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Abstract: We study orbital evolution of multiple Earth-mass protoplanets in their
natal protoplanetary disk. Our aim is to explore the interplay between migration
of protoplanets driven by the disk gravity, their growth by pebble accretion, and
accretion heating which affects gas in their neighbourhood. Radiation hydrody-
namic (RHD) simulations in 2D and 3D are used to model the problem. We find
that the heating torque, i.e. the torque exerted by asymmetric hot underdense gas
near accreting protoplanets, significantly changes the migration. Specifically, it ex-
cites orbital eccentricities of migrating protoplanets, thus preventing their capture
in chains of mean-motion resonances. The protoplanets then undergo numerous
close encounters and form giant planet cores by mutual collisions. Additionally, if
inclinations also become excited, we describe a new mechanism that can form bi-
nary planets by means of consecutive two-body and three-body encounters, with the
assistance of the disk gravity. Finally, our 3D RHD simulations reveal a complex
distortion of the gas flow near an accreting protoplanet, driven by baroclinic pertur-
bations and convection. For specific temperature-dependent opacities of the disk, an
instability is triggered which redistributes gas around the protoplanet and leads to
an oscillatory migration, consisting of alternating inward/outward excursions. All
of these major findings are summarised in a series of papers reprinted in this thesis.
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Introduction
Preface

Understanding the origin of life goes hand in hand with understanding the origin
and evolution of planet Earth, its neighbourhood, and also other distant planets
observed in the Universe. Theory of planet formation has thrived over the recent
years thanks to groundbreaking discoveries that were made not only within our Solar
System but also far beyond its borders.

Thrilling findings were enabled by several space missions launched towards un-
explored corners of the Solar System. The New Horizons spacecraft obtained the
first images of the astonishingly complex worlds of Pluto, its moons, and 2014 MU69
Ultima Thule (Stern et al. 2015, 2019). It collected information about the im-
prints of processes that shaped the outer Solar System over the course of its history
(4.56 Gyr). The Cassini-Huygens mission explored Saturn and its moons, discovered
a subsurface ocean of liquid water on Enceladus and landed on the surface of Titan
(Niemann et al. 2005; Tomasko et al. 2005; Spencer & Nimmo 2013; Spilker 2019). It
witnesses formation of moonlets within the rings of Saturn and dived into Saturn’s
envelope during the spectacular finale of its journey (Beurle et al. 2010; Tiscareno
et al. 2019). The Rosetta-Philae mission attempted to land on the surface of the
comet 67P/Churyumov–Gerasimenko and succeeded, although it had quite a rough
landing (Biele et al. 2015; Filacchione et al. 2016). The comet served as yet another
relict of planet formation, providing a window into the past.

Observations of extrasolar planetary systems are at least equally important.
Since the discovery of the first exoplanet orbiting a main-sequence star in 1995
(Mayor & Queloz 1995), the long-standing question ‘Are there planets similar to
Earth somewhere in the Universe?’ is even more pressing. The hunt for exoplan-
ets, with a huge contribution of the Kepler telescope (Borucki et al. 2010), resulted
in a discovery of thousands of planetary bodies orbiting distant stars (Rowe et al.
2014). Although some of these exoplanets do exhibit Earth-like features (e.g. Quin-
tana et al. 2014), it is perhaps even more striking that exoplanets are generally very
diverse (see Fig. 1; Buchhave et al. 2012; Kane et al. 2012; Mann et al. 2012; Rogers
2015). Some of them are referred to as super-Earths, bodies of the terrestrial type
but more massive compared to Earth. Others are classified as mini-Neptunes, little
brothers of ice giants. And some gas giants are not only more massive than Jupiter,
but they exhibit either very short orbital periods (hot Jupiters) or eccentric orbits.

With the advancement of observing techniques, both in terms of sensitivity and
resolution, it is now possible to acquire incredibly detailed images of protoplane-
tary disks—birthplaces of planets (e.g. Andrews et al. 2018). These images provide
an unprecedented insight into processes which consecutively agglomerate tiny dust
grains into bigger and bigger objects. They also unveil footprints of hydrodynamic
phenomena such as turbulence (essential to understand disk accretion) or dust sub-
structures (essential to understand planet accretion).
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Introduction

All the aforementioned advancements were made possible thanks to a tremendous
effort of researchers and engineers all over the world. People who forgot about their
different opinions and different beliefs and joined their forces with one goal—to push
the frontiers of human knowledge one step further. I think that their determination
is a wonderful example of what the mankind is capable of when it follows a shared
(and reasonable) purpose.

This thesis represents a tiny theoretical footprint on a huge field of planetary
science. My only hope is that it is going to be useful.

Aims

The aim of this thesis is to study orbital evolution of multiple low-mass (Mp ≃
100 M⊕) protoplanets while they are still embedded in a protoplanetary disk. The
disk is assumed to consist mostly of gas, with a small fraction (∼1%) of solid particles
that determine the optical properties of the environment and also serve as a building
material for planets. During this early evolutionary stage, the evolution of planets
is dictated by the gravitational influence of the gas disk. The variations in the
gas distribution caused by density waves (Goldreich & Tremaine 1979), horseshoe
dynamics (Ward 1991; Masset 2001) and thermodynamic processes (Paardekooper &
Mellema 2006; Lega et al. 2014; Beńıtez-Llambay et al. 2015) result in gravitational
torques exerted on the planets. The torques trigger planetary migration.

At the same time, accretion of protoplanets is still ongoing. Motivated by recent
results (Johansen et al. 2007; Ormel & Klahr 2010; Lambrechts & Johansen 2012),
we assume that the major planet-forming process is accretion of pebbles, i.e. mm-
dm solid particles that radially drift through the disk due to aerodynamic drag.
The efficiency of pebble accretion is also provided by gas drag which enhances the
effective cross-section of capture by massive bodies.

When protoplanets are accreting, they become heated by the release of the kinetic
energy of the infalling material. The heat excess makes the protoplanets luminous
so that they may heat up gas in their vicinity. Under such conditions, additional
asymmetric perturbations arise in gas distribution, altering the torque exerted on
the planets and thus modifying their migration rate.

Our goal is to explore the interplay between the aforementioned phenomena, i.e.
to investigate feedback between planet migration, pebble accretion, and accretion
heating. We incorporate these phenomena into state-of-the-art 2D and 3D radiation
hydrodynamic (RHD) models.

The thesis is organised in two chapters. Chapter 1 is essentially an overview
of planet formation and migration. It briefly summarises current knowledge about
protoplanetary disks, presents theoretical foundations for RHD modelling, outlines
the long-standing issues of accretion processes, provides a motivation for including
pebble accretion, and describes the physics of Type I migration relevant for low-mass
planets.

Chapter 2 discusses the dissertation research and summarises the contents of
our scientific papers Chrenko et al. (2017), Brož et al. (2018), Chrenko et al. (2018),
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Figure 1: Planet mass Mp (in Jupiter masses) as a function of the orbital period Porb (in
days) for confirmed exoplanets. Approximately 1400 exoplanets, for which the displayed
quantities are available, are contained in the plot. Filled circles are coloured according to
the orbital eccentricity e, green squares are exoplanets with unconstrained e. Earth (blue
circle) and Jupiter (red circle) are displayed for reference. Three clusters can be identified
in the diagram, corresponding to exoplanet types that do not have solar-system analogues:
close-in super-Earths and mini-Neptunes (lower left quadrant), hot Jupiters (upper left
quadrant), and eccentric Jupiters (upper right quadrant). Data adapted from the NASA
Exoplanet Archive, https://exoplanetarchive.ipac.caltech.edu/, as of June 2019.

and Chrenko & Lambrechts (2019) (in the following, we use abbreviations Paper
I; Paper II; Paper III; Paper IV). Reprints are provided for Papers I, III and IV.
The papers represent the main output of this thesis and readers who are proficient
in planet-disk interactions should read them first (Chapter 2). For readers who are
new to the field, it is suggested to start with Chapter 1.
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1. Overview of planet formation
and gas-driven migration
The goal of Chapter 1 is to provide a brief review of the current understanding of
planet formation and migration during an early phase when a gas disk is still around.
We focus on physical processes which play a key role in numerical models that are
presented later in Chapter 2. Specifically, in Sect. 1.1 we discuss major observa-
tional constraints of protoplanetary disks and we provide a summary of radiation
hydrodynamic equations which are often used to describe planet-disk interactions.
Sect. 1.2 highlights the importance of hydrodynamic processes for the accretion of
planets. Namely, it demonstrates that pebble accretion is an efficient process by
which the planets can be assembled. In remaining Sects. 1.3 and 1.4, we discuss the
complexity of gas-driven migration, especially for low-mass planets (i.e. those which
are not massive enough to open a gap in the gas disk).

1.1 Protoplanetary disks
The environment of protoplanetary disks sets general conditions for planet formation
and also determines the overall dynamics of planetary systems in early phases of
their evolution. We thus start with a review of protoplanetary disks from both
observational and theoretical points of view.

1.1.1 Observational constraints and relevant physics

Formation

Star-forming regions in our Galaxy are observed to encompass a filamentary network
of the accumulating cold interstellar matter (ISM) from which dense pre-stellar cores
form by the gravitational collapse (for a review see André et al. 2014). As the collapse
proceeds, a ‘prototype’ core diversifies into three interacting parts (e.g. Adams et al.
1987; Robitaille et al. 2006): (i) a massive compact centre from which a pre-main-
sequence star is formed; (ii) a low-mass circumstellar disk which is flattened and
spun up as a result of the angular momentum conservation of infalling material; (iii)
a leftover envelope.

The mass contained in individual components (i)–(iii) at a given time affects
the observed slope of the spectral energy distribution (SED) in the mid-infrared
(IR; typically between 2 and 25 µm). This very slope is a foundation for the basic
classification of young stellar objects (YSOs; Lada & Wilking 1984; Lada 1987; André
et al. 1993; André & Montmerle 1994; Greene et al. 1994; Williams & Cieza 2011).
They are grouped as Class 0, I, II, and III YSOs (e.g. Dauphas & Chaussidon 2011).
Classes 0 and I correspond to the protostellar phase and they contain the envelope
which obscures the embedded disk and the protostar. Class II YSOs are no longer
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Chapter 1. Planet formation and migration

embedded in envelopes and their circumstellar disk is considered protoplanetary
rather than protostellar. Class III YSOs no longer contain a massive gas disk but
the dust can still be present in a form of a debris disk. In this thesis, we are mainly
concerned with Class II YSOs.

Accretion

Each protoplanetary disk is accreting onto the central star. The mass transfer at
the rate Ṁ is thought to be facilitated by the stellar magnetic field (Camenzind
1990; Königl 1991). The disk is truncated at the radius Rm equal to several stellar
radii by the magnetospheric cavity and ionised gas is channelled along magnetic
field lines (see Fig. 1.1), eventually falling onto the stellar surface and releasing
its free-fall energy in the form of shocks and an excess luminosity (e.g. Calvet &
Gullbring 1998; Bouvier et al. 2007). Using a primitive spherical accretion model,
the accretion luminosity can be estimated as (Armitage 2015)

Lacc,⋆ ≃ GM⋆Ṁ
( 1

R⋆

− 1
Rm

)
∼ 0.2

(
M⋆

M⊙

)(
R⋆

1.5R⊙

)−1 (
Ṁ

10−8M⊙yr−1

)
L⊙ . (1.1)

The determination of Ṁ therefore relies on our ability to measure Lacc and the
respective stellar parameters. Measurements of Lacc need to carefully distinguish
between the standard stellar atmospheric emission and the excess caused by the
accretion.

This is usually done in the blue/UV wavelengths range, typically from 320 to
520 nm, where the continuum excess (‘veiling’) and Balmer emission lines of hydro-
gen recombination can be associated to the infalling material (Valenti et al. 1993;
Hartigan et al. 1995; Gullbring et al. 1998; Herczeg & Hillenbrand 2008). Addition-
ally, a correlation exists between the accretion luminosity and luminosity of several
emission lines (such as Hα or Caii triplet) because the gas infall leads to a substantial
line broadening. Scaling relations can be derived which allow for the determination
of Lacc from Lline (Muzerolle et al. 1998; Natta et al. 2002; Muzerolle et al. 2000,
2005; Fang et al. 2009). The applicability of the method has improved with modern
instruments such as the VLT/X-Shooter with a broad spectral coverage (Rigliaco
et al. 2012; Manara et al. 2016).

The distribution of inferred accretion rates depends on the disk age (which is
discussed later). T Tauri ∼1 Myr old stars in the Taurus and Chamaeleon I cloud
complexes exhibit the median value of Ṁ ≃ 10−8 M⊙ yr−1 (Hartmann et al. 1998).
A typical spread of accretion rates in a population of protoplanetary disks in the
Lupus clouds is shown in Fig. 1.2.

Composition and types of emission

Protoplanetary disks adopt the chemical composition of the progenitor pre-stellar
cores and they consist of both gas and dust (e.g. Pollack et al. 1994). The spa-
tial distribution of gas and dust within the disk does not necessarily overlap (see

8



1.1. Protoplanetary disks

Figure 1.1: Schematic representation of a vertical slice of a protoplanetary disk around
a pre-main-sequence star. The temperature and density generally decrease from left to
right. Labels indicate which type of radiation is emitted from different disk regions and
also which process or material generates it. The region containing a mixture of gas and
dust is highlighted in red, the region of pure gas (where temperatures do not allow the
dust to exist) is coloured in blue. The horizontal arrows show which disk region is scanned
by selected observational techniques. The distances (given by labels in astronomical units)
are not linear. Adapted from Dullemond & Monnier (2010).

Fig. 1.1). This is because dust grains become subjects to evaporation (e.g. Lin & Pa-
paloizou 1985), radial drift towards the star (e.g. Adachi et al. 1976; Weidenschilling
1977), accumulation in local pressure maxima or turbulent vortices (e.g. Fromang
& Nelson 2005), vertical settling (e.g. Weidenschilling 1980), turbulent stirring (e.g.
Dubrulle et al. 1995), and eventually to gravitational perturbations from protoplan-
ets (e.g. Paardekooper & Mellema 2004). Typically, the dusty part of the disk is
less extended in both the radial and vertical directions compared to the gaseous
component.

Although the gas is usually more abundant (by a factor of 100), the presence
of dust is important because it serves as an agent for thermal regulation of the
disk. When thermalised with the surrounding gas, the dust emits thermal radiation
which can escape the disk and cool it down. When exposed to the irradiation from
the central star, the dust can absorb it and contribute to the heating of gas. The
optical properties of the dust are such that it dominates the material opacity of
the disk wherever it is present, despite its marginal abundance. Several important
observation techniques are based on the detection of either scattered light or thermal
emission produced by dust grains.

9



Chapter 1. Planet formation and migration

Figure 1.2: Logarithm of the accretion rate Ṁacc versus logarithm of the dust mass
Mdust. The span of values provides an insight into a typical range of disk masses (which
are a factor of ∼100 larger than the depicted dust mass) and accretion rates. The thick
red line shows the best result of a Bayesian fit; there are, however, many outliers with
respect to the fit. Open squares indicate edge-on objects, triangles show objects with an
accretion undistinguishable from chromospheric noise, and circles are used for transition
disks, i.e. disks with a large central hole. The disks belong to the Lupus star-forming
region. Adapted from Manara et al. (2016)

The disk can be either optically thick or optically thin with respect to its own
thermal emission. The former is typically true in inner regions because both the
density and temperature profiles increase towards the centre (roughly as power laws,
as we shall see in the following). Vice versa, the optically thin emission originates in
outer regions which are colder and less dense, with the vertically integrated optical
thickness τ < 1. The radial decrease of the disk temperature implies that radiation
originating at different disk regions has different characteristic wavelengths. The
wavelength of an observation thus determines which disk region the observation
probes (see Fig. 1.1):

• The blue and UV emission of gas detects the magnetospheric accretion signa-
tures as discussed above.

• A bump in NIR of the spectral energy distribution (see Dullemond & Monnier
2010), observed for disk-bearing Herbig Ae/Be stars, is often interpreted as an
evaporation front of dust which behaves as an optically thick hot wall, puffed
up by a strong absorption of stellar radiation (Dullemond et al. 2001; Muzerolle
et al. 2004; Isella & Natta 2005; Kama et al. 2009; Flock et al. 2016). This
corresponds to the transition between the innermost dust-free disk and the

10



1.1. Protoplanetary disks

adjacent inner disk with both dust and gas. The dust rim1 is located between
∼0.1 and 1 au, depending on stellar luminosity.

• In the inner disk (below ∼10 au), the dust emits in the optically thick regime
and is responsible for the overall NIR and MIR excess of the SED.

• The outer disk produces optically thin (sub)millimetre thermal continuum
emission of dust and it is also the source of numerous gas molecular lines.

Lifetime

The very presence (or absence) of the IR excess for YSOs serves as an indicator
whether the protoplanetary disk exists (or not). It is then possible to determine
the fraction of disk-bearing stars in the stellar population and infer the disk ages.
A typical approach to such measurements is to perform a survey of a cluster or an
association within a star-forming region, determine the fraction of sources with the
IR excess and relate it to the age of the cluster (e.g. Hartmann et al. 1998; Haisch
et al. 2001; Hernández et al. 2007). The reason for using the cluster age is that the
ages of individual stars are biased and thus their mean value is statistically more
reliable (Haisch et al. 2001). It turns out that the fraction of disk-bearing stars as
a function of the cluster age is decreasing and can be well fitted by an exponential
decay law. Generally, the results indicate that half of the stars loose their disks
within ≃3 Myr and the upper limit on the disk age seems to be ≃10 Myr. For a
selection of clusters, Fedele et al. (2010) compared the fraction fIRAC of stars having
the disk-related infrared excess (as found by Spitzer/IRAC; Lada et al. 2006) with
the fraction facc of stars exhibiting the accretion-driven Hα broadening (measured
at VLT/VIMOS; see Fig. 1.3). Their fit of the dependence f(tage) ∝ exp(−tage/τ)
revealed τIRAC = 3 Myr and τacc = 2.3 Myr. In other words, although the accretion
and disk dissipation tend to follow the same trend with the increasing disk age, the
accretion ceases even before the disk is dissipated. Finally, let us point out that the
radiometric dating of primitive solar-system materials (such as calcium-aluminium-
rich inclusions, iron meteorites, chondritic meteorites; e.g. Connolly & Jones 2016)
can provide independent constraints on the age of the protosolar disk.

Thermal emission and dust mass

As the inner disk is optically thick, the respective thermal emission is sensitive to the
temperature but not to the density. SED measurements compared with theoretical
models can therefore constrain the temperature profile.

For optically thin (sub)mm emission of the outer parts, we can use the Kirchhoff’s
law and express the radiation flux (e.g. Hildebrand 1983; Andrews & Williams 2005;
Armitage 2010)

Fν = Mdust

d2 κνBν(T ) ≃ Mdisk

d2 κν
2kBTν2

c2 , (1.2)

1It is important to distinguish whether the ‘disk inner edge’ refers to the dust rim or to the
edge of the magnetospheric cavity which are two physically different structures.
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Chapter 1. Planet formation and migration

Figure 1.3: Measured fraction of accreting (facc) and disk-bearing (fIRAC) stars in se-
lected clusters (see labels) of various ages (horizontal axis). Red circles indicate facc and
blue squares correspond to fIRAC. The dependences are fitted with an exponential decay
law (dotted and dashed line, respectively). The respective e-folding times are given inside
the plot. Adapted from Fedele et al. (2010).

where Mdust is the disk mass, d is the distance, κν is the monochromatic opacity and
we approximated the Planck function Bν(T ) with the Rayleigh-Jeans limit suitable
for the given wavelengths. If d is known, the relation directly constrains Mdust
and κν via observations. To disentangle the two unknowns, it is usual to assume
κν ∝ νβ (Beckwith et al. 1990). Assuming that Mdust is constant and ν-independent,
measurements at various wavelengths allow to determine β. For example, Pérez et al.
(2012) and Pérez et al. (2015) found β ∼ 0.5 below 50 au and β > βISM = 1.7 in the
outer disk (in systems AS 209, CY Tau and DoAr 25). The variations in β are usually
interpreted as a radius-dependent size distribution of dust grains created by dust
coagulation (Stognienko et al. 1995; Draine 2006). Instead of fitting observations at
different wavelengths separately, it is also possible to apply a multiwavelength fitting
to simultaneously obtain the surface density, temperature and grain size profile.
Using this method, Tazzari et al. (2016) found the maximum grain size amax ∼ 1 cm
between 15 and 30 au, and amax ∼ 1 mm beyond 80 au (for systems AS 209, FT Tau,
DR Tau).

Known Mdust enables to estimate Mdisk (as Mdust + Mgas where Mgas is inferred
from Mdust using some dust-to-gas ratio). The results for Opiuchus, Taurus and
Orion star-forming regions reveal the median disk mass 5 MJ, the upper mass limit
≈50 MJ and the median disk-to-star mass ratio 0.9% (Beckwith et al. 1990; André
& Montmerle 1994; Andrews & Williams 2005, 2007; Mann & Williams 2010). Fig-
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1.1. Protoplanetary disks

ure 1.2 provides an insight into a typical range of disk masses in Lupus and shows
that protoplanetary disks are much less massive than their host stars. There are how-
ever several important caveats in their mass determination: a number of works make
assumptions about the grain size and opacity by relating them directly to the inter-
stellar medium (e.g. Mathis et al. 1977) rather than deriving them self-consistently.
Furthermore, another assumption has to be made about the dust-to-gas ratio when
inferring Mgas. Finally, larger solids (such as planetesimals or planets) may remain
invisible to observations.

Molecular emission and gas mass

Is it possible to measure the gas mass itself? It turns out that such measurements
are rather problematic since bulk of the gas in H2 molecules cannot be observed
due to the absence of the electric dipole moment. However, there are other less
frequent molecules that are traceable through line emission, such as CO, CS or
HCN at (sub)mm wavelengths (e.g. Henning & Semenov 2013; Dutrey et al. 2014).
Far-IR measurements also detect cold water vapour (Hogerheijde et al. 2011; Podio
et al. 2013) and ammonia (Salinas et al. 2016), both of which are essential from the
astrobiological point of view.

CO molecules can be used to determine the disk mass independently of dust
observations (Williams & Best 2014; Ansdell et al. 2016; Molyarova et al. 2017;
Zhang et al. 2017). Yet there are some uncertainties: CO tends to freeze-out on
dust grains if T < 20 K, it can become photodissociated by stellar irradiation in the
disk atmosphere, and the exact CO-to-H2 ratio is unknown (Henning & Semenov
2013; Williams & Best 2014). Moreover, the emission of CO itself is usually optically
thick. To avoid these problems, rare isotopologues of CO, which have lower optical
depths, are studied instead. Ansdell et al. (2016) performed an ALMA survey of
protoplanetary disks in the Lupus complex and inferred their masses from both
the dust continuum (near 890 µm) and CO isotopologues measurements (13CO and
C18O). The results show that Mgas is typically below the value of the minimum-mass
solar nebula (MMSN; Weidenschilling 1977) and the dust-to-gas ratio exceeds that
of ISM. Such a gas depletion is thought to be indicative of giant-planet formation.

Finally, let us point out that molecular lines can exhibit thermal or turbulent
broadening. The latter could be of great importance since it might help to constrain
our theoretical understanding of the disk turbulence. The first attempts to provide
such constraints were undertaken using ALMA data (Flaherty et al. 2015; Teague
et al. 2016; Flaherty et al. 2017) and imply relatively small vertical scales of turbulent
layers. Observations of dust scale heights by Pinte et al. (2016), on the other hand,
seem to be sufficiently explained by magnetic turbulent models(Flock et al. 2017).

Basic correlations

Once the disk mass Mdisk is determined, it is important to point out that it exhibits
correlations with some other characteristic quantities of protoplanetary systems.
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Chapter 1. Planet formation and migration

First, it correlates with the mass of the host star. An ALMA survey of Chamaeleon I
star-forming region (Pascucci et al. 2016) revealed a steeper-than-linear dependence
Mdust ∝ M1.3−1.9

⋆ . Ansdell et al. (2016) reported that both Mdust and Mgas scale
with the stellar mass. This should imply that more massive disks give birth to more
massive planets since the population of giant exoplanets scales with the stellar mass
as well (Johnson et al. 2010; Howard et al. 2012).

The disk mass also scales with the accretion rate Ṁ . The study of Manara
et al. (2016) based on ALMA and VLT/X-Shooter data implies a linear or slightly
shallower dependce, as shown in Fig. 1.2 (but note that there are many outliers with
respect to the fitted dependence). This is in accordance with the theory of viscous
evolution which predicts Ṁ ∝ Mdisk/tν(rout) where tν is the viscous timescale (Jones
et al. 2012). Manara et al. (2016) also point out that masses Mgas inferred from
CO may be underestimated, perhaps because the chemical balance of carbon-based
molecules is not fully understood (Kama et al. 2016).

Geometrical constraints

The extent of protoplanetary disks is relatively difficult to determine since they ex-
hibit very low temperatures and densities at their outer boundaries. One possibility
it to use HST observations in the optical to image protoplanetary disks that block
some source of bright background emission. Such measurements of disk shadows
were indeed conducted for several objects in the Orion complex which are posi-
tioned against bright Hii regions (McCaughrean & O’dell 1996; Vicente & Alves
2005). Another possibility is to use interferometric (sub)mm techniques to obtain
resolved images. A general conclusion is that protoplanetary disks cover a large
range of sizes and their intensity profiles are in accord with the self-similar surface
density profiles of viscous accretion disks (Lynden-Bell & Pringle 1974)
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where Mdisk is the disk mass, n is the slope of the viscosity profile (ν ∝ rn) and
rc is the cut-off radius where the power-law surface density profile exhibits a sharp
truncation. Values inferred from observations are rc ∼ 10–200 au and there appears
to be a correlation Mdisk ∝ r1.6±0.3

c (Andrews et al. 2009; Isella et al. 2009; Andrews
et al. 2010; Williams & Cieza 2011). Note however that disks are not perfectly
confined within rc but extend beyond it, albeit with a very low surface density.
Additionally, disk density profiles tend to be shallower (Andrews et al. 2009) than
the MMSN which has ΣMMSN ∝ r−1.5.

Perhaps the most important finding related to the recent advancement of high-
resolution radiointerferometry (especially ALMA) and adaptive optics (especially
VLT/SPHERE) is a frequent occurrence of substructures and azimuthal asymme-
tries within imaged protoplanetary disks. The detection of such substructures is
very important because they indirectly reveal physical processes operating within
planet-forming environments.
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1.1. Protoplanetary disks

Figure 1.4: Overview of 20 targets of the DSHARP ALMA survey. The colormap
represents the dust continuum emission at 1.25 mm (240 GHz). The names of objects are
given by labels. Beam sizes and 10 au scalebars are indicated in the lower left and right
corners of each panel. Resolved substructures include rings and gaps (Dullemond et al.
2018; Zhang et al. 2018), spirals (in case of IM Lup, Elias 27 and WaOph 6; Huang et al.
2018), azimuthal asymmetries (HD 143996 and HD 163296; Isella et al. 2018; Pérez et al.
2018), and perturbations from stellar companions (HT Lup and AS205; Kurtovic et al.
2018). Adapted from Andrews et al. (2018).
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Chapter 1. Planet formation and migration

Recently, The Disk Substructures at High Angular Resolution Project (abbrevi-
ated as DSHARP; Andrews et al. 2018) provided a comprehensive study of patterns
appearing in protoplanetary disks. This ALMA survey targeted 20 disks and their
overview is provided in Fig. 1.4. Astonishingly, disk substructures are ubiquitous.
They are found at various radial distances (from 5 to 150 au) and they map the
distribution of dust. In the following, we review what the individual substructures
tell us about underlying physical processes:

• Rings/gaps. Brightened rings and darkened gaps are the most frequent. Their
very presence confirms that protoplanetary disks can efficiently pile up dust
grains at certain locations, thus halting their loss via spiraling onto the central
star (Adachi et al. 1976). The pile-up also improves local conditions for the
accretion of solids. Quite often, dusty rings can be narrower than the local
pressure scale height, which favours dust trapping (Dullemond et al. 2018).
The trapped mass can be of the order of ∼10 M⊕. The trapping in a ring is
facilitated by a pressure bump (local reversal of the pressure gradient). This
can be caused either by turbulence or by perturbations from (unseen) planetary
bodies embedded in the disk. The former would constrain the upper limit of
the respective α parameter (Shakura & Sunyaev 1973, see also Sect. 1.1.2),
α ≤ 10−4 (Dullemond et al. 2018). The latter would predict the existence of
Neptune- to Jupiter-mass planets beyond 10 au, sometimes even at extreme
separations such as ≃100 au (Zhang et al. 2018).

• Spirals. Spirals appear in three of the DSHARP targets. They are actually
present in the largest and coldest disks and they are likely a result of gravi-
tational instability (Huang et al. 2018), although other explanations are also
possible.

• Azimuthal asymmetries. Two disks of the sample exhibit arc-shaped asymme-
tries. These can be assigned to dust-trapping vortices that can be either of a
hydrodynamic origin or excited by an unseen planet (Isella et al. 2018; Pérez
et al. 2018).

The observability of gaps at various viewing angles implies that protoplanetary
disks are usually thin (since we can see through the gaps; e.g. ALMA Partnership
et al. 2015). In addition to that, disks often exhibit a flaring geometry which can
be deduced from the spectral energy distribution (Kenyon & Hartmann 1987), HST
imaging (Padgett et al. 1999), or VLT/SPHERE imaging (Avenhaus et al. 2018).
An example of the latter is shown in Fig. 1.5.

Physical processes relevant in disks

Although protoplanetary disks are relatively quiescent objects, there is a clear ev-
idence that they are in fact slowly evolving all the time2. First, since the matter

2In cases of episodic outbursts and thermal waves (e.g. Bell & Lin 1994; Bae et al. 2014;
Schneider et al. 2018), the evolution can be rather abrupt.
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1.1. Protoplanetary disks

Figure 1.5: H-band image of surface layers of IM Lup disk reconstructed from light
scattered off µm-sized grains. Polarimetric differential imaging was conducted using the
adaptive-optics SPHERE/IRDIS instrument mounted on the VLT. The green circle marks
the area obscured by the coronograph. The “saucer-like” flared shape of the disk is ap-
parent, as well as its large extent (which, however, is rather exceptional). Comparing this
image to Fig. 1.4 (top row, third panel), one can see substantial differences between obser-
vations in scattered light and interferometry of thermal emission. Adapted from Avenhaus
et al. (2018).

accretes onto the star, the mass conservation dictates that the accretion must be
ongoing within the disk itself. Without it, there would be no permanent supply of
the material towards the magnetospheric cavity and the excess accretion luminos-
ity would vanish. Therefore the disk matter should, on average, flow towards the
star, at least in a certain portion of the disk. At the same time, the angular mo-
mentum conservation must be fulfilled. Since disks have nearly Keplerian rotation
curves, the angular momentum is an increasing function of the radius, L ∝

√
r. An

inward displacement of a gas parcel is therefore only possible if it looses its angu-
lar momentum. The mechanism of angular momentum redistribution in disks is a
long-standing issue (e.g. Pringle 1981; Blandford & Payne 1982; Balbus & Hawley
1998).

Second, since the lifetimes of disks are firmly constrained to be relatively short,
there must be processes at play which eventually lead to a dispersal of disks. Al-
though a part of the disk mass is transferred onto the star or incorporated in form-
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Chapter 1. Planet formation and migration

ing planets, it is not enough to explain why disks vanish within several millions of
years. Indeed, there are observations of transitional disks with large inner cavities
that might be undergoing dispersal (e.g. Ercolano & Pascucci 2017).

Third, since disks emit radiation, it might contribute to their structure which is
determined by the rotational force balance between the stellar gravity, the pressure
gradient, and the centrifugal force. The pressure is dictated by the energy balance
and this is where the radiation comes into play. Thermal emission of dust grains
inevitably leads to a redistribution of energy and also to cooling by escaping photons.
At the same time, surface layers and the inner edge are exposed to the stellar
irradiation which can be absorbed and boost the local heat deposition.

Physical processes that have been studied over the past decades as possible
drivers of the disk evolution are summarised as follows3 (for a review see Armitage
2011, 2015):

• The angular momentum transport is often attributed to the eddy viscosity.
Since the molecular viscosity of disks is too low (∼107 cm2 s−1) to explain
the observed accretion rates, the momentum redistribution can be caused by
internal stresses induced by a turbulence. On a global scale, the disk then
behaves as if it was viscous. Possible pathways to turbulent instabilities include
(e.g. Balbus 2011; Klahr et al. 2018; Pfeil & Klahr 2019):

– magnetorotational instability (MRI),
– the effects of non-ideal magnetohydrodynamics (MHD), such as Hall,

ambipolar and Ohmic terms,
– vertical shear instability (VSI),
– subcritical baroclinic instability (SBI),
– convective overstability (COS),
– gravitational instability (GI).

• The angular momentum can be also subtracted from the disk by external
torques exerted by an MHD wind (e.g. Spruit 1996; Königl & Salmeron 2011).
The wind can be, for example, of the Blandford-Payne type (Blandford &
Payne 1982), but other possibilities exist as well. The viscosity of wind-driven
accretion disks can be very low compared to turbulent disks.

• The disk dispersal can be caused by

– photoevaporation when UV and X-ray photons cause photodissociation or
ionisation of surface layers and trigger a thermal wind (e.g. Hollenbach
et al. 2000),

– MHD wind when the mass loss prevails over the angular momentum sub-
traction (e.g. Suzuki et al. 2010).

3The list is not complete; for example, we omit the evolution of solids which is covered in detail
in Sect. 1.2.
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1.1. Protoplanetary disks

• The structural aspects of disks (e.g. the flared geometry, the inner dust rim,
pressure bumps, etc) can be explained by radiative processes, including stellar
irradiation (e.g. Chiang & Goldreich 1997) and radiation transfer as they
affect the local thermal balance. Alternatively, disks can be sculpted by the
gravity of embedded protoplanets. Most importantly, giant planets can open
substantial gaps (Crida et al. 2006).

1.1.2 Radiation hydrodynamic (RHD) disk model

Since the goal of this thesis is to understand the evolution of low-mass protoplanets
as they (possibly) grow towards bigger sizes, it is necessary to construct a phys-
ical model describing the environment in which they evolve and with which they
interact. Specifically, the distribution of gas and its response to the perturbations
from planets has to be determined accurately because its gravity determines how
planetary orbits evolve. At the same time, the model complexity cannot exceed
current computational capabilities to allow for a reasonable balance between com-
putational time, necessary resolution (≳1.5 × 106 cells in 2D, ≳45 × 106 in 3D), and
desired simulation timespan (at least 105 yr in 2D). In this section, we elaborate
RHD equations which serve as the basis for Papers I–IV presented in Chapter 2.
We also discuss several closure relations and approximations which are useful in the
context of planet-disk interactions (Sect. 1.4).

First, let us mention our basic assumptions. We assume that the disk has a
certain level of the turbulent eddy viscosity. However, it is not the aim of this
work to study the very nature of turbulence and we therefore refrain from full
MHD turbulence-oriented simulations. Instead, we model the disk as a laminar
viscous fluid, with a parametrised viscosity. We also neglect the self-gravity and
processes of disk dispersal because we aim to study stable disks and we focus on
early phases during which the gas is still present in large amounts. A possible
influence of neglected phenomena on planet migration is discussed later in Sect. 1.4.

Equations of hydrodynamics

Following the studies by Stone & Norman (1992), Masset (2000), D’Angelo et al.
(2003), Kley & Crida (2008), Kley et al. (2009), Bitsch et al. (2013), Lega et al.
(2014) and others, a suitable set of first-order differential equations to be used when
studying planet-disk interactions reads

∂ρ

∂t
+ (v⃗ · ∇) ρ = −ρ∇ · v⃗ ,

∂v⃗

∂t
+ (v⃗ · ∇) v⃗ = −∇P

ρ
+ ∇ · T

ρ
+ a⃗ext ,

∂ϵ

∂t
+ (v⃗ · ∇) ϵ = −P∇ · v⃗ + Qheat .

(1.4)

(1.5)

(1.6)
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Chapter 1. Planet formation and migration

The equations describe the temporal evolution of the volume gas density ρ, the
flow velocity vector v⃗ and the internal energy density ϵ. The remaining variables
are the pressure P , the viscous stress tensor T, the sum of accelerations acting on
the continuum due to external forces a⃗ext and the power density Qheat supplied by
(positive) heating sources and drained by (negative) cooling sources. The advective
operator on the left-hand side, applied to an arbitrary vector field A⃗, evaluates as

[
(v⃗ · ∇) A⃗

]
i

=
3∑

j=1

[
vj

hj

∂Ai

∂qj

+ Aj

hihj

(
vi

∂hi

∂qj

− vj
∂hj

∂qi

)]
, (1.7)

where the coefficients hi = √
gii are related to the components of the metric tensor

of a given coordinate system qi.
Eq. (1.4) is referred to as the continuity equation. It represents the mass con-

servation law and implies that the material density within a fixed volume can only
change via advection (material inflow/outflow across the borders of the volume) or
by compression/expansion (characterised by the right-hand side term ∝∇ · v⃗).

Eq. (1.5) is the Navier-Stokes equation which represents the momentum conser-
vation under the action of perturbing forces arising within the continuum due to the
pressure gradient (first term on the right-hand side), viscous stresses (second term
on the right-hand side) and external forces (last term on the right-hand side), such
as the gravity of the central star and protoplanets.

Eq. (1.6) is simply called the energy equation and represents the first law of
thermodynamics (the energy conservation). It states that the internal energy of gas
can only change by the energy transport due to the advection, work needed for com-
pression/expansion (first term on the right-hand side) or heat production/removal
(second term on the right-hand side).

To solve Eqs. (1.4–1.6) as 5 independent equations for 5 unknowns ρ, v⃗, and ϵ,
several closure relations are needed. One needs to specify T, a⃗ext, Qheat, and also
the state equation P (ρ, T ) as a thermodynamic closure relation.

Viscous stress tensor

The need for the viscous stress tensor arises from the necessity to model the angular
momentum transport which operates in realistic protoplanetary disks. A commonly
used form is (Mihalas & Weibel Mihalas 1984)

T = ρν
[
∇v⃗ + (∇v⃗)⊺ − 2

3 (∇ · v⃗)1
]

, (1.8)

with the kinematic viscosity ν. In our models, the viscosity is always a free parameter
and we treat it as a constant.

For many disk models, it is customary to express the viscosity ν in terms of the
turbulent parameter α (Shakura & Sunyaev 1973) such that

ν = αcsH , (1.9)
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1.1. Protoplanetary disks

where H = cs/ΩK is the pressure scale height. The prescription simply assumes that
the largest dimension of turbulent vortices cannot exceed H and that they naturally
propagate at the sound speed cs since supersonic flows with shocks would dissipate.

In advanced models which model the turbulence directly, an effective α may
be introduced as the combined level of the Reynolds fluid stress and the Maxwell
magnetic stress:

α =
⟨

δvrδvθ

c2
s

− BrBθ

4πρc2
s

⟩
, (1.10)

where δvr and δvθ are radial and azimuthal velocity fluctuations, respectively, Br

and Bθ are magnetic field components, and the brackets represent a density-weighted
average.

External forces

There are two external forces which we take into account. First, the disk evolves
in the gravity field of the central protostar and also of other massive embedded
objects which in our case correspond to n planet-sized bodies (planetary embryos
or protoplanets). Second, since it is sometimes advantageous to study planet-disk
interactions in a reference frame corotating with one of the planets, one has to take
into account the non-inertial accelerations arising due to the frame rotation. The
respective accelerations combine as

a⃗ext = −∇
(

Φ⋆ +
∑

n

Φ(n)
p

)
−
[
2Ω⃗ × v⃗ + Ω⃗ ×

(
Ω⃗ × r⃗

)
+ ∂tΩ⃗ × r⃗

]
. (1.11)

where the accelerations in the square brackets are all non-inertial (they vanish for
Ω⃗ = 0⃗) and represent (left to right) the Coriolis acceleration, centrifugal acceleration
and the correction in case of a non-uniform rotation (∂tΩ ̸= 0).

The gravitational potential of the protostar is

Φ⋆ = −GM⋆

r
, (1.12)

where M⋆ is the mass of the protostar and r is the distance to the protostar. Simi-
larly, the gravitational potential of a n-th protoplanet is

Φ(n)
p = − GMp

d
fsm

⏐⏐⏐⏐(n)
, (1.13)

where Mp is the protoplanet’s mass and d is the distance between the protoplanet
and a point within the gas continuum. Unlike in Eq. (1.12), the protoplanets are
directly embedded in the disk and thus the potential might diverge for d → 0. In
order to avoid this, a smoothing function fsm is introduced which is often defined as

fsm = d√
d2 + r2

sm

, (1.14)
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Chapter 1. Planet formation and migration

and leads to a Plummer-type potential. Depending on the setup of a studied problem
and also on the spatial discretisation, the smoothing length rsm is either a fraction
of the local pressure scale height H, or of the respective Hill sphere radius RH, or
rather a small multiple of the shortest cell dimension. An alternative approach in
3D is to use a cubic-spline tapering function (Klahr & Kley 2006)

fsm =

⎧⎪⎪⎨⎪⎪⎩
1 , for d > rsm ,(

d

rsm

)4

− 2
(

d

rsm

)3

+ 2 d

rsm
, for d ≤ rsm ,

(1.15)

which creates a deeper potential well and leads to a more realistic gas distribution
close to the protoplanet (Kley et al. 2009).

Locally isothermal equation of state

The most simple equation of state assumes

P = c2
sρ , (1.16)

where P depends on ρ and r through the prescribed sound speed profile cs(r) which
does not evolve in time and has to be given along with the initial state of the disk.
In practice, it is usually supplied by means of a fixed aspect ratio h(r) = h0r

−f0 ,
where f0 is the flaring index, which translates to cs = HΩ = h(r)rΩ.

The approximation is called locally isothermal because although the disk tem-
perature does not have to be radially uniform, it remains fixed at the individual
radii. From the physical point of view, this approximation represents a system with
an infinitely short radiative cooling timescale. As an illustration, one can imagine
that in order to keep the temperature constant during an instantaneous increase of
ρ, the compression work must be instantaneously dissipated, which is only possible
by perfect radiative cooling.

Owing to the fixed temperature profile, Eq. (1.6) does not have to be solved which
greatly simplifies the governing system of fluid equations. But such an approach is
rather simplistic from a physical point of view.

Non-isothermal equation of state

Since the nebular gas in a protoplanetary disk has low density, it can be characterised
by the ideal gas law

P = (γ − 1) ρcV T = ρ
R
µ

T , (1.17)

where cV is the specific heat at constant volume, R is the universal gas constant,
and γ is the adiabatic index (the ratio of specific heats at constant pressure and
volume).
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1.1. Protoplanetary disks

As the pressure now also becomes T -dependent (and vice versa), the energy
equation can no longer be ignored and has to be solved as well. Since ϵ = ρcV T , the
pressure-energy coupling reads

P = (γ − 1) ϵ . (1.18)

Finally, the sound speed is calculated in its adiabatic rather than isothermal
form, yielding

cs =
√

γ
P

ρ
=
√

γ
R
µ

T . (1.19)

When a non-isothermal equation of state is used, Eq. (1.6) needs to be solved and
thus its exact form has to be specified. In the following, we provide approximations
corresponding to the adiabatic energy equation and also radiative energy equation(s)
(in 2-temperature and 1-temperature frameworks).

Adiabatic energy equation

The simplest approximation is the adiabatic one which assumes there is no heat
transfer in the system and the internal energy of the gas can only change by com-
pression or expansion. Therefore Qheat ≡ 0 and the energy equation reads

Dϵ

Dt
= −P∇ · v⃗ . (1.20)

Radiative 2-temperature approximation

Compared to the approximations discussed above, one can expect the behaviour
of radiative disks to be amidst the isothermal limit (when the radiative cooling is
instantaneous) and the adiabatic non-isothermal limit (when there is no heat transfer
by radiation). Since planet-forming regions are usually optically thick, the radiative
solution in such regions often exhibits similarities to the adiabatic one.

Treating radiation in a numerical model is one of the most challenging astro-
physical disciplines because:

• Although the propagation of photons is driven mostly by processes of quantum
physics, if affects objects of vast astronomical sizes and moreover, the problem
extends over a number of spatial scales.

• There is a plethora of processes related to photon-matter interactions, in par-
ticular:

– Spontaneous emission, stimulated emission and absorption.
– Photoionisation and recombination.
– Bremsstrahlung and free-free absorption.
– Scattering (with Thomson, Compton, Rayleigh and Mie regimes).
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Chapter 1. Planet formation and migration

• The probabilistic nature of photon-matter interactions ranges from a random-
walk behaviour of the photon field (in optically thick environments) to free
streaming (in optically thin environments).

• The nature of the radiation transport may exhibit strong dependence on its
wavelength (. . . , FIR, NIR, V, UV, X, . . . ).

To maintain the fluid nature of the model, let us extend the set of equations to
account for the energy contained in (and transferred by) a field of photons interacting
with the disk. Our methodology closely follows that of Howell & Greenough (2003),
Dobbs-Dixon et al. (2010), or Bitsch et al. (2013) (see e.g. Kuiper et al. 2010; Flock
et al. 2013; Kolb et al. 2013; Kuiper & Klessen 2013; Ramsey & Dullemond 2015,
for alternative approaches). We start by considering a relatively general case of a
disk heated from inside by the viscous friction and from outside by the irradiation
of the protostar. The disk cooling, as weel as the energy transport in its interior, is
ensured by its thermal radiation.

Radiation transfer equation. We start by defining the specific monochro-
matic intensity Iν of radiation as the rate of energy dE carried by photons in the
unit frequency interval dν through a surface element dA in the direction n⃗ into the
unit solid angle dΩ per unit time dt

dE = Iν(r⃗, t; n⃗, ν)dA cos ΘdΩdνdt , (1.21)

where Θ is the angle between n⃗ and the normal direction to the surface dA. The
dimension of the specific intensity is [Iν ] = W m−2 sr−1 Hz−1. A basic property of Iν

is its conservation along a ray in the vacuum, leading to the intensity invariance
dIν

dt
= ∂tIν + cn⃗ · ∇Iν = 0 . (1.22)

However, the invariance is modified by radiation-matter interactions and leads
to the radiation transfer equation (Dobbs-Dixon et al. 2010)

1
c

∂Iν

∂t
+ n⃗ · ∇Iν = sources − sinks ≃ ρ

(
jν + κsca

ν Φsca
ν

4π

)
− ρκνIν , (1.23)

where we assumed that photon-matter interactions can be characterised by macro-
scopic quantities. Specifically, we introduced the monochromatic emissivity jν and
the opacity κν = κabs

ν + κsca
ν which is the sum of absorption and scattering opacities.

The function Φsca
ν =

∫
χν(n⃗, n⃗′)Iν(n⃗′)dΩ′ describes the intensity scattered into the

direction n⃗ where χν(n⃗, n⃗′) is the scattering probability.
To simplify the ν-dependence, we assume that the system contains only two

groups of photons (Dobbs-Dixon et al. 2010):
• Photon group 1 represents photons radiated by the central protostar which

are impinging the protoplanetary disk, bring their energy into the system and
act as a heat source (in case they become absorbed). The maximum of the
spectral energy distribution of this group is in the optical range for a solar-type
protostar.
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1.1. Protoplanetary disks

• Photon group 2 consists of photons originating from the disk itself. As the disk
has a non-zero thermodynamic temperature, thermalised dust grains emit pho-
tons that contribute to: (i) energy redistribution within the disk; (ii) cooling
of the disk whenever they become liberated from it, thus carrying their energy
away. The spectral energy distribution of this group peaks in the infrared.

Group 1 solution. The photons of group 1 can only change the energy
balance of the disk when they become absorbed. One can approximate the star with
a point source and assume that photons propagate along the rays directed radially
from the star. To capture such a geometry in a natural way, we will describe the disk
on a spherical mesh of grid cells where the rays propagate solely along the radial
dimension. After integration over all frequencies, Eq. (1.23) in a pure absorption
limit reads

dI⋆

dr
= −ρκ⋆I⋆ , (1.24)

where the subscript ‘⋆’ denotes quantities related to the photon group 1 and the
opacity is averaged over the spectral intensity function of the protostar Sν(T⋆),
which can generally differ from the black-body radiation, as

κ⋆ =
∫

κνSν(T⋆)dν∫
Sν(T⋆)dν

. (1.25)

Formal solution of Eq. (1.24) leads to a simple exponential attenuation of the
intensity

I⋆ = I⋆,0 exp (−ρκ⋆r) = I⋆,0 exp (−τ⋆) , (1.26)
where we introduced the optical depth τ⋆ =

∫ r
0 ρκ⋆dr′. Motivated by this solution,

we can assemble the heating term related to the absorption of stellar radiation in
a single grid cell with the optical depth dτ⋆ (Dobbs-Dixon et al. 2010; Kolb et al.
2013)

Qirr = L⋆

4πr2

(
e−τ⋆ − e−(τ⋆+dτ⋆)

) Scell

Vcell
. (1.27)

The first right-hand-side fraction determines the flux [W m−2] of irradiating photons
at the distance r using the stellar luminosity L = 4πR2

⋆σT 4
⋆ [W]. The difference of

exponentials accounts for the difference between the flux arriving to and exiting
from the cell. Multiplying by the cell cross-section Scell interfacing the irradiating
flux, one obtains the rate of energy production within one grid cell. Finally, dividing
by the cell volume Vcell provides the energy density production rate [W m−3] which
can be directly included as a positive contribution to Qheat of Eq. (1.6).

Group 2 solution. Regarding the photons of group 2, we need to solve the
transfer equation for locally re-processed infrared radiation. To reduce the dimen-
sionality of Eq. (1.23) for Iν(r⃗, t; n⃗, ν), the standard way is to take its integral over
the solid angle, introducing the moments of the specific intensity. The zeroth and
first moments are defined (

cEν , F⃗ν

)
≡
∫

(Iν , n⃗Iν) dΩ , (1.28)
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Chapter 1. Planet formation and migration

where Eν is the monochromatic radiative energy density [J m−3 Hz−1] and F⃗ν is
the monochromatic radiative flux [W m−2 Hz−1]. In performing the integration, we
assume that the locally emitted thermal radiation of the disk is isotropic and is in
the local thermodynamic equilibrium (LTE) with matter, thus the disk emissivity
follows the Kirchhoff law

jν = Bνκν , (1.29)

with the Planck function of black-body radiation

Bν(T ) = 2hν3

c2
1

exp ( hν
kBT

) − 1
, (1.30)

where T is the gas temperature. Furthermore, we also integrate Eq. (1.23) over
frequencies, noting that the integral of Eq. (1.30) is∫

Bν(T )dν = σ

π
T 4 . (1.31)

Radiative energy equation. Using the outlined approximations and inte-
grations over Ω and ν leads to (Howell & Greenough 2003; Dobbs-Dixon et al. 2010)

∂ER

∂t
+ ∇ · F⃗ = ρκP

(
4σT 4 − cER

)
, (1.32)

where ER is the frequency-averaged energy density of the thermal radiation of the
disk, F⃗ is the corresponding frequency-averaged radiation flux and κP is the Planck
opacity

κP =
∫

κνBν(T )dν∫
Bν(T )dν

. (1.33)

Flux-limited diffusion. Adding ER to the system of fluid equation as an-
other unknown, Eq. (1.32) requires additional closure relations for F⃗ and κP. Let
us now focus on the former. One might be tempted to take yet another integral
moment of Eq. (1.23) by performing

∫
n⃗dΩ but such an approach would only lead to

an appearance of the radiation pressure in the model and a closure relation would
still be needed.

To avoid introducing additional momenta of the intensity, we adopt the flux-
limited diffusion (FLD; Levermore & Pomraning 1981). The FLD approximates the
radiative flux with the diffusion equation

F⃗ = −λlim
c

ρκR
∇ER ≡ −D∇ER , (1.34)

which has the form of the Fick’s law and where κR is the Rosseland opacity

κ−1
R =

∫
κ−1

ν
∂Bν(T )

∂T
dν∫ ∂Bν(T )

∂T
dν

. (1.35)

26



1.1. Protoplanetary disks

which is a harmonic mean that gives the greatest weight to the most transparent
frequency bands and guarantees the correct radiative flux in the diffusion limit
(Mihalas & Weibel Mihalas 1984).

The function λlim is called the flux limiter and it is designed to connect two
limiting regimes of the radiation transfer and also to prevent unphysical propagation
of photons at velocities exceeding the speed of light. The limiting regimes can be
distinguished considering the mean free path of a photon l = 1/(κRρ) or alternatively
the optical depth τ = κRρL, where L is a characteristic spatial scale.

• If l ≫ L or τ ≪ 1, the environment is optically thin and photons undergo free
streaming over distances >L. Then

|F⃗ | τ≪1−−→ cER , (1.36)

thus requiring

λlim
τ≪1−−→ ρκRER

|∇ER|
≡ 1

R
. (1.37)

• If, on the other hand, l ≪ L or τ ≫ 1, the environment is optically thick and
photons behave according to the true diffusion limit. Then

|F⃗ | τ≫1−−→ c

3ρκR
|∇ER| , (1.38)

and the limiter must converge to

λlim
τ≫1−−→ 1

3 . (1.39)

In our numerical models, we usually use the flux limiter of Kley (1989) which is
specifically tailored for protoplanetary disks

λlim =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2

3 +
√

9 + 10R2
, for 0 ≤ R ≤ 2 ,

10
10R + 9 +

√
81 + 180R

, for 2 < R .
(1.40)

The FLD is a useful approximation, although it has its drawbacks. For example,
the transition between the optically thin and thick limit may not be accurately
described by the flux limiter. In practice, however, this usually makes the solution
unreliable only in relatively small regions because optically thin-to-thick transitions
tend to be abrupt in protoplanetary disks (e.g. the condensation front of dust
particles at the inner disk rim acts as an ‘instantaneous’ absorption barrier for
stellar irradiation; Isella & Natta 2005).
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Chapter 1. Planet formation and migration

Coupled gas energy equation. The introduction of radiation into the
model also affects the final form of Eq. (1.6). The photon group 1 (irradiating pho-
tons) contributes via the term Qirr (see 1.27). To account for the photon group 2
(thermal re-radiation), we can make use of the right-hand side of Eq. (1.32) which de-
scribes the sources and sinks of ER. To ensure the energy conservation, a sink/source
of ER must be a source/sink of ϵ, leading to [−ρκP (4σT 4 − cER)].

