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ABSTRACT
Infrared radiation emitted from an asteroid surface causes a torque that can significantly affect
rotational state of the asteroid. The influence of small topographic features on this phenomenon,
called the YORP effect, seems to be of utmost importance. In this work, we show that a lateral
heat diffusion in boulders of suitable sizes leads to an emergence of a local YORP effect
which magnitude is comparable to the YORP effect due to the global shape. We solve a three-
dimensional heat diffusion equation in a boulder and its surroundings by the finite element
method, using the FREEFEM++ code. The contribution to the total torque is inferred from the
computed temperature distribution. Our general approach allows us to compute the torque
induced by a realistic irregular boulder. For an idealized boulder, our result is consistent with
an existing one-dimensional model. We also estimated (and extrapolated) a size distribution of
boulders on (25143) Itokawa from close-up images of its surface. We realized that topographic
features on Itokawa can potentially induce a torque corresponding to a rotational acceleration
of the order of 10−7 rad d−2 and can therefore explain the observed phase shift in light curves.
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1 IN T RO D U C T I O N

The Yarkovsky–O’Keefe–Radzievskii–Paddack effect is the torque
caused by the infrared emission from an asteroidal surface that has
an influence on a rotational state of an asteroid (Rubincam 2000).
It is now widely recognized as an important factor, affecting the
evolution of rotational states of asteroids alongside mutual collisions
and tidal torques. The YORP effect helped to explain numerous
observed phenomena, such as a spin axis alignment of asteroids
in the Koronis family (Vokrouhlický, Nesvorný & Bottke 2003), a
non-Maxwellian rotational frequency distributions of small main-
belt asteroids (Pravec et al. 2008) or significant binary asteroid
population among near-Earth objects (Walsh, Richardson & Michel
2012).

Even a direct evidence of a non-gravitational torque has been
found. A phase shift in light curves has been measured for a few
asteroids that cannot be explained by a solely gravitational model
– (1862) Apollo (Kaasalainen et al. 2007), (54509) YORP (Lowry
et al. 2007; Taylor et al. 2007), (1620) Geographos (Ďurech et al.
2008), (3103) Eger (Ďurech et al. 2012) and finally, (25143) Itokawa
(Lowry et al. 2014). There is no known mechanism except the
YORP effect that could explain the quadratic trend in rotational
phase observed for these asteroids.

� E-mail: sevecek@sirrah.troja.mff.cuni.cz

The asteroid Itokawa has been a suitable candidate for a de-
tection of YORP effect for its highly asymmetric shape and
its favourable position among near-Earth objects. Vokrouhlický
et al. (2004) predicted a measurable acceleration of rotation of
the order of 10−7 rad d−2, based on the shape model derived
by radar ranging. Itokawa was then a target of the Hayabusa
spacecraft in 2005 and a state-of-the-art shape model of the as-
teroid was constructed from silhouette images (Gaskell et al.
2006). The torque computed using the latter model would lead
to a significant deceleration −(1.8 to 3.3) × 10−7 rad d−2 (Scheeres
et al. 2007). However, the measured phase shift in light curves
revealed an acceleration +(0.35 ± 0.04) × 10−7 rad d−2 (Lowry
et al. 2014). Theoretical models did not predict even the sign
of the effect correctly. This discrepancy between the observed
and predicted change of the angular frequency is concern-
ing and only one viable explanation has been put forward
to date.

The observed rotational acceleration could be attributed to den-
sity inhomogeneities in the asteroid. Scheeres & Gaskell (2008)
showed that the YORP effect on Itokawa is indeed sensitive to
the position of the centre of mass. Based on the measured ac-
celeration, Lowry et al. (2014) computed the required offset be-
tween the centre of mass and the centre of figure to be ∼21 m.
Such offset indicates that the asteroid might consist of two parts
with substantially different densities – (2850 ± 500) kg m−3 and
(1750 ± 110) kg m−3.
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The deceleration predicted by Scheeres et al. (2007) was com-
puted from the shape model with ∼50 000 facets. Calculations of
the effect with a more detailed shape lead to an even bigger de-
celeration. According to Breiter et al. (2009), the deceleration does
not show any sign of convergence with increasing resolution, im-
plying that even sub-metre sized surface features possibly have a
non-negligible influence. For the highest available shape resolution,
their model predicted the deceleration −5.5 × 10−7 rad d−2.

Lowry et al. (2014) employed the advanced thermophysical
model (Rozitis & Green 2011, 2012, 2013), including the ef-
fect of thermal infrared beaming and the global self-heating of
the asteroid. By varying the distribution of rough surface in
patchy ways, the model showed a change of angular velocity
(−1.80 ± 1.96) × 10−7 rad d−2 (see fig. 5 in the cited paper). Re-
markably, an acceleration can be achieved even without a shift
of the centre of mass. However, this result was obtained only in
16.5 per cent cases and the roughness distribution corresponding to
these cases seems rather artificial.

