible values da/dt (yarko clones).
Let, for instance, |da/dt|max be the maximum drift of the primary, derived from
limit values of its thermophysical parameterﬁ (see Eq. . Once we know
|da/dt|max, We can calculate the Yarkovsky drift da/dt as

da_ da

pril e COS 7, (3.21)

max

where v is the obliquity. From the last equation, it is evident that da/dt depends
also on the pole orientation of the body. The obliquity v can be, in some cases,

40Or we can use precalculated values for different types of asteroids (see [Morbidelli and
Vokrouhlickyl, 2003).
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determined or at least constrained from photometric observations. If that is not
the case, it is necessary to sample cosy uniformly in the range [—1, 1], calculating
da/dt for each yarko clone. In other words, we must assume, with the same
probability, prograde and retrograde motion. To conclude, we propagate, in total,
2 X Ny N, clones representing the orbital and thermophysical uncertainties of the
pair members back in time.

Let N; and N, denote the total numbers of clones of the primary and sec-
ondary, respectively. In each integration step, we control for all clone combina-
tions Neomp = N1/Ns the convergence criterion 7. < Ry A Vrel < Vese. Note that
Ry and Ve are the Hill radius and the escape velocity of the parent body and
rrel and vy are the distance and relative velocity between two particular clones.
If N(t) is the number of convergent solutions recorded in time [t,¢ + dt], then it
provides basic insight into the distribution of possible ages of the asteroid pair.

Figure 3.5: Geometrical insight into the improved convergence method. The
ellipses (i) and (j) represent the osculating trajectories of the i-th clone of the
primary and j-th clone of the secondary. The clones’ positions at a given time ¢
are denoted by P and Q. We start, for example with the clone Q and seek the
hypothetical clone M on the osculating orbit of the clone P which has the min-
imum distance to Q. If the clones M and Q satisfy the convergence criteria and
the hypothetical clone M is inside the real clone cloud of the primary, we record
the time of convergence. Then we take the clone P as reference and repeat the
whole process. Source: |Zizka and Vokrouhlicky! (2011al).

Note that with time the clone clouds spread around the Sun as a consequence
of gravitational and non-gravitational perturbations. Thus, after some time, we
will face the problem of an insufficient number of clones. In an ideal situation
we would require an infinite (or huge) number of clones, which is impossible to
achieve because of the CPU hmitations{ﬂ The lack of clones then, in some cases,
prevents us from finding the age distribution for weakly convergent (suspect)
pairs. Moreover, the classical clone-clone method might also favour younger con-
vergent solutions over older ones. This effect is discussed in Zizka et al. (2016).

15We typically use thousands of clones.
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Zizka and Vokrouhlicky] (2011a)) partly bypassed the lack of clones by introducing
hypothetical clones continuously distributed along all osculating orbits of real
clones. In each integration step they controlled all clone-clone combinations of
real clones, and for each couple (i) calculated the distance between the first clone
and the nearest point (hypothetical clone) on the osculating ellipse of the second
clone (and vice versa), (ii) checked, whether the found hypothetical clones are
inside the real clone clouds and if so, (iii) recorded the time of convergence ¢ if
the real and hypothetical clones met the convergence criteria.

Using this method, Zizka and Vokrouhlicky| (2011a)) discovered 7 asteroid pairs
(we do not list them here explicitly, see the Appendix A, Paper 2 for further
details), which indicated a solid convergence within the past 500 ky. These pairs
are interesting, because their components exhibit very similar mean absolute
magnitudes (AH < 1 mag), indicating they are similar in size. However, this
result might be in contradiction with the theory of pair formation (see Pravec
et al 2010), which implies that the ratio ¢ = Ms/M;, where M is the mass of
the primary and M; the mass of the secondary, should be less than ~ 0.2. This
discrepancy can be, however, caused by poorly determined absolute magnitudes
of the primaries and secondaries. Thus, the set of pairs presented by Zizka and
Vokrouhlicky| (2011a)) would be a good target for further observations.

3.2.3 The pair (6070) Rheinland — (54827) 2001 NQ8

In this section, we focus our attention to one of the youngest and also most
extensively studied pair with the components (6070) Rheinland and (54827)
2001 NQS8. This pair was first noticed by [Vokrouhlicky et al. (2008) as a close
system with d = 5.8 m s™!. Since then, it has been subject to a number of studies
and presently, we have a rather detailed account of its age and physical charac-
teristics of both members. |Vokrouhlicky and Nesvorny| (2009) were the first to
focus on this pair exclusively. They estimated its age as 17.22 + 0.28 kyr and
found the mean relative velocity between convergent clones to be ~ 17 cm s7*
with the component perpendicular to the primary’s orbital plane being as low as
21 mm s~!. From the geometry of the best convergent solutions, they also mod-
eled, taking into account mutual gravitational interaction, the orbital evolution
of both fragments in early stages after the disruption. Consequently, [Vokrouh-
licky and Nesvorny| (2009) proposed a scenario, in which the secondary (54827)
2001 NQ8 could originally reside on the primary (6070) Rheinland or was its
very close satellite. They also noticed that the convergent clones of the primary
slightly prefer retrograde rotation.

Vokrouhlicky et al.| (2011) conﬁrmedE] the retrograde rotation of the primary
with the ecliptic longitude of the rotational pole being less than ~ —50°. Further-
more, we obtained (see [Vokrouhlicky et al. 2011), under the assumption of ret-
rograde rotation of the primary, a more statistically significant set of convergent
solutions for the retrograde-rotating secondary (54827) 2001 NQ8 (see Fig. [3.6)).
We used an open source integrator SWIFT_RMVS (Levison and Duncan, {1994) and
propagated 20 geometrical and 30 Yarkovsky clones for each asteroid (altogether
1200 clones of the pair) into the past. The convergence criteria were controlled
online every 0.25 yr during the simulation.

16Note that the retrograde rotation was further confirmed by [Polishook! (2014)).
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Figure 3.6: Distribution of possible ages of the pair (6070) Rheinland — (54827)
2001 NQ8. Each bin (50 yr) shows the number of convergent solutions with
respect to the most occupied bin. Owing to the new pole solution of the primary
(6070) Rheinland (see the text), we generated only clones corresponding to its
retrograde rotation. Note, that these clones had da/dt > 0 in our model, because
before we started the backward propagation, we just reversed the velocity vectors
of all massive bodies (and clones) and let positive integration step dt. The clones
of the secondary (54827) 2001 NQS8 were generated so that they represented: (i)
both prograde and retrograde rotation (open histogram), (ii) prograde rotation
(dark gray histogram) and (iii) retrograde rotation (light gray histogram). Thus,
we can clearly see that the retrograde rotation of both pair members is the most
probable realization of the pair. Source: Vokrouhlicky et al.|(2011).

Vokrouhlicky et al.| (2011) estimated the sizes of the primary and secondary
as Dy =~ 3.9 km and Dy ~ D;/2, respectively. As we did not know the surface
thermal inertia for any component, we used the results of Bottke et al.[ (2006)) and
conservatively considered da/dt € [—5.3x 107°,0] au Myr~ for (6070) Rheinland
and da/dt € [—107%,107%] au Myr~! for (54827) 2001 NQS8. The convergent
criteria were chosen more strictly as follows: 7. < 0.75Rgin A Vrel < Viese, Where
Ruim ~ 1000 km and Ve ~ 2 m s~ ! are the Hill radius and escape velocity of
Rheinland. To conclude, we found that the most probable age corresponding to
retrograde rotation of both components is 1,5, = 17.2 - 0.2 kyr.

The results of [Vokrouhlicky et al.| (2011)) and |Polishook (2014) suggest that
(6070) Rheinland has a nearly-convex shape with a sharp, planar-like edge which
could originate from the rotational fission of the parent asteroid. Moreover, spec-
troscopic measurements performed by [Polishook et al. (2014) revealed that the
spectra of both the components fall into the S-group category. This finding is
consistent with the asteroids belonging to either Nysa family (Nesvorny et al.
2015) or the Hertha family (Milani et al., 2014). Nonetheless, even though the
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spectra are close, they are not identical. |Polishook et al.| (2014) also studied the
influence of space weathering, finding that the secondary (54827) 2001 NQ8 is less
affected. They explain this result by more dust particles settling on the primary
than the secondary in the early stages after disruption. Let us note, that for
precise age determination of asteroid pairs, including (6070) Rheinland — (54827)
2001 NQ8, it is also necessary to consider gravitational perturbations from large
main belt perturbers (see |Galad}, 2012).

Currently the most detailed study focusing on the pair (6070) Rheinland —
(54827) 2001 NQ8 is that by Vokrouhlicky et al. (2017b). [Vokrouhlicky et al.
(2017b)) considered new findings about the rotational states of both the asteroids
and numerically propagated their clones 250 kyr into the past. Using the light-
curve inversion method (see Kaasalainen and Torppal, 2001; Kaasalainen et al.|
2001), they derivedE] their probable shapes and found the sidereal rotation peri-
ods P, = (4.2737137 £ 0.0000005) hr and P, = (5.877186 £ 0.000002) hr of the
primary and secondary. New photometric measurements also provided informa-
tion about the characteristic diameters D; = 4.44+0.6 km and Dy = 2.2+0.3 km,
which gives Dy/D; = 0.494 + 0.014. Assuming that no other fragments were
created during the disruption, we estimate that the parent object had the diam-
eter of 4.6 & 0.6 km. The expected bulk density p = 2.3+ 0.3 g cm ™2 (Carry,
2012) then gives the Hill radius Ry = 940 £ 140 km and the escape velocity
Vise = 2.6 0.4 m s~! of the parent asteroid.

From the available observations, Vokrouhlicky et al.| (2017b) found the pole
orientation of the primary to be (A, 8) = (124°, —87°) and confirmed earlier hints
of retrograde rotation. The uncertainty in the longitude, with confidence level 3o,
was determined as 0f3, ~ 10°. The uncertainty in the latitude 63, was not
expressed because the spin axis is practically pointing to the south pole of the
ecliptic. The uncertainty region of the Rheinland’s pole orientation is shown in
Fig. 3.7 In the case of the secondary, it turned out that two options (A, 8) =
(72°,—49°) and (A, 3) = (242°,—46°) are possible. None of them corresponds
to the prograde rotation of the secondary. The corresponding uncertainties are
dA3o ~ 10° and 6435, &~ 15° (see Fig. [3.8).

Let us note that, so far, the Yarkovsky effect was modeled by estimating the
maximum drift |da/dt|nax, from which Yarkovsky clones were generated, consid-
ering the acceptable intervals of obliquities (see Eq. ) If we know the pole
orientation and thermophysical properties of the pair members, we can either (i)
apply equation and constrain the Yarkovsky drifts or (ii) directly model
the Yarkovsky and YORP effects for both the asteroids, e.g. by using the linear
theory of the Yarkovsky effect (Vokrouhlicky, |1998a; |1999).

The pair (6070) Rheinland — (54827) 2001 NQ8 is the first pair, for which the
latter approach has been applied. |Vokrouhlicky et al. (2017b) focused only on the
diurnal variant of the Yarkovsky effect and expected the thermal inertia of both
components in order of hundreds SI (see|Delbo’ et al., 2007b). Formally, they also
included the perturbations caused by direct radiation pressure, even though these
only have short-period effects with small amplitudes and are negligible compared
to the Yarkovsky effect (Zizka and Vokrouhlicky, 2011b).

17 Assuming of convex shape of both components and rotation around the shortest axis of the
inertia tensor.
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Figure 3.7: A map of the statistical quality of the light curve fit for any convex
shape of Rheinland according to [Vokrouhlicky et al.| (2017b)). Blue regions show
the acceptable solutions of the pole orientation. The yellow circle corresponds to
the best-fit solution surrounded by 30 confidence interval (white line).
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Figure 3.8: Same as Fig. but relating to the secondary (54827) 2001 NQS.
Taken from [Vokrouhlicky et al.| (2017b)).

Each geometrical clone in their model, contains the set of all acceptable values
of thermophysical parameters (e.g. thermal inertia I, obliquity -, density p, ...)
which effectively replace the previous simple model (see ) Let us note that
so far, we have assumed a constant orientation of the spin axis s which is a crude
approximation considering the influence of the YORP effect. Even if the YORP
effect vanishes for a spherical body, one has to consider the time evolution of the
vector s for convex bodied™|

8The evolution of the spin axis is also influenced by the Sun and planets.
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Figure 3.9: Distribution of possible ages of the pair (6070) Rheinland — (54827)
2001 NQS8. The vertical axis is the number of convergent solutions in each bin.
The time step was set to dt = 0.25 day. In total, 5000 clones of the primary and
5000 clones of the secondary were used. The convergence criteria were controlled
every ~ 3.65 days. The white spaces result from the fact that the convergence of
a selected clone pair repeats approximately once per orbit around the Sun. Taken

from [Vokrouhlicky et al.| (2017b).

For this reason, Vokrouhlicky et al.| (2017b) also calculated the dynamical evo-
lution of the spin axis for each realization. Finally, in each integration step, they
found the corresponding perturbing accelerations and checked the convergence
criteria between the clones of the primary and secondary.

From the time distribution of convergent solutions, the age of the pair (6070)
Rheinland - (54827) 2001 NQ8 was found to be Toge = 16.3410.04 kyr (see figures
and . In conclusion, let us note that the convergent clones can approach
each other within one synodic period also at much later integration times. These
close encounters can, in principle, lead to an ambiguous pair age. This problem
was addressed by |[Zizka et al.| (2016) for the case of asteroids (87887) 2000 SS286
and (415992) 2002 AT49 (see Chapter 4 for further details). [Vokrouhlicky et al.
(2017D)), however, did not find any other solutions up to 250 kyr into the past for
the (6070) Rheinland — (54827) 2001 NQS pair.
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Figure 3.10: Distribution of secular drifts () for nominal obliquities of (6070)
Rheinland and (54827) 2001 NQS8 (see the text). The blue dashed line shows
%> for the secondary with obliquity 180°. The gray Gaussian distribution in the

upper part of the figure corresponds to expected values of the thermal inertia I'.
Taken from [Vokrouhlicky et al.| (2017b)).
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Figure 3.11: Thermal inertia distribution for convergent clones of the primary
(left) and the secondary (right) as a function of the pair’s age. Upper histograms
demonstrate the distribution of possible ages. It is evident that further constrain-
ing of thermal inertia of both components would make the age estimation more
accurate. Taken from [Vokrouhlicky et al.| (2017Db)).
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3.2.4 Formation of young pairs

Backward integrations show, that the encounter velocities between the pri-
maries and secondaries are very small - in the order of meters per second or
less. This fact suggests that the break-up event itself can be seen as a relatively
gentle process. Let us consider only pairs which do not belong to any of the
young asteroid families (see Section . As mentioned in the previous para-
graph, asteroid pairs mostly consist of kilometer-sized bodies and from a certain
perspective, these systems are comparable in size to binary asteroids. This ob-
servation fact could suggest that there is a similar mechanism of origin for binary
asteroids and for asteroid pairs. Research in the field of binary asteroids implies
that these systems are either formed (i) by the rotational fission of a parent body
as a consequence of the YORP effect (e.g. |Scheeres, 2007a; |[Pravec and Harris|
2007; |Walsh et al., 2008), (ii) by tidal tearing of a parent asteroid (whose frag-
ments can then merge to a new body) during a close approach with a planet or
(iii) by a collision between large asteroids with smaller fragments being captured
by larger ones (Durda et al., 2004).

Rotational fission caused by the YORP effect is, nowadays, the most promising
and observation-supported mechanism (e.g. [Vokrouhlicky and Nesvorny, 2008;
Pravec et al., 2010). Pairs of asteroids are thus probably a direct consequence of
dynamic instabilities of binary or proto-binary systems (see Fig. [3.12]), whose
dynamical evolution strongly depends on the free energy (see Section .
Let ¢ = Ms/M,, where M is the mass of the primary and M is the mass
of the secondary. It can be shown (Pravec et al.| 2010) that if ¢ is smaller
than ~ 0.2, the free energy of the system is positive and the components of the
binary drift apart™]

If mass ratio < 0.2
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Rubble Pile Asteroid Fissioned Proto-Binary System becomes
Asteroid Pair

Figure 3.12: Schematic illustration of the origin of an asteroid pair. Initially, a
rubble-pile asteroid’s rotation is being accelerated by the YORP effect. Upon
reaching the critical rotational speed, the secondary separates, creating an aster-
oid pair. Taken from [Pravec et al.| (2010).

On the other hand, for the ratio higher than ~ 0.2, the free energy is negative
and the components remain together. With the mass ratio approaching 0.2, the
rotational energy of the primary is transformed to the kinetic energy of relative
motion. This idea explains, above all, that (i) primaries of pairs with very small

9For elongated bodies, this limit can be somewhat higher.
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mass ratios rotate close to critical angular frequency, (ii) beyond the limit value
of 0.2, the period of rotation of the primary increases and (iii) for systems with
mass ratio larger than ~ 0.2, the proto-binary does not disintegrate and no pair
is formed (the two components can also recollapse into a single asteroid).
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Figure 3.13: The dependence between rotational period of the primary P; and the
mass ratio ¢ for 35 pairs. Red and blue curves correspond to the upper and lower
bounds of the dependence Pj(q) according to the analytical theory presented in
Pravec et al. (2010).

3.3 Conclusion

Young asteroid families and pairs have become an attractive topic during the
past years, because they preserve the initial conditions of the break-up event bet-
ter than older populations in our Solar System. According to the contemporary
view, young asteroid families were probably formed either by rotational fission
of the parent asteroid due to the YORP effect followed by subsequent fissions of
new secondaries or by its collision with another asteroid. Moreover, the YORP
effect was probably at the origin of young asteroid pairs and currently is the
most promising and most observation-supported mechanism of their formation.
In short, it gradually speeds up the rotation of the parent asteroid until it breaks
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up in two (or more) fragments which, with time, drift apart as a consequence
of both gravitational and non-gravitational perturbations. These fragments are
nowadays observed as separate asteroids.

Therefore, if we want to study the orbital history of asteroid families and
pairs, it is necessary to perform backward numerical integration of their mem-
bers until they meet in a certain time and space. Nevertheless, due to their orbital
and thermophysical uncertainties, we cannot rely only on nominal orbits. Each
asteroid is, therefore, replaced by many clones, representing all plausible orbital
and thermophysical realizations. During the backward integration, in each inte-
gration step we seek close encounters between particular clones and record the
time of convergence. From the time distribution of the convergent solutions we
can estimate the age of the pair/family. However, due to the Keplerian shear,
the mean distance between individual clones increases with time. As a result, for
some weakly convergent pairs we may face the problem of an insufficient number
of clones. To partly bypass this problem, we modified the classic approach and
introduced hypothetical clones continually distributed along the osculating ellipse
of each clone.

During our research, we discovered 7 young pairs with similar-sized compo-
nents, which is in contradiction with the current theory of pair formation. There
are two main explanations for this: (i) the sizes of the primaries and/or secon-
daries of our set were determined inaccurately, or (ii) it is necessary to revise the
existing theory.

Another subject of this chapter was the well-known pair (6070) Rheinland
— (54827) 2001 NQS8. In addition to determining its age, we also investigated
rotational states of the primary and secondary. By using statistical methods,
we found that the secondary (54827) 2001 NQS8 should exhibit retrograde rota-
tion. Further studies, however, determined the shape of both the asteroids and
conducted even better simulations including precise modeling of the Yarkovsky
effect, resulting in a more accurate estimation of its age.
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4. Extremely young asteroid pair
(87887) 2000 SS286 and (415992)
2002 AT49

The aim of this chapter is to present a detailed study of the asteroid pair
(87887) 2000 SS286 and (415992) 2002 AT49, with an emphasis on describing
our new method which we developed to solve the problem of its ambiguous age.
Note that this chapter is based on the work of [Zizka et al. (2016) that can be
found in the Appendix A (Paper 3). We highly recommend to first read the
Chapter 3 about the theory of young asteroid families and pairs.

4.1 Introduction

Since the discovery of asteroid pairs (see [Vokrouhlicky and Nesvorny, [2008)
there has been a great interest in very young representatives because they might
well preserve the initial conditions at the time of their formation. In contrast
to young pairs, old pairs are less appropriate for studying and understanding
the break-up event. The reason is that with time, many dynamical and physical
processes influence the orbital evolution, rotational states and spectral properties
of their members. Indeed, even a rough approximation based on neglecting both
the gravitational and non-gravitational perturbations such as the Yarkovsky and
YORP effects, would still lead to a fairly good age estimation of extremely young
pairs with T,g < 10 kyr.

Nevertheless, by taking into account all the perturbations, we are able to
better constrain the pair’s age and also uncover what happened immediately
after the break-up event. For instance, the best-studied pair (6070) Rheinland
and (54827) 2001 NQS allowed us to propagate the orbits of its members back in
time to a near-contact system (Vokrouhlicky et al., 2017b)).

Due to the Keplerian shear and differential Yarkovsky effect, components of
asteroid pairs that are several tens of thousands years old, have unrelated values
of mean longitudes \; and A\y. On the contrary, in the case of extremely young
pairs, mean longitudes of their members are much more similar. From the third
Kepler law we get |[AM|/360° ~ 1.5(|Aal/a)(T/P), where P is the orbital period,
T is the time elapsed and Aa is the corresponding semi-major axis difference
between the primary and secondary. To be more specific, for extremely young
pairs (Thge < 10 kyr) which typically have |Aa| ~ 107 au and are located in the
inner main belt, we obtain from the previous formula |[AX| ~ 10° —20°. However,
the similarity of A\ values is necessary but not sufficient condition for a pair to be
extremely young. For example, Vokrouhlicky and Nesvorny| (2008) studied a very
tight pair of asteroids (1270) Datura and (215619) 2003 SQ168 with |[AA| ~ 1.6°
and |Aa| ~ 3 x 107 au in osculating elements space and found that this close
configuration repeats in time with the period of about 100 kyr. Consequently, we
need a mathematical tool, which would be able to decide whether a given pair is
young, or older than the duration of one synodic cycle of its components. Thus, an
important task is to correctly determine when precisely a particular pair formed.
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This problem is not as easy as it might look. For example, previous studies
showed that the uncertainties in thermophysical parameters of pair members
lead to different thermal accelerations, which result in a wide distribution of
possible ages.

However, there is yet another motivation for seeking very young pairs. Even
though the YORP effect is presently the most promising process of asteroid pair
formation, it still remains as a theoretical possibility and needs closer inspection
and further justification. For instance, the evidence that YORP effect is genuinely
responsible for the break-up event, can be based on the statistics of pair formation
in time, which might be compared with the prediction of the YORP theory.
Ideally, we would then choose a size category of asteroid pairs and get a complete
sample of those pairs that formed in the main belt, for instance, within the
past 100 kyr. Unfortunately, we still face observation-incompleteness effects that
prevent us from obtaining this data set. On the other hand, an easier but still
interesting task is to find the age of the youngest pairs in each size category.

4.2 Candidate search

So far, only a few candidates for real pairs younger than 20 kyr have been
discovered. One of the best studied cases with a well constrained age is the
pair (6070) Rheinland — (54827) 2001 NQ8, whose age of 16.34 £ 0.04 kyr was
determined by Vokrouhlicky et al. (2017b)E]. Other suspect cases which might be
very young were first presented in Pravec et al.| (2010) and Galad et al.| (2014)).

We used the updated catalog of the Minor Planet Center (April 15, 2016)
and searched for very close orbits among the multi-opposition asteroids. For this
purpose, we adopted the method described in [Vokrouhlicky and Nesvorny (2008])
and in equation (3.4)) we set k, = 5/4, k. = k; = 2 and kg = k,, = 107°. In total,
23 potential candidates had d < 15 m s~ and |AN < 15°. After discarding the
cases belonging to known, compact and very young asteroid families, such as the
asteroids (1270) Datura and (215619) 2003 SQ168, 16 candidates remained in our
set and were examined in more detail. Some of them, however, have already been
studied (e.g., Pravec et al., 2010) and their age was found to be beyond our limit
of 10 kyr. This was the case of

~(21436) Chaoyichi and (334916) 2003 YK39,
—(23998) 1999 RP29 and (205383) 2001 BVA47,
~(56232) 1999 JM31 and (115978) 2003 WQ56,
~(63440) 2001 MD and (331933) 2004 TV14 and
~(76111) 2000 DK106 and (354652) 2005 JY103,

Next, we integrated nominal orbits of the 11 remaining pairs and revealed that
some of them did not converge within the past 10 kyr. Particularly, this was the
case of

~(70208) 1999 RX33 and 2013 GZ99,
—(74096) 1998 QD15 and (224857) 2006 YE45,

'For further information related to this pair see Section 3.2.3.
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—(188577) 2005 GM1 and (420756) 2013 EW4,
—(267333) 2001 UZ193 and 2007 DY95 and
—(320025) 2007 DT76 and 2007 DP16.

Thus, we were left with the following six last cases

~(229401) 2005 SU152 and 2005 UY97 (|AN| ~ 1.1°),
—(17198) Gorjup and (229056) 2004 FC126 (JAX| ~ 1.1°),
~(355258) 2007 LY4 and (404118) 2013 AF40 (|A)| ~ 4.7°),
~(87887) 2000 SS286 and (415992) 2002 AT49 (|AN| ~ 5.3°),
~(356713) 2011 UK160 and 2014 QX220 (|A)| ~ 9.8°),
(99052) 2001 ET15 and (201788) 2006 KM53 (JAA| &~ 10.5°).

Even though some of these pairs do converge within 10 kyr in the past, they
also have many convergent solutions far beyond 10 kyr. This behaviour is simi-
lar to the studied case (87887) 2000 SS286 — (415992) 2002 AT49, but the most
important difference is that some of the members except (87887) 2000 SS286
and (415992) 2002 AT49 still have rather poorly constrained orbits. Moreover,
the small sizes of 2005 UY97, (355258) 2007 LY4, (404118) 2013 AF40, (356713)
2011 UK160 and 2014 QX220 imply that Yarkovsky forces might be potentially
strong and therefore the clone variants of these asteroids can converge in a widely
spread period in the past. Discarding of (17198) Gorjup — (229056) 2004 FC126
and (99052) 2001 ET15 — (291788) 2006 KM53 was motivated by another rea-
son. We performed a detailed backward integration of clones of asteroids (17198)
Gorjup and (229056) 2004 FC126. It turned out that the clone clouds of the pri-
mary and secondary closely approached about 230 yr ago. However, during the
backward propagation, we did not record any pair of clones with mutual distance
and relative velocity less than ~ 50,000 km and ~ 3.0 m s~!, respectively. These
values do not meet our convergence criteria where the encounter distance should
not exceed the Hill radius (= 750 km) and the relative velocity must be lower
than the escape velocity (=~ 1.5 m s71) of the parent body. A similar situation
occurred for the pair (99052) 2001 ET15 and (291788) 2006 KM53. Clone vari-
ants of this pair had a chance to encounter 5 kyr ago, but the minimal recorded
distance was ~ 10,000 km with a relative velocity of ~ 1.5 m s~. While the
relative velocity is comparable with the escape velocity of the parent object, the
minimal distance is approximately 15 times larger than the characteristic radius
of the Hill sphere.

Finally, the most promising case for our study was the pair (87887) 2000 SS286
and (415992) 2002 AT49. A preliminary backward integration indicated that this
pair could have been only 7 kyr old. However, some convergent solutions were
also found beyond 50 kyr, which made the problem of age determination more
complex. The question then arises: is the pair younger than 10 kyr or older than
50 kyr? To tackle this problem, we had to get as much information as possible
about the primary and secondary. Then we developed a new statistical method
suitable for asteroid pairs with ambiguous age. The case of (87887) 2000 SS286
— (415992) 2002 AT49 clearly shows that each asteroid pair is unique, in a way.
Unfortunately, a general method of age determination appropriate for all pairs
has not been developed yet.
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4.3 Asteroids (87887) 2000 SS286 and (415992)
2002 AT49

The semi-major axis of our pair is &~ 2.755 au, which corresponds to the central
part of the main belt near the 5/2 mean motion resonance with Jupiter. As can be
seen in Tab. [1.1] both components have similar mean longitudes (AX =~ 5.3°).
There is also an exceptionally small] difference between their semi-major axes
(Aa =~ 1.5 x 107* au).