Finally, the energy conservation dictates that the viscous friction generates heat
as well, yielding the respective heat source (Mihalas & Weibel Mihalas 1984)

Qvisc = 2ρν
(

τ 2
rr + τ 2

θθ + τ 2
ϕϕ + 2τ 2

rθ + 2τ 2
rϕ + 2τ 2

θϕ − 1
3 (∇ · v⃗)2

)
, (1.41)

where τij are the components of T in spherical coordinates.
Eq. (1.6) therefore becomes

∂ϵ

∂t
+ (v⃗ · ∇) ϵ = −P∇ · v⃗ − ρκP

(
4σT 4 − cER

)
+ Qvisc + Qirr + Q+ , (1.42)

where Q+ symbolically denotes any additional problem-specific heat sources (such as
the accretion heating from luminous protoplanets) or implementation-specific heat
sources (such as the heating due to the shock-spreading artificial viscosity; Stone &
Norman 1992).

Opacity So far, we have defined 3 different opacity types (κ⋆, κP and κR)
entering the system of equations without providing any specifics on their calcula-
tions. In fact, the disk opacities represent one of the most significant unknowns and
are usually subject to specialised studies, ‘decoupled’ from hydrodynamic modelling
(e.g. Draine & Lee 1984; Lin & Papaloizou 1985; Bell & Lin 1994; Helling et al.
2000; Semenov et al. 2003; Zhu et al. 2009; Malygin et al. 2014; Woitke et al. 2016;
Birnstiel et al. 2018).

Since we are interested in planet formation, we focus on disk regions with low
enough temperatures to allow for the existence of dust grains. For a self-consistent
determination of the dust opacities, one would have to (e.g. Cuzzi et al. 2014):

• Determine the chemical composition of grains at various conditions (since the
temperature and density vary throughout the disk) and the fractional mass of
each constituent. Typically, the materials that need to be considered, ordered
from lowest evaporation temperatures, are: water ice, organics, graphite, sili-
cates (e.g. troilite, pyroxene, olivine), and iron (Pollack et al. 1994; Zhu et al.
2012).

• From laboratory measurements, extract the refractive indices (Bohren & Huff-
man 1983; Voshchinnikov 2004) for each constituent. For this purpose, it is
possible to utilise the database of dust optical properties from JENA labora-
tory4 (Jäger et al. 2003). Subsequently, effective refractive indices of grains,
which are usually mixtures of multiple constituents, need to be calculated, e.g.
using the effective medium theory (Ossenkopf 1991).

4https://www.astro.uni-jena.de/Laboratory/Database/databases.html
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1.1. Protoplanetary disks

• Calculate the absorption and scattering cross-sections as functions of the wave-
length and grain size using the Mie theory. Correct for the forward scattering.
This step can be performed with some publicly available numerical code, e.g.
bhmie5.

• Assemble monochromatic opacities by integrating over the size distribution of
dust grains. For a precise treatment of the size distribution, a standalone frag-
mentation/coagulation model would be necessary (e.g Birnstiel et al. 2012).

• Calculate the frequency-averaged opacities.

To avoid the steps above, it is customary to use pre-calculated opacity tables
which set the material opacity as a function of the local temperature and density.
Following Bitsch et al. (2013), we use the opacity table of Bell & Lin (1994) and we
set κR = κP = κ⋆ which is a valid approximation in optically thick and relatively
cold planet-forming regions. However, we emphasise that this approach, including
the averaging over frequencies, is rather simplistic and we refer the interested reader
to Kuiper & Klessen (2013) for a broader discussion of the approximations used in
the radiation physics of disks.

Radiative 1-temperature approximation

In the previous, we assumed the LTE between the matter and its local thermal emis-
sion, but generally we allowed the radiation field to decouple from gas. Sometimes
it is convenient to assume such a coupling which can reduce Eqs. 1.32 and 1.42 into
a single equation that might be easier to solve. According to the 1-temperature
approximation, it is possible to relate the radiation energy to the thermodynamic
temperature of gas and dust at any time

ER = 4σ

c
T 4 ≡ aRT 4 , (1.43)

where we defined the radiation constant aR. Further assuming that ∂ER/∂t ≪ ∂ϵ/∂t
(e.g. Kley et al. 2009), a direct sum of Eqs. (1.32) and (1.42) leads to

Dϵ

Dt
= −P∇ · v − ∇ · F⃗ + Qvisc + Qirr + Q+ , (1.44)

and the radiation flux becomes

F⃗ = −λlim
c

ρκR
4aRT 3∇T . (1.45)

We point out that a special care is needed when combining the stellar irradiation
term Qirr with the 1-temperature approximation because of the imposed coupling
between radiation and matter (Kuiper et al. 2010).

5See https://www.astro.princeton.edu/˜draine/scattering.html for a version written by
B.T. Draine.
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Chapter 1. Planet formation and migration

2D description

The 3D RHD model can be further simplified to 2D which can significantly reduce its
computational cost. This is highly desirable for global-scale long-term simulations
of planet-disk interactions. The transformation from 3D to 2D is generally allowed
because the dominant motion in disks is their in-plane sub-Keplerian rotation and
their structure in the vertical direction can decouple from the radial one. The
governing equations of a 2D model can be obtained from the 3D model by a vertical
integration and they formally look very similar:

∂Σ
∂t

+ (v⃗ · ∇) Σ = −Σ∇ · v⃗ ,

∂v⃗

∂t
+ (v⃗ · ∇) v⃗ = −∇P

Σ + ∇ · T
Σ + a⃗ext ,

∂ϵ

∂t
+ (v⃗ · ∇) ϵ = −P∇ · v⃗ + Qheat .

(1.46)

(1.47)

(1.48)

but one has to keep in mind that the resulting quantities now represent vertically-
integrated ones (e.g. Σ is the surface density), and that the dimensionality of vectors
and tensors is reduced. Moreover, there is a trade-off between this reduction and
model complexity. Most importantly, the stellar irradiation can no longer be treated
by ray tracing, radiative diffusion in the vertical direction can be modelled only
approximately, and the gravity of a thin disk acting on planets becomes notably
different compared to that of a 3D disk. A viable workaround to these difficulties
is to use vertically independent 1D models for radiation reprocessing (e.g. Hubeny
1990; Calvet et al. 1991; Chiang & Goldreich 1997; Isella & Natta 2005) and also
gas distribution (Müller et al. 2012).

Model variants used in Papers I–IV

For completeness, we briefly discuss the variants and modifications of the RHD
model outlined above which are used in Papers I–IV (Chapter 2). Papers I–III
utilise a 2D 1-temperature approach with the vertical cooling and stellar irradiation
based on a 1D model (Hubeny 1990; Menou & Goodman 2004). Additionally, a two-
fluid approximation is used with one fluid representing the gas (as in this section)
and the second one representing pebbles that can be accreted by embedded planets.
Planetary luminosities (e.g. Beńıtez-Llambay et al. 2015) resulting from pebble ac-
cretion are included as another source term in the energy equation. The approach of
Müller et al. (2012) is used to treat the gravity in planet-disk interactions. Systems
of multiple embryos are studied and their mutual interactions are resolved using the
Ias15 integrator (Rein & Spiegel 2015).

Paper IV is based on a 3D 2-temperature model where the irradiation is neglected
(although our implementation contains it). The accretion onto planets and accretion
luminosity are parametrised (pebbles are not incorporated in the model). Only a
single protoplanet is studied and we again account for its accretion luminosity.
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1.2. From dust to planets

Figure 1.6: Mass distribution of single exoplanets (green), systems of exoplanets (blue)
and protoplanetary disks (red for Mdust and yellow for Mdisk) as a function of the mass
of the host star. Displayed disks belong to the Lupus (empty circles) and Chamaeleon I
(empty squares) regions. Dashed lines are used for medians, coloured regions are bordered
by the 10th and 90th percentiles. It is obvious that the mass incorporated in many plane-
tary systems exceeds the currently observed dust mass in protoplanetary disks. Adapted
from Manara et al. (2018).

1.2 From dust to planets
With the observational and theoretical properties of protoplanetary disks in mind,
we can now proceed to the discussion of planet formation. Solid bodies within
disks are thought to grow by accretion, which is a sequence of processes that lead
to a constructive agglomeration of smaller objects into larger objects. In terms of
astrophysical scales, planetary accretion is a very puzzling phenomenon because it
appears to be extremely efficient and extremely fast.

As a manifestation of the speed of accretion, giant planets regularly occur in
extrasolar systems while the ages of gas disks are clearly limited to several Myr.
But for a giant planet to come into existence, it is fundamental that its solid core
(∼10 M⊕) is formed before the disk dispersal, otherwise the planet would never be
able to accrete a massive gaseous envelope (∼103 M⊕) (Pollack et al. 1996). In
other words, it is required that µm-sized dust grains are converted into bodies with
diameters of ∼103–105 km during several millions of years, within the lifetime of the
disk. For smaller planets of the terrestrial type, the formation might take longer
(in fact, formation of the solar-system terrestrial planets is considered to finish after
the gas dispersal), but at least planetary embryos precluding terrestrial planets must
already be assembled while the gas is still around (e.g. Kleine & Walker 2017).

Concerning the efficiency of accretion, recent observations revealed that the mass
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Chapter 1. Planet formation and migration

of solids incorporated in planetary systems appears to be comparable to the dust
mass observed in disks (Greaves & Rice 2010; Williams 2012; Najita & Kenyon
2014; Mulders et al. 2015; Manara et al. 2018). In fact, our current understanding
of accretion processes cannot yet sufficiently explain such an efficient conversion of
dust into planets (Manara et al. 2018), as demonstrated in Fig. 1.6. The discrepancy
probably arises because a substantial fraction of small solids in disks remains hidden
from observations, or because small solids possibly undergo efficient recycling and
replenishment from the surrounding environment. But even then, the growth of
planets has to be very efficient.

Finally, any planet formation theory should be able to answer why the planetary
systems are so diverse (see Fig. 1). By this diversity we mean a surprisingly frequent
occurrence of extrasolar systems that contain types of planets unknown from the
Solar System, e.g. close-in super-Earths, mini-Neptunes, or hot Jupiters.

1.2.1 Coagulation of dust to pebbles
The first step of the accretion sequence leads from dust grains to pebbles (mm-cm
particles). The process is known as coagulation and it is expected to proceed by
means of random pairwise collisions of dust grains which may end up being stuck
together via Van der Waals forces. However, both theoretical and experimental
investigations of the process discovered that its efficiency is limited by rather strict
mechanical and dynamical barriers. Let us now discuss the most important ones.

First, it is important to clarify what is the dynamical behaviour of solids orbiting
within the gas (see Fig. 1.7). A solid particle would orbit the star at the Keplerian
velocity vs = vK =

√
GM⋆/r. However, the orbital velocity of the gas disk is

slightly different. Since a gas parcel of the disk is in a force equilibrium between
the gravitational pull of the star, pressure support of the nearby gas and centrifugal
force, the characteristic orbital velocity of the gas is then slightly sub-Keplerian,
typically vg ≃ (1−η)vK where η = ∂ log P/∂ log r ∼ 0.001 represents the influence of
the (unperturbed) pressure gradient on the rotation of gas. Solid particles therefore
feel a headwind with the magnitude ηvK. This headwind results in a gas drag (Adachi
et al. 1976), i.e. in a force which tries to cancel the relative velocity vrel between
the gas and dust. The characteristic time for the drag to erase the relative velocity
is known as the stopping time ts, which is an important quantity that characterises
the dynamical response of the solid particle with respect to gas.

The stopping time acquires various functional forms, depending on the drag
regime relevant for a solid body of a given size a. If a < 9λ/4 where λ is the mean
free path of gas molecules, the drag is primarily produced by collisions of individual
molecules with the particle. This is known as the Epstein regime. If a > 9λ/4,
the collective fluid nature of molecules prevails and the drag operates in the Stokes
regime. The Stokes regime has its own sub-regimes, depending on whether the
flow around the solid body remains laminar or turbulent, as characterised by the
Reynolds number (e.g. Whipple 1972; Weidenschilling 1977). Usually, dust grains
and pebbles remain mostly in the Epstein regime, apart from the innermost disk
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Figure 1.7: Left: Cartoon of the gas drag mechanism. In the lower half of the cartoon,
the equilibrium of forces (black arrows) acting on a gas blob (red circle) is depicted. The
force balance renders the gas rotation sub-Keplerian (red arrow versus grey arrow). In
the upper half, various regimes of the aerodynamic coupling between the gas and a solid
particle (blue circle) are shown. Three cases are distinguished by the size of the particle
and its Stokes number. When τ ≪ 1, the particle synchronises with the gas. When τ ∼ 1,
the particle is still substantially decelerated (its velocity is not exactly Keplerian), yet it
does not synchronise with the gas. When τ ≫ 1, the particle orbits at the unperturbed
Keplerian velocity. Right: Drift timescale tdrift from 1 au towards the disk centre as a
function of the Stokes number of the drifting particle. The figure is constructed for disk
models with Σ ∝ r−1, T ∝ r−1/2, h/r = 0.03, and three turbulent parameters α = 10−2,
10−3 and 10−4 that set the accretion timescale of the gas. The fastest drift occurs for
τ ∼ 1. Adapted from Armitage (2015).

regions where the increase in gas density leads to a decrease in λ. On the other
hand, planetesimals are influenced by the Stokes regime.

Focusing on the Epstein regime, the stopping time can be expressed as

ts = ρsa

ρgvth
, (1.49)

where ρs and ρg are volume densities of the solids and gas, respectively. The mean
thermal velocity of gas vth is comparable to cs. The deceleration acting on solids is
simply

a⃗d = − v⃗rel

ts
, (1.50)
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while the back-reaction of gas has a reversed sign and scales with the ratio Σs/Σg.
Under normal circumstances the dust-to-gas ratio is ∼0.01 and the dust is not
abundant enough to affect the gas.

Aerodynamic response of solids is often characterised by the dimensionless stop-
ping time known as the Stokes number

τ = tsΩK . (1.51)

It defines three classes of behaviour, as also highlighted in Fig. 1.7. If τ ≪ 1, any
velocity difference between the dust and gas is damped within a single Keplerian
orbit. The particle is tightly coupled to the gas flow. This coupling is characteristic
for the smallest dust grains. If τ ≫ 1, the particle feels almost no influence of the gas
drag and it becomes decoupled from gas motions. If τ acquires intermediate values,
the particle feels a significant deceleration, yet it does not have enough time to
synchronise its orbital velocity with that of gas. As a result, the deceleration forces
the particle to loose its orbital momentum and follow a spiral trajectory leading
towards the star. Particles with intermediate τ collectively drift through the gas
disk and the most significant drift appears when τ ∼ 1. The radial drift velocity is
(e.g. Nakagawa et al. 1986)

vr ≃ − 2τ

1 + τ 2 ηvK , (1.52)

from which we see that the only way to stop the radial drift is by a reversal of the
pressure gradient (η < 0 makes the rotation of gas super-Keplerian so that it traps
solids drifting from outside).

Apart from the radial drift, the drag also leads to vertical settling of small par-
ticles towards the midplane of the disk. Equating the drag force to the vertical
component of the stellar gravity (Fg,z = mΩ2

Kz) leads to the terminal settling veloc-
ity (e.g. Armitage 2010)

vz = ρsa

ρgvth
Ω2

Kz , (1.53)

and the settling timescale tset = z/vz. A natural question arises whether the dust
settling can create a strong overdensity of solids in the midplane or not. The answer
is negative (Weidenschilling 1980): such an overdensity would eventually spun up
the gas in the midplane into Keplerian rotation due to the drag back-reaction. This
would create a layer prone to Kelvin-Helmholtz turbulence between the Keplerian
gas in the midplane and the slowly rotating unperturbed gas at larger |z|. The
turbulence would therefore prevent ‘infinite’ sedimentation. Moreover, if the disk
is turbulent due to other hydrodynamic instabilities, dust settling is opposed by
turbulent mixing.

Coming back to the radial drift, Weidenschilling (1977) demonstrated that its
velocities can be substantial, reaching ∼104 cm s−1 for τ ∼ 1 near 1 au of the MMSN.
Therefore the drift has important implications for coagulation because once grains
grow to mm- and cm-sizes, their τ inevitably approaches ∼1 and they eventually
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Figure 1.8: Left: Diagram of outcomes of pairwise collisions between dust grains. The
individual regions represent fragmentation (F), erosion (E), mass transfer (MT), bouncing
(B), the transition from sticking to bouncing (SB) and sticking (S). Only the cases from
green regions lead to a net mass growth of the larger grain. It is evident that for an initial
population occupying the lower left corner of the diagram, it would be difficult to grow
beyond the bouncing barrier. The displayed result of a dust-size evolution model was
obtained at 3 au for parameters Σg = 330 g cm−2 (MMSN), T = 115 K, dust-to-gas ratio
0.01, α = 10−3, ρs = 1.6 g cm−3. Adapted from Windmark et al. (2012). Right: Surface
density of dust grains (grey scale) as a function of the grain size and radial distance. The
dark-grey isosurface corresponds to ∼10−1 g cm−2, the white isosurface to ∼10−7 g cm−2.
The fragmentation-limited size (Eq. 1.55) is depicted by the solid line, the drift-limited
size (Eq. 1.54) by the dashed line. The dash-dotted line corrects the drift-limited size for
a delayed drift of small grains from outer regions. The disk model accounts for the viscous
evolution (Birnstiel et al. 2010) with α = 10−3 and the displayed snapshot is taken at
1 Myr. Adapted from Birnstiel et al. (2012).

start to drift towards the star. If the drift timescale td at the given location becomes
shorter than the timescale tg of the growth by coagulation, the size distribution of
solids becomes truncated and the pebble sizes cannot be exceeded. Using the growth
rate of monodisperse coagulation (Brauer et al. 2008), Birnstiel et al. (2012) derived
the maximum size that can be reached before the drift prevents further growth as

ad ≃ 2
π

Σd

ρs

v2
K

c2
s

(
∂ log P

∂ log r

)−1

, (1.54)

where Σd is the surface density of dust.
Yet another barrier for the growth of dust beyond pebble sizes is related to

fragmentation. As two grains collide, they do not always stick together. If their
relative velocity is large enough, the collision might be disruptive, leading to a
mass loss or a complete destruction of the participating grains. The increase of the
relative velocity can be facilitated by turbulence, or by the differential drift speed
of grains with various sizes and Stokes numbers. Birnstiel et al. (2012) provides the
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fragmentation-limited maximum size as

af ≃ 2
3π

Σg

ρsα

v2
f

c2
s

, (1.55)

where vf is the fragmentation velocity which is thought to range from ∼1 to 10 m s−1

(Blum & Wurm 2000, 2008; Wada et al. 2009; Güttler et al. 2010; Gundlach & Blum
2015). The upper limit is required in the outer cold regions of protoplanetary disks
to disrupt water-ice coated grains that have larger surface energies (Gundlach &
Blum 2015). Lower impact velocities are sufficient for silicate grains.

The remaining obstacle is known as the bouncing barrier. If dust grains undergo
compactification during their collisional history, the filling factor of their aggregate-
like structure increases. Subsequently, colliding compactified grains have a tendency
to bounce rather than stick together (Blum & Münch 1993; Weidling et al. 2009;
Zsom et al. 2010).

In Fig. 1.8, we show a typical outcome of a local coagulation/fragmentation
model (left panel; Windmark et al. 2012) and a global model with viscous evolution
(right panel; Birnstiel et al. 2010, 2012). The figure demonstrates that owing to the
bouncing barrier, it is difficult for dust grains to grow beyond mm-sizes in the inner
disk. Even if the bouncing barrier is exceeded, the fragmentation barrier halts the
growth at cm-sizes. In regions outside ∼10 au, the grain sizes are drift-limited and
peak at ∼10 cm. Finally, it is clear that most of the dust surface density tends to
reside in the largest available pebbles.

1.2.2 Planetesimal formation induced by turbulence
Since the nature of the aforementioned size barriers is physically simple, robust
and hard to overcome, it seems that the accretion sequence has to continue beyond
pebbles by directly building km-sized planetesimals. Such an abrupt increase in the
size of solids can be indeed facilitated by gravitational collapse.

A first insight into the stability of a dust layer can be provided by a perturba-
tion analysis for a planar, self-gravitating dust slab. Using linearised fluid equations
(Safronov 1969) of continuity and momentum (e.g. Chiang & Youdin 2010), neglect-
ing the influence of gas and working within the WKB approximation (e.g. Binney &
Tremaine 2008), a dispersion relation for the angular frequency ω of perturbations
can be found (Goldreich & Lynden-Bell 1965):

ω2 = c2
sk

2
r − 2πGΣd|kr| + κ2 , (1.56)

where kr is the radial wavenumber (the approximation focuses on axisymmetric
modes) and κ is the epicyclic frequency. The relation implies that wave-like per-
turbations with short wavelengths are stabilised by pressure, long wavelengths are
stabilised due to rotation, and self-gravity can lead to an instability if (Toomre 1964)

Q ≡ csκ

πGΣd
< 1 , (1.57)
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which is the well-known Toomre’s criterion. Knowing that κ ≃ ΩK, we can estimate
the critical midplane volume density ρcrit by plugging ρcrit ≃ Σd/(

√
2πH) and H ≃

cs/ΩK into the criterion. One finds that for densities of the solid layer (Chiang &
Youdin 2010)

ρ0 ≳ ρcrit = M⋆

π
√

2πr3
≈ 10−7

(
r

au

)−3
g cm−3 , (1.58)

a collapse is triggered. However, such a particle concentration is not easily estab-
lished in protoplanetary disks; the density of the solid layer predicted by the MMSN
is typically three or four orders of magnitude below the critical threshold (assuming
the dust-to-gas ratio 0.01).

Over the past two decades, however, several processes have been suggested which
can locally boost the solid-to-gas ratio and create a particle concentration which is
prone to gravitational collapse. The processes include:

• small-scale vortices in turbulent disks (Cuzzi et al. 2001, 2008; Pan et al. 2011);
• pressure bumps which can be created, e.g., by dust evaporation at a snow line

(Ida & Guillot 2016; Drażkowska et al. 2016; Schoonenberg & Ormel 2017);
• large-scale vortices which can arise by means of the baroclinic instability

(Klahr & Bodenheimer 2003) or the Rossby wave instability at the edge of
the dead and active zone (Lyra et al. 2009);

• zonal flows which are launched in MRI-active disks with large-scale variations
of the turbulent parameter α (Johansen et al. 2006, 2009; Simon et al. 2012;
Dittrich et al. 2013);

• streaming instability, discussed in the following.

Streaming instability. Solid particles can start accumulating even if the
disk is initially laminar and without pressure bumps. Youdin & Goodman (2005)
demonstrated that if the two-way coupling via the linear drag term is included in
the set of two-fluid equations describing the mixture of gas and dust, the inevitable
radial drift triggers linearly unstable modes (see also Jacquet et al. 2011). The
minimal set of equations which lead to the instability reads (e.g. Chiang & Youdin
2010)

Dgρg

Dt
= 0 ,

Dgv⃗g

Dt
= −Ω2

Kr⃗ + ρ̃s

ρg

v⃗s − v⃗g

ts
− ∇P

ρg
,

Dsρ̃s

Dt
= −ρ̃s∇ · v⃗s ,

Dsv⃗s

Dt
= −Ω2

Kr⃗ − v⃗s − v⃗g

ts
,

(1.59)

(1.60)

(1.61)

(1.62)

where the subscripts ‘s’ and ‘g’ are used for solid particles and gas, respectively.
The notation ρ̃s is used to distinguish the density of the ‘fluid of particles’ from the
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Figure 1.9: Example of a numerical simulation of the streaming instability. The loga-
rithmic colour scale represents the relative density of a layer of solids (with respect to the
mean density). The simulation time increases from top left to bottom right. The simula-
tion treats the gas using isothermal hydrodynamics and solids as individual particles with
self-gravity (Simon et al. 2016). A 3D shearing box with the edge length 0.2 H is resolved
by 1283 cells. In total, 2.4 × 106 particles with τ = 0.3 and the solid-to-gas ratio 0.02
are initially included. The streaming instability develops into non-linear perturbations
which concentrate the particles into filaments. Self-gravitational clumping of the densest
filaments is triggered and forms several planetesimals (red dots) with the maximum mass
corresponding to ≃ 0.2 MCeres. Adapted from Simon et al. (2016).

previously used material density of solids ρs. The respective Lagrangian derivatives
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are defined as
Ds/g•

Dt
= ∂•

∂t
+
(
v⃗s/g · ∇

)
• . (1.63)

The model neglects self-gravity, vertical component of the gravity (vertical stratifi-
cation), and ts is assumed constant as well as ρg, which implies the gas is treated in
the incompressible limit (Eq. 1.59; ∇ · v⃗g = 0). Despite the absence of self-gravity,
the dispersion relation obtained by Youdin & Goodman (2005) uncovers unstable
modes driven by the relative drift of the two fluids. The instability leads to clumping
of solid particles.

From the mathematical point of view, the particle clumping occurs due to the
back-reaction term in Eq. (1.60). Since ρg and ts are treated as constants, only
variations of ρ̃s can compensate for the streaming term v⃗s − v⃗g. The energy of the
relative (streaming) motion can only be extracted by particle clumping (Goodman &
Pindor 2000; Youdin & Goodman 2005) and thus the process was named the stream-
ing instability. Heuristically, the instability can be understood from the collective
behaviour of drifting particles6.

The instability tends to create a filamentary network of concentrated particles
(Johansen & Youdin 2007; Bai & Stone 2010), as shown in Fig. 1.9. The filaments
can become subject to gravitational collapse and directly form planetesimals (Jo-
hansen et al. 2007) with characteristic sizes of the order of ∼100 km (Johansen et al.
2015; Simon et al. 2016). This channel of planetesimal formation is therefore in
accordance with primordial populations inferred from collisional models of the main
asteroid belt (Morbidelli et al. 2009) and the Kuiper belt (Lambrechts & Morbidelli
2016).

Additionally, Kuiper belt objects are often observed to exist in binary configu-
rations (Noll et al. 2008) and the primordial fraction of binaries might have been as
large as 100% (Parker & Kavelaars 2010; Nesvorný et al. 2011; Fraser et al. 2017).
Nesvorný et al. (2010) demonstrated that the gravitational collapse, such as the one
triggered by the streaming instability, naturally produces a binary planetesimal.
The streaming instability and gravitational collapse therefore represent a promising
explanation of the origin of binaries in the Kuiper belt. It was also proposed that the
properties of comet 67P/Churyumov–Gerasimenko can be naturally explained if the
comet was formed by the streaming instability and a gentle collapse of participating
solids (Blum et al. 2017).

However, the streaming instability is still limited by several drawbacks. The
particles which trigger the unstable modes with the fastest growth rate are found
to be dm-sized. But these sizes can scarcely be reached given the coagulation size

6Imagine a small clump of solids moving through the gas. The particles at the front of the
clump feel a stronger headwind than particles deeper within the clump. The front particles are
therefore decelerated more efficiently and the clump becomes more compact. The positive feedback
than occurs because the compact clump accelerates the gas and then the radial drift velocity of
the clump becomes smaller compared to isolated particles. If such isolated particles exist outside
the orbit of the clump, they eventually catch up with the clump due to their larger radial drift
velocities. This way the local concentration of solids increases.
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limits discussed in Sect. 1.2.1. For small mm-sized chondrules, which are found in
primitive meteorites, the streaming instability can only be triggered if the initial
dust-to-gas ratio exceeds 4% (Yang et al. 2017). Further work is therefore needed
to fully assess the importance of the streaming instability.

1.2.3 Growth of planets by pebble accretion

Why not planetesimal accretion?

Once a population of planetesimals is formed, pairwise low-velocity collisions (such
that they do not shatter the bodies; e.g. Stewart & Leinhardt 2009) can eventually
lead to formation of protoplanets. The process is known as planetesimal accretion.
A collision occurs if one planetesimal approaches another with an impact parameter

b ≤ πR2
p

(
1 + v2

esc
v2

rel

)
, (1.64)

where vesc = (2GMp/Rp)1/2 is the mutual escape velocity and we assumed that the
masses and radii of colliding planetesimal are the same (Mp, Rp). In Eq. (1.64), the
geometrical cross-section is enhanced by the gravitational attraction of approaching
bodies (the bracketed term is known as the gravitational focusing factor fg).

The gravitational focusing can lead to two very distinct regimes of planetesimal
accretion known as the runaway and oligarchic growth. The former appears if the
population of planetesimals is dynamically cold, such that vrel ≪ vesc and fg ≃
(vesc/vrel)2. If this is the case, even small initial differences in the mass distribution
will start to increase exponentially, leading to a swift growth of the initially most
massive bodies into larger ones (Greenberg et al. 1978; Wetherill & Stewart 1989).
The oligarchic growth, on the other hand, operates when vrel ≳ vesc and fg ∼ 1.
Such a limit halts the increase of relative mass ratios within the population and the
largest bodies continue to grow almost in an orderly fashion (Kokubo & Ida 1998,
2000).

The nature of planetesimal accretion is such that the aforementioned regimes
lead to a low diversity of possible outcomes. The following caveats arise which make
the importance of planetesimal accretion rather questionable:

• If the planetesimal population is initially in the runaway growth mode, largest
bodies increase the relative velocities of planetesimals that miss them during
close encounters. This dynamical stirring of the population leads to vrel ∼ vesc
and prevents further runaway growth (Ida & Makino 1993).

• The previous caveat might be circumvented if the majority of planetesimals is
at most km-sized. Then the Stokes gas drag would circularise their orbits and
keep vrel sufficiently low. However, as we discussed in the previous section,
planetesimals were probably born large. For 100-km bodies, the Stokes drag
is no longer important and the runaway growth cannot be maintained.
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• Sooner or later, planetesimal accretion switches into the oligarchic regime. Its
typical outcome comprises of several (or several tens of) protoplanets with
relatively similar masses. These final masses are usually not large; the isola-
tion mass for planetesimal accretion in the inner disk is comparable to Mars
(∼0.1 M⊕ Lissauer 1987; Kokubo & Ida 2000). The isolation mass can become
larger in the outer disk but at the same time, the longer orbital timescales
lead to too long accretion timescales (since two planetesimals have a chance
to collide only once per orbit). This poses a great difficulty for a successful
explanation of the Solar System which exhibits a clear dichotomy between the
inner terrestrial bodies and outer gas/ice giants.

• Adding to the previous issue, Levison et al. (2010) demonstrated with a robust
set of models that the planetesimal accretion fails to produce giant planet
cores in 90% of cases. The reason is that planetary embryos efficiently repel
planetesimals away from their orbit rather than accrete them. Once the region
around an embryo’s orbit is devoid of any building material, planetesimals
cannot repopulate it because their migration is not sufficient. The growth of
embryos is then inevitably stalled.

Accretion from a swarm of pebbles

When first planetesimals form from collapsing clumps of pebbles (Sect. 1.2.2), they
remain embedded in a sea of leftover pebbles which did not participate in the col-
lapse. Additionally, pebbles from outer disk regions drift past the planetesimals.
What happens to this leftover material? It turns out that it can be efficiently ac-
creted by the planetesimals by the process known as pebble accretion (Ormel &
Klahr 2010; Lambrechts & Johansen 2012). This way, the growth can proceed all
the way to protoplanets.

Pebble accretion is yet another phenomenon which is facilitated by gas drag.
Imagine a pebble passing a substantially larger body of mass Mp. Since pebbles
are understood as efficient drifters, with their Stokes numbers close to unity, they
are strongly influenced by the drag. It the pebble becomes deflected from an un-
perturbed trajectory by the massive body, its velocity vector becomes tilted with
respect to the flow of rotating gas and the influence of gas drag is amplified and
the orbital energy of the pebble is dissipated. As a result, the pebble can become
captured and accreted by the gravitating body since the effective cross-section for
the capture is enhanced by the gas drag.

To review the basic regimes of pebble accretion, we follow Ormel (2017). We
define the encounter time

tenc = 2b

vrel
, (1.65)

as the interval over which the pebble experiences the strongest deflection. The time
it takes for a particle to descend onto the planet is referred to as the settling time
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and it reads
tset = b

vset
= b3

GMpts
, (1.66)

where the settling velocity is derived from the gravitational acceleration GMp/b2

acting at the separation b over the stopping time ts (Eq. 1.49). The necessary
conditions for the pebble to become accreted are ts < tenc and tset < tenc. It is
important to realise that although very small particles with small ts easily fulfil
the first condition, it is difficult for them to meet the second condition (due to the
strong aerodynamic coupling, they are carried away by the gas flow before they can
settle onto the accreting body). Conversely, large particles with large ts can quickly
settle onto the accreting body but the gas drag is not important for them and thus
the cross-section of the interaction remains too small. Usually, an optimal size of
pebbles exists for which the accretion is the most efficient.

Although several regimes of pebble accretion exist (Ormel & Klahr 2010; Ormel
& Kobayashi 2012), we emphasise the two which become the most important for
the planetary growth: the Bondi regime (headwind-dominated) and the Hill regime
(shear-dominated; Lambrechts & Johansen 2012). They differ in the size of the
gravitational deflection radius which is either the Bondi radius

RB = GMp

v2
rel

, (1.67)

or the Hill radius

RH =
(

GMp

3Ω2
K

)1/3

, (1.68)

whichever is smaller.
The accretion cross-section is then determined by the relative velocity of the

incoming pebble
vrel = vhw + vshear ≃ ηvK + 3

2ΩKb , (1.69)

which consists of two components related to the local headwind and Keplerian shear.
If the gravitational deflection radius is RB, the pebbles which can possibly become
accreted are those with relatively small impact parameters (b ≤ RB < RH). For these
small orbital separations, the shear component of the relative velocity is negligible
and vrel is set by the local disk headwind vhw. Equating tenc ≃ 2b/vhw to tset leads
to

b ≃
√

2GMpts

vhw
≃ RB

√
τ

tBΩK
≡ Reff,Bondi , (1.70)

where τ is the Stokes number and we defined the crossing time of the Bondi radius
tB = RB/vhw.

If the deflection radius is RH, vrel is dominated by its shear component vshear.
The encounter timescale can now be estimated as the dynamical orbital timescale
tenc = Ω−1

K and equating it again to tset implies

b ≃
(

GMpts

ΩK

)1/3
≃ τ 1/3RH ≡ Reff,Hill . (1.71)
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Figure 1.10: Map of the collision factor (given by coloured isocontours and isolevels),
i.e. the ratio of the pebble accretion cross-section to the geometric cross-section. The
pebble properties (radius and Stokes number) are given by the horizontal axes, the size or
mass of the accreting body is displayed on the vertical axis. The dashed line delimits the
gravitational focusing (lower half) from the Bondi and Hill regimes (upper half). Adapted
from Ormel (2017).

The obtained cross-sections of pebble accretion imply that in the most favourable
case, all pebbles which enter the Hill sphere radius of the growing body become ac-
creted. This demonstrates why pebble accretion can be so efficient compared to
planetesimal accretion: the Hill sphere radius is much larger than both the geomet-
rical and gravitationally-focused cross-sections. Fig. 1.10 demonstrates the increase
of the accretion radius for a wide range of masses and pebble properties. Fig. 1.11
shows trajectories of pebbles which are being accreted in the Hill regime.

The accretion rate further depends on the level of sedimentation of pebbles to-
wards the midplane. If their characteristic scale height Hpeb = H

√
α/τ (Youdin &

Lithwick 2007) is smaller than Reff , they are being accreted in a 2D regime from a
thin layer (e.g. Morbidelli et al. 2015; Johansen & Lambrechts 2017)

Ṁpeb,2D = 2ReffvrelΣpeb . (1.72)
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Figure 1.11: Trajectories of pebbles accreted in the Hill regime. The black circle shows
the Hill sphere radius RH of the accreting body. Three types of pebbles are shown: loosely
coupled (τ ≫ 1) incoming from x > 0, y > 0 (blue curves); optimally coupled (τ = 1)
arriving from x < 0, y < 0 (red curves); strongly coupled (τ = 0.1) arriving from x < 0,
y < 0 (orange curves). We see that loosely coupled pebbles are mostly scattered, but
optimally and strongly coupled pebbles are accreted from a substantial fraction of the Hill
sphere. Adapted from Johansen & Lambrechts (2017).

If, on the other hand, the pebbles become strongly vertically stirred, their accretion
rate becomes

Ṁpeb,3D = πR2
effvrelρpeb . (1.73)

Next, it is important to discuss whether pebble accretion suffers from a reservoir
depletion or not. It turns out that if there is an ongoing coagulation in the disk
which converts the dust grains into pebbles, the radial drift of pebbles produces
a pebble flux through the disk. According to Lambrechts & Johansen (2014), the
peak mass flux in pebbles can be of the order of ∼ 10−4 M⊕ yr−1. However, only
some of the pebbles from this flux can be accreted because their drift is sometimes
so fast that they do not have an opportunity to encounter the accreting body during
the orbital crossing (Morbidelli & Nesvorný 2012; Ormel & Kobayashi 2012; Guillot
et al. 2014). The fraction of captured pebbles is referred to as the filtering factor
and it can be estimated as (Lambrechts & Johansen 2014)

ffilt ≃ 0.034
(

τ

0.1

)−1/3
(

Mp

M⊕

)2/3 (
r

10 au

)−1/2
. (1.74)
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Figure 1.12: Surface density of pebbles in a disk region containing three accreting super-
Earths. With the exception of shallow gaps created by pebble accretion, the radial flux of
pebbles (2 × 10−4 M⊕ yr−1) maintains a relatively smooth profile of the pebble disk and
brings new material towards protoplanets. From Paper I.

This implies that the growth of a system of multiple protoplanets by pebble ac-
cretion can be non-trivial if, for example, the outer protoplanets start to drain
the pebble flux too efficiently. Additionally, if the eccentricities and inclinations of
protoplanets become excited, the relative velocities between the pebbles and proto-
planets inevitably undergo variations which can affect the accretion efficiency (e.g.
Johansen & Lambrechts 2017; Liu & Ormel 2018; Lambrechts et al. 2019). Despite
these complexities, it is much easier to refill the surroundings of accreting bodies
with a new building material in the framework of pebble accretion compared to plan-
etesimal accretion. This is shown in Fig. 1.12 where three accreting super-Earths
create shallow gaps in the surface density of pebbles, but the radial flux of pebbles
maintains the mean surface density in a steady state.

Knowing that the efficiency of pebble accretion can be substantial, it is natural
to ask what limits the final masses of planets that can be assembled this way. It
turns out that the growth of planets by pebble accretion is self-limiting. When the
planetary mass reaches a certain critical value, slightly exceeding the mass of a giant
planet core, it starts to perturb the surrounding gas disk in a way that a pressure
bump is formed outside its orbit. Within the pressure bump, the gas disk rotates at
a super-Keplerian velocity and it therefore blocks the radial flux of pebbles which
pile up there. When it happens, the planet is said to reach the pebble isolation mass,
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Figure 1.13: Growth of two planetary embryos located inside (green) and outside (red)
the water-ice line, according to the model of Morbidelli et al. (2015). Near the outer
embryo, there is a radial flux of icy pebbles (τ ≃ 0.03) with 2 × 10−4 M⊕ yr−1. Near the
inner embryo, the mass flux and Stokes numbers are reduced. Consequently, the growth
of the outer embryo is faster. The outer embryo reaches the pebble isolation mass ≃20 M⊕
at ≃1.75 Myr. Adapted from Morbidelli et al. (2015).

which is approximately (Lambrechts et al. 2014)

Miso ≈ 20
(

a

5 au

)3/4
M⊕ . (1.75)

The formula was further improved by 3D simulations of Bitsch et al. (2018) and
Picogna et al. (2018).

Pebble accretion was successfully applied to explain the short growth timescale
of giant planet cores (Lambrechts & Johansen 2014), the assembly of the outer solar-
system planets (Levison et al. 2015) as well as of the pre-terrestrial embryos (Levison
et al. 2015; Morbidelli et al. 2015). It naturally reproduces the dichotomy between
the embryos born in the inner and outer Solar System if one takes into account
that the water-ice snowline decreases the flux of pebbles by a factor of ∼2 and the
size of pebbles by a factor of ∼10 (Morbidelli et al. 2015). Pebble accretion rates
are then much larger in the outer Solar System and produce more massive objects,
as shown in Fig. 1.13. Additionally, pebble accretion became a key component of
many models oriented on explanation of exoplanetary systems (e.g. Chambers 2016;
Matsumura et al. 2017; Bitsch et al. 2019,; Ida et al. 2019; Schoonenberg et al. 2019).

1.3 Types of planetary migration
So far, we have discussed how to create planets in terms of mass accumulation. But
the properties of newborn planets are determined by more than just their ability
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to grow. Their orbital evolution is equally important because it determines the
configuration and stability of the entire planetary system.

A process during which the semimajor axis of a planetary orbit changes in time
is called planetary migration. Since several such processes seem to be plausible,
the theoretical consensus is that planets are almost never born at the location of
their present-day orbits. However, there is much less agreement on which types of
migration are the most important and how exactly they relate to one another. This
is simply because we only see the result of migration, not the initial conditions. Let
us briefly summarise the main migration mechanisms:

• Migration in a gas disk is driven by gravitational interactions between the disk
and the planet. More specifically, it is the angular momentum exchange which
drives the evolution of the planetary semimajor axis. Depending on the planet
mass, several regimes can be recognised.

– Type I migration occurs for low-mass planets which do not change the
structure of the disk on a global scale (they are incapable of gap opening;
see Crida et al. 2006). It is typically dominant for sub-Saturn masses. It
can be both inward or outward, depending on conditions within the disk
and also on an interplay of viscous and radiative processes.

– Type II migration replaces Type I migration if (i) the Hill sphere of
the planet becomes comparable to the disk thickness, and (ii) the tidal
torques exerted by the planet onto the disk operate on a timescale which
is shorter than the viscous evolution timescale. The planet then opens a
gap in the gas disk along its orbit. Type II migration tends to be directed
inward (but see e.g. Hallam & Paardekooper 2018).

– Type III refers to a mechanism which can lead to a runaway migration.
Under specific conditions, the migrating planet can trap a part of the disk
material within its horseshoe region and generate a coorbital mass deficit.
Type III migration usually occurs for Saturn-mass planets capable of
partial gap opening. It is directed inwards (under normal disk conditions)
and it can halve the semimajor axis within several tens of orbits.

Migration in gas disks serves as a possible explanation for the origin of several
classes of extrasolar planets, e.g. hot Jupiters (Lin et al. 1996) or close-in
super-Earths (Cossou et al. 2014; Coleman & Nelson 2016). It might have
also occurred for solar-system giant planets (Walsh et al. 2011).

• Planet-planet interactions in the protoplanetary disk can lead to locking of
migrating planets in mutual mean-motion resonances. The migration of such
a resonant convoy then becomes modified because of the resonant eccentricity
pumping (e.g. Cossou et al. 2013; Pierens et al. 2013). Also after the disk dis-
persal, planet-planet interactions can lead to mutual scattering during close
encounters (e.g. Lega et al. 2013). This process can abruptly modify the semi-
major axes of the involved planets and also their eccentricities or inclinations.
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It is possible that the eccentric giant exoplanets are the remnants of such
encounters (Rasio & Ford 1996; Weidenschilling & Marzari 1996; Lin & Ida
1997).

• Migration in a pebble disk may arise due to strong azimuthal asymmetries
within a flow of pebbles scattered by a planet (Beńıtez-Llambay & Pessah
2018). However, the importance of this migration regime strongly depends on
the, a priori unknown, pebble-to-gas mass ratio.

• Migration in a planetesimal disk can operate after the dispersal of the gas disk.
If a significant number of leftover planetesimals, which failed to accumulate
into larger objects, remain in the system, their gravitational interactions with
planets might cause a migration. There seems to be a convincing evidence
in the orbital structure and collisional history of the Solar System that giant
planets underwent the migration driven by a disk of trans-Neptunian planetes-
imals (e.g. Malhotra 1993; Tsiganis et al. 2005; Levison et al. 2007; Nesvorný
& Morbidelli 2012).

This thesis is focused on early migration of low-mass protoplanets which are still
embedded in a substantially massive gas disk. Such a setup promotes the impor-
tance of Type I migration and also planet-planet interactions (provided that the
planetary system becomes closely packed). Since the outcome of Type I migration
is determined by a complicated interplay of several hydrodynamic phenomena, we
discuss them in detail in the following Sect. 1.4 to provide a background for our
results presented in Chapter 2.

1.4 Type I migration

Torque and migration rate

A planet is said to be migrating when its orbital semimajor axis evolves as a con-
sequence of gravitational interaction with a protoplanetary disk (e.g. Masset 2008;
Lubow & Ida 2010; Kley & Nelson 2012; Baruteau & Masset 2013; Baruteau et al.
2014). This is not surprising; after all, the disk masses are of the order of ∼10−2 M⊙
and their gravitational influence on the embedded protoplanets is considerable.

The key quantity determining the outcome of migration is the torque Γ of the
gravitational forces exerted by the disk on the protoplanet. To show that, let us
consider that the protoplanet is formed on a circular orbit (a reasonable assumption
since the planet-forming disk undergoes, on average, circular rotation). Its orbital
angular momentum is

L = Mpa2
pΩp = Mp

√
GM⋆ap , (1.76)

where ap denotes the semimajor axis, Mp is the planet mass, and Ωp it the Keplerian
frequency of the planet. A temporal change of L implies a reconfiguration of the
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semimajor axis. The change of the angular momentum can only be caused by a
disturbing force with a non-zero torque

dL

dt
= Γ . (1.77)

When the gravitational pull of the disk acts on the planet with Γ ̸= 0, the corre-
sponding rate of change of the semimajor axis, referred to as the migration rate, is

dap

dt
= 2Γ

MpapΩp

circ.= 2T
Ωp

. (1.78)

where the equality on the right-hand side corresponds to the Gauss perturbation
equation and T is the transversal acceleration (parallel or antiparallel with the
orbital velocity). From Eq. 1.78, we see that a negative torque leads to shrinking of
ap, which is called the inward migration, and a positive torque leads to the opposite
outward migration for which ap grows.

The migration timescale τmig is defined as a time interval ∆t after which ∆ap =
−ap, leading to

τmig = − L

2Γ . (1.79)

The negative sign is chosen so that Γ < 0 leads to τmig > 0, implying a finite
migration timescale (Papaloizou & Larwood 2000).

The torque (in a 2D disk) can be generally computed as (e.g. Kley & Nelson
2012)

Γ =
∫

disk

Σ (r⃗p × a⃗g) dS =
∫

disk

Σ (r⃗p × ∇Φp) dS =
∫

disk

Σ∂Φp

∂θ
dS , (1.80)

where r⃗p is the planet’s position vector, a⃗g is the specific gravitational acceleration
arising from a disk element and Φp is the planet’s potential. In a homogeneous disk
with only radially varying Σ = Σ(r), Γ would vanish because the contribution of
each two gas parcels at θp + ∆θ and θp − ∆θ would cancel out. Clearly, for a disk
to exert a non-zero torque, there has to exist some azimuthal asymmetry in the gas
density distribution with respect to the planet.

In (1.80), the contribution of different gas parcels to the total torque is additive.
One can thus determine the total torque (and thus the planet’s migration rate) by
identifying all processes capable of perturbing the azimuthal symmetry of the disk
and then combining their independent torque contributions to a simple sum. The
rich environment of protoplanetary disks can sustain several asymmetries that can
possibly contribute to Type I migration. We summarise them below before diving
into details.

Contributing effects

Resonant torques. First and foremost, the basic interaction of a rotating
gas disk with an embedded planet is the angular momentum exchange at the or-
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Figure 1.14: Basic features of planet-disk interactions. The colour scale shows the
perturbed gas density in the midplane of a 3D RHD simulation. The planet Mp = 3 M⊕ is
positioned at x = 5.2 au, y = 0 au. Top: View of the entire modelled disk annulus. Spiral
arms propagating through the disk are apparent. Bottom: Close-up of the planetary
surroundings. The black circle corresponds to the Hill sphere. By calculating the gas
streamlines (green curves), it is possible to identify the horseshoe (corotation) region of the
planet. It is delimited from the inner and outer circulating streamlines by the separatrices
(orange curves). The orange arrows indicate the flow direction relative to the planet (in
an inertial frame, the planet would orbit counter-clockwise). Simulation taken from Paper
IV.
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bital resonances. It is always present as a natural consequence of the planet-disk
gravitational coupling.

Similarly to the motion of a test particle in the 3-body (star-planet-particle)
problem, the trajectory of a gas parcel is dominated by the primary mass. The
gravity of the secondary represents a perturbation which is only important at small
separations (roughly within the planet’s Hill sphere) or at resonant locations that
can exist even at larger separations. As first realised by Goldreich & Tremaine
(1979), the major angular momentum exchange occurs at the Lindblad and the
corotation resonances (see Fig. 1.14), producing two basic components of the Type
I torque (e.g. Baruteau & Masset 2013):

• Differential Lindblad torque arises when a gas parcel on a circulating trajec-
tory (with respect to the planet) crosses the Lindblad resonance (usually at a
supersonic velocity), becomes deflected, and exchanges its angular momentum
and orbital energy with the planet during the interaction.

• Corotation torque is exerted by low-velocity gas on librating trajectories near
the corotation with the planet. The gas responsible for the corotation torque
usually moves along U-turn streamlines and occupies the horseshoe region of
the planet.

The corotation can be characterised by the condition

[Ω (r) − Ωp] = 0 , (1.81)

where Ω(r) is the angular frequency of gas at the radius r. The Lindblad resonant
condition reads

m [Ω (r) − Ωp] = ±κ (r) , (1.82)
with m being a positive integer and κ denoting the epicyclic frequency of oscillations
of linearly perturbed circular orbits. Taking κ ≃ ΩK as an estimate (which would be
exact only in a disk with the Keplerian rotation curve), Eq. (1.82) gives the radial
location of the Lindblad resonances

rL =
(

1 ± 1
m

) 2
3

ap , (1.83)

suggesting rL → ap for m → ∞. Such an overlap of high-order resonant modes with
the planet location is, however, unrealistic as we will show later.

Thermal torques. Thermal torques arise when the planet changes the heat-
ing/cooling balance of the gas in its vicinity.

• The cold-finger effect appears as a result of compressional heating and subse-
quent radiative cooling of gas which performs U-turns deep within the plan-
etary Hill sphere (Lega et al. 2014). It results in an azimuthally asymmetric
cold and overdense perturbation.

• The heating torque is facilitated by accretion heating of the planet which is
radiatively transferred to the surrounding gas (Beńıtez-Llambay et al. 2015).
The arising perturbation is hot and underdense.
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Remaining torque contributions. The azimuthal asymmetry of the gas
distribution can be further affected by the presence of magnetic fields or self-gravity,
both of which modify the propagation of density waves. Additionally, turbulent disks
that contain numerous vortices may exert stochastic forces on migrating planets.

1.4.1 Lindblad torque
At the Lindblad resonances, the Doppler-shifted frequency of the planetary gravita-
tional forcing matches the natural oscillation frequency κ of the disk (Ward 1997).
The generated sound waves constructively interfere and form a single spiral density
wave (also called the wake) stretching outwards/inwards from the planetary orbit
and trailing/leading the orbital motion of the planet. The gravitational planet-wake
attraction (or alternatively the angular momentum exchange between the planet
and the spirals) forces the planet to migrate.

To quantify the Lindblad torque, several approaches were applied in the past.
First, it is possible to capture the basic dependencies of the Lindblad torque using
the impulse approximation (e.g. Lin & Papaloizou 1979; Lubow & Ida 2010). Second,
since low-mass planets are assumed to induce small perturbations in the disk, one
can analyse the fluid equations in the framework of the linear perturbation theory
(e.g. Goldreich & Tremaine 1979, 1980; Ward 1986; Meyer-Vernet & Sicardy 1987;
Artymowicz 1993,; Ward 1997). Third, the linearised equations can be investigated
numerically (e.g. Korycansky & Pollack 1993; Tanaka et al. 2002; Paardekooper &
Papaloizou 2008; Paardekooper et al. 2010). In the following, we summarise several
important results obtained with the latter two approaches.

Analytic perturbation theory

The approach of the linear perturbation theory (Goldreich & Tremaine 1979) is to
linearise the fluid equations by decomposing the fluid quantities as q → q0 +q1. Here
q0 is the trivial solution of the unperturbed state of the system and q1 is a small
perturbation, such that the terms which are non-linear in q1 (usually including its
derivatives) can be neglected. The perturbation variables are then decomposed into
Fourier m-harmonics. For example, the perturbing potential of the protoplanet on a
circular orbit is azimuthally periodic and can be written without a loss of generality
as (Meyer-Vernet & Sicardy 1987)

Φp =
∑
m

Φm(r) exp [im (Ω − Ωp) t] , (1.84)

where the amplitude for m > 1 is (Ward 1986)

Φm = −GMp

ap
b

(m)
1/2 (r/ap) , (1.85)

and b
(m)
1/2 (x) denotes the respective Laplace coefficient with the argument x (Brouwer

& Clemence 1961; Hagihara 1972; Ward 1989, 1997).
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1.4. Type I migration

The linearisation and Fourier expansion allow to derive the expression for the
torque Γm induced by an individual m-th order Lindblad resonance. The net differ-
ential Lindblad torque is then given by the sum of the discrete contributions. The
derivation can be found e.g. in Goldreich & Tremaine (1979) or Meyer-Vernet &
Sicardy (1987) with several improvements introduced in the follow-up works (Ward
1986; Artymowicz 1993; Ward 1997) which account for the influence of the struc-
tural gradients or the pressure, and also relax the use of the WKB approximation.
One obtains

Γm = −π2mΣ
r dD⋆

dr

Ψ2
m , (1.86)

with the forcing function

Ψm =
(

r
dΦm

dr
+ 2mfΦm

)(
1 + 4ξ2

)−1/2
, (1.87)

where f = m(Ω − Ωp)/Ω, ξ = mcs/(rκ) and

D⋆ = κ2 − m2 (Ω − Ωp)2 + ξ2κ2 . (1.88)

The first two terms in Eq. (1.88) measure the difference between the local natural
oscillation frequency (κ) and the frequency of the m-th potential component as seen
by a gas parcel (m(Ω − Ωp); Ward 1997; Kley & Nelson 2012).

The resonant condition can be characterised by D⋆ = 0, leading to

m (Ω − Ωp) = ±κ
√

1 + ξ2 ≃ Ω
√

1 + m2H2

r2 , (1.89)

where we used κ ≃ Ω and H = cs/Ω. Note that for m → ∞, the Lindblad resonances
are offset7 with respect to (1.83) and pile up at

rL = rp ± 2H

3 . (1.90)

This is an important result demonstrating that the waves with high-order wave-
numbers are launched at a finite separation from the planet which is related to the
local pressure scale height H. The effect is known as the Lindblad torque cut-off
(Artymowicz 1993,) and appears at the distance from the planet where the rela-
tive velocity of the flow changes from subsonic to supersonic (because the planet is
unable to excite sound waves in a subsonic flow; see Goodman & Rafikov 2001).