There is a problem that shapes with surface features of sub-
metre sizes cannot be easily included in existing models of the
YORP effect. There are several reasons for this limitation. First,
numerical YORP models typically assume that temperature changes
only in the direction perpendicular to the surface (i.e. a plane-
parallel approximation). This assumption allows a solution of the
one-dimensional heat diffusion equation (HDE) for each surface
facet independently. It is well justified as long as surface features are
significantly larger than the diurnal thermal skin depth, which varies
from mm to dm (Vokrouhlický & Brož 1999). This assumption is no
longer applicable for a high-resolution shape model and a full three-
dimensional solution of the HDE is required. Secondly, no shape
is described to the required level of detail. So far, the best shape
model is that of the asteroid Itokawa. The model in the best available
resolution consists of over three million facets, which corresponds
to metre-sized surface features (Gaskell et al. 2006).

As Golubov & Krugly (2012) pointed out, surface features of
sizes comparable to the thermal skin depth could potentially have
significant influence on the total YORP effect. They considered a
stone wall (an idealized boulder) located on the equator of a spheri-
cal asteroid and aligned with a local meridian. The wall was assumed
to be high enough so that the heat would be mostly conducted in
a transverse direction and the HDE can be solved using the one-
dimensional approximation. They demonstrated that the emission
from the surface of the wall can create a torque that will not vanish
after averaging over the rotational period. Assuming a large number
of such ‘walls’ placed along the equator, the corresponding torque
may be comparable to the torque arising from the global-shape
asymmetry.

Golubov, Scheeres & Krugly (2014) generalized the previous
model by assuming spherical boulders. They studied a dependence
of the torque on a number of free parameters of the problem.
As expected, the resulting torque is lower than in a simple one-
dimensional model; nevertheless, boulders can still affect rotational
dynamics significantly. Authors assumed even mutual shadowing
and heating of the boulders.

The goal of this paper is to solve the HDE in a realistic boul-
der. The problem requires a numerical solution in a general three-
dimensional domain. We derive a formulation of the numerical
problem in Section 2. We discuss the magnitude of the torque in-
duced by a single boulder in Section 3. We estimate the total torque
that boulders contribute to the YORP effect on the asteroid Itokawa
in Section 4. Finally, the results of our model and the implications
are summarized in Section 5.

2 TH E H D E A N D A W E A K FO R M U L AT I O N
O F T H E PRO B L E M

Our problem may be specified as follows. We search for a tempera-
ture u(r, t) inside the boulder and its surroundings, i.e. an unknown
scalar function on a domain �. The differential operator corre-
sponding to the HDE is

L ≡ ρC∂t − ∇ · K∇ , (1)

where K denotes the thermal conductivity, ρ the density, C the
specific heat capacity of the material. The function u thus has to
fulfil the relation:

L(u) = 0 . (2)

At the same time, we require the boundary conditions to be met at
the boundary ∂� of the domain.

2.1 Boundary conditions

The boundary consists of two parts denoted �1 and �2, as shown in
Fig. 1 . The boundary �1 represents the surface of the asteroid, the
boundary condition is essentially an energy balance equation

K∂nu + εσu4 = F , (3)

where ∂n denotes a derivative along the normal, ε the infrared
emissivity, σ the Stefan–Boltzmann constant, F the incoming flux
absorbed by the surface. The boundary �1 is a non-convex surface,
thus the radiative heat exchange also contributes to the total flux F
(i.e. the self-heating effect). We denote the solar flux contribution
F� and the contribution of flux coming from visible parts of the
surface – either the thermally emitted flux or the scattered flux –
as Fth and Fsc, respectively. The total absorbed flux is the sum
F = F� + Fth + Fsc. These terms can be expressed as

F� = (1 − A)�μs · n , (4)

Fth = (1 − A)
∫

�1

ε′σu′4 cos α cos α′

π(r − r ′)2
ν d�′ , (5)

Fsc = (1 − A)
∫

�1

A′�μ′s · n′ cos α cos α′

π(r − r ′)2
ν d�′ , (6)

K∂nu + εσu4 = F

u
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Figure 1. The domain � and boundary conditions of our problem. The
boulder is located on the top. The strips indicate the boundary �2, where
the temperature is kept by a Dirichlet boundary condition. The temperature
distribution inside the domain and on the surface �1 is then computed nu-
merically as a solution of equation (2) with boundary conditions, equations
(3)–(6).
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Table 1. Notation used in the paper.