Asteroid a [au] h k P q A [deg] H [mag]

87887 2000 SS286 2.75480910 0.11083546 -0.02636157 -0.06375451 0.03574610 132.305893 15.44
415992 2002 AT49 2.75496372 0.11110586 -0.02644782 -0.06375849  0.03575475 137.633071 16.69

Uncertainty

sa Sh Sk 5p 8q oA
87887 2000 SS286  1.9¢-8 6.20-8 8.0e-8 6.1c-8 6.50-8 6.40-6 0.05
415992 2002 AT49  2.4e-8 8.2¢-8 2.1e-7 8.5¢-8 1.0e-7 1.3¢5 0.04

Table 4.1: Nonsingular elements and absolute magnitudes of the primary (87887)
2000 SS286 and the secondary (415992) 2002 AT49 taken from the AstDyS
database for the epoch MJD 57,400. Note that a is the semi-major axis,
(h,k) = e(sinw,cosw) and (p,q) = tan(i/2)(sin€,cos ), where i is the
inclination, e is the eccentricity, w is the longitude of pericenter and € is the
longitude of node. The mean longitude is given by A = w + M, while M is the
mean anomaly.

A closer look at the location of the pair suggests that it belongs to the Gefion
family (see Nesvorny et al., [2015). It can be also associated to the asteroid (94)
Minerva - the largest family member (see Milani et al., 2014)). In our work, we
adopted the mean albedo for S-type asteroids py = 0.20+0.05, which is less than
the probably overestimated value py = 0.27 & 0.06 based on WISE spacecraft
observations (see Pravec et al., [2012]).

It is interesting to calculate the distance d..p, between both asteroids in the
proper elements space. Note that one would expect dpop to be very small, for
example on the order of m s~!. Surprisingly, by using the synthetic proper el-
ements taken from the Astquﬂ database and the standard metric (e.g.,
Zappala et all [1990), we obtained djo, ~ 32 m s~!. This unexpected result was
probably caused by (i) the occurrence of the three body ( 3, -1, -1 ) mean motion
resonance (e.g., Nesvorny and Morbidelli, [1998), (ii) large value of the nominal
de, ~ 1.25 x 1072 and (iii) large 1o uncertainties of proper eccentricities of the
primary and secondary (& 1.7 x 1073 for both components). In addition, the syn-
thetic proper elements are usually obtained from long-term numerical integrations
for at least 2 Myr time period (e.g., Knezevi¢ and Milani, [2000; Knezevi¢ et al.|
2002), which is much longer than the suggested age of the pair.

2For asteroids located in the same region, the typical amplitude of short-period oscillations
of the semi-major axis is 40 times larger than the current difference Aa. This fact indicates
that the pair should be extremely young.

3http://hamilton.dm.unipi.it/astdys/
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For determination of the members’ physical properties, precise photometric
observations are of great importance. In our case, all observations were car-
ried out using the 1.54 m Danish telescope at La Silla, Chile in 2014 and 2016.
We processed our photometric data using the standard Fourier series method
(e.g., Harris et al., [1989; [Pravec et al., 1996, [2000)

(87887) 2000 SS286

The rotation period of the primary was found to be P = 5.7773 £ 0.0004 h.
Note that this value is a weighted average of the determined periods from appari-
tions in 2014 and 2016. The light curves are shown in Fig. and Fig. [4.2]

15.4 4

(87887) 2000 SS286

R (1,110)

158 2014-10-30.2 | -
(] 2014-10-31.1
10 2014-11-15.1 Epoch JD 2456970.5799 [
A 2014-11-19.1 P =5.7773 £ 0.0004 h
15.9 — T T T
0 0.2 0.4 0.6 0.8 1

Rotation phase

Figure 4.1: Composite light curve of the primary (87887) 2000 SS286 based on
observations in 2014. Taken from: |Zizka et al.| (2016).

The mean amplitude 0.22 mag of the light-curve, the color index V' — R =
0.45 £ 0.02 and the slope parameter G = 0.21 £ 0.05 suggest that the pri-
mary has probably a moderately elongated shape and belongs to S-type aster-
oids. Using the mean absolute magnitude of the primary in the Cousins R band
(Hp = 14.99 4+ 0.04), the corresponding mean absolute magnitude in John-
son’s V band (H = 15.4440.05) and the mean geometric albedo py = 0.204-0.05,
we were able to calculate the diameter D; = 2.43 £+ 0.32 km. Our photometric
data also do not indicate any significant signs of tumbling and even if the pri-
mary was a tumbler, the angle between the spin axis and the angular velocity
vector should be very small. Let us remind that the characteristic timescale 7 for
damping of the tumbling state can be described by the formula presented
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in the work of Harris| (1994). In our Caseﬁ 7 ~ 600 kyr which is roughly one
hundred times longer than the young variant of the pair’s age and approximately
more than one order of magnitude higher than the older variant. This implies
that the primary and secondary probably separated very gently, leaving (87887)
2000 SS286 to rotate around the principal axis of the inertia tensor.

15.3 A S S — S '
(87887) 2000 SS286
15.4 —
15.5 =
Y
x
15.6 =
15.7 — B
O 2016-02-01.3
1 ¢ 2016-02-13.1 Epoch JD 2457419.87873 |
poc -
[0 2016-03-16.1 P=57773+0.0004 h
15.8 T | T I ' | ' | '
0 0.2 0.4 0.6 0.8 1

Rotation phase

Figure 4.2: Composite light curve of the primary (87887) 2000 SS286 based on
observations in 2016. Taken from: |Zizka et al.| (2016).

(415992) 2002 AT49

The photometric observations of the secondary were not as conclusive as
those of the primary. This was mainly caused by the low light-curve amplitude
(0.12 mag) and the relatively low apparent brightness of (415992) 2002 AT49.
The formal best-fit solution based on observations from 2016 led to the rota-
tional period P = 2.6366 4+ 0.0003 h. However, this solution was not unique. Due
to the broad x? minimum of the Furier fit, other values were also possible. Taking
into account all the statistically admissible x? realizations, we obtained a fairly
wide range of possible rotational periods from &~ 2.5 h to ~ 6.0 h. Assuming that
the secondary has the same values of G, V — R and py as the primary, we obtain
Hp =16.244+0.03, H =16.69 £ 0.04 and Dy = 1.36 = 0.18 km.

4We used K = 38 in the formula (1.106]).
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From the sizes D; and Dy we estimated the size of the parent asteroid to be
Dpar = 2.56 £ 0.34 km. The typical bulk density for S-type asteroids is between
2.0 gem™ and 2.7 g ecm ™3 (e.g., Carry, 2012), which gives the characteristic Hill
radius Ry = 600i§3 km and the escape velocity Ve = 1.5 £ 0.1 m s}

of the parent body. However, for simplicity, we adopted V. = 1.5 m s~} and
RHﬂl = 600 km.
1 I 1 I 1 l [ I 1
B (415992) 2002 AT49

R (1,79

2016-02-08.3 -

16.9 = X
$ 2016-02-09.3
- (] 2016-02-14.1 -
O 2016-03-03.3
170 Epoch JD 2457439.82733 A 2016-03-05.2 B
P=26366+00003h % 2016-03-09.1
1 I | | I I l I I I
0 0.2 0.4 06 0.8 1

Rotation phase

Figure 4.3: Composite light curve of the secondary (415992) 2002 AT49 based on
observations in 2016. Taken from |Zizka et al. (2016).

4.4 Determination of the right age

The traditional methods of finding the distribution of possible ages of asteroid
pairs are based on the work of |[Vokrouhlicky and Nesvorny (2008]). The main idea
implies a backward propagation of clone variants of the primary and secondary
together with focusing on their close encounters. Let us note that the problem
of the age determination of asteroid pairs is discussed in Section [3.2.2] in more
detail. However, we slightly modified the standard approach of |Vokrouhlicky
and Nesvorny| (2008)) to decide whether our pair is younger than 10 kyr or older
than 50 kyr.
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4.4.1 Nominal orbits

First we numerically integrated nominal orbits of (87887) 2000 SS286 and
(415992) 2002 AT49 without considering the thermal accelerations. At every
time step dt = 3 days we computed the distance and relative velocity between
the components (Fig. . The first deep encounter occured ~ 7.42 kyr ago when
their mutual distance and relative velocity were ~ 3900 km and ~ 0.14 m s7!,
respectively. This might indicate that we have found the first pair younger than
the psychological limit of 10 thousand years. However, when the propagation is
continued back in time, other minima appear. The length of the first synodic
cycle is /= 250 kyr, so ~ 257 ky ago the asteroids could have experienced another
close encounter with the mutual distance of &~ 11, 000 km and the relative velocity
of ~# 1.52 m s~!. Note that this situation repeats with timd’|

10°
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First synodic cycle

10° .

Distance [km]
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Time to the past [kyr]

Figure 4.4: Backward propagation of nominal orbits of the asteroids (87887)
2000 SS286 and (415992) 2002 AT49 (both without thermal accelerations). The
top panel depicts their mutual distance, the bottom panel shows their relative
velocity. We can clearly distinguish deep minima - first occuring ~ 7.42 kyr ago,
followed by the second =~ 257 kyr ago. They are separated by one synodic cycle
of the primary and secondary. The grey horizontal lines mark the distance of
3Ry and the escape velocity V.. Taken from: Zizka et al. (2016).

5Note that the synodic period varies due to orbital perturbations.
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In addition, similar behaviour is observed also for other clone variants rep-
resenting the orbital and thermophysical uncertainties of the primary and sec-
ondary.

4.4.2 Backward propagation
We followed the method described in Section and generated 1000 ge-

ometric clones for each asteroid. Assuming all possible spin axes orientationd’]
of both components, we assigned to each clone a random value of da/dt uni-
formly chosen from the interval [—|da/dt|max, |da/dt|max], Where |da/dt|max is the
maximal Yarkovsky drift for the corresponding asteroid. Let us remind that the
Yarkovsky drift da/dt of an asteroid can be calculated as follows

da _
dt

da

| s, (4.1)

max

where + is the obliquity. At the same heliocentric distance as (87887) 2000 SS286
and (415992) 2002 AT49 we expect the maximum semi-major axis drift for a
kilometer-sized asteroid to be |da/dt|max = 2 x 107* au Myr~! (e.g., [Bottke et al.)
2006). Thus, to obtain uniform distribution of da/dt we choose random values of
cosy which has uniform probability density distribution within the interval [-1,1].
Note that the sign of da/dt depends on the orientation of the spin axis so that
da/dt is positive for prograde and negative for retrograde motiorﬂ In our model,
both the prograde and retrograde realizations are equally probable.

In other words, we propagated 1000 orbital realizations (geometric clones) of
each pair member. Their initial state vectors were constructed according to the
equation and each clone had a random value of da/dt. The initial positions
and velocity vectors of the planets at Ty = 57,400.0 MJD epoch were taken from
the JPL ephemerides file. We also considered the gravitational perturbations
from three massive objects in the main belt - Ceres, Pallas and Vesta. Their ini-
tial orbits were taken from the AstDyS database. Then we simulated the orbital
evolution of the clone clouds back in time by using the well-tested symplectic
integrator Swift_rmstSF_;]7 which we extended by our subroutines modeling the
thermal accelerations. We also included analysis subroutines necessary for back-
ward propagation of asteroid pairs, such as the calculation of the mutual distance
and relative velocity for a specific couple of clones. Note that our choice of the
time step (dt = 3 days) should be sufficient for recording all close encounters.
For instance, two clones with relative velocity of ~ 1 m s~! will move away
by =~ 260 km in 3 days, which is smaller than the estimated Hill radius of the
parent body.

We also studied the spreading time of the primary’s clone cloud around the
Sun. The result of our test is depicted in the Fig. Figure [4.5| clearly shows
that during the backward integration, the clones of the primary will completely
spread around the Sun in &~ 240 kyr. Note that this period should be undoubtedly
shorter for the secondary, because its orbit is less constrained and also affected
by stronger thermal perturbations than the primary. It is then important to bear

6We do not know the obliquites of the primary and secondary.
"With time to the future, where dt is positive.
8http://www.boulder.swri.edu/ hal/swift.html
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in mind that the mean distance between clones increases with time so the chance
that a couple of clones will meet our convergent criteria decreases. Thus the
traditional method of age determination described in |Vokrouhlicky and Nesvorny
(2008)) might prefer young solutions to the older ones.
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Figure 4.5: Keplerian shear of the clone cloud of the primary (87887) 2000 SS286.
In the backward propagation we used N; = 1000 clones each with a random value
da/dt of the Yarkovsky drift (see the text). The three plots correspond to the
discrete times 80, 160 and 240 kyr in the past. It is evident, that the clones with
mean anomalies M; are nearly distributed along the whole orbit after 240 kyr. The
My and dms, are the mean value and the 20 confidence level of the distribution.
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To illustrate this point, imagine an asteroid pair which originated hundreds of
thousands years ago and whose members experienced a close and slow encounter
a few thousands years ago. Due to the Keplerian shear, we would obtain more
convergent solutions around the time of the close encounter than around the real
age of the paiif’}

However, there is another effect which could influence the distribution of pos-
sible ages of an asteroid pair. Let dv(t1), dv(ta) and dr(ty), or(t2) denote relative
velocities and mutual distances of two clones at times ¢; and 5 in the past. For
example, if

5U(t1) << §U(t2> < ‘/esc A (S’I“(tl) < RHj]] A (5T<t2) < RHﬂ] ANt < tg, (42)

then both clones remain longer together after the time t; than t,. Thus, the clas-
sical method of [Vokrouhlicky and Nesvorny (2008)), which controls the convergent
criteria in every integration step, might in these specific cases wrongly favour the
younger age ti.

We adopted a different approach and focused our attention only on deep
encounters. If the encounter distance of two particular clones was less than a
predefined threshold (usually 1-3 Ry, ) and their encounter velocity did not exceed
the escape velocity V. of the parent asteroid, then we recorded their state vectors
and the time of convergence. We believe that this modification better reflects the
break-up event. After that we investigated the convergent solutions in each time
period separately.

Fig. shows that during the backward propagation of nominal clones, the
first deep encounter occured at ~ 7.42 kyr and after one synodic cycle the clones
experienced another close approach at ~ 257 kyr. The same pattern repeats when
the clone clouds of the primary and secondary are propagated back in time. We
found that for all clone combinations, the first deep minima at ~ 7.4 kyr remained
roughly the same, while the second took part any time between ~ 50 kyr and
~ 500 kyr (see Fig. [4.6).

Let us first focus on deep encounters in the time interval 7.1 — 7.9 kyr. The en-
counter velocities of all possible clone combinations were less than 0.18 m s~! and
some of them even reached extraordinarily small values on the order of mm s—!.
The encounter distances varied between ~ 900 km and ~ 4800 km — slightly
higher than the characteristic Hill radius of the parent object. Even though they
exceed the threshold Ry, we should allow some tolerance (3Ry; in our case),
because our propagation model (i) approximates the Yarkovsky acceleration only
by the transverse component and (ii) neglects the mutual gravitational interaction
between particular clones. We found, that about half of the clone combinations
satisfied our liberal limit of 3 Rpyiy.

The situation beyond 50 kyr is different. Some of the second deep encounters
occured as early as = 50 kyr ago. These minima are probably a consequence of
clones having extreme Yarkovsky accelerations. Fig. clearly shows that there
are also many distant solutions (> 20000 km) with relative velocities of tens or
even hundreds of meters per second. These cases are considered as false. On the
other hand, many clones encountered each other at minimal distances smaller
than our limit of 3Rgy with relative velocities below V..

9This could be the case of our pair.
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Thus, our pair is either very young (= 7 kyr) or older than 50 kyr and without
further analysis we are not able to decide which solution is the correct one.
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Figure 4.6: Top: Encounter distances between clones of the primary and sec-
ondary. In total, we investigated all 10° clone combinations, while each asteroid
was represented by 1000 clones. First deep encounters are well localized at some
7.4 kyr ago, whereas the second deep encounters are spread in time starting from
~ 50 kyr. Bottom: Corresponding encounter velocities of the clone pairs from
the top panel. During the first close approach, all the pairs had relative veloc-
ities smaller than V., ~ 0.18 m s~!. The gray solid lines mark the distance of
3Ryum and the escape velocity V.. The dashed line corresponds to the maximal

encounter velocity V... Source: [Zizka et al. (2016]).
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4.4.3 Synthetic pairs

To deal with the true-age problem, we performed a numerical simulation of
240,000 synthetic pairs. In our experiment, each secondary ejected from the pri-
mary at Ty = 57400.0 MJD epoch in a random direction with a random separation
velocity from the interval (0, Viyax). We set Vipax = Vese, where Ve &~ 1.5 m s71 is
the escape velocity of the parent body. All primaries and secondaries had random
Yarkovsky drifts da/dt taken from respective intervals [—|da/dt|max, |da/dt|max]
(see Section . Then we propagated all synthetic pairs to the future for
3 Myr and focused on deepest encounters between the primaries and secondaries,
recording their encounter velocities ven.. Let us note that in our experiment,
mutual gravitational interaction between the components of each synthetic pair
was neglected.

Let us introduce the probability dP that two components which separated
with relative velocity (vej, vej+dvej) will encounter with relative velocity (vVenc, Venc+|
dUenc) in time (¢, ¢ + dt) after their separation. Then we can define the asociated
probability density function p(vej; Venc,t) by the following formula

dP = p(Vej; Venc, t) Aej AVenc dt, (4.3)

where p(Vej; Venc, t) must satisfy the normalization condition

Vinax o0 oo
/ / / P(Vej; Vencs ) Vej AVene dt = 1. (4.4)
0 o Jo

Note that in practice it is, however, necessary to replace the integral bounds by
some sufficiently high values. In real situation it is also impossible to work with
infinitesimal quantities and therefore we used their finite realizations, such as

Nijk:(AUej ) AUenca At)

dP-)APZ]kﬁ N )

(4.5)

where N is the number of all synthetic pairs and N;ji(Avej; AVene, At) is the
number of recorded pairs whose components separated with relative velocity
(Vej i, Vej i + Avej) and later, in time (g, & + At) after their separation, expe-
rienced their closest approach with relative velocity (Venc j; Venc j + AUenc). In our
model, we sought for the closest approach in time interval [0, 3] Myr and used
Avej = Aveye = 0.04 m s7! and At = 10 kyr. The indexes 4, j, k are positive in-
tegers and sample the space of parameters (Vej, Venc, t) With steps Avej, Avene, At.
The raw data of our simulation are presented in Fig. [4.7 We see two clear
trends. First, ve,e increases with time due to the cumulative effect of gravita-
tional and thermal perturbations. Second, ve,. is in the vast majority of cases
higher than v;.

Using the raw data of our numerical experiment, we calculated APF;;, for
all possible indexes 7,7, k. Next, we investigated the probability P that two
components which separated with a relative velocity ve; € [0, Vinax] Will experience
their closest approach within 3 Myr with encounter velocity vene € [0, Veus]. We
set Vipax = Vese and Vo = 0.18 m st because during the backward propagation
of (87887) 2000 SS286 and (415992) 2002 AT49, none of the pair clones exceeded
this value ~ 7.4 kyr ago (see Fig. |4.6).
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Figure 4.7: Raw data of our numerical experiment with 240,000 synthetic pairs.
All pairs formed at Ty = 57,400 MJD epoch and their components separated
by a low relative velocity ve; < Vese. We propagated each synthetic pair to the
future for 3 Myr. After finding the closest encounter between its components,
we recorded their relative velocity ven. and the time t. Top: The dependence of
Vene VS. t. The grey line corresponds to the velocity Ve (see the text). Bottom:
Vej VS. Uenc. The dashed line marks the escape velocity Ve and the solid curve
represents the border vej = Vene. Taken from Zizka et al. (2016).
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The probability P is, in our case, formally given byl

Vmax V'cut Tmax
P = / / / P(Vej; Venc, t) AVej AVenc dt, (4.6)
0 0 0

where T, = 3 Myr. We evaluated two variantsE] of P:
Vinax = Vese = P =~ 0.02 = 2%, Vipax = Vet = P ~0.13 = 13%.

For interest, we determined the maximum separation velocity Vi,.x for which the
probability P increases to 50%. We obtained Vi, &~ 0.02 m s~! which is an order
of magnitude smaller than expected for pairs in this size category (see |Jacobson
and Scheeres, |2011al).

From our numerical experiment it is then obvious that if the real primary
and secondary separated beyond 50 kyr with relative velocity ve; < Vese, then
the probability that they approached each other =~ 7.4 kyr ago with encounter
velocity Vene < Veut, is only 2%. However, if we adopt a more strict condition
Vej < Veut, we get P &~ 13%. In other words, the scenario where our pair is older
than 50 kyr and both asteroids just experienced close approach ~ 7.4 kyr ago is
rather unlikely. Moreover, in the limits of integration, we did not consider the
gap AT ~ 40 — 50 kyr which separates the young and old solutions (see Fig. .
So, after substituting the time domain [0, T1,.x] in by [AT, Tinax), we get

Vinax = Vese = P = 0.01 = 1%7 Vinax = Veww = P~ 0.08 = 8%.

4.4.4 The age distribution

Let us investigate encounter conditions at ~ 7.4 kyr ago. We conducted basi-
cally a similar analysis as we did in the case of the pair (6070) Rheinland — (54827)
2001 NQ8 (see Fig. and examined the influence of clones’ obliquities on the
age distribution between 7 - 8 kyr. Let us note that we compared three differ-
ent subsets of convergent solutions constrained by maximum encounter distances
2Ry, 3Rum and 8 Ry, not finding any difference in final age distributions. Our
results are summarized in Tab. [£.2

[cos 1, cos 2] Tage [kyr] 5Tage [kyr] P = Nconv/Ntot
cosvyy > 0, cosya2 >0 7.37 0.09 0.25
cosvy1 < 0, cosya >0 7.26 0.08 0.25
cosvy1 > 0, cosya <O 7.62 0.10 0.25
cosvy1 < 0, cosya <O 7.49 0.10 0.25

Table 4.2: Possible ages of the pair vs. rotational senses of the primary and
secondary (see Fig. (e.g. cosy; < 0 corresponds to the retrograde rotation
of the primary). For each rotational state of the real pair, we selected respective
convergent clone pairs with encounter distances smaller than 8 Ry ~ 4800 km
and determined the age Tjee £0T,ge. P is the fraction of solutions for each variant.
Source: |Zizka et al. (2016)).

10We replaced the integral by the sum P ~ Z”k Pij.
"For both cases we recalculated the normalization ([£.4)) of the density p(vej; Venc, t)-
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Figure 4.8: Statistical distribution of convergent solutions of the pair (87887)
2000 SS286 — (415992) 2002 AT49 between 7 and 8 kyr in the past. We used
all (10%) clone pairs with the close-approach distances smaller than ~ 8Rpjy.
The abscissa is the time to the past in kyr, the ordinate gives the number of
convergent solutions grouped in 20 yr bins. Each part of the graph shows one
of the four possible variants of rotational senses of the primary and secondary.
For example, the distribution where cosy; > 0 and cosvy, < 0 corresponds to
those convergent clone pairs which represent prograde rotation of the primary
and retrograde rotation of the secondary. Source: [Zizka et al.| (2016)).

4.5 Conclusion

With regard to asteroids (87887) 2000 SS286 and (415992) 2002 AT49, it is
clear that the determination of the age of asteroid pairs is by no means a simple
matter. First of all, it is necessary to take into account both the orbital and
thermophysical uncertainties of the individual asteroids and carefully interpret
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the resulting distribution of convergent solutions. The asteroid pair (87887) 2000
SS286 — (415992) 2002 AT49 is an obvious example of how a simple statistical
processing of the convergent solutions may not reflect the real age of the system.
There were two possible solutions of its age — T,ge ~ 7.4 kyr and T, > 50 kyr.
We found that if the pair had formed later, the components would have to meet
at a very low relative velocity (< 0.18 m s™!) & 7.4 kyr ago. This is very unlikely
considering the effects of the gravitational and non-gravitational perturbations.
The results of our numerical experiments with synthetic pairs suggest that the
probability of such a scenario is in the order of a few percent. Thus, asteroids
(87887) 2000 SS286 and (415992) 2002 AT49 are very likely the youngest discov-
ered asteroid pair.

This pair also presents many peculiarities. Especially the encounter velocity
of both asteroids (in the order of cm s™!) and the absence of convergent solutions
under 1Ry, even with a larger number of clones, are worth noting. Why do we
not observe convergent solutions at distances smaller than 1Ry, for such a young
pair with exceptionally low encounter velocities of its clones?

A possible cause could be a certain tolerance of our numerical model - espe-
cially in the modeling of the Yarkovsky effect with only the transversal component
of the Yarkovsky acceleration. On the other hand, we used the same model for
other pairs - for example, the pair (6070) Rheinland — (54827) 2001 NQ8, where
we did not observe this phenomenon.

Another possible cause could be inaccurately determined nominal orbits of
the pair members, or covariance matrices that describe their plausible orbital
realizations. Without further observations, this statement cannot be confirmed
or refuted.

Last but not least, we suggest that the cause of the absence of convergent
solutions under 1Ry might be the presence of another body that influenced
the post-disintegration evolution of the primary and secondary. Note that we
neglected the mutual gravitational interaction between clones in our simulation
due to the very time-consuming calculation. However, it was also neglected in all
the other studied pairs, including the pair (6070) Rheinland — (54827) 2001 NQS8.

Another interesting issue is the extent to which the existence of such a young
pair corresponds to the collision lifetimes of the main belt asteroids. |Bottke
et al.| (2005) statistically calculated the collision lifetimes Toop(D) of the main
belt asteroids, depending on their diameter D. If we choose the diameter of
the parent body as D = 2.5 km, we get T.,y = 15 kyr, which is twice as long
as the estimated age of our pair. However, if we compare the current number
of asteroids which are 2 — 2.5 km in size with the estimated number according
to [Bottke et al. (2005)), it appears that Bottke et al. (2005) overestimated this
number by factor 2. The time scale T, is then ~ 30 kyr, which is noticeably
longer period than the age of the pair (87887) 2000 SS286 — (415992) 2002 AT49.
The pair (87887) 2000 SS286 and (415992) 2002 AT49 then seems unlikely to be
of a collision origin. For this reason, we believe that this pair formed by rotational
fission of the parent asteroid, a process powered by the YORP effect.
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Conclusion

The dissertation presents our results obtained through the modeling of the
Yarkovsky /YORP effect and solar radiation pressure on selected asteroids in the
Solar System. These non-gravitational perturbations, to a varying extent, change
the orbital evolution and rotational states of asteroids, particularly meter-sized
to kilometer-sized ones. Whether we look into the future or we are interested in
past events, the further we go in time, the more they cumulate and influence the
secular orbital evolution of asteroids. In order to gain a deeper understanding of
the dynamic evolution of both separate asteroids and asteroid families and pairs,
these perturbations need to be taken into account in numerical simulations. Let
us briefly conclude the main results of our research and some motivation for fu-
ture work.

The first chapter contains the theoretical background to the Yarkovsky and
YORP effects - the key concepts of the dissertation. We provided examples of
their use in the Solar System and also mentioned some asteroids for which these
non-gravitational perturbations were first detected and confronted with theory.

Chapter 2 presents our research on the orbital evolution of near-Earth aster-
oid (99942) Apophis until the year 2029. We investigated the influence of solar
radiation pressure on its close-approach distance to Earth in 2029 compared to
the Yarkovsky effect. Our motivation for this study were differing views on the
given issue published in the literature. We developed numerical models for two
types of scattering (Lambert’s and Hapke’s) and showed that orbital perturba-
tions of Apophis caused by solar radiation pressure are roughly two orders lower
than those caused by the Yarkovsky effect. Thus they can be neglected in the
first approximation, leading to a significant shortening of the computational time.
Let us note that we modeled the shape of Apophis by using random Gaussian
spheres. Recently, however, its shape has been determined, so it would be inter-
esting to provide another calculation in the light of these new observations.