Finally, the gradient of the frequency difference at the resonant locations reads
(see Ward 1997, Appendix A)

r
dD⋆

dr
≃ −3sgn(Ω − Ωp)mΩΩp

√
1 + ξ2 , (1.91)

7The offset can be further affected by the slope of the radial density and temperature profile,
as also demonstrated by Ward (1997) (in Appendix A).
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Figure 1.15: Absolute value of the Lindblad torque normalised to Γ0 (Eq. 1.94) at the
inner (squares) and outer (circles) resonances of the order m. The torque is evaluated in
a disk with the surface density slope α = 1.5 (assuming Σ ∝ r−α) and the temperature
slope β = 1 (assuming T ∝ r−β). It is apparent that the outer resonances, where Γm < 0,
exert stronger torques than the inner ones, where Γm > 0. The total Lindblad torque is
therefore negative and leads to inward migration. Data adopted from Ward (1997).

where we assumed a constant aspect ratio h = H/r for simplicity and again set
κ ≃ Ω. The expression for the m-th Lindblad torque is then (e.g. Ward 1997; Kley
& Nelson 2012)

Γm = sgn(Ω − Ωp) π2Σ
3ΩΩp

[
r

dΦm

dr
+ 2m2 (Ω − Ωp)

Ω Φm

]2 (
1 + 4ξ2

)−1 (
1 + ξ2

)−1/2
.

(1.92)
Knowing the functional form of the discrete Lindblad torque, we can now esti-

mate the properties of the net Lindblad torque, ΓL = ∑Γm. Some of these properties
can also be inferred from Fig. 1.15 which compares the values of Γm for inner and
outer Lindblad resonances:

• For r < ap, Ω(r) > Ωp which leads to Γm > 0 and the inner Lindblad reso-
nances thus exert a positive torque on the planet. This corresponds to the fact
that the inner spiral arm leads the orbital motion of the planet which therefore
feels an acceleration in the direction of its instantaneous orbital velocity. The
inner spiral arm thus forces the planet to migrate outwards.

• The situation is the opposite for the outer Lindblad resonances. For r > ap,
the outer trailing spiral arm causes Γm < 0 which results in inward migration.

• The torque exerted by the outer spiral arm dominates because the gradient
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1.4. Type I migration

of the frequency separation rdD⋆/dr ∝ κ ≃ Ω (see Eq. 1.91) and therefore
becomes smaller for outer resonances. Since it appears in the denominator of
Eq. (1.92), it tends to boost the torque at outer resonances. Moreover, outer
resonances are located closer to the planet than their inner counterparts, at a
separation where the forcing function (1.87) attains a larger value.

• The dominance of the outer spiral arm cannot be avoided by assuming a strong
radial decline of the disk surface density, even though Γm ∝ Σ. Steeper density
gradient would indeed enhance the amount of gas near the inner resonances
but at the same time, it would increase the inward-directed pressure gradient
and the disk rotation would become more sub-Keplerian. As a result, the inner
Lindblad resonances would recede from the planet while the outer ones would
move closer to it. These two opposing effects often tend to cancel out and the
differential Lindblad torque consequently exhibits a very weak dependence on
the disk density gradient. This behaviour is known as the pressure buffer
(Ward 1986; Korycansky & Pollack 1993).

• A strong radial decline of the temperature enhances the pressure gradient and
shifts the resonances as in the previous case. However, a steeper temperature
gradient does not provide any extra material near the inner resonances and
thus the shift of the resonances prevails and makes the torque more negative.

All these properties imply that the Lindblad torque on its own causes inward
migration of protoplanets which cannot be reverted by suitably steep (or flat) density
or temperature profiles (assuming that these profiles can be approximated by smooth
outward-decreasing power laws, which does not have to be always true e.g. at the
opacity transitions).

The differential Lindblad torque obtained by the summation over all orders of
the resonance exhibits a scaling (e.g. Ward 1986)

ΓL ∝ Γ0 , (1.93)

where
Γ0 =

[(
q

h

)2
Σr4Ω2

]
p

, (1.94)

and it therefore scales with the square of the planet mass (hidden in the planet-
to-star mass ratio q = Mp/M⋆), with the inverse square of the aspect ratio h and
linearly with the disk mass (related to Σ). The migration due to the Lindblad torque
therefore becomes rapid for massive planets, or in thin disks where the gas is strongly
concentrated to the midplane, or alternatively in massive disks. Interestingly, there
is no dependence on the disk viscosity ν.

Numerical perturbation theory

The dependence of the Lindblad torque indicated by (1.93) motivated several works
to compute the constant of proportionality and its relation to disk properties more
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precisely. Important studies in this regard were done by Tanaka et al. (2002) and
Paardekooper et al. (2010). The former employed a semi-analytic perturbation
theory in a 3D isothermal disk while the latter numerically solved linearised fluid
equations in a 2D disk with arbitrary temperature and density profiles. Despite
the 2D limitation and the unavoidable potential smoothing, we focus on the key
results of Paardekooper et al. (2010) to demonstrate that the dependence of ΓL on
the temperature gradient is stronger than on the density gradient.

Following Paardekooper & Papaloizou (2008), the 2D Navier-Stokes equation can
be converted into a pair of first-order ordinary differential equations. The necessary
approximations include:

• The inviscid limit, ν → 0, which neglects all viscous terms. This approxima-
tion conveniently utilises the fact that the Lindblad torque is decoupled from
the disk viscosity.

• The adiabatic limit
DS

Dt
= 0 , (1.95)

where S = cV log (P/ργ) is the specific entropy. In the framework of Paarde-
kooper & Mellema (2008), the adiabatic limit corresponds to a system with
zero thermal diffusivity.

• The linear perturbation theory and the Fourier decomposition.
The resulting differential equations can be written as

dQ

dr
= C1vr + C2Q + S1 , (1.96)

dU

dr
= D1Q + D2vr + S2 , (1.97)

where Q = P ′/P 1/γ (with P ′ being the perturbed pressure), U = rP 1/γvr, and
the functional form of the remaining coefficients can be found in Paardekooper &
Papaloizou (2008).

Paardekooper et al. (2010) numerically solved these linear equations while ex-
ploring the parametric space of surface density profiles Σ ∝ r−α and temperature
profiles T ∝ r−β and derived

γeff
ΓL

Γ0
= (−2.5 − 1.7β + 0.1α)

(
0.4

bsm/h

)0.71

, (1.98)

where bsm is a dimensionless scaling of the potential smoothing length, rsm = bsmhrp.
The effective adiabatic index γeff was introduced later by Paardekooper et al. (2011)
to account not only for the adiabatic limit (for which the right-hand side of Eq. (1.98)
was originally derived), but also to connect the formula to the isothermal limit and
to intermediate regimes. When the thermal diffusivity vanishes, γeff → γ and the
acoustic waves propagate at the adiabatic sound speed. When the thermal diffusivity
becomes infinite, γeff → 1 and the phase speed of the waves starts to match the
isothermal sound speed. In radiative disks, regimes with non-zero finite thermal
diffusivity are recovered using γeff (see Paardekooper et al. 2011).
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1.4. Type I migration

Migration rate

An interesting point about the Lindblad torque can now be demonstrated by plug-
ging Eq. (1.98) into (1.79) and evaluating the migration timescale. Setting α = 3/2,
β = 1, rsm = 0.4H, γeff = 1.4, Mp = 1 M⊕, M⋆ = 1 M⊙, h = H/r = 0.05,
Σ = 1700 g cm−2, and ap = 1 au leads to the migration timescale of only τmig ≃
0.25 Myr. The choice of the parameters corresponds to the MMSN (Weidenschilling
1977; Hayashi 1981) and the result indicates that if Earth-mass planets migrated
solely under the influence of the Lindblad torque, they would be destroyed by falling
onto the central star well before the dissipation of the protoplanetary disk. Such a
rapid and overly efficient inward migration was discussed already by in Goldreich
& Tremaine (1980) (see also Korycansky & Pollack 1993; Ward 1997; Tanaka et al.
2002).

For the giant-planet formation zone (ap ≃ 5 au), one may argue that once the
protoplanets acquire significant masses due to gas accretion, their migration slows
down because it switches to the Type II mode, potentially saving them from the
inward drift. However, it turns out that the respective Lindblad migration timescale
is even shorter than the gas accretion timescale of the classical giant-planet formation
model (Pollack et al. 1996). Consequently, if protoplanets migrated due to the
Lindblad torque alone, there would not be enough time for envelopes of giant planets
to form before the disk dissipation and gas giants would be lost as well.

To overcome this issue, several explanations have been proposed. Generally, one
can either rely on other torque contributions that might be positive and stronger
than ΓL (see the next sections), or one can explore possible modifications of ΓL due
to physical processes that were ignored so far:

• The inclusion of self-gravity tends to boost ΓL by a factor (1+1/Q) (Baruteau
& Masset 2008) with Q being the Toomre’s parameter (Eq. 1.57). Since Q > 1
in gravitationally stable disks, self-gravity enhances inward migration related
to the Lindblad torque and thus cannot help preventing it.

• The inclusion of magnetic fields changes the nature of fluid waves from acous-
tic to the magneto-sonic ones, propagating at velocities

√
c2

s + v2
A (Terquem

2003) where vA is the Alfvén velocity. A new set of magnetic resonances ap-
pears, located closer to the protoplanet than the classical Lindblad resonances.
Owing to the radially outward decline of the ratio βm = c2

s/v2
A, the magnetic

resonance can cause outward migration if the magnetic field is strong enough
(at least βm ∼ 100).

• Realistic disks contain opacity transitions (e.g. near the evaporation fronts
of solids) where the density and temperature profiles cannot be described by
simple power laws. The Lindblad torque at these transitions exhibits more
complex behaviour and can also become positive (Menou & Goodman 2004).
An alternative form of Eq. (1.98) which accounts for the opacity transitions
can be found in Masset (2011).
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• In inviscid laminar disks, the damping of density waves is low so they can
diffuse into their surroundings, reducing the negative Lindblad torque (Rafikov
2002; Li et al. 2009; Fung & Chiang 2017).

1.4.2 Corotation torque
Let us now focus on the planet-disk interaction involving the gas which on average
corotates with the planet. In the following, we demonstrate that the corotation
torque consists of terms which scale with the vortensity, temperature, and entropy
gradients over the corotation region. More specifically, the temperature and entropy
gradients lead to the vorticity production within the corotation region and therefore
the total corotation torque can be inferred from the vortensity distribution at any
time.

For several decades since the paper by Goldreich & Tremaine (1979), it was un-
clear how to properly tackle the analytic theory of the corotation torque. Generally,
two approaches are possible:

• The linear perturbation theory which uses a similar framework as the studies
of the Lindblad torque discussed above. This approach leads to the linear
corotation torque. As it exists under the same conditions as the Lindblad
torque, one might expect the linear corotation torque to always influence the
planet. However, the downside is that horseshoe orbits, which apparently exist
in realistic coorbital regions, do not exist in the linear perturbation theory
(only perturbed circular trajectories are considered).

• The approach of horseshoe drag introduced by Ward (1991). The respective
torque is also called the non-linear corotation torque. In this case, the anal-
ysis is based on the assumption of horseshoe orbits and infers the torque by
studying the angular momentum exchange during U-turns. The issue with the
horseshoe drag is its saturation—it has been observed in several studies that
the respective torque can vanish in time if the disk is inviscid, ν → 0, or not
diffusive, χ → 0.

Another confusing fact is that the linear corotation torque is usually weaker than
the Lindblad torque (Tanaka et al. 2002), whereas the horseshoe drag can suppress
the Lindblad torque and revert the inward migration to outward, provided that the
disk has suitable thermal/viscous properties (Paardekooper & Mellema 2006).

Since both approaches describe the same phenomenon, a question arises which
one is correct. An accepted connection (Masset & Casoli 2010; Paardekooper et al.
2011; Jiménez & Masset 2017) can be summarised as follows:

• The linear corotation torque is only important if disk conditions, typically a
high ν, suppress planet-induced perturbations in the corotation region. The
influence of the linear corotation torque can also be seen at the beginning of
hydrodynamic simulations when the planet is first introduced into the system.
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• If disk conditions allow the horseshoe drag to remain unsaturated, it becomes
fully responsible for the corotation torque (Paardekooper & Papaloizou 2009).
The horseshoe drag exhibits a dependence on the entropy gradient ∇S which
can make it positive and stronger than the Lindblad torque.

• If the horseshoe drag saturates (ν → 0, χ → 0), the corotation torque vanishes.

Linear corotation torque

The linear perturbation theory (Goldreich & Tremaine 1979), improved for 3D
isothermal disks by Tanaka et al. (2002), leads to the torque components

Γm = π2m

2

[
|Φm + η′

m|2

dΩ/dr

d
dr

(
2Σ
ωz

)]
rc

, (1.99)

that are evaluated at the corotation radius rc, η′
m is the m-th component of the

perturbed gas enthalpy (discussed later), and ωz is the vertical component of the
vorticity ω⃗ = ∇ × v⃗. In cylindrical coordinates, we can write

ωz = (∇ × v⃗)z = 1
r

(
∂ (rvθ)

∂r
− ∂vr

∂θ

)
= 1

r

d(r2Ω)
dr

= 2B , (1.100)

where we assumed (vr, vθ) = (0, vK), and we related ωz to the Oort constant

B = 1
2r

d(r2Ω)
dr

, (1.101)

which characterises the angular momentum of the disk and also relates to the
epicyclic frequency as B = κ2/(4Ω) ≃ Ω/4 ∝ r−3/2.

Defining the ratio ωz/Σ as the vertically integrated vortensity, Eq. 1.99 implies
that the corotation torque is proportional to the gradient of the inverse vortensity
accross the corotation. If the surface density can be approximated by a power law
Σ ∝ r−α, we can deduce from the radial dependence of B (or ωz) that the gradient
of inverse vortensity is proportional to ∝r3/2−α. In fact, the factor (3/2 − α) often
appears in the formulae for the corotation torque.

A numerical approach to the linear perturbation theory (Eqs. 1.96, 1.97; Paar-
dekooper et al. 2010) leads to the torque expression

γeff
Γc,lin

Γ0
= 0.7

(
3
2 − α − 2ξ

γeff

)(
0.4

bsm/h

)1.26

+ 2.2ξ

(
0.4

bsm/h

)0.71

, (1.102)

which again exhibits a scaling with Γ0 (Eq. 1.94), and γeff generalises the formula
for transitions between isothermal and adiabatic disks (Paardekooper et al. 2011).

The quantity ξ is the negative of the power-law slope of the entropy8

S = P

Σγ
∝ ΣT

Σγ
∝ r−αr−β

r−γα
∝ r−(β−(γ−1)α) , (1.103)

8Strictly speaking, S is a measure of entropy while the true entropy is defined otherwise; see
e.g. Eq. (1.95) and the adjoining discussion.

59



Chapter 1. Planet formation and migration

thus
ξ = β − (γ − 1) α . (1.104)

The case when ξ = 0 is called barotropic and the linear corotation torque is often
split into the barotropic part

γeff
Γc,lin,baro

Γ0
= 0.7

(3
2 − α

)( 0.4
bsm/h

)1.26

, (1.105)

and the entropy-related part

γeff
Γc,lin,ent

Γ0
= −1.4ξ

γeff

(
0.4

bsm/h

)1.26

+ 2.2ξ

(
0.4

bsm/h

)0.71

. (1.106)

Particle horseshoe drag

Let us review the concept of the horseshoe drag according to Ward (1991). Consider
a planet Mp on a circular orbit rp around the primary, embedded in a ring of test
particles filling out its horseshoe region. Focusing on test particles sharing a single
horseshoe orbit, let us assume that they jump from rin < rp to rout > rp when
crossing the rear9 U-turn and from rout to rin during the front U-turn.

The jump when performing the rear (front) U-turn has to be associated with
the gain (loss) of the angular momentum by individual test particles which, in order
to remain conserved, is subtracted from (transferred to) the planet. An elementary
gain of a test particle when moving from rin to rout is

δl = r2
outΩout − r2

inΩin ≃ 2rB (rout − rin) , (1.107)

where 2rB ≃ ∆(r2Ω)/∆r results from Eq. (1.101). The loss of a particle moving
from rout to rin is (−δl).

Let us imagine that during a time interval δt, a multitude of test particles under-
goes an exchange of angular momentum. Denoting δmin and δmout the total mass
of particles originating before the exchange at rin and rout, respectively, the angular
momentum change felt by the planet is

∆L = (δmout − δmin) δl = [(Σrδθδr)out − (Σrδθδr)in] δl (1.108)

where Σ is the surface density of test particles at a given radial distance and rδθδr
represents the differential area. Our next task is to compare the inner and outer
differential areas.

Regarding the azimuthal distances, a test particle travels (over δt)

δθ = |Ω − Ωp|δt , (1.109)

which implies
(rδθ)in
(rδθ)out

= rin|Ωin − Ωp|
rout|Ωout − Ωp|

, (1.110)

9By ‘rear’ we understand the region ‘behind’ the orbital motion of the planet.
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To compare the radial distances, we recall the Jacobi constant of the restricted
3-body problem (RTBP) in the reference frame corotating with the planet (to avoid
the temporal dependence of the perturbing potential). We can ignore the U-turn
itself and simply assume that when a particle on the horseshoe orbit is far from the
planet, having the radial distance r, its Jacobi constant is

J = Ωp
(
r2Ω

)
− 1

2 (rΩ)2 − Φ . (1.111)

Then (δr|dJ/dr|)in has to be equal to (δr|dJ/dr|)out. Since dJ/dr = 2rB(Ωp − Ω),
it follows that

δrin

δrout
= (rB|Ω − Ωp|)out

(rB|Ω − Ωp|)in
. (1.112)

Plugging Eqs. (1.110) and (1.112) into (1.108) leads to

∆L = (Brδθδr)out

[(
Σ
B

)
out

−
(

Σ
B

)
in

]
∆l . (1.113)

The torque arising from a single horseshoe orbit can be acquired from Eq. (1.77) as

δΓ = ∆L

δt
= 16|A|B2 (rout − rp)3 rδr

d
dr

(
Σ
B

)
, (1.114)

where we used Eq. (1.107) and δθout/δt = |Ωout−Ωp|, along with lowest-order approx-
imations (Σ/B)out−(Σ/B)in ≃ (rout−rin)d(Σ/B)/dr, |Ωout−Ωp| ≃ 2|A|(rout−rp)/r,
(rout − rin) ≃ 2(rout − rp), and the first Oort constant A = (r/2)dΩ/dr.

Integrating over all orbits within one halfwidth of the horseshoe region, xs =
rout − rp, yields the total torque of the horseshoe drag (Ward 1991)

Γhs,W91 = 4Σ|A|Bx4
s
dlog(Σ/B)

dlog r

Kepl.≃ 3
4

(3
2 − α

)
Σx4

sΩ2 , (1.115)

where the final evaluation is done for a Keplerian disk with a power-law radial
density profile, Σ ∝ r−α. Similarly to the linear corotation torque, we see that the
horseshoe drag depends on the gradient of the inverse vortensity, Σ/B = 2Σ/ωz.

Horseshoe dynamics of gas disks

The concept of the particle horseshoe drag can be extended for the horseshoe drag
in gas disks in order to describe the corotation torque outside the limits of the
linear perturbation theory. Masset (2001) demonstrated in a model with a uniform
density and constant aspect ratio that the angular exchange of gas parcels when
performing U-turns in the horseshoe region follows the same functional dependence
as Eq. (1.115).

However, fluid parcels do not behave the same way as test particles because they
are pressure-supported and also subject to the laws of thermodynamics. Two major
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issues have to be tackled: First, the strong scaling of Eq. (1.115) with x4
s implies

that the width of the horseshoe region has to be determined accurately. Second, all
thermodynamic processes that can alter the vorticity gradient across the corotation
zone need to be identified and evaluated. In this section, we focus on the description
of horseshoe dynamics of fluid parcels and provide expressions for xs, as well as for
the characteristic timescale of the horseshoe motion τhs.

Let us review the differences between horseshoe trajectories of gas parcels (GPs)
and those followed by test particles (TPs) in the RTBP (see Baruteau & Masset
2013). Focusing on low-mass planets in the Type I migration regime, it turns out
that:

• In the absence of shocks, the trajectories of GPs cannot overlap, nor exhibit
epicyclic motion in addition to the horseshoe motion. For TPs, on the other
hand, epicyclic perturbations are common.

• GPs do not follow Roche-lobe trajectories. Therefore low-mass planets are not
surrounded by circumplanetary disks.

• Stagnation points (i.e. intersections of zero-velocity curves which delimit the
horseshoe region) of GPs are radially located near the exact corotation with the
planet, whereas stagnation points of TPs correspond to the Lagrange points
L1 and L2.

• The horseshoe region of GPs is substantially narrower compared to that of
TPs. This influences the characteristic dynamical timescales within the gase-
ous horseshoe region.

Following Masset et al. (2006), the width of the horseshoe region can be described
by assuming the conservation of the Bernoulli invariant (Masset & Papaloizou 2003;
Casoli & Masset 2009)

B = v2

2 + η + Φ − 1
2r2Ω2

p . (1.116)

Its first term represents the specific kinetic energy, the second term is the enthalpy,
and the remaining two terms together represent the effective potential. In order to
characterise a horseshoe separatrix, one can utilise the invariance of B and assume
that it is the same at a stagnation point (where v = 0) and also far from the planet
(at the separation xs which is to be determined); Bstag = Bsep. Φ and η can be
decomposed into the background state and planet-induced perturbations, and the
second-order expansion in xs/rp leads to (Masset et al. 2006)

xs ∝ rp

√
q

h
. (1.117)

Thus xs scales with the square root of the planet mass, q = Mp/M⋆. Moreover,
using this functional dependence in the Ward’s formula (1.115) reveals Γhs ∝ Γ0. In
other words, the horseshoe drag exhibits the same scaling (Eq. 1.94) as the Lindblad
or the linear corotation torque.
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1.4. Type I migration

A generally valid expression for xs is difficult to obtain as it depends on sev-
eral aspects of the underlying physical model. For example, Paardekooper & Pa-
paloizou (2009) found that xs also scales with the adiabatic index as γ−1/4. Moreover,
the shape of the horseshoe region depends on the exact location of the stagnation
point(s) which can be affected by interactions with the spiral wake. These interac-
tions, however, are difficult to account for analytically. A commonly used expression
found by Paardekooper et al. (2010), with an extension for non-isothermal disks
(Paardekooper et al. 2011), reads10

xs = rp
1.1
γ

1/4
eff

(
0.4

bsm/h

)1/4√
q

h
. (1.118)

Nevertheless, it is important to keep in mind that a characterisation of the horseshoe
region by a single width parameter is already a simplification as realistic horseshoe
regions often exhibit a front-rear asymmetry (Casoli & Masset 2009).

The width of the horseshoe region enables to determine the horseshoe timescale
on which the corotating gas parcels perform their libration cycles (e.g. Masset 2001).
The timescale can be estimated by dividing the length of one libration cycle ∼4πrp
by the shear velocity ∼3Ωxs/2 of gas parcels at the separation xs with respect to
the planet

τhs = 8πrp

3Ωxs
. (1.119)

Choosing the parameters Mp = 5 M⊕, M⋆ = 1 M⊙, rp = 5.2 au, h = 0.05, γeff = 1.4
and bsm = 0.4h, one obtains xs ≃ 0.13 au and τhs ≃ 52 Porb. Clearly, the time for
a gas parcel to complete its horseshoe orbit is considerably larger than the orbital
period Porb of the planet.

Horseshoe drag (non-linear corotation torque)

Detailed investigations of the horseshoe drag in gas disks confirmed that it can be
described within the same framework as used by Ward (1991) for test particles.
Specifically, the torque becomes (Masset & Papaloizou 2003)

Γhs = 8|A|B2rp

⎡⎣ xs∫
−xs

(
Σ
ωz

⏐⏐⏐⏐⏐
F

− Σ
ωz

⏐⏐⏐⏐⏐
R

)
x2dx

⎤⎦ , (1.120)

where the subscripts F and R indicate the evaluation in the front and rear horseshoe
region with respect to the planet. The integral implies that the horseshoe drag is
given by the vortensity distribution within the horseshoe region.

The dependence on Σ/ωz shows that the horseshoe drag always has a non-zero
component associated to the inherent radial gradient of vortensity in the protoplan-
etary disk. This component is called barotropic since in a very special case of a

10We point out that the formulation of Paardekooper et al. (2010) assumes rp ≡ 1, unlike our
Eq. (1.118).
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Chapter 1. Planet formation and migration

barotropic disk (i.e. a disk where the pressure depends only on the gas density),
Eq. (1.120) yields a result similar to Eq. (1.115) (Casoli & Masset 2009; Paardekoo-
per et al. 2010; Masset & Beńıtez-Llambay 2016).

However, realistic disks cannot be regarded as barotropic and it was discovered
that the vortensity distribution within the horseshoe region can be further affected
by both temperature and entropy gradients, as we discuss in the following. Con-
sequently, we may expect the final expression for the horseshoe drag to be more
complicated than Eq. (1.115). We shall discuss two flavours of vortensity-producing
processes which arise in two thermodynamic limits – locally isothermal and adia-
batic.

Locally isothermal limit. Stating with a locally isothermal disk (see Ca-
soli & Masset 2009), it is important to realise that the disk cannot remain barotropic
(as the pressure becomes the function of both position and density; see Eq. 1.16).
Moreover, it can become baroclinic at certain locations owing to the interactions
with the planet. Taking the curl of the Navier-Stokes Eq. 1.47 and dividing by Σ
leads to11

D
Dt

(
ωz

Σ

)
≃ ∇Σ × ∇P

Σ3 ∝ ∇Σ × ∇T

Σ2 . (1.121)

Therefore, the vortensity of the flow can be altered wherever there is a misalignment
of the density and temperature gradients. A fluid is said to be baroclinic in such
a case. Although the temperature gradient in a locally isothermal disk is strictly
radial, the density is perturbed by the planet and its gradient inevitably acquires
a non-zero azimuthal component at certain locations. For example, the horseshoe
streamlines which perform U-turns close to the planet cross a region of increased
density which surrounds the planet, the vortensity is produced at that location and
it is then advected downstream the separatrix. This vortensity production would
operate even in a disk with a zero background vortensity gradient, therefore it indeed
represents an independent component of the horseshoe drag.

Adiabatic limit. In the case of an adiabatic disk, another form of the vorten-
sity production is facilitated when there is a non-zero radial entropy gradient in the
disk (Paardekooper & Mellema 2006; Baruteau & Masset 2008; Masset & Casoli
2009). Let us imagine that a gas parcel is transported along the outward-directed
separatrix of the horseshoe region. It comes from inside the planetary orbit, car-
rying a certain amount of the entropy. When it moves outside the planetary orbit,
it suddenly becomes located at the edge of a disk region where the entropy is dif-
ferent and an entropy discontinuity is produced along the downstream separatrix.
Since the pressure balance of the disk has to be maintained, the entropy difference
is compensated for by the change in the gas density (see Eq. 1.103). The sheet of
the entropy discontinuity then also represents a sheet of vortensity production12.

11The given form neglects the viscous term, as well as the twisting and stretching of vortex tubes
(e.g. Paper IV).

12The outlined reasoning is not entirely physically accurate. As pointed out by Masset & Casoli
(2009), the pressure balance is never instantaneous, instead, evanescent pressure waves are excited.
This is also true for the locally isothermal case discussed above.
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1.4. Type I migration

Figure 1.16: Comparison of the torque evolution in the regime of unsaturated horseshoe
drag (grey curve; upper horizontal axis) with the regime of saturated horseshoe drag (black
curve; lower horizontal axis). The vertical dotted line represents the linear corotation
torque determined by averaging over the grey rectangle. Adapted from Masset (2011).

To provide a ready-to-use prescription for the horseshoe drag, we once again
follow the studies Paardekooper et al. (2010) and Paardekooper et al. (2011) that
lead to

γeff
Γc,hs

Γ0
= 1.1

(
0.4
b/h

)(3
2 − α

)
+ ξ

γeff

(
0.4
b/h

)[
10.1

√
0.4
b/h

− 2.2
]

, (1.122)

where the first term is the vortensity-related (barotropic) part of the horseshoe drag
(Γc,hs,baro) and the second term is entropy-related (Γc,hs,ent). The temperature-related
horseshoe drag is not explicitly considered by this model. We refer an interested
reader to a recent alternative model of Jiménez & Masset (2017) for a full description
of the horseshoe drag.

Saturation versus desaturation

In numerical experiments of planet-disk interactions, a standard procedure is to
insert the planet as a point-mass gravitating source into a relaxed state of the disk.
Subsequently, the temporal evolution of the torque acting on the planet is recorded.
During the first several tens of planetary orbits, the disk adjusts to the presence of
the planet: the spiral waves are launched and the gas within the coorbital region
becomes deflected along U-turns close to the planet, forming the horseshoe region
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Chapter 1. Planet formation and migration

Figure 1.17: Torque as a function of the α-viscosity at the planet location. For large
viscosities, the torque is the sum of the differential Lindblad torque and the linear corota-
tion torque. For moderate viscosities, the torque peaks and it is given by the sum of the
differential Lindblad torque and the unsaturated horseshoe drag. For low viscosities, the
corotation torque becomes saturated and the differential Lindblad torque remains. For
each of these regimes, the inequalities are given which describe the relations between the
U-turn timescale τU-turn, viscous timescale τvisc and libration timescale τhs (here denoted
τlib). Adapted from Baruteau & Masset (2013).

in the frame corotating with the planet. The torque converges to a stationary value
when a new equilibrium state is reached. This equilibrium has been found to depend
strongly on the evolution of the horseshoe drag.

As shown in Fig. 1.16, the disk torque starts to operate at the value determined
by the combined influence of the Lindblad and the linear corotation torque. The
latter is active because soon after the planet insertion, the orbits of gas parcels
did not yet have enough time to deviate from their initial stellarcentric circulation.
Afterwards, the horseshoe drag is established, contributes to the torque and reaches
its maximum unsaturated value. Subsequently, there are two possibilities. Either
the unsaturated horseshoe drag can be maintained or it saturates and vanishes.
The saturation depends on the stability of gradients responsible for the individual
components of the horseshoe drag.

Saturation. In the absence of diffusion processes (if the disk is inviscid,
ν → 0, and there is no thermal diffusion, χ → 0), the horseshoe region represents a
thermodynamically isolated system. Although the very first horseshoe cycle of the
gas after the planet insertion takes place in the presence of unperturbed disk gradi-
ents, any subsequent horseshoe cycles diminish these gradients. This is because the
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1.4. Type I migration

Figure 1.18: Torque evolution acting on a 20 M⊕ planet in 2D disk models with various
energy/diffusion treatments. The differences between the curves demonstrate how the
disk physics affects the corotation torque. When switching from the isothermal limit
(red) to the adiabatic one (green), the horseshoe drag receives a strong positive boost.
However, it quickly becomes saturated because there is no heat diffusion. When local
cooling/heating (blue) or radiative diffusion (purple) are considered, the horseshoe drag
can remain unsaturated and the planet can migrate outwards, if the local entropy gradient
is steep enough (see Fig. 1.19). Adapted from Kley & Crida (2008).

material advection spans the entire width of the horseshoe region, ‘stirs it up’ and
cancels out any vortensity or entropy gradients. In such a situation, the horseshoe
drag starts to oscillate with a decreasing amplitude until it becomes negligible.

Desaturation. The restoration of the vortensity gradient can be provided
by means of a viscous coupling13. If the viscosity is too small, it cannot prevent
the phase mixing and the horseshoe drag saturates. If the viscosity is too large,
it breaks the horseshoe drag mechanism and the corotation torque converges to its
linear regime. If the viscosity is moderate, the horseshoe drag can operate. Usually,
the drag peaks for a certain value of the viscosity which is large enough to maintain
the initial value of the vortensity at the downstream separatrices, yet small enough
not to destroy the vortensity contrast developed at the U-turns (Baruteau & Masset
2013). This can be expressed by the inequality of the characteristic timescales

τU-turn ≤ τvisc ≤ τhs/2 , (1.123)

13It can be shown when deriving the vortensity equation that it inherits the viscous term from
the Navier-Stokes equation.
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where τU-turn ≃ hτhs is the time it takes a gas parcel to perform a U-turn (Baruteau
& Masset 2008) and τvisc ≃ x2

s/ν(rp) is the timescale of the viscous transport over
the width of the horseshoe region. The torque evolution for various ratios between
the characteristic times is shown in Fig. 1.17.

Similarly to the influence of the viscosity on the desaturation of the vortensity-
related component of the horseshoe drag, the desaturation of the other components
can be provided by a suitable thermal diffusivity (Paardekooper et al. 2011). In re-
alistic disks, thermal diffusion is believed to be provided by the radiation transport
(Paardekooper & Mellema 2006). An example of such a radiation-driven desatura-
tion is provided in Fig. 1.18.

The torque formulae of Masset & Casoli (2010), Paardekooper et al. (2011) or
Jiménez & Masset (2017) are complemented with blending functions which describe
the transitions of the corotation torque between the linear, unsaturated non-linear
and fully saturated regimes of the corotation torque. This complicated behaviour
of the corotation torque represents one of the reasons for the large diversity of
possible outcomes of planetary migration. Depending on the disk conditions (see
e.g. Figs. 1.18 and 1.19), the corotation torque can be negative or positive (as
controlled by the disk gradients), and it can dominate over the Lindblad torque or
vanish completely (as controlled by the viscosity and thermal diffusion).

1.4.3 Migration maps
The analytic formulae for the Lindblad and corotation torques can be used in two
ways. First, they can be included as artificial forces in N-body integrators in order
to mimic Type I migration without the need to use a hydrodynamic description.
Second, they can be applied as a diagnostic tool to estimate possible outcomes of
planet migration for a variety of disk models.

The torque formulae allow to construct migration maps, i.e. diagrams where
the torque acting on planets is displayed as the function of the orbital distance and
planet mass (see Fig. 1.19). The studies of migration maps (e.g. Kretke & Lin 2012;
Bitsch et al. 2013; Coleman & Nelson 2014; Baillié et al. 2016) revealed that:

• Type I migration is mostly inward.
• Based on the disk model and local conditions, islands of outward migration

can arise for a limited range of radii and planet masses. They appear:

– in regions with a steep entropy gradient which boosts the positive entropy-
related corotation torque (see Fig. 1.19). These regions can be usually
identified from an outward decline of the aspect ratio h = H/r which
indicates a steep gradient of temperature ∇T and therefore also entropy
∇S. This occurs for example at the opacity transitions where the local
cooling rate abruptly changes.

– in regions with the reversal of the density profile. If the density profile
exhibits a local bump (i.e. a steep outward-directed gradient), the local
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Figure 1.19: Top: radial profiles of the aspect ratio h (black solid curve; left vertical axis)
and temperature T (red dashed curve; right vertical axis) in a disk model from Paper I.
The slope of the aspect ratio changes at locations where the local heating/cooling balance
is modified, namely at the opacity transition related to evaporation of water ice, and also
at the transition to the outer efficiently irradiated region. Bottom: Type I migration map
constructed for the same disk model. The coloured scale represents the normalised value of
the torque predicted by the formulae of Paardekooper et al. (2011), including the Lindblad
and corotation torques. The black curve shows the isocountour of Γ = 0. Migration is
convergent near ≃7 au, as indicated by the arrows. The blue region of outward migration
can clearly be related to the radially decreasing aspect ratio h. Adapted from Paper I.
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jump in the vortensity ωz/Σ makes the corotation torque positive. This
is the principle of the planet trap (Masset et al. 2006) and such a config-
uration can naturally occur due to viscosity transitions in layered disks
(Kretke & Lin 2012), near the inner disk rim (Flock et al. 2016) or in
the inner disk dominated by a magnetically-driven wind (Ogihara et al.
2015).

• If the islands of outward migration are present, they create zero-torque radii
or convergent zones. Inwards from these radii, planets migrate outwards, and
outwards from these radii, planets migrate inwards. Planets therefore tend
to concentrate near these sweetspots. Conversely, regions with the opposite
behaviour have to exist where migration is divergent. Such regions become
devoid of planets and are sometimes dubbed planet deserts.

• In evolving disks, the shapes and sizes of the islands of outward migration
evolve as well.

Limitations. At first glance, it might seem that the torque formulae and mi-
gration maps easily solve the problem of planet migration. So why do we bother
with RHD simulations in Chapter 2? It is because the torque formulae cannot
self-consistently account for several important phenomena. First, since the torque
formulae are derived for single planets, they do not account for perturbations from
multiple planets, such as overlaps of spiral arms and their influence on close en-
counters (e.g. Paper II; Paper III). Second, the torque formulae are derived for fixed
orbits, therefore they cannot recover dynamical torques (e.g. Pierens & Raymond
2016). Third, they do not consider the influence of accretion heating14 that gener-
ates the heating torque (Beńıtez-Llambay et al. 2015, see also Sect. 1.4.5) and the
hot-trail effect (Paper I), both of which substantially change the orbital evolution.

1.4.4 Orbital eccentricity and inclination
Up to this point, we omitted the fact that the migrating planet may acquire non-
zero eccentricity e or inclination i, e.g. due to gravitational interactions with other
planets, or perhaps with a binary stellar companion. The deviations with respect
to a planar circular orbit inevitably modify the Type I torque as the planet makes
vertical or epicyclic excursions with respect to the mean gas distribution.

If e or i increases, the corotation torque becomes reduced because the width of
the horseshoe region narrows (Bitsch & Kley 2010). The reduction factor is (Fendyke
& Nelson 2014; Coleman & Nelson 2014)

∆C = exp
(

− e

ef

) [
1 − tanh

(
i

h

)]
, (1.124)

14There are several studies focusing on an analytic description of the heating torque and the
hot-trail effect (Masset 2017; Fromenteau & Masset 2019; Guilera et al. 2019) and we discuss them
in Chapter 2. However, they are not yet widely used at the time of writing of this thesis and they
were not available back in 2017 when our first Paper I was published.
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Figure 1.20: Reduction factors of the Lindblad torque (solid line; Eq. 1.125) and the
corotation torque (dashed line; Eq. 1.124) as functions of the orbital eccentricity. Inclina-
tion i = 0 and aspect ratio h = 0.05 are used in this example. The corotation torque is
being damped to zero with increasing e, while the Lindblad torque evolves towards a sign
reversal. For low values of e, the corotation torque is reduced more prominently compared
to the Lindblad torque.

where ef = 0.5h + 0.01.
The Lindblad torque is modified by the shift of the planet with respect to the

spiral wakes it launches. The respective reduction factor is (Cresswell & Nelson
2008)

∆L =
[
Pe + Pe

|Pe|

{
0.07 i

h
+ 0.085

(
i

h

)4
− 0.08 e

h

(
i

h

)2}]−1

, (1.125)

where

Pe =
1 +

(
e

2.25h

)1.2
+
(

e
2.84h

)6

1 −
(

e
2.02h

)4 . (1.126)

The eccentricity dependence of the reduction formulae is plotted in Fig. 1.20.
For a low eccentricity excitation, we see that the negative Lindblad torque usually
dominates over the corotation torque because the latter is reduced more significantly.
Therefore, if regions of outward migration exist in a migration map for circular
orbits, there is no guarantee that they will persist for eccentric orbits because the
reduction of the corotation torque can shrink or destroy them.

Another interesting fact is that while the corotation torque decays with increasing
e, the Lindblad torque proceeds towards its reversal, i.e. it changes from negative to
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Figure 1.21: An example of the hot-trail effect (discussed in detail in Chapter 2). The
figure shows the surface density Σ (left) and temperature T (right) near an accreting
3 M⊕ protoplanet. The Hill sphere of the protoplanet is indicated by the white circle, the
white curve shows the osculating orbit. The arrows show the direction of the gas flow
relative to the protoplanet. In addition to the spiral arms, there is an underdense hot trail
directed from the location of the protoplanet towards the lower right quadrant. The hot
trail accelerates the protoplanet in its epicyclic motion, thus exciting its eccentricity and
counteracting eccentricity damping. Adapted from Paper I.

positive. Such a situation occurs for e ≳ 2h (Papaloizou & Larwood 2000) when the
planet starts to cross resonances that normally do not overlap its orbit. Moreover,
is spends more time interacting with the gas in the apocentre where the relative
velocities boost the outward migration.

In addition to torque reductions, damping of eccentricities and inclinations op-
erates in disks (Artymowicz 1993; Ward & Hahn 1994; Papaloizou & Larwood 2000;
Tanaka & Ward 2004; Cresswell et al. 2007; Bitsch & Kley 2010). It is caused by
eccentricity/bending waves excited by radial/vertical excursions of a planet with
non-zero e/i (Tanaka & Ward 2004). When e < h, the eccentricity damping ex-
hibits de/dt ∝ −e on timescales ≈h2τmig. If e ≳ h, the damping becomes amplified
as de/dt ∝ −e2. Similar scaling is followed by the inclination damping (with i
swapped for e, of course). Cresswell & Nelson (2008) fitted the results of their
hydrodynamic damping experiments and found the damping timescales for the ec-
centricity
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and inclination

ti = twave

0.544

[
1 − 0.3

(
i

h

)2
+ 0.24

(
i

h

)3
+ 0.14

(
e

h

)2 ( i

h

)]
, (1.128)

with
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M⋆

Σa2 h4 . (1.129)
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Limitations. Similarly to the case of migration maps (Sect. 1.4.3), the formu-
lae for eccentricity and inclination damping cannot be regarded as generally valid,
as we show in Chapter 2. Moreover, it is not generally true that orbital eccentricities
and inclinations of protoplanets embedded in gas disks asymptotically converge to
zero. Without going into details, we point out that there are processes that can
counteract the damping, such as resonant perturbations in systems of protoplanets
(e.g. Cossou et al. 2013) or the hot-trail effect related to accretion heating (e.g.
Paper I). An example of the latter is shown in Fig. 1.21.

1.4.5 Thermal torques
In addition to the Lindblad and corotation torques, a special class of torques arises
due to thermal effects in the vicinity of a protoplanet. These torques are related
to the heating/cooling interplay between the protoplanet and gas which enters and
leaves the Hill sphere15. For this reason, they are collectively referred to as the
thermal torques (Masset 2017) and they only appear in radiative disks.

Essentially, there are two types of thermal torques corresponding to two limiting
behaviours of the planet in terms of its energy output. If the planet is cold and
does not directly radiate any energy into its surroundings, the gas which performs
U-turns deep within the Hill sphere becomes heated by compression. The energy
excess is radiated away (in a radiative disk) so when the gas becomes decompressed,
it has a deficit of the internal energy. Consequently, two lobes of cold and therefore
overdense gas appear along the outflow of front and rear horseshoe streamlines from
the Hill sphere (Lega et al. 2014). The situation is shown in Fig. 1.22 (top).

Due to the sub-Keplerian rotation of the disk, the horseshoe region is not centred
around the planetary orbit, it is rather shifted inwards. For this reason, the outer
(rear) lobe tends to be slightly larger than the inner (front) one. In other words,
there is a mass excess behind the planet which pulls the planet against the orbital
motion. The lobes therefore exert a negative torque and force the planet to migrate
inwards. This negative torque was named the cold-finger effect (Lega et al. 2014)
and it represents an extra component which stacks on top of the Lindblad and
corotation torques.

An opposite situation arises if the planet is accreting because it may become hot
and luminous. Focusing again on the gas that flows close to the planet (see Fig. 1.22,
bottom), it now becomes overheated by the accretion luminosity. The lobes which
form along the streamlines leaving the Hill sphere are therefore hot and underdense
(Beńıtez-Llambay et al. 2015), contrary to the cold-planet situation. The arising
torque then becomes positive, using a similar reasoning as above (in this situation,
there is a paucity of gas behind the planet). Beńıtez-Llambay et al. (2015) named
the additional positive contribution the heating torque and demonstrated that it can
lead to outward migration of ≲10 M⊕ planets for accretion rates characterised by
the mass doubling time τacc ≃ 100 kyr or shorter.

15The described effects are not necessarily bound by the extent of the Hill sphere, we simply use
it as a zero-order proxy of the region where the effects are the most prominent.
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Figure 1.22: Two flavours of thermal torques acting on low-mass planets in radiative
disks. Top: The cold-finger effect arises for a non-luminous planet as a result of the
compressional heating and radiative cooling near U-turns within the Hill sphere. Two
cold lobes are formed (dark regions along the downstream separatrices; top right) which
are overdense (top left). Bottom: The heating torque arises when the planet accretes solids
and becomes luminous. Two underdense lobes appear (bottom left) corresponding to the
overheated gas. This is shown in the bottom right panel where we plot the temperature
excess with respect to the non-luminous planet. The green curves in right panels represent
streamlines. From Paper IV.

The heating torque is one of the key processes investigated throughout Papers
I–IV. We studied its implications for the dynamics of systems of protoplanets (using
2D RHD models in Papers I–III) and whether or not the above-mentioned heuristic
explanation for the formation of hot lobes agrees with complex 3D flows around
hot protoplanets (using a 3D RHD model in Paper IV). Papers I–IV are discussed
in the upcoming Chapter 2, therefore it is time to conclude the overview of planet
migration and move on to the results of our numerical modelling.
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2. Migration of accreting low-mass
protoplanets
Chapter 2 deals with scientific outputs of the dissertation thesis. We focus on our
four papers that were published between years 2017 and 2019 in peer-reviewed as-
trophysical journals. For each of these papers, we provide an introduction where
we outline our motivation, methodology, and we summarise both expected and un-
expected results. We also put our conclusions into a broader context of planetary
sciences at the time of writing of each paper. The introductory commentary is fol-
lowed by a reprint of the respective paper (with the exception of Paper II). The
papers are ordered chronologically as they map the progress that the author has
made during the doctoral studies. The unifying topic of these papers is the migra-
tion of accreting low-mass protoplanets.

2.1 Paper I: Eccentricity excitation and merging
of planetary embryos heated by pebble accre-
tion

State of the art before 2017

Before 2017, convincing evidence was assembled demonstrating that:
• Pebble accretion is likely the most efficient accretion process that can turn

planetesimals into protoplanets (Ormel & Klahr 2010; Lambrechts & Johansen
2012).

• Dynamical evolution of low-mass protoplanets in disks is dominated by Type I
migration (e.g. Kley & Crida 2008; Paardekooper et al. 2011; Lega et al. 2014,
2015). In this regard, however, the sensitive dependence of Type I migration
on disk conditions and physical modelling makes it very difficult to establish
migration pathways that would be generally applicable. Type I migration is
rather problem-dependent.

With the physical background provided throughout Chapter 1, it seems in-
evitable that pebble accretion and planet migration has to influence one another.
One can think of at least the following interplays:

• The torque acting on a planet changes as a result of the growth of the planet
mass (see Eq. 1.94).

• Planets undergoing rapid pebble accretion become substantially luminous and
therefore subject to the heating torque. In 2017, however, the heating torque
was only known from the pioneering study by Beńıtez-Llambay et al. (2015)
but it was not clear how it affects the dynamics of multiplanet systems.
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• Migration can lead planets into mutual encounters which can pump orbital
eccentricities or inclinations. Eccentricity pumping can change the relative
velocities between planets and pebbles, with important implications for accre-
tion rates (e.g. Liu & Ormel 2018). Similarly, inclined planets might spend
substantial orbital time vertically offset with respect to the pebble feeding
zone (Levison et al. 2015).

• If two or more planets become closely packed, the disk is going to be threaded
by multiple density waves that can overlap and exert stochastic forces back on
the planets.

• Perturbations in gas distribution can directly affect pebble distribution due to
the aerodynamic coupling of gas and pebbles.

• If planets collide and merge, the merger event instantaneously doubles the
mass of the resulting body. From this point of view, mergers can outperform
pebble accretion.

In 2017, there was no model available which would self-consistently take all
these feedbacks into account. There were studies conducted with hydrodynamic
codes (e.g. Pierens et al. 2013), but these neglected pebble accretion. Other studies
were using N-body codes with prescribed migration (e.g. Izidoro et al. 2015), but the
torque formulae suffer from a large amount of simplifications (they were derived for
static circular orbits; they cannot account for combined perturbations from multiple
planets; etc). Some N-body codes with advanced treatment of pebbles and collisional
evolution ignored the gas-driven migration completely (e.g. Levison et al. 2015).
Therefore we decided it was worthwhile to invest our initial effort in developing a
new code.

Development of a new code

We developed an extension of the 2D Fargo code (Masset 2000) dubbed Thorin
(which stands for Fargo with two-fluid hydrodynamics, a Rebound integrator in-
terface and non-isothermal gas physics). It is a 2D RHD code which employs the
Eulerian fluid description on a polar staggered mesh. The 2D nature of the code pro-
vides a good tradeoff between an accurate hydrodynamic description of disk-planet
interactions and the computing time which has to allow for long-term simulations
covering ∼105 yr. The code is tailored to run on CPU clusters and can be paral-
lelised using the MPI, OpenMP, or a combination of both. In the following, we
summarise the important features of the code.

Two-fluid approximation. We included an additional fluid which repre-
sents pebbles. The pebble fluid has no thermal pressure and it is inviscid. Its
evolution is driven by the gravitational potential, aerodynamic drag and a diffu-
sive term which mimics small-scale turbulence. A back-reaction drag term is also
included in the Navier-Stokes equation for gas. The temporal update of pebble ve-
locities is performed using the semi-implicit method of Rosotti et al. (2016). The
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main purpose for the inclusion of the pebble disk is to precisely simulate the material
delivery towards accreting protoplanets.

Initial state of the pebble disk. A simple coagulation/drift model (Lam-
brechts & Johansen 2014) is employed which assumes that the drift-limited size of
pebbles (Eq. 1.54) represents the dominant size, in which most of the pebble surface
density resides. Consequently, we use the drift-limited size to calculate the Stokes
number (Eq. 1.51) of pebbles which determines their aerodynamic interaction with
gas and also the efficiency of pebble accretion. The initial surface density of pebbles
is scaled by the radial pebble mass flux which is one of the free parameters.

Pebble accretion. Since the resolution of the computational domain is tai-
lored to study planet-disk interactions on a global scale, it does not allow to suf-
ficiently resolve pebble trajectories close to planets. Moreover, such trajectories
would be inaccurate anyway, due to the smoothing of the gravitational potential.
For these reasons, we employ an accretion recipe which is based on introducing
sink cells (e.g. Kley 1999). First, the effective accretion radius is calculated (see
Sect. 1.2.3). Second, we assume that pebbles have a non-zero vertical scale height
Hpeb and we determine the overlap of the pebble disk with the accretion radius.
This way we determine the sink cells. Finally, we transfer part of the mass from
these sink cells onto the planet to match the theoretically predicted pebble accretion
rate. We distinguish between 2D and 3D regimes of pebble accretion. Furthermore,
we self-consistently determine the relative velocities between the pebble fluid and
planets to account for variations of pebble accretion rate with the orbital eccentric-
ity of planets. For each accreting planet, the accretion rate can be converted into
a planetary luminosity (Beńıtez-Llambay et al. 2015) which serves as an additional
heat source for the gas and the heating torque can operate.

Radiation physics. The 1-temperature equation for the internal energy of
gas is implemented (see Sect. 1.1.2). The source terms account for the viscous heat-
ing, compressional heating, accretion heating, in-plane radiative diffusion, vertical
cooling, and vertical reprocessing of the stellar irradiation. The latter two processes
are treated approximately, using a decoupled vertical 1D model of Hubeny (1990)
and Menou & Goodman (2004). Opacities of Bell & Lin (1994) are used. The radia-
tive transfer is treated in the flux-limited diffusion (FLD; Levermore & Pomraning
1981) approximation. The energy evolution is treated in a linearised implicit form.
The linear problem is solved by the successive over-relaxation (SOR) method.

Gravitational interactions. Although the disk is effectively modelled in
2D, planets are evolved in 3D. An artificial vertical acceleration is included to ac-
count for the inclination damping by bending waves which cannot be recovered by
the model (Tanaka & Ward 2004). Planet-disk interactions are calculated using the
method of Müller et al. (2012): in each cell, we replace the respective razor-thin
patch of gas with a vertically isothermal distribution of the volume density ρ, scaled
by the local pressure scale height H. Planets then interact with these columns of
material so that the resulting acceleration resembles a full 3D simulation. Moreover,
this approach allows to use much smaller smoothing length and thus deeper potential
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wells compared to standard 2D simulations. The N-body problem (star-planet and
planet-planet interactions) is integrated with the Ias15 integrator (Rein & Spiegel
2015) from the Rebound package (Rein & Liu 2012). We track possible collisions
and resolve them as merger events, assuming perfect merging for simplicity.

Performance. To validate the code, we reproduced several published disk
models and torque measurements obtained with advanced 3D RHD codes (Kley
et al. 2009; Lega et al. 2014). We found a very good agreement between these works
and the results of our validations, despite the 2D limitation of Thorin (see Appendix
D of Paper I).

Simulation outline

The aim of simulations in Paper I was to investigate the evolution of multiple 3 M⊕
planetary embryos, migrating towards a zero-torque radius located in the giant-
planet formation zone. We compared three cases. Case I neglected the influence
of pebbles and planet migration was driven solely by the classical (Lindblad and
corotation) Type I torques. Case II included the pebble disk and pebble accretion,
but neglected accretion luminosities of embryos. These were finally considered in
Case III.

The motivation for focusing on the giant-planet formation zone was twofold: first,
we wanted to see if the heating torque changes the expected migration of embryos
near the convergent radius. Second, we aimed to check whether the formation of
giant planet cores by embryo mergers is a common process or not.

Major results

Eccentricity excitation. In the presence of accretion heating, we identified
a pumping of planetary eccentricities unrelated to gravitational interactions between
planets. We concluded that the eccentricity excitation is of a hydrodynamic origin.
We named this new phenomenon the hot-trail effect. It is important to point out
that this effect was independently discovered in 3D by Eklund & Masset (2017), a
short time before Paper I.

The hot-trail effect arises due to the relative motion between the planet and
the surrounding gas which receives the accretion heat and creates an underdense
disturbance. On a circular orbit, the disturbance exists in a form of two underdense
lobes Beńıtez-Llambay et al. (2015). The outer lobe attached to the rear of the
planet tends to be slightly more pronounced because the corotation between the
planet and the sub-Keplerian gas disk is shifted inwards with respect to the orbit
of the planet. When the planet starts to migrate, however, its orbit cannot remain
perfectly circular. Once the planet is in the pericentre, it feels a headwind (because
the inward shift of the corotation is enhanced). Then the underdense disturbance
is represented by a single dominant lobe positioned behind the orbital motion of
the planet. Once the planet is in the apocentre, the corotation shifts close to the
planetary orbit (or even outwards for sufficiently large eccentricities). Then the
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underdense disturbance is again two-lobed (or a dominant lobe is created ahead of
the planet).