Notation Meaning

u Temperature
û Numerical solution
L Differential operator corresponding to

the HDE
Nj Basis functions
Wj Weighting functions
uj Coefficients of the decomposition of û

K Thermal conductivity
ρ Density
C Specific heat capacity
ε Infrared emissivity
A Hemispherical albedo
σ Stefan–Boltzmann constant
ω Angular frequency
P Rotational period
c Speed of light
� Solar flux at the distance of the asteroid
F Flux absorbed by the surface
L Diurnal thermal skin depth
� Thermal parameter
u� Subsolar temperature

 Dimensionless pressure
V Latitudinal dependence of 〈
〉
� Computational domain
�1, �2 Boundaries of the domain
r Position vector
t Time
n Outward normal vector
s Body–Sun direction
∂n Derivative along the (outward) normal
μ Shadowing function
ν Visibility function
H Heaviside step function
f Force
τ Torque
e Rotational axis
ϑ Asteroidal latitude
� Characteristic size of the boulder
I Moment of inertia of Itokawa
N(�) Differential size distribution of boulders
γ Exponent of the size distribution

where A is the hemispherical albedo, � the flux of solar radiation,
s the body–Sun direction, n the outward normal to the surface,
r the position vector, α the angle between the local normal and
the direction vector connecting points r and r ′, μ the shadowing
function, ν the visibility function (see Table 1). The prime denotes
a value of a quantity at the point of surface element d�′. We assume
the Lambert’s cosine law for the intensity of thermal emission and
scattered radiation, hence the cos α′ in equations (5) and (6).

The shadowing function μ is defined on the surface �1. The
value of μ(r) equals 1 if the point r is insolated, 0 if it lies in
the shadow. The visibility function ν is defined on �1 × �1 space.
We assign the value of function ν(r, r ′) to 1 if points r and r ′

have a visual contact, 0 otherwise. In most cases, the value of ν

is simply ν(r, r ′) = H (n · (r − r ′))H (n′ · (r ′ − r)), where H is the
Heaviside step function and n, n′ denote the local normal at points
r and r ′.

The discretized boundary �1 is defined by a set Si of triangular
facets. Integrals in equations (5) and (6) can be therefore computed

as sums,
∫

�1
d�′ → ∑

i Si . The values of the shadowing function
μ and the visibility function ν always correspond to whole facets.
This restriction gives rise to an error; however, it can be estimated
and limited substantially by choosing a high-resolution surface
mesh.

We also need to specify conditions on the boundary �2, which
goes through the interior of the asteroid, closing the boundary ∂�.
It can be selected arbitrarily; we choose a shape corresponding to
five walls of a block, which is a convenient choice as we can simply
set a zero-flux boundary condition:

K∂nu = 0 . (7)

This condition will be met as long as dimensions of the domain �

are significantly greater than dimensions of the boulder. The influ-
ence of the boulder can be considered negligible at large distances.
At sides of the domain, the temperature will only change in the
direction perpendicular to the surface, the dot product of the normal
vector and the temperature gradient will therefore be null. At great
depths, the temperature will be effectively constant, which means
the temperature gradient at the bottom of the domain will be null,
satisfying the boundary condition (7).

We also need to specify an initial condition as the HDE is an
evolution equation. However, we seek for a stationary solution that
does not depend on a chosen initial condition. The choice of a con-
dition will affect the speed of convergence only. The best available
estimate of the solution is the linearized analytical solution in a
half-space domain, derived in Appendix A, hence we set

u = utheory, t = 0 . (8)

2.2 A discretization

We are going to solve the HDE (equation 2) numerically, using a
finite-element discretization in space. In this approach, the function
u is approximated by (Langtangen 2003)

u
.= û =

M∑
j=1

ujNj , (9)

where Nj denote prescribed basis functions, uj unknown coefficients
we search for and M corresponds to the number of vertices defined
on the domain. Since û is only an approximation of u, applying the
operator would generally yield a non-zero result:

L(û) �= 0 , (10)

nevertheless, we require the integral of all residua over the domain
to be zero:∫

�

L(û)Wi d� = 0 , (11)

where Wi are suitable weighting (test) functions. This is called a
weak formulation of the problem. In the Galerkin method, the test
functions are simply the basis functions, Wi ≡ Ni, so that∫

�

L(û)Ni d� = 0 . (12)

Essentially, this constitutes a system of M equations for uj coeffi-
cients.

In our case of the HDE (equation 2)∫
�

ρC∂tûNid� −
∫

�

∇ · (K∇û)Nid� = 0 . (13)
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The second term may be rewritten according to the Green lemma
as∫

�

∇ · (K∇û)Nid� = −
∫

�

K∇û · ∇Nid� +
∮

∂�

K∂nûNid�,

(14)

which enables to incorporate the boundary condition easily, because
we can express the normal derivative from boundary conditions (3)
and (7), that is K∂nû = −εσ û4 + F on �1, K∂nû = 0 on �2.