In chapter 3, we focused on asteroid families and pairs. We modified the existing
algorithm for determining the age of asteroid pairs to be suitable for weakly con-
vergent (or suspect) cases. Using our modification we discovered and estimated
the age of seven young pairs with similarly-sized components. Note that they
should not exist according to the theory of pair formation. This means either
that the sizes of the primaries and/or secondaries of our set were determined
inaccurately, or it is necessary to revise the existing theory. Our set could there-
fore be a worthy target for astronomical observations. The second part of the
chapter deals with the well-known pair (6070) Rheinland — (54827) 2001 NQS.
In addition to determining its age, we also investigated rotational states of both
asteroids. By using statistical methods, we discovered that the secondary (54827)
2001 NQ8 should exhibit retrograde rotation. This result was later confirmed by
photometric observations.
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Chapter 4 is monothematic and discusses the asteroid pair (87887) 2000 SS286 —
(415992) 2002 AT49. We integrated the orbits of the primary and secondary back
in time and revealed that there are two possible solutions of its age - the pair is ei-
ther older than 50 kyr or younger than 10 kyr. By classic methods, unfortunately,
it was not possible to decide which solution was the correct one. Subsequently,
we developed and applied a statistical numerical method by which we found that
(87887) 2000 SS286 — (415992) 2002 AT49 is very likely the youngest known pair
and estimated its age to be ~ 7.4 kyr. However, we were not able to explain
why the clones of the primary and secondary did not meet below ~ 1Ry in
our simulation. This effect may have been caused either by (i) inaccurately de-
termined nominal orbits of the primary and/or secondary, (ii) the presence of
another yet unknown body, or (iii) a certain tolerance of our numerical model of
the Yarkovsky effect.

Our attention will also turn to parallel computing, because it might be suitable
for many problems related to young asteroid families and pairs. We are cur-
rently developing an N-particle symplectic integrator in CUDA C for NVIDIA
graphics cards. However, our software is not yet finished and currently is in the
testing phase.
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Near-Earth asteroid (99942) Apophis currently resides among the top positions on the list of objects with
small, yet non-zero impact probability with the Earth. For that reason an unusual observational and the-
oretical effort has been dedicated to precisely characterize its future orbit. Here we discuss orbital per-
turbation of Apophis due to incident and reflected solar radiation pressure (SRP). We both revisit
recent analytical estimate of the SRP effects for this body and also formulate a numerical approach allow-
ing us to compute the SRP orbital perturbation under general assumptions. Contrary to some previous
results, we show that SRP has a much smaller effect on the Apophis trajectory than does the thermal
re-radiation force which produces the Yarkovsky effect. When the Yarkovsky effect becomes constrained

enough in the future, our approach may be used to improve the orbit determination for this asteroid.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Near-Earth asteroids present a threat by their possible impacts
onto the Earth (e.g., Chesley et al., 2002; Chapman, 2004). Accurate
orbital ephemeris and the impact likelihood analysis represent a
starting point for further considerations such as mitigation actions.
When the identified impact possibility is distant in future (i.e. tens
of years and more), a very accurate orbital model, beyond the usual
needs of the asteroid orbit computations, is required to analyze the
problem. Vokrouhlicky et al. (2000) and Vokrouhlicky and Milani
(2000) pointed out that several forces of non-gravitational origin
may be needed for this task. The Yarkovsky effect due to the recoil
of thermally re-radiated sunlight (e.g., Bottke et al., 2002, 2006) is
the most important of them. Indeed, search efforts have detected
this effect acting on several near-Earth asteroids (e.g., Chesley
et al., 2003, 2008; Vokrouhlicky et al., 2008) and detailed studies
of orbital evolution for several potentially hazardous objects has
identified the Yarkovsky effect as the most significant to obscure
future position predictions (e.g., Giorgini et al., 2002, 2008; Ches-
ley, 2006; Milani et al., 2009).

Asteroid (99942) Apophis, a former record-holder in the impact
threat scale, has an unusually close approach to the Earth in April
13, 2029. At that date, it will pass some 38,000 km from the Earth
center and subsequently will be perturbed by the Earth’s gravity
into a new heliocentric orbit, switching from the Aten to the Apollo
category (Fig. 1). In fact, soon after its discovery in December 2004,
Apophis was initially estimated to have an impact probability

* Corresponding author.
E-mail addresses: jinziz@centrum.cz (J. Zizka), vokrouhl@cesnet.cz (D. Vokrouh-
licky).

0019-1035/$ - see front matter © 2010 Elsevier Inc. All rights reserved.
doi:10.1016/j.icarus.2010.08.011

larger than any prior case (e.g., Chesley, 2006), but was quickly
reduced in magnitude and pushed to the mid 2030s as additional
measurements were reported (Chesley, 2006; Chesley et al.,
2009; Giorgini et al., 2008). This is because a number of resonant
return-orbits are within (or very close to) the orbital uncertainty
region during the 2029 approach. Even if Apophis eventually does
not impact the Earth, the high-accuracy orbit determination efforts
developed for this complicated case will certainly be applicable to
similar cases in the future.

A thorough analysis of the Apophis orbit, including its discovery
circumstances and improvements of the orbital determination as a
function of increasing observation dataset, has been published by
Chesley (2006) and Giorgini et al. (2008). While both took into ac-
count the effects of the thermal forces (the Yarkovsky effect), per-
turbations due to the solar radiation pressure in optical waveband
have been considered by the latter only. Using a very simple, but in
fact satisfactory zero-order approximation in the numerical inte-
gration, Giorgini et al. (2008) concluded that the solar radiation
pressure effect on Apophis is much less than the Yarkovsky effect.
By contrast, Rubincam (2007) performed a specific analysis of the
radiation pressure orbital effects for Apophis and concluded they
can be as significant as those due to the thermal forces (the Yarkov-
sky effect). The contradictory conclusions from these two works'
motivated us to take a closer look at the effects of the solar radiation
pressure in the orbit of Apophis.

! Note that Giorgini et al. (2008) were aware of a preprint version of Rubincam
(2007) and noted the difference between their numerical results and those of
Rubincam. They assumed the extreme shape adopted by Rubincam (2007) made the
radiation pressure effect unrealistically large.
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Fig. 1. Osculating semimajor axis (top) and mean anomaly (bottom) for the orbit of
(99942) Apophis from 2004.0 till 2008.2 (grey curve). Symbols show where
observations have been obtained so far and collected into 1-day bins; size of the
symbol is scaled by number of observations acquired during that day. Full circles for
optical astrometry, open circles for radar astrometry. Majority of observations
(some 60%) was obtained during the 2004-2005 close approach. The significant
increase of the heliocentric semimajor axis seen in December 2004 is due to the
close approach to the Earth; a much more spectacular change will occur during the
400 times closer approach in April 2029, when the semimajor axis will increase to
~1.1 AU.

The theory of radiation force for an arbitrarily-shaped asteroid
is given in Section 2 and its numerical implementation in Section
3. Results of our numerical simulations are summarized in Section
4, Section 2 also contains a minor correction of the analytical com-
putations of Rubincam (2007).

2. Theory

Solar radiation impinging the surface of an asteroid is removed
from the incident beam and reprocessed in two ways: (i) the first
part, included in this paper, is directly scattered in the optical
waveband (since the dominant part of sunlight is in optical) and
(ii) the second part, not included in this paper, is absorbed and
re-emitted in thermal waveband. The second part, namely the re-
coil acceleration due to thermal radiation, results in what is known
as the Yarkovsky effect (e.g., Bottke et al., 2002, 2006).

The prime goal of our work is the accuracy of the solar radiation
pressure computation. For that reason we do not restrict to (i) a
simplest Lambertian reflection of the sunlight and (ii) a simplest
possible geometric shapes of the asteroid (such as spherical or
ellipsoidal), but instead we keep the formulation as general as pos-
sible. Such an approach is handled numerically rather than analyt-
ically, and requires that the fundamental level at which we
describe the radiation pressure involves momentum budget for
an infinitesimal surface facet upon which some fraction of the inci-
dent sunlight is absorbed, the rest scattered through reflection. The
total effect is then obtained by numerical integration over all sur-
face facets.

2.1. Incident sunlight

The dynamical effect of the incident sunlight arises simply by
virtue of its removal from the solar radiation flux as a momentum
transfer to the object. It is thus given by (e.g., Vokrouhlicky and
Milani, 2000)

finc:_inm (1)

where F is the sunlight flux at the asteroid heliocentric distance, S,
is the instantaneous cross-section of the asteroid with respect to the
solar radiation, m is the asteroid mass, c the velocity of light and ng
is the instantaneous unit vector directed from the asteroid to the
Sun. Note f;,. is radially directed acceleration with two primary
sources of temporal variability: (i) the flux F varies along an eccen-
tric orbit as the heliocentric distance d changes (F « d2) and (ii) the
cross-section S; changes due to asteroid rotation and its revolution
about the Sun for an irregularly-shaped body. If only the first phe-
nomenon existed, the dynamical effect of the impinging sunlight
would be equivalent to redefining the orbital elements due to effec-
tively smaller value of Sun’s gravitational mass (e.g., Dermott et al.,
2001). However, the cross-section S, variation slightly complicates
the situation and adds short-period perturbations that needs to be
modeled numerically. At each timestep of the integrator we thus
need to evaluate

5. = / (dS - ng) Z(R, my), 2)
JSo

where the integration is performed over the illuminated portion Sy
of the asteroid surface, dS is an outward-oriented surface element
and X is the shadow function.? The latter is either 1, if the surface
facet is illuminated, or O, if the surface facet is shadowed by other
parts of the asteroid; X is a function of ny, the transformation matrix
R from the ecliptic inertial system to the body-frame system, and the
overall shape model. An effective analysis of X is not a trivial task for
highly irregular shapes. Since we have the asteroid shape models
available as discrete polyhedrons (with typically thousands of fac-
ets), we replace the integration in (2) by summation over the surface
facets. The mutual shadowing conditions are treated with a rather
inefficient “N? method” described in Appendix B.2 of Capek (2007)
(available through http://sirrah.troja.mff.cuni.cz/~davok/). The pro-
cedure basically inspects each of the N surface elements and, given
the instantaneous solar position, seeks whether it projects a shadow
on another surface element. The algorithm was somewhat acceler-
ated by proper sorting of the elements, such that they are listed
according to their increasing distance from the asteroid’s center-
of-mass and thus the origin of the body-centered reference frame.

2.2. Sunlight scattered on the asteroid surface

We now turn to discuss the dynamical effects of the sunlight
scattered by the asteroid surface. Assume an infinitesimal surface
facet dS = NdS with outward normal vector N. Let Ny denote unit
vector of the local direction to the Sun and choose an arbitrary unit
vector N,y directed to the hemisphere above the given surface ele-
ment. The specific radiation intensity I of the scattered sunlight
along N,y is given by

I= I(N07Nray) = FT(N07Nray)a (3)

2 Here we formally define Sy as a sample of surface facets for which dS - ny >0, a
necessary condition for illumination. The complete analysis of the facet illumination
requires X~ = 1 to make sure other parts of the surface do not produce a shadow at the
location of dS. We display these two conditions explicitly to describe the complexity
of the illumination condition.
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where F is the incident radiation flux and r(Ng,Nray) is the bidirec-
tional reflectance function (e.g., Mihalas, 1978). Assuming that r is
a macroscopic quantity, that characterizes reflectance of random
sample of microscopic scatterers, we have a reduced dependence
r=r(f, o, No - Nray). Here pio=Ng- N and p =Ny, - N are directional
cosines of the solar position and scattered light-ray direction with
respect to the surface normal N. It is also convenient to introduce
local reference system with the z-direction along N and x-direction
along

:No—,LlON
V-1

With that choice, and spherical coordinates (6, ¢)(u = cos6), we
can write

V1K
No = 0 (3)
Ho

M (4)

and

/1 — p2cos ¢
Nray =1 V1- /Jz Sin(;b (6)
u

In this way, we have

cos o = No - Ny = fiftg + /1 — u24/1 — 3 cos ¢ (7)

for the cosine of mutual angle « between Ny and Nyay.

Many studies of the sunlight reflection on the solid surfaces in
the Solar System used Hapke’s class of models. Since we do not
need the highest accuracy in our work, we adopt Hapke’s bidirec-
tional reflectance function in a single-scattering approximation
(e.g., Hapke, 1981, 2002)

_W K
41 U+ Uy

T Ho» ¢) [(1+ BoBs(0))P(or) + H(H(pto) = 1], (8)

where By(a) is the backscatter function which describes the opposi-
tion effect of the surface

Bs() = [1 + (1/h) tan(e/2)] ", 9

H(x) is the Chandrasekhar’s H-function, approximated in our com-
putations with (y = v1 —w)

_ 142
129’

H(x) (10)
and P(o) describes angular scattering properties of a single
(average) surface particle. Here we consider the case of Henyey-
Greenstein function

1-¢ (11)

P(a) = ;
@ (1+2gcosa+g2)*?

with an anisotropy parameter g. We note that such a simplified
Hapke model involves the following free parameters: (i) w the aver-
age single-scattering albedo, (ii) By the opposition surge amplitude
parameter, (iii) hs; characterizes the width of opposition surge, and
(iv) g the asymmetry factor of a single-particle phase function
(Henyey-Greenstein parameter). A number of authors derived their
values from a high-quality photometry of individual asteroids and/
or derived mean values for a given spectroscopic class (e.g., Helfen-
stein and Veverka, 1989). We shall use this general information,
since the Apophis photometry is not prolific enough to derive spe-
cific value of (w, By, hs,g) parameters for this object.

Before dealing with the recoil acceleration due to the scattered
sunlight, we discuss a couple of useful parameters related to the
scattering law described above. Most importantly we mention var-
ious definitions of “albedo” parameter. The hemispheric albedo Ay
defines how the incident sunlight energy is partitioned between
the reflection in optical wavelengths and thermal diffusion into
the body. It is given by

1
Aalto) =11 / dour(i, o, 6), (12)

where Q2. denotes the upper hemisphere on a unit sphere such that
the integration in (12) goes as f!u dQ = f(} du fozn d¢p. With Ap( o)
defined as above, the FupAn(1o) amount of radiation energy is di-
rectly scattered and Fuo[1 — Ax(to)] amount of radiation energy is
thermally reprocessed. The second concept is that of geometric
(or physical) albedo A; which gives the ratio of brightness of a
sphere observed at zero phase to the brightness of a Lambert disk.
We have

1
Ag =21 /0 HoT (1o o, 0)d g, (13)
which for the above given Hapke’s model (8) yields
1 1
Ag:§r0<1 +§r0> +g1(1+Bo)P(0) — 1, (14)

with ro=(1 - y)/(1+7) (e.g., Hapke, 1981). Photometric observa-
tions of Delbo et al. (2007) yield Ag=0.33 + 0.04 for (99942) Apo-
phis. Eq. (14) thus provides a correlated constraint on the Hapke
parameters of the Apophis surface reflectivity. Finally, we have
Bond'’s albedo A, given by

1
As=2 [ ualriodpy, (15)

which is the total amount of energy scattered by a spherical object
in all directions to the energy of the incident sunlight. Still more in-
volved definitions of the “albedo values” may be needed for the
analytic radiation force computation: for instance a second-order
moment of the hemispheric albedo is the required quantity when
dealing with radiation diffusion on a sphere (e.g., Vokrouhlicky
and Bottke, 2001).

Turning now to the dynamical effect of the reflected sunlight,
we note that the infinitesimal recoil acceleration exerted on the
surface facet dS is given by (e.g., Mihalas, 1978)

ds

dfsc, = 72% dQUNyI(No, Nray) (16)

Q.

(recall X is the shadow function from Eq. (2)). With Hapke’s model
introduced above, we have

F
dfsca = =X (KiN + KoM)dS, (17)
where
Kiito) = [ dPrise o, ), (18)
Kalptg) = [ a1 = i cos dr(yu o, ). (19)

Note that both K; and K; coefficients depend on the cosine po of the
local solar zenith angle and should be evaluated at each integration
timestep for each facet. We prevented too large computer time
requirements by precomputing K; and K, for a sufficiently dense
grid of pp-values and then used linear interpolation for evaluation
of the infinitesimal recoil contributions (17). An example of the K;
and K function dependence on (g is shown in Fig. 2.



514 J. Zizka, D. Vokrouhlicky /Icarus 211 (2011) 511-518
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Fig. 2. Ki(1o) and Ky(po) functions computed for Hapke parameters w=0.5,
g=-0.35, hy=0.02 and By =0.97 used in Section 4. Note the K;(xo) function is
well approximated with 2 Agpo/3 shown by the grey line (Ag~ 0.2 is the Bond
albedo from Eq. (15)).

The total recoil acceleration of the asteroid is formally given by
integrating (17) over the illuminated surface Sy:

fsca :/ dfsca- (20)
So

In practice though, we use a discrete model of the asteroid
shape consisting of a finite number of surface facets (usually sev-
eral thousands). Integration in (20) is then replaced with summa-
tion over the model facets.

For sake of comparison with previous work we also note that
the case of Lambertian diffusion on the surface is characterized
with

(K pgs ) =224, 1)

where A is a single “albedo” parameter in this model, equal to its
hemispheric and Bond values. From (18) and (19) we easily obtain
K1 =2Ap, and K = 0 in this case.

2.3. Rubincam’s hemispheric model

While we resort to an entirely numerical approach below, see
Sections 3 and 4, we find it interesting to comment on the model
presented in Rubincam (2007). Rubincam performed analytical
computation of the radiation recoil force due to isotropically scat-
tered sunlight on a body of particularly simple shape, namely a
hemisphere. Inserting this effect into Gauss equations, Rubincam
obtained an estimate of the time-averaged perturbation of orbital
elements and from there he drew conclusions about the magnitude
of the effect of radiation pressure on the Apophis trajectory. He
correctly focused on secular effects in the semimajor axis value
(da/dt), which have a potential to produce the most significant
in-orbit displacement, and noted that only the scattered sunlight
yields (da/dt) # 0. Estimating its value for the assumed parameters
of Apophis, Rubincam concluded that the radiation pressure may
contribute in an important way to the orbit uncertainty budget
during the 2029 encounter, noting in particular that it can be com-
parable to the effects due to the thermal forces (the Yarkovsky
effect).

While this work represents an interesting attempt, we show
here that its conclusion is incorrect for three separate reasons.
First, the assumed hemispheric shape in Rubincam (2007)
stretches the effect too much as already guessed by Giorgini
et al. (2008). In a more detailed approach (Section 4), when we

use a set of reasonable asteroid shapes in our numerical implemen-
tation, we obtain an effect order of magnitude smaller than pre-
dicted with the hemispheric model. Second, Rubincam’s analytic
calculation contains a small mistake that makes the effect appar-
ently larger than it actually is. Finally, we should also point out that
Rubincam’s estimate has a conceptual flaw of folding the thermal
(Yarkovsky) part of the perturbation into the reflected radiation
budget (by using an albedo equal to unity). In fact, when properly
modeled the orbital effect of the thermal forces with a non-zero va-
lue of the surface thermal inertia may be quite larger than the cor-
responding effect of the reflected radiation. As a result, one has to
carefully distinguish the radiative orbital effects in optical and
thermal in a proportion given by the albedo value.

Leaving the numerical experiments to Section 4, we now com-
ment on the analytic results in Rubincam (2007). Basically all of
them are performed carefully, but the final result suffers a small
omission. Using the notation in that paper, the orbit-averaged
semimajor axis drift in Eq. (33) of Rubincam (2007) should have
read

da 23m-8) Ff e <ao

- CoRy 1—e2\a

2
b )sns @

Note the factor 72 in the denominator, rather than 7 in Rubin-
cam’s result. Inserting the orbital parameters of Apophis we obtain
da/dt ~ —35sin f m/y, three times smaller than Rubincam’s esti-
mate (Eq. (36); where f is the angle between the hemisphere axis
and direction to the apocentre in Rubincam’s model). As a result,
the maximum along-track displacement due to the radiation pres-
sure in Rubincam’s model becomes ~+80 km.

However, in the next sections we demonstrate that at all likeli-
hood the true effect of the radiation pressure is yet another order of
magnitude smaller than this estimate. In this respect one has to
note that the large effect in Rubincam’s model is a direct result
of an extreme north-south shape asymmetry in the hemisphere
model. Any more symmetric model would provide smaller effect;
for instance, a spheroidal model evaluated also using analytic
means by Vokrouhlicky and Milani (2000) yields basically zero
effect.

3. Numerical model and simulations

We implemented computation of the radiation pressure accel-
eration fsgp = fi,c + fsca into the orbit determination software Orb-
Fit provided by the University of Pisa dynamical group.> An
arbitrary shape model is assumed and represented by a polyhedron
with a large number of surface facets. Radar imaging and lightcurve
analysis has not resulted in a shape model and pole orientation for
(99942) Apophis yet; very likely, both will be obtained during its
close approach to Earth in January 2013 (e.g., Giorgini et al., 2008).
In this situation, the best we can do is to consider known shape mod-
els for near-Earth asteroids as a possible template of the Apophis
shape and test the orbital effects due to the radiation pressure using
these models. Since these are still not numerous enough, we also use
a sample of artificial shape models known as Gaussian random
spheres whose parameters have been calibrated by the shape models
of the main belt asteroids (see Muinonen, 1998; Muinonen and Lag-
erros, 1998; Vokrouhlicky and Capek, 2002). The pole position is
considered random in space, and the parameters of the bidirectional

3 The OrbFit software can be downloaded from http://adams.dm.unipi.it/~orb-
maint/orbfit/. We used a high-accuracy 15th order Radau-Everhart integrator
included in this package to propagate orbit of Apophis and do not integrate past
the very close 2029 Earth encounter. This way, accumulation of the integrator errors
should not play an important role (see Giorgini et al., 2008). We should point out that
our work is not a part of general distribution of 0rb¥it but may be requested from
the authors.
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reflectivity function (or just the albedo value in Lambertian approx-
imation) are assumed in accord with the known geometric albedo
value Ay = 0.33 + 0.04. Apophis rotation period has been constrained,
though not accurately determined as yet, by the lightcurve observa-
tions. We take the ~30.5 h value by Behrend et al. (2005).

With the lack of detailed information (such as the shape, pole
and reflectivity parameters) we cannot compute the radiation
pressure orbital displacement for Apophis accurately. Our ap-
proach is to compute it for a large sample of shape, pole and reflec-
tivity-parameters possibilities and characterize the results in a
statistical way using a mean/median value and a standard devia-
tion. This defines a given computer run. In each individual simula-
tion of a run, i.e. particular choice of the shape, pole and reflectivity
parameters, we first perform an orbit determination for Apophis
using all available observations, both sky-plane and radar astrom-
etry (Fig. 1). The best-fit orbit is numerically propagated to the
close approach in April 2029, and the geocentric state vector com-
pared to the prediction of the nominal, conservative model where
the effects of the radiation forces were not included.? The nominal
model contains all relevant perturbations necessary for an accurate
orbit determination, namely all planetary perturbations (including
lunar effects) and the relativistic effects. None of the seven radar
observations is rejected, and only four out of 1399 optical observa-
tions are rejected and considered as outliers. The root mean square
of the residuals is only ~0.26 arcsec for all models in the run. In par-
ticular, because the available observations cover a short interval of
time, from March 2004 till January 2008, the quality of the fit using
the nominal model and the extended model by the radiation forces is
the same.>

4. Results

In this section we perform a number of simulations with the
goal to reliably estimate the importance of the radiation pressure
effects for the foreseeable Apophis’ ephemerides, focusing on the
orbital displacement during the very close approach in April
2029. We progress step-by-step starting with simpler cases and
proceed to more complicated ones later.

4.1. Spherical model

At first, we considered the simplest shape model of the asteroid,
namely a sphere. Sunlight scattering is modeled using the Lamber-
tian model. In this case, we used two possibilities to implement the
solar radiation pressure effects: (i) direct evaluation of the radia-
tion pressure acceleration fsgp = —(FS,/mc)(1+2A)ny with the
cross-section S, =nD?/4 (e.g., Vokrouhlicky and Milani, 2000)
and (ii) we represented the sphere with a polyhedron model of
7200 surface facets and used methods from Section 2. Both meth-
ods provided identical results which conveniently validates our
general method implementation in the 0rbFit software. We used
D =270 m, bulk density® 2 g/cm? and albedo’ A = 0.2. We find that

4 We thus evaluate the fit-continuous model in the terminology of Giorgini et al.
(2008).

5 For instance, the current uncertainty in the semimajor axis determination is

about an order of magnitude larger than the corresponding change due to radiation
pressure (e.g., Dermott et al., 2001).
6 Note the bulk density for Apophis is unknown. We choose this value by considering
an analogy with (25143) Itokawa (e.g., Abe et al., 2006), which is an object of similar
spectral type and about the same size as Apophis. Should another value of the bulk
density apply, one may use a simple inverse proportional scaling of our result with
this parameter.

7 The effective albedo in the bracket of the radiation pressure formula fszp for a
sphere is given by A = Qv[g dpto (oK1 (o) + /1 — HBK2 (1)) for a general scattering
law. Because K;(uo) is reasonably well approximated by %,uOAB and is larger than
K>( o) (see Fig. 2), we obtain A ~ Ag ~ 0.2 where this value of Bond albedo holds for
the Hapke parameters chosen later in this section.

the closest-approach distance® in April 13, 2029 has been shifted
by about 4 km with respect to the nominal value 38046.825 km. This
result is in a good agreement with a similar test reported by Giorgini
et al. (2008). Moreover, it shows the effect of direct radiation pres-
sure fi,c is fairly small compared to the Yarkovsky effect, contrary
to the finding of Rubincam.

4.2. Rubincam’s hemispheric model

Next, we numerically verified conclusions from the analytic
model of Rubincam (2007) and, at the same time, further tested
implementation of the radiation forces in the orbFit software.
We constructed a hemispheric model using 7200 triangular surface
facets. We oriented the pole position of the hemisphere in the orbi-
tal plane of Apophis with an arbitrary tilt g from the direction to
pericenter and ran several simulations. In order to directly com-
pare our results with those of Rubincam, we considered the re-
flected component of the radiation only using the Lambertian
sunlight reflection and set the albedo equal to unity. The diameter
of the hemisphere was 270 m and the bulk density 2.8 g/cm? in
this case. Extreme differences with respect to the nominal model
were observed for f=0° and §=90°. In the first case the effect
was basically zero and in the second case the distance of the closest
approach in April 13, 2029 has been shifted by 88 km with respect
to its nominal value (maximum over all 8 values). This is in a very
good agreement with the analytic estimate obtained in Section 2.3.
Adding the direct (incident) radiation pressure increases the effect
by only ~4 km, in agreement with the previous test. If this were
the true radiation effect it would be very significant after the as-
sumed orbital improvements in 2013. While this effect seems
large, we must recall that in reality the effect of radiation pressure
may be only one-fifth to one-fourth of this maximum value,
depending on the real albedo. A larger portion has to be moved
to the thermal budget and can produce still larger orbital effect
when a non-zero thermal inertia is taken into account.

4.3. Gaussian random spheres used

The hemispheric shape model used in Rubincam (2007) is
clearly a gross idealization of real asteroid shapes. A much better
statistical representation is provided by a sample of Gaussian ran-
dom spheres with properly chosen parameters (see, e.g., Muinon-
en, 1998; Muinonen and Lagerros, 1998). In the next set of
simulations we thus used 200 Gaussian random spheres con-
structed by Vokrouhlicky and Capek (2002) and Capek and Vok-
rouhlicky (2004).° For each of the spheres, we considered 10
random pole orientations in space giving us 2000 individual simula-
tions in a run. We used bulk density of 2 g/cm® and scaled all shape
models such that their volume was equal to a sphere with a diameter
of 270 m. Note that the diameter of Apophis is uncertain at the ~20%
level and its density is unmeasured. However, due to the inversely
proportional effect of these parameters, our results may be scaled
as necessary to allow for this. While performing our tests with the
values given above, size and density uncertainty may eventually
be accounted for by assuming an additional ~40-50% uncertainty.
We used two representative assumptions about the sunlight scatter-
ing on the surface: (i) the Lambertian model with albedo A = 0.2 and
(ii) a Hapke model with the following set of parameters: w = 0.5,
g=-0.35, hy=0.02 and By=0.97, yielding the geometric albedo
Ag = 0.34. Obviously, the choice of the individual Hapke parameters

8 Note that for Apophis the close approach distance uncertainty coincides very well
with the 3D along-track orbital uncertainty (S. Chesley, personal communication).