Alternatively, one can imagine the redistribution of hot underdense lobes as a
result of the epicyclic motion of the accreting planet which inevitably leaves behind
a hot trail (see also Eklund & Masset 2017).

We analysed variations of the gravitational acceleration imposed by the under-
dense gas onto the planet and we used the Gauss perturbation equations to demon-
strate that the orbitally averaged change of eccentricity is positive. This drives a
positive feedback: if the eccentricity increases, the relative motions between the
heated gas and the planet start to vary even more prominently.

The growth of the eccentricity, however, is not unlimited. It is terminated when
e ≃ h which is when the Lindblad torque is close to its reversal and the eccentricity
damping switches from de/dt ∝ −e to de/dt ∝ −e2 (see Sect. 1.4.4).

Implications of excited eccentricities. In a regime of a convergent mi-
gration, it is difficult for planets to become locked in mutual mean-motion resonances
if their eccentricities are sufficiently large prior to the resonance crossing. A Hamil-
tonian description of this phenomenon was worked out by Batygin (2015) who found
that if eccentricities of migrating planets are excited at least to ≃0.02, the resulting
fraction of planetary systems locked in resonant chains is low, in accordance with
the observed exoplanetary systems. Surprisingly, the eccentricities excited by the
hot-trail effect are ≃0.03 and could potentially explain the paucity of resonant con-
figurations in the population of exoplanets. The inability of migrating planets to
form a resonant chain once they become closely packed typically results in a violent
phase of evolution during which close encounters occur frequently, possibly leading
to mergers. Alternatively, planetary encounters occasionally lead to formation of
coorbital planets (orbiting in a 1:1 resonance; see also Cresswell & Nelson 2008).

The very presence of excited eccentricities challenges the standard approach to
the eccentricity damping which is applied in N-body models with prescribed mi-
gration (e.g. Sándor et al. 2011; Coleman & Nelson 2016). In these models, the
eccentricity damping is usually implemented as described in Sect. 1.4.4. However,
if planets experience substantial accretion heating, the efficiency of the eccentric-
ity damping should be reduced and moreover, the asymptotic value of eccentricity
should be non-zero.

Mass evolution. We found pebble filtering factors to range between 10 and
25%, in an agreement with the findings of Lambrechts & Johansen (2014). The
resulting doubling time of planetary masses due to pebble accretion is then ≃80 kyr
for the radial pebble mass flux 2×10−4 M⊕ yr−1. However, we also saw that planetary
mergers indeed occur. They directly form giant planet cores, break the oligarchic
growth and reduce the multiplicity of the system at the same time.

2.1.1 Reprint
Here we include the reprint of Paper I.
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ABSTRACT

Context. Planetary embryos can continue to grow by pebble accretion until they become giant planet cores. Simultaneously, these
embryos mutually interact and also migrate due to torques arising from the protoplanetary disk.
Aims. Our aim is to study how pebble accretion alters the orbital evolution of embryos undergoing Type-I migration. In particular, we
try to determine whether or not the embryos establish resonant chains, and if so, whether or not these chains are prone to instabilities.
Further, we investigate the possibility that giant planet cores form through embryo merging which can be more rapid than pebble
accretion alone.
Methods. For the first time, we perform self-consistent global-scale radiative hydrodynamic simulations of a two-fluid protoplanetary
disk consisting of gas and pebbles, the latter being accreted by embedded embryos. Accretion heating, along with other radiative
processes, is accounted for to correctly model the Type-I migration.
Results. We track the evolution of four super-Earth-like embryos, initially located in a region where the disk structure allows for
a convergent migration. Generally, embryo merging is facilitated by rapidly increasing embryo masses and breaks the otherwise
oligarchic growth. Moreover, we find that the orbital eccentricity of each embryo is considerably excited (’0.03) due to the presence
of an asymmetric under-dense lobe of gas – a so-called “hot trail” – produced by accretion heating of the embryo’s vicinity. Eccentric
orbits lead the embryos to frequent close encounters and make resonant locking more difficult.
Conclusions. Embryo merging typically produces one massive core (&10 ME) in our simulations, orbiting near 10 AU. Pebble ac-
cretion is naturally accompanied by the occurrence of eccentric orbits which should be considered in future efforts to explain the
structure of exoplanetary systems.

Key words. hydrodynamics – planets and satellites: formation – planet-disk interactions – protoplanetary disks –
planets and satellites: gaseous planets

1. Introduction

Interactions of gas and solids in protoplanetary disks are the
basis for subsequent growth of all kinds of planets, whether
they finally become terrestrial, super-Earths, ice giants or gas gi-
ants. These interactions have to be computed with an appropriate
feedback, as there are a number of relatively complicated but in-
evitable phenomena. Setting the classical in-spiralling of solids
due to gas drag aside, there are processes like streaming insta-
bility and local collapse (Johansen et al. 2007), pebble accretion
assisted by aerodynamic drag (Lambrechts & Johansen 2012;
Morbidelli & Nesvorný 2012), accretion heating of planetary
embryos and surrounding gas (Benítez-Llambay et al. 2015), or
embryo-disk interactions in general (e.g. Kley et al. 2009). Suf-
ficiently complex hydrodynamic models with radiative trans-
fer (RHD) are usually needed for realistic treatment of these
processes.

? The code is publicly available at
http://sirrah.troja.mff.cuni.cz/~chrenko/, and also at the
CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)
or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A114

The radiative properties of the protoplanetary disk are mostly
determined by the opacity κ. As a flux-mean (Rosseland)
value, κ is mostly caused by icy, silicate or carbonaceous dust
grains (Mathis et al. 1977; Bell & Lin 1994) that have differ-
ent wavelength-dependent optical constants (Jäger et al. 2003).
The size-frequency distribution of dust grains is often assumed
to be shallow, with a cumulative slope q = −2.5 (Mathis et al.
1977; Birnstiel et al. 2012). Any sudden transition in the com-
position of the dust component (e.g. grain evaporation or “rain
out”) affects local heating and cooling properties of the gas
disk. Consequently, variations of the scale height H(r) might
occur, and moreover, the pressure gradient might exhibit a re-
versal, ∇P > 0, which leads to accumulation of solids (and even
planetary embryos). Typical transitions are located, for exam-
ple, at the inner rim of the disk due to UV photoionisation and
corotation with stellar magnetic field, at the evaporation line of
silicates (Flock et al. 2016), and at the snowline corresponding
to water evaporation (Morbidelli et al. 2015). Important heating
sources are provided by viscous dissipation, especially in the in-
ner disk, and stellar irradiation of the inclined/flared disk atmo-
sphere (Bitsch et al. 2014).
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While small (µm-sized) grains usually influence overall op-
tical properties, large (mm-sized) dust particles or (cm-sized)
pebbles – if already present – dominate the mass distribution.
According to recent developments in the theory of planet for-
mation, pebbles can be efficiently accreted by larger seed
masses, for example planetesimals or embryos, with high
enough accretion rate to finally produce giant planet cores
(Lambrechts & Johansen 2012, 2014) with masses &10 ME,
well within the protoplanetary disk lifetime, which is typically
’10 Myr (Fedele et al. 2010). Global-scale N-body simulations
demonstrated that the giant planets of the Solar System can
be reproduced by pebble accretion (Levison et al. 2015), pro-
vided that dynamical stirring of orbital inclinations breaks the
oligarchic growth of the seed masses (Kretke & Levison 2014).

A downside of the aforementioned global-scale simulations
with pebble accretion is that they do not model the interactions
between the protoplanets and the surrounding gaseous disk in
a self-consistent way because no hydrodynamics is employed.
However, during the evolutionary phase when multiple low-mass
embryos are present, it is inevitable that these embryos inter-
act gravitationally with the disk and undergo Type-I migration,
when no gap is opened. There are many purely hydrodynamical
effects contributing to the resulting torque acting on the planets:
Spiral arms (launched at the Lindblad resonances and indepen-
dent of viscosity ν), the corotation torque from the asymmet-
ric gas structures formed in the corotation regions of embryos
(Masset 2002) and additional forcing produced by asymmetries
related to radiative effects operating in the vicinity of the em-
bryos, for example the cold finger (Lega et al. 2014) or the heat-
ing torque (Benítez-Llambay et al. 2015).

The embryos – albeit having generally different migration
rates – can accumulate near some of the pressure gradient re-
versals, mutually interact, and get locked in a resonant configu-
ration and create a “convoy” (Pierens et al. 2013). Such a con-
figuration naturally prevents any merging. It is possible that the
stability of the resonant chain can be reduced by larger numbers
of embryos present in the system (Pierens et al. 2013), when the
disk is massive and exhibits large accretion rates, (10−7 M yr−1

according to Zhang et al. 2014), or when some of the embryos
enter a fast migration regime due to strong corotation torque
when the initially librating gaseous material is contracted into
the tadpole region (Pierens 2015). According to current under-
standing, it is unclear how pebble accretion and accretion heat-
ing affect the convergent migration and resonant chain stabil-
ity and we address these particular issues in this paper. We aim
to determine whether the migrating embryos merge or remain
in the chain while they continue to grow. The resonant chain
(in)stability is important also with respect to the observed ex-
oplanetary systems because these are often non-resonant (e.g.
Winn & Fabrycky 2015).

The embryo growth and/or merging closely precede an evo-
lutionary epoch which provides important observational evi-
dence of the planet-forming processes. Once a giant planet core
is formed it can clear a gap in the disk along its orbit and its fur-
ther migration is driven by the viscous evolution of the disk (the
Type-II migration, e.g. Lin & Papaloizou 1986; Crida & Bitsch
2017). Such a gap may become observable and the disk is then
classified as pre-transitional (according to Espaillat et al. 2010,
2014).

To summarise, the protoplanetary system within the scope
of this paper is assumed to consist of a gas disk with opacities
dominated by fully coupled dust, a pebble disk (strongly but not
fully coupled) and already formed low-mass embryos (∼1 ME)
that continue to grow by pebble accretion. Our hydrodynamic

simulations aim to investigate if different migration rates, evolv-
ing embryo masses, accretion heating and mutual perturbations
between embryos can break the resonant chains and create a
giant-planet core capable of opening a gap.

Our paper is organised as follows. In Sect. 2 we summarise
all the equations and approximations of our two-dimensional
(2D) RHD model. We also describe relevant initial and boundary
conditions. Technical details of the model and useful explanatory
derivations are given in Appendices A–C. A validation of our
model is given later in Appendix D. In Sect. 3 we present results
of our global-scale simulations focused on the migration of sev-
eral pebble-accreting and heated embryos. Section 4 describes
how the accretion heating affects the orbital eccentricities and
disk torques acting on the embryos. We discuss possible future
model improvements and also possibilities of relating our results
with observations in Sect. 5. Section 6 is devoted to conclusions.

2. Protoplanetary system modelling

The model we present is based on the publicly available 2D
hydrodynamic code fargo (Masset 2000; Baruteau & Masset
2008) which we extensively modified in order to follow the
evolution and mutual interactions between three components
of protoplanetary systems: a differentially rotating disk of the
nebular gas, a partially coupled disk of pebbles, and several
embedded planetary embryos. The fargo code is designed as
an Eulerian solver on a polar staggered mesh. The numeri-
cal scheme relies on the operator-splitting technique according
to Stone & Norman (1992), with a modified transport sub-step
which utilises van Leer’s second-order upwind interpolation
(van Leer 1977) for radial advection and the fargo algorithm
(Masset 2000) in the azimuthal direction. Let us briefly sum-
marise new physical modules that were implemented in our
modified version of the code.

Considering the gaseous disk, we relax the isothermal ap-
proximation and account for the evolution of temperature within
the disk. The extended set of hydrodynamic equations thus con-
tains the energy equation with multiple relevant source terms; in
particular: compressional heating, viscous heating, stellar irradi-
ation, vertical escape of radiation, radiative diffusion in the mid-
plane and radiative feedback to accretion heating of embryos.

Regarding the pebble disk, we assume it consists of mm- to
cm-sized pebbles (Lambrechts & Johansen 2012). Pebbles orbit-
ing within the nebular gas are subject to the aerodynamic drag
which changes their angular momentum. The characteristic time
scale of the angular momentum change is usually described by
the stopping time ts (Adachi et al. 1976; Weidenschilling 1977).
Its dimensionless form, the Stokes number, is defined as τ ≡
ΩKts, where ΩK denotes the Keplerian angular frequency. The
Stokes number is an important quantity encapsulating the parti-
cle size and coupling to the nebular gas. In this study, we follow
Lambrechts & Johansen (2014) and consider particles smaller
than the mean free path in the nebular gas, typically with τ . 0.1.
The friction then arises due to anisotropic collisions between in-
dividual gas molecules and pebbles and the drag operates in the
Epstein regime. Due to parametrisation by τ, we practically ne-
glect drag regimes relative to the local Reynolds number. Be-
cause of their aerodynamic properties, pebbles are strongly cou-
pled with the gas flow and thus we study their evolution using a
two-fluid model in which the pebble disk is modelled as another
Eulerian fluid which is, unlike the gas, pressureless and inviscid
(e.g. Youdin & Goodman 2005).

The embedded embryos are evolved in three dimensions
(3D) using a high-accuracy integration technique, accounting for
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close encounters, possible collisions, and merging. An artificial
vertical force acting on the embryos is applied to damp their in-
clinations as predicted for 3D disks (Tanaka & Ward 2004). The
embryos are allowed to grow by drag-assisted pebble accretion,
capturing pebbles from the circumplanetary flow. We also con-
sider that the embryos can be heated by this vigorous material
deposition and consequently radiate the excessive energy into
the surrounding gas.

The mutual interactions accounted for in the model are as
follows. Both the gas and pebbles evolve in the gravitational po-
tential of the protostar and embryos. The potential is computed
by an averaging procedure in a direction perpendicular to the
midplane to avoid unrealistic potential smoothing and spread-
ing (Müller et al. 2012). All the embryos participate in mutual
N-body interactions and they also feel the gravitational pull of
the gas disk, but the gravity of the pebble disk is ignored due to
its relatively low mass. The gas disk and pebbles are only cou-
pled through the linear drag term and no self-gravity is taken into
account. The detailed aspects of the model implementation into
fargo are elaborated in the following individual subsections.

2.1. Two-fluid model of the gas-pebble disk

In our hydrodynamic model, we study the evolution of the gas
surface density Σ, the vertically averaged gas flow velocity u =
(vr, vθ), the specific internal energy of the gas E, the surface den-
sity of the pebble disk Σp and its velocity field V = (Vr,Vθ).
The fundamental fluid equations to be solved can be written by
means of the vertically integrated quantities as follows:

∂Σ

∂t
+ ∇ · (Σu) = 0, (1)

∂u

∂t
+ u · ∇u = − 1

Σ
∇P +

1
Σ
∇ · T −

R
ρ∇φdz

Σ
+
Σp

Σ

ΩK

τ
(V − u) , (2)

∂E
∂t
+ ∇ · (Eu) = −P∇ · u + Qvisc + Qirr + Qacc − Qrad, (3)

∂Σp

∂t
+ ∇ ·


ΣpV


= −

 
∂Σp

∂t

!

acc
, (4)

∂V
∂t
+ V · ∇V = −

R
ρp∇φdz

Σp
− ΩK

τ
(V − u) . (5)

Here P denotes the vertically integrated pressure, T is the vis-
cous stress tensor (e.g. Masset 2002), φ is the gravitational po-
tential arising from the protostar and planetary embryos, ρ and
ρp are the volume densities of the gas and pebbles, respectively.
The individual source terms on the right-hand side of the en-
ergy equation represent the compressional heating, the viscous
heating Qvisc, the stellar irradiation Qirr, the radiative diffusion
Qrad and the heating Qacc arising from pebble accretion which is
symbolically considered in the pebble mass continuity equation
as the −


∂Σp/∂t


acc

term. We emphasise that the gradient and
divergence operators are always 2D in our model.

The following ideal gas equation of state is introduced as the
thermodynamic closing relation

P = Σ
RT
µ
= (γ − 1) E, (6)

with R being the universal gas constant, µ = 2.4 g mol−1 being
the mean molecular weight and γ = 1.4 denoting the adiabatic
index (specific heat ratio).

Before proceeding to the description of all the individual
source terms, let us highlight that we assume a simple vertical
stratification of the disk in order to approximate certain effects
that are expected to operate in realistic 3D disks. The gas volume
density ρ (r, θ, z) follows a Gaussian form

ρ (r, θ, z) =
Σ(r, θ)√
2πH(r, θ)

exp
 
− z2

2H(r, θ)2

!
, (7)

where H = cs,iso/ΩK = cs/(
√
γΩK) is the local pressure scale

height and cs =
p
γP/Σ is the adiabatic sound speed which

differs from the isothermal sound speed cs,iso by a factor
√
γ.

The normalisation constant Σ/(
√

2πH) actually represents the
gas volume density ρ0 in the midplane. In principle, Eq. (7)
holds only for vertically isothermal disks, which is an assump-
tion we do not impose when discussing the energy source terms
in Sect. 2.2. But because recent 3D simulations demonstrated
that the optically thick parts of protoplanetary disks have a flat
vertical temperature distribution (Flock et al. 2013), we decided
to use Eq. (7) as a viable first approximation of the vertical strat-
ification.

2.2. Energy source terms

Let us first describe how the radiation transport is treated in our
model. The corresponding term Qrad is given by the vertically
integrated divergence of the 3D radiative flux F3D:

Qrad =

∞Z

−∞
∇3D · F3Ddz ’

HZ

−H

∂Fz

∂z
dz + 2H∇ · F

≡ Qvert + 2H∇ · F, (8)

where we assumed that the vertical outward radiation is liberated
at H which is expected to be much smaller than the radial ex-
tent of the disk. The amount of energy transported by radiation
is therefore dominant in the vertical direction (D’Angelo et al.
2003). We estimate these radiative losses caused by the vertical
escape of radiation from both sides of the disk as

Qvert ’ 2σRT 4
eff =

2σRT 4

τeff
, (9)

where σR is the Stefan-Boltzmann constant, T stands for the
midplane temperature and τeff is the effective optical depth.
Hubeny (1990) generalized the gray model of stellar atmo-
spheres in LTE for the case of accretion disks and found

τeff =
3
8
τopt +

1
2
+

1
4τopt

, (10)

where we implicitly assumed that the disk is stellar irra-
diated (otherwise 1/2 term should be replaced with

√
3/4;

D’Angelo & Marzari 2012) and that the mean Rosseland opacity
and the Planck opacity are identical which is a viable approxi-
mation as discussed, for example, by Bitsch et al. (2013). The
relation (10) is highly convenient in the case of a protoplane-
tary disk because it can characterise both optically thin and thick
environment.
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The optical depth τopt is measured from the midplane to the
disk surface and we estimate it as

τopt =

∞Z

0

κ(r, θ, z)ρ(r, θ, z)dz ’ cκκ(r, θ)

∞Z

0

ρ(r, θ, z)dz

= cκ
κ(r, θ)Σ(r, θ)

2
, (11)

where cκ = 0.6 is a correction factor that accounts for the opacity
drop in the layers above the midplane (we refer to Müller & Kley
2012 for a similar approach). This parametric factor in fact sets
the local efficiency of vertical cooling and can be tuned so that
the resulting disk structure resembles the one obtained in 3D
models.

We adopt the power-law mean Rosseland opacity κ = κ0ρaT b

with the coefficients a and b derived by Lin & Papaloizou (1985)
and further refined by Bell & Lin (1994) for various temper-
ature intervals and corresponding opacity regimes. The transi-
tions between individual opacity regimes are smoothed out as in
(Lin & Papaloizou 1985; we also refer to Keith & Wardle 2014).

Coming back to the midplane radiative flux (see
Eq. (8)), we use the flux-limited diffusion approximation
(Levermore & Pomraning 1981; Klahr & Kley 2006) to express

F = −λlim
16σR

ρ0κ
T 3∇T · (12)

In this approximation, scattering effects are neglected and λlim
denotes the flux limiter, which is calculated according to Kley
(1989). The radiative transport is treated by means of the one-
temperature approach (Kley et al. 2009). This means that the in-
ternal energy of the gas is presumed to be dominated by the ther-
mal energy whereas the radiative energy is relatively small. The
radiation field is thermalised to the same temperature T as the
gas.

The stellar irradiation is governed by Qirr term which is com-
plementary to Qvert and reads

Qirr =
2σRT 4

irr

τeff
· (13)

The irradiation temperature Tirr can be obtained from the
projection of the stellar radiation flux onto the disk surface
(Chiang & Goldreich 1997; Menou & Goodman 2004; Pierens
2015)

T 4
irr = (1 − A)

R?
r

2

T 4
? sinα. (14)

Here A = 0.5 is the disk albedo, assumed to be a mean value
implicitly averaged over the stellar flux, and T? = 4370 K is
the effective temperature of the protostar with the stellar radius
R? = 1.5 R. Together with the stellar mass M? = 1.0 M, the
given parameters represent a protostar similar to T Tauri type
(Paxton et al. 2015). Finally, α is the grazing angle at which
the starlight strikes the disk. The grazing angle can be approx-
imated by reconstructing the disk surface from the local pres-
sure scale height H. Adopting the geometric formulation of
Baillié & Charnoz (2014), we use

α = arctan
 

dH
dr

!
− arctan

 
H − 0.4R?

r

!
· (15)

If α < 0, the corresponding surface facet is not oriented towards
the incident irradiating flux thus we set Qirr = 0 in this case.

Unlike in an isothermal model, the aspect ratio h(r) = H(r)/r
is not time independent but it evolves instead. Therefore the
disk can flare in its outer parts where the stellar irradiation
dominates the energy budget (D’Alessio et al. 1998; Dullemond
2002; Bitsch et al. 2013).

The viscous dissipation heating Qvisc is calculated according
to Mihalas & Weibel Mihalas (1984)

Qvisc =
1

2νΣ


τ2

rr + 2τ2
rθ + τ

2
θθ


+

2νΣ
9

(∇ · u)2 . (16)

Here ν = 5 × 1014 cm2 s−1 is the kinematic viscosity and τi j
corresponds to the individual components of the viscous stress
tensor T. We emphasise that the viscosity is fixed and not solved
explicitly in the model.

The accretion heating term Qacc is non-zero only in the near-
est vicinity of embedded planetary embryos and it depends on
their accretion rate. The luminosity of an accreting embryo with
the mass Mem and the radius Rem is given by

L =
GMem

Rem

dMem

dt
· (17)

The resulting heating of the surrounding gas is provided by plac-
ing an inner heat source into the grid cell which contains the
respective embryo. The specific power of this source reads

Qacc =
L
S
, (18)

where S is the cell area. In this work, we assume that the mass
growth of embryos is driven solely by pebble accretion. The ac-
cretion rate dMem/dt is computed self-consistently as described
in Sect. 2.5. We emphasise that the accretion heating term Qacc
is not always switched on in our simulations and we remind the
reader in such cases.

The numerical solution of the energy equation (Eq. (3)) is
described in Appendix A.

2.3. Initial state of the gas disk

The thermal equilibrium of any gaseous disk studied in our
model is achieved by a rather complicated interplay between
the heating and cooling sources introduced above. Therefore it
would be difficult to search for an analytic formula describing
the initial state of an isolated disk in equilibrium. In order to ini-
tialise the hydrodynamic fields over the computational domain,
we use either simple power-law functions or equilibrium solu-
tions known from less sophisticated models. The resulting gas
disk, which lacks the pebble component and embedded objects
at this point, is then numerically relaxed towards its stationary
state. This serves as a preparation stage for the following com-
plete simulations.

The non-relaxed hydrodynamic profiles are assumed to be
symmetric in θ. The surface density is described by the power-
law profile Σ = 750 (r/(1 AU))−0.5 g cm−2. We start with an ini-
tially non-flaring disk, having the aspect ratio h = H/r = 0.05.
In accordance with this setup, we can subsequently initialise cs,
P and T . We verified that the choice of initially non-flaring disk
does not prevent flaring during the relaxation. The radial veloc-
ity vr is initially set to zero, while vθ is set by imposing the equi-
librium between the central gravity, pressure gradient, and cen-
trifugal acceleration. The disk is fully extended in azimuth and
radially bordered by the inner boundary rmin = 2.8 AU and the
outer boundary rmax = 14 AU. The polar computational domain
is divided into 1536 azimuthal sectors and 1024 evenly spaced
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radial rings. The grid sampling should be sufficient to reasonably
resolve the corotation region of low-mass embryos and properly
reproduce the related torques (e.g. Lega et al. 2014).

2.4. Initial state of the pebble disk

We use the hydrodynamic polar grid to insert a sea of pebbles
within the gaseous disk which has already been relaxed towards
its equilibrium state in the absence of planetary embryos. Using
solely the hydrodynamic quantities together with several param-
eters introduced in this section, we initialise Σp, Vr and Vθ over
the computational domain and evolve the fluid of pebbles over
the course of the simulation.

The aerodynamic properties of pebbles which interact with
the gas in the Epstein regime are characterised by the Stokes
number

τ =
ρbRp

ρ0cs
ΩK, (19)

where ρb = 1 g cm−3 is the pebble bulk density, Rp is the peb-
ble size and ρ0 is the midplane volume density of the nebular
gas. Then the initial velocity field can be described by an ana-
lytic estimate for a pebble drifting in a steady-state gaseous disk
while neglecting the presence of any massive perturbers besides
the protostar (e.g. Nakagawa et al. 1986; Guillot et al. 2014, and
also Appendix B)

Vr = − 2τ
1 + τ2

 
ηvK − 1

2τ
vr

!
, (20)

Vθ = vK − 1
1 + τ2


ηvK − τ2 vr


, (21)

where vK is the local Keplerian velocity and η measures how
much the gas departs from local Keplerian rotation

vθ = (1 − η)vK. (22)

In simple stationary disks, η is a monotonic function reflecting
the sub-Keplerian rotation of the pressure-supported nebular gas.
In realistic disks, however, the situation is more complicated;
the η profile is affected, for example, by the pressure dips and
bumps, which can occur at the opacity transitions (Bitsch et al.
2014), and also by viscous shear.

As mentioned above, we aim to describe the pebble disk by
a single fluid while in reality, protoplanetary systems are cer-
tainly populated by pebbles of various sizes. Despite our sim-
plification, we would like the material delivery towards the ac-
creting embryos to be realistic. It is thus important to discuss
the choice of the particle size and Stokes number. As argued by
Birnstiel et al. (2012), most of the pebble mass is concentrated
towards the upper end of the size spectrum and, at the same time,
the largest pebbles are the fastest drifters. At a given radial dis-
tance, it is reasonable to assume that the pebble size distribution
has a steep upper cutoff and all the particles larger than this cutoff
are swiftly removed by the drift, while particles smaller than this
cutoff do not significantly contribute to the total mass of solids.
In this work we presume that such a dominant size is also the
best choice for characterising the pebble disk by a single fluid so
that its resulting hydrodynamic behaviour is the most similar to
a real pebble disk, which is a mixture of many particle species.
In other words, the dominant pebble size can be viewed as an
effective workaround to avoid using a numerically demanding
multi-fluid model and obtain a reasonably evolving disk of solids

at the same time. We highlight that Rp is always understood as
the dominant drift-limited size in what follows and that we also
neglect other size-limiting processes such as fragmentation.

The Stokes number τd of the dominant pebble size can be
found by balancing the characteristic time scale for the particle
growth tgrow = Rp/Ṙp and the time scale of the particle removal
by the drift tdrift = r/Vr. Following Garaud (2007) and staying
within the limits of the Epstein regime, the growth time scale is

tgrow =
4√

3p

Σp/Σ


ΩK

, (23)

and depends only on the local solid-to-gas ratio, orbital fre-
quency and the pebble coagulation efficiency, assumed p = 0.5.
Because τ < 1, we approximate Vr ≈ −2τηrΩK and, by equating
the characteristic time scales, we write

τd =

√
3

8
p

η

Σp

Σ
. (24)

Up to this point, the pebble surface density Σp was uncon-
strained. When studying pebble accretion, it is useful to keep
track of the total radial mass flux ṀF of solids through the sys-
tem. In the following, we set the initial ṀF = 2 × 10−4 ME yr−1

(Lambrechts & Johansen 2014) as an input parameter and as-
suming an equilibrium situation, we impose the following conti-
nuity requirement (Lambrechts & Johansen 2014)

Σp =
ṀF

2πrVr
· (25)

Plugging Eq. (25) in (24) and using the approximate expression
for Vr again, one finds

τd =
1
rη

s √
3pṀF

32πΩKΣ
· (26)

The corresponding dominant particle size can be easily obtained
when using the inverse of Eq. (19). In the last expression, τd
depends only on two model parameters (p and ṀF) and the hy-
drodynamic state of the gaseous background. Therefore it is a
convenient starting point for the pebble disk initialisation.

To summarise the initial conditions, we first use the com-
bination of Eqs. (19) and (26) to find Rp(r). Because the re-
laxed gaseous disk is very close to axial symmetry (within dis-
cretisation errors and numerical artefacts) when we incorporate
the pebble disk, it is reasonable to consider that the pebble size
changes only radially. We further assume that once the planetary
embryos are present, they do not cause global-scale changes of η,
thus the initial Rp(r) profile is kept fixed during our simulations.
Subsequently, we calculate the initial (Vr,Vθ) field (Eqs. (20)
and (21)) which sets Σp from the mass flux conservation law
(25). We emphasise that unlike Rp(r), the Stokes number τ(r, θ) is
considered a cell-dependent quantity during the simulations and
it is recalculated each time step to obtain proper aerodynamics
for a given particle size moving in the evolving gaseous back-
ground. This is to account for situations when pebbles suddenly
enter gas clumps or underdense regions.

2.5. Pebble accretion

Pebble accretion enters our model through Eq. (4) in which
it acts like a mass sink. At the same time, the mass removed
from the pebble component is accreted by the growing embryos.
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According to Lambrechts & Johansen (2012), two fundamental
regimes of pebble accretion have to be considered, namely the
Bondi1 and the Hill regimes, while the transition between the
two occurs when the pebble accretion Bondi radius RB becomes
comparable to the Hill sphere radius RH of the accreting body.
The former radius corresponds to the distance whereby a peb-
ble with impact parameter b ≤ RB will suffer a ≥1 rad deflec-
tion, while the latter radius defines the region in which the grav-
itational pull of the accreting body dominates over the primary
field. The defining equations are

RB =
GMem

v2rel

, (27)

and

RH =


GMem

3Ω2
K


1/3

, (28)

where vrel denotes the relative velocity between the pebble and
the accreting body with mass Mem.

In the Bondi regime, if RB . RH, the only pebbles that ex-
perience a significant deflection arrive through a small fraction
of the Hill sphere thus they enter the encounter region with the
relative velocity which is set by the local headwind experienced
by the embryo, therefore vrel ’ vhead.

On the other hand, if RB & RH, the relative encounter veloc-
ity for most of the pebbles is dominated by the Keplerian shear
which becomes more important than headwind on orbital sep-
arations comparable to RH. In such a case, the Hill regime is
triggered. It is obvious that the equality of RB and RH is reached
for a specific value of Mem called the transition mass

Mt =

r
1
3
v3head

GΩK
· (29)

Super-Earth-like embryos which we investigate in this paper
usually grow in the Hill regime.

Lambrechts & Johansen (2012) also found that there is a
well-defined maximum distance at which the pebbles must ap-
proach the embryo in order to be accreted. This effective accre-
tion radius for both regimes is given by

Reff =



RB

r
τ

tBΩK
, Bondi regime (Mem < Mt)

min
"
RH


τ

0.1

1/3
,RH

#
, Hill regime (Mem ≥ Mt)

(30)

where tB = RB/vrel is the crossing time of the Bondi radius.
Because our simulations cover a relatively large portion of

the protoplanetary disk, the grid resolution near embryos is not
detailed enough to capture the final stage of the in-spiraling mo-
tion of pebbles. Thus the fluid model does not allow for fully
self-consistent pebble accretion calculation because we are not
able to resolve the flow of pebbles falling on the embryo’s sur-
face. We instead rely on the knowledge of the effective accretion
radius Reff and we employ a recipe which is somewhat similar
to the usual gas accretion treatment in 2D hydrodynamic models
(Kley 1999).

First, we identify all the grid cells which have a midplane
distance from the embryo smaller than Reff . Second, we compute
the following mass-related quantities:

1 In the original work of Lambrechts & Johansen (2012), the Bondi
regime is referred to as the drift regime.

– The expected embryo mass increase ∆Mexpec: here we use
the analytic accretion rates derived from detailed pebble ac-
cretion models (Lambrechts & Johansen 2012). Following
Morbidelli et al. (2015), we set

vrel =

(
vhead, Bondi regime (Mem < Mt)
vshear, Hill regime (Mem ≥ Mt) ,

(31)

where vshear is the relative velocity due to Keplerian shear at
the orbital separation Reff , and

∆Mexpec =



2ReffvrelΣ̄p × ∆t,

H̄p < Reff



πR2
effvrel

Σ̄p√
2πH̄p

× ∆t,

H̄p ≥ Reff


,

(32)

where the overbar indicates the mean value taken over the
respective cells and ∆t is the time step. Because vrel is cal-
culated self-consistently, the pebble accretion rate is approx-
imately corrected for eccentric orbits (vrel increases with the
eccentricity, Mt increases as well and the embryo can experi-
ence a transition to the Bondi accretion regime which is less
effective).

– The total available mass ∆Mavail: assuming that pebbles have
non-zero scale height Hp and that their vertical z-distribution
is Gaussian (like for the gas; cf. Eq. (7)), we calculate ∆Mavail
by numerically integrating the pebble fluid mass inside the
overlap between the vertically spread disk of pebbles and the
accretion sphere of radius Reff , located around the embryo
which can generally be shifted in z direction. The purpose of
∆Mavail is mainly to account for 3D effects, for example in-
clined orbits, which can lead the accreting bodies away from
their feeding zones.
The pebble disk scale height is (Youdin & Lithwick 2007)

Hp ’ H

r
αp

τ
, (33)

where αp = 1 × 10−4 parametrises the turbulent stirring of
the solids in the protoplanetary disk.

Finally, the mass transfered on the embryo in one time step is

∆Mem = min(∆Mexpec,∆Mavail). (34)

The pebble surface density in the cells below Reff is reduced
accordingly. This instantaneous accretion rate ∆Mem/∆t is also
used to calculate the accretion heating Qacc (Eq. (18)). The
change in Σp due to accretion can propagate to radial distances
interior to the embryo, thus affecting the pebble mass flux.

2.6. Numerical solution of the pebble fluid motion equation

After the accretion step, the hydrodynamic quantities describing
the pebble disk are evolved as follows. First, the Stokes number
τ(r, θ) is recalculated for each cell from Eq. (19) using the known
dominant pebble size Rd and the quantities ρ0 and cs reflecting
the state of the gaseous background. Second, the velocity field
Vr, Vθ is updated under the action of the source terms standing
on the right-hand side of the pebble fluid motion Eq. (5). Third,
all the quantities are advected using the same transport fargo
algorithm as for the gas.

Regarding the source step, it is necessary to take into con-
sideration that pebbles are usually well coupled to the gas and
they have stopping times ts much smaller than the typical time
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step ∆t adopted for the explicit update of the gas dynamics. Ap-
plying the same explicit integration for the pebble fluid might
require significant limitations of ∆t. In order to avoid this, we
adopt a semi-implicit solution as in (Rosotti et al. 2016; we refer
to Appendix C for a brief overview of this method), also includ-
ing a particle diffusion term related to turbulent mixing. This is
accounted for by adding the diffusive velocity (Clarke & Pringle
1988),

VD = − νSc
Σ

Σp
∇Σp

Σ
, (35)

to the pebble fluid velocity. The Schmidt number Sc = 1 is con-
sidered, representing the ratio of the gas diffusivity to the pebble
diffusivity (e.g. Cuzzi et al. 1993; Youdin & Lithwick 2007).

2.7. Boundary conditions

The radial boundaries rmin and rmax are closed for all hydrody-
namic quantities. In addition, we set wave-killing zones in the
annuli adjacent to the inner and outer boundary. These zones
cover the intervals of r ∈ [rmin, 1.2rmin] and r ∈ [0.9rmax, rmax].
Inside these zones, the following equation is solved each
time the boundary condition is applied (Kley & Dirksen 2006;
de Val-Borro et al. 2006)

dq
dt
= −q − q0

tdamp
f (r) , (36)

where q represents any hydrodynamic quantity and q0 is its ref-
erence value that is about to be reached by the damping. The
characteristic time scale is tdamp = 0.1Torb (Müller & Kley 2013)
with Torb being the Keplerian orbital period at the corresponding
(inner or outer) boundary. By f (r) we denote a dimensionless
ramp function which decreases from 1 at the boundary to 0 at
the end of the wave-killing zone (de Val-Borro et al. 2006).

The choice of q0 for the gas disk is the following: The ra-
dial velocity vr is damped to zero at the boundaries. The remain-
ing hydrodynamic quantities characterising the gas (Σ, E, vθ) are
damped towards the values they attain at the end of the relax-
ation stage. Owing to these conditions, any spiral wake that is
invoked by an embedded planet cannot reflect at the boundary.

The boundary conditions for pebbles are also imposed within
the wave-killing zones by damping Σp, Vr and Vθ towards the ini-
tial steady-state solutions. Owing to these conditions, the outer
wave-killing zone behaves like a pebble reservoir and the pebble
disk does not decay in time due to its inward drift.

2.8. Embryo-disk interaction

In 2D simulations, a standard procedure when simulating the
planet-disk gravitational interactions is to replace the real plane-
tary potential with a Plummer-type smoothed potential of a point
mass (Morbidelli et al. 2008) φem = −GMem/

p
s2 + z2

em + 2,
where s =

p
(x − xem)2 + (y − yem)2 is the midplane separa-

tion between a cell center and an embryo with 3D coordinates
(xem, yem, zem) and  is the smoothing length, typically taken as
a fraction of the pressure scale height Hem at the embryo’s orbit.
The reason for the smoothing is twofold. First, it is to keep the
otherwise diverging potential regular for the gas parcels located
close to the planet and second, it is to mimic the interaction with
columns of gas instead of razor-thin midplane distribution.

However, we decided not to use the -smoothed potential in
our case because of the following inconveniences. As the em-
bryo masses are typically Mem ≈ 1 ME, one can expect that the

Hill sphere of the embryo will be smaller than the vertical extent
of the disk most of the time. This means that the -smoothing
based on the thickness would cause a significant underestimation
of the embryo’s gravitational influence already outside the Hill
sphere (Kley et al. 2009). This could have at least two negative
impacts on the reliability of our model: the torques arising from
the regions close to the planet would be poorly reproduced and
too many pebbles might be able to cross the Hill sphere without
being accreted as they would drift in a shallower potential well.

To avoid these difficulties, we follow Klahr & Kley (2006)
and use the following deeper potential

φem =



−GMem

d
, (d > rsm)

−GMem

d


 

d
rsm

!4

− 2
 

d
rsm

!3

+ 2
d

rsm

 , (d ≤ rsm)
(37)

where rsm = 0.5RH is the actually used (sufficiently small)
smoothing length. For the purpose of the embryo-disk interac-
tion modelling, we assume that the gas is stratified symmetri-
cally above and beneath the midplane, according to the distribu-
tion function (7). Hereinafter, d is the 3D separation between a
point in the space (located above or below a cell center) and the
embryo.

Because the gas cells in our model are 2D, we employ
a method to vertically average the 3D potential given by
Eq. (37) in the calculations. Adopting the approach outlined by
(Müller et al. 2012; we also refer to their Appendix A), the ac-
celeration of 2D gas cells in the gravitational field of the embryo
can be obtained by calculating the specific density of the force
projected on the midplane

Fem(s) = −
Z
ρ
∂φem

∂s
dz, (38)

where φem follows from Eq. (37) and ρ(r, θ, z) from Eq. (7). As
demonstrated in Müller et al. (2012), replacing the integral with
a coarse sum over at least ten vertical grid points per side of the
disk leads to an accurate yet numerically feasible reproduction
of the realistic 3D interaction.

Equation (7) in principle neglects the influence of embryos
on the vertical gas distribution in their vicinity. Although this ef-
fect can (and should) be easily incorporated in fully isothermal
models (as in Müller et al. 2012), it is not straightforward in our
non-isothermal disk because we only use an approximate treat-
ment of the vertical radiation transport, the model is convection-
free, and so on. Nevertheless, we found, by means of numeri-
cal experiments, that even the simple ρ(z) dependence leads to
results which agree with some of the advanced 3D simulations
very well (Appendix D). This justification is possible due to the
local nature of the pressure scale height H in our model and also
owing to the mass range of embryos which we study; they are not
massive enough to perturb the disk scale height significantly, nor
do they form circumplanetary disks. Absence of large gaseous
structures gravitationally bound to the embryos is also a motiva-
tion for including all parts of the Hill sphere in the disk-embryo
torque computation.

In general, the orbits of embryos can become inclined or ec-
centric during mutual close encounters, it is thus necessary to en-
sure the inclination damping and the circularisation of the orbit
as it would operate in 3D disks. Unfortunately, our 2D disk can-
not support vertical waves and moreover, Eq. (7) always leads
to a symmetric density distribution with respect to the midplane
which is certainly not true if inclined perturbers are present. An
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artificial vertical force is thus imposed on the embryos in order
to damp their orbital inclinations in a fashion similar to realistic
3D disks (Tanaka & Ward 2004):

Fz = β
MemΣΩK

c4
s


2Ac

zv
em
z + As

zzemΩK


, (39)

where vem
z is the vertical component of the planet’s velocity,

Ac
z = −1.088 and As

z = −0.871 are the coefficients given by
Tanaka & Ward (2004). The parameter β is problem-dependent
and has to be tuned so that the eccentricity damping, provided
naturally by the potential (Eq. (37)), and the inclination damp-
ing operate both on comparable time scales.

Finally, let us point out that the stellar potential is also mod-
elled in terms of the acceleration obtained by the vertical averag-
ing procedure. The evolution of pebbles in the gravitational field
follows the same recipe as for the gas (cf. Eqs. (37) and (38)) but
their scale height Hp is of course different (Eq. (33)).

2.9. Embryo-embryo interaction

The mutual gravitational interaction among the massive bod-
ies is solved using the ias15 integrator (Rein & Spiegel 2015)
from the rebound package (Rein & Liu 2012) which we in-
terfaced with fargo. The integration follows a 15th order
non-symplectic Runge-Kutta scheme improved with the Gauss-
Radau quadrature (we refer also to Everhart 1985). There are
several fundamental reasons for choosing this integrator over
more common symplectic integrators:

– The time step ∆t in fargo is controlled by the hydrodynamic
Courant-Friedrichs-Lewy (CFL) condition and the original
code adopts the same time step to ensure that the planets
and gas evolve synchronously. Some symplectic integration
schemes can produce numerical errors if the time step is not
fixed.

– The N-body integrator must be capable of dealing with close
encounters which are expected to occur in our simulations.
ias15 is convenient for this purpose because of its high-
order accuracy and adaptive time-step subdivision.

– Although ias15 is not symplectic in nature, it is reported
to preserve the energy error within the double floating-point
machine precision (Rein & Spiegel 2015). Moreover, the en-
ergy error behaves like a random walk which we think is the
best option for the rather short time spans (compared to long-
term integrations in celestial mechanics) that our simulations
cover.

Additionally, the rebound package contains several routines to
detect and resolve collisions. In our runs, we use the direct colli-
sion search and the embryos are allowed to merge whenever they
collide. Merging is treated in the most simple way, in which the
mass and momentum are conserved but the released energy and
possible mass loss are neglected. The embryo radii, which are
used to detect collisions, are inferred from the embryo masses,
assuming the spherical shape and the uniform material density
3 g cm−3.

2.10. Code performance

The performance of our new RHD code of course depends on
the given machine architecture and the simulations usually re-
quire parallel computation in order to be efficient. Following
the original fargo code, our version supports distributed mem-
ory parallelism using MPI-based domain decomposition, shared

Table 1. A summary of the hydrodynamic model parameters introduced
in Sect. 2.

Parameter Notation Value/reference

Gas surface density Σ 750


r
1 AU

−0.5
g cm−2

Kinematic viscosity ν 5 × 1014 cm2 s−1

Non-relaxed aspect ratio h H/r = 0.05
Adiabatic index γ 1.4

Mean molecular weight µ 2.4 g mol−1

Mean Rosseland opacity κ Bell & Lin (1994)
Vertical opacity drop cκ 0.6
Stellar temperature T? 4370 K

Stellar radius R? 1.5 R
Disk albedo A 0.5

Radial grid resolution Nr 1024
Azimuthal grid resolution Nθ 1536

Inner radial boundary rmin 2.8 AU
Outer radial boundary rmax 14 AU
Pebble radial mass flux ṀF 2 × 10−4 ME yr−1

Pebble turbulent stirring αp 1 × 10−4

Schmidt number Sc 1.0
Coagulation efficiency p 0.5

Pebble bulk density ρb 1 g cm−3

memory parallelism using OpenMP, or a combination of both.
The simulations in this paper were performed on clusters of In-
tel Xeon E5-2650 CPUs (v2 and v4; with comparable core per-
formance ’33 according to the SPECfp2006 benchmark) using
MPI exclusively. To provide a typical computation time required
for our simulations, here we present values measured for a test
simulation with the full two-fluid disk, four embedded embryos
and all implemented radiative processes. The simulation spanned
50 kyr of evolution and required ’5.4 d on 32 cores and ’3 d on
96 cores.

3. Protoplanetary system simulations

3.1. Equilibrium disk structure

In this section, we discuss global characteristics of the proto-
planetary disk in thermal equilibrium, before we actually start
simulations with embedded embryos. All the important hydrody-
namic model parameters were introduced one by one throughout
Sect. 2 and we summarise all of them in Table 1 for the reader’s
convenience.

Figure 1 (top panel) shows the aspect ratio h(r) = H(r)/r
and the temperature radial profile T (r) of the modelled disk. We
notice that h first increases with the radius, reaches a maximum
at r ’ 4 AU, drops again when moving to r > 4 AU and has
another turn-over point at r ’ 7 AU. The temperature T on the
other hand steadily decreases outwards as a sequence of power-
law functions with slopes that change at radii corresponding to
the inflection points in h.

We can follow the reasoning of Bitsch et al. (2013) to explain
the changes in h as well as in T . Looking at the opacity pro-
file κ(r) (bottom of Fig. 1), we notice that it has a maximum at
r ’ 4 AU. This is related to the temperature rise up to T ≈ 170 K
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Fig. 1. Top: radial profile of the aspect ratio h = H/r (black curve, left
vertical axis) and midplane temperature T (red dashed curve, right ver-
tical axis) in our disk model. Bottom: radial profile of the opacity κ. The
plots show the state reached after a relaxation, with all the heating and
cooling terms in balance. This is considered an equilibrium state prior
to the follow-up simulations with embedded embryos. Vertical dotted
lines indicate important changes in the disk structure, namely the snow-
line close to r ’ 4 AU and the transition to the flared stellar-irradiated
outer region near r ’ 7 AU.

at which ice grains sublimate (Bell & Lin 1994), a snowline is
formed and silicate grains become the main source of the opac-
ity. The opacity maximum at r ’ 4 AU prolongs the radiative
cooling time scale and viscous friction deposits more heat in the
midplane and creates a thermal pressure gradient which puffs up
the disk. Therefore the maximum of h corresponds to the maxi-
mum of κ.

The transition of h at r ’ 7 AU cannot be explained in the
same way because κ is steadily decreasing in this region (there is
no change of the opacity regime), albeit with a shallower slope.
The transition is rather caused by the change of the dominant
heating source. Unlike at r < 7 AU, where the viscous shear is
the main source of heating, the stellar irradiation becomes more
efficient and prevails at r > 7 AU. This is possible because both Σ
and κ are decreasing in the outer disk and so is the vertical optical
depth τopt. Therefore starlight can penetrate deeper into the disk,
counteract the radiative cooling and slow down the temperature
decrease in the outer disk which becomes flared.

3.2. Dominant pebble properties

The described transitions in the gas disk are of a great impor-
tance for the remaining components of the system – both pebbles
and embryos. Let us turn our attention to pebbles first. Figure 2
shows the radial profile of the gas rotation parameter η (Eq. (22)).
The profile implies that the rotation curve of the gas changes
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Fig. 2. Radial profile of the η parameter (black curve, left vertical axis)
which expresses the difference between the sub-Keplerian gas veloc-
ity and the Keplerian velocity, vθ = (1 − η)vK. Initial radial profile of
the dominant Stokes number τd (blue dashed curve, right vertical axis)
which characterises aerodynamic properties of pebbles prevalent in the
size-frequency distribution of solid particles.

at the 4 and 7 AU transitions. For example, there is a rotation
slowdown in the inner part of the disk due to stronger pressure
support and viscous friction.

The rotation velocity of the gas is directly related to the head-
wind felt by drifting pebbles. Because the radial pebble mass
flux through the disk is assumed to be at a steady state, the radial
distribution of the dominant Stokes number τd (Eq. (26)) must
adapt to the η profile in order to maintain the flux, as shown by
the blue dashed curve in Fig. 2. We recall that in our model, the
initial τd(r) profile sets the dominant pebble sizes Rp(r) through-
out the system for the rest of the simulation. Going from large r
inwards, Rp first grows from 7.5 to 9 cm, when crossing r ’ 7 AU
the sizes begin to decrease down to 5 cm and finally they increase
at r < 4 AU up to 8 cm.

However, the described variations of particle sizes and
Stokes numbers are rather small, within a factor ∼2 in the region
of interest. This is expected because the rotation curve transitions
are smooth and the initial state of the pebble disk (Sect. 2.4) is
based on the Lambrechts & Johansen (2014) model which pre-
dicts the properties of the drifting pebbles to depend weakly on
η in smooth disks.

3.3. Migration map

Let us also discuss the influence of the gas disk structure on
the orbital evolution of embedded planetary embryos. In par-
ticular, we can estimate the expected direction and rate of the
Type-I migration of an embryo, depending on its mass and
location in the disk. As in for example Kretke & Lin (2012)
or Bitsch et al. (2013), we apply the analytical formulae from
Paardekooper et al. (2011) on the azimuthally averaged pro-
files of the equilibrium disk and compute the torque acting
on embryos. We do not list individual steps of the torque cal-
culation here, as there are many, but note that the model of
Paardekooper et al. (2011) is 2D and gives a prediction for low-
mass planets on fixed circular orbits, while accounting for both
Lindblad and corotation torques in the non-linear regime, sat-
urated and unsaturated limits. The heating torque is not con-
sidered in their model. Moreover, they used the -smoothed
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Fig. 3. Migration map based on the equilibrium state of the protoplane-
tary disk. The colour code shows the normalised value of the total torque
γΓtot/Γ0 acting on an embryo with the mass Mem (vertical axis) placed
on a circular orbit at the radial distance r (horizontal axis) in the disk.
Calculated according to Paardekooper et al. (2011), using the constant
kinematic viscosity ν = 5 × 1014 cm2 s−1 and the potential smoothing
parameter  = 0.4Hem.

Plummer-type potential for planet-disk interactions and thus
their torque formulae are parametric in the smoothing length .

The resulting migration map, calculated for rather small  =
0.4Hem, is shown in Fig. 3. The total torque Γtot felt by embryos
of various masses Mem is normalised as γΓtot/Γ0, where

Γ0 =

 
q

hem

!2

Σemr4
emΩ

2
em, (40)

q = Mem/M? is the embryo-to-protostar mass ratio and all of
the remaining quantities are calculated at the respective orbital
radius rem. It is important to emphasise that Fig. 3 is only an
auxiliary diagram which does not exactly represent the torque
felt by embryos in our simulations (we refer to Appendix D for
a comparison of torques with Paardekooper et al. 2011). Despite
this, it is a useful tool for getting a general picture of the expected
migration rates in different regions of the disk before actually
performing self-consistent simulations.

We notice there are two borderlines between positive and
negative torques in the disk. The first is located at the snow-
line (r ’ 4 AU) and the second is located at (roughly) r ’ 7 AU,
that is, the transition between the viscously heated and stellar-
irradiated region. The outer borderline represents a zero-torque
radius where an accumulation (convergent migration) of em-
bryos is expected to occur because positive torques Γtot drive the
embryos outwards while negative torques inwards.

In the positive torque region, the negative Lindblad torque
is suppressed by the corotation torque. The corotation torque
generally arises as the gas parcels performing U-turns exchange
angular momentum with the embryo and it is known to be
determined by the vortensity distribution which can be mod-
ified by advection along the streamlines, or additional vortic-
ity can be produced by the temperature and entropy gradients
(Baruteau & Masset 2008; Paardekooper & Papaloizou 2008).
The latter is responsible for the strong positive torque between
the snowline and the stellar-irradiated region because a suitable
(negative) entropy gradient is present due to the aspect ratio
decrease.

The positive torque region should exist only for masses
1.5 ME . Mem . 15 ME for which the thermodynamic condi-
tions in the surrounding disk can sustain the corotation torque.
The corotation torque can be prevented from saturation when the
viscous and heat diffusion time scales are shorter than the whole
libration time scale (which decreases with increasing embryo
mass) but longer than the single U-turn time scale (e.g. Pierens
2015).

3.4. Case I – migration of non-accreting embryos in the gas
disk only

Hereinafter we present and compare three different simulation
cases which start from the equilibrium disk and are numerically
evolved for time spans covering tspan ≈ 50 kyr. In all these simu-
lations, we placed four embryos with equal mass Mem = 3 ME on
initially circular orbits with semimajor axes equal to a1 = 5 AU,
a2 = 6.7 AU, a3 = 8.4 AU and a4 = 10.1 AU; the embryos be-
ing numbered inside out. The initial inclinations were randomly
chosen as small non-zero values (.0.1◦). The mass of the em-
bryos is always introduced into the system gradually in order to
avoid shocks. The same holds for the cases in which the embryos
act as the heat sources – the released heat is gradually amplified
from zero towards the self-consistently calculated value during
several initial orbits.

The simulation cases differ in the following manner. In
Case I, we completely neglect the pebble disk, thus the embryos
interact only with the gaseous disk and among themselves. Their
masses remain fixed and they do not release any heat into their
vicinity. In Case II, the pebble disk is included and the embryos
are allowed to accrete from it, but the corresponding accretion
heating is still switched off. Therefore the heating torque can-
not operate. Finally, Case III is the same as Case II except the
accretion heating is switched on. Case I represents a relatively
standard scenario (comparable e.g. with Pierens 2015) in which
one can study interactions of multiple embryos with the non-
isothermal radiative disk. We already made some predictions of
the embryo migration rates for this case in Sect. 3.3.