Regarding the temporal derivative, we use a finite-difference dis-
cretization:

∂tû � ûn − ûn−1

�t
(15)

and an implicit Euler scheme, so that we plug ûn in the remain-
ing terms, whenever possible. The only exception is the non-linear
radiative term, where we perform a linearization:

(ûn,m)4 � (ûn,m−1)3ûn,m (16)

and we employ an iterative method to find a solution; at the given
time-step (denoted by superscript n) we find a sequence of solutions
ûn,m to a linear problem, until |ûn,m − ûn,m−1| is sufficiently small.
The initial value ûn,0 can be selected arbitrarily, a common choice
is ûn,0 = ûn−1.

In some cases, the iterative method does not converge and we
thus introduce a relaxation parameter ζ . In each iteration, we find a
preliminary solution ûn,m

∗ of the linear problem and we then assign
a new value of ûn,m by taking a linear combination of the current
and previous solutions:

ûn,m ≡ ζ ûn,m
∗ + (1 − ζ )ûn,m−1 . (17)

We achieved a convergence for all considered values of parameters
by selecting ζ = 0.6.

The final equation is thus∫
�

ρC

�t
ûn,mNi d� −

∫
�

ρC

�t
ûn−1Ni d� +

∫
�

K∇ûn,m · ∇Ni d�

+
∫

�1

εσ (un,m−1)3ûn,mNi d� −
∫

�1

F d� = 0 . (18)

We actually need not to substitute for û from equation (9) or express
the corresponding matrices, because this is done automatically by
the FREEFEM++ code (Hecht 2012). We use a conjugate gradient
method for the matrix inversion, which is suitable for sparse linear
systems.

After a careful testing of our numerical method (see Appendix C),
we choose the time step �t = 10−3P, where P is the period present
in the insolation function F . The spatial step is controlled by the
maximum volume �� = 10−5 m3 of tetrahedra generated by the
TETGEN code (Si 2006).

3 T H E M E A N TO R QU E C AU S E D
B Y A N I R R E G U L A R B O U L D E R

The magnitude of a recoil force varies during a rotational period and
a revolution of an asteroid around the Sun. A long-term effect of the
force is therefore given by its time-averaged value. We follow the
assumption of Golubov & Krugly (2012) and consider an asteroid
on a circular orbit with zero obliquity. In fact, the eccentricity of
Itokawa is e = 0.28; we address this issue in Section 3.5.

Although the YORP effect depends on the obliquity in a non-
trivial way (Čapek & Vokrouhlický 2004), the zero obliquity allows
us to average the recoil force over a rotational period only.

We consider the thermal emission and the scattered radiation.
The direct radiation pressure has a negligible influence (Nesvorný
& Vokrouhlický 2008). Again, we assume the Lambert’s cosine law
for the intensity of scattered and emitted radiation. The recoil force
from the surface element dS is then

d f th = −2

3

εσ

c
u4n dS , (19)

d f sc = −2

3

A�

c
μ(s · n)n dS . (20)

The total torque caused by the boulder is given by the surface
integral over the boulder:

τ =
∫

�1

r × d f . (21)

The direction of the torque is generally different from the axis of
rotation e. Both the direction and the magnitude of the torque depend
on exact shape of the boulder. However, even a symmetric boulder
can induce a non-zero torque due to the lateral heat diffusion. The
torque is caused by the asymmetry of emission from the eastern
side and western side of the boulder. We anticipate the torque will
therefore have a direction of the rotational axis e.

3.1 The coordinate system and free parameters of the problem

We choose a topocentric coordinate system centred on the studied
boulder. The z axis has therefore a direction of a local normal, x
axis is aligned with a meridian and y axis completes a right-handed
orthogonal Cartesian system.

We introduce quantities that help us to reduce a number of inde-
pendent parameters of the problem. We define the subsolar temper-
ature

u� ≡ 4

√
(1 − A)�

εσ
, (22)

the diurnal thermal skin depth

L ≡
√

2K

ωρC
, (23)

where ω is the angular frequency of the asteroid, and the thermal
parameter

� ≡
√

KωρC

4
√

2π− 3
4 εσu3

�

. (24)

Numerical factors in these definitions arise from the derivation of
the analytical solution (see Appendix A); however, some authors do
not use them (Lagerros 1996; Golubov & Krugly 2012).

If we neglect self-heating terms, the HDE (2) and its bound-
ary condition (3) can be rewritten using dimensionless variables
ξ ≡ r/L, ϕ ≡ ωt, υ ≡ u/u� as

1

2
�ξυ − ∂υ

∂ϕ
= 0 , (25)

4π− 3
4 �n · ∇ξ υ + υ4 = s · n , (26)

where ∇ξ , �ξ is the gradient and the Laplacian with respect to the
variable ξ . The only independent parameter in these equations is
the thermal parameter �. However, the boundary condition must
hold for all Lξ ∈ ∂�. If � is the characteristic size of the boulder,
then the problem of finding a dimensionless temperature υ has
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Figure 2. An example of the boulder shape which was used to compute the
surface temperature distribution.

actually two independent parameters – the thermal parameter �

and the dimensionless size �/L. In the following, we select the
characteristic size as the square root of the base area of the boulder,
� ≡ √

S.