9 The full sample of the 200 Gaussian random spheres used in this work was
described and shown in Capek (2007), available through http://sirrah.tro-
ja.mff.cuni.cz/~davok/.
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is not unique and the one mentioned above corresponds to some-
what larger value of the G parameter in the IAU H-G system (see
Verbiscer and Veverka (1995) for the transformation between the
IAU A, and H-G photometric parameters and the Hapke parameters).
With a more typical G~0.15 value we would have: w=0.34,
g=-0.27, hy=0.05 and By = 1.98, yielding approximately the same
geometric albedo value. We have checked that this choice of the
Hapke parameters provide about the same statistical results as the
first set and in general the freedom in the choice of Hapke parame-
ters does not change our conclusions.

Statistical results for displacement of the close approach dis-
tance in April 13, 2029, referred to its nominal value, are summa-
rized in Figs. 3 and 4. The upper panels - (a) - in both figures show
the composite effect of the incident and reflected radiation compo-
nents, while the lower panels - (b) - show the effect of the re-
flected part only. We note that the overall orbit displacement
due to the radiation pressure is small, in particular significantly
smaller if compared to its maximum value derived for the hemi-
spheric shape model. Clearly, the typically much higher symmetry
between the north and south hemispheres in the Gaussian shapes,
and we also believe in real asteroids, diminishes the possible orbi-
tal effect (see Vokrouhlicky and Milani (2000) for the proof of the
null effect in the case of the rotational spheroids).

For sake of interest, we point out that the ~(1-2) km standard
deviation from the ~4 km mean due to the radiation pressure is
actually comparable to the perturbation due to the Poynting—Rob-
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Fig. 3. Distribution of the close approach (CA) distance in April 2029 for 2000 trial
simulations (200 different shapes modeled with Gaussian random spheres, each of
which is given 10 different and random pole orientations) with the radiation forces.
The close approach distance is referred to a nominal value 38046.825 km obtained
in a simulation where radiation forces were excluded. Number of trials on the
ordinate, close approach distance at the abscissa grouped into bins of 0.95 km (top)
and 0.4 km (bottom) width. The top panel includes dynamical effects of the incident
sunlight (f,.) together with those of the reflected sunlight (fs.;). We assume
Lambertian model for the scattering with an albedo of 0.2, effective size D =270 m
and bulk density 2 g/cm?. The bottom panel shows effects of the reflected sunlight
only. The grey Gaussian curves in both panels serve for a comparison only: the
mean value at the top panel is ~4 km, corresponding to the effect of the incident
radiation, and the standard deviations are ~2 km (top) and ~1.1 km (bottom).

ertson (PR) component (e.g., Vokrouhlicky and Milani, 2000). In-
deed, the estimated secular change of the semimajor axis due to
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Fig. 4. The same as in Fig. 3, but now the reflected sunlight is modeled using the
Hapke’s bidirectional reflectance function (Section 2.2). The Hapke parameters are:
w=0.5, g=-0.35, hy=0.02 and B, = 0.97, yielding geometric albedo A, = 0.34. The
grey Gaussian curves in both panels serve for a comparison only: the mean value at
the top panel is ~4 km, corresponding to the effect of the incident radiation, and the
standard deviations are ~1.7 km (top) and ~0.9 km (bottom).
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Fig. 5. Upper part: distribution of the close approach distance in April 2029 for 800
trial simulations (16 different radar-derived asteroid shapes, each of which is given
50 different and random pole orientations) with the radiation forces (ordinate
values are arbitrarily normalized to unity in the maximum-occupied bin). The close
approach distance is referred to a nominal value 38046.825 km obtained in a
simulation where radiation forces were excluded. The sunlight reflected on the
surface is modeled using the Hapke bidirectional function with parameters as in
Fig. 4. Lower part (and inverted): normalized distribution of the close approach
distance in April 2029 from the top panel (a) in Fig. 4 for comparison. Statistical
properties of both distributions are basically identical: the difference in mean
values is insignificant, while the standard deviation of the upper distribution
~1.3 km is slightly smaller than that of the bottom distribution ~1.7 km.



J. Zizka, D. Vokrouhlicky /Icarus 211 (2011) 511-518 517

the PR effect for Apophis is (da/dt)er ~ 3 x 10~® AU/Myr, about a
factor 100-500 smaller than the corresponding value due to the
Yarkovsky forces. Including the PR acceleration into the OrbFit
integrator we obtained 1 km displacement of the close approach
distance in April 13, 2029.

4.4. Radar shape models used

While we believe the Gaussian random sphere shapes represent
the true asteroid models rather well, we finally tested this assump-
tion. For that purpose we downloaded 16 shape models of the
near-Earth asteroids determined using the radar ranging and avail-
able from http://echo.jpl.nasa.gov/links.html. We used these shape
models of real asteroids and re-ran our simulation choosing each
time 50 possible and random pole orientation in space. We scaled
all models to the Apophis’ 270 m effective size, used 2 g/cm> bulk
density and assumed Hapke model of the sunlight reflection with
the above given set parameters.

Statistical results for the 2029 close-approach displacement, as
referred to the nominal orbit, are shown in Fig. 5, where a compar-
ison with the same simulation but Gaussian random sphere shape
models is also shown. As expected, there is no fundamental differ-
ence between results for the Gaussian shapes and those where we
used the real asteroid shapes.

5. Conclusions

Results from our work show that the orbital perturbation of
Apophis due to the solar radiation pressure, as propagated to this
asteroids’ very close approach in April 2029 (critical for the further
evolution of its orbit), is more then order of magnitude smaller
than the perturbation due to the Yarkovsky effect.!® On the other
hand, the few-kilometer size perturbation on the target plane posi-
tion of the 2029 close approach of Apophis means the radiation pres-
sure is a significant effect in absolute terms. This is because it can
bring the true trajectory of Apophis close to or away from identified
hundred-meter size (and smaller) keyholes associated with Earth-
impacts in 2030s and later (see Chesley, 2006; Chesley et al.,
2009). So two implications arise from our work.

First, until the Yarkovky effect for Apophis becomes con-
strained, the direct radiation pressure perturbation represents an
addition to the orbital model that does not significantly improve
its quality. Still, it can be included at low computer-time expense
using the spherical model.

Second, things will change when the Yarkovsky effect is known
for Apophis. Luckily, its close approach in January 2013 will at all
likelihood provide a wealth of information: (i) not only physical
parameters needed to the thermal force characterization will likely
be constrained (such as the asteroid’s shape, pole or thermal iner-
tia), but (ii) the Yarkovsky effect could possibly also be directly
measured using the precise orbital position as of 2013. Moreover,
things may still further improve if high-quality astrometry data
and physical parameter observations are taken in March 2021, dur-
ing Apophis’ next close approach to the Earth. At that moment, the
Yarkovsky effect might be constrained to a significant-enough level
that a more sophisticated model for direct solar radiation pressure
might be included in the Apophis’ orbital prediction. We believe
this paper provides a suitable approach.

10 The strength of the Yarkovsky effect on Apophis is not known yet. Our claim is
based on statistically typical value expected for a body of its size and orbit (see
Chesley, 2006), and for the pole position distribution among near-Earth asteroids
(e.g., Kryszczyniska et al., 2007).
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Abstract. Analysis of astronomical catalogs has recently revealed existence of
a small population of asteroid couples (pairs) which reside on basically the same
heliocentric orbit. While a different value of the mean anomaly implies they are
two different objects, a common thinking is that they separated very recently
from a parent asteroid sharing the same orbit. Indeed, backward integration of
the orbits of the asteroids in pairs reveals very close encounters within the past
tens to hundreds of kys. In this paper we first improve efficiency of these past
encounters detection by computing relative state vectors of asteroid clones of the
primary /secondary in the pair with respect to an arbitrary position on orbits of
the clones of the secondary/primary in the same pair. In terms of a number of
convergent configurations we typically gain several orders of magnitude as compared
to the plain comparison of the clone positions and velocities used so far. Next, we
apply our new method to the analysis of convergent configurations of asteroid pairs
with similar-size components. [Pravec et al., 2010] argue such pairs should not
exist, provided their suggested mechanism of rotational fission is correct. We found
7 asteroid pairs which indicate fairly good convergence within the past 500 ky.
We propose these bodies should be prime candidates for accurate photometric
observations with the goal to determine their absolute magnitudes.

Introduction

Asteroid pairs are couples of asteroids which share basically the same heliocentric orbit. While
today they are at different locations of their orbit, the tiny difference in their semimajor axis value
implies their mean motion is slightly different and thus the two bodies could approach very closely in the
past. Indeed, backward orbital tracking of components in the pairs reveals such very close encounters
within the past tens to hundreds of kys for most cases. Examining mutual configuration of the two
components at their separation, [ Vokrouhlicky and Nesvorny, 2008, 2009] proposed several possibilities
of the processes that lead to formation of the pairs: (i) catastrophic collision, (ii) rotational fission, and
(iii) binary system instability. [Pravec et al., 2010] conducted an observational campaign determining
rotation period P; of the primary component in numerous pairs. They found P; is correlated with the
estimated mass ratio of the two components in the pair and concluded this finding strongly favorizes
the rotational fission hypothesis.! One of the implications of the formation model promoted by [Pravec
et al., 2010] is that pairs should not have similar-size components. More quantitatively, assuming the
same albedo value, difference in the absolute magnitude H values of the components in the pairs should
always be larger than one magnitude. Yet, there are several candidate pairs which violate this rule. In
this paper we re-examine these particularly interesting cases. First, using the most up-to-date asteroid
catalog we anew identify candidates of pairs with closely similar-size components violating the standard
model of [Pravec et al., 2010]. Second, we numerically propagate their orbits to the past to confirm their
convergence, henceforth strengthening their case as a real pair of asteroids of a common origin. In order
to perform this second task as efficiently as possible, we also improve the convergence technique. We
finally end-up with a list of seven confirmed asteroid pairs with similar-size components. We propose
these asteroids should be carefully observed with the goal to determine their absolute magnitude as
accurately as possible.

L[ Vokrouhlicky and Nesvorny, 2008] proposed the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect (see, e.g.,
[Bottke et al., 2006]) is the primary physical mechanism that is capable to efficiently bring small asteroids to the rotational
fission limit.
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Table 1. Convergent pairs with AH < 1 mag. Absolute magnitudes Hy, Ho and their differ-
ences AH are shown. Dy is the distance in the space of mean orbital elements and Dp the
distance in proper element space. Tiony represents the age of each pair.

Asteroid pair H, [mag] H> [mag] AH [mag] Dwm [m/s] Dp [m/s] Tconv [ky]
180906 217266 17.4 17.4 0.0 0.21 0.30 28-63
195479 2008 WKT70 16.3 17.1 0.8 0.23 0.00 >37
165389 2001 VN61 16.3 16.8 0.5 0.48 0.09 >55
60677 142131 15.7 16.0 0.3 0.66 0.09 >97
2005 OS5 268305 16.9 16.7 0.1 0.90 0.54 >174
10484 44645 13.7 14.6 0.9 2.51 0.28 >212
80218 213471 16.5 16.6 0.1 4.14 1.41 >108

Selection of candidate pairs

Discovery of an asteroid pair proceeds in two steps: (i) first, its preliminary identification is based
on proximity of the two orbits in the five dimensional space of orbital elements, and (ii) second, its
confirmation is based on detailed orbital tracking of the two asteroid orbits backward in time. Note that
(ii) is needed to justify a candidate couple to be a real pair, because random fluctuations in the asteroid
distribution in the orbital space may also result in two very similar orbits. In this section we only briefly
comment on the step (i), while a novel technique for (ii) is discussed in the next Section.

In order to quantitatively define proximity of two orbits in the space of orbital elements [ Vokrouhlicky
and Nesvorng, 2008] introduced a metric Dy

2 2
(Z—f) =kq (%) + ke(8€)? + ki (6sind)? + ko (092)? + ke (6)? (1)
where (da,de, Isini, 0w, 02) is the difference vector of Keplerian orbital elements (semimajor axis a,
eccentricity e, inclination ¢, longitude of node € and pericenter w), n is the mean motion and k are
numerical coefficients. Our choice of the first three elements, k, = 5/4, k. = k; = 2 is based on
the classical work of [Zappald et al., 1990]. Following [Vokrouhlicky and Nesvorng, 2008], we choose
ko = ke = 107 for the relative weight factors of the secular angles in the metric Dy. However, unlike
[Vokrouhlicky and Nesvorng, 2008], we use mean orbital elements rather than osculating elements of a
given epoch. This is based on discussion of [Rozek et al., 2011], who found that short-period perturbations
in the osculating elements produce large oscillations in Dy and thus could obscure selection of the real
pairs. The choice of mean orbital elements provides a more stable set of orbital parameters and it can
serve to detect asteroid pairs with age up to My.

We used metrics (1) to search for asteroid pairs in the most recent catalog of mean orbital elements
of asteroids as of April 2011. Given the motivation outlined in Section 1, our pool of candidates had to
satisfy: (i) Dy < 10 m/s (which sets the quantitative threshold of orbital proximity of our pairs; see
[Rozek et al., 2011]), and (ii) difference AH in absolute magnitudes of the secondary Hs and primary
H; components in the pair be AH < 1 magnitude. We obtained about 15 candidate cases, out of
which only some passed a more severe criterion of true orbital convergence discussed in the next Section.
Basic parameters of those which successfully passed both criteria are given in Table 1. The absolute
magnitudes H; and H, were taken from the AstDyS? catalog. These values may have an uncertainty
up to ~ 0.5 magnitude (e.g., [Galdd, 2010]). We also complement the information of the distance Dy
in the five dimensional space of mean orbital elements with a more traditional distance Dp in the three
dimensional proper element space (e.g., [Zappald et al., 1990]). In this case we used analytic proper
elements also provided by the AstDyS site. The last column gives information of the age of the pair Tcopny
as determined by orbital convergence in Section 4.

Backward numerical integrations and convergence conditions

In order to verify that a selected pair of asteroids is real, as opposed to a random fluke in the
background population, we perform backward numerical integration of their orbit seeking conditions of
their very close approach in Cartesian space. Details of this technique have been given in [ Vokrouhlicky
and Nesvorng, 2008] or Supplementary information of [Pravec et al., 2010]. In what follows we thus only

2http://hamilton.dm.unipi.it/astdys2
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briefly recall basic steps and dwell on one improvement of identification of the convergent configurations
developed in this paper.

Finite accuracy of astrometric observations implies the current orbits of asteroids in pairs, as given
in catalogs, have some degree of uncertainty. This is typically expressed with a covariance matrix 3 of
the orbital element E solution, determining probability distribution p(E) ~ exp [-3AE - % - AE] with
AE = E—E* and E* the best-fit orbital values. Any solution with high-enough p(E) value are statistically
equivalent and may represent true orbit of the body. With this perspective, we need to consider multiple
realizations of the past orbital histories of a given asteroid, all starting from an initial data region with
high p(E) (typically a six dimensional ellipsoid). While these variants of the orbital evolution —that we
call “geometrical clones”— are usually very close each other at current epoch, they rapidly diverge in
the past. [Vokrouhlicky and Nesvorng, 2008] also recognized, that the standard dynamical model which
uses only planetary gravitational perturbations for the orbital evolution is not accurate enough for the
purpose of convergence study of asteroids in pairs. Namely, the role of thermal accelerations, known as
the Yarkovsky effect (e.g., [Bottke et al., 2006]), is important. This is because the Yarkovsky effect may
secularly change the value of semimajor axis over the timescale of the pair age by a value larger than the
initial uncertainty of this element for the two orbits. Since the strength and sign of the Yarkovsky effect
depends on apriori unknown parameters, such as surface thermal conductivity or rotation pole position,
we must consider all possible values of the Yarkovsky effect. In practice, we assign to each geometrical
clone a spectrum of expected Yarkovsky-effect values (modeled as an along-track acceleration producing
semimajor axis change with a rate in an estimated interval of values ((da/dt)min, (da/dt)max); €.8-.,
[Vokrouhlicky, 1999]). We speak about the “Yarkovsky clones” to denote these variants of geometrical
clones with different values of the Yarkovsky effect. In all examples given below we used 30 geometric
clones and 40 Yarkovsky clones for each asteroid, thus altogether 1200 different variants of the possible
past orbital evolutions for each body. Our integrations were performed using SWIFT software package
[Levison and Duncan, 1994], where we included the effects of thermal accelerations. We used a fixed
timestep of 5 d and performed integrations to 500 ky in the past.

A standard procedure for identification of convergent configurations of the numerically propagated
clones of the two asteroids in the pair is as follows. At every timestep we compare heliocentric state
vectors of all clones of the primary with all clones of the secondary component in the pair. In particular,
let (r1,v1) and (rq, vs) are those state vectors, we compute (i) Cartesian distance Do) = |r1 — ra|, and
(ii) relative velocity Viel = |v1 — va|. We consider the configuration convergent, when both Dye and Viel
are smaller than some quantitative threshold. In the case of distance, we require Do < Ry, where

1/3
Ryin =n (m) , Myin is the total estimated mass of the asteroids in the pair, Mgy, is the solar

mass and r; is the heliocentric distance of the primary component in the pair. Recall that Ry is a
measure of distance between the two asteroids when their mutual gravitational interaction becomes more
important than the gravitational attraction by the Sun. In the case of velocity, we require Vi < Vegc,
where Vg is the estimated escape velocity from a spherical body of mass My;,. For reference, we note
that Ry is typically of the order of several hundreds to thousands of km, while Vis. is typically few
m/s.

An improved method for clone convergence

A major drawback of the convergence criterion outlined above is that the uncertainty ellipsoids
occupied by the geometrical and Yarkovsky clones rapidly expand as the time increases to the past. So
while their sampling is satisfactory at the current epoch, they become quickly under-sampled by the
clones some tens to hundreds of thousands years ago. To solve the problem, we would need to use orders
of magnitude more clones, which is not possible due to the CPU limitations. In this paper, we propose
a compromise solution. Put in simple words, our strategy is as follows. When the clones of primary and
secondary are close enough, we evaluate distance of a first chosen clone to the orbit of the second clone
and vice-versa (see Fig. 1). This approach assumes the closest point on the orbit to a given clone of the
first asteroid would have been occupied with a hypothetical clone of the second asteroid, were we able
to consider a huge number of them. In the same time, this approach is computationally more efficient
than determination of the orbital MOID (The Minimum Orbit Intersection Distance) for the two clone
orbits (e.g., [Gronchi, 2000]).

Put in more quantitative terms we proceed as follows. At a given timestep of our numerical propaga-
tion of clones for the primary and secondary components in the pair we compute their mutual distances
(as in the classical approach outlined above). When the distance Dy of two particular clones is less than
a specified threshold Dyyesn, ~ 0.003 AU in our case, we switch to a mode which computes distance of
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a)

Figure 1. Geometrical insight into the new convergence method. a) The ellipses (i) and (j) are the
osculating trajectories of the i-th clone of the primary and j-th clone of the secondary components in the
pair. Points P and Q indicate their position at a given time as provided by direct numerical integration.
Taking the clone Q as a reference, we seek point M on the osculating orbit of the clone P which has the
minimum distance to Q. b) Q transformed into the reference frame (e, €4, €,) and clone P osculating
orbit.

a clone to the orbit of its counterpart clone. For instance, let (r1,v1) be the heliocentric state vector of
the first clone (primary, say) and (ra, va) be the heliocentric state vector of the second clone (secondary,
say), we

e first determine orbital elements of the second clone and from them we compute the orbit-attached
orthonormal basis (ep, €4, €,) such that e, is directed to the osculating pericenter, e, is directed
along the osculating angular momentum vector and e; = e,, X ep;

e we determine the transformation matrix T from the heliocentric coordinate system used in our
orbital propagator to the (e,, €4, €,) frame, and transform the state vector of the first clone using
rr —>R{=T:-r;y and vi - V3 :T'V1;

e the elliptical orbit of the second clone obviously reads Ra(E) = (X2(E),Y2(E),0)T in the
(ep, €q,€,) frame, such that X2(E) = ag(cos E + e2) and Y2(E) = azy/1 — €3 sin E, where as
and e are semimajor axis and eccentricity, and E € (0, 27) is the eccentric anomaly;

e week the point Ro(E*) which minimizes D? = (R; — R2) - (R; — Ry) by iteratively solving E*
from (R1 = (X17}/17Z1)T)

Yiy/1— €3 cos B + ageg sin E* cos E* — (X1 + ageq)sin E* =0 (2)
(obviously, we make sure to determine global minimum of the distance function D(E));

e the relative velocity of the first clone to the closest point on the orbit of the second clone is then
given by V, = V(E*) = |V — V(E*)| with

Mun —sin E* 1_2 s B*
V(E*) = GMsg ( sin \/ €3 cos 0) . @)

as 1—egcos E*X’ 1 —egcos E* '

We repeat the procedure twice, each time choosing one of the two clones as a reference point and the
latter represented by its orbit. The resulting minimum distance and velocity values (D, = D(E*), V)
are used in the statistical considerations instead of the plain values (Dyel, Vier). While improving previous
results by detecting more encounter configurations, our new method is obviously only approximate. Most
importantly, it is not optimized to analyze clones convergence for pairs older than couple of hundreds
of kys. This is because, when clones for either primary or secondary components spread over the whole
heliocentric orbit, our criterion of determining (D, Vi) only when Dy < Diyesh is too restrictive. We
plan to improve this issue in the forthcoming work.
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Figure 2. Results of convergence efforts for clones in the candidate pairs: 180906-217266 (top and
left), 165389-2001 VN61 (top and right), 60677-142131 (bottom and left) and 80218-213471 (bottom and
right). The abscissa is time to the past in ky. Upper panel shows distribution of number of convergent
solutions binned in 1.5 ky to 10 ky intervals of time, henceforth providing statistical information about
the age of the pair (the distribution has been normalized to unity at the most occupied bin). The bottom
panel shows the same information but in cumulative form. The second and the third panels show (D, V)
values for converging clones; the black line is an average computed over a 10 y running window.

Asteroid pairs with AH < 1: a brief analysis

We applied the above mentioned method to backward tracking of components in the selected can-
didates of similar-size asteroid pairs (AH < 1 mag). Out of these, only 7 revealed solid convergence
of clones and age less than 500 ky. Figures 2 and 3 show fundamental properties of these successful
solutions. The first-shown pair, 180906-217266, is somewhat exceptional because of its young and well-
defined age. The only caveat is that these bodies are rather small, we estimate their size to ~ 1.5 km
only, such that their observation will require a middle-class telescope (1.5 m mirror size and more).
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Figure 3. The same as in Fig. 2 but for candidate pairs: 268305-2007 OS5 (left) and 195479-2008 WK70
(right).

Conclusions

We found 7 asteroid pairs which indicate a solid convergence within the past 500 ky and which have
formally similar-size components (as derived from their absolute magnitude values). This is apparently
in contradiction with the currently standard model of their separation as individual bodies (cf. [Pravec
et al., 2010]). There are two possibilities of solution: (i) either the absolute magnitudes of the two
components in these pairs were not determined accurately enough, or (ii) the formation scenario of the
pairs needs modifications. Obviously the second possibility is more interesting, but we need first to rule
out the first possibility. For that reason we propose the pairs identified in this paper need to be carefully
observed with the goal to determine their absolute magnitude values with an uncertainty of ~ 0.05 mag.
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ABSTRACT

Context. Pairs of asteroids, that is, couples of single bodies on tightly similar heliocentric orbits, were recently postulated as a new
category of objects in the solar system. They are believed to be close twins to binary and multiple systems.

Aims. Ages of the known pairs range from about 15 kyr to nearly a million years. Beyond the upper limit, the pairs disperse in the
background population of asteroids and become difficult to detect. Below the lower limit, the pairs should be easily recognizable if
they exist and are discovered by surveys. Using the available data, we analyze the possible existence of very young asteroid pairs with
clearly proven ages <10 kyr.

Methods. We searched for candidate very young asteroid pairs in the current catalog of asteroid orbits. After a preliminary analysis,
we selected the most promising case of the small asteroids (87887) 2000 SS286 and (415992) 2002 AT49. We collected photometric
observations to determine their rotation periods and absolute magnitudes.

Results. The rotation period of (87887) 2000 SS286 is 5.7773 = 0.0004 h. Analysis of the data for (415992) 2002 AT49 indicates
as the most probable period 2.6366 =% 0.0003 h, but other solutions are still possible. The composite light curves of the two asteroids
have very low amplitudes, 0.22 and 0.12 mag, suggesting roundish shapes. Our observations also allow us to determine the absolute
magnitude in R band Hg = 14.99 =* 0.04 and Hg = 16.24 = 0.03 for the primary and secondary components. A transformation
to the visible band provides H = 1544 = 0.05 and H = 16.69 = 0.04. These two asteroids experienced a very close encounter,
probably a formation event, some 7.4 # 0.3 kyr ago. The formal extension of our numerical runs backward in time reveal that these
close encounters may have continued, starting from 45 kyr ago. However, based on tests using synthetic fission events, we argue
that the older age solutions might be the true solution only at (10—15)% level, assuming their low initial separation velocity is of
between 10—20 cm s™!. This means that 87887—415992 probably is the youngest known asteroid pair in our dataset with a reliable
determined age.

Key words. celestial mechanics — minor planets, asteroids: general

1. Introduction a more detailed analysis of the past convergence conditions
of the two asteroids then allowed predicting that the primary
and secondary components in this pair had the same rotation
sense. Photometric observations of other pairs allowed address-
ing this problem directly, which proved that in the first case for
which complete information is available, (2110) Moore-Sitterly
and (44612) 1999 RP27, the pole orientations are indeed sim-
ilar (Polishook 2014). The relationship of the two components
in the asteroid pairs has been confirmed using spectroscopic
observations that revealed a close similarity of their color in-
dexes or spectra (e.g., Moskovitz 2012; Polishook et al. 2014a,b;
Duddy et al. 2012, 2013; Wolters et al. 2014). Slight differences,
in particular redder spectra of the primary component in some
pairs, have been interpreted as a possible dust settling on the
larger asteroid during the formation of the pair. Finally, the rela-

Vokrouhlicky & Nesvorny (2008) discovered a population of as-
teroid pairs that share very similar heliocentric orbits. After they
checked that the proximity of the orbits of these pairs was well
above a statistical false-positive level, the authors dubbed them
asteroid pairs. Noting the anomalously low separation veloci-
ties of the two components in the pair at the proposed moment
of their origin, Vokrouhlicky & Nesvorny (2008) also speculated
about the formation mechanisms. They proposed that either (i)
the parent body of the pair underwent a rotational fission that
directly sent the fragments onto separate heliocentric orbits, or
that (ii) a binary or multiple asteroid system became unstable,
which caused a satellite to switch from bound to unbound orbit
about a primary. Some subsequent studies focused on analysing

individual pairs, especially the cases where astronomical obser-
vations allowed the best physical characterization. For instance,
the very well constrained orbits of (6070) Rheinland and (54827)
2001 NQ8 allowed tracing their mutual configuration back to a
near-contact system (e.g., Vokrouhlicky & Nesvorny 2009). The
conveniently large size of the primary component in this pair al-
lowed obtaining enough photometric observations to solve for
the pole orientation of this asteroid (Vokrouhlicky et al. 2011);

Article published by EDP Sciences

tionship between pairs and binaries received a new twist when
it was reported that the primary component in some pairs is
a binary, or even multiple, system (e.g., Vokrouhlicky 2009;
Pravec et al. 2013, 2016).

The most convincing hint about the origin of asteroid pairs
was provided by observations of Pravec et al. (2010). These au-
thors analyzed the correlation between the rotation period of the
primary (larger) asteroid in the pair and the estimated size ratio

A20, page 1 of 11



A&A 595, A20 (2016)

of the two asteroids in the pair. They found that the correlation
was most easily explained with a model in which the parent body
of the pair underwent rotational fission, with prompt ejection of
the smaller component onto an unbound orbit.