Figure 4 (top panel) shows the temporal evolution of the os-
culating semimajor axis a, periastron distance qp = a(1 − e)
and apoastron distance Qa = a(1 + e) of embryos. At the be-
ginning, embryos 1 and 2 (purple and blue curves, respectively)
migrate outwards while embryos 3 and 4 (orange and red curves)
migrate inwards, in accordance with the preliminary migration
map (Fig. 3). After ’8 kyr of convergent migration towards the
zero-torque radius, the outermost three embryos become locked
in mutual mean-motion resonances which start to excite their
orbital eccentricities. The innermost embryo catches up with
the resonant chain at ’17 kyr and shortly after its eccentricity
excitation it undergoes a close encounter with the second embryo
during which they switch positions in the disk. As embryo 1 is
scattered outwards, it interacts with embryo 3 in a series of close
encounters which, due to damping effects of the surrounding
disk, end up in a formation of a coorbital pair (1:1 commensura-
bility). The system remains stable for the rest of the simulation.

3.5. Case II – introducing pebble disk and embryo growth
by pebble accretion

In Case II, the pebble disk is considered and the embryos grow
by pebble accretion. The pebble accretion rate onto individ-
ual embryos, which sets their mass growth and eventually the
amount of heat released to their surroundings (Sect. 3.6), is
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Case II: Embryo mass growth by pebble accretion
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Case III: Embryo mass growth and heating by pebble accretion
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(2+4)+3merger
8.7 + 4.3 ME

coorbital
pair

13.8 & 4.3 ME

Fig. 4. Temporal evolution of semimajor axes a(t), periastron distances
qp and apoastron distances Qa of four embryos with the initial mass
3 ME in three distinct simulation cases: Case I neglecting the pebble disk
(top), Case II including the pebble disk but only allowing for the mass
growth of embryos by pebble accretion (middle) and finally Case III,
considering also the effect of accretion heating (bottom). Embryos are
numbered from 1 to 4. Additional arrows and labels indicate mergers or
coorbital pairs detected in the simulations, with corresponding embryo
masses which can grow by pebble accretion (Cases II and III) or merg-
ing. Striking differences are observed in Case III as the migration rates
are modified by the heating torque, orbits become moderately eccen-
tric shortly after the simulation starts and the evolution is more violent
compared to Cases I and II.

shown in Fig. 5 in terms of the filtering factor F, defined as

F ≡ Ṁem

ṀF
· (41)
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Dashed lines: Eq. (33) from Lambrechts & Johansen (2014)
Solid lines: our model
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Embryo 2 at 6.7 AU
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Fig. 5. Filtering factor F measured for the embryos at the beginning
of Case II (solid curves); also applicable in Case III. As a comparison
(dashed lines), we plot the filtering factors calculated at t = 0 accord-
ing to formula (33) from Lambrechts & Johansen (2014). The analytical
prediction is in good agreement with results of our model.

We plot its temporal dependence with respect to a fixed value of
the radial pebble mass flux, ṀF = 2 × 10−4 ME. We compare the
filtering factor measured at the beginning of Case II with the an-
alytical formula from Lambrechts & Johansen (2014) which we
applied on the equilibrium disk model. At t = 0, F is in an excel-
lent agreement with the analytical prediction and at later times,
the differences are not larger than 3%. Temporal oscillations of F
are due to the nature of the accretion algorithm implementation.
The expected embryo mass change ∆Mexpec (Eq. (32)) depends
on the instantaneous Σ̄p within the accretion radius. The amount
of removed pebbles per ∆t is not precisely balanced by the in-
flow of new pebbles so the removal and inflow adapt to each
other. If, for example, density waves are propagating near an
accreting embryo, they can temporarily increase the concentra-
tion of pebbles (Σ̄p) and we observe an increase of F. Such
variations cannot be reproduced by the Lambrechts & Johansen
(2014) model because it is not hydrodynamic. We verified that
the filtering factors measured in Case II are in agreement with
those obtained later in Case III. Finally, we notice that the out-
ermost embryo is the fastest grower which is because F ∼ 1/η
(Lambrechts & Johansen 2014) and η is smaller in the outer part
of the disk (Fig. 2). However, the differences in F between in-
dividual embryos are rather marginal and the mass growth by
pebble accretion initially proceeds in the oligarchic fashion, as
expected (Morbidelli & Nesvorný 2012).

The orbital evolution of embryos in Case II is shown in the
middle panel of Fig. 4. At first, the embryos evolve similarly
to Case I, but the interaction among embryos 1 and 2 results
in a merger at t ’ 16.5 kyr. The resulting mass of the merger
is 6.6 ME. As the system adapts to the loss of one of its mem-
bers and to the suddenly increased mass of the merger, em-
bryo 3 is pushed slightly outwards and encounters embryo 4.
One of these events scatters embryo 3 inwards where it even-
tually collides with the previous merger. The collision takes
place at t ’ 22.7 kyr and merges masses 3.7 ME (embryo 3) and
7 ME (previous merger). The remaining embryos are stabilised at
somewhat distant orbits in comparison with Case I. The embryo
masses at the end of the simulation are 12.6 ME (the inner one)
and 4.9 ME (the outer one). The outer embryo 4 gained 1.9 ME
by pebble accretion during the simulation time span.
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Let us emphasise that as the mergers naturally occur in the
system of pebble-accreting embryos, they immediately break the
oligarchic growth of the embryos by pebble accretion; instead
of multiple similar-sized embryos, a dominant massive core is
formed within the system. In the light of this statement, mod-
els that estimate the final planetary masses by tracking a single
pebble-accreting protoplanet (e.g. Bitsch et al. 2015) probably
underestimate how massive the planets can actually become, at
least near the zero-torque radii.

Because of possible strong sensitivity to the initial con-
ditions, the significance of the differences that we identified
between Cases I and II is debatable. To partially answer this
question, we ran two more simulations for each case. In the first
additional set we increased the initial inclinations to about ’1◦
and in the second additional set we started from a more closely-
packed system of embryos with orbital separations equal to 4.5
mutual Hill radius RmH = 0.5(a + a0)[(q + q0)/3]1/3. In these
additional simulations, Case I always resulted in one merger be-
fore the system became stabilised, whereas in Case II, we al-
ways detected two mergers. The larger number of mergers in
Case II occurs because the resonant chains are destabilised more
often. The destabilisation is provided by the mass growth which
changes the strength of the resonant forcing and the streamline
topology near the embryos, thus modifying the acting torques. At
the same time, more massive embryos have a larger encounter
cross-section. Yet our simulation statistics are too poor to esti-
mate corresponding probabilities or merging in Cases I and II.

3.6. Case III – introducing heating by pebble accretion

We now discuss Case III, presented in the bottom panel of Fig. 4.
The system evolves differently after the beginning of the simu-
lation compared to the previous cases. First of all, the dispersion
of both qp and Qa with respect to a is much larger in the pres-
ence of accretion heating. In other words, the orbits of embryos
are more eccentric. We find e ’ 0.02 for the innermost embryo 1
and e ’ 0.04 for the outermost embryo 4 after 5 kyr of evolu-
tion, while the corresponding values in Case II were e ’ 0.004
and e ’ 0.01, respectively. Moreover, the increased eccentric-
ity is not produced by the resonant forcing; it is observable al-
ready before the embryos form a closely-packed configuration.
Looking at the beginning of the simulation, we see a brief period
during which both the semimajor axis and orbital eccentricity
swiftly increase, especially for the three outer embryos. It seems
that this period of evolution must represent a transitional state
of the system during which the hydrodynamic background ad-
justs to the presence of the new heat source and the orbits react
accordingly. The ability of the gas disk to circularise the orbits
is clearly reduced in this case which is a new and unexpected
phenomenon, explored in detail in Sect. 4.

Modified disk torques. Another surprising feature is that the
inner embryos 1 and 2 are able to maintain outward migra-
tion despite having moderate eccentricity. We recall that the
eccentricity growth leads to shrinking of the horseshoe re-
gion, and the corotation torque Γc in its unsaturated non-
linear limit depends on the half-width of the horseshoe re-
gion xhs (Paardekooper & Papaloizou 2009) as Γc ∼ x4

hs
(Fendyke & Nelson 2014). The positive contribution of Γc in the
region of outward migration is thus expected to vanish with in-
creasing eccentricity (Bitsch & Kley 2010). Yet, we observe that
the migration of the inner embryos 1 and 2 is still directed out-
wards with a rate similar to Cases I and II and the torques even

allow the embryos to penetrate into the outer disk. As for the
outer embryos 3 and 4, their migration first proceeds inwards
(except for a short initial phase) but with significantly reduced
migration rate.

It is worth noting that the zero-torque radius is somewhat
ignored by embryos in Case III. As a result, we do not see the
embryos to become closely-packed around ’7.5 AU like in the
previous cases. Instead, embryo 2 swiftly penetrates into the
outer disk and interacts with embryo 3, and shortly after that
with embryo 4. Meanwhile, embryo 1 reaches the expected lo-
cation of the zero-torque radius and stays there for a while, being
stopped by interactions with embryo 3. But ultimately, it contin-
ues outwards, migrating along with embryo 3 almost as a pair.

Examining the excited orbital eccentricities properly, we no-
tice that e ’ h. Therefore one can expect significant modi-
fications of the Lindblad torque (Papaloizou & Larwood 2000;
Cresswell & Nelson 2006) as the eccentric embryos exhibit ra-
dial excursions in the disk and variations of the orbital veloc-
ity, thus periodically exciting density waves propagating inwards
and outwards during the orbit. In such a case, the Lindblad
torque, which is usually negative, can become reduced, or even
reversed. Regarding the heating torque, its contribution is posi-
tive. But we emphasise that because of the increased eccentric-
ity and due to narrowing of the horseshoe region, we can expect
the heating torque to operate in a mode that was not described
by Benítez-Llambay et al. (2015) who studied the heating torque
for planets on fixed circular orbits. Here we summarise that the
migration rate in Case III is driven by the modified Lindblad and
heating torques acting on eccentric orbits. Detailed investigation
of the torques accompanying the accretion heating is provided in
Sect. 4.4.

Merging and resonant chain instabilities. Once the embryos
become closely packed, they interact violently because their ec-
centric orbits drive one another into frequent close encounters.
At t ’ 12 kyr, embryos 2 and 3 become temporarily locked
in a coorbital resonance which is disrupted by convergent mi-
gration towards the outer embryo 4. The three outer embryos
then strongly interact and swap positions several times before
there is a first merger of two 4.2 ME embryos (blue and red) at
’31 kyr. Three-body interactions of the remaining embryos pro-
duce another merger at ’37.7 kyr when 8.7 ME embryo (blue)
and 4.3 ME embryo (orange) collide. The system is stabilised by
formation of a coorbital pair, having final masses of 13.8 ME and
4.3 ME.

Although the system evolves into a 1:1 orbital resonance at
the end, it is not capable of establishing a global resonant chain
during its evolution, apart from temporal resonant captures. This
is different with respect to Cases I and II where the system be-
comes resonant once the embryos become closely packed and
stays that way except for occasional instabilities during en-
counters, orbital swapping, and embryo merging. The decreased
probability of resonant capture is again caused by excited eccen-
tricities, as discussed, for example, by Batygin (2015).

Regarding the possibility of mergers, their number is the
same as in Case II but they occur later during the evolution.
This is slightly surprising because we already argued that close
encounters are more frequent, and therefore a natural question
arises – why do mergers not appear sooner? To provide a basic
statistical check, as in Cases I and II, we performed two addi-
tional simulations, the first with initially smaller orbital sepa-
rations (4.5 RmH) and the second with slightly larger inclinations
(’1◦). The first simulation produced only one merger, the second
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produced none. At the same time, we confirmed the strong ec-
centricity increase unrelated to mutual close encounters which
became frequent as a consequence of the eccentricity growth.

The reduced merging efficiency compared to Case II is prob-
ably another consequence of larger eccentricities which lead to
larger relative velocities during encounters and subsequently,
merging is more difficult. Regarding the second additional sim-
ulation with zero mergers, we find that orbital inclinations are
not reduced enough before the close encounters start to occur.
Due to larger encounter velocities, vertical stirring is observed,
maintaining the inclinations above zero. Such an inclined orbital
configuration is not suitable for merging.

We remark that the influence of the accretion heating on the
system’s evolution and stability may be even more evident if
higher numbers of embryos are considered, which is what we
intend to study in the future (as proposed in Sect. 5).

In both Cases II and III, we see that mergers produce em-
bryos massive enough to potentially become giant planet cores.
However, this subsequent evolution is not covered in our sim-
ulations as the gravitational attraction and subsequent collapse
of a massive gaseous envelope is a delicate and not well un-
derstood process which is beyond the scope of this paper (e.g.
Ayliffe & Bate 2009; Machida et al. 2010).

Gas and pebble surface density. To begin the investigation
of the unexpected eccentricity growth related to accretion heat-
ing, we first compare snapshots of the gas and pebble surface
density in Cases II and III. Figure 6 shows Σ and Σp in Case II,
after 4.7 kyr of evolution. The gas disk exhibits typical features
– embryos launch spiral arms and produce minor density vari-
ations in their horseshoe regions. The pebble disk is affected
by the ongoing pebble accretion. Accreting embryos carve par-
tial gaps in the pebble component along their orbits. The gap
has two parts; one of them is trailing and the other one is lead-
ing the orbital motion of an embryo (which is oriented counter-
clockwise in all plots). The formation of these two parts can be
explained simply by the trajectories of pebbles with respect to
the embryo (Morbidelli & Nesvorný 2012) – those drifting from
outside meet the embryo head-on, and those which have drifted
across the embryo’s orbit catch up with it from behind. After a
portion of the pebble flux is filtered out by the embryo, there is a
paucity of pebbles behind it, slightly outside the embryo’s orbit,
and another cavity is formed in the direction of orbital motion,
slightly inside the embryo’s orbit.

Figure 7 shows Σ and Σp in Case III, again in simulation time
4.7 kyr. We see that the shape of spiral arms is somewhat mod-
ified, which is to be expected as the embryos already orbit with
considerable eccentricities (Cresswell et al. 2007; Bitsch & Kley
2010). The gaps in the pebble disk are slightly skewed and
widened because the eccentric embryos perform radial excur-
sions while carving the gaps. But looking at Σ, there is a strange
feature; underdense structures trailing the embryos, starting at
their locations and stretching slightly to r > rem. An explanation
of these underdensities, as well as investigation of the eccentric-
ity growth, is given in the following section.

4. The “hot-trail” effect – the orbital eccentricity
excitation due to accretion heating

In order to understand the process leading to the eccentricity ex-
citation and also to the formation of underdense structures in
the gas distribution adjacent to the embryos, we must first check
whether we can recover these phenomena in simulations with a

Fig. 6. A closeup of the gas surface density Σ (top) and pebble surface
density Σp (bottom) after ’ 5 kyr of evolution in the simulation with
pebble accretion but without accretion heating, i.e. Case II. The gaps
in the pebble disk are opened by accreting planetary embryos. A fourth
embryo is also present in the system but it is located outside the range.

single embryo. This should verify whether the disk↔embryo in-
teraction alone is sufficient to raise the eccentricity, without the
help of any additional perturbers.

Starting again with the equilibrium fiducial disk, we placed a
single 3 ME embryo on an orbit with semimajor axis a = 6.5 AU.
The orbit was initially circular in one case, and e0 = 0.05 was
assigned to the embryo in another case. Both the circular and the
eccentric orbits were evolved for several hundred years; (i) in
the gas disk only with fixed embryo mass, and (ii) with pebble
accretion and respective heating considered. The embryo was
allowed to fully interact with the disk, that is, the orbit was not
held fixed.

Let us first examine the eccentricity evolution in these four
simulation setups, as shown in Fig. 8. In simulations with fixed
embryo mass, the initially circular orbit oscillates around small
eccentricity values and the initially eccentric orbit is being
damped and almost circularised (e = 0.003). On the other hand,
e in simulations with accretion heating converges to moderate
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Fig. 7. Same as Fig. 6 but for the simulation with accretion heating
(Case III). Two embryos are located at x = 5.55, y = 4.65 AU and
x = 4.35, y = 7.17 AU; two other embryos are located outside the range.
The Σ distribution shows that there are trails of underdense gas stretch-
ing outwards from the embryos, trailing their orbital motion. The shape
of cavities in the pebble component is affected by the eccentric orbits
of embryos. Unlike in Fig. 6, the concentration peak at the embryos’
location is somewhat blurred in both gas and pebbles.

non-zero value (e = 0.03), even for the initially circular orbit.
Therefore the eccentricity excitation and reduced eccentricity
damping that we identified in Sect. 3.6 are indeed reproduced.

The simulation with e0 = 0 and heating by pebble accretion
is the most interesting one because it proves that the embryo can
gain and sustain eccentricity solely due to forces arising from
the disk. We therefore discuss this simulation in detail for the
remainder of this section. Looking at the red curve in Fig. 8, it
is obvious that there are several distinct stages during which the
eccentricity excitation rate changes. We pick three characteristic
times t ’ 180, 360, and 1130 yr at which we investigate the disk-
embryo interaction during one orbital period. We refer to these
three evolutionary stages as the onset, growth, and saturation
phase for brevity.
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Fig. 8. Temporal evolution of the osculating eccentricity e(t) for a single
3 ME embryo in four distinct simulation setups. In the first two setups
we neglect pebble accretion and the initial eccentricity is e0 = 0 (blue
curve) and e0 = 0.05 (purple curve). In the other two setups, we consider
pebble accretion and heating, the initial eccentricity being again e0 = 0
(red curve) and e0 = 0.05 (orange curve). Accretion heating reduces the
eccentricity damping efficiency for the eccentric orbit and excites the
eccentricity of the circular orbit.

In order to identify contributions from the disk responsible
for de/dt variations, we employ the Gauss perturbation equation
for the eccentricity

de
dt
=

√
1 − e2

na
[R sin f + T (cos f + cos E)], (42)

where n denotes the embryo’s mean motion, R and T are the
radial and tangential components of the perturbing acceleration
arising from the disk, f is the true anomaly and E is the eccen-
tric anomaly, for which one can write cos E = (e + cos f )/(1 +
e cos f ). Assuming that the variation of orbital elements during
one orbital period is negligible, we can limit ourselves to an anal-
ysis of the Gauss factors inside the square brackets in Eq. (42).
We shall denote Gr ≡ R sin f and Gθ ≡ T (cos f + cos E).

4.1. Radial perturbation

Figure 9 (top panel) shows the values of Gr acting on the embryo
as it travels along its orbit during the onset, growth, and satura-
tion phases. Because R itself is always negative and almost iden-
tical in all the individual phases, Gr also does not change signifi-
cantly. It is a f -periodic function and we find it to be typically an
order of magnitude stronger than Gθ. Thus from the dynamical
point of view, it is responsible for fast variations of the orbital
eccentricity which occur on the orbital time scale. The varying
e(t) function corresponding to the onset phase is overplotted in
Fig. 9 (dashed curve). As the embryo moves from the perias-
tron towards the apoastron, Gr < 0 implies de/dt < 0 which
decreases e, and vice versa. Because of Gr symmetry, the re-
spective changes of the eccentricity average out and do not lead
to secular variations.

The existence of non-zero radial acceleration R is due to
the gas surface density profile of the surrounding disk which
is in general an outward-decreasing power-law function. Con-
sequently, within an arbitrary radius around the embryo, one can
expect overabundance of gas inwards from the orbit, while the
mass of the gas outwards is smaller.
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Fig. 9. Measures of the gravitational acceleration from the disk acting
on the embryo, evolving from initially circular orbit in the presence of
pebble accretion and the heating torque (i.e. red curve in Fig. 8). The
values are recorded during one orbital period (represented by the true
anomaly f ), at around t ’ 180, 360 and 1130 yr of the simulation, that
is, during the onset, growth, and saturation phase of the eccentricity
excitation. Top: evolution of the Gauss factor Gr ≡ R sin f (left vertical
axis) and the osculating eccentricity e, which was recorded during the
onset phase (right vertical axis). Middle: evolution of the Gauss factor
Gθ ≡ T (cos f + cos E). The function (cos f + cos E) for e = 0.005
scaled to the axis range is also given for reference (grey dashed curve).
Bottom: the azimuthal acceleration T from the disk.

4.2. Azimuthal perturbation

As argued above, Gr is related to the orbital frequency in
the e-oscillations and cannot cause the runaway growth of the

eccentricity. Consequently, Gθ must be responsible for the secu-
lar changes and we plot it in the middle panel of Fig. 9. In order
to guide the eye, we overplot the (cos f + cos E) function for
e = 0.005, scaled down to the figure range; it represents a de-
pendence which Gθ would follow if T was a constant positive
acceleration. Examining the Gθ profile measured in our simula-
tion, we notice there are some asymmetries during the orbital
period which can accumulate in time and cause e to grow.

During the onset phase, Gθ is maximum when the embryo
is at periastron and shortly afterwards. Then it decreases to zero
as f → 90◦, stays at low positive values through the apoastron
passage and at f ’ 290◦ it finally starts to increase back to the
maximum value. Gθ averaged over one orbital period is positive
which implies de/dt > 0, in agreement with the onset of the
eccentricity excitation in Fig. 8.

The azimuthal acceleration T related to Gθ is plotted in the
bottom panel of Fig. 9. We see that the embryo undergoes strong
positive acceleration in the direction of its orbital motion around
the periastron, with the peak slightly shifted to f ’ 30◦. From
f ’ 110◦ to f ’ 290◦, T has a flat profile and is negative. In
terms of the expected gas distribution, there must be an accumu-
lation of mass in front of the embryo around the periastron. For
the rest of the orbit, this accumulation should become weaker
and from f ’ 110◦ to f ’ 290◦, an excess of gas behind the
embryo’s orbital motion is expected.

In the growth phase, the azimuthal acceleration T remains
positive for the entire orbit, having a similar orbital evolution as
in the onset phase, with an enhanced peak near the periastron,
followed by decrease and plateau towards the apoastron. Con-
sequently, Gθ has an increased amplitude but it also becomes
negative from f = 90◦ to 270◦. Despite that, the averaged Gθ is
again positive and so is de/dt. The shape of T ( f ) tells us that we
can expect the gas distribution around the embryo to be denser
ahead of the embryo for the entire orbit.

During the saturation phase, the azimuthal acceleration T
has a somewhat complex dependence on f . Its overall amplitude
is smaller compared to the previous phases by an order of mag-
nitude. The acceleration T remains positive from periastron to
apoastron and it is negative through the remaining half of the
orbit, apart from a short interval at around f ’ 275◦. Look-
ing at the respective Gθ dependence, its shape is quite similar
to a π-periodic function in f , oscillating around zero, having two
maxima between the periastron and f = 90◦ and between the
apoastron and f = 270◦ and vice versa.

4.3. Hydrodynamic explanation of the eccentricity excitation

In the following, we explain the eccentricity excitation from the
hydrodynamic point of view. For this purpose, we present a se-
ries of figures capturing the gas density Σ and temperature T
distribution in the embryo’s vicinity, corresponding to the onset
phase (Fig. 10) and the saturation phase (Fig. 11).

Let us first recall the advection-diffusion problem which
causes the standard mode of the heating torque on fixed circular
orbits according to Benítez-Llambay et al. (2015). The embryo
heats the gas near its position and the gas becomes overheated
and therefore underdense2, in order to maintain the pressure bal-
ance with the surroundings. The heated gas is being advected
by the nearby flows and in the meantime, its internal energy
changes by the radiative diffusion. For a circular orbit of the
embryo, the gas from the outer part of the disk approaches the

2 We remind the reader that our model can only produce an underden-
sity in terms of the surface density Σ.
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Fig. 10. Evolution of the gas surface density Σ (left column) and temperature T (right column) during one orbital period, recorded within the onset
phase of the eccentricity growth. Individual snapshots are labelled with the respective simulation time t, embryo’s true anomaly f and azimuthal
acceleration imposed by the disk, labelled here aazim. The figures are transformed to the corotating frame centered on the embryo. The Hill sphere
and embryo’s osculating orbit are plotted and we also indicate general directions of the gas flow with respect to the embryo by arrows. The
orbital direction of the embryo is directed counterclockwise and the protostar is located at (x = 0, y = 0). The top row depicts the situation in the
periastron, while the third row corresponds to the apoastron. The second row is recorded approximately halfway from periastron to apoastron, and
vice versa for the bottom row.
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Fig. 11. Same as Fig. 10 but the hydrodynamic quantities are recorded within the saturation phase of the eccentricity excitation.

embryo head-on, is heated, and forms an underdense lobe be-
hind the embryo. The gas from the inner disk, which is moving
faster than the embryo, approaches from behind, forming an un-
derdense lobe in front of the embryo. Because the gas velocity

is sub-Keplerian, the corotation between the embryo and the gas
is shifted slightly inwards, and therefore there is a prevalence of
gas approaching as the headwind, and the underdense lobe be-
hind the embryo is dominant.
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For an embryo that is allowed to move freely in the disk,
we already saw that the orbit is never perfectly circular. It
periodically gains a small eccentricity (∼10−3) due to the Gr
forcing (Fig. 9). Thus the embryo makes small radial excursions
in the disk (see the changing range of the x-axis in Fig. 10) as
it performs a small epicyclic motion. The heat source located at
the embryo’s position trails this epicyclic motion. In the temper-
ature map, the epicyclic motion manifests itself as a “hot trail”,
attached to the temperature maximum, which wobbles around
between the individual snapshots. We thus name this new phe-
nomenon the hot-trail effect.

Looking at the Σ profiles in Fig. 10, we see that in the pe-
riastron, there are again two underdense lobes, similar to the
circular case. The deep lobe attached behind the embryo rep-
resents the dominant paucity of material. The less pronounced
and more stretched lobe in front of the embryo is rather a left-
over of the dominant lobe which was displaced by the epicyclic
motion during the previous orbit. This is proved by the sequence
of Σ profiles; as the embryo travels towards the apoastron, its ra-
dial distance increases, thus the dominant lobe is left at r < rem
and subsequently moves ahead of the embryo due to the trans-
port by the interior flows, which move faster than the embryo.
In the meantime, the less dominant leftover lobe is being lost by
the Keplerian shear and diffusive effects.

Near the apoastron, the embryo has the lowest orbital veloc-
ity. If we, for example, consider the eccentricity e = 0.003 (typi-
cal value due to the Gr forcing), the orbital velocity in the apoas-
tron with respect to the Keplerian velocity is vapo = (1−0.003)vK.
At the corresponding orbital distance r ’ 6.5 AU, the gas orbital
velocity is vθ = (1 − 0.0026)vK (cf. Fig. 2). The headwind there-
fore significantly vanishes and no additional lobe can be formed
behind the embryo. The embryo is left with the lobe formed at
the periastron which has already been transported by the flows
interior to the orbit.

The position of the dominant underdense lobe is the key fac-
tor determining the resulting azimuthal acceleration T acting on
the embryo. In the periastron, there is a paucity of mass behind
the planet, so the acceleration is in the orbital direction. In the
apoastron, the lobe is located ahead of the embryo, but it is also
radially displaced (r < rem) with respect to the embryo. As a
consequence, T is negative but its magnitude is much smaller
compared to that at periastron, where the underdense lobe is ad-
jacent to the embryo. This asymmetry between the periastron
and apoastron causes the eccentricity excitation.

During the growth phase (not shown in figures), the situa-
tion is similar to the onset phase. But as e continuously grows,
the lobe at the periastron becomes prolonged because the rel-
ative velocity of the embryo with respect to the gas increases.
As a consequence, the azimuthal acceleration T measured in the
periastron of the growth phase is larger compared to the onset
phase. The relative velocities become large enough for the em-
bryo to start feeling tailwind near the apoastron, which delivers
heat to the lobe positioned ahead of the embryo at that time. But
because the gas is sub-Keplerian, the relative velocity is always
larger in the periastron than in the apoastron thus the positive
eccentricity pumping during the periastron passage still prevails
and the runaway eccentricity growth continues.

The eccentricity cannot grow indefinitely, however, but its
excitation saturates at a certain level. The hydrodynamic state at
the saturation phase is given in Fig. 11 where we see that the hot
trail spans a larger portion of the embryo’s surroundings because
the radial excursion (the epicycle) of the embryo has already in-
creased significantly. As a consequence, the underdense struc-
tures are more distant from the embryo and the Hill sphere can

refill with gas which is yet-to-be heated and which blurs asym-
metries in the embryo’s vicinity, responsible for the eccentric-
ity excitation. At the same time, the underdense structures are
strongly affected by the Keplerian shear because their radial ex-
tension is considerable.

At the saturation phase, the eccentricity growth stops right
before exceeding the local value of the aspect ratio h ’ 0.036.
For e & h, the relative motions could lead to the reversal of nor-
mally negative Lindblad torque (Papaloizou & Larwood 2000).
Cresswell & Nelson (2006) found that the Lindblad torque tran-
sition for e & h is accompanied by very efficient eccentricity
damping leading to a strong energy loss which can outweigh the
angular momentum gain. This efficient damping is finally able
to prevent the hot trail from exciting the eccentricity even more.
But for lower e, the hot-trail effect dominates – otherwise the
eccentricity would not grow in the first place.

4.4. Torque distribution

The periodic changes of Σ and of the related T are also reflected
in the variations of the torque Γtot felt by the embryo during its
orbit. Figure 12 shows the normalised radial torque distribution
Γ(r)/Γ0 which relates to the total torque Γtot as

Γtot =

rmaxZ

rmin

Γ(r)dr. (43)

Figure 12 generally demonstrates which parts of the disk are re-
sponsible for positive and negative torques and how the mag-
nitude of these torques changes with radial separation from the
embryo.

During the onset phase (Fig. 12, top panel), the shape of
Γ(r)/Γ0 is similar to the calculations of (Benítez-Llambay et al.
2015; cf. their Fig. 1). In the periastron, it exhibits a negative
peak at r < rem that is smaller than a positive peak at r > rem.
As the embryo travels along its orbit, the difference compared
to Benítez-Llambay et al. (2015) is in the position of the profile
with respect to the embryo (indicated with arrows) and in the
asymmetry between the positive and negative peak. The asym-
metry is pronounced in the periastron and disappears in the
apoastron, in accordance with our previous findings.

During the saturation phase (Fig. 12, bottom panel), Γ(r)/Γ0
becomes wavy and complex. It corresponds to the hot trail
strongly distorted by the Keplerian shear, which is produced by a
large epicycle. Compared to the onset phase, the torque contribu-
tion arising from the density waves is modified. Let us focus on
the situation in periastron first. Looking at Fig. 11, we notice that
the gas surface density exhibits a pronounced inner density wave.
The underdense structure related to the hot-trail effect is located
at r > rem thus the dominant contribution to Γ(r) at r < rem must
be related to the inner density wave.

The contribution from the inner density wave is labelled in
Fig. 12 (bottom panel). Although the inner Lindblad torque is
purely positive for circular orbits, we can see that it has both
positive and negative contributions for the eccentric orbit dur-
ing the saturation phase. In the apoastron, the situation is sim-
ilar (but the outer density wave is more pronounced). This im-
plies that the orbit is indeed close to the state of the Lindblad
torque reversal and proves our aforementioned argument about
what phenomenon finally stops the eccentricity growth.
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Fig. 12. Radial torque density Γ(r) acting on the embryo during the on-
set (top) and saturation (bottom) phases, normalised to Γ0. The individ-
ual curves represent measurements in the periastron (purple), apoastron
(orange) and in-between. The vertical arrows indicate the instantaneous
radial distance of the embryo corresponding to the individual curves.
The horizontal arrows and labels approximately distinguish some of the
important torque contributions discussed in the text. To avoid misin-
terpretation, we remark that the hot-trail torque is acting in the bottom
panel as well but it spans different radial extent for each curve and thus
cannot be marked unambiguously.

5. Future improvements and observational
signatures

Additional free parameters. Regarding the discussion in this
paper, we essentially restricted ourselves to switching pebble ac-
cretion and the accretion heating on and off, in order to under-
stand the basic physics of the hot-trail effect and to simplify the
discussion. It is clear, however, that our problem has a number
of additional free parameters. In particular, the number of em-
bryos (up to 101, for example); initial embryo masses (of the
order of 100 ME); initial spacing of embryos (multiples of RmH);
embryo positions in the disk and with respect to the zero-torque
radius; the radial pebble flux ṀF; gas surface density Σ0 and its
slope; viscosity ν (or α); turbulent stirring of solids αp; or stel-
lar luminosity L?; and so on. Even if we have only two values
per parameter, the resulting number of models is so high that we
are unable to compute a full matrix. Nevertheless, it is certainly
possible to compute differences (derivatives) with respect to the
fiducial model; work postponed to the following paper, in fact.

Possible model improvements. We can outline a number of
opportunities for the hydrodynamic model extensions, for ex-
ample, full 3D treatment, implementation of gas accretion, de-
position of pebbles in various layers of protoatmospheres, gas
self-gravity, stochastic forcing by turbulent flows (Pierens et al.
2013), independently evolved dust component as the main opac-
ity constituent, and so on.

Moreover, as we demonstrated that the hot-trail effect re-
duces the ability of the surrounding disk to damp the orbital
eccentricity, it is also possible that the inclination damping is
somehow modified if a full 3D disk is considered. In our 2D
model, the inclination damping is provided by Eq. (39) which is
not self-consistent but based on a model that neglects the accre-
tion heating (Tanaka & Ward 2004). We also plan to refine this
part of the model in the future.

Observational signatures. From an observational point of
view, the imprints of various migration histories and orbital ex-
citations should be recognisable in the observed exoplanetary
systems, but they can be successfully understood only when the
effects described in this paper are taken into account in future
works dealing with this issue.

There could be observational signatures of, for example,
mergers or multiple embryos on closely-packed orbits in the
datasets of the campaigns involved in the direct protoplanetary
disk imaging (e.g. by ALMA). We have already started to inves-
tigate this possibility and plan to publish the study in a separate
paper.

In our case, most if not all observational circumstances
should be determined by 3D radiative transfer in the dust con-
tinuum. The optical thickness for the typical Bell & Lin (1994)
opacity κ ’ 100 cm2 g−1 and the surface density Σ ’ 102 g cm−2

is τopt ’ κΣ ’ 102  1. We thus definitely need a good enough
description of the disk atmosphere, far from the midplane.

In order to become observable, it seems that protoplanets
must open considerably large gaps in the gas disk (Rosotti et al.
2016). Partially opened gaps are probably not observable be-
cause these are still optically thick; the density contrast has to
be at least 102. The close encounters between embryos in our
simulations lead to an asymmetry, but are only present for a
short time interval. As argued in Rosotti et al. (2016), the thresh-
old mass for detection is about 12 ME in sub-mm. Moreover, for
VLT/SPHERE or Gemini/GPI instruments, the protostar should
be more massive (M? ’ 2 M) to become at least a Herbig Ae
star, because of current flux limitations.

6. Conclusions

In this paper, we studied the orbital evolution of four 3 ME em-
bryos embedded in a region of a protoplanetary disk where the
convergent migration is expected to occur under the influence
of the standard Type-I torques. In our simulations, however, we
considered that the embryos rapidly accrete mass from the peb-
ble disk (modelled hydrodynamically). Three classes of simula-
tions were performed: Case I as a reference scenario in which
pebble accretion is completely neglected, Case II in which peb-
ble accretion leads to the mass growth of embryos and Case III
in which embryos also become heated by the deposition of peb-
bles. We investigated the impact of the additional processes on
the migration and mutual interactions of the embryos. The sim-
ulations were performed using a new state-of-the-art and rather
self-consistent hydrodynamical model, which we extensively de-
scribed and verified.
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We found that in both Cases I and II, the system evolves
through a sequence of resonant chains, the first of which is usu-
ally established around the zero-torque radius. As the embryos
gain non-zero eccentricity (typically ranging from 0.004 to 0.01)
due to perturbations from the mean-motion resonances, occa-
sional close encounters are possible, leading to mutual scattering
(sometimes accompanied by a swap of orbits) or embryo merg-
ing.

We reported that merging of embryos is more probable in
Case II in which the mass growth by pebble accretion is ac-
counted for. The reason for this is that the resonant chain is desta-
bilised more often as the masses of embryos responsible for the
resonant forcing (e.g. of eccentricities) evolve. Additional forc-
ing is provided as the streamline topology around the embryos
changes with the evolving masses, thus imposing a slightly dif-
ferent disk torque.

In Case III, the positive heating torque changes the expected
migration rates. As a result, the embryos somewhat ignore the
zero-torque radius and are driven into mutual interactions pref-
erentially in the outer part of the disk, rather than being packed
in a resonant chain around the zone of convergence.

Close encounters occur frequently in Case III and cover a
longer period of the evolution. We realised that the encoun-
ters are facilitated by an eccentricity increase (e ’ h, typically
ranging from 0.02 to 0.04) prior to resonant perturbations by
means of a new ‘hot-trail’ effect. The effect is due to variable
gravitational acceleration arising from the gas in the vicinity
of each embryo, which is periodically modified by formation
and advection of an overheated and thus underdense lobe trail-
ing the epicyclic motion of the embryo. The effect was inde-
pendently reported by Eklund & Masset (2017; we also refer to
Masset & Velasco Romero 2017) while our research was ongo-
ing (Chrenko & Brož 2016). The hot trail effect reduces the abil-
ity of the surrounding disk to damp the eccentricities and cir-
cularise the orbits. Despite the fact that more encounters pose
more opportunities for merging, we actually found that merging
is less frequent compared to Case II , probably because of larger
encounter velocities on the eccentric orbits.

The eccentricity excitation by the hot-trail effect stalls when
e ’ h because the Lindblad torque acting on eccentric orbits
is modified and can actually operate in a mode close to its re-
versal (from negative to positive, Papaloizou & Larwood 2000;
Cresswell et al. 2007; Bitsch & Kley 2010). Because the tran-
sition to the reversed Lindblad torque would require the em-
bryo to cross the orbital resonances at which it excites the
density waves, strong eccentricity damping occurs and the ec-
centricity growth saturates. Nevertheless, the eccentricity does
not decrease and is, in fact, maintained by the hot-trail effect.
We note that many N-body models (e.g. Sándor et al. 2011;
Izidoro et al. 2015; Coleman & Nelson 2016, and many others)
usually employ a strong eccentricity damping prescription (e.g.
Cresswell & Nelson 2006, 2008) derived from hydrodynamic
models which neglect the accretion heating. We suggest that
these analytic damping rates should be carefully refined for fu-
ture applications because they could be inaccurate in cases when
the protoplanets undergo any kind of strong accretion.

Orbital excitation of embryos heated by pebble accretion
prevents formation of a global resonant chain, except for short
transient periods. An interesting overlap of this result can be
found with recent developments in the analytical theory. For ex-
ample, Batygin (2015) used the Hamiltonian formalism to study
the probability of the resonant capture for migrating low-mass
planets and compared his predictions with the occurrence of the
first-order mean-motion resonances in exoplanetary systems. He

found that the probability of the resonant capture is greatly di-
minished (and thus the observed non-resonant systems can be
explained) if a pre-encounter orbital excitation e & 0.02 is con-
sidered. Our model thus provides a natural way of exciting the
eccentricity enough to prevent resonant locking and may have
important implications for explaining the structure of exoplane-
tary systems.

Mergers large enough to possibly become giant planet cores
with masses ’13 ME were found in both Cases II and III. We
emphasise that merging caused by fast migration and accretion
in convergence zones breaks the otherwise oligarchic nature of
the embryo growth by pebble accretion.

We conclude that orbital instabilities, eccentricity excita-
tions and (possibly) mergers naturally accompany evolution of
pebble-accreting embryos and may have an important impact on
shaping the final architecture of any planetary system. This is a
major result compared to previous models which neglected self-
consistent hydrodynamics, accretion or heating. But in order to
find general implications, a larger statistical sample of simula-
tions is required because we expect a strong dependence on the
initial conditions (possibly on the initial number and masses of
embryos, their position within the disk, accretion rate related to
the pebble mass flux and heating efficiency influenced by the
opacity).
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Appendix A: Numerical scheme of the energy
equation solver

This appendix summarises our approach to modelling non-
isothermal disks, which undergo heating and cooling, within
the framework of the original 2D fargo code. Here we elab-
orate the numerical update of the internal energy due to the
considered source terms (Sect. 2). Following the formalism of
Stone & Norman (1992), the advection term is treated separately
in the transport step.

Starting with the energy equation (Eq. (3)), our aim is to de-
rive an implicit numerical scheme. The reason for this is to avoid
a possible time-step restriction which could arise in the case of
an explicit solution due to the Courant-Friedrichs-Lewy condi-
tion related to the radiative transport. As discussed in Sect. 2, we
assume that the specific internal energy is entirely thermal thus
we can write E = ΣcVT , where cV is the specific heat at constant
volume. Within the one-temperature approach, the radiation field
with the energy density 4σRT 4/c only contributes to the energy
transport via the radiative diffusion term. In order to obtain the
implicit scheme, we rewrite Eq. (3) for the temperature only and
we drop the advection term, which is treated separately

∂ΣcVT
∂t

= −ΣR
µ

T∇·u+Qvisc+Qirr+Qacc−Qvert+2H∇·D∇T, (A.1)

where D = 16λσRT 3/ (ρ0κ) is the diffusion coefficient.
For simplicity, let us first discretise the diffusion term and

return to the other source terms later on. Because fargo is
designed as a staggered-mesh code, all scalar quantities are
cell-centred whereas components of vector quantities are face-
centred. In the following, the differential operators are written in
polar coordinates, and integers i and j represent the indices of
radial zones and azimuthal sectors, respectively:

T n+1
i, j − T n

i, j

∆t
=

 
2H
ΣcV

!

i, j

1
rc

i

×
"

1
(∆r)f

i

 
rf

i+1D̄r
i+1, j

Ti+1, j − Ti, j

(∆r)c
i+1

− rf
i D̄r

i, j
Ti, j − Ti−1, j

(∆r)c
i

!

+
1
∆θ

 
D̄θi, j+1

Ti, j+1 − Ti, j

rc
i∆θ

− D̄θi, j
Ti, j − Ti, j−1

rc
i∆θ

! #
· (A.2)

Here rc
i denotes the radial coordinate of a cell centre, rf

i is the ra-
dius of an inner radial cell interface and ∆θ denotes the angular
width of sectors, which is identical for all cells. The additional
quantities naturally occur because of the staggered-grid formal-
ism:

D̄r
i, j =

1
2


Di, j + Di−1, j


, (A.3)

D̄θi, j =
1
2


Di, j + Di, j−1


, (A.4)

(∆r)c
i = rc

i − rc
i−1, (A.5)

(∆r)f
i = rf

i+1 − rf
i . (A.6)

Obviously, (∆r)c
i = (∆r)f

i in the case of an equidistant radial
spacing.

The implicit form can now be obtained by putting T n+1
i, j ≡ Ti, j

and by placing all Ti, j-dependent terms on one side of the left-
hand side, while moving the remaining terms to the right-hand
side. Because any non-linear terms in temperature would make
the problem difficult to invert, we shall linearise the equation. To
do so, the diffusion coefficients are evaluated using the hydrody-
namic quantities from the beginning of the sub-step.

Concerning the remaining source terms and their linearity,
Qvisc, Qacc and Qirr terms are temperature independent. The com-
pressional heating term is linear in temperature and thus can be
easily incorporated in the left-hand side. The vertical radiative
cooling term Qvert is proportional to T 4 but it can be linearised,
as, for example, in Commerçon et al. (2011) or Bitsch et al.
(2013). If the temperature changes over ∆t are sufficiently small,
we can rewrite Eq. (9) as

(Qvert)i, j =
2σR

(τeff)i, j
(T n

i, j)
4
 
1 +

T − T n

T n

!4

i, j

≈ 2σR

(τeff)i, j

h
4(T n)3T − 3(T n)4

i
i, j
≡ (Q0vertT − Q00vert)i, j.

(A.7)

After some algebraic rearrangements, we can formally write

Ai, jTi, j + Bi, jTi+1, j +Ci, jTi−1, j + Di, jTi, j+1 + Ei, jTi, j−1 =

T n
i, j + ∆t

 
Qvisc + Qirr + Qacc + Q00vert

ΣcV

!

i, j
, (A.8)

which is a linear matrix equation. To solve this linear problem,
we use the successive over-relaxation (SOR) method with odd-
even ordering. Our implementation is parallelised by the domain
splitting which is complementary to the radial grid decomposi-
tion of the original fargo code. The optimisation of the over-
relaxation parameter is done similarly to Kley (1989).

Appendix B: Steady-state motion equations
of a pebble

Here we reproduce the derivation of Eqs. (20) and (21) which
are used to initialise the velocity field of the pebble disk. The
approach is well known and closely follows the derivation of
Adachi et al. (1976), with one clarification.

Let us study a system consisting of a pebble with negligi-
ble mass which orbits a massive primary M? and experiences
the aerodynamic friction acceleration FD in the gaseous envi-
ronment at the same time. We further assume that the motion is
confined to one plane and no vertical perturbations are present.

The dynamical equation for the pebble takes the form

d2r
dt2 = −

GM?
r3 r + FD. (B.1)

Transforming into polar coordinates, one obtains

∂Vr

∂t
+ Vr
∂Vr

∂r
− V2

θ

r
= −GM?

r2 − FD

vrel
(Vr − vr) , (B.2)

∂Vθ
∂t
+ Vr
∂Vθ
∂r
− VrVθ

r
= −FD

vrel
(Vθ − vθ) , (B.3)

where we utilise the fact that the friction force is directed
against the relative velocity vector, having the magnitude
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vrel =
p

(Vr − vr)2 + (Vθ − vθ)2. Unlike Adachi et al. (1976), we
retain the vr component of the flow and allow for the radial trans-
port in the gaseous disk (we also refer to Guillot et al. 2014).

Let us simplify the equations above by assuming a steady-
state situation, ∂t = 0. Furthermore, we only allow the drag
force to cause small perturbations in pebbles’ azimuthal veloc-
ity, compared to the local Keplerian rotation. We thus decompose
Vθ = vK + V 0θ, using

V 0θ
 . δ  vK. Similarly, the radial veloc-

ity of the pebble itself is considered to be highly sub-Keplerian
|Vr | . δ  vK. We assume that the spatial derivatives of V 0θ and
Vr are also as small as δ.

In Eq. (B.2), the first and the second term on the left-hand
side can be neglected in our approximation, while the third term
can be rearranged using the Vθ decomposition. Consequently

v2K + 2vKV 0θ + O

δ2


= v2K +

FD

vrel
r (Vr − vr) , (B.4)

which is obviously equivalent to

2ΩKV 0θ =
FD

vrel
(Vr − vr) . (B.5)

Concerning Eq. (B.3), the first term on the left-hand side can
again be discarded but the radial derivative has to be performed,
leading to

Vr
∂vK
∂r
+

VrvK
r
+ O


δ2


= −FD

vrel

(
vK + V 0θ − vθ


. (B.6)

A useful simplification of the right-hand side can be made using
the η parameter, describing sub-Keplerian rotation of the gas as
vθ = (1 − η) vK, yielding

1
2
ΩKVr = −FD

vrel

(
V 0θ + ηvK


. (B.7)

Recalling the Stokes number definition τ = tsΩK = vrelΩK/FD,
one can rewrite the set of Eqs. (B.5) and (B.7) as

Vr = −2
τ

(
V 0θ + ηvK


, (B.8)

V 0θ =
1
2τ

(Vr − vr) . (B.9)

Final arithmetic rearrangements are required to eliminate V 0θ
from Vr and then plug them both back into the Vθ decomposition.
The resulting set of equations directly describes steady-state ve-
locities of the drifting pebble (Guillot et al. 2014)

Vr = − 2τ
1 + τ2

 
ηvK − 1

2τ
vr

!
, (B.10)

Vθ = vK − 1
1 + τ2


ηvK − τ2 vr


. (B.11)

Appendix C: Semi-implicit source-term update
of the pebble fluid

In order to perform the source step (Stone & Norman 1992) for
the fluid of pebbles and avoid severe time-step limitations due
to small friction time scales, we do not use the explicit integra-
tion scheme for pebbles and use the semi-implicit approach of
Rosotti et al. (2016) instead.

Let us rewrite the fluid motion Eqs. (2) and (5) in a symbolic
notation and without advection, which is solved separately. We
have

∂u

∂t
= ag, (C.1)

∂V
∂t
= ap − ΩK

τ
(V − u) , (C.2)

where ap is the non-drag acceleration of the pebble fluid and
ag is now understood as the total acceleration acting on the gas
which is calculated explicitly at time t. We note that the drag
back-reaction term is contained in ag and is also evaluated ex-
plicitly. This is justified if the solid-to-gas ratio remains low
(which is what we expect in our simulations). Under these as-
sumptions, an analytical solution for the pebble fluid velocity
update can be found (Rosotti et al. 2016):

Vn+1 = Vn exp
 
−∆t
ΩK

τ

!
+ ag∆t

+

"
un +


ap − ag

 τ
ΩK

# "
1 − exp

 
−∆t
ΩK

τ

!#
· (C.3)

The solution conveniently provides a smooth transition between
two limiting cases: when ∆t  τ/ΩK, the solution is equiva-
lent to the explicit integration. If on the other hand ∆t  τ/ΩK,
the solution turns into a form known as the short friction time
approximation (e.g. Johansen & Klahr 2005).

To ensure the numerical stability, a CFL condition, additional
to the one that controls the gas evolution, must be imposed on the
time step ∆t. The condition is given by

∆t = C
∆xr,θ

max (V,V − v)r,θ
, (C.4)

where ∆x is the cell size in the radial (index r) or azimuthal
(index θ) direction and C = 0.5 is the Courant number.

Appendix D: Verification of the code

Embryo-disk interaction in radiative disks. Here we try to re-
produce several recent advanced simulations of the embryo-disk
interactions using our new hydrodynamic code. These test runs
are compared to the original results in order to provide a veri-
fication of our code and some benchmarks. We note that most
of the comparison models are 3D whereas our code is essen-
tially 2D. The results of the verification runs therefore prove that
we are indeed able to capture many aspects of 3D models if the
physics is treated carefully. In the following, the stellar irradi-
ation is always neglected as well as the pebble disk, and the
opacity drop factor cκ = 0.6 is introduced into the simulation
parameters. Comparison figures are always provided in the unit
systems corresponding to the original works.

First, we present a reproduction of an equilibrium gas disk
corresponding to the initial setup of Kley et al. (2009) who per-
formed simulations using the 3D nirvana code. The compari-
son of the radial temperature profile T (r) is given in Fig. D.1.
The surface density profile Σ(r) is also displayed for reference
(without a comparison curve for clarity of the figure). We see
that T (r) is in a good agreement with the 3D model, apart from
variations in the inner disk. These are missing mostly because
our 2D model does not support vertical convection.
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Fig. D.1. Equilibrium gas surface density Σ(r) (black curve, left vertical
axis) and temperature T (r) profile (red curve, right vertical axis) in a
radiative disk according to the setup from Kley et al. (2009), as it was
reproduced by our code. Temperature profile obtained by the original
3D model of Kley et al. (2009) is given by the red dashed curve for
comparison. The obtained disk is indeed in good agreement with the
comparison simulation and serves as the hydrodynamic background for
verification runs of the disk-embryo interaction.

We use exactly this equilibrium disk to compare the embryo-
disk interactions for various masses Mem. Since this work is
focused on low-mass embryos, we perform tests with Mem =
2, 3, 5, 10 and 20 ME. This range of masses was studied by
Lega et al. (2014) who used the 3D fargoca code and conve-
niently, the same equilibrium disk model was used in their work.
The embryo mass Mem = 20 ME was also studied by Kley et al.
(2009). It is customary to exclude part of the gas enclosed by
the Hill sphere from the torque calculation (a so-called Hill cut)
if the planet is massive enough to form a distinct circumplane-
tary disk. However, the determination of the threshold mass is
not straightforward. Thus we always perform the Hill cut for
Mem = 20 ME and for Mem = 10 ME we perform two simula-
tions with and without the Hill cut. For lower masses, no gas is
excluded from calculations.

After placing the embryos on fixed circular orbits with a =
aJup = 5.2 AU, we evolved the system for several tens of or-
bits until the torque converged to a stationary value. In Fig. D.2,
we compare the measured normalised torques with results of
Lega et al. (2014) as well as with the torque-mass dependence
given by the formulae of Paardekooper et al. (2011), applied
to the equilibrium disk. For low-mass embryos, the agreement
seems good enough. The torque in our model is generally be-
tween the prediction of Paardekooper et al. (2011) and the re-
sult of the 3D model from Lega et al. (2014). The torque on the
Mem = 10 ME embryo differs the most; nevertheless the result
is improved when the Hill cut is applied. For the medium-mass
embryo Mem = 20 ME, we see that the value is in agreement
with Lega et al. (2014) which is a desirable result as 3D mod-
els generally lead to torque that is larger than the prediction by
Paardekooper et al. (2011) by a factor of 3 to 4 (Bitsch & Kley
2011) for the medium-mass embryos.

Lega et al. (2014) also discovered the so-called cold finger
structure near low-mass embryos. These overdensity structures
are responsible for a modification of the radial torque density
profile, it is thus worth checking whether or not we can find
these modifications using our code as well. In Fig. D.3, we plot
the normalised radial torque density Γ(r)/Γ0 (Eq. (43)) for 2 ME
and 3 ME embryos, compared to corresponding results from
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Fig. D.2. A comparison of the normalised total torque γΓtot/Γ0 acting on
embryos of various masses Mem, moving on fixed circular orbits in the
disk shown in Fig. D.1. The results achieved with our code are shown by
black circles, or open circles if the Hill cut was applied. Values obtained
by 3D calculations of Lega et al. (2014) are represented by blue squares.
Formula from Paardekooper et al. (2011) applied to the equilibrium disk
profile (with the potential smoothing parameter  = 0.4) is given by
the red curve. We consider the differences between our model and the
comparison simulations to be acceptable.

Lega et al. (2014). It is obvious that the strong positive and neg-
ative peaks are less pronounced in our case. As the cold finger
is responsible for the enhancement of these peaks, the effect is
not entirely recovered by our code. We conclude that this is due
to the local nature of the cold-finger effect. In our model, the
gas flow around an embryo follows the velocity field affected by
the vertically averaged potential and the resulting compressional
heating is not strong enough for the cold-finger effect to fully
develop. Nevertheless, the overall torque magnitude obtained by
our model is still viable (Fig. D.2) as the asymmetry of the pos-
itive versus negative contributions is preserved to a satisfactory
level.

Finally, we compare the torque for the upper end of the tested
embryo mass spectrum. Figure D.4 shows the radial specific
torque density (not normalised) for Mem = 20 ME compared to
the result of Kley et al. (2009). The agreement is very good in
this case, with slight departures from the 3D model.