3.2 The dimensionless pressure

In our model, the shape of the boulder can be arbitrary. As a special
case, we can choose a high wall and compare our results to the model
of Golubov & Krugly (2012). We started with such an idealized
‘boulder’ to determine the influence of the self-heating effect and
the absorption of radiation on the recoil force (see Appendix B).
Nevertheless, we then selected a boulder of realistic irregular shape
for our computations, as shown in Fig. 2. The shape was obtained
by a 3D scanning of a randomly selected boulder. In this case, we
do not take into account the self-heating effect nor the influence of
absorption though; this decision is justified in Appendix B as well.

We considered different values of the thermal conductivity for
the studied boulder and for the surrounding layer of regolith, as
demonstrated in Fig. 3. Thermal properties of the regolith are taken
from Farinella, Vokrouhlický & Hartmann (1998), properties of the
boulder are determined by values of thermal parameter � and the
skin depth L.

We should stress the importance of the non-linearity of the prob-
lem. We derived a linearized analytical solution of the HDE in a
half-space domain (see Appendix A), where we deal with the non-
linear term u4 by substituting u4

0 + 4u3
0δu, where u0 is a constant, δu

is the change of temperature. The same term appears in the expres-
sion for the recoil force (19) from a thermal emission. In case of a
symmetric boulder, the complete linearization would lead to iden-
tically zero mean torque. Therefore, we solve a non-linear problem
by an iterative method, as described in Section 2.

The solution of the HDE is a time-dependent temperature dis-
tribution in the boulder, particularly on its surface. It follows that
we can determine the recoil force the boulder exerts; the force is
given by the formula (19). However, it is convenient to introduce
the dimensionless pressure


 ≡ 2

3

1

S

∫
�1

u4

u4
�

ny d� , (27)

where ny is the yth component of the local normal, S is the base area
of the boulder. The dimensionless pressure allows us to compare the
magnitude of the tangential force for different sizes of the boulder.

Figure 3. A sectional view of the 3D mesh, created by the TETGEN code.
Thermal parameters of the boulder are varied in our model. Nevertheless,
we assume the boulder has generally different thermal conductivity than the
surrounding layer of regolith. Thermal properties of the regolith as given
by Farinella et al. (1998) are as follows: the density ρ = 1500 kg m−3, the
thermal conductivity K = 0.0015 W m−1 K−1 and the specific heat capac-
ity C = 680 J kg−1 K−1. We chose the hemispherical albedo A = 0.1, the
infrared emissivity ε = 0.9 and the rotational period equal to P = 12.1 h.

The projection of the total torque to the rotational axis is then
given by

τ · e = (1 − A)�

c

S r⊥ , (28)

where r⊥ is the distance of the boulder from the rotational axis.
If we consider a wall aligned with a local meridian, which face

of area S has a constant temperature u, our definition (27) is then
reduced to


 = 2

3

u4

u4
�

, (29)

which is equivalent to the definition of a dimensionless pressure by
Golubov & Krugly (2012). Our definition is therefore analogous,
with the exception of the area S being the projection to the plane xy
rather than the plane xz.

The dimensionless pressure varies during a rotation. We can ob-
tain a measure of the long-term effect by averaging over one ro-
tational period; to this point we introduce the mean dimensionless
pressure:

〈
〉 = 1

P

∫ P

0

 dt . (30)

3.3 The total pressure exerted by a set of variously
oriented boulders

The mean dimensionless pressure 〈
〉 as a function of the dimen-
sionless size �/L varies significantly for different shapes of the
boulder, or even for different orientations of the same boulder. It is
evident that the limit of very high conductivity (that is �/L → 0)
leads to a zero dimensionless pressure 
 for all shapes of a boulder.
In such a case, the boulder is isothermal and therefore emits the
same flux to the western and eastern directions, resulting in a null
torque.

The limit of the mean dimensionless pressure for zero thermal
conductivity (�/L → ∞) differs from boulder to boulder. The

MNRAS 450, 2104–2115 (2015)
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The thermal emission from boulders 2109

conductive term in the energy balance equation (3) is negligible
and the temperature at a given point of surface is determined by the
immediate balance between incoming and outgoing radiant flux.
Since we solve the HDE in a single boulder only, we need to obtain
a torque (as a function of a boulder size) that would represent a
set of all boulders on the surface. It is reasonable to assume that
the boulders are randomly oriented on the surface. Although some
orientations of boulders seem to be preferred on certain parts of the
surface of Itokawa (Miyamoto et al. 2007), we anticipate that no
orientation prevails on a global scale. The total torque induced by
boulders will therefore vanish in the limit of zero conductivity. For
that reason, we demand the mean torque 〈
〉 to approach zero as
well. However, in the general case of an asymmetric boulder, the
mean dimensionless pressure will approach a non-zero value.