The next step in unraveling the circumstances of the asteroid
pair origin is to determine which process (or processes) caused
the fission in the parent object. Vokrouhlicky & Nesvorny (2008)
speculated that the parent asteroids were spun up by the
Yarkovsky-O’Keefe-Radzievski-Paddack (YORP) effect (e.g.,
Vokrouhlicky et al. 2015). This seems to be the only universal
process that affects the rotation rate of asteroids smaller than
<20-30 km strongly enough to bring them close to the fission
limit within an astronomically relevant timescale. One possibil-
ity to confirm the YORP effect as the most likely candidate for
the underlying process of asteroid pair formation would be to de-
termine the exact statistics of pair formation in time and compare
it with the prediction of the YORP theory. This goal is, however,
well beyond the scope of the current paper. Ideally, it would im-
ply selecting a size category of asteroid pairs and determine a
complete sample of asteroid pairs that formed in the main belt,
for example, within the past one hundred thousand years. How-
ever, there are strong selection and observation-incompleteness
effects that prevent us from obtaining this information. Decipher-
ing the respective bias correction is a complicated task that is
yet to be done. In addition to finding the pairs, we would need
to determine when precisely they formed. This is also difficult
and uncertain. Previous studies have demonstrated that the un-
certainty in the orbit propagation model, which is mainly due
to unconstrained thermal accelerations, often results in a wide
range of possible age solutions of the given pair. Moreover, in
Sect. 4 we describe yet another level of uncertainty in determin-
ing the age of a given pair that has to do with the synodic cycles
of their mutual heliocentric motion.

A simpler, but still interesting task, is to determine the
youngest age of the asteroid pairs that belong to a given size cat-
egory. This still faces the problem that the asteroid population is
observationally not completely known, but at least it is less de-
pendent on our ability of recognizing an asteroid pair among the
population of unrelated asteroids (if both components in the pair
are currently known in our catalogs). The reason is that when
the asteroid pair is formed by a gentle separation that is charac-
terized by a relative velocity of a fraction of a meter per second
(see, e.g., Vokrouhlicky & Nesvorny 2008, 2009), the heliocen-
tric orbits of the two components are even more similar than
is typical of older pairs. We recall that the asteroid pairs have
been searched in the five-dimensional space of osculating orbital
elements (a, e, I, Q), @), where a is the semimajor axis, e the ec-
centricity, I the inclination, € the longitude of node, and @ the
longitude of pericenter (alternatively, the mean orbital elements
might be used instead of the osculating ones, e.g., Rozek et al.
2011). For asteroid pairs that are several tens of kyr old, the value
of the osculating mean longitude in orbit A is unrelated because
of Keplerian shear and differential Yarkovsky effects in their or-
bits. In principle, extremely young pairs may also have similar
values of A. A naive calculation shows that simple Keplerian
shear would produce |AA| =~ 10°-20° in less than 10 kyr for or-
bits that have a semimajor axis difference of |Aa| ~ 10~ au. This
is because the third Kepler law provides a difference A4 in mean
longitudes of two confocal Keplerian orbits with a slightly differ-
ent values Aa of semimajor axis: |A4]/360° =~ 1.5 (|Aal/a) (T'/ P).
Here, P is the orbital period and T is the time elapsed. Plug-
ging in typical values for the orbits in the inner main belt and
T = 10 kyr, we obtain the above-mentioned estimate. Even
though planetary perturbations make the age determination more

A20, page 2 of 11

complex, numerical tests indicate that this estimate is roughly
correct.

However, there is one more fundamental problem that indi-
cates that a similarity of A values is a necessary, but not suffi-
cient, condition for the young age of the asteroid pair. This prob-
lem has been pointed out by Vokrouhlicky & Nesvorny (2008),
who studied the very close relative configuration of asteroids
(1270) Datura and (215619) 2003 SQ168, which currently have
Al ~ 1.6° and |Aa] ~ 3 x 107 au in osculating elements.
Vokrouhlicky & Nesvorny (2008; see their Fig. 6) showed that
this configuration repeats in time in a cycle of more than 100 kyr.
While this pair might be very young, it might also be sev-
eral hundreds of kyr old. In fact, because it is a member of
the Datura family, its age is probably more than 500 kyr (e.g.,
Nesvorny et al. 2006; Vokrouhlicky et al. 2009). This effect has
been interpreted in terms of synodic cycles of the relative mo-
tion of the pair components about the Sun. At each completion
of the synodic cycle, the two asteroids approach each other very
closely, mimicking the initial conditions, until orbital perturba-
tions from planets and the Yarkovsky effect do not move the or-
bits away from each other. Depending on the asteroid pair, this
timescale may be longer than one Myr. All of the tightest pairs
originally discovered by Vokrouhlicky & Nesvorny (2008) be-
long to this older category, as has been shown in subsequent nu-
merical tests.

With these results, we conclude that the youngest currently
known asteroid pairs are ~15 kyr old. This is also the case of the
above-mentioned well-studied pair of asteroids (6070) Rhein-
land and (54827) 2001 NQS8, for which Vokrouhlicky et al.
(2011) determined an age of 17.0 = 0.2 kyr (see also Galad
2012, who additionally took into account gravitational effects
of the dwarf planet Ceres and the largest asteroids, and obtained
slightly younger age for this pair). There are two more cases,
mentioned in Table 1 of Pravec et al. (2010), that might be of
a comparable age. The question now is whether these are the
youngest asteroid pairs among the currently known population.
We here examine this question and consider 10 kyr as an order-
of-magnitude limit for a young age.

The plan of our paper is as follows. We first sift the data in
the current catalog of asteroid orbits and search for very tight
asteroid pairs with similar longitudes in orbit (Sect. 2). As ex-
plained above, asteroid pairs with potentially youngest ages are
expected to be contained in this sample. After eliminating false
or very uncertain cases, we select the best candidate containing
asteroids (87887) 2000 SS286 and (415992) 2002 AT49. Fortu-
nately, these two objects were included in our observational ef-
forts of determining the physical parameters of the components
in asteroid pairs. We therefore report the currently available data
and provide an estimate of the rotation periods and absolute mag-
nitudes for the two asteroids in the selected pair (Sect. 3.2). Next,
we analyze in detail a suite of numerical integrations of the two
orbits backward in time, with the goal of determining the age
of the 87887-415992 asteroid pair in Sect. 4. We pay particu-
lar attention to discerning the true age from false solutions that
tend to repeat with the synodic period of the orbital revolution of
these asteroids about the Sun. Implications and conclusions are
collected in Sect. 5.

2. Candidate search

We conducted a new search for very close asteroid pairs in the
updated catalog of the Minor Planet Center, which contained
approximately 713 000 objects as of April 15, 2016. Of these



J. Zizka et al.: Asteroids 87887 — 415992: the youngest known asteroid pair?

objects some 130000 resided on single-opposition orbits that
we discarded because their elements are typically quite uncer-
tain. As described above, we sought not only for tight pairs in
the five-dimensional space of (a, e, I, Q, @) osculating elements,
but we considered the difference in the mean longitude in orbit
A of the two orbits. Based on the discussion at the end of Sect. 1,
we selected only the pairs with |[A1] < 15°. To ensure that we
considered potential asteroid pairs, we also required cases with
distance d < 15 m s~!, using metrics defined in the space of
osculating orbital elements (see Eq. (1) and Figs. 1 and 2 in
Vokrouhlicky & Nesvorny 2008).

With this procedure we obtained 23 potential candidates for
very young pairs. We eliminated situations when the “pair” was
a member of a known compact and very young asteroid family,
such as (1270) Datura and (215619) 2003 SQ168. These situa-
tions arise from the incidental orbital proximity of two fragments
that are launched at nearly the same relative velocity with respect
to the parent body of the family. After performing this first-level
trimming, we were left with 16 candidates that were not in any
obvious young asteroid family.

Some of these remaining pairs have been analyzed in previ-
ous publications, where we demonstrated their convergence be-
yond the limit of 10 kyr. This was the case of

— (21436) Chaoyichi and (334916) 2003 YK39;

— (23998) 1999 RP29 and (205383) 2001 BV47;

— (56232) 1999 IM31 and (115978) 2003 WQ56;
— (63440) 2001 MD and (331933) 2004 TV14; and
— (76111) 2000 DK 106 and (354652) 2005 JY 103;

all reported in Pravec et al. (2010). As a consequence, these pairs
were eliminated from our further considerations.

We numerically integrated nominal orbits of the remaining
candidates and found that some of them did not converge in their
formation configuration within the past 10 kyr. This was the case
of

— (70208) 1999 RX33 and 2013 GZ99;

— (74096) 1998 QD15 and (224857) 2006 YE45;
— (188577) 2005 GM1 and (420756) 2013 EW4;
— (267333) 2001 UZ193 and 2007 DY95; and

— (320025) 2007 DT76 and 2007 DP16.

We estimated the greatest Yarkovsky effect in each of these cases
and ensured that including this perturbation in our calculation
did not change our conclusions.

At this stage, we were left with the following six last cases
(sorted here according to increasing difference |AA| of the mean
longitude in orbit):

— (229401) 2005 SU152 and 2005 UY97 (|AA] = 1.1°);

— (17198) Gorjup and (229056) 2004 FC126 (|AA] = 1.1°);

— (355258) 2007 LY4 and (404118) 2013 AF40 (|AA] ~ 4.7°);

— (87887) 2000 SS286 and (415992) 2002 AT49 (|AA] = 5.3°);

— (356713) 2011 UK160 and 2014 QX220 (|A] =~ 9.8°); and

— (99052) 2001 ETI5 and (291788) 2006 KM53 (JAd] =~
10.5%).

Again, some of these cases have been analyzed in the past. For
instance, Fig. 4 in the supplementary materials of Pravec et al.
(2010) shows the distribution of the past converging solutions for
the tightest pair (229401) 2005 SU152 and 2005 UY97. While
convergence may have been achieved as early as ~3 kyr ago,
many more solutions converge far beyond the 10 kyr limit, some
up to 100 kyr ago. This huge spread is mainly caused by the

small size of these asteroids and by the still rather poorly con-
strained orbit of the smaller component 2005 UY97. The for-
mer implies that Yarkovsky forces are potentially strong, and
different clone variants for the asteroids in this pair therefore
have a chance to closely approach at a widely spread time in-
terval in the past. At the moment, we therefore exclude this
pair from our analysis. A similar situation occurs for (355258)
2007 LY4 and (404118) 2013 AF40, and (356713) 2011 UK160
and 2014 QX220. In both cases, we have some solutions con-
verging within the past 10 kyr, but most indicate a far older age.
In all likelihood, these pairs will be found to be older than 10 kyr
when their orbits are improved and physical parameters are de-
termined that allow constraining the thermal accelerations.

The pairs (17198) Gorjup and (229056) 2004 FC126, and
(99052) 2001 ET15 and (291788) 2006 KM53 present a slightly
different story. In both cases we performed a detailed backward
integration of a large number of clone variants of the two aster-
oids in the pair (some of which also sampled different possible
strengths of the Yarkovsky forces). For the tighter pair (17198)
Gorjup and (229056) 2004 FC126 we found that the clone clouds
of the two components closely approached some 230 yr ago, but
they missed each other at a minimum distance ~50 000 km and at
a minimum relative velocity ~3 m s~!. These values exceed our
criteria of convergence (e.g., Vokrouhlicky & Nesvorny 2008;
Pravec et al. 2010), namely an encounter distance of about a Hill
radius of the parent body of the pair (some 750 km) and a relative
velocity on the order of the escape velocity from the parent body
(some 1.5 m s™!). Continuing the integration backward in time,
we found that these conditions become eventually satisfied start-
ing from 100 kyr ago. We conclude that this pair is older than
100 kyr and recently repeated their close initial configuration
after completing a synodic cycle of their relative motion about
the Sun. We found that a similar situation also occurred for the
pair (99052) 2001 ET15 and (291788) 2006 KM53. Clone vari-
ants of the two asteroids have a chance to encounter some 5 kyr
ago at a minimum distance of ~10000 km and with a minimum
relative velocity of ~1.5 m s~'. While the velocity limit barely
approaches the required level of the escape velocity from the
parent body of the pair, the recorded minimum distance is about
15 times larger than the required threshold. This again indicates
that the two asteroids recently completed a synodic cycle of their
relative motion, and the true age of this pair is at least 100 kyr.

Finally, our candidate list shrunk to the pair consisting of as-
teroids (87887) 2000 SS286 and (415992) 2002 AT49. A prelim-
inary orbital integration backward in time indicated a fair possi-
bility of a very close encounter of these bodies some 7 kyr ago
that would match our criteria for the common origin of the two
bodies in a fission of their parent asteroid. However, we also
have to revert the argument: is our finding indicative of a true
age of this pair, or are there possible and statistically likely so-
lutions preceding the young one? The analysis of this problem
is the core of our paper, and we focus on this in Sect. 4. Before
we address these aspects, we recall what is known about these
two small main belt asteroids. In particular, we report the pho-
tometric observations that allowed us to determine their rotation
periods and improve their size estimate.

3. Asteroid pair 87887 — 415992
3.1. What we know so far

The orbital elements and their uncertainty for 87887 and 415992
are listed in the Table 1. We note (i) a similar value of the lon-
gitude in orbit A for the two asteroids (~5.3° difference in this
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Table 1. Equinoctial orbital elements and their uncertainty as of epoch MJD 57 400.0.

Asteroid a h p q A H
[au] [deg] [mag]
87887 2000 SS286 2.75480910 0.11083546 -0.02636157 -0.06375451 0.03574610 132.305893 15.44
415992 2002 AT49  2.75496372 0.11110586 —0.02644782 —-0.06375849 0.03575475 137.633071 16.69
Uncertainty oa oh ok op oq oA oH
87887 2000 SS286 1.9e-8 6.2e-8 8.0e-8 6.1e-8 6.5e-8 6.4e-6 0.05
415992 2002 AT49 2.4e-8 8.2e-8 2.1e-7 8.5e-8 1.0e-7 1.3e-5 0.04

Notes. a is semimajor axis, (h, k) = e (sin @, cos w) where e is the eccentricity and @ is the longitude of perihelion, (p, g) = tan(i/2) (sin €, cos Q)
where i is the inclination and Q is the longitude of node, and 4 = @w + M is the mean longitude in orbit (M is the mean anomaly). The default
reference system is that of the mean ecliptic J2000. The orbital solution, together with the formal one-sigma uncertainties, is taken from the
AstDyS catalog as of April 2016 (e.g., KneZevi¢ et al. 2002). The absolute magnitude values H are from our observations reported in Sect. 3.2.

case), and (ii) the associated anomalously small difference in the
osculating semimajor axis a value (~1.5 x 10~ au difference in
this case). The typical amplitude of short-period oscillations of
the osculating semimajor axis for the orbits of 87887 and 415992
is ~6x 1073 au, somewhat enhanced by the resonant effects men-
tioned below. This is 40 times larger than the current difference
of the semimajor axis values of the two asteroids in the pair. This
proximity of the a and A values suggests that this might be a very
recently formed pair.

The semimajor axis value ~2.755 au locates the pair in the
central part of the belt, just below the major mean motion reso-
nance J5/2 with Jupiter. A closer look at the location of the pair
reveals that it belongs to the Gefion family (see Nesvorny et al.
2015, and NASA PDS site Nesvorny asteroid families'). We note
that Milani et al. (2014) associated this family with the largest
member (93) Minerva. This large asteroid family has formed
~480-490 Myr ago, when a huge number of meteorites rained
onto Earth after only a short cosmic travel from their site of
origin, as evidenced by data of fossil micrometeorites discov-
ered in Swedish limestone quarries (e.g., Schmitz et al. 1997,
2001; Heck et al. 2004). This also constitutes the suggested link
of the Gefion family and the source zone of L chondrite mete-
orites (Nesvorny et al. 2009). Observations of the WISE space-
craft of numerous larger Gefion members allowed determining
the mean geometric albedo py = 0.27 + 0.06 for Gefion mem-
bers (e.g., Masiero et al. 2015). However, we suspect that this
result may be overestimated because they used the biased aster-
oid absolute magnitudes (see Pravec et al. 2012). As a result, we
conservatively adopted the mean albedo for the S-type asteroids,
pv = 0.20 + 0.05, in our work. The mean principal compo-
nents of Sloan Digital Sky Survey (SDSS) spectra for the Gefion-
family members read PC; = 0.10+£0.06 and PC, = —0.02+0.07,
and they qualify this family to belong to the complex of S-
type families (e.g., Nesvorny et al. 2015; Masiero et al. 2015).
SDSS observations allowed determining PC; = 0.03 + 0.02 and
PC, = -0.05+£0.05 for (87887) 2000 SS286, which are compat-
ible with the Gefion values and confirm its membership in this
family.

An instructive exercise is to formally compute the distance
Uprop Of the two asteroids in the 87887—415992 pair in the space
of proper orbital elements. Obviously, in usual circumstances
we would expect vprop to be very small, perhaps on the order
of m s~!. However, using the synthetic proper elements of the

! http://sbn.psi.edu/pds/resource/nesvornyfam.html

A20, page 4 of 11

two components given by the AstDyS website?, and using stan-
dard metric in the proper elements space (e.g., Zappala et al.
1990), we obtain vpp = 32 m s~!. This is a surprisingly high
value. A closer inspection reveals that vyp is dominated (97%
of its total value) by a contribution from slightly offset proper ec-
centricity values of the two asteroids. The difference in nominal
proper eccentricity values is ~1.25 x 1073, but both have an un-
certainty ~1.7 x 107>, A brief numerical integration of the nom-
inal orbits of the two asteroids proved that they are located very
close to the three-body (3, —1, —1) mean motion resonance (e.g.,
Table 1 and Figs. 2 and 4 in Nesvorny & Morbidelli 1998). This
produces a slow diffusion in eccentricity that affects the accu-
racy with which the proper elements could be determined (e.g.,
Knezevi¢ & Milani 2000). However, if the pair 87887—415992 is
~7 kyr young (Sect. 4), then the distance vpop in proper element
space is much less relevant and a less useful parameter than in
the case of larger and older structures in the main belt. We note
that the synthetic proper elements are typically determined by
numerical integration and data analysis for a 2 Myr interval of
time (e.g., KneZevi¢ & Milani 2000; KneZevic et al. 2002). This
is far longer than the age of this pair.

3.2. Our photometric observations

We conducted photometric observations of the two asteroids
with the 1.54 m Danish telescope at La Silla, Chile, on two ap-
paritions each. The individual nightly runs, together with their
geometric circumstances, are listed in Tables 2 and 3. They in-
clude the mid-time (UTC) of the run rounded to the nearest tenth
of a day, the asteroid distances from the Sun r and Earth A,
the solar phase angle a, and the geocentric ecliptic coordinates
of the asteroid (4, 8). All the observations were taken with the
Bessell R filter with supplementary observations in the V filter
on October 30, 2014 for asteroid 87887. They were calibrated in
the Johnson-Cousins photometric system using Landolt (1992)
standard stars. The telescope was tracked at half-apparent rate
of the asteroid, providing star and asteroid images of the same
profile in one frame. The exposure times were 180 s. There oc-
curred several gaps in the coverage on individual nights because
we combined the observations with quasi-simultaneous runs on
our other asteroid targets, and a few runs were shortened be-
cause of less-than-ideal sky conditions on the given nights. We
processed and reduced the data with our custom-made aperture
photometry software Aphot32.

2 http://hamilton.dm.unipi.it/astdys/
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Table 2. Aspect data for observations of (87887) 2000 SS286.

Date r A a A B

fau]  [au] [deg] [deg] [deg]
201410 30.2 2.657 1.712 82 18.0 13.0
2014 1031.1  2.656 1.715 8.5 17.9 13.0
201411151 2.639 1793 13.6 155 12.4
201411 19.1  2.634 1.823 14.8 150 121
2016 0201.3 2.504 1.561 83 1523 5.7
201602 13.1  2.514 1.534 35 1497 65
2016 03 16.1 2.542 1.651 124 1433 -7.6

Notes. Asteroid distances from the Sun r and Earth A, the solar phase
angle @, and the geocentric ecliptic coordinates of the asteroid (A4, ).
All observations were carried out using the Danish 1.54 m telescope
located at La Silla observatory, Chile.

Table 3. Aspect data for observations of (415992) 2002 AT49.

Date r A a A B

[au]  [au] [deg] [deg] [deg]
201410253 2.634 1.658 52 2825 134
201410263 2.633 1.658 53 2802 134
201410302 2.629 1.660 6.1 27.13 133
2014 1031.2 2.628 1.662 6.3 2690 133
201602083 2.531 1.594 89 16088 -7.3
2016 0209.3 2.531 1.590 85 16069 -74
201602 14.1 2.536 1.575 6.5 15971 -7.7
201603033 2553 1.574 44 15555 -8.6
201603052 2.555 1.579 50 155.12 -8.7
201603 09.1 2.559 1.592 6.5 15428 -8.8

Notes. Asteroid distances from the Sun r and Earth A, the solar phase
angle @, and the geocentric ecliptic coordinates of the asteroid (4, ).
All observations were carried out using the Danish 1.54 m telescope
located at La Silla observatory, Chile.

We analyzed the obtained photometric data using the stan-
dard Fourier series method (e.g., Harris et al. 1989; Pravec et al.
1996, 2000).

3.2.1. (87887) 2000 SS286

The primary rotation period has been uniquely determined as
P =5.7773 £ 0.0004 h. This is the weighted average of our pe-
riod determinations from the two apparitions in 2014 and 2016.
The quoted uncertainty accounts for the transformation between
the sidereal and synodic rotation periods. The composite light
curves from the two apparitions are shown in Figs. 1 and 2. The
mean light-curve amplitude was 0.22 mag, suggesting that the
asteroid has an only moderately elongated shape. We determined
the color index V — R = 0.45 + 0.02, which is consistent with
an S classification of the asteroid. The mean absolute magnitude
in the Cousins R band is Hgr = 14.99 = 0.04, converted into the
Johnson V band to H = 15.44 + 0.05. The phase relation slope
parameter is G = 0.21 + 0.05. Assuming the mean geometric
albedo for S-type asteroids py = 0.20+0.05 (Pravec et al. 2012),
we obtain a size estimate D; = 2.43 + 0.32 km for the primary
in our pair.
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A 2014-11-19.1 P'=5.7773 £ 0.0004 h
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Fig. 1. Composite light curve of asteroid (87887) 2000 SS286 from
observations in 2014.
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Fig. 2. Composite light curve of asteroid (87887) 2000 SS286 from
observations in 2016.

We note that the photometric data of (8§7887) 2000 SS286
do not indicate any obvious signs of tumbling (if any, it should
correspond to a small angle between the body axis and the an-
gular rotation vector). The canonical theory for damping of the
tumbling state (e.g., Harris 1994), however, would predict a
timescale of =700 kyr, one hundred times longer than the pro-
posed age of the pair. This implies that the pair-formation mech-
anism in this case should have been rather “gentle”, leaving the
primary to rotate about the principal axis of the inertia tensor.

3.2.2. (415992) 2002 AT49

Because of its low light-curve amplitude and the relatively low
apparent brightness during our observations, we were unable
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Fig. 3. Composite light curve of asteroid (415992) 2002 AT49 from
observations in 2016.

to determine the rotation period of the secondary member of
the asteroid pair uniquely. The formal best-fit solution from the
2016 data provides a period of P = 2.6366 + 0.0003 h with a
light-curve amplitude of 0.12 mag (Fig. 3), but other values are
also possible. This is because with such a limited dataset the
Fourier fit has a characteristic broad /\/2 minimum, punctuated
by sharp and separated minima. We report the formally best of
them above, but other minima still have statistically admissible
x° values. We estimate that the realistic range of the synodic ro-
tation periods for this asteroid is ~2.5 h to ~6 h. Clearly, more
observations are needed to constrain it better.

Assuming the asteroid has the same G and V — R values as
the primary 87887, we obtained Hg = 16.24 + 0.03 and H =
16.69 + 0.04. The 2014 data, although of a lower quality and
even lower light-curve amplitude (<0.1 mag), gave nearly the
same Hg = 16.25 + 0.03. Assuming the mean geometric albedo
for S-type asteroids py = 0.20 + 0.05, we obtain a size estimate
D, =1.36 + 0.18 km for the secondary in our pair.

Combining the sizes D; and D,, we estimate the size of the
parent body of this pair to be Dyyr = 2.56 + 0.34 km. Adopting
a bulk density between 2 and 2.7 g cm™3, which is appropriate
for S-type asteroids (e.g., Carry 2012), we estimate the escape
velocity from the parent body of the pair to be ~1.5 + 0.1 m s
(see, e.g., supplementary materials of Pravec et al. 2010). Simi-
larly, we estimate that the characteristic radius of the Hill sphere
of the parent body was z600f§(5) km. For the sake of simplicity

we use 1.5 m s~} and 600 km.

4. Estimated age for the asteroid pair 87887 —
415992

4.1. Clones and backward orbit integration

The recent origin of recognizable asteroid pairs allows esti-
mating their age, that is, the time since their formation, us-
ing backward orbit propagation of the two asteroids (e.g.,
Vokrouhlicky & Nesvorny 2008). Here we briefly recall the stan-
dard approach. In the next section, we substantiate the traditional
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methods using a more in-depth analysis, allowing us to eliminate
the simulated age solutions related to the near-repetition of the
asteroid configuration with the synodic periodicity.

In an ideal world, where (i) the state vectors of the two aster-
oids in the pair would be known exactly at a given epoch; and (ii)
our orbit-propagation model would be complete and absolutely
precise, we would propagate nominal asteroid orbits backward
in time until they would reach a moment that reflected their sep-
aration conditions from the common parent body. Unfortunately,
this is not possible and we need to correct for both factors (i) and
(ii), at least in approximate way.

For problem (i), the orbit determination procedure incorpo-
rates the necessary statistical tools. In particular, for a given ini-
tial epoch T it provides not only the nominal (best-fit) orbital so-
lution e*, but also the covariance matrix Z, under the assumption
of a locally normal distribution of orbital solutions e around e*
(e.g., Milani & Gronchi 2010). In our case, we used information
provided by the AstDyS website for MJD epoch 57400.0, and
e = (a,k,h,q,p,A) is a vector of equinoctical orbital elements
(see Table 1). An infinitesimal probability dN(e) of finding the
correct orbit solution in a volume d ®e around e is therefore given
by dN(e) = p(e) d%e, where the probability density p(e) reads

exp [—% e-e) s (e - )]

While the nominal solution e* is the most likely representation
of the truth, some of the close-by solutions e may also have
nearly the same weight. Only those solutions e that deviate too
much from e* should be rejected.

When searching for the asteroid pair origin by numerical
propagation of their orbits backward in time, we therefore need
to consider a multitude of possible initial conditions at Ty. We
use the word “clones” for these different realizations of each of
the two asteroids. The clone distribution in the orbital elements
space e must be consistent with the distribution in (1). This is
achieved by generating the clone elements e using

ple) = ey

(n)3s:

e=Tlz+e* 2)
with a six-dimensional vector z whose components are random
deviates of the standard normal distribution, and T is a matrix
satisfying TT T = 2. We used a Cholesky decomposition to de-
termine T from Z (e.g., Gentle 2003; Press et al. 2007).