The heating torque. In order to assess how the heating torque
is recovered by our code, we repeated the numerical experiment
from Benítez-Llambay et al. (2015). Their setup is different from
the verification runs above; namely the surface density profile is
different and the opacity is assumed constant, κ = 1 cm2 g−1.
Therefore, we prevented any vertical opacity drop (cκ = 1) in
our test. The stellar irradiation and pebble disk are again ex-
cluded. We use grid resolution Nr = 738 and Nθ = 1382, unlike
Benítez-Llambay et al. (2015) who used 512 cells in radius and
1024 cells in azimuth but also included colatitude.

An embryo with Mem = 3 ME is embedded in the disk
at aJup after the relaxation phase and the static torque is mea-
sured. The source of the mass growth and accretion heating
is simply parametrised using the embryo mass doubling time
τ = Mem/Ṁem. We studied cases with fixed embryo mass and
with τ = 30, 55, 92 and 300 kyr. Shorter τ means higher accre-
tion rate and should correspond to stronger heating torque.

The results of our test are shown in Fig. D.5 which
can be directly compared with the original experiment in
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Benítez-Llambay et al. (2015); cf. their Fig. 2. First, it is
important to notice that the steady-state torque on the em-
bryo in the absence of heating is less negative in our case. This
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doubling time τ (we refer to the legend). The positive heating torque
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essentially corresponds to Fig. D.2, where we found that the
torque acting on the low-mass embryos in our model is always
more positive than in 3D models. Another reason might be re-
lated to the midplane resolution which is slightly better in our
test, thus we cover the embryo’s horseshoe region with more
cells. According to Lega et al. (2014), increasing the resolution
of the horseshoe region makes the torque more positive.

Because the torque in the absence of heating is less negative
compared to Benítez-Llambay et al. (2015), it is easier for even
the low accretion rates and respective luminosities to revert the
migration because the heating torque does not have to compete
with strong negative counteracting torques.

Finally, the torque scaling with increasing accretion rate is
more efficient in our model than in the original 3D model. We no-
tice that the total difference between the torque with τ = 30 kyr
and the torque without accretion is ∆Γ ≈ 0.9 × 1036 g cm2 s−2,
compared to ∆Γ ≈ 0.6 × 1036 g cm2 s−2 found by the 3D mod-
elling. The slight discrepancy is again caused by the vertically
averaged flow field around the planet (as already discussed for
the cold-finger effect) and also due to the simplified treatment
of the radiative diffusion which in our case is acting only in the
midplane and is replaced by an approximation of the radiation
escape in the vertical direction. Yet, we consider the heating
torque to be reproduced accurately enough and we shall strive
in future works to achieve an improved agreement with the 3D
model.
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2.1.2 Corrigendum
In 2019, we found an error in the Thorin code. The hydrodynamic field of the sound
speed cs was not recalculated before the update of planet-disk accelerations1. At a
given time t, cs(t − δt) was entering the calculation rather than cs(t), with δt being
the internal timestep of Fargo determined by the Courant-Friedrichs-Lewy (CFL)
condition. In this section, we provide a reproduction of Cases I–III from Paper I
performed with a corrected version of Thorin. Our aim is to investigate the error
introduced in our original simulations. We plan to publish this corrigendum in near
future.

Fig. 2.1 shows the orbital evolution in Cases I–III. Unlike in Paper I, the zero-
torque radius is shifted inwards with respect to the location predicted by formulae
of Paardekooper et al. (2011) (rΓ=0 ≃ 7 au; see also Fig. 1.19). It is established
approximately at 5.5 au. This shift is actually more consistent with previous works
and we explain it as follows: once the eccentricities of protoplanets become excited
(by resonant perturbations in Cases I and II, and by the hot-trail effect in Case III),
reduction of the corotation torque (Sect. 1.4.4) diminishes the contribution of the
positive entropy-related horseshoe drag and outward migration is no longer possible.
Such an inward shift of the zero-torque radius was already described, for example, by
Cossou et al. (2013) and Pierens et al. (2013). In the corrected Case III, the heating
torque does not seem to be able to shift the zero-torque radius outwards which is
significantly different from Paper I. Nevertheless, major conclusions, in particular
the hot-trail effect, remain the same.

In Paper I, Cases I and II led to formation of a resonant chain which, however,
was prone to instabilities. Fig. 2.1 shows a different evolution. Protoplanets in
corrected Cases I and II establish a resonant chain which is stable over the simulation
timespan 120 kyr (the timespan was only ≃50 kyr in Paper I). In the corrected
Case III, eccentricity excitation by the hot-trail effect prevents formation of a stable
resonant chain. Consequently, protoplanets undergo close encounters and a merger
occurs, directly forming a giant planet core. This is in accordance with Paper I,
although the frequency of close encounters seems rather reduced. Orbital evolution
in the corrected Case III is not finished during the simulation timespan. However, it
would not be safe to prolong the simulation because our model from Paper I does not
account for gas accretion and thus the transition from Type I to Type II migration
would not be captured correctly.

It is natural to ask whether the incorrect treatment of cs affected the verification
tests of Thorin presented in Appendix D of Paper I. The answer is no (at least not
substantially). Since majority of these tests was performed for a single protoplanet
in a corotating frame, the frame rotation compensated for the lag of the cs field.
Finally, we point out that the lag would have zero impact on evolution of a disk
without embedded protoplanets because cs was correctly updated when solving RHD
equations even in the old version of Thorin.

1In the calculation, cs is needed to derive correct scale heights H for vertical integrations of gas
distribution using the method of Müller et al. (2012).
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Case II: Embryo mass growth by pebble accretion
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Case III: Embryo mass growth and heating by pebble accretion
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Figure 2.1: Cases I–III recalculated with a corrected version of Thorin. Overall, there
is an inward shift of the zero-toque radius with respect to the original results of Paper I.
Stable resonant chains are established in Cases I and II, while resonant locking is prevented
in Case III due to eccentricity excitation by the hot-trail effect. Orbital instabilities lead
to a merger and formation of a giant planet core (Mp ≳ 10 M⊕) in Case III.
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Figure 2.2: Perturbed surface density of a gas disk with 120 embryos, each with an
initial mass 0.1 M⊕. The overlapping spiral arms create a complex network of overdense
and underdense disturbances. For a comparison, we refer back to Fig. 1.14 which shows a
gas distribution perturbed by a single planet. From Paper II.

2.2 Paper II: Dynamics of multiple protoplanets
embedded in gas and pebble disks and its de-
pendence on Σ and ν parameters

Aims

Paper I described important implications of the heating torque but only a very
limited part of the parametric space was explored. Paper II was designed as a follow-
up parametric study, with an additional focus on the dynamics of close encounters
in gas disks. We took Case III from Paper I as a nominal parametric set and then
we varied one or two parameters to investigate the differences with respect to the
nominal simulation.

Specifically, we varied the gas surface density Σ (using a three times larger or
smaller initial value), radial mass flux of pebbles ṀF (decreasing it by an order
of magnitude), viscosity ν (decreasing it by an order of magnitude), initial masses
and multiplicity of planetary embryos (using 4 embryos with 5 M⊕, 8 embryos with
1.5 M⊕, and 120 embryos with 0.1 M⊕). Since there are similarities between Paper I
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Figure 2.3: Temporal evolution of semimajor axes (bottom) and masses (top) of 120
embryos displayed in Fig. 2.2. The time is measured in orbital periods at 5.2 au. The
individual evolutionary tracks are coloured according to the initial positions of embryos.
The final masses in the bottom panel are also indicated by the size of the end-points. From
Paper II.

and Paper II from the physical point of view, we do not provide a full reprint in this
case. However, we discuss the most important and novel findings in the following.

Major results

Hydrodynamic and orbital features. We found that when coorbital
planets are formed, they can block the radial flux of pebbles if their combined masses
exceed Miso (see Eq. 1.75), although their individual masses can still be below Miso.
This mechanism provides another possibility for developing a pebble-isolating pres-
sure bump in planet-forming disks.

Regarding merger events, we recognised that they are usually preceded by 3-body
encounters of planetary embryos. Moreover, the encounters are perturbed by the
gravity of overlapping or aligned spiral arms. Therefore the encounter geometry is at
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Figure 2.4: Mean inclination as a function of the final embryo mass. Sizes of circles
are scaled by the embryo masses and their colours indicate initial positions in the disk.
Dotted lines correspond to multiples of the aspect ratio of the pebble disk. The most
massive embryos remain at low inclinations (variations of inclinations are indicated by
error bars) so that they overlap with the pebble feeding zone and thus they continue to
grow efficiently. The smallest embryos are excited to inclinations which lead them away
from the pebble disk and thus their mass growth is not very efficient. From Paper II.

least partially controlled by hydrodynamics. This effect clearly cannot be accounted
for in N-body models with prescribed torque formulae.

Finally, we found that embryos with ≃6 M⊕ can sometimes enter a mode of
rapid outward migration driven by the dynamical torque, similarly to the mechanism
described by Pierens & Raymond (2016).

A simulation with 120 embryos. For the first time, we applied an RHD
disk model to study the evolution of a swarm (N = 120) of low-mass embryos
(Mp = 0.1 M⊕). Such swarms are usually studied with N-body models, it was
therefore worthwhile to investigate whether our RHD approach leads to different
conclusions or not. Because a simulation like this is numerically very demanding, it
was ran on the NASA Pleiades CPU cluster. The simulations timespan was ≃200 kyr
and the disk was resolved by 1024 and 1536 cells in radius and azimuth, respectively.
Such a resolution is still not ideal for a precise recovery of disk torques, given the
unusually low masses of the embryos, but an improved resolution would slow down
the computation too much.

Fig. 2.2 shows the perturbed gas distribution under the influence of 120 small
embryos. Clearly, the overlapping density waves create a complex pattern which
leads to stochastic forcing acting on top of the standard torques. The evolution
of semimajor axes and masses is shown in Fig. 2.3. It is surprisingly slow, with
rather small orbital drifts. Eccentricities and inclinations are excited early (not
shown in the figure), with average values being e ≃ 0.02 and i ≃ 0.01. The later
occurs despite the inclination damping (Tanaka & Ward 2004) and it significantly
decreases the frequency of mergers (there were only <20 mergers during the course
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of the simulation). The evolution of masses is thus dominated by pebble accretion.
We notice that the largest bodies are formed in the outer part of the disk which is
indicative of pebble filtering (i.e. the decrease of the pebble flux for inner embryos
owing to the accretion of outer embryos).

In Fig. 2.4, we show the distribution of mean inclinations as a function of the final
mass. Comparing this distribution with the thickness of the pebble disk, we find that
the bodies which orbit closest to the midplane are also the largest. This is because
the overlap of their accretion radii with the pebble disk covers a longer fraction of
their orbital periods compared to inclined embryos which spend more time outside
the feeding zone and thus remain less massive. This finding confirms the mechanism
of viscously-stirred pebble accretion (VSPA) that was described by Levison et al.
(2015). Our RHD model therefore provides an independent confirmation of the
VSPA which was previously known only from N-body modelling.
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2.3 Paper III: Binary planet formation by gas-
assisted encounters of planetary embryos

Motivation and methods

Eklund & Masset (2017) described the eccentricity excitation of luminous planets
in 3D and pointed out that the inclination can also become excited by the vertical
component of the heating force. They found the growth rate of the inclination to
be three times smaller than that of the eccentricity. Consequently, the eccentricity
growth tend to quench the inclination growth and the asymptotic inclination value
is then ≃0.001, although this value strongly depends on the initial e and i.

Paper I and Paper II did not recover the inclination excitation because of 2D
limitations of the Thorin code. Since excited eccentricities can substantially influ-
ence the orbital dynamics of migrating interacting planets, it is natural to ask what
happens if the inclination damping is opposed by the inclination growth, leading to
misaligned orbital planes.

In order to explore the influence of excited inclinations in the framework of
our 2D model, we introduced a simple modification to the Tanaka & Ward (2004)
vertical damping force. We assumed that if i is below a certain asymptotic value,
the damping force is inactive. If i is above the asymptotic value, the damping force
operates in a usual way. The asymptotic value was treated as a free parameter and
its value was motivated by the findings of Eklund & Masset (2017).

Major results

Formation of binary planets. Performing several simulations with the
reduced efficiency of the inclination damping brought an unexpected result: binary
planets2 appeared in the evolving systems of embryos. Here we review the process
of their formation.

When embryos undergo convergent migration, both their eccentricities and in-
clinations become excited by the combination of resonant perturbations and the
hot-trail effect (both horizontal and vertical). This allows them to avoid collisions
and therefore close encounters continue to stir e and i. The geometry of encounters
eventually becomes such that two embryos can enter their mutual Hill sphere and
form a transient binary planet. This capture is facilitated by the dissipative influ-
ence of the gas disk: approaching embryos create a shared density wave, they have
to cross it, and this crossing is accompanied by a subtraction of the orbital energy
from the embryos.

The transients, however, quickly dissolve, typically within a single orbital period.
Their lifetime can only be prolonged if they undergo a 3-body encounter with a third
embryo. In the process, the binary becomes bound more tightly and the third body

2By a binary planet we understand a gravitationally bound pair of planetary bodies orbiting
their barycentre, which is located outside their physical radii.
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receives a kick. The same process is known from star clusters as the binary hardening
(e.g. Hills 1975). The described mechanism of binary planet formation is not entirely
surprising, its hints were first recognised by Morbidelli et al. (2008). However, it
was not studied in detail until Paper III.

Dynamics of binary planets. After the formation event, the separation of
binary components predominantly decreases in time. The secular decrease of the
separation is caused by pebble accretion. As the mass and linear momentum of peb-
bles is transferred onto the binary components, their orbital momentum inevitably
changes and the binary semimajor axis shrinks.

Abrupt changes of the binary separation are caused by repeated 3-body en-
counters (hardenings). We found that these encounters can sometimes proceed as
exchange events during which one binary component is replaced by the third, ini-
tially unbound, embryo. These reconfigurations often lead to an abrupt change of
the binary eccentricity and inclination, the latter of which can flip the binary orbit
between prograde and retrograde orientations.

None of the binary planets found in our simulations survived longer than ≃104 yr.
However, it is still viable that late-forming binary planets (i.e. forming shortly before
the disk dispersal) might survive, provided they are not destroyed by subsequent
orbital instabilities of the whole planetary system. We studied the latter using a set
of follow-up N-body integrations of the gas-free phase.

Implications for observed planetary systems. From our calculations,
we derived: the fraction of binary-producing protoplanetary disks, the fraction of
disks which contain a binary at the end of their lifetime, and the fraction of planetary
systems in which binaries remain stable after the disk dispersal. Multiplying these
fractions, we made an order-of-magnitude estimate of the fraction of observable
exoplanetary systems that could potentially host a binary planet. We found that
one binary planet should be found within ≃(2–5) × 104 planetary systems.

Since it is expected that the sample of known exoplanetary systems will substan-
tially increase with ongoing and future missions (e.g. TESS, PLATO), our estimate
suggests that signatures of binary planets should be searched for in the datasets. The
techniques for detection of binary planets should be identical to those developed for
detection of exomoons (Simon et al. 2007; Kipping 2009; Kipping et al. 2012; Simon
et al. 2012; Heller 2014; Bennett et al. 2014; Ben-Jaffel & Ballester 2014). Indeed,
a binary planet has been recently discovered (Teachey & Kipping 2018), consisting
of a massive gas giant Kepler-1625b and a Neptune-mass companion. However, we
think that the origin of such a system cannot be explained by the mechanism of
gas-assisted encounters of planetary embryos because gas accretion would probably
disrupt the binary configuration.

Our estimate of binary-hosting systems is of course biased by several issues: we
were not able to take into account the tidal evolution of binary planets, our numerical
resolution was rather poor with respect to binary orbits with small separations, our
treatment of 3D disk-planet interactions on inclined orbits was simplistic, and we
did not account for other formation mechanisms proposed for binary planets (e.g.
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Ochiai et al. 2014; Ryan et al. 2014). But even if binary planets eventually turn out
to be scarcer than predicted by our estimate, the very possibility of their occurrence
during planet formation is intriguing. Specifically, our simulations indicate that the
existence of a binary planet is often terminated by a collision and merging of its
components. Such a collision would have a different geometry compared to initially
unbound orbits and thus could be of a potential interest e.g. for the scenarios of the
Moon-forming impact (Canup 2012).

2.3.1 Reprint
Here we include the reprint of Paper III.
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Abstract

We present radiation hydrodynamic simulations in which binary planets form by close encounters in a system of
several super-Earth embryos. The embryos are embedded in a protoplanetary disk consisting of gas and pebbles
and evolve in a region where the disk structure supports convergent migration due to Type I torques. As the
embryos accrete pebbles, they become heated and thus affected by the thermal torque and the hot-trail effect, which
excites orbital eccentricities. Motivated by findings of Eklund & Masset, we assume that the hot-trail effect also
operates vertically and reduces the efficiency of inclination damping. Non-zero inclinations allow the embryos to
become closely packed and also vertically stirred within the convergence zone. Subsequently, close encounters of
two embryos assisted by the disk gravity can form transient binary planets that quickly dissolve. Binary planets
with a longer lifetime of ∼104 yr form in three-body interactions of a transient pair with one of the remaining
embryos. The separation of binary components generally decreases in subsequent encounters and because of
pebble accretion until the binary merges, forming a giant planet core. We provide an order-of-magnitude estimate
of the expected occurrence rate of binary planets, yielding one binary planet per ;(2–5)×104 planetary systems.
Therefore, although rare, binary planets may exist in exoplanetary systems and they should be systematically
searched for.

Key words: planet–disk interactions – planets and satellites: detection – planets and satellites: dynamical evolution
and stability – planets and satellites: formation – planets and satellites: general – protoplanetary disks

Supporting material: animations

1. Introduction

Several classes of celestial objects (e.g., minor solar system
bodies, dwarf planets, stars, etc.) are known to exist in binary
configurations, i.e., as two bodies orbiting their barycenter,
which is located exterior to their physical radii. The existence
of binaries is an important observational constraint because a
successful population synthesis model for a given class of
objects must be able to explain how binaries form, how
frequent they are, and how they evolve dynamically and affect
their neighborhood.

The richest sample of binary objects within the scope of
planetary sciences is in the population of minor solar system
bodies. Examples can be found among the near-Earth objects
(NEOs; e.g., Margot et al. 2002; Pravec et al. 2006; Scheeres
et al. 2006), main-belt asteroids (MBAs; e.g., Marchis et al.
2008; Pravec et al. 2012), Jovian Trojans (e.g., Marchis et al.
2006; Sonnett et al. 2015), and surprisingly frequently among
the Kuiper-belt objects (KBOs; e.g., Veillet et al. 2002; Brown
et al. 2006; Richardson & Walsh 2006; Noll et al. 2008).
Formation of binary minor bodies took place during various
epochs of the solar system. Some binary asteroids originated in
recent breakup events (Walsh et al. 2008), whereas the binary
KBOs were probably established early, during the formation of
planetesimals (Goldreich et al. 2002; Nesvorný et al. 2010;
Fraser et al. 2017) more than four billion years ago.

For large bodies, the number of binary configurations drops
suddenly almost to zero. Of the known and confirmed objects,
only Pluto and Charon can be considered as a binary (Christy
& Harrington 1978; Walker 1980; Lee & Peale 2006; Brozović
et al. 2015), likely of an impact origin (Canup 2011; McKinnon
et al. 2017). Since Pluto and Charon were classified as dwarf

planets, the conclusion stands that no planets in binary
configurations have yet been discovered.
Given that more than 3700 exoplanets have been confirmed

to date,3 the paucity of binary planets is a well-established
characteristic of the data set. However, its implications for our
understanding of planet formation are unclear and maybe even
underrated at present. Are binary planets scarce, and is it just
that current methods preclude their discovery? Or is their non-
existence a universal feature shared by all planetary systems
throughout the Galaxy?
To start addressing these questions, this paper discusses the

formation of binary planets by two- and three-body encounters
of planetary embryos in protoplanetary disks, during the
phase when the gas is still abundant and the embryos still grow
by pebble accretion (Ormel & Klahr 2010; Lambrechts &
Johansen 2012). We advocate that suitable conditions to
form binary planets are achieved when orbital eccentricities
and inclinations or embryos are excited by thermal torques
related to accretion heating (Chrenko et al. 2017; Eklund &
Masset 2017). Our model utilizes radiation hydrodynamics
(RHD) to account for these effects.
Although the results of this paper are preliminary in many

aspects, they demonstrate that binary planets can exist and it
may be only a matter of time (or advancements in methods)
before such an object is discovered in one of the exoplanet
search campaigns. To motivate future observations and data
mining, we emphasize that promising methods for detections of
exomoons have been developed and applied in recent years.
These include, for example, transit timing variations (TTVs;
Simon et al. 2007) and transit duration variations (TDVs;

The Astrophysical Journal, 868:145 (14pp), 2018 December 1 https://doi.org/10.3847/1538-4357/aaeb93
© 2018. The American Astronomical Society. All rights reserved.

3 As of 2018 August, according to the NASA Exoplanet Archive:https://
exoplanetarchive.ipac.caltech.edu/.
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Kipping 2009), their Bayesian analysis in the framework of
direct star–planet–moon modeling and fitting (Kipping et al.
2012), photometric analysis of phase-folded light curves using
the scatter peak (SP) method (Simon et al. 2012) or the orbital
sampling effect (OSE; Heller 2014; Hippke 2015), microlensing
events (Han 2008; Liebig & Wambsganss 2010; Bennett et al.
2014), and asymmetric light curves due to plasma tori of
hypothetical volcanic moons (Ben-Jaffel & Ballester 2014).

Indeed, Kepler-1625 b-i has recently been identified as an
exomoon candidate (Heller 2018; Teachey et al. 2018) and is
awaiting a conclusive confirmation. Moreover, Lewis et al.
(2015) discuss that the CoRoT target SRc01 E2 1066 can be
explained as a binary gas-giant planet, although the signal
could also correspond to a single planet transiting a starspot
(Erikson et al. 2012). Therefore, methods similar to those listed
above could be applicable when searching for binary planets.

Our paper is organized as follows. In Section 2, we outline
our RHD model. Section 3 describes our nominal simulation
with the formation of binary planets. Planetary encounters are
analyzed, as well as the influence of the gas disk. Subsequently,
we test the stability of binary planets in several simplified
models (without neighboring embryos; without the disk; etc.).
We also study binary planet formation in a set of four
additional simulations to verify the relevance of the process. In
Section 4, we estimate the expected occurrence rate of binary
planets in the exoplanetary population and we also discuss a
possible role of binary planets in planetary sciences. Section 5
is devoted to conclusions.

1.1. Definitions

To avoid confusion, let us list several definitions that we use
throughout the rest of the paper.

1. Binary is shorthand for a binary planet, not to be
mistaken with binary stars etc.

2. Transient (also transient binary or transient pair) is a
binary that forms by two-body encounters of planetary
embryos (e.g., Astakhov et al. 2005), in our case with the
assistance of the disk gravity as we shall demonstrate
later. We choose the name transient because we find
the typical lifetime of these binaries to be of the order of
one stellarcentric orbital period.

3. Hardening (e.g., Hills 1975) is a process during which
the orbital energy of a binary configuration is dissipated
and the separation of binary components decreases.

4. Stability of a binary planet is discussed if it can survive
more than one stellarcentric orbital period, which is
usual after hardening. In principle, such a binary can be
observed. We characterize stability by means of the
lifetime over which the binary components remain
gravitationally bound.

5. Encounter refers to a close encounter of two or more
planetary embryos (single or binary), when they enter one
another’s Hill sphere.

6. Merger refers to a physical collision of two embryos. In
our approximation, we replace the colliding embryos
by a single object, assuming perfect merger (mass and
momentum conservation).

7. We denote orbital elements in the stellarcentric frame
with a subscript “s” to distinguish them from the orbital
elements of one binary component with respect to another

(e.g., as is the stellarcentric semimajor axis but a is the
semimajor axis of the binary configuration).

2. Radiation Hydrodynamic Model

2.1. General Overview

The individual constituents of our model are as follows.
First, we consider radiation transfer, which is essential to
properly reproduce the disk structure (Bitsch et al. 2013) and
to account for all components of the Type I torque acting on
low-mass planets (e.g., Baruteau & Masset 2008; Kley &
Crida 2008; Kley et al. 2009; Lega et al. 2014).
Second, we use a two-fluid approximation to include a disk

of pebbles, which serves as a material reservoir for the
accreting embryos (Ormel & Klahr 2010; Lambrechts &
Johansen 2012; Morbidelli & Nesvorný 2012).
Third, we also take into account that pebbles heat the

accreting embryos, which in turn heat the gas in their vicinity.
The migration is then modified due to the thermal torque
(Benéz-Llambay et al. 2015; Masset 2017) and its dynamical
component—the hot-trail effect (Chrenko et al. 2017; Eklund
& Masset 2017; Masset & Velasco Romero 2017)—which
perturbs the embryos in such a way that their orbital
eccentricities are excited. This is due to the epicyclic motion
of the embryo, which causes variations in the azimuthally
uneven distribution of the heated (and thus underdense) gas.
The numerical modeling is done with the FARGO_THORIN

code4, which was introduced and described in detail in Chrenko
et al. (2017). The code is based on FARGO (Masset 2000). The
model is 2D (vertically averaged) but planets are evolved
in 3D. A number of important vertical phenomena were
implemented, although some with unavoidable approximations.
A new phenomenon implemented in this study is the vertical

hot-trail effect described by Eklund & Masset (2017), which
can excite orbital inclinations. Such excitation should not occur
for an isolated and non-inclined orbit because it is quenched
by the growth in eccentricity, which is faster (Eklund &
Masset 2017); however, the vertical hot-trail effect operates
when a non-negligible inclination is initially excited by some
other mechanism. For example, it can become important in a
system of multiple embryos where close encounters tempora-
rily pump up the inclinations. The vertical hot trail then starts to
counteract the usual inclination damping by bending waves
(Tanaka & Ward 2004).

2.2. Governing Equations

Gas is treated as a viscous Eulerian fluid described by the
surface density Σ, flow velocity v on the polar staggered mesh,
and the internal energy ò. The pebble disk is represented by an
inviscid and pressureless fluid with its own surface density Σp

and velocity u. We assume two-way coupling between the two
fluids by linear drag terms, with the Stokes number τ calculated
for the Epstein regime.
The RHD partial differential equations read

v
t

0, 1
¶S
¶

+  S =· ( ) ( )

4 The code is available athttp://sirrah.troja.mff.cuni.cz/~chrenko.
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where the individual quantities are the pressure P, viscous

stress tensor T
«

(e.g., Masset 2002), gas volume density ρ,
volume density of pebbles ρp, coordinate z perpendicular to the
midplane, gravitational potential f of the primary and the
planets, Keplerian angular frequency ΩK, viscous heating term
Qvisc (Mihalas & Weibel Mihalas 1984), accretion heating term
Qacc related to the accretion sink term (∂Σp/∂t)acc, Stefan–
Boltzmann constant σB, effective vertical optical depth τeff
(Hubeny 1990), irradiation temperature Tirr (Chiang &
Goldreich 1997; Menou & Goodman 2004; Baillié & Charnoz
2014), midplane gas temperature T (theterm ∝T4 describes
vertical cooling), vertical pressure scale height H, and radiative
flux F.

The ideal-gas state equation is used as the thermodynamic
closing relation:

P
R
T1 , 6g

m
= - = S( ) ( )

where γ is the adiabatic index, R is the universal gas constant,
and μ is the mean molecular weight. Equation (6) has been
widely used in numerical models to relax inferior isothermal
approximations and to account for the disk thermodynamics
(through the energy equation), which is important for accurate
migration rates (e.g., Kley & Crida 2008; Kley et al. 2009; Lega
et al. 2014). We also point out that the given state equation
neglects the radiation pressure and phase transitions, which
is a valid assumption in low-temperature disks (D’Angelo
et al. 2003).

Finally, flux-limited diffusion and the one-temperature
approximation are utilized to describe the in-plane radiation
transport, leading to

F D T
T

T
16

, 7lim
B

3

0

l
s
r k

= -  = -  ( )

where D denotes the diffusion coefficient, λlim is the flux
limiter according to Kley (1989), ρ0 is the midplane volume
density, and κ(ρ, T) is the material opacity. We use the opacity
by Bell & Lin (1994) for both the Rosseland and Planck
opacities.

For completeness, we provide the accretion heating formula

Q
GM M

R S
, 8

i

i i

i

acc
em, em,

cell
å=

˙ ( )

where the sum goes over all embryos with indices i, masses
Mem,i, self-consistently calculated pebble accretion rates M iem,

˙ ,
and physical radii Ri. G is the gravitational constant and Scell is
the surface area of the cell that contains the respective embryo
and in which the heat is liberated (Qacc is zero in other cells).

2.3. Evolution of Planets and Inclination Damping

Planets are evolved on 3D orbits using the IAS15 integrator
(Rein & Liu 2012; Rein & Spiegel 2015). Planetary collisions
are treated as perfect mergers. The planet–disk interactions
are calculated by means of the vertical averaging procedure
of Müller et al. (2012). The planetary potential is adopted
from Klahr & Kley (2006) and has the smoothing length
rsm=0.5RH, where RH is the planet’s Hill sphere.
When computing the torque acting on an embryo, we do not

exclude any part of the Hill sphere because we focus on low-
mass embryos (Lega et al. 2014). Such an exclusion is required
only when embryos exceed masses ;10M⊕ and form a
circumplanetary disk. This disk should not contribute to the
gas-driven torque because it comoves with the embryo (Crida
et al. 2008). Our model ignores the torques from pebbles
(Benéz-Llambay & Pessah 2018) because we assume relatively
low pebble-to-gas mass ratios (less than 0.001). But we point
out that during accretion of pebbles, we account for the transfer
of their mass and linear momentum onto the embryo.
An important ingredient when investigating 3D planetary

orbits is the inclination damping (e.g., Cresswell et al. 2007).
We include the damping by using the formula from Tanaka &
Ward (2004). In our case, the damping acceleration perpend-
icular to the disk plane reads

a c
A v A z I I

I I

2 ,

0,

9z
z
c
z z

sK

s
4 K 0

0

b
=

SW
+ W >

⎧

⎨
⎪

⎩
⎪

( ) ( )

where β=0.3 (e.g., Pierens et al. 2013), A 1.088z
c = - , and

A 0.871z
s = - are fixed coefficients, cs is the sound speed, vz is

the embryo’s vertical velocity, and z is its vertical separation
from the midplane. Σ and ΩK are evaluated along the embryo’s
orbit.
In writing Equation (9), we introduce a simple modification

of Tanaka & Ward’s formula. We assume that the inclination
damping does not operate when the orbital inclination I is
below a certain critical value I0. The motivation for this
modification stems from the findings of Eklund & Masset
(2017), who investigated the orbital evolution of a hot
(accreting) planet in a 3D radiative disk. Not only did they
find the excitation of the eccentricity due to the hot-trail effect,
but they also showed that the effect has a vertical component
that can excite the inclinations.
In our 2D model with accretion heating, the excitation of

eccentricity is reproduced naturally. Regarding the inclinations,
we simply assume that the hot-trail effect operates vertically as
well and balances the inclination damping up to the value I0.
For larger inclinations, the damping takes over and the standard
formula for az applies. We consider I0 to be a free parameter of
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the model and choose I0=10−3 rad;0°.057, which is at the
lower end of the results of Eklund & Masset (2017).

3. Simulations

3.1. Disk Model

The protoplanetary disk model used in all our RHD
simulations is exactly the same as in Chrenko et al. (2017),
including the initial and boundary conditions (de Val-Borro et al.
2006). The parameters5 characterizing the initial gas disk are
the surface density Σ=750(r/(1 au))−0.5 g cm−2, kinematic
viscosity ν=5×1014 cm2 s−1, adiabatic index γ=1.4, mean
molecular weight μ=2.4 g mol−1, vertical opacity drop
cκ=0.6, and disk albedo A=0.5. The central star has an
effective temperature T

å
=4370K, stellar radius R

å
=1.5 Re,

and mass Må=1Me. The domain stretches from rmin=2.8 au
to rmax=14 au in radius and spans the entire azimuth, having a
grid resolution of 1024×1536 (rings×sectors).

The gas disk is numerically evolved to its thermal equilibrium
and only after that is the coupled pebble disk introduced.
Pebbles are parameterized by the radial pebble mass flux
M M2 10 yrF

4 1= ´ -
Å

-˙ (Lambrechts & Johansen 2014), the
Schmidt number Sc=1, coagulation efficiency òp=0.5 (Lam-
brechts & Johansen 2014), bulk density ρb=1 g cm−3, and
turbulent stirring efficiency αp=1×10−4 (e.g., Youdin &
Lithwick 2007). To infer the pebble sizes, we assume the drift-
limited growth regime (Birnstiel et al. 2012; Lambrechts &
Johansen 2014), leading to pebble sizes of several centimeters.

For reference, Figure 1 shows the radial profiles of the aspect
ratio h(r)=H/r and temperature T(r) of the equilibrium gas
disk. The h(r) profile has a maximum near 4 au, where the
opacity peaks just before the sublimation of water ice (Bell &
Lin 1994). Therefore the heat produced by viscous heating is
not easily radiated away from this opaque region and the disk
puffs up.

Near 7 au, the disk starts to flare because the vertical optical
depth is small enough for the incoming radiation to penetrate

deeper and heat the disk. The transition to the flared outer parts
produces a zone of convergent Type I migration for planetary
embryos (Bitsch et al. 2013; Pierens 2015).

3.2. Nominal Simulation

Let us now discuss and analyze our nominal simulation in
which binary planets were found to form. Initially, we set four
embryos on circular orbits with stellarcentric semimajor axes
as=5, 6.7, 8.4, and 10.1 au, inclinations Is= I0= 10−3 rad;
0°.057, and randomized longitudes. The initial mass of each
embryo is Mem=3M⊕ and their orbital separations are equal to
16 mutual Hill radii:

R
a a M M

M2 3
. 10ij

i j i j
mH,

s, s, em, em,
1 3


=

+ +⎛

⎝
⎜

⎞

⎠
⎟ ( )

Embryos are numbered 1, 2, 3, and 4 from the innermost
outward.
Figure 2 shows the evolution of embryos over 140 kyr

of the full RHD simulation with pebble accretion and
respective heating. At first, the embryos undergo convergent
migration toward their zero-torque radius. Without the heating
torques, the embryos would concentrate near 7 au thanks to
the contribution of the entropy-related corotation torque
(Paardekooper & Mellema 2008), which is positive from ;4
to 7 au in this particular disk model.
With the heating torques, however, the zero-torque radius is

shifted further out because these torques are always positive
(Benéz-Llambay et al. 2015). Moreover, the hot-trail effect
quickly excites orbital eccentricities. Within ;2 kyr, the
eccentricities reach es;0.02 for the innermost embryo and
es;0.04 for the outermost.
The inclinations first remain constant near the prescribed I0

value, with only small temporal excitations not exceeding
Is;0°.2. Even these initially small inclinations are enough to
modify the encounter geometries in such a way that the system
becomes gradually stirred in the vertical direction. Once the
system becomes closely packed, at about ;35 kyr into the
simulation, the mutual close encounters pump the inclinations
significantly, typically to Is;1° and even up to Is;2°.
Planets can pass above or below each other because their
vertical excursions are comparable to (or larger than) their Hill
spheres. For example, the maximal vertical excursion of a 5M⊕

embryo at 10 au is zmax;2RH when Is=2°.
Due to excited eccentricities, the embryos never form a

stable resonant chain, in accordance with Chrenko et al. (2017).
Moreover, the excited inclinations help the embryos to avoid
collisions and mergers for a long period of time. Consequently,
close encounters of embryos are frequent in the system.
Between ;98 kyr and ;114 kyr, strong unphysical oscillations
of the stellarcentric orbital elements appear in Figure 2 for
some of the embryos, indicating formation of gravitationally
bound binary planets.6

Figure 1. Radial profile of the aspect ratio h(r)=H/r and temperature T(r) in
the disk used in our simulations. The right vertical dotted line marks the
transition between the viscously heated and stellar irradiated regions, the latter
exhibiting flaring of the disk. The left vertical dotted line corresponds to the
water ice line, which is also a local maximum of the opacities of Bell & Lin
(1994). The figure is taken from Chrenko et al. (2017).

5 A great number of the parameters listed in this section (ν, cκ, A, Tå, Rå, MF
˙ ,

Sc, òp, ρb, αp) were not defined in Section 2 to keep it brief. To understand how
these parameters enter the model, we refer the reader to Chrenko et al. (2017).

6 In Figure 2, we can also identify co-orbital configurations (1/1 resonances),
for example for embryos 1 and 3 between 62.5 and 66 kyr. To keep the paper
focused on binary planets, we refer the interested reader to other works
discussing formation and detectability of co-orbital planets, e.g., Laughlin &
Chambers (2002), Cresswell & Nelson (2008), Giuppone et al. (2012),
Chrenko et al. (2017), Brož et al. (2018).
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3.3. Gravitationally Bound Pairs of Embryos

To identify the events related to the binary formation in the
simulation described above, we computed orbits of the relative
motion among all possible pairs of embryos and selected those
with a<RmH, e<1. The results are shown in Figure 3.
Throughout the simulation, we found 65 time intervals during
which at least two embryos are captured on a mutual elliptical

orbit, changing their relative orbital energy from initially
positive to negative (and back to positive when the capture
terminates). Subsequently, we also scanned the sample of
bound pairs and looked for cases when a third embryo has its
distance from a pair d<RmH to identify three-body (pair–
embryo) encounters. These are highlighted in Figure 3 by
arrows.
Analyzing the lifetime of the bound pairs, we found that

most of them dissolve before finishing one stellarcentric orbit.
However, we found a single case when several binary
configurations existed consecutively for a prolonged period
of time between ;98 kyr and ;114 kyr. This time interval is
bordered by three-body encounters, which usually cause the
binary separation to drop.
In summary, bound pairs can form in two-body encounters

but they quickly dissolve unless they undergo a three-body
encounter with one of the remaining embryos. The latter
process is known as binary hardening (e.g., Hills 1975, 1990;
Goldreich et al. 2002; Astakhov et al. 2005) and it occurs when
an external perturber removes energy from a binary system,
which then becomes more tightly bound. To distinguish
between two types of events contributing to the formation of
bound pairs, we call those formed in two-body encounters
transient binaries because of their typically short dynamical
lifetime.
Transient binaries have been the subject of many different

studies, for example, in the three-body Hill problem (e.g., Simó
& Stuchi 2000; Astakhov et al. 2005). Their formation is
possible because the orbital energy of two bodies in no longer
conserved when additional perturbers (e.g., the central star) are
present (e.g., Cordeiro et al. 1999; Araujo et al. 2008). Our
system is of course more complicated because additional
gravitational perturbations arise from the gas disk. We will
demonstrate in Section 3.4 that the gas indeed facilitates
formation of transients.
One last question we address here is whether or not the

occurrence of bound pairs in Figure 3 is related to the vertically
stirred orbits of embryos. To find an answer, we looked for
bound pairs (with a<RmH, e<1) in one of our previous
simulations reported in Chrenko et al. (2017) (dubbed Case III),
where the inclinations were damped in the standard way
(Tanaka & Ward 2004). We found only six bound pairs (all
transients) compared to 65 cases in our nominal simulation
presented here. Therefore, the excited inclinations importantly

Figure 2. Temporal evolution of the embryo masses Mem (top), stellarcentric
semimajor axes as (second row), eccentricities es (third row), and inclinations Is
(bottom) in the full RHD simulation with the gas disk, pebble disk,
pebble accretion, and accretion heating. Initially, there are four migrating
embryos, numbered from the innermost outward. The inclination starts at
I0=10−3 rad; the inclination damping is switched off whenever I � I0. The
strong variations of the stellarcentric Keplerian elements between ;98 kyr and
;114 kyr are a consequence of binary planet formation. A member of the
binary swaps for one of the accompanying embryos three times, as indicated by
the change in color of the oscillating curves (from a narrow strip of red to black
and to gray). The existence of the binary is ended abruptly by a merger (clearly
related to the instantaneous mass increase in the Mem(t) plot).

Figure 3. The record of all relative two-body orbits satisfying the conditions
a<RmH and e<1 in our nominal simulation. The filled circles mark the
instantaneous semimajor axes and each pair of embryos is distinguished by
color. The arrows are used to indicate when a gravitationally bound pair
participates in a three-body encounter.
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change the outcomes of embryo encounters in the gas disk and
help to form transients.

3.4. Transient Binary Formation in a Two-body Encounter

Here we investigate the formation of a transient pair of
embryos 2 and 4, which precedes the binary hardening events
in our nominal simulation. The pair forms in a two-body
interaction at t;97.76 kyr. To see whether the embryo–disk
interactions assist in the process, we show in Figure 4 the
evolution of the perturbed gas surface density Σ during the
encounter.

Before the encounter (panel (a)), the usual structures can be
seen in the disk. The hot (underdense) trail of the outer embryo
2 can be seen as a dark oval spot in the bottom right quadrant
(it moves down and gets larger in time). The hot trail of the
inner embryo 4 is less prominent and looks like an underdense
gap attached to the embryo from inside.

As the embryos approach in panel (b), the outer spiral arm of
the inner embryo 4 and the inner spiral arm of the outer embryo
2 join and overlap. The overlap forms a strong density wave
positioned between the embryos. The overdensity increases as
part of the wave becomes trapped between the Hill spheres of
the two embryos in panel (c). From panel (c) to (d), the
embryos cross this shared density wave.

In panel (d), the embryos are so close to each other that they
effectively act on the disk as a single mass, and the previously
shared spiral arm splits into an inner and an outer component
with a small pitch angle. There are two more spirals with a
larger pitch angle that are leftovers of the initial wakes
launched by the embryos. In panel (e), all spirals blend into a
single pair of arms. The embryos enter one another’s Hill
sphere between panels (d) and (e) through the vicinity of the
Lagrange points L1 for the outer and L2 for the inner embryo
(Astakhov et al. 2005). The embryos are captured on a
prograde binary orbit (in panel (e), embryo 4 orbits the central
embryo 2 counterclockwise).
The spiral arm crossing that appears during the encounter is

known to produce strong damping effects on the embryos
(Papaloizou & Larwood 2000). It is thus likely that the gas
supports the gravitational capture by dissipating the orbital
energy. To quantify this effect, we measured the total
gravitational force F ig, exerted by the disk on each embryo
and we calculated the mechanical power

v FP dS, 11i i i
disk

g,ò= · ( )

where vi is the velocity vector of the embryo and the integral
goes over the entire disk. Pi directly determines the rate of

Figure 4. Formation of a transient binary during a two-body encounter of embryos 2 and 4. The first five panels (a)–(e) show the evolution of the perturbed surface gas
density Σ. Locations of the embryos are marked by white crosses, their Hill spheres are indicated by white circles, and white arrows show the direction of the
Keplerian shear in the reference frame corotating with embryo 2, which is placed at the center of each plot. The individual panels are labeled with the simulation time t.
The final panel (f) shows the evolution of the total power of the gravitational forces exerted by the disk on embryos 2 and 4. The vertical dashed lines mark the
simulation time corresponding to the snapshots of Σ in panels (a)–(e). An animation of the formation of the transient binary is available in the online Journal and
covers t;97.73–97.8 kyr in simulation time.

(An animation of this figure is available.)
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change of the orbital energy Ei˙ of each embryo (e.g., Cresswell
et al. 2007).

Panel (f) of Figure 4 shows the total balance of the energy
subtraction (or addition) for embryos 2 and 4, P=P2+P4.
The energy is transferred to the disk when P<0 and
subtracted from the disk when P > 0. It is obvious that
throughout the closest approach (panels (b)–(e)), the orbital
energy of the embryos dissipates and thus the influence of the
gas disk on the formation of transients is confirmed.

3.5. Binary Planet Hardening in Three-body Encounters

The transient pair of embryos 2 and 4 does not dissolve;
instead it is further stabilized in three-body encounters with the
remaining embryos. Figure 5 shows these encounters in detail.
First, the transient pair encounters embryo 1 at t;97.85 kyr.
During this encounter, one component of the binary (embryo 4)
becomes unbound and is deflected away, but the incoming
embryo 1 takes its place in an exchange reaction so the binary
continues to exist.

Similar situations occur at about ;98.69 kyr, when the
configuration 1+2 changes to 1+3, and at ;103.4 kyr,
when the configuration 1+3 changes to 3+4. Figure 5 also
reveals that the binary becomes hardened with each encounter
since the overlap between the r(t) curves for the binary
components becomes tighter.

An even clearer indication of binary hardening is provided
by Figure 6, where we plot the temporal evolution of the
orbital elements of the binary planet. The color of the curves
changes each time there is a change in the composition of the
binary. One can further notice that the exchange interactions
produce sudden decreases of a and also of e. Between the
exchange interactions, a decreases smoothly whereas e
generally increases in an oscillatory manner. We will describe
these variations later.

Considering the binary planet inclination, the transient
binary 2+4 forms with a prograde orbit and a relatively
low inclination. During the first three-body encounter, the
binary is reconfigured to a retrograde orbit with the inclination
oscillating between 100° and 170°. The inclination then slowly
evolves toward 180° regardless of the swap encounters, which
only diminish the amplitude of the oscillation.

The binary planet does not survive to the end of our
simulation. At ;111.26 kyr, it undergoes a three-body
exchange interaction with embryo 1 during which their Hill
spheres overlap for a prolonged period of time (see the spike in
Figure 3 at ;111.26 kyr). Consequently, the binary inclination
is flipped from the retrograde configuration to I=80°. In this
configuration, the binary undergoes a fast decrease of a,
accompanied by an equally fast increase of e. Consequently,
the binary planet ends its life in a merger into a single body.

3.6. Binary Planet Evolution without Perturbing Embryos

The lifetime of the hardened binary in our nominal
simulation is long enough (∼104 yr) to be interesting. There
are two basic questions that we shall now address. First, what is
the evolution of such a binary if the surrounding embryos and
their perturbations are ignored? And second, what causes the
changes in the binary orbital elements between the three-body
encounters in Figure 6?

To answer these questions, we discard the non-binary
embryos and restart the simulation from the configuration of

the binary planet,7 gas, and pebbles corresponding to
t=100 kyr. Three models are numerically evolved for
45 kyr. The first one has the same setup as the initial simulation
(apart from the ignored non-binary embryos). In the second
one, the accretion heating is disabled but the mass of the binary
components can still grow by pebble accretion. In the third one,
we again switch off accretion heating and discard the pebble
disk; the binary mass therefore remains constant.
The orbital evolution of the binary in these three cases is

shown in Figure 7. The evolution of the inclination is more or
less the same, regardless of the model, and converges toward
a fully retrograde configuration. The semimajor axis decreases
as a consequence of pebble accretion, which transports the
linear momentum and mass onto the binary components,
thus changing their orbital angular momentum. It is worth
noting that if the pebble accretion and accretion heating are
ignored, the isolated binary planet evolving in the radiative
disk exhibits only minor orbital changes (once it adjusts to
the removal of the surrounding embryos at the beginning of
the restart).
The eccentricity substantially changes only in the model with

accretion heating, otherwise it oscillates around its initial value
or exhibits a slow secular variation. In other words, not only is
the hot-trail effect important for exciting the eccentricities of
individual embryos before the encounter phase, but it is also
responsible for pumping the eccentricity of the binary up to an
asymptotic value e;0.75.
These findings justify our incorporation of pebble accretion

and accretion heating into the model because both phenomena
affect the rate of change of the binary orbital elements. Pebble
accretion diminishes the semimajor axis and accretion heating
excites the eccentricity.

3.7. Binary Planet Evolution in the Disk-free Phase

When protoplanetary disks undergo dispersal due to
photoevaporation, the emerging planetary systems may become
unstable (e.g., Lega et al. 2013). Here we test whether the
hardened binary planet could survive the gas removal phase
and the subsequent orbital instabilities. Since the binary
undergoes three-body encounters during the disk phase, they
can also be expected after removal of the disk.
To investigate the evolution after the photoevaporation, we

remove the fluid part of the model (i.e., gas and pebbles)
instantly and continue with a pure N-body simulation. The
orbits are integrated for an additional 10Myr. To account for
the chaotic nature of an N-body system with close encounters,
we extract 48 orbital configurations of the embryos from
between ;99.7 kyr and ;102.4 kyr of the nominal simulation
and use them as the initial conditions for 48 independent
integrations.
Our aim is to quantify the survival rate of binary planets.

Figure 8 shows the evolution of the fraction Nsurv/Ntot, where
Nsurv is the number of N-body systems still containing a binary
planet at simulation time t and Ntot is the total number of
systems (48). The dependence exhibits a steep decrease—the
binary dissolves before 0.1 Myr of evolution in ;45% of cases
and before 1Myr in ;76% of cases. However, the trend for
t�1Myr becomes rather flat. The binary planet survives the
whole integration timespan in 15% of our runs.

7 The binary elements at the moment of restart are a;0.035 au, e;0.66,
I;2.6 rad.
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We estimate the fraction of planetary systems fsurv in which
the binary can survive the orbital instabilities. An estimate
for young systems can be readily made by taking the final
fraction of our integrations conserving the binary, yielding
fsurv,10 Myr;15%. To make an estimate for older systems,
we performed a power-law extrapolation of the flat tail

of the distribution in Figure 8. The resulting extrapolation
0.22(t/(1Myr))−0.21 yields fsurv,4.5 Gyr;4% for t=4.5 Gyr
(i.e., comparable to the age of the solar system).
Let us briefly discuss the orbital architecture of the

individual systems at the end of our integrations (Figure 9).
The systems that retained the binary can be divided into two

Figure 5. Details of important three-body encounters occurring in the nominal simulation, leading to reconfiguration and hardening of the binary planet. Each row
shows a different encounter (and the first row also shows the transient binary of embryos 2 + 4 preceding the three-body encounters). We plot the temporal evolution
of the radial distance r (left column) and also the orbital evolution in 3D Cartesian space (right column) in a short time interval around the respective encounters. The
numbering and coloring of the bodies is the same as in Figure 2. Filled circles in the right column mark the positions of embryos at the simulation time t given by
the labels. An animated version of the top row of Figure 5 is available in the online Journal. The animation spans t;97.7–97.92 kyr in simulation time, displaying the
same tracks as in the static figure.

(An animation of this figure is available.)
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classes. The more common first class comprises five systems
(simulation numbers 5, 12, 28, 34, 37) in which one of the
binary components undergoes an early collision (at about
;0.1 Myr) with one of the remaining embryos while
maintaining the binary configuration. The collision reduces
the multiplicity of the system and changes the mass ratio of the
binary components from 1/1 to 2/1. The stability of such
systems is obvious from Figure 9 because eccentricities are
only marginally excited and the planets do not undergo orbital
crossings.

The less frequent second class of orbital architectures
(simulation numbers 17 and 38) includes systems in which no
collision occurred yet the binary managed to survive close
encounters. Orbits of the single embryos in these simulations are
moderately eccentric and have orbital crossings with the binary. It
is very likely that these systems would reconfigure and the binary
would dissolve when integrating for t>10Myr. However, we

Figure 6. The temporal evolution of the orbital elements of the binary planet,
namely the semimajor axis a (top), eccentricity e (middle), and inclination I

(bottom). The color of the curves changes if different embryos become locked
in the binary configuration during a three-body encounter (see Figure 5 for
reference). The encounters can be recognized as sudden spikes and they
typically lead to a sudden decrease of a and e. In the course of time, the binary
becomes bound more tightly. The existence of the binary ends with a merger,
marked by an arrow.

Figure 7. Stability test starting from the binary planet configuration
corresponding to t=100 kyr in Figure 6. In this test, the surrounding
planetary embryos are removed. Therefore we study evolution of an isolated
binary driven only by its interactions with the disk and not by close encounters.
Three cases are shown: one with the complete RHD and two-fluid part of the
model (black curve), one with pebble accretion but without accretion heating
(gold curve), and one with neither pebble accretion nor heating (turquoise
curve). Pebble accretion (i.e., mass growth) of the embryos generally causes the
decrease in the semimajor axis. Accretion heating, on the other hand, is capable
of pumping the eccentricity above the initial value.

Figure 8. The fraction of N-body integrations in which the binary planet
survives until simulation time t. The crosses mark the results of our
integrations; the dashed curve is a power-law fit that is used as an extrapolation
for t>10 Myr.
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believe that these two cases are accounted for by the power-law
extrapolation when estimating fsurv for old systems.

3.8. Formation Efficiency

So far the analysis has been based on our nominal
simulation. Although a broader study of the parametric space
is difficult using RHD simulations, it is important to quantify
how common it is for transients to become hardened and
stabilized in three-body encounters. Also, it is desirable to test
whether the result is sensitive to the choice of initial
separations, embryo masses, and embryo multiplicity.

We perform four additional full RHD simulations in which
we vary the initial conditions for embryos (the disk remains the
same as in Section 3.1). Embryos start with different random
longitudes, and inclinations are Is=I0. Two simulations
(denoted I and II) are run with four embryos, each having
Mem=3M⊕ again, but the innermost embryo is initially
placed at as=6 au and the remaining ones are spaced by 10
mutual Hill radii. Two simulations (denoted III and IV) include
eight embryos with Mem=1.7M⊕, the innermost one being
placed at as=5 au and the others having initial separations of
eight mutual Hill radii.

Simulations I and II cover 120 kyr of evolution. A common
feature of these runs is a merger occurring relatively early (at
;40 kyr and ;51 kyr in simulations I and II, respectively),
followed by a second merger (at ;81 kyr and ;94 kyr,
respectively). Simulation III covers 180 kyr of evolution. There
is a late violent sequence at ;150 kyr during which two
mergers occur and three embryos are scattered out of the
simulated part of the disk.

In simulations I–III, only transient binaries are formed.
However, we detect one case of a hardened binary in
simulation IV, which covers 120 kyr of evolution. The
simulation also contains 190 transients compared to 65 cases
found in our nominal simulation, which implies that the
increased multiplicity of the system (eight embryos instead of
four) logically increases the frequency of embryo encounters.

Figure 10 shows the evolution of orbital elements of the
binary configurations participating in binary hardening. First, a
transient consisting of embryos 2 and 7 forms at about
122.5 kyr. After ;1 kyr, it undergoes a three-body encounter

during which the configuration changes to embryos 2 and 6 and
the semimajor axis of the binary decreases. Then the binary
evolves for about 5 kyr due to pebble accretion and additional

Figure 9. Orbital distribution of the planetary systems 10 Myr after removal of the disk. The horizontal axis shows the reference number of N-body simulations;
individual cases are separated by the vertical dashed lines. The vertical axis shows the stellarcentric semimajor axis of planets displayed with symbols (the coloring is
the same as in the previous figures). Single planets are marked by filled circles, binary planets are distinguished by filled squares (squares correspond to as of the
binary barycenter). The systems that preserved the binary are also highlighted using a yellow background. The vertical bars of each symbol indicate the span of orbits
from pericenter to apocenter (large bars correspond to eccentric orbits and smaller ones to more circular orbits).