We have several options how to resolve this issue. For instance,
we can restrict ourselves to symmetric boulders only. If the boulder
is symmetric with respect to the plane of the local meridian, the
mean pressure will vanish in the limit case. However, we want to
keep the universality of our model and use irregular asymmetric
boulders. In this case, we can compute the mean pressure 〈
〉 for
several orientations of the boulder and then take the average of
these values. Another possibility is to calculate the mean pressure
for a single orientation and subtract the pressure in the limit of zero
conductivity. We employed the former option.

Fig. 4 shows the mean dimensionless pressure for several orien-
tations of the studied boulder and the averaged values. We assumed
the boulder lies on the equator of an asteroid. We see that the av-
eraged values approach zero in the limit of zero conductivity, as
expected.

3.4 A dependence of the mean pressure on asteroidal latitude

For an asteroid with zero obliquity, the body–Sun vector s has
Cartesian coordinates

s = (sin ϑ cos HA, − sin HA, − cos ϑ cos HA) , (31)

where HA is the hour angle and ϑ is the asteroidal latitude (defined
as sin ϑ = e · n). The dependence of the dimensionless pressure 


on the hour angle HA vanishes after averaging over a rotational
period, the dependence on ϑ remains.

Assuming we can separate variables �, ϑ , we can decompose the
mean pressure 〈
〉 as

〈
〉(�, ϑ) = P(�)V(ϑ) , (32)

where P(�) = 〈
〉(�, 0). The function V(ϑ) constitutes a latitudi-
nal dependence and is normalized such that V(0◦) = 1. It obviously
depends on the shape of a boulder. For this test, we chose an ap-
proximately hemispherical boulder, because it is axially symmetric
and therefore one latitude is not preferred over other values.

We show the computed values of the function V(ϑ) in Fig. 5. It
can be approximated by a function cos aϑ , where a = 0.653 ± 0.004
is a parameter determined by a least square fit. The mean pressure
〈
〉 is maximal for the boulders located on the equator and does
not drop below 50 per cent of the maximum for ϑ = 80◦ latitude.
The known dependence of the mean pressure on the latitude allows
us to compute the torque induced by a boulder on any given point
of the surface, which we shall use in the next section.

3.5 An influence of the elliptical trajectory

So far we assumed the asteroid orbits on a circular trajectory. This
assumption allowed us to ignore any seasonal effects and average

Figure 4. Computed values of the mean dimensionless pressure 〈
〉 as a
function of the dimensionless boulder size �/L for two different values of
the thermal parameter � = 5.38 and 1.70 (notice that vertical axes have
different scalings). The dark curves correspond to the boulder rotated by
0◦, 90◦, 180◦ and 270◦ around the vertical axis. We notice that all curves
approach a zero for �/L → 0 and they exhibit a maximum for � ∼ L. For
� = 1.70 there seems to be an inflection at about � ∼ 0.1 L, which is absent
for � = 5.38. The bright curve is the arithmetic mean of the dark curves.
We assumed a simpler ‘shadowing’ model in this case (but cf. Fig. B1).

Figure 5. The dependence of the mean dimensionless pressure 〈
〉 on the
asteroidal latitude ϑ of the boulder.
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Figure 6. The values of the mean dimensionless pressure 〈
〉 from the
perihelion (t = 0) to aphelion (t = P/2). The values are computed for the
high-conductivity case (� = 5.38 at the distance of the semimajor axis)
and for � = L, averaged over four different orientations of the boulder. One
can readily see that the difference between the time-averaged value and the
value of corresponding circular orbit is negligible, given other uncertainties
of our model.

the torque over a rotational period only. However, the eccentricity
of Itokawa is e = 0.28; it is not clear whether the ellipticity of
the trajectory affects our model significantly. We thus compute the
mean dimensionless pressure 〈
〉 in several ‘discrete’ points on the
orbit separated by a time step equal to 1/30 of the orbital period.
We assume a high-conductivity case here. Nevertheless, the thermal
parameter � will vary over time; it depends on the distance from
the Sun as � ∼ r3/2, so it will reach � = 3.29 in the perihelion and
� = 7.79 in the aphelion. We restrict ourselves to a single value
of the dimensionless size �/L = 1 and we average the result over
four different orientations of the boulder, as before. Then, we obtain
the time-averaged value by simply taking an arithmetic mean of the
computed values.

This approximate average over elliptical orbit is to be compared
with the mean dimensionless pressure corresponding to the circular
orbit, which we obtained already in Section 3.3. The result can be
seen in Fig. 6. We see that even for the considerable eccentricity of
Itokawa, the difference seems negligible. The value differs from our
previous result by less than 5 per cent. Therefore, the approximation
of the circular trajectory is well justified.