For problem (ii), that is, for the accuracy of the orbit prop-
agator, we note that our code takes into account gravitational
perturbations from planets and the most massive main belt ob-
jects (Ceres, Vesta and Pallas). We considered nominal masses
for each of these perturbers, and variations due to their un-
certainty were deemed negligible on the required propagation
timescale <1 Myr. Moreover, the motion of both asteroids in the
pair is affected by thermal accelerations known as the Yarkovsky
effect (e.g., Bottke et al. 2006; Vokrouhlicky et al. 2015). The
Yarkovsky effect is a subtle non-gravitational acceleration due
to recoil of photons that are thermally reradiated by the surface
of the asteroid. This effect depends on a number of physical pa-
rameters such as the asteroid size, rotation period and pole ori-
entation, surface thermal inertia, and bulk density, to mention
only the most important. Unfortunately, except for rotation pe-
riods and a rough estimate of the size (Sect. 3.2), we do not
have this information for either of the two components in the
87887-415992 pair. In this situation, it would be too difficult
to use somewhat sophisticated formulations of the thermal ac-
celerations (see, e.g., Vokrouhlicky et al. 2000). We instead sim-
plified the approach and empirically retained only the principal
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orbital perturbation that is due to the Yarkovsky effect, which is
the secular change da/dt in the semimajor axis (and the related
advance in longitude in orbit, as described by Vokrouhlicky et al.
2000). This was accomplished by mimicking the Yarkovsky ef-
fect with a transverse acceleration described in Farnocchia et al.
(2013) (an older implementation of the same idea is provided
by Vokrouhlicky & Nesvorny 2008). With this approximation
we did not include in our computation the off-plane component
of the thermal acceleration and the related perturbations or the
exact nature of short-period Yarkovsky effects. The magnitude
of the empiric transverse acceleration was chosen to (i) have
oc1/r? heliocentric dependence, and (ii) resulting in the expected
da/dt value (e.g., Farnocchia et al. 2013). At the heliocentric
distance of the 87887—415992 pair, the maximum semimajor
axis drift value for a kilometer-sized asteroid is approximately
(da/df)max = 2 x 107 au Myr~' (see, e.g., Fig. 2 in Bottke et al.
2006). Assuming a common value of the surface thermal iner-
tia, the exact semimajor axis drift-rate for either the 87887 or
415992 asteroid reads da/dt = (da/dt)max cosy/D, where y is
the rotation pole obliquity and D is the size in kilometers. For D,
we used the values estimated in Sect. 3.2, but y are not available
to us at this moment. In principle, we must assume all admissi-
ble values and test the sensitivity of the results on their choice.
For simplicity, we assumed an isotropic distribution of the spin
axis orientation for both asteroids, which implies that cosvy in
the formula for da/dt is a random quantity with a uniform prob-
ability density distribution in the interval (-1, 1). Therefore, in-
dividual realizations for da/dr may have equally likely positive
or negative values, depending on whether the asteroid rotates in
a prograde or retrograde sense.

Combining the two aspects (i) and (ii) from above in this
way, we propagated in our model a certain number of clone re-
alizations for each of the asteroids in the pair. Their initial con-
ditions were constructed by Eq. (2), and each of the clones was
assumed to have a randomly chosen Yarkovsky value of da/dr.
The initial state vectors of the planets at 7y = 57400.0 MID
epoch were taken from the JPL ephemerides file, and the state
vectors of the three massive main belt objects, Ceres, Vesta,
and Pallas, from the AstDyS solution. We used the well-tested
computer code swi ft3, extended by our subroutines to account
for the thermal accelerations. We used a three-day propagation
time step, and typically let the integration extend to 1-3 Myr
maximum backward in time when exploring the origin of the
87887-412992 pair. We complemented the basic version of the
swift software with analysis subroutines specific to the asteroid
pairs, such as computation of distance and relative velocity for a
selected couple of clones. The time step should be short enough
to avoid missing the close encounters: anticipating a relative ve-
locity of about ~1 m s7L, the bodies move by ~260 km in one
time step. This is less than the estimated Hill radius of the parent
body of this pair, and also less than the expected accuracy of our
propagation model.

4.2. Results: clone convergence in the past

To illustrate the effect of near-periodic repetition of close-by
configurations of the two asteroids in the pair, we first numer-
ically integrated the nominal orbits of 87887 and 412992 with-
out the thermal accelerations. At every three-day time step, we
computed the mutual distance and relative velocities of the two
asteroids. Figure 4 shows the result. The first, deep encounter is
recorded ~7.42 kyr ago, reaching a minimum mutual distance

3 http://www.boulder.swri.edu/~hal/swift.html
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Fig. 4. Repetition of the geometric configuration of the nominal orbits
for (87887) 2000 SS286 and (415992) 2002 AT49 (no thermal acceler-
ations included in this run; note the logarithmic scale of the abscissa).
The top panel shows the mutual distance of the two asteroids, the bottom
panel shows their relative velocity. Both functions have deep minima at
conjunctions. The first occurs ~7.42 kyr ago, followed by the second at
~257 kyr after completing one synodic cycle of their relative motion.
The gray level line at the top shows a distance of 3 Ry, while that at
the bottom shows Vi of the parent body.

of ~3900 km and a relative velocity of ~0.14 m s~!. This was

the event that classified this pair to be considered as a candidate
for a very young pair mentioned in Sect. 2. When the propa-
gation is continued backward in time, the asteroids separate in
space for nearly 250 kyr before experiencing another close en-
counter at ~257 kyr. This time the minimum recorded distance
was ~11 000 km and relative velocity ~1.52 m s~!. The situation
is then repeated typically four more times in the last 1 Myr.

The same pattern would obviously be repeated when vari-
ous clones of the two asteroids were used instead of their nomi-
nal realizations (with now the thermal effects included as well).
We found that the characteristics of the first deep minimum at
~7.4 kyr remain approximately the same for all possible clone
combinations, those of the earlier encounters start to differ sig-
nificantly. Already the epoch of the second encounter in the past
is not always near ~257 kyr, but depending on the strength of the
Yarkovsky effect, it could take part any time between ~45 kyr
and ~500 kyr. This is illustrated at Fig. 5. In this simulation
we considered 1000 clones of each of the asteroids in the pair.
The clones sampled the uncertainty hyper-ellipsoid of the initial
data e at Ty and each having assigned some random value of the
Yarkovsky effect. At every time step, that is, at every three-day
interval, we checked the mutual distance of all 10° possible com-
binations of the clones. We monitored the deep close encounters
illustrated in Fig. 4, and for each of them we recorded the relative
velocity of the clones.

By focusing on the first deep encounter between the
clones, we note that it occurred in a rather short time interval
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Fig. 5. Top: minimum distance between clones of (87887) 2000 SS286
and (415992) 2002 AT49 during different synodic cycles in the past
(each of the asteroids was represented by 1000 clones, and we
considered all possible combinations between them). The first deep en-
counter is well localized at some 7.4 kyr ago, but the subsequent en-
counters of different combinations of clones are spread in time start-
ing from =45 kyr ago. Bottom: relative velocity of the clones at the
moment of their nearest encounter from the top panel. Importantly, all
possible clone combinations have an extremely low relative velocity
(50.18 m s7!) during their first encounter in the past. The gray solid line
at the top shows a distance of 3 Ry;;, while that at the bottom shows Vg
of the parent body. The gray dashed line at the bottom indicates that
the 0.18 m s~! value is not exceeded by any of the clone pairs during
their first encounter.

between 7.1 and 7.8 kyr ago. The relative youth of this event
implies that all 10° clone combinations have a very similar min-
imum distance and relative velocity with only a minor spread.
All minimum relative velocities are extremely low, with a floor
limit of 0.18 m s~'. Some may reach a mm s~! level. These
values are typically an order of magnitude lower than the esti-
mated escape velocity ~1.5 m s~ from the parent body of the
pair. The minimum recorded distances between the clones range
from =900 km to =4800 km. These values are slightly higher
than the estimated radius of the Hill sphere Ry, of the parent
body, namely ~600 km. However, we should allow some toler-
ance in missing the ideal convergence. This is because our prop-
agation model is not perfect, and incorrectly modeled effects at
the level of ~3 Ry may easily originate from (i) representing the
complete model of the Yarkovsky effect with only the transverse
acceleration, or (ii) a mismatch in modeling the short-periodic
variations using the swift symplectic code that incorporates
the Wisdom-Holman mapping algorithm (Wisdom & Holman
1991). Additionally, at such a close distance we need to take
the mutual gravitational interaction of the two asteroids in the
pair into account, which would help to bring them closer to each
other. Empirically, we considered the ~ 3 Ry level tolerable for
the success in convergence of the clones. We thus find that about
half of the clone combinations satisfy this liberal condition for
the minimum distance.
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Examining the second, and further, deep encounters in the
past, we note that some may occur as early as =45 kyr ago. Since
this is much earlier than seen for the nominal orbits (Fig. 4), for
this to occur we need clones with strong Yarkovsky accelera-
tions, especially for the smaller secondary component. Because
we sampled all possible clone combinations, there are many dif-
ferent possibilities and the distance minima occur for basically
any epoch beyond the 45 kyr time. However, many are quite dis-
tant (220 000 km) and/or occur very swiftly at relative speed of
tens or even hundreds of meters per second. These cases should
be considered as false. Nevertheless, close encounters are possi-
ble with distances well shorter than Ry;y, in our simulation some
as close as ~50 km that are associated with a relative velocity
lower than V... These solutions should be considered as valid.
In terms of a fraction of tested clones, there are increasingly
fewer of these successful solutions in the past. However, this
is mainly an expression of the dilution of the spreading clone
clouds by Keplerian shear, gravitational and non-gravitational
perturbations. We recall that we used a fixed number of clones.

To conclude, both young (~7.4 kyr) and old (250 kyr) solu-
tions are possible in principle. Unless we can determine more
arguments and tests, we cannot a priori decide which one is
correct.

4.3. More results: lessons from integration of synthetic pairs

In an attempt to solve the true-age problem, we conducted
the following numerical experiment. In brief, the main and se-
vere constraint we used is the extremely low encounter veloc-
ity <0.18 m s~! of all possible clone combinations during the
first deep encounter ~7.4 kyr ago. As a result, it must have oc-
curred with 100% likelihood. Any solution that would postulate
an older age for this pair would need to satisfy the ~7.4 kyr
velocity constraint during the subsequent deepest encounter. In
what follows, we show that it is very difficult to meet this re-
quirement.

To shed a more quantitative light on this problem, we per-
formed a numerical simulation of 240 000 synthetic secondaries
ejected from the primary at 7o = 57400.0 MJD epoch. We
assumed that the synthetic secondaries (representing 415 992)
were separated from the primary (representing 87 887) in a ran-
dom direction in space and with a relative velocity vej; in some
interval of values (0, Vinax). We nominally took Viax = Ve,
where Ve =~ 1.5 m s7! is the escape velocity from the par-
ent asteroid of the pair, but for the sake for probing our re-
sults in more detail, we also considered lower V,,,x values. With
this procedure we created 240 000 synthetic pairs and addition-
ally gave the primary and secondary components random val-
ues of the Yarkovsky drift-rate da/dt within the respective in-
terval of values. The pairs were numerically propagated to the
future for 3 Myr, and we monitored their relative configuration,
focusing particularly on minima of distance during the synodic
cycles. We recorded the absolute minimum of the relative ve-
locity ven at which the two clones encountered and the time ¢
when it occurred. Most often, this was already during the first
encounter, but in some cases it also occurred during the subse-
quent encounters.

These results allowed us to characterize the probability dP
that the two asteroids in the pair will encounter with relative ve-
locity (Vencs Uenc + dvenc) in time (z,¢ + dr) after their separation
with relative velocity (vej, vej + dvej):

dpP = p(vej; Venc 1) dvej dvene dt. 3
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Fig. 6. Results from our numerical experiment with 240 000 synthetic
pairs 87887-415992 separated at Ty = 57 400.0 epoch by a low relative
velocity vej. We numerically propagate their orbits until their configu-
ration was repeated in a deepest close encounter at time ¢ at which the
relative velocity of the two asteroids is ve,. (we recall that the integra-
tion time span was 3 Myr in which the deepest encounter was sought).
The top panel shows vy vs. t. The bottom panel sShows vej vs. venc.

Here p(vej; vene, 1) is the associated probability density. We im-
posed the normalization

Vinax 00 00
f f f P(Uej§ Uenc 1) dvej dvene dt = 1, 4)
0 0 0

where in practice we replaced infinity in the integral bounds by
some high values attained in our simulation. Obviously, we can
only approximate the formally infinitesimal quantities with their
finite realizations, such as
N;ik(Avej , AUepe, A)
N )

where N’ ;jk(Avej , AUene, At) is the number of recorded events in the
finite intervals (vej;, Ueji+Avej), (Venc j» Venc j+Alenc) and (fx, iy +At),
and N being number of all events. We had Ave; = Avepe =
0.04 m s~! and At = 10 kyr. The indexes i, j, and k span pos-
itive numbers until the parameter (velocities or time) fills the
necessary interval of values with A steps.

Figure 6 shows our raw data: (i) the top panel shows vepe as
a function of ¢, and (ii) the bottom panel shows vy as a function
of vej. There are two clear trends. First, ven. generally increases
with ¢ because of the cumulative effect of gravitational and non-
gravitational perturbations in the orbits of the two components in
the synthetic pairs. Second, venc is nearly always higher than v,;,

AP;j =~

&)

only in very rare cases is the opposite true. This is again an ex-
pression of orbital perturbations. We added these data into our
procedure to estimate the probability AP;; from Eq. (5), and
used it to evaluate the following hypothesis: what is the proba-
bility that upon separation of the two components with vj in the
interval (0, Vihax) they encounter each other at any time in the fu-
ture with a relative velocity v, in the interval (0, V). We set
Vet = 0.18 m s™! because this is the hard limit of the encounter
velocity of 87887-415912 during their approach ~7.4 kyr ago
(see Sect. 4.2). We tested both V.« = Ve, for which we have

Viax Veut 00
Py = f f f p(Uej; Uenc, 1) dvej dvene df = 0.02, (6)
0 0 0

and also strengthened the case Vi,x = 0.18 m s~1, for which we
have

Vinax Vet 00
P, = j(; I) j(; P(Vej; Venc, 1) dvgj dvene df =~ 0.13. @)

We note that in both cases, we recalculated the proper normal-
ization of the probability density p(vej; Uenc, #) using Eq. (4).

As a sanity check, we now pushed the procedure and deter-
mined the Vi« value at which the probability of the old solution
Poq from Eq. (6) increases to 50%. We ran this test and found
that V,,,x would need to be as low as ~0.02 m s~!. While not
impossible, this value is about an order of magnitude lower than
statistically expected from the separation of the two components
in pairs (see, e.g., Jacobson & Scheeres 2011).

Our results in Eqgs. (6) and (7) may be expressed in simple
words: separating the asteroids by a low relative velocity, or-
bit perturbations typically act to increase it significantly during
the next closest encounter after completing one (or sometimes
more) synodic cycle. There is only a ~2% chance of meeting
at 0.18 m s~! when the initial separation extended to Ve, and
this chance increases to only ~13% at 0.18 m s~! when the ini-
tial separation was smaller or equal to this value. Additionally,
we note that we did not use the fact that the older age solutions
of the 87887—415992 pair preceded the young age by at least
37 kyr (Fig. 5). If this constraint is used, then the probability of
the older age would decrease even more.

Therefore, we may conclude that it is very unlikely that the
asteroid pair 87887-415992 has an age *10 kyr and the two
components underwent only a close fly-by with an extremely
slow relative velocity ~7.4 kyr ago. Instead, this nearest en-
counter in the past is their true moment of origin.

4.4. More results: analysis of the young-age solution

We now return to our simulations of 87887-415912 past con-
vergence and investigate the encounter conditions at ~7.4 kyr.
In particular, we use the information about the given Yarkovsky
drift-rate in semimajor axis da/dt to each of the clones. We recall
that da/dt oc cosy, where vy is the obliquity of the spin axis. Thus
the positive or negative sign of da/d¢ unambiguously implies ei-
ther prograde or retrograde sense of rotation of the clone. There-
fore, it is interesting to consider the statistics of successfully
converging solutions in terms of this parameter because it could
tell us about expected rotation state of the asteroid. We note,
for instance, that this method has led Vokrouhlicky et al. (2011)
to predict that the smaller component in the 6070-54827 pair
should rotate in a retrograde sense.

We note that all 10° clone combinations converged within
~8 Ryin =~ 4800 km distance. Using this largest set of the con-
verging cases, we find no preference between the four com-
binations of prograde and retrograde modes of the clones of
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Table 4. Dependence of the age of the (87887) 2000 SS286 and
(415992) 2002 AT49 asteroid pair on obliquities y; and vy, of the pri-
mary and secondary component.

[cos Y1, COS 721 Tage 6Tage P = Neony/Niot
[kyr]  [kyr]

cosy; >0,cosy, >0 7.37 0.09 0.25

cosy; <0,cosy, >0 726 0.08 0.25

cosy; >0,cosy, <0 7.62 0.10 0.25

cosy; <0,cosy, <0 7.49 0.10 0.25

Notes. Statistical parameters of solutions for which clones of (87887)
2000 SS286 and (415992) 2002 AT49 converged at a relative distance
of 8 Ryin =~ 4 800 km (all 10° possibilities in our numerical experiment).
Tyge and 6T, is the mean value of the age and its formal uncertainty in
kyr. The results are sorted into four cases according to the assumption
about the rotation sense of the clones: cosvy; and cosy, are cosines of
obliquity of the the clones of the primary and secondary in the pair. P is
the fraction of solutions in each of the cases.

87887 vs. 415992, however. We only note that solutions for
prograde-rotating clones of 415992 occur slightly earlier (by
about 0.3 kyr) than those for retrograde-rotating clones of
415992. The results are summarized in Table 4 and Fig. 7.

We also analyzed smaller subsets of the convergence cases
that approached to a closer distance. For instance, considering
only those that approached at ~3 Ry =~ 1800 km, little more
than one tenth of the cases, or even less, such as ~2 Ry =
1200 km. Unfortunately, no preference in spin axis orientation
for the primary or secondary clones was detected. There was
always an about equal chance for all four combinations. We
assume that this negative result, as compared to that for the
6070—-54827 pair, is due to the quite smaller size of the aster-
oids constituting the pair.

5. Discussion and conclusions

We have shown that determining the age of an asteroid pair
might not be as straightforward as it looks and in principle might
need detailed considerations. In most of the cases for which our
message is irrelevant, the orbit uncertainty of the two compo-
nents is too large and a continuum of ages from some epoch
in the past is possible (see, e.g., the case of asteroids (21436)
Chaoyichi and (334916) 2003 YK39 in Fig. 2 of the supplemen-
tary materials of Pravec et al. 2010). However, there are cases of
more accurate orbits where the age solutions might be localized
in time into separate intervals reflecting the synodic cycles of the
relative motion of the two asteroids in the pair. These situations
require careful analysis to distinguish between the different pos-
sibilities. Previously reported age solutions for the pairs did not
pay close attention to this aspect, and some of them perhaps need
to be verified or reanalyzed (including the most famous case of
(6070) Rheinland and (54827) 2001 NQ24).

The second implication of our work is relevant to the gen-
eral picture of asteroid pair formation. In particular, does the
relative rarity of known asteroid pairs with ages younger than
10 kyr fit the general idea of their formation by rotational fission
(Pravec et al. 2010)? We addressed this question using approxi-
mate arguments in two steps.

First, we checked that a collisional origin is not a likely
model for a very recent origin of the 87887-415992 pair.
Bottke et al. (2005) developed a model that described the col-
lisional evolution of the asteroid main belt. One of the results
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Fig. 7. Statistical distribution of (87887) 2000 SS286 and (415992)
2002 AT49 solutions converging within the past 10 kyr. We select
all N, = 10° possible clone combinations that approached less than
~8 Ryin =~ 4800 km. The abscissa is the time in kyr, the ordinate gives
the number of converging solutions grouped in 20 yr bins. The solutions
are grouped into four cases of possible combinations of rotation sense
of the clones for each of the components in the pair. The sign of cos y (y
is the obliquity) serves as a indicator of the rotation sense (see the text).
The upper two panels are for secondary clones that rotate in a prograde
sense (cosy, > 0), the lower two panels show the reverse.

that could be inferred from their approach, is a statistically mean
timescale Tgisr for a disruption of a body with size D among the
current population of asteroids in the belt. As we were interested
in the origin of the 87887—415992 pair, we chose D ~ 2.5 km
and found that T4, =~ 15 kyr. We note that the H =~ 15.3 mag
population of asteroids in the inner main belt may be close to
completeness, but this is not the case in the outer main belt where
the majority of asteroids reside. Therefore we cannot assume
that we know all events that have led to the origin of our stud-
ied pairs, since a number of them may still have been missed.
By comparing the known population of H ~ 15.3 in the MPC
catalog to their expected number by Bottke et al. (2005) (as-
suming a global mean geometric albedo of ~0.125), we note a
factor of =2 incompleteness. This means that instead of record-
ing every event, we statistically expect detection of every second
event, with a frequency of ~30 kyr, for example. Our pair 87887—
415992 would have been anomalously young in this model.

We now try to determine how well the formation of the
87887—415992 pair in the last 10 kyr fits within the rotational
fission model (Pravec et al. 2010). We should point out that we
currently do not have a rigorous procedure or model that would
include all participating factors and biases. Our computation
should therefore be considered more as an estimate.

We start with the results in Pravec et al. (2008), who ana-
lyzed the rotation-rate f distribution N(f) of small asteroids in
the main belt and Hungaria regions. They found that N(f) is ba-
sically flat, except for an excess of slow rotators with f < 1 cycle
per day, where they found about twice as many objects compared
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to bins corresponding to f > 1 cycle per day frequencies. We
estimate that on a timescale over which the YORP effect dou-
bles f, about one-fourth of the population may reach the critical
fission limit. However, about half of the asteroids in these bins
may decelerate, rather than accelerate their rotation in the model
of Pravec et al. (2008). This decreases the fraction to about one-
eighth. We should also consider that reaching the estimated fis-
sion frequency may not yet be enough, but still a certain time
may be needed to mechanically break the body. We do not have
a quantitative estimate in this respect, therefore we assume an-
other factor of 2—5 in the population. We thus estimate that about
one in 16 to 40 of objects in the asteroid population at small
sizes is prone to rotationally fission within the estimated dou-
bling timescale by the YORP effect.

Next, we considered results from Capek & Vokrouhlicky
(2004), who computed the strength of the YORP effect for a
large sample of asteroids of various shapes. Taking their results
for high surface inertia ~130 [SI units], which is appropriate
for small asteroids (e.g., Delbo et al. 2007), we concluded that a
characteristic doubling timescale for D ~ 2.5 km asteroids in the
main belt is ~20 Myr. Finally, we turned again to the results of
Bottke et al. (2005), who showed there are about 120 thousands
main belt bodies in their 2.45 km size bin. We found above that
about 1/40 to 1/16 of them may be prone to rotationally fission,
which is ~3-7.5 thousand. As a result, one such event is statis-
tically expected every ~2.5-6.5 kyr (if evenly distributed). As
we expect an observational incompleteness of a factor ~4-9 for
these events, however, we estimated that our records should in-
clude about one event ~(4—9) X (2.5-6.5)/2 ~ 5-30 kyr old (we
note that above we mentioned a population incompleteness of ~2
for 2—-2.5 km bodies across the main belt; in pairs, we must find
both components, hence the incompleteness factor squares, and
the secondary may be slightly smaller than the primary, which
leads to a higher incompleteness factor in the population). This
is close to the age we determined for the 87887415992 pair
and also because we are currently not aware of more events of
that young age. We note that if some of the pairs mentioned in
Sect. 2 were to be younger than 10 kyr, which we deem unlikely,
the overall conclusions from our study would not be changed.
We may therefore conclude that the ~7 kyr age of the youngest
known asteroid pair in the belt with a parent body of ~2.5 km
size agrees well with the fission model “powered” by the YORP
effect.

We finally note that several cases of asteroid activity, such as
dust-tail formation or a split into a number of small fragments,
were reported over the past decade (e.g., Jewitt et al. 2015, and
references therein). It is possible that some of these events were
triggered by rotational fission, but by their nature they seem to
differ from the generic population of asteroid pairs discussed in
this paper. More likely, they correspond to a sudden activation
of primitive, cometary-like bodies. In contrast, asteroid pairs are
found equally well in all spectral groups of asteroids, and typi-
cally produce several near-equal size components.
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B. History of understanding the
Solar System

The dynamics and orbital characteristics of the Solar System along with the
attempts to provide information about its orbital history are a very complex and
rapidly developing part of celestial mechanics. It has been a long and arduous
journey to obtain the current knowledge, undertaken by many individuals, some
well-known, some whose names have faded from popular memory. The aim of
this chapter is to outline the key points of this journey and the main concepts
that have influenced the current view of the structure of the Solar System.

B.1 The Period until the Renaissance

The attempts to explain celestial movements are as old as mankind. People
have always been looking up at the sky, with a desire to make sense of the
movements of the celestial bodies they observed. The success of such an enquiry
went hand in hand with the quality of the observational data and the technical
capacity of the given epoch. The primary knowledge of the processes taking
place in the universe was merely descriptive and falls within the period before
the Renaissance. It was not until the Renaissance when the door was opened
to new discoveries, as well as the interpretation of already known, empirically
described processes.

B.1.1 Pre-Antiquity astronomy

The beginnings of astronomy date back to about 6,000 years ago. People’s in-
terest in the movement of celestial bodies was conditioned by the purely practical
needs of the civilizations. Thanks to the constellation of objects on the celestial
sphere, they were able to predict, solely based on their experience, the period of
floods, solstice, and other important events. The study of the movements of the
Sun, the Moon and the planets also found a significant application in the intro-
duction of the first chronometric instruments and calendars. Astronomy began
to thrive in Mesopotamia about 3,000 BC with the rise of the Chaldean civiliza-
tion. The people of this civilization built large cities with ziggurats - astronomical
observatories, which were very advanced for their time. Chaldean astronomers
mostly concentrated on the observations of the Moon and the Sun, and later
began studying the planets as well. Moon observations led to the creation of a
lunar calendar, and one synodic period served as a benchmark for determining the
length of one year, which they determined as a period of ~ 354 days. A similar
result was achieved by Chinese astronomers at that time.

Somewhat later, around the 5% century BC, Chaldean astronomers already
knew the approximate orbital periods of the brightest planets, as well as their
retrograde and looping motion as observed in relation to the stars in the back-
ground.

Egyptian astronomy also achieved significant results in observation. The
Egyptians were extremely proficient in predicting the flooding of the Nile, which
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was vital to them. The duration of the Egyptian year was 365 days, divided
into 12 months with 30 days each. Furthermore, they developed the method
of approximate determination of the angular diameter of the Sun, based on the
measurement of the period starting from the first appearance of the Sun above
the horizon until its complete emergence in relation to the total duration of its
movement from the east to the west. Numerically, this ratio was 1/750, which is
28'50".

Chinese astronomy was developing relatively independently and its origins
can be traced back to the 3' millennium BC. Chinese astronomers used gnomon
in their observations - a vertical rod mounted in the ground. By analysing the
shadow cast by the rod, they determined the angular height of the Sun over the
horizon. They also successfully calculated the obliquity of the ecliptic € = HT_h,
where H is the height of the Sun at noon during the summer solstice and h is
the height at winter solstice. They calculated it as e = 23°54’. Around the 8
century BC, Chinese astronomers were able to measure that the ecliptic longitude
of the stars was shifting by 1° in 83 years, which is 45" a year. Today’s value of
the annual precession is about 50.26".

However, other civilizations did not fall behind. Europe had its Stonehenge
observatory for determining the dates of the solstice and equinox. On Yucatan
peninsula, there was Mayan astronomy, in the Peruvian Andes the astronomy of
the Incas, and there were others.

In the period before the antiquity, astronomers naturally focused mainly on
observing the Sun and the Moon, using their findings to create calendars and
chronometric devices. They also observed bright stars, whose movement they
explained as the sky’s rotation around the Earth. On the other hand, the move-
ments of the planets were still problematic. Ancient astronomers also used simple
observation devices and achieved accuracy relative to their equipment. However,
it is important to note that astronomical research in the pre-antiquity era was
purely descriptive and based on empirical results of observations. Astronomers
were not concerned with the origin of the observed facts, nor did they discuss the
possible forces behind the phenomena they could observe in the sky.

B.1.2 Ancient Greek astronomy

Ancient Greek astronomy, which began around the 6" century BC can be
considered as the beginning of scientific astronomy as such. Great progress was
achieved largely thanks to excellent knowledge of geometry and mathematics.
Greek astronomers tried to make sense of the phenomena that they observed and
they advanced from merely recording periodically recurring events to the first
attempts to interpret them by means of generally applicable laws.