Figure 10. As in Figure 6, but for the binary configurations found in our
additional simulation IV with eight embryos (initial Mem=1.7 M⊕). The
binary shown here undergoes similar evolution to that in Figure 6.
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three-body encounters. The secular rate of change of a is
clearly related to the value of I, suggesting that the deposition
of pebbles onto a prograde binary causes the separation to
decrease faster than in a retrograde case. As in the nominal
simulation, the binary separation shrinks until the binary
merges.

Although the statistics of our five (one nominal and four
additional) RHD simulations is still poor, we can nevertheless
conclude that a binary planet with a considerable lifetime can
form in at least some cases. We can also make a crude estimate
of the formation efficiency fform, which we define as the
fraction of simulations in which a binary planet was formed and
then hardened, obtaining fform;0.4.

For simulations that formed such binaries, we also define
the total time τbp for which the binary planet existed in
the system (regardless of which embryos were bound). The
binary in our nominal simulation existed for ;16 kyr
and the binary in simulation IV existed for ;6 kyr in total.
Taking the arithmetic mean of these two values, we obtain
τbp;11 kyr.

4. Discussing Binary Planets

4.1. Model Complexity and Limitations

The choice of the RHD model was not a priori motivated by
studying the formation of binary planets. The initial motivation
was to check how the evolution described in Chrenko et al.
(2017) changes if the orbits of embryos become inclined due to
the vertical hot-trail effect (only the horizontal hot trail was
modeled in Chrenko et al. 2017). We found binary planet
formation as an unexpected yet natural outcome of the model.

It is possible that a less complex model could be applied to
scan the parametric space, e.g., by N-body integrations. But
although there are many state-of-the-art N-body models of
migration in multiplanet systems with disks (e.g., Cossou et al.
2013, 2014; Izidoro et al. 2017), none of them (to our
knowledge) identified the formation of binary planets. This
suggests that there might be issues preventing binary planet
formation in such models.

We demonstrated in Section 3.4 that hydrodynamic effects
are important during the formation of transient binaries by two-
body encounters. The pair of approaching embryos creates
perturbations in the disk that differ from perturbations arising
from isolated embryos. The prescriptions for the disk torques
that are currently used in N-body models (Cresswell & Nelson
2008; Paardekooper et al. 2010, 2011; Fendyke & Nelson 2014)
cannot account for such effects because they were derived from
models containing a single embryo, not an interacting pair.
Moreover, such prescriptions do not account for the thermal
torque and hot-trail effect.

We point out that our RHD model has some limitations as
well. First, although the grid resolution leads to numerical
convergence of the migration rate for low-mass planets (see,
e.g., Lega et al. 2014; Brož et al. 2018, for discussions of
resolution), it is not tuned to resolve binary configurations with
the smallest orbital separations well enough. However, looking
at the turquoise curve in Figure 7 (i.e., the case without
additional perturbers), the marginal change of orbital elements
indicates a very low level of numerical dissipation, safely
negligible over a typical binary lifetime during the disk phase.
Second, the vertical hot trail cannot be implemented in our 2D
model in a self-consistent way. 3D simulations would be
required to assess the importance of the vertical dimension,

which we neglect here. Finally, the magnitude of the thermal
torques depends on the thermal diffusivity and therefore on the
opacity (Masset 2017). However, we used a single opacity
prescription and it remains unclear whether the described
effects work the same way, e.g., in a low-density disk
undergoing photoevaporation.

4.2. Formation Mechanism

We found that two-body encounters of planetary embryos in
the gas disk can establish transient binaries. A binary planet
with a considerable lifetime can form from a transient by a
three-body encounter that provides the necessary energy
dissipation to make the pair more tightly bound. Here we
discuss whether there are other mechanisms suitable for
formation of binary planets.
An additional possibility exists during the reaccumulation

phase after a large impact of two embryos approaching on
initially unbound trajectories, as discussed by Ryan et al.
(2014). But this situation is highly unlikely. Head-on collisions
usually disrupt the protoplanets in such a way that the
reaccumulation forms a large primary and a low-mass disk,
from which a satellite can be assembled but not a binary
companion. Only a special grazing geometry with a large
impact parameter can be successful (Ryan et al. 2014) and it
can only produce binaries with separations of a few planetary
radii due to the angular momentum deficit of such an
encounter.
Finally, planets can be captured in a binary configuration by

means of tidal dissipation. Ochiai et al. (2014) studied the
evolution of three hot Jupiters around a host star and
discovered that binary gas giants can form in ∼10% of
systems that undergo orbital crossings.

4.3. Mass of the Binary

In our hydrodynamic simulations, the components of
binaries have comparable masses of several M⊕ before they
merge. But as we found in the follow-up gas-free N-body
simulations, the system often stabilizes by a collision of one of
the embryos with the binary. If the binary survives the
collision, the mass ratio of the components increases to 2/1.
Therefore it seems that, if born from a population of equal-mass
embryos (as obtained in the oligarchic growth scenarios),
binary planets would preferentially exist with the component
mass ratio 1/1 or 2/1. This aspect of our model is related to the
choice of the initial embryo masses and is of course too
simplified to capture the outcome of models where accretion
creates a range of embryo masses.
Although simulations with gas accretion onto the planets are

beyond the scope of our paper, we believe that runaway
accretion of gas onto the binary would disrupt it. We thus
expect that the binary planets formed in three-body encounters
cannot exceed the masses of giant planet cores. This could be
ensured by the mechanism of pebble isolation (Lambrechts
et al. 2014; Bitsch et al. 2018) or simply because binaries could
form late, just before dispersal of the gas disk. However, it is
possible that binary giant planets form later by the mechanism
of tidal capture (Ochiai et al. 2014).

4.4. Tidal Evolution

Orbital evolution due to tidal dissipation is without doubt an
important factor for the stability of binary planets. However, it
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is difficult to assess the tidal effects at this stage because there
are many unknown parameters. A large uncertainty lies in the
parameter k2/Q, where k2 is the degree 2 Love number and Q is
the tidal quality factor (e.g., Harris & Ward 1982). These
parameters reflect the interior structure and thus they depend on
the planetary composition (water-rich versus silicate-rich) and
state (cold versus magma worlds), the latter of which changes
on an uncertain timescale. Moreover, our model treats the
planets as point-mass objects, and therefore we have no
information about their rotation, which is important to
determine the level of spin–orbital synchronicity. Additionally,
similar masses of the binary components and their (possibly)
retrograde and highly eccentric orbit make the analysis of tides
even more complicated. For all these reasons, the model of tidal
evolution of a binary planet should be sufficiently complex and
should account for the internal structure and rheology (e.g.,
Boué et al. 2016; Walterová & Běhounková 2017).

4.5. Occurrence Rate and Observability

We define the occurrence rate of binary planets fbp as the
fraction of planetary systems that are expected to contain at
least one binary planet hardened by three-body encounters. An
order-of-magnitude estimate can be obtained by dividing the
timescale τbp;10

4 yr for which these binary planets are
typically present in our simulations (Section 3.8) by the lifetime
of protoplanetary disks τdisk;10

7 yr (e.g., Fedele et al. 2010),
correcting for the formation efficiency fform;0.4 (Section 3.8)
and for the fraction of the emerging planetary systems fstab in
which the binary planet can survive after dispersal of the gas
disk (Section 3.7). This leads to

f f f . 12bp form

bp

disk
stab

t
t

= ( )
We quantify two characteristic values for young planetary

systems (using fstab,10 Myr;0.15) and for old planetary systems
(using fstab,4.5 Gyr;0.04), leading to fbp,10 Myr;6×10−5 and
fbp,4.5 Gyr;2×10−5. In other words, one out of ;(2–5)×104

planetary systems should contain a binary planet formed by two-
and three-body encounters.

We emphasize that the estimate is highly uncertain because it
is inferred from a small number of tests. Moreover, our
simulations cover only a small region of the protoplanetary
disk, the evolution timescale is still short compared to the
disk’s lifetime, and the number of embryos is relatively low.
Last but not least, our estimate assumes that binaries only form
by the processes identified in this work.

As pointed out in Section 1, the estimated occurrence rate
should motivate a systematic search for binary planets in the
observational data. For example, binary planets should be
detectable by the Hunt for Exomoons with Kepler (HEK)

project (Kipping et al. 2012). The sensitivity of this survey is
;40% for binaries with Pluto–Charon mass ratios (Kipping
et al. 2015).

4.6. Role in Planetary Systems

The possible existence of binary planets opens new avenues
in planetary sciences. A study of long-term orbital dynamics
and stability of binaries in various systems is needed (e.g.,
Donnison 2010), including an assessment of their tidal
evolution. Binary planets are challenging for hydrodynamic
modeling as well. Local high-resolution simulations of

interactions with the disk, pebble accretion, pebble isolation
(e.g., Bitsch et al. 2018), and gas accretion (e.g., Lambrechts &
Lega 2017) should be performed for binary planets (preferably
in 3D) to understand the impact of these processes in detail.
In this paper, we reported various fates of binary planets

(considering the set of gas-free N-body simulations). Fre-
quently, one of the binary components underwent a collision
with an equally large impactor, or the binary merged. The
merger of the binary planet is a process that should be
investigated (e.g., by the smoothed-particle hydrodynamics
(SPH) method, Jutzi 2015).
A merger can occur in a situation when the binary orbit is

inclined with respect to the global orbital plane, and the
resulting body would then retain the initial angular momentum
of the binary, forming a planet (or a giant planet core) with an
angular tilt of the rotational axis. It might be worth
investigating the relation of such an event to the origin of
Uranus.
Moreover, the collision of the binary components would

statistically occur at high impact angles. It is interesting that
such impact angles and similar masses of the target and the
impactor (although on unbound trajectories) were also used for
a successful explanation of the impact origin of the Earth–
Moon system (Canup 2012).

5. Conclusions

By means of 2D radiation hydrodynamic simulations with
3D planetary orbits, we described the formation of binary
planets in a system of migrating super-Earths. A key ingredient
of the model is the vertical hot-trail effect (Eklund &
Masset 2017), which was incorporated by reducing the
efficiency of the prescription for inclination damping (Tanaka
& Ward 2004). We also accounted for the pebble disk, pebble
accretion, and accretion heating, which naturally produces the
horizontal hot-trail effect, providing excitation of eccentricity
(Chrenko et al. 2017).
When convergent migration drives the planetary embryos

together, the geometry of their encounters allows for vertical
perturbations owing to the non-zero inclinations. The orbits
become vertically stirred and dynamically hot, reaching
inclinations up to ;2°.
Numerous transient binary planets form during the simula-

tions by gas-assisted two-body encounters but such transients
dissolve quickly. Binary planets with longer lifetimes ∼104 yr
form when a transient undergoes a three-body encounter with a
third embryo. During this process of binary hardening, energy
is removed from the binary orbit and the separation of
components decreases. Also, three-body encounters often
reconfigure the binary when one of the components swaps
places with the encountered embryo. The existence of hardened
binaries in our simulations typically ends with a merger of its
components, which forms a giant planet core.
The role of the gas disk in binary planet formation is

twofold. In two-body encounters, the disk can dissipate orbital
energy of the embryos, thus aiding the gravitational capture.
The dissipation is provided when the embryos cross a shared
spiral arm. In three-body encounters, the disk torques hold
the embryos closely packed and the hot-trail effect maintains
the eccentricities and inclinations excited, increasing the
probability that a transient will encounter another embryo
before it dissolves.
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We conducted numerical experiments to test the stability and
evolution of binary planets in cases when pebble accretion is
halted, or accretion heating is inefficient, or the disk dissipates.
We found that pebble accretion causes a secular decrease of a
of the binary whereas e increases due to the hot-trail effect.

For the binary to survive after dispersal of the disk, it is
required that the surrounding embryos are removed or
reconfigured dynamically. Quite often, a stable configuration
is achieved when one of the components of the surviving
binary undergoes a merger with another embryo, increasing the
binary mass ratio from approximately 1/1 to 2/1.

We roughly estimated the expected fraction of planetary
systems with binary planets to be fbp;(2–6)×10−5, where
the upper limit holds for young planetary systems and the lower
limit holds for 4.5 Gyr old systems. In other words, a binary
planet should be present in one planetary system out of
;(2–5)×104.

One can think of many new applications that the possible
existence of binary planets brings. First, although binary
planets have yet to be discovered, our estimate of their
occurrence rate is encouraging for future observations. Second,
the hydrodynamic interactions of binary planets with the disk
may be different from those of a single planet and are worth
investigating, preferably in 3D. Third, collisional models for
planetary bodies that usually focus on unbound trajectories
should also investigate colliding binaries to assess the possible
outcomes.
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2.4 Paper IV: Oscillatory migration of accreting
protoplanets driven by a 3D distortion of the
gas flow

State of the art in 2019

In addition to Papers I–III and Eklund & Masset (2017) discussed above, several
works were published to date which significantly contributed to the understanding
of the heating torque and its influence on low-mass protoplanets. Masset (2017)
presented a first theoretical framework in which he introduced the class of thermal
torques to unify the cold-finger effect (Lega et al. 2014) and the heating torque
(Beńıtez-Llambay et al. 2015). For a disk with a finite uniform thermal diffusivity χ,
he applied the linear perturbation analysis to the set of shearing-sheet hydrodynamic
equations with the addition of the one-temperature energy equation (see Sect. 1.1.2)

∂ϵ

∂t
+ (v⃗ · ∇) ϵ = −P∇ · v⃗ − ∇ · F⃗H + S , (2.1)

where S can be decomposed to background source terms and the planet-induced
source term Sp. The heat flux is

F⃗H = −χρ∇
(

ϵ

ρ

)
. (2.2)

It is then possible to study linear disturbances in gas distribution created by the
presence of a cold (Sp = 0) or hot (Sp > 0) planet, responsible for the cold-finger
effect or the heating torque, respectively. It turns out that the density disturbance
is positive for the cold planet, negative for the hot planet, and its overall shape is
determined by a distortion due to the Keplerian shear. The density disturbance
usually acquires the two-lobed shape discussed in Sect. 1.4.5.

The torque values obtained by Masset (2017) are

Γcold = −1.61γ − 1
γ

xp

λc
Γ0 , (2.3)

and
Γheating = 1.61γ − 1

γ

xp

λc

L

Lc
Γ0 , (2.4)

where xp is the distance of the planet to corotation with gas, the characteristic scale
of the density disturbance is λc =

√
χ/qΩKγ, with the shear constant q ≃ 3/2, and

the critical luminosity is Lc = 4πGMpχρ0/γ. In these expressions, γ is the adiabatic
index and ρ0 is the unperturbed gas density.

Follow-up studies extended the linear theory of thermal torques to include the
vertical and horizontal hot-trail effect (Fromenteau & Masset 2019). Guilera et al.
(2019) included the thermal torques in migration maps to demonstrate their impor-
tance for planet migration.
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Although the linear perturbation theory is without doubts a useful tool for de-
scribing the heating torque (or the cold-finger effect) analytically, we shall see in the
following that it does not provide a complete description of all possible flavours of
the heating torque.

Aims and methods

Our studies of the heating torque presented in Papers I–III inevitably suffer from
several drawbacks related to the 2D nature of Thorin:

• the vertical hot trail (inclination growth) cannot be self-consistently calculated;

• the assumption of the vertically isothermal gas distribution (used when evalu-
ating the planet-disk gravitational interaction) is clearly violated above/below
an accreating protoplanet;

• the 2D vertically integrated velocity field does not exactly reproduce the gas
flow in midplane, thus the redistribution of hot gas might be inaccurate.

With the initial aim to validate our results from Papers I–III, we extended the
public version of the Fargo3d code (Beńıtez-Llambay & Masset 2016) to include the
energy equations for gas and radiation. We used the two-temperature approach (see
Sect. 1.1.2) and we implemented viscous heating, radially ray-traced stellar irradi-
ation, 3D radiative diffusion in the FLD approximation and parametric accretion
heating from luminous protoplanets (pebble disk was not included). The Ias15 in-
tegrator (Rein & Spiegel 2015) was interfaced to resolve N-body interactions. We
also added OpenMP to the existing parallelisation of Fargo3d by MPI or CUDA.

From the physical point of view, our 3D RHD code is similar to the Fargoca
code (Lega et al. 2014). However, there are at least two advantages of our code from
the computational point of view. First, Fargo3d allows for a finer decomposition of
the 3D computational domain (in the radial and vertical directions) while Fargoca
only allows for a one-dimensional (radial) decomposition. Therefore, high resolution
problems can be split to more MPI nodes using our code, which allows for a better
scalability on CPU clusters. Second, the solution of linearised energy equations is
obtained using the IBiCGStab (improved stabilised bi-conjugate gradient; Yang &
Brent 2002) method which usually requires less CPU communications per time step
compared to the SOR and it does not require any tuning of problem-dependent
parameters (such as the over-relaxation parameter of SOR).

Simulations presented in Paper IV can be regarded as a follow-up to Beńıtez-
Llambay et al. (2015). Generally, we present two types of simulations which share the
same disk and planet parameters and they only differ in the opacity law. The opacity
is either constant (as in Beńıtez-Llambay et al. 2015) or non-uniform (temperature-
dependent; using the opacity table of Bell & Lin 1994). In most of our simulations,
we study the heating torque acting on a single 3 M⊕ protoplanet on a fixed circular
orbit. The accretion mass doubling time which determines the luminosity of the
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protoplanet is 100 kyr, comparable to the outcome of simulations with pebble ac-
cretion in Paper I. Our analysis focuses on a description of the perturbed gas flow
near the planet in three dimensions (including the vertical direction).

Major results

3D distortion of the gas flow. Regardless of the opacity law, we found
that the direction of the gas flow near the accreting protoplanet substantially changes
with respect to a cold-planet situation. Specifically:

• Circulating streamlines passing by the protoplanet become bent towards the
protoplanet (in the cold-planet situation, they are rather deflected away from
the protoplanet).

• There are no horseshoe streamlines performing U-turns close to the Hill sphere
(in the cold-planet situation, the stagnation point of the flow is typically within
the Hill sphere, as well as several U-turns).

• In the horizontal direction, some streamlines, originating downstream the
horseshoe region, become captured in the vicinity of the protoplanet, form-
ing a retrograde spiral.

• The spiral-like flow propagates into the vertical direction, rising above the
protoplanet. It forms a gas column, outflowing from the Hill sphere (in the
cold-planet situation, there is usually a vertical inflow directed through the
Hill sphere towards the protoplanet; Fung et al. 2015; Lambrechts & Lega
2017).

Mechanisms of the flow distortion. We identified two processes con-
tributing to the flow distortion. The first one can be understood as follows: in the
vicinity of a non-acreting protoplanet, gas accumulates within the potential well
and the density and pressure exhibit local gradients that point towards the proto-
planet. When the protoplanet becomes accreting and luminous, the pressure is not
strongly perturbed while the density distribution develops two underdense lobes.
Subsequently, there is a misalignment between the gradients of density and pres-
sure, leading to a non-zero baroclinic term ∝∇ρ × ∇P in the vorticity equation.
The baroclinic vorticity production forces the flow to reconfigure.

The second process appears because the vertical temperature gradient above
the accreting protoplanet is steep and can become superadiabatic. Therefore, the
vicinity of the protoplanet becomes susceptible to convection and the vertical outflow
is established.

Flow instability and torque oscillations. In disks with vertically non-
uniform opacities, the background vertical temperature gradients might be already
on the verge of a superadibatic stratification (Lin & Papaloizou 1980; Ruden &
Pollack 1991). The accreting protoplanet then triggers convective instabilities that
cannot be compensated for in a stationary manner and the gas flow becomes unsta-
ble. The set of spiral-like streamlines starts to circulate around the protoplanet in
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a retrograde sense. Since the concentration of the overheated and thus underdense
gas is amplified in the region of spiral-like streamlines, a single dominant underdense
lobe is formed which follows the retrograde circulation around the protoplanet. This
results in strong oscillations of the heating torque.

The torque variations lead to an oscillatory migration during which the pro-
toplanet undergoes fast outward and inward excursions. They span ∼10−3 au and
their direction changes approximately on the orbital timescale. The mean migration
rate (averaged over multiple oscillations) remains almost unaffected by the heating
torque. The heating torque therefore does not lead to outward migration in this
case.

The amplitude of the oscillations scales with the opacity stratification above the
protoplanet. For the temperature-dependent opacity laws κ ∝ T β, we found that
the amplitude linearly decreases with β, but appears for all considered parameters
in the range β = 0.5–2. If, on the other hand, the opacity is radially non-uniform
but vertically constant, the flow instability and torque oscillations do not appear.
This manifests the importance of the vertical structure and the vertical flow for the
outcome of the heating torque.

Implications. Our findings have important implications because they show
that the conclusions of Beńıtez-Llambay et al. (2015) and Masset (2017) do not
provide a full description of the heating torque. Let us summarise the new pieces of
the puzzle here.

First and foremost, the heating torque does not always have to be positive and
does not always lead to outward migration. Second, explaining the response of the
disk to planet accretion by the presence of horizontal underdense lobes (Beńıtez-
Llambay et al. 2015) represents only a part of the whole picture; the vertical outflow
of the overheated gas is equally important. Third, the linear perturbation theory of
Masset (2017) does not predict the flow instability, nor the oscillatory heating torque.
Fourth, the distortion of the horseshoe region close to the protoplanet suggests that
the corotation torque might be modified in the presence of accretion heating as well.
This has to be verified since Masset (2017) argued that the corotation torque should
remain unaffected.

2.4.1 Reprint
Here we include the reprint of Paper IV.
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ABSTRACT

Context. The dynamics of a low-mass protoplanet accreting solids is influenced by the heating torque, which was found to suppress
inward migration in protoplanetary disks with constant opacities.
Aims. We investigate the differences in the heating torque between disks with constant and temperature-dependent opacities.
Methods. Interactions of a super-Earth-sized protoplanet with the gas disk are explored using 3D radiation hydrodynamic simulations.
Results. Accretion heating of the protoplanet creates a hot underdense region in the surrounding gas, leading to misalignment of the
local density and pressure gradients. As a result, the 3D gas flow is perturbed and some of the streamlines form a retrograde spiral
rising above the protoplanet. In the constant-opacity disk, the perturbed flow reaches a steady state and the underdense gas responsible
for the heating torque remains distributed in accordance with previous studies. If the opacity is non-uniform, however, the differences
in the disk structure can lead to more vigorous streamline distortion and eventually to a flow instability. The underdense gas develops
a one-sided asymmetry which circulates around the protoplanet in a retrograde fashion. The heating torque thus strongly oscillates in
time and does not on average counteract inward migration.
Conclusions. The torque variations make the radial drift of the protoplanet oscillatory, consisting of short intervals of alternating
rapid inward and outward migration. We speculate that transitions between the positive and oscillatory heating torque may occur in
specific disk regions susceptible to vertical convection, resulting in the convergent migration of multiple planetary embryos.

Key words. hydrodynamics – planets and satellites: formation – planet-disk interactions – protoplanetary disks

1. Introduction

Migration of protoplanets embedded in their natal gas disks is
a key evolutionary step in the formation of each planetary sys-
tem. Low-mass protoplanets, incapable of gap opening (Crida
et al. 2006), undergo Type I migration under the influence of
the gravitational torques exerted by the Lindblad spiral wakes
(Goldreich & Tremaine 1979; Ward 1986) and by the gas in
their corotation region (Ward 1991; Masset 2002; Tanaka et al.
2002; Paardekooper & Mellema 2006, 2008; Baruteau & Masset
2008; Masset & Casoli 2009; Paardekooper & Papaloizou 2009;
Baruteau et al. 2011). Type I migration has a complicated rela-
tionship with disk structure and thermophysics (e.g. Kley &
Crida 2008; Paardekooper et al. 2010, 2011; Lega et al. 2015). A
detailed understanding of the underlying mechanism is therefore
essential for the creation of realistic population synthesis models
(e.g. Coleman & Nelson 2016).

A low-mass protoplanet evolving in a radiative disk has
recently been shown to be subject to thermal torques (Lega et al.
2014; Benítez-Llambay et al. 2015; Masset & Velasco Romero
2017; Masset 2017) related to the thermal perturbations induced
by the protoplanet in its vicinity. If the protoplanet itself is
cold and non-luminous (Lega et al. 2014), the gas arriving in
its potential well becomes heated, mostly as a result of com-
pression (by means of the thermodynamic “PdV” term). The
resulting temperature excess becomes smoothed out by radiative

?Movie attached to Fig. 6 is available at https://www.aanda.org

transfer, so when the gas leaves the high-pressure region it lacks
some of its internal energy – compared to the state before the
compression – and therefore becomes colder and overdense.
Two overdense lobes appear along the streamlines outflowing
from the Hill sphere and their asymmetry makes the total torque
acting on the protoplanet more negative, enhancing the inward
migration. This process is known as the cold-finger effect (Lega
et al. 2014).

In the opposite limit, the protoplanet is hot as a result
of the solid material deposition during its formation (e.g. by
pebble accretion; Ormel & Klahr 2010; Lambrechts & Johansen
2012). In such a case, the luminous protoplanet acts as a local
heat source for the surrounding gas. Once the gas is heated,
it becomes underdense compared to the situation without
accretion heating. Benítez-Llambay et al. (2015) performed 3D
radiation hydrodynamic simulations with the assumption of
constant disk opacity and found that the hot protoplanet on a
fixed circular orbit creates two underdense lobes of gas, again
associated with the outflow from the Hill sphere. The rear lobe
(positioned behind the protoplanet outwards from its orbit) is
dominant, therefore there is an overabundance of gas ahead of
the protoplanet and the resulting torque becomes more positive,
supporting outward migration. The positive enhancement was
named the heating torque. It was proposed to be an additional
mechanism (along with other possibilities; see e.g. Rafikov
2002; Paardekooper & Mellema 2006; Morbidelli et al. 2008; Li
et al. 2009; Yu et al. 2010; Kretke & Lin 2012; Bitsch et al. 2013;
Fung & Chiang 2017; Brasser et al. 2018; Miranda & Lai 2018;
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McNally et al. 2019) capable of preventing the destruction of
terrestrial-sized planetary embryos by an overly efficient inward
migration (Korycansky & Pollack 1993; Ward 1997; Tanaka
et al. 2002).

Moreover, the heating torque has important dynamical con-
sequences for migrating protoplanets (Brož et al. 2018; Chrenko
et al. 2018) because it can excite orbital eccentricities and incli-
nations by means of the hot-trail effect (Eklund & Masset 2017;
Chrenko et al. 2017), which counteracts the otherwise efficient
eccentricity and inclination damping by waves (Tanaka & Ward
2004; Cresswell et al. 2007).

Nevertheless, the heating torque has not been extensively
studied in 3D radiative disks with non-uniform opacities. How-
ever, realistic opacity functions (Bell & Lin 1994; Semenov et al.
2003; Zhu et al. 2012) are of great significance for the disk struc-
ture and planet migration (e.g. Kretke & Lin 2012; Bitsch et al.
2013) and this study shows that the heating torque is affected as
well.

In this paper, we reinvestigate the thermal torques acting
on a low-mass protoplanet, with special emphasis on the heat-
ing torque in a disk with non-uniform opacity. We examine the
streamlines near the protoplanet and point out the importance of
their 3D distortion for redistribution of the hot underdense gas
responsible for the heating torque.

2. Model

We consider a protoplanetary system consisting of a central pro-
tostar surrounded by a disk of coupled gas and dust in which a
single protoplanet is embedded. The fluid part of the disk model
accounts only for the gas, assuming the dust is a passive tracer
that acts as the main contributor to the material opacity.

2.1. Governing equations

The disk is described using Eulerian hydrodynamics on a stag-
gered spherical mesh centred on the protostar. The spherical
coordinates consist of the radial distance r, azimuthal angle θ,
and colatitude φ. Our model is built on top of the hydrodynamic
module of FARGO3D1 (Benítez-Llambay & Masset 2016), which
solves the equations of continuity and momentum of a fluid

∂ρ

∂t
+ (u · ∇) ρ = −ρ∇ · u, (1)

∂u

∂t
+ (u · ∇) u = −∇P

ρ
− ∇Φ + ∇ · T

ρ
− [2Ω × u +Ω × (Ω × r)] ,

(2)

where ρ is the volume density, t is time, u is the flow veloc-
ity vector (with the radial, azimuthal, and vertical components
vr, vθ and vφ), P is pressure, Φ is the gravitational potential of
the protostar and the protoplanet, T is the viscous stress tensor
(Benítez-Llambay & Masset 2016), r is the radius vector and Ω
is the angular velocity vector, which is non-zero because we work
in the reference frame corotating with the protoplanet.

To account for the energy production, dissipation and trans-
port in the disk, we implement the two-temperature energy
equations for the gas and the radiation field according to the
formulation of Bitsch et al. (2013):

∂ER

∂t
+ ∇ · F = ρκP

h
4σT 4 − cER

i
, (3)

1 Public version of the code is available at http://fargo.in2p3.
fr/

∂

∂t
+ (u · ∇) = −P∇ · u−ρκP

h
4σT 4 − cER

i
+Qvisc +Qart +Qacc,

(4)

where ER is the radiative energy, F the radiation flux, κP the
Planck opacity, σ the Stefan–Boltzmann constant, T the gas tem-
perature, c the speed of light, the internal energy of the gas, and
Qvisc the viscous heating term (Mihalas & Weibel Mihalas 1984).
Furthermore, Qart describes the heating due to the artificial vis-
cosity (Stone & Norman 1992), and Qacc the heat released when
the protoplanet is accreting. Stellar irradiation is neglected in this
paper for simplicity although our code is capable of including it
as well.

The state equation of the ideal gas is used:

P = (γ − 1) = (γ − 1)ρcVT, (5)

where γ is the adiabatic index and cV is the specific heat at
constant volume, which can be expressed as cV =R/(µ(γ − 1)),
where R is the universal gas constant and µ is the mean molecular
weight.

The flux-limited diffusion approximation (FLD; Levermore
& Pomraning 1981) is adopted to obtain a closure relation for the
radiation flux,

F = −λlim
c
ρκR
∇ER, (6)

where κR is the Rosseland opacity and λlim is the flux lim-
iter of Kley (1989). For the opacities, we assume that the
Planck and Rosseland means are similar enough to be replaced
with a single value κ. This is a valid assumption in the cold
regions of protoplanetary disks that we aim to study (Bitsch
et al. 2013). The detailed opacity law will be specified later in
Sect. 2.3.

The accretion luminosity of the protoplanet is given by

L =
GMpṀp

Rp
=

GM2
p

Rpτ
, (7)

where G is the gravitational constant, Mp is the mass of the pro-
toplanet, Ṁp is its accretion rate, and Rp is the radius of the
protoplanet. In writing the second equality, we introduce the
mass doubling time τ=Mp/Ṁp, which is a free parameter that
controls the accretion rate in our model (see Sect. 2.2).

We assume that the radiation flux from the protoplanet is
completely absorbed by the optically thick gas in the eight grid
cells enclosing the protoplanet (Benítez-Llambay et al. 2015;
Eklund & Masset 2017; Lambrechts & Lega 2017). The accre-
tion heating, which is non-zero only within these cells, is then
simply

Qacc =
L
V
, (8)

where V is the total volume of the heated cells.
The disk evolves in the combined gravitational potential of

the central protostar and the embedded protoplanet:

Φ = −GM?
r
− GMp

d
fsm, (9)

where M? is the mass of the protostar and d is the cell-
protoplanet distance. The planetary potential is smoothed to
avoid numerical divergence at the protoplanet location (d = 0)
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using the tapering cubic-spline function fsm of Klahr & Kley
(2006):

fsm =



1, (d > rsm) ,
 

d
rsm

!4

− 2
 

d
rsm

!3

+ 2
d

rsm

 , (d ≤ rsm) , (10)

where the smoothing length rsm is a fraction of the Hill sphere
radius of the protoplanet (see Sect. 2.2). Orbital evolution of the
protoplanet is tracked using the IAS15 integrator (Rein & Spiegel
2015) from the REBOUND2 package (Rein & Liu 2012), which we
interfaced with FARGO3D.

Although FARGO3D is an explicit hydrodynamic solver,
implementing Eqs. (3) and (4) in an explicit form would lead
to a very restrictive Courant condition on the largest permit-
ted time step length. To avoid such a time step limitation, it is
advantageous to solve the energy equations in an implicit form.
We thus follow the discretisation and linearisation proposed by
Bitsch et al. (2013), with a minor modification introduced in
Appendix A.

The solution of the implicit problem is obtained iteratively by
minimizing the residual r ≡ Ax− b, where A is the matrix of the
linear system, x is the solution vector, and b is the right-hand side
vector. Our iterative solver uses the improved bi-conjugate sta-
bilised method (IBiCGStab; Yang & Brent 2002) with the Jacobi
preconditioning. The convergence criterion is krk/kbk < 10−4,
where the norms are calculated in the L2 space.

2.2. Initial conditions and parameters

Initial conditions describing the disk are adopted from Kley
et al. (2009) and Lega et al. (2014). The surface density follows
the power-law function Σ= 484(r/(1 au))−0.5 g cm−2. The initial
Σ is converted into the initial ρ assuming the disk is vertically
isothermal. The velocity field is given by balancing the gravi-
tational acceleration from the protostar, the acceleration due to
the pressure gradient, and the centrifugal acceleration. We assign
constant kinematic viscosity ν= 1015 cm2 s−1 to the gas to mimic
the angular momentum transport in the disk driven by physi-
cal effects outside the scope of this study (e.g. the turbulent
eddy viscosity). The initial aspect ratio is h=H/r= 0.05, where
H is the pressure scale height. The disk is therefore initially
non-flaring but we point our that h evolves during the simula-
tions. The adiabatic index is γ= 1.43 and the mean molecular
weight is µ= 2.3 g mol−1, corresponding to the solar mixture of
the hydrogen and helium.

We assume a single embedded super-Earth with the mass
Mp = 3 M⊕, orbiting on a circular orbit at the heliocentric dis-
tance of Jupiter: ap ≡ aJ = 5.2 au. Unless otherwise specified, the
orbit is held fixed in our simulations, i.e. the protoplanet is not
allowed to migrate and the torque we measure is the static torque.
The simulations are performed in the reference frame corotat-
ing with the protoplanet at the Keplerian angular frequency

Ωp ≡ ΩJ =

q
GM?/a3

J and the smoothing length for the taper-
ing function of the gravitational potential fsm is rsm = 0.5RH,
where RH = ap(Mp/(3M?))1/3 is the Hill sphere radius. We study
both cases with and without planetary accretion, correspond-
ing to the hot- and cold-protoplanet limit, respectively. In the
simulations with the accretion, we assume the mass-doubling
time τ= 100 kyr, which is a value within the range of the
expected pebble accretion rates (Lambrechts & Johansen 2014;

2 Public version of the code is available at
https://rebound.readthedocs.io/en/latest/

Chrenko et al. 2017). The resulting luminosity of the protoplanet
is L ’ 4.2× 1027 erg s−1.

2.3. Opacities

Using the initial disk parameters, we setup two fiducial disk
models that only differ in the material opacity function. The
opacity is either constant or follows a slightly modified (see
below) prescription of Bell & Lin (1994). To distinguish between
the models, we use the abbreviations κconst-disk and κBL-disk,
respectively. The exact value of the opacity in the κconst-disk is
tuned to be the same as in the κBL-disk at the location of the
protoplanet ap, leading to κconst ≡ κBL(r= ap)= 1.11 cm2 g−1.

The unmodified opacity from Bell & Lin (1994), which
we denote κfull

BL (ρ(r, θ, φ),T (r, θ, φ)), is a fitting law that sets κ
as a function of the local gas density and temperature. The
table spans several regimes corresponding to the presence (or
absence) of dust or molecular species dominant in protoplan-
etary disks. Using κfull

BL in our simulations with the accretion
heating of the protoplanet could cause strong local opacity gra-
dients, because we expect the temperature perturbations to reach
∼101 K at distances of one cell size from the centre of the
protoplanet.

In practice, we apply the opacity law of Bell & Lin in a sim-
plified way, using κBL(ρ̄(r, φ), T̄ (r, φ)), where the bared quantities
are azimuthally computed arithmetic means and the dependence
on the θ-coordinate is therefore dropped. This helps us to distin-
guish the effects caused by the global structure of the disk from
those related to the local κ-T -ρ feedback. To justify our approach,
we verify in Appendix B that the unmodified opacity table κfull

BL
of Bell & Lin (1994) does not change our conclusions.

The fiducial κconst- and κBL-disks are discussed throughout
the majority of the paper, with the exception of Sect. 3.6 where
we study the dependence of the heating torque on the opacity
gradient within the disk.

2.4. Grid resolution and boundary conditions

Migration of low-mass protoplanets critically depends on the
grid resolution, we therefore combine the well-established disk
extent and resolution from Lega et al. (2014; in the azimuthal
and vertical direction) and Eklund & Masset (2017; in the radial
direction). The disk radially stretches from rmin = 3.12 au to
rmax = 7.28 au and is resolved by 512 rings. We prevent any ver-
tical motions of the protoplanet in our simulations by assuming
that the solution is symmetric with respect to the midplane. One
of the disk boundaries in the colatitude is therefore located at the
midplane (φ= π/2); the vertical extent above the midplane is 7◦.
The colatitude is resolved by 64 zones. In the azimuth, we use
only 1 sector in our preparatory simulations without the proto-
planet and 1382 sectors in our simulations with the embedded
protoplanet. The resulting local resolution is eight cells per RH
in the r- and φ-directions and three cells per RH in the θ-direction
(see also Appendix B.2 for a simple resolution test).

The azimuthal boundary conditions are periodic for all prim-
itive quantities. The radial boundary conditions are symmetric
for ρ, , and vφ and reflecting for vr. ER is set to a zero gra-
dient and vθ is extrapolated using the same radial dependence
as for the Keplerian rotation velocity. The boundary conditions
in colatitude are symmetric for ρ, , vr and vθ, and reflecting
for vφ. ER is symmetrised at the midplane boundary and set to
aRT 4

0 at the remaining boundary in the colatitude, where aR is
the radiation constant and T0 ≡ 5 K is the ambient temperature
that allows for vertical radiative cooling of the disk. Additionally,
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wave-damping conditions of de Val-Borro et al. (2006) are
imposed near the radial edges and also near the disk surface.

3. Simulations

3.1. Equilibrium disks

Since we use a non-isothermal equation of state and we also
account for the energy production and transfer, the parametric
setup of the disk, which was discussed so far, is not sta-
tionary. Therefore, before the simulations with the embedded
protoplanet are conducted, we let both disks (κconst-disk and
κBL-disk) numerically evolve over a timescale of 100 Porb, where
Porb = 2π/ΩJ.

The equilibrium state after the relaxation is presented in
Fig. 1. We plot the radial profiles of the midplane temperature T ,
opacity κ, entropy S = P/ργ and aspect ratio h=H/r, where the
pressure scale height is determined as H = cs/ΩK and the sound
speed as cs =

p
γP/ρ.

The constant opacity of the κconst-disk makes all the remain-
ing radial dependences rather shallow. The aspect ratio is almost
flat, only slightly increasing with the radial distance. In the
κBL-disk, on the other hand, the opacity has a peak near 3.5 au,
where the water ice evaporates for the given setup, and decreases
at larger radii. Therefore, the efficiency of the disk cooling
increases and simultaneously, the efficiency of the viscous heat-
ing diminishes with the dropping relative velocity of the shearing
layers. Consequently, the aspect ratio radially decreases as the
energy budget is not sufficient to puff up the disk. In such a disk,
T and S profiles radially decrease more steeply compared to the
κconst-disk.

3.2. Torque evolution

Starting from the relaxed state of the disks, we copy the hydro-
dynamic quantities in the azimuthal direction to expand the
resolution from a single sector to the desired 1382 sectors. The
protoplanet is inserted and we simulate 30 Porb of evolution
while neglecting any accretion and accretion heating of the pro-
toplanet. The aim of this part of the simulation is to allow the
disk to adjust to the presence of a gravitational perturber and
to acquire a converged value of the disk torque in the absence
of the accretion heating, corresponding to the cold-protoplanet
limit. For the κBL-disk, this part of the simulation is similar to
the experiments in Lega et al. (2014). Subsequently, we continue
the simulation for another 30 Porb during which we let the plan-
etary mass grow while releasing the accretion heat into the gas
disk according to Eqs. (7) and (8).

Figure 2 shows the temporal evolution of the torque exerted
on the protoplanet by the κconst-disk and κBL-disk. During the
phase without accretion heating, the torque converges to a sta-
tionary value during 10 Porb. The torque value in the κBL-disk is
more positive compared to the κconst-disk, which is because the
steeper radial decline of the entropy in the κBL-disk enhances
the positive entropy-driven part of the corotation torque
(Paardekooper & Mellema 2006; Baruteau & Masset 2008).

When the accretion heating is activated in the κconst-disk, a
positive contribution is added to the torque, in accordance with
the results of Benítez-Llambay et al. (2015). The torque slightly
oscillates at first, but the amplitude of the oscillations decreases
in time and becomes negligible at t= 50 Porb.

On the contrary, when the accretion heating is activated
in the κBL-disk, the outcome of the heating torque becomes
very different. Strong oscillations of the disk torque are excited
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values. The red horizontal dotted line shows the mean value of the oscil-
lating black curve and demonstrates that the heating torque makes the
total torque more negative in this case.

almost immediately and they do not vanish in time; instead, their
amplitude remains the same. The arithmetic mean of the
torque measured in the time interval 30–60 Porb is Γ̄ ’
−6.3× 10−6 a2

J Ω
2
J , implying that the torque is more negative

A109, page 4 of 19

2.4. Paper IV

135



O. Chrenko and M. Lambrechts: Oscillatory migration of accreting protoplanets driven by a 3D distortion of the gas flow

Fig. 3. Hydrodynamic quantities in the midplane of the κconst-disk close to the protoplanet. Top row: cold protoplanet right before the accretion
heating is initiated (at t= 30 Porb). Bottom row: steady state of gas around the hot protoplanet (at t= 60 Porb). The figure is constructed as a
Cartesian projection of the spherical grid. The density maps (left) display the perturbation (ρ − ρ0)/ρ0 relative to the equilibrium disk (t= 0 Porb),
the temperature map for the cold protoplanet (top right) shows the absolute values, and the temperature map for the hot protoplanet (bottom right)
shows the excess with respect to the cold protoplanet (by subtracting T (t= 30 Porb) from T (t= 60 Porb)). The position of the protoplanet is marked
with the cross, the extent of its Hill sphere is bordered by the circle. The green curves (right) show the topology of streamlines in the frame
corotating with the protoplanet. In the inertial frame, the protoplanet would orbit counterclockwise. The streamlines outwards from its orbit thus
depict the flow directed from y> 0 to y< 0; the inward streamlines are oriented in the opposite direction. A detailed view of the streamlines is
provided in Fig. 5 where we also sort them according to their type.

compared to the situation without accretion heating (the mean
torque in the interval 20–30 Porb is Γ̄ ’ −1.6× 10−6 a2

J Ω
2
J ). The

amplitude of the variations with respect to the mean value is
’±3.9× 10−5 a2

J Ω
2
J and the oscillation period is ’2.1 Porb.

The torque oscillations are unexpected and we therefore
focus throughout the rest of the paper on finding the physical
mechanism that excites them. The occurrence of oscillations
suggests that the gas distribution around the protoplanet is
changing during the simulation, as we can demonstrate using the
integral expression for the disk torque,

Γ =

Z

disk

rp × Fg ⊥ dV, (11)

where rp is the radius vector of the protoplanet, Fg is the grav-
itational force of a disk element, the vertical component of the
cross product is considered, and we integrate over the disk vol-
ume. Only a non-zero azimuthal component of Fg can lead to
a non-vanishing cross product in the integral, and therefore any
oscillations of Γ must be related to a variation of Fg,θ. In other
words, there must be an azimuthal asymmetry in the gas distribu-
tion with respect to the protoplanet for the torque to be non-zero

and only a temporal redistribution of the asymmetry can cause a
torque oscillation.

Our strategy throughout the remainder of Sect. 3 is the fol-
lowing: first, we focus on the κconst-disk simulation in Sect. 3.3.
Although similar simulations were analysed by Benítez-Llambay
et al. (2015), our aim is to focus on the 3D gas flow that has
not yet been described. Our findings are then expanded for the
κBL-disk simulation in Sect. 3.4 where we relate the gas redistri-
bution to the oscillatory behaviour of the torque. Section 3.5 is
devoted to identifying the key physical mechanisms that affect
the gas flow. In Sect. 3.6, we vary the disk opacity gradient
and study its impact on the torque oscillation. Finally, we relax
the assumption of a fixed orbit and explore how the protoplanet
migrates in Sect. 3.7.

3.3. Steady state of the heated gas

In this section, the κconst-disk simulation is analysed.

3.3.1. Midplane

Figure 3 compares the midplane density and temperature distri-
bution around the cold and hot protoplanet. We display the state
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of the simulation at t= 30 (i.e. at the final stage of the phase
without accretion heating) and 60 Porb (i.e. at the final stage
of the phase with accretion heating). The latter represents the
steady state of gas around the accreting protoplanet and we veri-
fied that such a distribution is achieved early (at t’ 31 Porb) and
does not greatly evolve afterwards.

For the non-luminous protoplanet, the gas state is in agree-
ment with Lega et al. (2014; see their Fig. 10 for a compari-
son). The density distribution is not spherically symmetric with
respect to the protoplanet but there are two patches of slightly
overdense gas along the outflow from the Hill sphere known
as the cold fingers (explained in Sect. 1). The temperature drop
inside the fingers is clearly apparent from the top-right panel of
Fig. 3.

When the protoplanet becomes luminous, the gas distribution
is modified and the heating torque arises. Following Benítez-
Llambay et al. (2015) and Masset (2017), one can imagine
the response of the gas to the heating from the protoplanet as
follows: first, an underdense disturbance appears close to the pro-
toplanet, with a characteristic scale length given by the linear
perturbation model of Masset (2017):

λc =

r
χ

qΩpγ
, (12)

where χ is the thermal diffusivity and q is a dimensionless mea-
sure of the disk shear (q= 3/2 for a Keplerian disk). Second, the
low-density gas is distorted by the shear motions. The rotation
of the inner disk with respect to the protoplanet is faster and the
low-density gas thus propagates ahead of the protoplanet. The
motion of the outer disk lags behind the protoplanet and so does
the hot perturbation. As a result, two hot lobes with decreased
density are formed along the streamlines outflowing from the
Hill sphere, as described by Benítez-Llambay et al. (2015). The
size of the lobes is inherently asymmetric because the corotation
between the protoplanet and the sub-Keplerian gas is radially
shifted inwards, therefore the outer rear lobe is usually larger
and the heating torque should be positive.

Such an advection-diffusion interplay is indeed observed in
Fig. 3, where we find the typical two-lobed distribution of hot
underdense gas around the luminous protoplanet and the positive
boost of the total torque (Fig. 2) confirms that the outer lobe
is slightly more pronounced. The bottom-right panel reveals the
magnitude and spatial extent of the temperature excess, as well
as its skewed shape in the direction of the disk shear.

However, we make a new observation here concerning the
streamlines of the flow that are overlaid in the temperature maps.
It is obvious that the hot perturbation significantly changes the
topology of the flow with respect to the cold-protoplanet case.
U-turn streamlines no longer appear in the depicted part of the
disk, the direction of the circulating streamlines changes as they
pass the protoplanet, and a new set of spiral-like retrograde
streamlines appears.

3.3.2. Vertical plane

It is known that vertical motions play an important role in
the structure of circumplanetary envelopes (e.g. Tanigawa et al.
2012; Fung et al. 2015; Ormel et al. 2015; Cimerman et al. 2017;
Lambrechts & Lega 2017; Kurokawa & Tanigawa 2018; Popovas
et al. 2019). Since previous studies of the heating torque did not
investigate the vertical perturbations, we therefore do so here.
Figure 4 shows the gas temperature and the velocity field in
the vertical plane intersecting the location of the protoplanet.
When the protoplanet is cold, there is a vertical stream of gas

Fig. 4. Temperature map around the cold protoplanet at t= 30 Porb (top)
and temperature excess around the hot protoplanet at t= 60 Porb (bottom)
in the κconst-disk. The vertical plane (perpendicular to the disk midplane)
is displayed. The green arrows show the vertical velocity vector field.

descending towards the protoplanet and escaping as an outflow
through the midplane, in accordance with e.g. Lambrechts &
Lega (2017).

However, in the presence of accretion heating the direction
of the gas flow above the protoplanet is reverted; it forms an
outflowing column while the midplane flow becomes directed
towards the protoplanet. Two overturning cells appear on each
side of the vertical column (although it is important to point
out that no such cells are apparent in the full 3D flow which
is discussed later). We notice that the hot perturbation is not
spherically symmetric but rather elongated in the direction of
the column, indicating that the envelope is not hydrostatic.

3.3.3. Two- and three-dimensional streamline topology

So far, we have described two new findings that were not
incorporated in the existing descriptions of the heating torque
(Benítez-Llambay et al. 2015; Masset 2017): the distortion of the
streamline topology and the reversal of the vertical motions. The
flow direction is directly linked to the heating torque because it
determines the redistribution of the hot gas by advection and thus
contributes to the shape of the underdense regions. Therefore, we
focus on the streamline topology in this section.

The streamlines are calculated using the explicit first-order
Euler integrator and the trilinear interpolation of the velocity
field. The interpolation allows us to obtain the velocity vector
at an arbitrary location within the spherical grid. The size of
the integration step is chosen so that the length integrated dur-
ing a single propagation does not exceed 0.1 of the shortest cell
dimension.

We construct 2D and 3D projections of the streamline
topologies. For the 2D projections, the streamlines are generated
exactly at the midplane where vφ = 0 and although they provide
a useful visualisation, we emphasise that by construction they
carry no information about the adjacent vertical flows. For the
3D projections, the streamlines are generated slightly above the
midplane (at φ= π/2 − 0.005 rad) to take into account non-zero
vφ.

Figure 5 shows 2D and 3D streamlines in the κconst-disk,
again for the exact same simulation stages as in Figs. 3 and 4. In
the plots, we distinguish the following types of streamline: first,
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Fig. 5. Detailed streamline topology in the κconst-disk simulation. Top row: cold protoplanet at t= 30 Porb. Bottom row: hot protoplanet at t= 60 Porb.
Rectangular projection in the spherical coordinates is used to display the disk midplane near the protoplanet (left) and the actual 3D flow (right).
The colour of the curves distinguishes individual sets of streamlines: inner circulating (yellow), outer circulating (red), front horseshoe (light blue),
rear horseshoe (purple) and other (green). The thick black lines highlight the critical circulating streamlines closest to the protoplanet. The black
cross and the ellipse mark the location and Hill sphere of the protoplanet; the black arrows indicate the flow direction with respect to the protoplanet.
In 3D figures (right), the dark blue hemisphere corresponds to the Hill sphere above the midplane. Additionally, the insets in the corners of the
3D figures provide a close-up of the upstream outer circulating streamlines viewed from a slightly different angle. The endpoints indicate where
the flow exits the depicted part of the space and highlight if the initially coplanar streamlines descend towards the protoplanet (top) or rather
rise vertically (bottom). We emphasise that the streamlines in the 3D figures are generated above the midplane and do not directly correspond to
those in the 2D figures.

there are circulating streamlines that do not cross the corotation
with the protoplanet. To imagine the direction of the relative
motion, we point out that the gas on inner circulating streamlines
moves faster than the protoplanet, whereas the gas on outer
circulating streamlines lags behind the protoplanet. Second,
there are horseshoe streamlines that make a single U-turn and
cross the corotation once at each side of the protoplanet. Such
streamlines ahead of the orbital motion of the protoplanet
form the front horseshoe region and those located behind the
protoplanet belong to the rear horseshoe region. To outline the
separatrices between the horseshoe and circulating regions, we
highlight the critical inner and outer circulating streamlines that
are located closest to the protoplanet. Finally, some of our plots
contain streamlines that do not fall in any of the aforementioned
categories.

When the protoplanet is non-luminous, the 2D midplane
streamlines in Fig. 5 do not exhibit any unexpected features.
The stagnation point (X-point) of the flow is located within the
Hill sphere, which is also intersected by both horseshoe and cir-
culating streamlines. In 3D, we notice that upon making their
U-turn, the horseshoe streamlines vertically descend towards
the midplane, as already pointed out by Fung et al. (2015) or
Lambrechts & Lega (2017). A similar descent is also exhibited
by some of the circulating streamlines closest to the protoplanet.

For the hot protoplanet, we now obtain a clear picture of
the streamline distortion. In the midplane, the following changes
appear:

– Circulating streamlines cross a smaller portion of the Hill
sphere. When passing the protoplanet, they are bent towards
it (unlike near the non-luminous protoplanet where they are
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Fig. 6. Evolution of the perturbed midplane gas density in the κBL-disk simulation. The corresponding simulation time t is given by labels. Individual
snapshots represent the state of gas when the total torque acting on the protoplanet is minimal (left), maximal (third), and oscillating in between
(second and right). The streamlines are overplotted for reference. The figure is also available as an online movie, showing the temporal evolution
from t= 30–33 Porb.

rather deflected away), which is especially apparent for the
critical circulating streamlines.

– The classical horseshoe streamlines detach from the Hill
sphere and make their U-turns at greater azimuthal separa-
tions.

– Part of the streamlines originating in the downstream horse-
shoe regions is captured inside the Hill sphere where it
rotates around the protoplanet in a retrograde fashion.
In 3D, the distortion has the following additional features:

– The “captured” streamlines are uplifted and form a spiral-
like vertical column, outflowing and escaping from the Hill
sphere.

– When the circulating streamlines pass the protoplanet and
become perturbed, they are also uplifted. This behaviour
is the exact opposite of that seen in the cold-protoplanet
situation.

3.4. Instability of the heated gas

We now return to the κBL-disk simulation for which we discov-
ered the strong oscillations of the heating torque (Fig. 2).

3.4.1. Evolving underdense lobes

Investigating the evolution of the gas density, we find that the
position and size of the underdense lobes never become station-
ary, as shown in Fig. 6 (see also the online movie). The figure
shows a sequence of snapshots corresponding to t= 31.3, 31.75,
32.20 and 32.65 Porb.

The first panel depicts the state when the total torque reaches
its first minimum during the beginning of the oscillatory phase.
There is a dominant underdense lobe located ahead of the proto-
planet while the rear lobe almost disappears. Such a distribution
can be easily related to the strong negative torque: the excess of
the gas mass behind the protoplanet (and the paucity of mass
ahead of it) leads to an azimuthal pull acting against the orbital
motion, imposing a negative torque.