4 T H E A N G U L A R AC C E L E R ATI O N
O F A S T E RO I D (2 5 1 4 3 ) I TO K AWA

In the following, we focus our attention on the asteroid (25143)
Itokawa. First, we estimate the total number of boulders on the
surface and then compute how the thermal emission from boulders
alters the angular acceleration predicted by global-shape models of
the YORP effect.

Existing models of the YORP effect usually assume a normal
direction of the recoil force. However, for non-convex asteroids
the force can be influenced by the absorption of radiation emitted
by the surface (Statler 2009). In the previous section, we demon-
strated that a surface feature can alter the recoil force as well. We
pointed out that the lateral heat diffusion through boulders leads to
an emergence of the tangential component of the recoil force. The
presence of surface features also changes the normal component.
While a complete solution would require solving the heat diffusion

equation in the whole asteroid, including boulders, we neglect the
change in the normal component and we solve for the tangential
component separately.

The torque generated by a single boulder was discussed in pre-
vious chapter 3. We now place a large number of such boulders on
the shape model of Itokawa and calculate the torque they induce.
The total YORP torque and corresponding change of the angular
velocity of the asteroid is then obtained by adding our result to the
result of the global-shape model of the YORP effect.

4.1 The torque induced by boulders

We demonstrated the emergence of the tangential component of the
force, which is of our interest. Therefore, we consider a direction
of the force perpendicular to the local normal n, regardless of the
location on the surface of the asteroid. Although the direction de-
pends on the shape, we discussed that the overall effect corresponds
to the force perpendicular to the rotational axis e. In follows that
the direction of force is e × n.

The magnitude of e × n is proportional to cos ϑ . However, we
studied the dependence of the torque on asteroidal latitude in Sec-
tion 3.4. We showed that the mean torque as a function of latitude
ϑ is approximately cos 0.653ϑ . The recoil force induced by single
boulder is therefore proportional to the term

f ∼ cos 0.653ϑ

cos ϑ
e × n . (33)

Our goal is to compute the total torque τ induced by the boulders;
to be more precise, its projection τ · e to the rotational axis. Let
N(�)d� be the number of boulders in the size interval (�, � + d�).
We can write the size distribution N(�) as

N (�) d� = N0�(�) d� , (34)

where N0 is the total number of boulders on the surface and �(�) d�

is the probability that a randomly selected boulder has a size in the
interval (�, � + d�). We compute the total torque induced by boulder
as follows. We select a facet of Itokawa shape model randomly.
Assuming boulders cover Itokawa uniformly, the probability of
selecting each facet is proportional to its area. Now, we generate a
random size � with the probability distribution �, using the inverse
sampling method. The torque induced by the boulder on the selected
facet is added to the total torque. The final number of generated
boulders is given by the value N0 from equation (34). Because the
number of boulders is very high, the total torque basically does not
depend on the realization of boulder distribution on the surface.

It is clear that the boulder size distribution N(�) d� constitutes an
important parameter for a calculation of the total torque. We thus
discuss the size distribution of boulders on Itokawa in the following
section.

4.2 The observed size distribution of small boulders

In order to obtain the torque caused by boulders, it is necessary to
find out the total number of boulders and their size distribution. The
differential size distribution of boulders larger than 5 m on the whole
surface of Itokawa can be approximated by a power law (Saito et al.
2006)

N (�) d� ≈ 1.3 × 105 [�]−3.8
m d� . (35)

Surface images taken by the Hayabusa spacecraft revealed that this
power law can be extrapolated down to sizes of 0.1 m on certain
parts of the surface (Miyamoto et al. 2007), although the slope of
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Figure 7. The image ST_2563607030_v (Saito et al. 2010) with high-
lighted boulders from which we derived their size distribution, used for the
computation of the total torque.

a log–log graph falls off significantly for smaller sizes. However,
other parts of the surface clearly show a different topography. Fur-
thermore, an extrapolation of the above-mentioned size distribution
down to 1 mm is clearly unacceptable; boulders of sizes between
1 mm and 0.1 m alone would cover about 4 × 107 m2 of the surface
area, but the surface of Itokawa is only 3.93 × 105 m2 (Demura et al.
2006).

Therefore, we sought for a different size distribution of small
pebbles. We estimated their size distribution from close-up im-
ages taken by the Hayabusa during its descend, namely the im-
ages ST_2563537820_v and ST_2563607030_v from Saito et al.
(2010) data set. The resolution of these images is 7 mm pixel−1 and
6 mm pixel−1, respectively (Miyamoto et al. 2007), which allows
us to find distinct boulders only few centimetres in size. Identified
boulders are shown in Fig. 7. We constructed a histogram of sizes
(see Fig. 8) from which we inferred the size distribution

N (�) d� = (14 ± 9) × 103 [�]−(3.0±0.2)
m d� . (36)

We assume this power law can be extrapolated to millimetre-sized
pebbles. Considering the uncertainties, the area covered by boulders
of sizes between 1 mm and 1 m would be between 19 per cent and
32 per cent of the total surface area. This finding seems to be viable.