The main representative was Thales of Miletus (624 — 548 BC), who per-
ceived mathematics and geometry as the cornerstones of astronomy. Moreover,
the Pythagorean school, founded by Pythagoras of Samos (570 — 510 BC),
believed in the general laws of nature. The most comprehensive interpretation of
the origin of celestial movements in this period comes from Plato (427 — 347 BC)
and Aristotle (384 - 322 BC).

Plato claimed that the stars and even the Earth rotated evenly around their
axes. He also ordered the bodies of our Solar System according to their distance
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from the Earth in the following order: Moon, Sun, Venus, Mercury, Mars, Jupiter
and Saturn. Aristotle, on the other hand, devised a complicated model of the
planets residing in principal and auxiliary spheres moving around the Earth. The
cause of the movement of these spheres was supposed to be an indeterminate
rotating sphere located beyond the sphere of the stars. In his system, Aristotle
correctly placed the planets beyond the Moon and the Sun, but his view was still
geocentric.

The first known proponent of the heliocentric model was Aristarchus of
Samos (310 — 250 BC), who came up with two basic principles - (i) all planets
orbit around the Sun, (ii) their motion is uniform. Unfortunately, the measure-
ments were not accurate enough yet to reveal an uneven motion of the planets
and due to conflicts with the astrological ideas of the time, Aristarchus’s helio-
centric model was not further developed. It is important to note that what led
Aristarchus to the notion of heliocentrism were his results determining celestial
body dimensions Rq ~ 7TRs, B¢ ~ (7/19) Ry and mutual distances 75 ~ 19Rg
and rgo ~ 1915 (Heath, [1913).

The person who is considered to be the father of scientific astronomy is Hip-
parchus (190 — 120 BC). Hipparchus combined various mathematical and geo-
metrical constructs with the results of the astronomical observations of his time
and attempted to quantitatively describe the movements of the Moon, the Sun,
and the planets. In addition to measuring star positions and compiling a cata-
logue of the stars, he also studied the differences between the sidereal and tropical
years and determined their length.

The last significant Alexandrian astronomer was Claudius Ptolemy (90 —
165), who is known for his Almagest, a work which is considered to be a sum-
mary of ancient astronomy. This extensive work is devoted to practically all the
then-known astronomical issues. He developed a model that, with an accuracy
corresponding to his time, captured the anomalies of the motion of the planets.
The key idea was based on the fact that Ptolemy replaced the irregular move-
ments of planets by a superposition of several simple uniform circular movements
(Fig. B.I). In Almagest, Ptolemy also kinematically describes the inequalities
in the Moon’s movement, especially evection, first observed by Hipparchus. The
evection is caused by periodic perturbations in the Moon’s motion due to the so-
lar attraction. The eccentricity of the Moon’s orbit varies with a 31.8-day period
and it leads to a periodical change of the Moon’s ecliptic longitude of approxi-
mately 1° 17’ corresponding to Ptolemy’s estimate of two full moons. Ptolemy
was also somewhat reserved concerning astrology, which he did not consider to
be comparable to scientific astronomy. Nevertheless, he did not deny its certain,
albeit debatable, findings.

He was concerned with a variety of issues — for instance, it is worth mentioning
his views of the effect of celestial bodies. To the theory of the then-known Solar
System, he added that the active power of the Sun is in its heating and drying,
which is most apparent when the Sun is at its zenith. The Moon, according to
Ptolemy, has an effect on irrigation, most likely due to the fact that it is closest
to the Earth. He believed that the Moon has an influence on the changes in
the water levels of rivers. Just like ancient navigators, he knew the relationship
between the ebb and flow, and the moonrise and moonset. He also attributed a
certain active force to the planets.
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Deferent

Figure B.1: A schematic representation of the Ptolemaic model. Each of the
planets is orbiting evenly along a smaller circle - epicycle, whose center is moving
at a constant angular velocity along a larger circle - deferent. Point C is the
center of the deferent. By choosing an appropriate distance of the Earth from
the deferent center, the ratio of the epicycle size to the deferent, and appropriately
determined angular velocities, Ptolemy managed to obtain values corresponding
well with real observations. He presented a unique model for his time, accounting
for the characteristic retrograde loops of the planets.

After antiquity, the greatest advances in astronomy took place in the Islamic
world. Arabic science adopted the Ptolemaic system and refined the theories of
solar and lunar motion. One of the iconic figures of Arabic astronomy of that
time was the Persian astronomer Al-Biruni (973 — 1048), who expressed doubts
about the validity of the geocentric system and studied the conversion formulas
between individual calendars. Ulugh Beg (1394 — 1449), an Uzbek astronomer
from the famous Samarkand observatory, also achieved outstanding observational
results.

Even though this historical period marked the beginning of a truly scientific
approach to astronomy, the causes of the movements of the celestial bodies were
still shrouded in mystery. Ancient astronomy was rather empirical and descrip-
tive. Any discussion of the causes and consequences of the movements of the
celestial bodies was predominantly based on astrological dogmas.

B.2 The Middle Ages and the Renaissance

Up until the Middle Ages, the Ptolemaic geocentric model of the universe
was generally accepted and respected. His successors then gradually added more
epicycles and deferents for an even better agreement with observations.

The roots of the modern view of the Solar System, however, go back to Nico-
laus Copernicus (1473 — 1543), who reflected on the complexity of the Ptolemaic
model as such, but also considered the persisting differences between theory and
observations. Copernicus mainly tried to explain why the planets move in a di-
rection opposite to that of the fixed stars. He gradually came to the conclusion
that the answer to this question was a more elegant system, in which the Sun
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was the center of the universe, and the planets, located in spheres, were orbiting
around it. He understood the movements in the celestial sphere as the result of a
superposition of the Earth’s circular motion around the Sun, which was located
near the center of a circular orbit, and the rotation of Earth itself. Later he added
the precession as well.

Copernicus supported all his claims with mathematical proofs and astronomi-
cal observations. In the ninth chapter of the first book of his work De Revolution-
tbus, he formulated his views on mutual attraction. Gravity, according to him,
was a certain natural inclination of objects to be attracted to the Sun, Earth,
Moon, and planets. These reflections, however, did not lead Copernicus to the
notion of universal gravitation.

Copernicus measured our Solar System quite accurately. He was able to de-
termine the relative radii of the planets’ orbits compared to the radius of the
Earth’s orbit with unusual precision. The relative error as opposed to today’s
values was less than < 1% for planets except Saturn, for which it was < 4%.
Note, however, that the value of the Astronomical Unit was still quite differ-
ent from the actual value. It was established as 1 au ~ 1200Rg ~ 7.5 X 106
km. Copernican heliocentrism increased the accuracy of the calculations of the
ephemerides of astronomical objects and it was used, for instance, by the Ger-
man mathematician and astronomer Erasmus Reinhold (1511 — 1553) in his
work Tabulae prutenicae, which became the basis for the reform of the Gregorian
calendar.

Copernicus’s views of the structure of the universe were surpassed by the Ital-
ian philosopher and astronomer Giordano Bruno (1548 — 1600). As a result of
his revolutionary idea of the infinity of time and space, the Earth and the Sun
lost their privileged position in the universe. Giordano Bruno predicted the exis-
tence of other planets in the Solar System and he also believed in the existence of
planets around other stars. Unfortunately, he could not support his claims with
astronomical observations or mathematical proofs.

Shortly after Nicolaus Copernicus’s death, the world’s most accurate naked-
eye astronomer, Tycho Brahe (1546 — 1601), was born. In Denmark, on Novem-
ber 11, 1572, he observed a bright new star in the constellation of Cassiopeia and
recorded its angular distances from the nearby stars. As the supernova (now SN
1572) was not moving in relation to the other stars, he correctly categorized it as a
fixed star. By measuring the daily parallax of comet C/1577 V1, he also correctly
revealed that it must be located beyond the Moon’s orbit, where the planets are.
Thanks to his observations of the comet, he concluded that the then-established
spheres could be an obstacle in its movement. At the same time, he challenged
the respected Aristotelian notion that comets were formed in the upper layers of
the Earth’s atmosphere.

Brahe rejected Copernicus’s heliocentric theory; nevertheless, he appreciated
its benefits regarding the calculations of planet ephemerides. The reason was
that, due to an insufficient accuracy of the observations of his time, he could not
measure a non-zero annual stellar parallax. He went on to build his own model
of the universe - a compromise between the geocentric and heliocentric theory,
placing the Earth in the centre, with the Sun orbiting around the Earth, while
the other planets orbited around the Sun. Over time, already during Tycho’s
life, there were increasing inaccuracies in the predicted planetary positions. For
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corrective purposes, this brilliant Danish astronomer gathered the observations
of planets over a period of 20 years. Especially the observations of Mars were
exceptional, covering almost 10 of its revolutions around the Sun, with ~ 2’
precision. They later became the basis for Johannes Kepler (1571 — 1630) in
his efforts to find the kinematic laws of planetary motion.

Johannes Kepler was searching for a mathematical expression of Mars’s tra-
jectory around the Sun. As a supporter of the heliocentric theory, his first step
was to define the trajectory of the Earth with a greater precision. Unfortunately,
the accuracy of astronomical observations of the time did not allow for a distinc-
tion between a circular and an elliptical orbit. However, the Earth’s non-zero
orbital eccentricity manifested itself in another way — an uneven motion of the
Sun along the ecliptic. Kepler subsequently came to the result that the Earth
moved faster in the perihelion than in the aphelion. In 1601, he began studying
the trajectory of Mars.

Out of a large sample of Tycho Brahe’s measurements, he chose and specified
the positions of twelve Mars oppositions from the years 1580-1604 (Kepler} [1609).
In principle, Kepler used 2 rays for the determination of the shape of the Mars
trajectory. The first ray p; always corresponded to a Mars opposition and started
in the Sun, passing through the Earth and Mars. For the construction of the
second ray pe, it was necessary to wait one Mars year (687 days), when Mars
occupied the same position in relation to the stars, whereas the Earth was in
another place (on its way toward completing a second orbit). With the knowledge
of the heliocentric longitude 6 of the Earth and the geocentric longitude ¢ of Mars,
it was possible to construct the second ray p, starting out at the center of the
Earth, diverging from the vernal equinox by the angle ¢. The intersection of rays
p1 and p, then determined the actual position of Mars in the given opposition.

By analyzing the results, Kepler found that the trajectory was an elongated
circle with the closest and farthest points to the Sun called perihelion and aphe-
lion, respectively. Eventually, in 1605, he described the motion of Mars using his
well-known equation and determined that the trajectory of Mars was an ellipse
with the Sun in its focus. Kepler, in his work Astronomia Nova, also discussed
weight and gravitation. He believed that the power that causes the motion of
planets originates in the Sun and is of a magnetic nature. Kepler’s Third Law
was published in Harmonices mundi libri in 1619. The results of Kepler’s work
fundamentally simplified and refined the calculation of planet ephemerides, which
Kepler summarized and published in the Rudolphine Tables in 1627.

The Italian physicist and astronomer Galileo Galilei (1564 — 1642) was of
fundamental importance for the confirmation of the heliocentric system and for
the entire observational astronomy. In 1609, he constructed the first simple re-
fractor, which he soon turned toward the sky.

He discovered that the surface of the Moon was irregular, with craters and
mountains, comparing the nature of its surface to that of the Earth. He also
focused on the planet Jupiter, around which he discovered four of the now-called
Galilean moons. However, in the case of his observation of Saturn, he did not
distinguish its rings due to an unfavorable orientation towards the Earth. In
his telescope, he perceived the planet as a triple star. His observations of the
phases of Venus and the changes in brightness depending on Venus’s distance from
Earth provided him with a compelling argument in favor of heliocentric theory.
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Galileo naturally also pointed the telescope to the Sun, where he observed the
emergence, evolution and disappearance of sunspots. He attributed the movement
of sunspots to the rotation of the Sun around its axis and estimated the time of one
synodic period of its rotation. The sunspots did not escape the attention of other
astronomers, such as Thomas Harriot (1560 — 1621) or Johann Fabricius
(1587 — 1617), who first published the discovery in 1611.

Descriptive geometric research of the Solar System also required an accurate
determination of the Earth’s radius and the length of the astronomical unit. The
first astronomer who was able to accurately determine the Earth’s radius was
Jean Picard (1620 — 1682). According to the methodology of the Italian math-
ematician Francesco Maurolico (1494 — 1575) and the Dutch mathematician
and astronomer Willebrord Snellius (1580 — 1626), Picard and his team used
the triangulation method to measure the distance along the local meridian be-
tween Paris and Sourdon near the French town of Amiens. The result of their
calculations was that 1° in latitude corresponds to 57060 toises (a French unit of
measurement) (Picard, 1671)). After the conversion of 1 toise ~ 1.949 m, Earth’s
radius equalled 6372 km, assuming a perfectly spherical shape of the Earth.

Later, the Cassini family made their own independent measurements, which
showed that the Earth was flattened along its equator. This was in contradiction
with the law of universal gravitation written by Isaac Newton (1643 — 1727).
Newton and his followers, on the contrary, argued that the Earth was flattened
at its poles. The dispute was resolved when two more geodetic surveys funded
by the French Academy of Sciences confirmed the flattening of the Earth at its
poles (e.g. Smith, |1996; Murdin|, 2009).

1/4 Meridian

Investigator Approx. Date Arc Length [m] Fe
Eratosthenes 200BC 11 562 500 —
Willebrord Snellius 1615 9 660 000 —
Jean Picard 1670 10 009 081 —
Cassini Brothers 1700 10 042 652 -1:66
French Academy of Science 1750 10 000 157 1:310.3
Delambre and Méchain 1800 10 000 000 1:334

Note: * Flattening.

Table B.1: An overview of the major protagonists involved in the research of
Earth’s geometric properties. Adapted from [Brinker and Minnick (1987)).

A greater precision in the calculation of Earth’s radius naturally affected the
length of the astronomical unit as well.

From the observations of the great opposition of Mars from Cayenne and
Paris, in 1672, a French astronomer Jean Richer (1630 — 1696) and a French
astronomer of Italian origin Giovanni Domenico Cassini (1625 — 1712) derived
the value of Mars’s horizontal parallax as py; = 25 % ”. The horizontal parallax
of the Sun is expressed as pg/py =~ d’/a, where o’ and a are the semi-major axes
of Mars and Earth. The ratio a’/a can be determined from Kepler’s third law.
Based on the calculated value ps = 9.5 ¥ ", they then determined the length
of the astronomical unit as ~ 1.38 x 10" m (e.g. Olmsted, 1942).

A further refinement of the value of the astronomical unit was based on the
work of the New Method of Determining the Parallax of the Sun, written by an
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English astronomer and mathematician Edmond Halley (1656 — 1742). Later,
a French astronomer Jérome Lalande (1732 — 1807) applied Halley’s method to
the results of his observations of Venus’s transits across the Sun from 1761 and
1769. He calculated the value of the astronomical unit as ~ 1.53 x 10''m.

In the last third of the 17th century, it was finally possible to settle the age-old
debate about whether the speed of light is finite or infinite. The first adequate es-
timate of the speed of light comes from the Danish astronomer Ole Christensen
Rgmer (1644 - 1710), who systematically observed the onsets and end times of
the eclipses of Jupiter’s moon lo. He discovered that the interval between the
two occultations is shorter when the Earth approaches Jupiter and longer when
it moves away. The Dutch astronomer Christiaan Huygens (1629 — 1695) de-
termined the speed of light as 220,000 km s~! based on Rgmer’s observations
(Huygens, 1690)).

B.3 The modern era

The entire period of Renaissance astronomy was a cornucopia of discoveries.
The end of the Renaissance also witnessed a rise in the field of stellar, galactic,
and extragalactic astronomy, cosmology, and others. Astronomy, the oldest sci-
entific discipline, was beginning to fragment into partially overlapping sub-fields.
Astronomers armed with increasingly more sophisticated telescopes were reveal-
ing the near as well as the distant universe at a growing pace. The ever-increasing
astrometric accuracy of observations led to discoveries of hitherto unknown phe-
nomena, both in stellar astronomy and in planetary movements, or the dynamic
behavior of the Moon.

The English astronomer John Flamsteed (1646 — 1719), the first British
royal astronomer and founder of the Royal Greenwich Observatory, increased the
accuracy of the measurements of the positions of the celestial bodies by using
a reticle in his telescope. He also used micro-metric screws for a more accurate
positioning of the telescope. Flamsteed’s measurements of the star positions
were very precise. He compiled the Historia Coelestis Britannica — in his time
the most accurate catalogue of nearly 3,000 stars and their positions with a mean
error off] = 10”.

An even greater astrometric accuracy of 5” was later achieved by the English
astronomer James Bradley (1693 — 1762), the discoverer of the aberration of
light and the nutation of the Earth’s axis. The discovery of nutation was brought
on by his astrometric measurements of the changes in star positions that could
not be explained by either the precession of the Earth’s axis or aberration.

Precise astrometric observations allowed Edmond Halley (1656 — 1742) to
discover proper motion of certain stars. By comparing the stars’ current posi-
tions with those recorded in Ptolemy’s Almagest, he revealed proper motion of
Arcturus, Sirius and Aldebaran. In the case of the first two, Halley’s conclusions
correspond to today’s values. In the case of Aldebaran’s movement, the results
differ — probably due to a mistake in Halley’s calculations (see Brandt, [2010)). Hal-
ley also speculated that the difference between observed and expected positions of

!Flamsteed unknowingly became the first known observer of the planet Uranus, which he
recorded in his catalogue under the name 34 Tauri’.
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Jupiter and Saturn may be rooted in their mutual gravitational interaction. After
the discovery of Jupiter’s first four moons by Galileo and Saturn’s five moons by
Huygens and Cassini, the moons were studied in greater detail. With regard to
the observation accuracy of the time, astronomers were not able to reveal the
elliptical character of the moons’ orbits and assumed a circular motion.

Up until then, it was still possible to think of the Solar System research as
geometrically descriptive without a quantitative explication of the causes of the
dynamic behavior of known objects. A theoretical basis for the dynamics of the
Solar System and celestial mechanics in general is the work of Isaac Newton
(1643 — 1727) entitled Philosophiae Naturalis Principia Mathematica, published
in 1687. This extensive work is divided into three books dealing with the me-
chanics of point mass and rigid bodies, hydrodynamics, and lastly, gravitation
and celestial mechanics.

Newton proved that if a body moves around the Sun in an elliptical orbit,
the gravitational force acting on the body decreases inversely proportional to the
square of distancd?l Newton also showed that if the body moves around a certain
centre, then the force that deflects this body from its motion along the tangent
of the trajectory must necessarily be directed toward this centre. He concluded
that the motion of the planets is therefore the result of the Sun’s gravity. Newton
further expanded this conclusion to the movement of comets and moons, which
gave rise to his law of universal gravitation. From the gravitation law, he derived
Kepler’s third law in its exact form, which he applied to the system Jupiter-
Callisto and calculated Jupiter’s mass, thus opening the door to the first method
of determining the mass of celestial bodies. He also provided a theoretical basis
for the 2-body problem, which was applied to the movement of comets, moons
and later asteroids or physical binary stars.

Newton devised a method of determining the orbital parameters of celestial
bodies from three observations and used it on the spectacular occurrence of the
KirchE] comet in 1680. His results were in perfect agreement with the observa-
tions and confirmed the success of this method. It was soon extensively used by
Edmond Halley, who, in his Synopsis of the Astronomy of Comets (1705), pub-
lished calculations of 24 comet orbits. Based on comet observations by Peter
Apian (1495 — 1552) in 1531, Johannes Kepler and Christen Longomontanus
(1562 — 1647) in 1607, and his own observations from 1682, Halley concluded that
there were not three different comets, but one cometﬂ returning periodically every
75-78 years. Edmond Halley also recognized the elliptical character of the orbit,
which was approaching a parabolic profile in the perihelion and he predicted the
return of the comet between 1758 and 1759. A more specific period of April 1759
was then calculated by the French astronomer Alexis Clairaut (1713 — 1765).
Although the comet actually occurred a month earlier, it was bulletproof evidence

2The general formula relating the form of the central force to the shape of the trajectory is
described by Binet’s equation — a non-linear differential equation of the second order derived
by the French astronomer Jacques Binet (1786 — 1856).

The formula is f(u™!) = h?u?(u+ d?u/df?), where f is the acceleration of the particle in the
central force field, h is the specific angular momentum and u £ 1/r, where r(99) is the polar
equation of the trajectory (e.g. Moultonl |2012)). Newton thus solved the inverse Kepler problem
u(r(9)) = £(r).

3C/1680 V1
41P/Halley
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of the validity of Newton’s gravitation theory. The comet was also observed by
the French astronomer Charles Messier (1730 — 1817) - an excellent observer,
the discoverer of 14 new comets, and the author of the Catalogue of Nebulae and
Star Clusters (1781).

Figure B.2: Comet from 1680 above Rotterdam. Author: Lieve Verschuier.

B.3.1 Theories of lunar motion

Although astronomers had already known about the main perturbations of
the Moon’s orbit before Newton’s theory, the publication of Newton’s Principia
marked the beginning of the stage of quantitative description of lunar motion.
Newton showed that the irregularities in lunar motion were a result of perturba-
tions caused mainly by the Sun.

It was problematic for him, however, to solve the problem of the pericenter
precession. Newton supposed a near-circular motion of the Moon, and in his cal-
culations, he reached the conclusion that the perigee is shifting by 1°32/28" over
one revolution around the Earth, which is roughly half the current value (see
Taton et al., [2003, for further details). From other lunar perturbations, Newton
qualitatively explained the precession of lunar nodes, perturbations in inclina-
tion, evection and variationP] (Gutzwiller [1998). Note that the comprehensive
perturbation theory of lunar motion is a relatively complicated branch of celes-
tial mechanics, and the mathematical tools for its final elaboration were not yet
available in Newton’s time.

5The 2mesin(2D — M) term with a 2D — M argument in equation (B.2) is called evection

and the value of coefficient 22me is 52'56”. If higher order terms are taken into account, the

value will converge to = 1°16'26”. The period of the evection term is 2n_22n,_cn = n(2_22’:n_c) =
11

Tfn_c ~ 31.8 days. The variation term §m2 sin2D has a period of 14.8 days. If solar
eccentricity were to be considered, another term —3me’sin M’ would appear, M’ being the
Sun’s mean anomaly. This term is called annual equation, with an amplitude of 772" over a

one year period.
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The lunar orbit is predominantly perturbed by the Sun. The perturbation
forces vary depending on the distance of the Moon while orbiting the Earth, but
also in the course of the year due to the non-zero eccentricity of the Earth’s orbit.
There are, of course, other sources of perturbations such as tidal forces, which
participate in the whole 3-body system. Newton, however, identified the main
perturbations in the longitude and latitude.

Let us consider a geocentric system where the reference plane is the plane
of the apparent orbital motion of the Sun around the Earth, while the primary
direction is the direction towards the vernal equinox. In this system, we study
the motion of the Moon, whose apparent orbit on the celestial sphere intersects
the ecliptic in the ascending node €2. Its orbit is also inclined to the ecliptic
(1 = 5.15°). If v is the mean longitude of the Moon, assuming undisturbed
motion, it holds that (e.g. Brown, |1896))

b} 1
vt + e+ 2esin M + 162 sin 2M — 172 sin 2F, (B.1)

where n is the mean motion of the Moon, e is eccentricity, v = tani ~ i is the
tangent of the inclination of the lunar orbit, e is the mean longitude at epoch,
M = nt+ € —w is the mean anomaly and F' = nt+ ¢ — {2 is the mean argument of
latitude, which is the angular distance between the mean Moon and the ascending
node. Note that the terms in this equation are purely Keplerian.

According to the results of the modern theory of lunar motion, in an approx-
imation to the 2" order, we have (e.g. Brown, |1896))

5 1 11 15
v & nt+e+2esin M+ 162 sin 2M — 172 sin 2F + §m2 sin 2D—|—Zme sin(2D—M),
(B.2)
where m = %/ ~ 0.0748 is the ratio of the mean motion of the Sun and the mean
motion of the Moon, and

D=tn—n")+e—¢ (B.3)

is the mean elongation of the Moon. The secular perturbations of the longitude
of pericenter @ and the longitude of ascending node €2 can be calculated by using
constants ¢ and g so that (see Brouwer and Clemence, 1961)

w = (1 — ¢)nt + wy, Q= (1— g)nt+ Q. (B.4)

The constants ¢ and g were first introduced by the French mathematician
Alexis Claude Clairaut (1713 — 1765), who modeled the perturbation of the
lunar motion by a rotating ellipse. The results of his calculations were published
in his monograph entitled Tables de la lune, which summarizes the calculated
lunar positions, which differ from the actual values by approximately 1.5. The
constants introduced by Clairaut can be expressed in the form of a power series
in the variable m as follows (Brown, [1896)):

3 4 225 4 3 o 9 4
c=1 ik 55 ™ +... g—1—|—4m 35™ +.... (B.5)
Finally, it is necessary to substitute the original variables in the equation (B.2])
by using the following equations:

M — M = ent + € — wy, F — F = gnt+e— Q. (B.6)
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The French mathematician Jean Baptiste d’Alambert (1717 — 1783) in-
225

troduced the term §m3 in the equation (B.5]), which was also done by Clairaut.
This clearly helped to reduce the difference between the theory and observations.
Note that the %mQ term alone contributes to a shift of the pericenter during one
revolution approximately by the value estimated by Newton (2m?) - 360° ~ 1.5°,
whereas (%m2 + %mS) - 360° =~ 2.6°, which is roughly the current value.

Another significant advance in the theory of lunar motion was the work pub-
lished in 1753 entitled Theoria motus Lunae exhibens omnes eius inaequalitates
by the Swiss mathematician Leonhard Euler (1707 — 1783). Later, between
1753 and 1771, he introduced the so-called second lunar theory, which included
tables of calculated positions of the Moon as well as some corrections of existing
series.

Leonhard Euler’s work can be classified as a classical analytical method, where
the time evolution of orbital elements is determined by solving the equations of
motion. Not only did he find expressions for the time derivatives of the semi-
major axis, eccentricity, and the longitude of perigee, but he also considered
the non-zero eccentricity of the Earth’s orbit. In addition, he examined the
lunar motion in a co-rotating reference frame, where the coordinate axes x and
y rotate at the angular velocity n in the plane of the ecliptic, with the z axis
pointing to its north pole. Euler derived 3 differential equations of the second
order and solved them by using the method of variation of constants. Due to his
failing eyesight, he concluded his work with the help of his son Johann Euler
(1734 — 1800), the German astronomer Wolfgang Kracke (1743 — 1814) and
the Russian astronomer Andrew Lexell (1740 — 1784).

One of the many issues at hand was also the effect of secular acceleration of
the longitude of the Moon. The French mathematician and astronomer Pierre
Simon de Laplace (1749 — 1827) attributed Moon acceleration to small yet con-
tinual changes in the eccentricity e’ of the Earth’s orbit caused by perturbations
of the planets. This effect is evident when higher order terms in the disturbing
function of the Moon are taken into account, which also results in new termsﬂ on
the right side of the equation (B.2)).

Later, at the beginning of the 19th century, the French astronomer Charles
Delaunay (1816 — 1872) developed an even more general theory with new canon-
ical variables, providing the most extensive algebraic solution of lunar motion
before the rise of modern information technologies. His results, including terms
up to the eighth, or even ninth and tenth order, were summarized in The Theory
of Lunar Motion between 1860 and 1867.

Delaunay’s expansions were refined and extended by the Belgian astronomer
André Deprit (1926 — 2006). Deprit utilized the powerful force of computers,
especially the symbolic algebraic manipulators, and expanded the original series
by adding more terms. He also found some numerical inaccuracies that Delaunay
omitted, thus revising his theory (see Deprit et al., [1971)).