When the torque is reversing from negative to positive (sec-
ond panel), both lobes are similarly pronounced. The rear one

seems to be located closer to the protoplanet. The third panel
corresponds to the torque maximum. The rear lobe is dominant
and thus the overabundance of the gas ahead of the protoplanet
makes the torque positive. The final panel shows the state when
the oscillating torque is approximately halfway from positive to
negative. The gas distribution indeed looks like a counterpart to
the second panel since both lobes are again apparent but the front
one is now closer to the protoplanet.

The gas redistribution is clearly related to the topology of
the streamlines and to the position of the spiral-like flow. We
notice that the centre of the captured streamlines undergoes
retrograde (“clockwise”) rotation around the protoplanet. One
underdense lobe is always associated with this rotating flow.
Apparently, the redistribution of the hot gas by advection tends
to favour the lobe which is intersected by the majority of the cap-
tured streamlines at a given time. In the first panel of Fig. 6, for
example, the hot gas is transported more efficiently into the front
lobe, creating a strong front-rear asymmetry between the lobes.
In the third panel, the situation is exactly the opposite and the
rear lobe is more pronounced.

We point out that the continuous variations of the hot lobes
and their alternating dominance are unexpected features of the
heating torque which was previously thought to be strictly
positive (Benítez-Llambay et al. 2015).

3.4.2. Evolving 2D and 3D streamline topology

We again explore the streamline topology and its changes related
to the redistribution of the hot gas. Figure 7 shows the midplane
streamlines near the protoplanet for a selection of simulation
times between t= 31.3 and 32.15 Porb. The former corresponds
to the torque minimum, the latter to the torque maximum. The
time intervals between the individual panels are not uniform but
are rather selected to highlight the most interesting transitions.

The sequence reveals the following features:
– In panel a, the streamlines are similar to the steady-state
κconst-disk case (bottom of Fig. 5) in several ways, mostly
in the detachment of the classical horseshoe streamlines and
in the existence of the retrograde streamlines captured from
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Fig. 7. Midplane streamline topology in the κBL-disk simulation. The panels are labelled by the simulation time. The individual types of streamlines
are the same as in Fig. 5. The sequence (a–f ) represents the transition between the states corresponding to the minimum and maximum of the torque,
respectively (see Fig. 2 to relate the panels to the torque evolution).

downstream horseshoe regions. But there are also impor-
tant differences: there are none inner circulating streamlines
intersecting the Hill sphere and moreover, a larger part of the
captured streamlines originate in the rear horseshoe region
while the front horseshoe region is almost disconnected.

– In panel b, the front horseshoe region becomes entirely dis-
connected. The captured streamlines originate exclusively in
the rear horseshoe region.

– In panel c, the outer circulating streamlines also stop cross-
ing the Hill sphere. Some of the streamlines that were
captured in b now overshoot the protoplanet and make a
U-turn ahead of it. The centre around which the captured
streamlines enclose becomes shifted behind the protoplanet.

– In panel d, the front X-point moves closer to the Hill sphere
and so do the front horseshoe streamlines. The rear horse-
shoe region becomes radially narrower and the number of
U-turn streamlines overshooting the protoplanet diminishes.

– In panel e, the front horseshoe region reconnects with the
captured streamlines.

– In panel f, the captured streamlines originate mostly in the
front horseshoe region while the rear horseshoe region is
evolving towards its disconnection, similarly to what we saw
for the front horseshoe region in panels a and b. The centre of
the captured streamlines moves inwards from the protoplanet
(and will continue to propagate ahead).

Figure 8 shows three selected snapshots of 3D streamlines
(t= 31.3, 31.75 and 32.15 Porb) when the oscillating torque is
at its minimum (top), grows halfway towards the maximum
(middle), and reaches it (bottom). Clearly, the reshaping of
the streamline topology that we described for the midplane

propagates in a complicated way into the vertical direction as
well:

– In the first panel, the spiraling streamlines of the vertical col-
umn are more or less centred above the protoplanet and as
they rise above the midplane they penetrate the majority of
the Hill sphere.

– In the second panel, we see the overshooting rear horseshoe
streamlines making their U-turns within the Hill sphere. The
vertical column of captured streamlines is displaced to the
rear of the Hill sphere. As the captured streamlines spiral
up, the column tilts towards the Hill sphere. The outer circu-
lating streamlines are strongly uplifted towards colatitudes
above the Hill sphere.

– In the third panel, some uplifted outer circulating streamlines
penetrate into the vertical column and by this reconfigura-
tion, the column reconnects with the front horseshoe region
while the rear one starts to disconnect.

3.5. Physical processes distorting the gas flow

In previous sections, we revealed that the gas heating from an
accreting protoplanet changes the topology of the flow. Perturbed
streamlines have a tendency to bend towards the protoplanet
and also to rise vertically. If the perturbations become strong
enough, the streamlines can form a vertical spiral. In this sec-
tion, we investigate the physical processes responsible for such a
streamline distortion.

In Sect. 3.5.1, we theorise that the streamline distortion is
a result of vorticity perturbations arising because the vigorous
accretion heating renders the circumplanetary gas baroclinic.
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Fig. 8. Three-dimensional streamlines in the κBL-disk simulation. Each
snapshot is labelled by the simulation time. The panels correspond to
the minimum (top) and maximum (bottom) torque and to the state in
between (middle).

Confirmation is provided for the steady state of the κconst-disk
simulation in Sects. 3.5.2 and 3.5.3. Finally, Sect. 3.5.4 demon-
strates that the vertical temperature gradient above the accreting
protoplanet is superadiabatic and we also highlight differences
between the κconst-disk and the κBL-disk.

3.5.1. Vorticity evolution

The spiral-like structure of the captured streamlines and the
bending of nearby circulating streamlines suggests that the vor-
ticity of the flow is modified when the protoplanet becomes hot.
The vorticity can be defined via the relation

ωa ≡ ωr + 2Ω ≡ ∇ × u + 2Ω, (13)

where ωa is the absolute vorticity and ωr is the relative vorticity
in the reference frame corotating with the protoplanet.

Evolution of ωr is described by the vorticity equation in the
corotating frame (see Appendix C)

Dωr

Dt
= (ωa · ∇) u − ωa (∇ · u) + ∇ρ × ∇P

ρ2 , (14)

where D/Dt denotes the Lagrangian derivative. In writing the
equation, we neglected the effects of viscous diffusivity (large
Reynolds number limit) but otherwise the equation is general.

Regarding the terms on the right-hand side, the first one
describes the tendency of vortex tubes to become twisted due
to velocity field gradients and the second one characterises the
stretching or contraction of vortex tubes due to flow expansion
or compression. These first two terms, usually called the twist-
ing and stretching terms, are only important if there is non-zero
absolute vorticity already existing in the flow and they can cause
its redistribution.

The remaining term on the right-hand side is the baroclinic
term. It vanishes in barotropic flows where the pressure and
density gradients are always parallel, but since our model is
not barotropic, ∇ρ and ∇P can be misaligned, leading to vor-
ticity production or destruction since their cross product can
be non-zero. Because ρ near the accreting protoplanet exhibits
asymmetric perturbations while P remains roughly spherically
symmetric, one can expect non-zero baroclinic perturbations
to arise. The respective non-zero vorticity then enhances cir-
culation around a given point of the continuum, twisting the
streamlines with respect to the situation unperturbed by accretion
heating.

3.5.2. Baroclinic vorticity generation

It is not a priori evident which source term is the most important
for the vorticity evolution in our simulations. In Fig. 9, we study
the variations of ωr and the source terms of Eq. (14) along a sin-
gle outer circulating streamline. We compare the situation near
the cold and hot protoplanet in the κconst-disk.

Downstream, before the streamline encounters the proto-
planet, the situation is similar for the compared cases: the
azimuthal and radial vorticity components ωr,θ and ωr,r are neg-
ligible, while the polar component ωr,φ is non-zero and positive.
The positive value of ωr,φ corresponds to the inherent vortic-
ity in a flow with the Keplerian shear: taking vr = 0, vφ = 0 and
vθ =
√

GM/r − Ωr, one obtains ωr,φ =−0.5ΩK (r) + 2Ω. At the
same time, the source terms are zero because far from the pro-
toplanet there are no strong velocity gradients, no compression
and ∇ρ and ∇P are aligned.

To relate the vorticity variation with the streamline distortion
close to the protoplanet, let us carry out a thought experiment,
considering the fact that the vorticity describes the tendency of
the flow to circulate around some point in space. First we focus
on the hot-protoplanet case which is the most important for us.
First we imagine an observer moving along the critical outer cir-
culating streamline, corresponding to the outer thick black curve
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Fig. 9. Evolution of the relative vorticity (first and third row) and balance of the vorticity source terms (second and fourth row) along a single
streamline in the κconst-disk simulation. The streamlines for these measurements are chosen from the 3D sets displayed in Fig. 5. For the hot
protoplanet (bottom two rows) the extremal outer circulating streamline is selected, and for the cold protoplanet (top two rows) we select an outer
circulating streamline with a comparable Hill sphere crossing time. Azimuthal (left), radial (middle), and polar (right) components of the vorticity
(black solid curve), and the baroclinic term (blue solid curve), stretching term (orange dashed curve), and twisting term (magenta dotted curve)
are displayed using scaled code units. The grey rectangle marks the Hill sphere crossing. We point out that the source terms represent the rate of
change of the vorticity and also that the vertical range is not kept fixed among individual panels.

in the bottom right panel of Fig. 5. The observer moves with the
flow, predominantly in the −θ direction. For this experiment, we
dub the directions θ, −θ, r, −r, φ and −φ as behind, ahead, out-
wards, inwards, down, and up, respectively. Considering only the
streamlines of Fig. 5 originating at r > rp, they initially define
a plane at constant φ= π/2 − 0.005 rad and the observer propa-
gates through that plane. When the flow reaches the Hill sphere,
the observer studies the instantaneous displacement of nearby
gas parcels which corresponds to the deformation of the surface
defined by neighbouring streamlines.

According to the bottom panels of Fig. 9, the observer mea-
sures ωr,θ > 0 when crossing the Hill sphere. Thus ωr,θ points
against the direction of the motion of the observer, forcing the
circulation in the local (r, φ) plane. The nearby gas parcels must
obey the following right-hand rule: when the thumb points in
the direction of ωr,θ, wrapping fingers determine the direction
of circulation. From the point of view of the observer, an outer
gas parcel falls downwards to the midplane and an inner gas
parcel rises upwards. This is exactly in accordance with Fig. 5
where streamlines passing the protoplanet are uplifted from
the φ= π/2 − 0.005 rad plane and the kick gets stronger with
decreasing separation from the protoplanet.
ωr,r only slightly oscillates during the Hill sphere crossing

but becomes positive (although relatively small) upstream. Using
again the same considerations as above, ωr,r points outwards
from the observer after crossing the Hill sphere, promoting circu-
lation in the (θ, φ) plane. Using the right-hand rule, a gas parcel
ahead of the observer falls downwards and a gas parcel behind
the observer rises upwards. In Fig. 5, this is reflected by the
streamline topology when the red streamlines rising after the Hill
sphere passage suddenly start to fall back towards the midplane.

As for the remaining vorticity component ωr,φ, it remains
positive during the Hill sphere crossing but acquires a positive

boost at first and a more prominent negative perturbation after-
wards. The later diminishes the circulation related to shear in the
(r, θ) plane. This is only possible if gas parcels near the observer
become displaced towards trajectories with smaller shear veloc-
ities. In Fig. 5, the streamline topology indeed exhibits such
a behaviour because when the red streamlines (and similarly
green and yellow ones) pass the protoplanet, they are being bent
towards it.

Looking at the source terms, it is obvious that the baroclinic
term is responsible for perturbing ωr,θ and ωr,φ, while counter-
acting the twisting term contributing to ωr,r. The importance of
the baroclinic term for the flow approaching the hot protoplanet
is thus confirmed. Moreover, the perturbation is indeed 3D as
each of the studied components is important for the resulting
streamline topology.

Comparing the hot-protoplanet case to the cold-protoplanet
case, we notice that the evolution of ωr,θ and ωr,φ is roughly anti-
symmetric, as is the evolution of the baroclinic source term. This
is consistent with our finding that streamlines near the cold pro-
toplanet are distorted in the opposite manner (they fall towards
the midplane and deflect away from the protoplanet). In other
words, the baroclinic behaviour of the vicinity of the protoplanet
is reverted between the cold- and hot-protoplanet case.

3.5.3. Baroclinic region

Although we do not repeat the vorticity analysis for the remain-
ing sets of streamlines, it is clear that features of the streamline
distortion can be explained by the baroclinic generation of the
vorticity. To further support this claim, we compare in Fig. 10
the map of the baroclinic term near the cold and hot protoplanet
in the κconst-disk. We plot the polar component of the baroclinic
term (∇ρ×∇P)φ /ρ

2 in the midplane. Since the midplane flow is
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Fig. 10. Maps of the φ-component of the baroclinic term in the κconst-
disk simulation. The purple isocontours depict several levels of the
constant volume density and the green isocontours correspond to the
isobars. The levels of the contours are kept fixed between the panels.

effectively 2D (because vφ = 0 in midplane), only the polar com-
ponent of ωr is non-zero and thus also the polar component of
the baroclinic term is the most important one.

Figure 10 reveals that the gas is baroclinic near both the cold
and hot protoplanet, but for the latter case, the map becomes
approximately antisymmetric compared to the cold-protoplanet
case, slightly rotated in the retrograde sense and the baroclinic
region is more extended.

The existence of the baroclinic region can be explained using
the isocontours of constant volume density and isobars. For a
barotropic gas (∇ρ k ∇P), any nearby isocontours of constant ρ
and P should have the same shape. Wherever the isocontours
depart from one another, it means that the local gradients of ρ
and P are misaligned and that the baroclinic term is non-zero.

Looking at the cold-protoplanet case, the isobars and con-
tours of constant density are nearly spherically symmetric.
However, we notice that each density isocontour exhibits two
bumps and appears to be stretched in the direction where the
gas outflows from the Hill sphere. Clearly, these bumps are asso-
ciated with the cold-finger perturbation that appears in the same
location (see Fig. 3). Since the cold fingers are filled with over-
dense gas, they perturb the local density gradient, causing it
to point towards them. At the same time, the isobars remain
approximately spherically symmetric.

When the protoplanet is hot, the cold fingers are replaced
with hot underdense perturbations. Therefore, the local density

gradient tends to point away from them. We can see that this
is indeed true because the density isocontours do not exhibit
bumps, but rather concavities across the overheated region (com-
pare with Fig. 3). Clearly, this is the reason why the baroclinic
map for the hot protoplanet appears reverted compared to the
cold protoplanet.

Summarising these findings, we see that the thermal per-
turbations associated either with the cold-finger effect or the
heating torque make the circumplanetary region baroclinic. But
the influence on the vorticity evolution is the opposite when
comparing the cold- and hot-protoplanet cases.

3.5.4. Vertical convection

Although the baroclinic distortion of the gas flow is a robust
mechanism, it does not provide a simple explanation as to
why the κBL-disk simulation exhibits gas instability whereas the
κconst-disk simulation remains stable. We now explore the verti-
cal stability of both disks against vertical convection, consider-
ing only the hot-protoplanet limit.

To do so, we employ the Schwarzschild criterion,

|∇rad,φ| > |∇ad,φ| ⇔
|∇rad,φ|
|∇ad,φ| − 1 > 0, (15)

where the subscript “rad” denotes the vertical3 temperature gra-
dient found in our simulations and the subscript “ad” denotes
the temperature gradient that an adiabatic gas would establish.
The ∇ symbol stands for the logarithmic gradient dlog T/dlog P,
yielding |∇ad,φ|= (γ − 1)/γ for the adiabatic case.

The Schwarzschild criterion is not necessarily a universal
way to determine if the disk is unstable to convection. The rea-
son is that convective destabilisations in protoplanetary disks are
opposed by diffusive effects (e.g. Held & Latter 2018) and shear
motions (Rüdiger et al. 2002). However, to our knowledge there
are no convective criteria that would take into account the disk
perturbation by the protoplanet, therefore we choose to use the
Schwarzschild criterion for its simplicity, keeping the limitations
in mind.

Figure 11 shows the vertical velocity field and balance
of the Schwarzschild criterion in the vertical direction of the
κconst-disk and κBL-disk. Each panel shows a different simu-
lation time and vertical plane. For the κconst-disk, we display
t= 60 Porb and the vertical plane intersecting the location of
the protoplanet, whereas for the κBL-disk, each plane approxi-
mately intersects the centre around which the captured stream-
lines of Fig. 6 circulate at the given simulation time (t= 31.3,
31.75, 32.2 and 32.65 Porb). In other words, we choose the
vertical planes where we expect the most prominent vertical
outflow.

The first thing we point out is that the background differs
between the studied disks. The background of the κBL-disk is
slightly superadiabatic, contrary to the κconst-disk. The differ-
ence arises as a result of the opacity laws. As derived by Lin &
Papaloizou (1980) and Ruden & Pollack (1991), one can make
a qualitative estimate for optically thick regions unperturbed by
the protoplanet
 |∇rad,φ|
|∇ad,φ| − 1

!

background
=

1/ (4 − β)
(γ − 1) / (γ)

− 1, (16)

3 We use the colatitude φ to study the vertical gradients because
the curvature of spherical coordinates near the midplane does not
significantly depart from the true vertical direction.
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Fig. 11. Balance of the Schwarzschild criterion in the vertical planes of
the κconst-disk (top) and the κBL-disk (remaining panels). The individual
vertical planes are chosen to track the most prominent vertical flow at
the given simulation time t (see the main text) and their azimuthal sepa-
rations from the protoplanet location are given by panel labels (using
multiples of the azimuthal span ∆θH of the Hill sphere radius). The
colour maps evaluate Eq. (15). Positive values indicate superadiabatic
vertical temperature gradients. The vertical velocity vector field is over-
laid in the plots. The half-circles mark the overlap of a given plane with
the Hill sphere (the planes in panels 3 and 5 do not overlap with the Hill
sphere).

where β is the power-law index of the κ ∝ T β dependence. In
the κconst-disk, β= 0 and thus |∇rad,φ|/|∇ad,φ| − 1 ’ −0.17. In the
κBL-disk, the Bell & Lin (1994) opacity law in the given temper-
ature range corresponds to water-ice grains and exhibits β= 2,

therefore |∇rad,φ|/|∇ad,φ| − 1’ 0.67. These estimated values are in
a good agreement with the background values of Fig. 11.

The background itself is not convective because vertical con-
vection is usually not self-sustainable unless there is a strong
heat deposition within the disk (e.g. Cabot 1996; Stone & Balbus
1996; Klahr et al. 1999; Lesur & Ogilvie 2010) which, however,
can be provided by the hot accreting protoplanet in our case.
Indeed, looking at the κconst-disk in Fig. 11 (top), the region
where we previously identified the most significant tempera-
ture excess due to planetary luminosity (compare with Fig. 4)
is superadiabatic and the corresponding vertical outflow can be
considered convective.

In the κBL-disk simulation, the temperature gradient departs
from the adiabatic one even more, and additionally, the excess is
no longer centred above the protoplanet itself but rather spans its
vicinity. This can be seen from the varying azimuthal coordinate
of the displayed vertical planes and also from the radial offset of
the highly superadiabatic region in panels 3 and 5.

We summarise the section by speculating that the κBL-disk
simulation becomes destabilised because the hot disturbance cre-
ated by the accreting protoplanet is subject to vertical buoyant
forces acting over a more extended region (compared to the
κconst-disk). The reason is that the hot disturbance is imposed
over an already superadiabatic background. The uplift of the
material cannot be compensated for in a stationary manner and
eventually the vertical outflow becomes offset with respect to the
protoplanet and starts to change its position in a cyclic manner.
However, such a description is rather qualitative and precise con-
ditions for triggering the instability should be explored in future
works.

3.6. Torque oscillation versus opacity gradient

We now perform a partial exploration of the parametric space
by varying the opacity gradient within the disk. The aim is
twofold: first, we would like to support the claim of the previ-
ous Sect. 3.5.4 of the importance of the vertical stratification
for the torque oscillations. Second, it is desirable to show that
the appearance of torque oscillations in the κBL-disk is not
coincidental and that it can be recovered for a wider range of
parameters.

We construct six additional disk models with artificial opac-
ity laws that (i) conserve the opacity value at the protoplanet
location (1.11 cm2 g−1) and (ii) lead to opacity gradients which
are intermediate between the κconst- and κBL-disks. The latter
property accounts for the highly unconstrained size distribution
of solid particles in protoplanetary disks which manifests itself in
a large parametric freedom of the power-law slope of the opacity
profile (e.g. Piso et al. 2015).

The first additional set of disks utilises the opacity law which
we dub T -dependent:

κ T̄ (r, φ) = κ0T̄ β . (17)

Similarly to the Bell & Lin (1994) opacity in the water-ice
regime, it is exclusively a function of temperature. The tem-
perature T̄ is again azimuthally averaged to disentangle the
influence of global opacity gradients (which we focus on) from
those related to accretion heating of the protoplanet. We exam-
ine the values β= 1.5, 1, and 0.5 to span the range between
β= 0 (κconst-disk) and 2 (κBL-disk). The constant of proportion-
ality κ0 is always chosen to recover κ= 1.11 cm2 g−1 at r= ap and
φ= π/2 in an equilibrium disk. We find κ0 ’ 0.0016, 0.014, and
0.122 cm2 g−1 for the respective values of β.
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Fig. 12. Radial (top two panels) and vertical (bottom) opacity profiles
in equilibrium disks which we use to study the torque dependence on
the opacity gradients. In the top panels, the individual cases are distin-
guished by colour and labelled in the legend. The profile of the κBL-disk
(solid grey curve) is plotted for comparison. The bottom panel corre-
sponds to the protoplanet location and demonstrates that only the disks
with T -dependent opacities develop a vertical opacity gradient (which
is not allowed for r-dependent opacities by construction).

The opacity law used for the second additional set of disks,
referred to as r-dependent, is

κ(r) = 1.11
 

r
ap

!−δ
cm2 g−1, (18)

and we choose δ= 3, 2, and 1 (because δ= 4 leads to an opacity
profile similar to the κBL-disk). The motivation for choosing this
purely radially dependent opacity law is to distinguish between
effects caused by radial and vertical opacity gradients. The latter
does not appear when κ= κ(r).

The opacity profiles of these disks in radiative equilibrium
are summarised in Fig. 12 which reveals that all radial opac-
ity gradients (top two panels) are indeed shallower compared
to the κBL-disk. However, all disks with r-dependent opaci-
ties have zero vertical opacity gradient by construction (bottom
panel), unlike disks with T -dependent opacities which vertically
decrease.

The torque measurements are performed in the same way
as in our previous experiments and the results are given in
Fig. 13. For disks with T -dependent opacities (top), we find
that the torque oscillations appear for all investigated values of
β. The oscillation amplitude on the other hand decreases lin-
early with β and the period becomes slightly shorter as well. In
case of r-dependent opacities (bottom), the torque evolution does
not strongly depend on δ and exhibits marginal and vanishing
oscillations, as in the κconst-disk case.

Since the only qualitative difference between the disks with
T -dependent and r-dependent opacities is in the vertical opacity
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Fig. 13. Torque evolution in disks described in Fig. 12. Top panel:
disks with T-dependent opacities. Bottom panel: disks with r-dependent
opacities. The individual cases are distinguished by colour and labelled
in the legend. The evolution from the κBL-disk simulation (solid grey
curve) is given for reference. In the top panel, the torque amplitude
diminishes with the power-law index of the opacity law, yet the oscil-
lations appear in all studied cases. In the bottom panel, we find that
oscillations are rapidly damped.

gradient, our torque measurements confirm the importance of the
vertical structure for the torque oscillations. The torque oscillates
wherever the vertical opacity profile favours superadiabatic ver-
tical stratification and the oscillation amplitude scales with the
strength of the opacity-temperature coupling. In the absence of
the vertical opacity gradient, the oscillations are not established.

3.7. Evolution of a migrating protoplanet

The previous simulations were conducted assuming a fixed orbit
for the protoplanet and the static torque was examined. Here
we explore whether or not our findings can be readily applied
to a dynamical case when the protoplanet is allowed to radially
migrate and its semimajor axis evolves. In this section, we focus
only on the κBL-disk in which we found the flow instability.

Starting from t= 30 Porb, we release the protoplanet and run
the simulation until t= 60 Porb. Figure 14 compares the obtained
dynamical torque with the previous result of our static experi-
ments. It is obvious that the oscillating character of the torque
is retained and therefore the instability of the flow operates
near a moving protoplanet as well. There are differences both
in the amplitude and phase of the torque oscillations, but the
mean value of the torque over the simulated period of time is
Γ̄’−1.3× 10−6 a2

J Ω
2
J . Although this value is slightly more posi-

tive than the static heating torque (Γ̄’−6.3× 10−6 a2
J Ω

2
J ), it is

almost the same as the torque acting on the cold protoplanet
(Γ̄’−1.6× 10−6 a2

J Ω
2
J ). We thus confirm that in the κBL-disk, the

heating torque does not add any considerable positive contribu-
tion to the mean torque but causes it to strongly oscillate instead.

The bottom panel of Fig. 14 shows the actual evolution of the
semimajor axis of the protoplanet. On average, the protoplanet
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Fig. 14. Top: comparison of the static (solid black curve) and dynam-
ical torque (dashed blue curve) acting on the hot protoplanet in the
κBL-disk. Bottom: evolution of the semimajor axis in the κBL-disk when
the protoplanet is allowed to migrate. The migration is inward and
oscillatory.

slowly migrates inwards but this drift is not smooth. The proto-
planet exhibits fast periodic inward and outward excursions on an
orbital timescale. The migration rate of these individual excur-
sions (not to be confused with the mean migration rate stated
above) is ȧ ∼ (10−3 au)/Porb.

Finally, we note that the mean migration rate is not constant,
which also corresponds to the varying offset of the dynamical
torque with respect to the static torque in Fig. 14. It is likely that
the unstable gas distribution around the protoplanet is further
affected by the protoplanet’s radial drift.

4. Discussion

This section discusses the applicability of our results, draws links
to some previous studies, and speculates about possible implica-
tions for planet formation. Additionally, we outline possibilities
for future work. Although most of them are beyond the scope of
this paper, we at least present several additional simulations in
Appendix B to verify the correctness of our model (we study the
impact of the luminosity increase, grid resolution, opacity treat-
ment, and computational algorithm on the evolution of torque
oscillations).

4.1. Relation to previous works

Our results revealed unexpected perturbations of the gas flow in
the vicinity of the protoplanet undergoing strong accretion heat-
ing, one of them being the vertical outflow. The resolution of
our simulations was originally tailored for studying the torque
and may lack some accuracy close to the protoplanet where the
outflow occurs. Follow-up studies should therefore use simula-
tions with a high-resolution protoplanetary envelope, similarly

to Tanigawa et al. (2012); Fung et al. (2015); Ormel et al. (2015);
Lambrechts & Lega (2017) for example.

It is likely that a critical combination of the opacity κ
and luminosity L for a given planetary mass Mp exists for
which the vertical outflow is triggered, similarly to the depen-
dences of the heating torque explored by Benítez-Llambay
et al. (2015). Popovas et al. (2018, 2019) studied the stability
of the circumplanetary envelope during pebble accretion and
found that the gas within the Bondi sphere exhibits 3D con-
vective motions, assuming4 L’ 1.4× 1026 erg s−1, Mp = 0.95 M⊕
and κ= 1 cm2 g−1. Lambrechts & Lega (2017) also explored a set
of (L, κ, Mp) parameters and their impact on the structure of the
circumplanetary envelope. They found the inner region of the
envelope to depart from hydrostatic equilibrium when the lumi-
nosity exceeds L= 1027 erg s−1 around a Mp = 5 M⊕ core within
a κ= 1 cm2 g−1 environment, but they did not identify any verti-
cal outflow. The outflow in our simulations appears for higher L
and smaller Mp compared to Lambrechts & Lega (2017). We can
therefore assume that our parameters cross the critical ones.

Regarding the baroclinic perturbations, although they are
known to produce vortical instabilities in protoplanetary disks
(Klahr & Bodenheimer 2003; Petersen et al. 2007a,b; Lesur &
Papaloizou 2010; Raettig et al. 2013; Barge et al. 2016), they have
rarely been considered in relation to hot protoplanets. For exam-
ple, Owen & Kollmeier (2017) claim that that hot protoplanets
can excite large-scale baroclinic vortices but we do not identify
any of those in our simulations. Instead, we find baroclinic per-
turbations to be responsible for 3D distortion of the gas flow near
the protoplanet.

4.2. Implications for the formation of planetary systems

Although the heating torque has previously been thought to be
strictly positive and also efficient in high-opacity locations of
protoplanetary disks, our paper shows that it can exhibit more
complicated behaviour if the temperature dependence of the
disk opacity is taken into account. We identified an oscillatory
mode of the heating torque in the disk region with κ∝T 2 and
we demonstrated that it can operate even for shallower depen-
dences such as κ∝T 0.5, albeit with a decreased amplitude. This
behaviour resembles the nature of baroclinic and convective disk
instabilities which usually operate in the most opaque regions
with the steepest entropy gradients but become less effective
elsewhere (e.g. Pfeil & Klahr 2019).

It is worth noting that our simulations neglected the effect
of stellar irradiation. Stellar-irradiated disks tend to have verti-
cal temperature profiles that are closer to being isothermal (e.g.
Flock et al. 2013), unlike disk models used in this work which
have rather adiabatic or slightly superadiabatic vertical tempera-
ture gradients. On the other hand, even the irradiated disks often
contain shadowed regions protected against stellar irradiation;
for example behind the puffed-up inner rim (e.g. Dullemond
et al. 2001) or between the viscously heated inner disk and a
flared irradiated outer disk (e.g. Bitsch et al. 2013). In such
regions, the oscillatory migration could still operate.

For the aforementioned reasons, it is likely that transition
zones might exist in protoplanetary disks, separating regions
where protoplanets migrate under the influence of the stan-
dard positive heating torque and where they undergo oscillatory
migration. Migration at the edges of such zones could be conver-
gent, leading to a pileup of protoplanets.

4 Greater number of parameters were discussed in Popovas et al. (2018,
2019) but we quote those closest to this paper.
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5. Conclusions

By means of 3D radiation-hydrodynamic simulations, we inves-
tigated the heating torque (Benítez-Llambay et al. 2015) acting
on a luminous 3 M⊕ protoplanet heated by accretion of solids.
The aim was to compare the torque evolution and physics in
a disk with non-uniform opacities (Bell & Lin 1994) with the
outcome of a constant-opacity simulation.

We discovered that the gas flow near the protoplanet is
perturbed by two mechanisms:
1. The gas advected past the protoplanet becomes hot

and underdense. Consequently, a misalignment is created
between the gradients of density and pressure within the Hill
sphere of the protoplanet. The baroclinic term of the vorticity
equation (∼∇ρ×∇P) then becomes non-zero and modifies
the vorticity of the flow.

2. The efficient heat deposition in the midplane makes the
vertical temperature gradient superadiabatic, thus positively
enhancing vertical gas displacements.

The streamline topology exhibits a complex 3D distortion. The
most important feature are spiral-like streamlines rising verti-
cally above the hot protoplanet, forming an outflow column of
gas escaping the Hill sphere.

In the constant-opacity disk, the vertical outflow is cen-
tralised above the protoplanet; it temporarily captures stream-
lines from both horseshoe regions and such a state is found to
be stationary over the simulation time scale. The distribution of
the hot gas then remains in accordance with findings of Benítez-
Llambay et al. (2015), having a two-lobed structure, and so does
the resulting positive heating torque.

In the disk with non-uniform opacity, κ ∝ T 2 (typically out-
side the water-ice line), we find the superadiabatic temperature
gradient to be steeper and the distorted gas flow to be unsta-
ble. The vertical spiral flow becomes offset with respect to the
protoplanet and periodically changes its position, spanning the
edge of the Hill sphere in a retrograde fashion. Its motion is fol-
lowed by the underdense gas and the resulting heating torque
strongly oscillates in time. The interplay can be characterised by
the following sequence:
1. A stage when most of the captured streamlines originate in

the rear horseshoe region and their spiral-like structure is
offset ahead of the protoplanet. Therefore the hot gas cumu-
lates ahead of the protoplanet, a dominant underdense lobe
is formed there, and the torque becomes negative, reaching
the minimum of its oscillation.

2. A stage when the front horseshoe region becomes com-
pletely isolated from the captured streamlines. Some of the
rear horseshoe streamlines start to overshoot the protoplanet
and make U-turns ahead of it. At the same time, the spiral-
like structure recedes behind the protoplanet. The lobe from
stage 1 starts to decay while a rear lobe starts to grow and
the torque changes from negative to positive.

3. Antisymmetric situation to stage 1, when most of the cap-
tured streamlines originate in the front horseshoe region,
the dominant lobe trails the protoplanet and the torque is
positive, reaching the maximum of its oscillation.

4. Antisymmetric situation to stage 2, when the torque
decreases from positive to negative and the cycle repeats.

Such an advective redistribution of the hot underdense gas is
sustained over the simulation timescale.

We also studied the dependence of the torque oscillations on
the opacity gradient and found that they can appear even for κ ∝
T 0.5, although their amplitude linearly decreases with the power-
law slope of the κ(T ) dependence. We also demonstrated that

the oscillations would vanish in a disk with zero vertical opacity
gradient.

If the protoplanet is allowed to migrate, its mean migration
rate is nearly unaffected but the radial drift is not smooth; it is
rather oscillatory, consisting of brief inward and outward radial
excursions with a characteristic rate of ȧ ∼ 10−4 au yr−1.

We discussed possible implications of the oscillating heating
torque for planet formation and pointed out that it can affect the
global evolution of hot migrating low-mass protoplanets. Dur-
ing their migration through disk regions with varying opacities it
might be possible for the protoplanets to switch between the stan-
dard positive heating torque of Benítez-Llambay et al. (2015) and
the positive/negative torque oscillations discovered in this paper.
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Appendix A: Modifications of the numerical
scheme

We implemented Eqs. (3) and (4) into FARGO3D using their dis-
crete form derived by Bitsch et al. (2013; see their Appendix B).
We introduce a minor modification of the numerical scheme,
which allows for all the source terms to be accounted for in a sin-
gle substep. Using the same notation as in Bitsch et al. (2013), the
relation between the temperature and radiative energy at t +∆t is

T n+1 = η1 + η2En+1
R , (A.1)

and we redefine

η1 =
T n + 12∆t κPcV

σ (T n)4 + ∆t Q −indep

ρcV

1 + 16∆t κPcV
σ (T n)3 + ∆t (γ − 1)∇ · u , (A.2)

η2 =
∆t κPcV

c

1 + 16∆t κPcV
σ (T n)3 + ∆t (γ − 1)∇ · u . (A.3)

There are two changes with respect to Bitsch et al. (2013).
First, the compressional heating is included via the last term in
the denominator of Eqs. (A.2) and (A.3). Second, the Q −indep
term is a sum of all heat sources that do not depend on (or
T ); in our case Q −indep =Qvisc + Qart + Qacc. We note that when
necessary, the stellar irradiation term can also be easily included
in Q −indep but it is neglected in this work.

Appendix B: Supporting simulations

In this appendix, we summarize several additional simulations
designed to confirm the robustness of our conclusions.

B.1. Simulation with a smoothly increasing luminosity of the
protoplanet

In our main simulations, we usually start the phase with accre-
tion heating abruptly, by instantaneously increasing the luminos-
ity of the protoplanet from L= 0 to the value corresponding to
the mass doubling time τ= 100 kyr. Such a sudden appearance
of a strong heat source might produce an unexpected behaviour
and instabilities by itself. In order to exclude any undesirable
behaviour, we repeat the κBL-disk simulation with accretion heat-
ing of the protoplanet, but now we linearly increase L from
zero at t= 30 Porb to its maximal value over the time interval of
10 Porb.

Figure B.1 shows the measured torque evolution. Clearly, the
gradual increase of L has no impact on the final character of the
torque, and the oscillations related to the flow reconfigurations
inevitably appear.

B.2. Simulation with an increased azimuthal resolution

The resolution in our simulations is motivated by works of Lega
et al. (2014) and Eklund & Masset (2017). Although we do not
perform extended convergence tests of our own, the resolution
should be sufficient to recover a realistic torque value and also
a realistic advection-diffusion redistribution of the hot gas near
the protoplanet.

However, once the circumplanetary flow becomes unstable, it
is no longer clear if the chosen resolution is sufficient. For exam-
ple, one might argue that the coverage of the Hill sphere by the
grid cells in the azimuthal direction is too poor. Here we present
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Fig. B.1. Torque evolution in the κBL-disk with instantaneously
increased luminosity of the protoplanet L (solid black curve; same as
in Fig. 2) compared to the κBL-disk with smoothly increasing L (dashed
blue curve). Even before L reaches its maximum value in the latter case,
the curves start to overlap. After t= 40 Porb, the agreement is almost
exact.
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Fig. B.2. Torque evolution obtained in the κBL-disk simulation with an
increased azimuthal resolution of 2764 cells. The time span of the indi-
vidual phases is shortened to save computing time. The instability in the
presence of the accretion heating is however recovered again.

an experiment in which we double the number of the grid cells
in the azimuthal direction in order to obtain the same coverage
of the Hill sphere in all directions. We perform the κBL-disk sim-
ulation again, however we shorten the phase without accretion
heating to 10 Porb and the phase with accretion heating to 5 Porb.

The result is shown in Fig. B.2 and demonstrates that the
torque oscillations are recovered even when the increased reso-
lution is used. However, the amplitude of the torque oscillations
slightly changes, implying that the resolution dependence should
be explored more carefully in the future.

B.3. Simulation with the unmodified Bell & Lin opacity table

The simulations of the κBL-disk presented in this paper are per-
formed with a simplified opacity law of Bell & Lin (1994)
(explained in Sect. 2.2). Here we test how the results change if
the unmodified opacity law κfull

BL is used and the dependence on
the local values of T and ρ is retained.

Figure B.3 compares the torque evolution in our standard
κBL-disk with that in a κfull

BL -disk. Clearly, the instability occurs in
both disks, regardless of whether or not the input values for the
opacity function are azimuthally averaged. The only difference
is in the torque amplitude which is larger in the κfull

BL -disk.
The increased amplitude occurs because if T locally rises, so

does the material opacity (κfull
BL ∝T 2 in the given disk region).

Subsequently, the radiative cooling of the hot gas becomes
less efficient and T rises even more. As a result, the under-
dense perturbations related to any temperature excess are more
pronounced, leading to the larger amplitude of the torque oscil-
lations.
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Fig. B.3. Comparison of the torque evolutions obtained in the κBL-disk
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B.4. Code comparison

With the aim to confirm that our implementation of the energy
equations in FARGO3D is correct and also that the instability
of the circumplanetary flow does not arise due to numeri-
cal artefacts, we present a comparison simulation obtained
with an independent and well-tested radiation hydrodynamic
code FARGOCA (Lega et al. 2014). The simulation is per-
formed with the unmodified κfull

BL opacity law of Bell & Lin
(1994).

Figure B.4 compares the torque evolution found using our
code with the one obtained with FARGOCA. We can see that
the converged torque for the cold protoplanet is in a satisfactory
agreement.

When the accretion heating is initiated, the same oscilla-
tory trend is observed with both codes. The curves overlap at
first; later they start to depart in terms of the oscillation phase.
However, the amplitude remains the same.

Since the converged torques are in agreement and the insta-
bility is recovered, we conclude that the differences that we
identify in Fig. B.4 arise only because our radiation module in
FARGO3D relies on a slightly different numerical scheme (see
Appendix A) compared to FARGOCA.

Appendix C: Vorticity equation in the corotating
frame

For the convenience of the reader, we provide a step-by-step
derivation of the vorticity equation. Starting with Eq. (2), we
apply the curl on both sides. In the following, we neglect the
viscous term (large Reynolds number limit).

The following identities of the vector calculus will be
utilised:

(a · ∇) a=
1
2
∇ (a · a) + (∇× a) × a, (C.1)

∇ × (a × b) = a (∇ · b) − b (∇ · a) + (b · ∇) a − (a · ∇) b, (C.2)

∇ · (∇ × a) = 0, (C.3)

∇ × (∇ f ) = 0, (C.4)

where the last identity holds for scalar functions that are at least
twice continuously differentiable.

The curl of the advection term yields

∇ × [(u · ∇) u] = ∇ ×
"
1
2
∇ (u · u) + (∇ × u) × u

#
= ∇ × [ωr × u] ,

(C.5)

where we used Eq. (C.1) in writing the first equality, Eq. (C.4)
to remove the ∼u · u term, and we defined the relative vorticity in
the corotating frame ωr = ∇× u. Using Eqs. (C.2) and (C.3), we
further obtain

∇ × [(u · ∇) u] = ωr (∇ · u) + (u · ∇)ωr − (ωr · ∇) u. (C.6)

The curl of the pressure term leads to

∇ ×
 ∇P
ρ

!
= − 1
ρ2∇ρ × ∇P, (C.7)

because ∇× (∇P) = 0 (Eq. (C.4)).
When dealing with the gravitational term, it is useful

to realise that the centrifugal acceleration can be expressed
as Ω× (Ω× r) = ∇Φc, with the centrifugal potential Φc =
− 1

2 r2
⊥Ω

2. The curl of a combined force term, ∇× [∇ (Φ + Φc)],
is zero owing to Eq. (C.4).

Finally, we take the curl of the Coriolis acceleration:

∇ × (2Ω × u) = 2 [Ω(∇ · u) − (Ω · ∇) u] , (C.8)

where we removed terms ∼∇ · Ω, ∼ ∇Ω because Ω in our
simulations is constant.

Recollecting all the terms, we can write the relative vorticity
equation

∂ωr

∂t
+ (u · ∇)ωr =

Dωr

Dt
= (ωa · ∇) u − ωa (∇ · u) + ∇ρ × ∇P

ρ2 ,

(C.9)

where we defined the absolute vorticity in the inertial frame
ωa =ωr + 2Ω.
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By means of numerical RHD simulations in 2D and 3D, we explored migration of low-
mass (Mp ∼ 100 M⊕) protoplanets due to their interactions with a gas disk during
their ongoing accretion of pebbles. We focused on evolution in the giant-planet
formation zone and we investigated the influence of the heating torque (Beńıtez-
Llambay et al. 2015) triggered by pebble accretion. We found several important
implications for the early phases of formation of planetary systems.

Eccentricity excitation by the hot-trail effect

In addition to the heating torque, accretion heating leads to eccentricity excitation
by means of the hot-trail effect (Chrenko et al. 2017; Eklund & Masset 2017). The
effect arises because the gravitational pull of asymmetrically distributed hot under-
dense gas near accreting protoplanets accelerates them on their epicycle, creating a
positive feedback between the acceleration and the eccentricity growth. The eccen-
tricity growth is terminated approximately for e ∼ h when the tidal damping starts
to dominate again.

In a closely packed system of super-Earths undergoing convergent migration,
eccentricities excited by the hot-trail effect (e ≃ 0.03) prevent resonant locking and
allow the protoplanets to interact in a series of close encounters. These repeated
encounters can potentially lead to collisions, resulting in a direct and fast formation
of giant planet cores. Merger events tend to be preceded by 3-body encounters (Brož
et al. 2018).

Formation of binary planets

Motivated by findings of Eklund & Masset (2017) who pointed out that the hot-
trail effect excites inclinations as well, we re-investigated the evolution of multiple
3 M⊕ protoplanets with an artificially reduced efficiency of the inclination damp-
ing. We found that such conditions facilitate formation of binary planets during
close encounters (Chrenko et al. 2018). Transient binary planets (dissolving on an
orbital timescale) are formed when two protoplanets enter their mutual Hill sphere
and their orbital energy is dissipated in gas density waves. Binary planets with
a prolonged lifetime are formed when a transient binary undergoes hardening in
a three-body interaction with some other protoplanet. Our study of the stability
of binaries predicts that one binary planet should be observable in a sample of
≃(2–5) × 104 planetary systems, which is a low occurrence, but still traceable in
future observational campaigns.

RHD simulation with a swarm of planetary embryos

We also performed a simulation with many (N = 120) Mars-mass embryos (Mp =
0.1 M⊕) to push the applicability of RHD simulations to even earlier evolutionary
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phases (usually studied with N-body techniques). We found that such a swarm
of embryos matures through a relatively low number of merger events (Brož et al.
2018). The most massive bodies remain on low inclinations which allows them to
grow by pebble accretion more efficiently compared to the smaller embryos that are
stirred to larger inclinations, offset with respect to the pebble feeding zone. This
finding confirms the mechanism of the viscously stirred pebble accretion described
by Levison et al. (2015) using N-body models.

3D gas flow instability around accreting planets

In our 3D simulations (Chrenko & Lambrechts 2019), we investigated how the
heating torque differs between disks with constant and non-uniform (temperature-
dependent) opacities. Regardless of the opacities, accretion heating leads to baro-
clinic and convective perturbations which distort the direction of the flow in the
vicinity of the protoplanet. A retrograde spiral-like flow of gas appears near the
protoplanet which is fed from downstream horseshoe regions, rises in the direction
perpendicular to the disk midplane, and outflows from the Hill sphere above/below
the protoplanet.

For temperature-dependent opacities κ ∝ T β with β = 0.5–2, the perturbed flow
eventually becomes unstable. The instability redistributes underdense gas responsi-
ble for the heating torque into a one-sided lobe circulating around the protoplanet.
The circulation causes strong oscillations of the resulting torque. The migration is
then oscillatory as well, with inward/outward excursions at a rate ∼10−4 au yr−1 (for
β = 2). The mean migration rate remains almost unaffected by the heating torque
which, in this specific case, does not promote outward migration. We suggest that
transition zones might exist in protoplanetary disks where accreting planets switch
between the standard positive heating torque and the oscillatory mode. An accu-
mulation of planets may be expected at these transitions.

Code development

In order to perform the aforementioned RHD simulations, it was necessary to de-
velop appropriate computational tools. For the purpose of our 2D modelling, we
extended the 2D HD code Fargo (Masset 2000) by including the 1-temperature
energy equation for gas, accretion heating, stellar irradiation, horizontal radiative
diffusion, and viscous heating. We also implemented a two-fluid approximation to
describe the pebble disk as an additional fluid, coupled with the gas disk via a two-
way linear drag term. The Ias15 integrator was interfaced with the code to study
planetary orbits in 3D and also to allow for a precise integration of close encounters
and detection of collisions. A simple coagulation/drift model was implemented to
describe the initial state of the pebble disk and we developed a numerical method
to account for pebble accretion by planets. The resulting code named Thorin was
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made publicly available3.
Our 3D code contains less physical modules than Thorin but compares well to

state-of-the-art codes used in the field of planet-disk interactions (such as Fargoca;
Lega et al. 2014). It was built on top of the Fargo3d code (Beńıtez-Llambay &
Masset 2016) into which we implemented the energy equations for gas and radiation
in the 2-temperature approximation. Viscous heating, accretion heating, 3D flux-
limited radiation diffusion, and radially ray-traced stellar irradiation were accounted
for. The Ias15 integrator was used again but accretion onto planets was only
parametric in this case.

Future work and outlook

This thesis unveiled several new implications for observed exoplanetary systems (i.e.
the hot-trail effect excites eccentrities which can explain the paucity of resonant
orbits; binary planets should be rare but detectable in future). Nevertheless, it
would be fruitful to focus our future work on connecting our RHD models with
observations more tightly.

Concerning exoplanetary systems, we would like to improve our RHD simulations
to be suitable for regions near inner rims of disks. It is believed that an accumulation
and interactions of migrating protoplanets near the inner rim might result in for-
mation of close-in super-Earths (Cossou et al. 2014; Izidoro et al. 2017; Lambrechts
et al. 2019). However, implications of the heating torque and the hot-trail effect for
this scenario are yet to be assessed. Similarly, it remains to be decided whether the
protoplanets pile up at the inner rim (e.g. Miranda & Lai 2018) or rather penetrate
into the inner cavity (e.g. Brasser et al. 2018).

Regarding the Solar System, we are currently investigating an alternative sce-
nario of terrestrial planet formation. It assumes that terrestrial planets accreted
early while they were still embedded in a gas disk. In our framework, only the
Earth–Moon system might have potentially formed later by a single Moon-forming
impact, needed to match radiometric constraints (Canup 2012, 2019). Our prelimi-
nary results show that if there was a reversal (outward gradient) of the gas density
profile in the inner disk (similarly to Ogihara et al. 2015, albeit related to a viscosity
transition in our case), embryos in the terrestrial zone would undergo convergent
migration, forming terrestrial planets by mutual collisions, with a contribution of
pebble accretion.

Finally, since this thesis demonstrated the importance of the heating torque and
the hot-trail effect, it would be worthwhile to implement these phenomena in N-body
integrators with prescribed migration because, despite their limitations, they allow
for a faster and more extended exploration of the parametric space. Overall, we
believe that our results will lead to an improvement of planet population synthesis.

3See http://sirrah.troja.mff.cuni.cz/˜chrenko/ for the source code, documentation and
user’s guide.
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[21] Baillié, K., Charnoz, S., & Pantin, E. 2016, A&A, 590, A60
[22] Balbus, S. A. 2011, Magnetohydrodynamics of Protostellar Disks, ed. P. J. V.

Garcia, 237–282
[23] Balbus, S. A. & Hawley, J. F. 1998, Reviews of Modern Physics, 70, 1
[24] Baruteau, C., Crida, A., Paardekooper, S.-J., et al. 2014, Protostars and Plan-

ets VI, 667
[25] Baruteau, C. & Masset, F. 2008, ApJ, 672, 1054
[26] Baruteau, C. & Masset, F. 2008, ApJ, 678, 483
[27] Baruteau, C. & Masset, F. 2013, in Lecture Notes in Physics, Berlin Springer

Verlag, Vol. 861, Lecture Notes in Physics, Berlin Springer Verlag, ed.
J. Souchay, S. Mathis, & T. Tokieda, 201

[28] Batygin, K. 2015, MNRAS, 451, 2589
[29] Beckwith, S. V. W., Sargent, A. I., Chini, R. S., & Guesten, R. 1990, AJ, 99,

924
[30] Bell, K. R. & Lin, D. N. C. 1994, ApJ, 427, 987

155



Bibliography

[31] Ben-Jaffel, L. & Ballester, G. E. 2014, ApJ, 785, L30
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[153] Jiménez, M. A. & Masset, F. S. 2017, MNRAS, 471, 4917
[154] Johansen, A., Klahr, H., & Henning, T. 2006, ApJ, 636, 1121
[155] Johansen, A. & Lambrechts, M. 2017, Annual Review of Earth and Planetary

Sciences, 45, 359
[156] Johansen, A., Mac Low, M.-M., Lacerda, P., & Bizzarro, M. 2015, Science

Advances, 1, 1500109
[157] Johansen, A., Oishi, J. S., Mac Low, M.-M., et al. 2007, Nature, 448, 1022
[158] Johansen, A. & Youdin, A. 2007, ApJ, 662, 627
[159] Johansen, A., Youdin, A., & Klahr, H. 2009, ApJ, 697, 1269
[160] Johnson, J. A., Aller, K. M., Howard, A. W., & Crepp, J. R. 2010, PASP, 122,

905
[161] Jones, M. G., Pringle, J. E., & Alexander, R. D. 2012, MNRAS, 419, 925
[162] Kama, M., Bruderer, S., Carney, M., et al. 2016, A&A, 588, A108
[163] Kama, M., Min, M., & Dominik, C. 2009, A&A, 506, 1199
[164] Kane, S. R., Ciardi, D. R., Gelino, D. M., & von Braun, K. 2012, MNRAS,

425, 757
[165] Kenyon, S. J. & Hartmann, L. 1987, ApJ, 323, 714
[166] Kipping, D. M. 2009, MNRAS, 392, 181
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[257] Nesvorný, D., Youdin, A. N., & Richardson, D. C. 2010, AJ, 140, 785
[258] Niemann, H. B., Atreya, S. K., Bauer, S. J., et al. 2005, Nature, 438, 779
[259] Noll, K. S., Grundy, W. M., Stephens, D. C., Levison, H. F., & Kern, S. D.

2008, Icarus, 194, 758
[260] Ochiai, H., Nagasawa, M., & Ida, S. 2014, ApJ, 790, 92
[261] Ogihara, M., Kobayashi, H., Inutsuka, S.-i., & Suzuki, T. K. 2015, A&A, 579,

A65
[262] Ormel, C. W. 2017, in Astrophysics and Space Science Library, ed. M. Pessah

& O. Gressel, Vol. 445, 197
[263] Ormel, C. W. & Klahr, H. H. 2010, A&A, 520, A43
[264] Ormel, C. W. & Kobayashi, H. 2012, ApJ, 747, 115
[265] Ossenkopf, V. 1991, A&A, 251, 210
[266] Paardekooper, S.-J., Baruteau, C., Crida, A., & Kley, W. 2010, MNRAS, 401,

1950
[267] Paardekooper, S.-J., Baruteau, C., & Kley, W. 2011, MNRAS, 410, 293
[268] Paardekooper, S. J. & Mellema, G. 2004, A&A, 425, L9
[269] Paardekooper, S.-J. & Mellema, G. 2006, A&A, 459, L17
[270] Paardekooper, S.-J. & Mellema, G. 2008, A&A, 478, 245
[271] Paardekooper, S.-J. & Papaloizou, J. C. B. 2008, A&A, 485, 877

162



Bibliography

[272] Paardekooper, S.-J. & Papaloizou, J. C. B. 2009, MNRAS, 394, 2283
[273] Paardekooper, S.-J. & Papaloizou, J. C. B. 2009, MNRAS, 394, 2297
[274] Padgett, D. L., Brandner, W., Stapelfeldt, K. R., et al. 1999, AJ, 117, 1490
[275] Pan, L., Padoan, P., Scalo, J., Kritsuk, A. G., & Norman, M. L. 2011, ApJ,

740, 6
[276] Papaloizou, J. C. B. & Larwood, J. D. 2000, MNRAS, 315, 823
[277] Parker, A. H. & Kavelaars, J. J. 2010, ApJ, 722, L204
[278] Pascucci, I., Testi, L., Herczeg, G. J., et al. 2016, ApJ, 831, 125
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• Chrenko, O., Brož, M., Nesvorný, D., Tsiganis, K., & Skoulidou, D. K.
2015, The origin of long-lived asteroids in the 2:1 mean-motion resonance with
Jupiter, MNRAS, 451, 2399

Conference contributions:
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