6Secular acceleration gives rise to a slow increase in the mean motion n of the Moon. The
longitude of the Moon is then v = nt+e+%mn' ehat®+ periodic terms, where ef is the eccentricity
of the Earth’s path for a given epoch and e’ & e, — at (e.g. Brown, [1896). Numerically we get
%mn’eéatQ ~ 10" (ﬁ)Q, which corresponds to secular acceleration of approximately 10" per
century. An even more detailed analysis of the higher-order terms, which was conducted by the
British astronomer and mathematician John Adams (1819 — 1892), converged closer to the

current value of = 6” per century (Adams, |1853).
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In England 1857, the Danish astronomer Peter Andreas Hansen (1795
— 1874) published some equally detailed tables of lunar positions in his works
entitled Fundamenta nova investigationis and Tables of the Moon. The deviations
in comparison to the actual Moon positions were not more than 1”7 — 2" over a
period of 100 years.

At the beginning of the 20th century, the theory of lunar motion was further
elaborated, largely thanks to George William Hill (1838 — 1914), an employee
of the US Naval Observatory, then run by the Canadian astronomer Simon
Newcomb (1835 — 1909). George Hill made an impact in many sub-fields of
astrodynamics. Among other issues, he was dealing with the three-body problem,
and he also refined and further developed the theory of Jupiter’s and Saturn’s
motion.

Hill’'s work was expanded by the English mathematician and astronomer
Ernest William Brown (1866 — 1938), whose tables for calculating the po-
sitions of the Moon in 1923 practically replaced those made by Peter Hansen,
which had been used until then. Ernest Brown’s series included up to 1,500 terms
and were expanded later in 1966 by numerical methods of Wallace Eckert and
Harry Smith, their number growing to 6,000 (Eckert and Smith|, 1966bla).

At the beginning of the 1990s, an extensive semi-analytical theory of lunar mo-
tion - ELP 2000-82 (Chapront-Touze and Chapront, |1983)) was presented based
on the knowledge of a whole spectrum of various perturbations of the system
Moon — Earth - Sun including tidal, relativistic as well as planetary perturba-
tions. The theory comprises all the tiny effects that affect lunar motion and
includes tens of thousands of terms. It also provides an impressive accuracy in
the determination of lunar coordinates within centimeters. The ELP 2000-82 is
written in the Fortran language and contains dozens of data files that include
terms corresponding to the particular perturbations[].

At present, the most accurate geocentric coordinates of the Moon are stated
by the JPL DEXXX Serieff] based on the numerical models of the Solar System
developed in the Pasadena Jet Propulsion Laboratory, originally for the purpose
of astronavigation. The ephemerides are determined from a numerical integration
of the equations of motion, considering both the shape of the bodies of the Solar
System and relativistic corrections. Initial conditions are based on a large number
of observations, including accurate radar observations of planets or analysis of
reflected laser beams from corner reflectors on the surface of the Moon. These
were placed during the US Apollo 11, 14 and 15 missions and the Russian robotic
missions Lunokhod 1 and Lunokhod 2 between 1969 and 1977. Nowadays, the
Moon-Earth distance can be determined with millimeter accuracy.

B.3.2 Planetary theory

In the time of Tycho Brahe and Johannes Kepler, astronomers were unable to
detect small perturbations in the planetary motion. However, since the 17th cen-
tury, there was a growing accuracy in determining their positions, mainly thanks
to the use of telescopes and more accurate measurements of time. Astronomers
soon discovered small deviations to the elliptic orbits.

"See the VizieR catalogue: ftp://cdsarc.u-strasbg.fr/pub/cats/VI/79/.
8http://ssd.jpl.nasa.gov/7ephemerides
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Figure B.3: Corner reflector placed during the Apollo 11 mission. Source: NASA
Apollo Archive.

Even though it is not difficult to solve the two body problem, in a system of
three or more bodies, analytical solutions either do not exist or they do but only
in special cases. Generally, a system of N bodies can be described by 6N first
order differential equations with 6N initial conditions. For a complete solution
of the three body problem, we would require 18 integrations, while there are only
10 classical integrals of motion. A rectilinear and uniform motion of the center
of mass T of a three-body system with masses M, and total mass M can be
expressed as

3
1
T= ; MR; = Cyt + C,, (B.7)
where C; and C, are constant vectors representing 6 integrals of motion. The
other 4 integrals are the components of the total angular momentum L, where

3

L=) MR;x d;:" = Cs, (B.8)
i=1

and the total energy of the system Eiy = Eyin + Epot = C4. In a special case
of the restricted three body problem, there is another integral of motion - the
Jacobi integral, which can be expressed in the co-rotating reference frame with
the center in the barycenter as

GM, n G M,
Ry Ry

CJ:nZ(a:2+y2)+2( > — (&* +9° + 2%, (B.9)
where (x,y, z) are the Cartesian coordinates of the test particle and n = 27 /T

The absence of a complete analytical solution of the N-body problem led
to the development of perturbation theory. The main principle here is that the
motion of bodies in the Solar System is predominantly governed by the Sun, while
the gravitational interactions with planets only cause small deviations from the
Keplerian motion.
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The main protagonists of the development of the perturbation theory and
modern celestial mechanics of the 18th century were Leonhard Euler (1707 —
1783), Alexis Claude Clairaut (1713 — 1765), Jean Le Rond d’Alembert
(1717 — 1783), Joseph Louis de Lagrange (1736 — 1813) and Pierre Simon
de Laplace (1749 — 1827).

Planetary perturbation theory was first elaborated by Euler. His work on mu-
tual perturbation of Jupiter and Saturn earned him a recognition of the French
Academy of Sciences in 1748 and 1752. Not only was he the first who presented
the method of the variation of constants - a general method to solve inhomoge-
neous linear ordinary differential equations, but he also derived the first form of
the disturbing function.

Lagrange wrote his treatise on Jupiter’s and Saturn’s motion around 1766
and followed up on Euler’s method of the variation of constants. The definitive
version was completed in 1782. Lagrange’s work entitled Méchanique analytique
published in 1788 is a summary of his research and includes the Lagrange plane-
tary equations as well as the Lagrange brackets or his form of disturbing function.
Lagrange’s planetary equations are the fundamental equations describing pertur-
bations of orbital elements and are included in every major publication on celestial
mechanics. The following is one of the many variants of these equations (Murray
and Dermott, (1999):

da 2 OR

oo _ 27 B.1
dt  na Oe’ (B.10)
de V1 —e? OR  V1—¢€e20R

- 1- Vi)™ gre B.11
dt na2e ( ¢?) Oe na?e Ow’ ( )

—o2(1 — — 2 tan il

%:_ia_R_F vi-e (1 Vi—e )8_R+—an2 8_737 (B.12)
dt na Ja naze de  na2v1 —e2 01

ds) 1 OR

— = ——, B.13
dt  na2y/1—e2sinl 01 ( )
d_w_—v1—62(9_7€+—tan%] 5’_73 (B.14)
dt — na2e de  na2v/1—e2 OI '
il (RRY Ry
dt — na2/1—e2 \ 0 Ow na2v/1 — e2sin I 0’ '

where R is the disturbing function and A = M +w =n(t —T) + w = nt + ¢,
where € is the mean longitude at epoch. If we consider a system of three bodies
- a dominant body of mass m. and two orbiting bodies with masses m; and m;,
then the equations of motion are:

r;, = V;(U; +R;) r; = V;(U; +R;), (B.16)
where me+m Mme + m;
Ui=G =g (B.17)
r; ’f‘j
Ri = ij — ij rigj Rj = sz — Gml rigj, (B18>
Tij T‘j rij T‘Z-

while r; and r; are position vectors with respect to the central body. As there are
partial derivations with respect to orbital elements in equations (B.10) — (B.15)),
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the disturbing functions R;,R; need to be transformed. Let us use a prime
to mark the orbital elements of the outer planet to distinguish them from the
orbital elements of the inner planet. Because the derivation of the following
desired transformation

Rz, o', y,y,2,7) = Rla,d e, e, [, I',\\ N, w, @', Q,Q)

is beyond the scope of this chapter, we present the main result of the theory,
which is that the disturbing function R can be expressed in the form of a Fourier
series (e.g. Murray and Dermott, (1999)

R = ZCCOSD, (B.19)
where functions C' = C(a,d’, e, e, I,I"). General form of the argument D is
D = jiX + joA + jsw' + jaw + jsQ + jell, (B-20)

while Z?Zl ji = 0 (D’Alembert principle). Note that in the two-body problem,
the mean longitude is a linearly increasing function of time and the other angles
(Q, @) remain constant. Terms C'cos D in the disturbing function are of two
types: (i) short-period terms (j; # 0 A jo # 0) and (ii) secular terms with
Jj1 = 0 A jo = 0. Thus, the short-period terms predominantly lead to small and
fast changes of the osculating elements, whereas the secular terms act for a much
longer time.
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Figure B.4: The non-uniform distribution of known asteroids in the (a, e) space.
The blue lines mark the mean motion resonances with Jupiter and also the so-
called Kirkwood gaps, which were first discovered in the second half of the 19th
century (Kirkwood, [1867). Kirkwood gaps are located in the most prominent
mean-motion resonances J4/1, J3/1, J5/2 and J2/1 with Jupiter. Some reso-
nances, on the other hand, are stable and are occupied by asteroid families such
as Hilda (J3/2) or the Jupiter trojans (J1/1).
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Let’s discuss the value of j1\' + jo A & (j1n' + jan)t + const in equation (B.20)).
If (jin' + jan) = 0, then the period of the corresponding argument D is longer
than any of the two orbital periods. The previous relation is fulfilled for certain
combinations of the mean motions n,n’ and coefficients j; and j;. We call these
arguments resonance terms and they also contribute to the secular evolution of
planetary orbitsﬂ The constant k = |j; + j2| is termed the order of resonance.

Aside from the mean-motion resonances, the secular evolution of a system is
also affected by secular resonances, which occur when two bodies have a syn-
chronous precession either of the pericenter, the ascending node, or bothm. For
more information on resonances see [Murray and Dermott| (1999).

In the second half of the 18th century, Joseph Lagrange and Pierre Laplace
also dealt with the problem of stability of our Solar System. By analyzing the
secular terms and solving Lagrange equations, they proved that the semi-major
axes of planets do not exhibit secular changes and fluctuate around certain mean
values. It is thus not possible for the planets to pass from an elliptical to a
parabolic orbit and leave our Solar System.

It must be noted, however, that the Lagrange-Laplace secular theory for N
planets, which provided Laplace with evidence of the stability of the Solar System
was based on certain simplifying assumptions, such as small values of eccentricity
and inclination, or neglecting mean-motion resonances and short-period terms.
Particularly, the disregard of mean-motion resonances is not an entirely appropri-
ate assumption, because Jupiter and Saturn are near 5/2 resonance. Moreover, in
Lagrange and Laplace’s time, Uranus, Neptune, and Pluto had not yet been dis-
covered, as well as other resonances in the Solar System. Taking into account the
presence of secular resonances would also further complicate the whole problem.

The conclusions of the Lagrange-Laplace secular theory in connection with
the problem of stability of the Solar System imply that if the planets are orbiting
in the same sense, their masses are of the same order, the eccentricities and
inclinations are small, then the semi-major axes are subject only to small changes
and the eccentricities and inclinations remain small as well']l

The very laborious expansions of the disturbing function to higher order terms
were made during the 19th century by Benjamin Peirce (1809 — 1880), Urbain
Jean Joseph Le Verrier (1811 — 1877) and Felix Boquet (1852 — 1929).
Peirce developed the disturbing function to the sixth order in eccentricities and
inclinations (Peirce) 1849), Le Verrier an order higher (Le Verrier, |1855)), and
terms of the eighth order were published by Boquet in 1889 (Boquet) [1889).
Developments in mutual inclinations and node longitudes up to the seventh order
were made by Newcomb in 1895 (Newcomb), 1895)).

9The 2/1 resonance corresponds to condition 2n’ ~ n and argument 2\’ — .

10T et ¢ and s denote the frequencies of precession of the pericenter and ascending node of an
asteroid. Then, for example, v = g — gg = 0 corresponds to the secular resonance between the
asteroid and Saturn.

"1 The condition of the long-term stability of the semi-major axis is necessary, but not suffi-
cient. For example, if the eccentricity increases to 1, then the pericenter distance ¢ = a(1 — ¢)
is zero, which leads to a collision with the Sun.
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Discoveries of new bodies

Motivated by the Titius-Bode rule, astronomers at the turn of the 18th and
19th century focused on finding another planet at a distance of 2.8 au. The
Founder of the Palermo Observatory, Giuseppe Piazzi (1746 — 1826), during
his observations on 1 January 1801 assumed he had discovered a new star, with a
brightness comparable to a star of eighth magnitude. The next day he noticed its
movement and continued in his observations until February 11. Piazzi originally
attributed a cometary character to this body. Unfortunately, the news of the
existence of a new object reached the astronomical community too late, at a time
when it was no longer possible to observe. It was sighted again a year later by
F. X. von Zach (1754 — 1832), who used Piazzi’s observations and applied the
new Gauss’s method of orbit determination from 3 observations. The new star, as
supposed by Piazzi, was named Ceres Ferdinandea as a tribute to King Ferdinand
IV. In 1802, Ceres was also observed by the German physicist and astronomer
Heinrich Wilhelm Matthias Olbers (1758 — 1840), who later discovered Pal-
las and Vesta. The English astronomer with German roots William Herschel
(1738 — 1822) proposed that these new bodies would be called asteroids.

In the late 18th century, immense success was achieved by the already men-
tioned William Herschel. Herschel spent nine years systematically watching the
sky, especially double stars. He was an excellent telescope maker, and the resolv-
ing power of his instruments allowed him to discover that some nebulae in the
Messier catalog are actually clusters of stars. He also published a catalogue of
nebulae and star clusters, listing thousands of objects. In connection with the
theme of celestial mechanics, however, his discovery of the planet Uranus on 13
March 1781 is certainly crucial. At first, Herschel thought that he had discovered
a new comet, as the new object was moving at a speed of = 2.5” /hour that night.
He then corrected his initial error and declared it was a discovery of a new planet
of our Solar System[?]

The theoretical methods of celestial mechanics were also successful in discov-
ering Neptune. After the discovery of Uranus, the measurements of its ecliptic
longitude did not correspond to expected values - it seemed that Uranus was
slowing down in longitude. This gave rise to the notion that the discrepancy
could be a consequence of the existence of another planet.

On the appeal of the director of Paris Observatory, Francgois Jean Do-
minique Arago (1786 — 1853), Le Verrier calculated the expected position of
the hypothetical planet. Then he immediately informed the German astronomer
Johann Gottfried Galle (1812 — 1910) who at the night of 23-24 September
1846, together with Heinrich Louis d’Arrest (1822 — 1875) found Neptune 52"
from the predicted position™]

Note that after systematic observations of Neptune, astronomers noticed small
deviations in its path, which were probably caused by inaccurately determined

12Under extremely favorable conditions, Uranus can be seen by the naked eye and it had
been observed in the past, mistaken for a star. Among the historically documented observers
of Uranus, there were the royal astronomers John Flamsteed, James Bradley, the French as-
tronomer Pierre Charles Le Monnier and the German astronomer Johann Tobias Mayer.

13The English astronomer John Couch Adams (1819 — 1892) determined the position of
Neptune with an accuracy of 2°. However, after lengthy disputes, Le Verrier was considered to
be the first.
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masses of Uranus and Neptune. However, this led to the idea of the existence
of another body. Searching for Planet X was undertaken at the Lowell Observa-
tory in Flagstaff in Arizona in 1909 by its founder, the American mathematician
Percival Lowell (1855 — 1916). Even though he determined the area where
the Planet X was to be found, Pluto was discovered after his death by Clyde
Tombaugh (1906 — 1997), who used brute force and checked positions of thou-
sands of stars. Clyde Tombaugh found Pluto on 13 March 1930, 150 years after
the discovery of Uranus by William Herschel.

B.3.3 The Solar System in the late 19th and in the 20th
century

The promising results of the Lagrange-Laplace secular theory led Laplace to
the notion of a long-term stability of the Solar System. He was also convinced
that the systems described by this theory were deterministic, meaning that the
state of the system can be determined for any given time if the initial conditions
of the corresponding equations of motion are known.

At the end of the 19th century, Jules Henri Poincaré (1854 — 1912), a great
French scientist, mathematician, physicist, and astronomer, began to deal with
the three body problem. In his three-part work Les Méthodes Nouvelles de la
Mécanique Céleste he showed that even in the restricted three body problem,
there are cases in which infinitesimally close paths at time ¢, move away from
one another as the exponential function of time ¢ (Poincaré, |1892) |1899)). This
basically laid the foundations of deterministic chaos.

The extent of chaoticity with regard to the stability of nonlinear dynamic
systems was studied by the Russian mathematician and physicist Aleksandr
Mikhailovich Lyapunov (1859 — 1924). Lyapunov introduced an excellent
tool for identifying chaotic motion - now known as the Lyapunov characteristic
exponent. Let us consider a dynamic system described by N differential equations
in the form

% = fi(z) i=1.N (B.21)
with initial conditions zo(0) and a solution z(t). Let vectors 6z(0) and dz(t) repre-
sent the infinitesimal change in the initial conditions zy(0) and the corresponding
deviation of the solution at time ¢. For a general initial perturbation, the largest
Lyapunov exponent is defined by

A— lim lim 1 2200
t—00 52(0)|—0 ¢ |0z(0)]

(B.22)

The trajectory is chaotic if 0z(t) = dz(to)e**~*) provided that A > 0.

With the development of computer technology, it was possible to perform
numerical integrations of equations of motion for times gradually approaching
the age of the Solar System. Due to the choice of the time step and the low
performance of computers, the first numerical simulations included only the giant
planets and Pluto.

The first backward integration to 120,000 years provided some insight into
the resonance between Neptune and Pluto (Cohen and Hubbard, |1965). An even
longer integration covering a period of 5 Myr was conducted by Kinoshita and
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Nakai in 1984 (Kinoshita and Nakai, [1984)). They pointed to Pluto’s unstable
orbit, which was a result of close encounters between Pluto and Neptune. The

chaoticity of Pluto’s orbit was proved four years later (Sussman and Wisdom)
1988)).
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Figure B.5: Numerical propagation of the Solar System in the time interval of
[—10,15] x 10° years according to Laskar| (1994)). The orbits of the outer planets
are clearly stable in the time scale of 10° years as opposed to the chaotic behavior
of the inner planets. The bottom pair of images shows possible solutions with the
maximal and minimal values of Mercury’s eccentricity between —6.6 x 10° and
3.5 x 107 years.

Sussman and Wisdom numerically propagated the orbit of Pluto back to 845
Myr and determined the value of maximum Lyapunov exponent A ~ 10773 y~!
corresponding to Lyapunov timﬂ of approximately 20 Myr. Another work on
long-term integration of the Solar System regarding its stability is, for example,

the LONGSTOP project (Roy et al., 1988]).

ML yapunov time is the e-folding time 7, = 1/ of the system.
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Laskar| (1988) carried out backward numerical simulation to 10 Myr including
all 8 planets and found out that the orbits of the inner planets have a chaotic
character — he determined A ~ 10757 y=! and the Lyapunov time of ~ 5 Myr.

In a more recent study Laskar and Gastineau (2009), the Solar System was
propagated 5 billion years into the future. The result of the 2,500 various prop-
agations within the uncertainty of initial conditions is that, similarly to Laskar
(1994), up to 1% of the solutions lead to an increase in Mercury’s eccentricity
and then to a significant change of its trajectory to a nearly hyperbolic path.
Moreover, some of these solutions can even result in a collision between Mercury,
Mars, Venus and Earth.

The view of the structure of the Solar System was of course fundamentally
influenced by the development of spacecraft exploration. Data from numerous
space probes and sky surveys also significantly contributed to the current knowl-
edge. Some of the important interplanetary probes were Pioneer 10 & 11, Voyager
1 & 2, Galileo, Cassini-Huygens, New Horizons, and Juno. Smaller bodies in the
Solar System were studied in greater detail thanks to the probes such as Dawn
(Ceres, Vesta), Rosetta (67P/Churyumov-Gerasimenko), Stardust (9P /Tempel)
and others. In 2006, the American planetary probe called New Horizons was
launched and after nine years, reached Pluto and acquired its very first detailed
photograph.

There are also geodesic satellites on regular orbits around the Earth, such
as LAGEOS 1 and LAGEOS 2, which, apart from researching the movement of
tectonic plates and the shape of the Earth, were also used to test the general
theory of relativity. In 2011, the Italian satellite called LARES was launched
with a similar aim. The complete list of missions unfortunately exceeds the scope
of this chapter. For more details, see for example |[Kruse| (2011)).

B.3.4 Early 21% century

Already during the 20th century, relatively soon after Pluto’s discovery, as-
tronomers raised hypotheses about the existence of other bodies beyond the orbit
of Neptune. The first public hypotheses on the existence of such objects were
published by the Irish astronomer Kenneth Essex Edgeworth (1880 — 1972)
(Edgeworthl |1943) and later in 1951 by the American astronomer Gerard Peter
Kuiper (1905 - 1973) (Kuiper} 1951). Although the first body entitled 1992 QB1
had to wait almost half a century for its discovery, there were other small bodies
discovered in the meantime - the Centaurs that orbit between Jupiter and Nep-
tune. The first one, (2060) Chiron, was discovered in 1977 (Kowal et al., [1979)).
The discovery of the first transneptunian objectfr_g] (15760) 1992 QB1, however,
was made more than a decade later (Jewitt and Luu, |1993). We currently know
of more than ~ 2,500 TNOs, which belong to the Kuiper Belt, Scattered disc or
to a resonant population.

Objects of the Kuiper Belt (KBOs), which is formally located in the region of
[30,50] au, are divided into three types: a) classical KBOs (=~ 50%) where e < 0.2
and r € [42,48] au, b) Plutinos (~ 10%) in the 2/3 mean-motion resonance with
Neptune, c) scattered KBOs (=~ 40%) on very eccentric orbits, some extending
to approximately ~ 1000 au from the Sun (Trujillo, 2003).

15We use the abbreviation TNO.
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The KBOs are further divided into a cold population (e < 0.1,1 < 5°) and
a hot population with I > 5° which differ in their composition and possibly
their origin. It is generally believed that the hot population probably originated
near Neptune’s original orbit, and during the migration of the giant planets was
scattered to the remote parts of the Solar System, while the cold population
probably appeared near its current location closer to the Sun, and was moved to
the current location due to Neptune’s migration. However, some studies imply
that the cold population originated in situ during a rapid accretion when the size
of planetesimals was less than 10-100 km (Parker et al., 2011)).

Although the Kuiper Belt is currently the subject of intensive research, its
detailed dynamic structure and origin are still an open question. One of the
unresolved issues is the existence of a relatively sharp edge of the Kuiper Belt
at a distance of 48 au (1/2 resonance with Neptune), beyond which there is a
significant decrease in the number of KBOs and, moreover, none of them exhibit
near-circular paths. Other KBOs occur further from the Sun - some near the 2/5
resonance (55 au) with Neptune, some near more distant resonances.

The now classical studies explain the distribution of the orbital elements of
KBOs by Neptune’s migration away from the Sun. As Neptune migrated, the
bodies of the primordial Kuiper Belt with nearly circular orbits, could have been
captured by the 1/2 or 2/3 resonance (similar to Pluto today), which subsequently
increased their eccentricities (Malhotra, (1993, 1995). More recent papers (e.g.
Levison and Morbidelli, 2003) have shown that the current dynamically cold
KBOs probably originated at a distance of ~ 35 au and were then expelled
outward by the 1/2 resonance with Neptune in the final phase of its migration.
However, it should be noted that there is still no general consensus regarding the
origin and orbital evolution of the cold population.

Nesvorny| (2015)) simulated the formation of the Kuiper Belt by placing Nep-
tune into distances 20-30 au along with a set of 10° particles of the dynamically
cold disc. At the time ¢, these particles were initially scattered between the Nep-
tune’s orbit and the distance of 30 au. Neptune’s migration time scale was chosen
from the interval 1 < 7 < 100 Myr. The result of the simulations was a fairly
good match in the current distribution of inclinations in the Kuiper belt when se-
lecting 7 > 10 Myr and the starting distance of Neptune < 25 au. This indicates
that the migration is relatively slow compared to models with 7 < 10 Myr.

The Scattered disc, which seems to be the reservoir of most of the observed
periodic comets, including the Centaurs - likely transient, yet long-lived reservoir
in the migration from this disc, is also a hot area of research.

The notion of the existence of a population at very large distances was ad-
dressed by the Dutch astronomer Jan Hendrik Oort (1900 — 1992). Today, this
hypothetical part of the Solar System, reaching distances of up to 200,000 au,
is called the Oort cloud' [Duncan et al| (1987) simulated the formation of a
cometary cloud and its orbital evolution on a time scale corresponding to 4.5 x 10°
years. They found that it probably originated thanks to the planetesimal inter-
actions with the giant planets and the tidal forces of the Galaxy. Duncan et al.
(1987) provided an estimation of the position of the inner boundary of the Oort
cloud to ~ 3000 au.

160r Opik-Oort cloud, according to similar notions of its existence expressed by the Estonian
astronomer Ernst Opik (1893 — 1985) in 1932.
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Figure B.6: Orbital evolution of the giant planets according to the Nice model,
with the semi-major axis a, distance of the pericentre ¢ and the apocentre Q). It
shows the initial, slow migration caused by the interaction of the planets with
the planetesimal disc. A major change occured when Jupiter and Saturn were in
1/2 mutual resonance. Planetary orbits became chaotic and started overlapping.
Uranus and Neptune were gradually pushed toward the planetesimal disc, whose
inner edge, at time ¢y, was located beyond Neptune’s orbit and the outer edge at
a distance of 35 au (Tsiganis et al., 2005). Source: [Tsiganis et al.| (2005).

Many simulations today rely on modern concepts of formation and evolution
of the Solar System, which are currently best described by the Nice model. The
Nice model is a set of significant theories supported by N-particle simulations
that describe the evolution of the whole Solar System in an effort to explain the
dynamic processes leading to its current state (Tsiganis et al., 2005; Morbidelli
et al., 2005; Gomes et al.,[2005). The model is widely recognized and, in contrast
to the previous ones, it assumes that after the elimination of the protoplane-
tary disc, giant planets substantially migrated from their original paths. This
phenomenon can explain the period of the Late Heavy Bombardment, the origin
of the Oort cloud and Jupiter’s and Neptune’s trojans, and partially also the
structure and distribution of TNOs.

However, not even this model is without problems, for example concerning
the origin and number of irregular moons. Although the Nice model is now able
to explain the origin of the populations in the Kuiper belt, it predicts somewhat
higher eccentricities for the bodies that are currently observed. Therefore, its
further development and refinement is to be expected.

Recent research has also started focusing on extra solar systems. In 1992,
astronomers Aleksander Wolszczan and Dale Frail announced the discovery of
two planets orbiting the pulsar PSR B1257+12 (Wolszczan and Frail, [1992)) and,
three years later, Michael Mayor and Didier Queloz discovered the first exoplanet
moving around a star of the main sequence, 51 Pegasi (Mayor and Queloz, [1995)).
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To date (Feb. 2018), about 3700 exoplanets have already been confirmed.
Some of the extra solar systems show a completely different orbital structure than
the Solar System. An example could be the existence of hot Jupiters on orbits
very close to the parent star. Numerical simulations have pointed to their possible
dual origin: (a) migration from the cold regions of their origin towards the star
(D’Angelo and Lubow, 2008) and b) formation in situ near the star (D’Angelo
and Bodenheimer, 2016|). Methods of detecting exoplanets, such as the radial
velocity method, transit methods, and others, are also rapidly developing.

Particularly irregularities in transit times may point to the presence of an-
other perturbing planet. The TTV method (Transit Timing Variations) can
detect planets of an even smaller mass. It is basically an inverse method of
looking for a perturbing planet with such orbital characteristics that best fit the
observed irregularities in transit times (Agol et al., 2005; |Holman and Murray),
2005} Nesvorny and Morbidelli, [2008)).

Note that in the evolution of the Solar System, non-gravitational perturba-
tions also play a significant role (see Chapter 1). Relatively new is also the
discovery of young populations in the Solar System - the young asteroid pairs,
families and binary systems (see Chapter 3)..
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