4.3 A comparison of the YORP torque by boulders and by the
global shape

The global-shape YORP effect model of the asteroid Itokawa pre-
dicts a significant rotational deceleration, which is inconsistent with
the observed acceleration. As mentioned above, the lateral heat dif-
fusion through boulders induces an additional torque, which affects
the angular velocity.

Let the magnitude of the total torque generated by boulders be τ .
The asteroid will undergo the rotational acceleration:

dω

dt
=

(
dω

dt

)
global

+ τ

I
, (37)

where (dω/dt)global is the prediction of the global-shape YORP
model, I

.= 7.77 × 1014 kg m2 is the moment of inertia of Itokawa
(Scheeres et al. 2007).

Figure 8. The histogram of small boulder sizes on the surface of Itokawa,
constructed from images ST_2563537820_v and ST_2563607030_v. The
three power-law fits correspond to the average fit and left/right 1σ uncer-
tainty, determined by a Monte Carlo method. Two rightmost bins lie off
the linear part of the histogram and were not included in the least-square
method data set. The values of the multiplicative constant and the exponent
of the power law are shown in equation (36).

In order to determine the torque induced by boulders, it is nec-
essary to select values of the parameters – namely the thermal pa-
rameter � and the thermal skin depth L. We adopted following
material properties: K = 2.65 W m−1 K−1, C = 680 J kg−1 K−1,
ρ = 2700 kg m−3. Together with orbital parameters of Itokawa, this
yields the thermal parameter � = 5.38 and the thermal skin depth
L = 0.141 m. Utilizing the size distribution of boulders derived in
Section 4.2, we obtain the result

τ

I

∣∣∣
�=5.38

= (1.20 ± 0.11) × 10−7 rad d−2. (38)

As the thermal conductivity seems to be the most uncertain pa-
rameter, we also computed the torque for a lower value, K =
0.26 W m−1 K−1 (keeping other parameters unchanged). In such
a case, the thermal parameter is � = 1.70 and the thermal skin
depth L = 0.0446 m. The corresponding torque is then

τ

I

∣∣∣
�=1.70

= (4.8 ± 1.2) × 10−7 rad d−2 . (39)

The probability distribution for both cases is shown in Fig. 9.
For the sake of comparison, we can refer to the result of

global-shape models of Lowry et al. (2014), (−1.80 ± 1.96) ×
10−7 rad d−2, or Breiter et al. (2009), −(2.5 to 5.5) × 10−7 rad d−2.
We notice that this torque is of the same order as our result, but
has an opposite sign. The torque induced by boulders and the
torque from the global asymmetry could effectively cancel out,
resulting in the change of angular velocity much smaller than pre-
dicted by global-shape models. As the observed angular accel-
eration of Itokawa is (0.35 ± 0.04) × 10−7 rad d−2 (Lowry et al.
2014), our model presents an alternative explanation of the ob-
served acceleration without any need for a non-uniform density
distribution.

5 C O N C L U S I O N S

In this paper, we presented a detailed numerical model of the local
YORP effect induced by a boulder or a set of boulders. The three-
dimensional HDE in the boulder was solved using the finite element
method. Unlike the finite difference method, the finite elements
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Figure 9. The contribution of boulders to the total angular acceleration
of Itokawa, computed for two different values of the thermal parameter
� = 5.38 and 1.70 and the corresponding thermal skin depth L. Each
histogram was constructed by a Monte Carlo method; individual runs cor-
respond to different power laws of the boulder size distributions. Note that
horizontal axes differ in each figure. Equations (38) and (39) show the
average value and 1σ uncertainties.

have basically no restriction on the shape of a domain, allowing us
to solve the HDE in the boulder of a realistic shape. Furthermore,
we assumed the studied boulder has a different thermal conductivity
than the surrounding regolith layer.

Our boulder had a general asymmetric shape, so it exhibited
a non-zero torque even in the limit of zero thermal conductivity.
However, this torque depends on the orientation of the boulder. In
order to obtain an average torque representing a set of randomly-
oriented boulders, we computed torques for several orientations
and then the average of these values. We verified that the averaged
torque approaches zero in the zero conductivity limit.

The non-zero torque arises from the asymmetry of the emission
(averaged over the rotational period). There are two reasons for
the emission asymmetry. The first is the asymmetry of the boulder
shape. Indeed, Rubincam (2000) demonstrated an emergence of the
YORP effect on a toy model of a spherical asteroid with two wedges
attached to its equator. The torque created by the emission from the
vertical side is greater in magnitude than the torque created by the
emission from the inclined side, thus resulting in a non-zero total
torque.

The second reason for the emission asymmetry is the lateral heat
diffusion through the boulder (as in Golubov & Krugly 2012). We
can imagine a boulder on the equator. In the morning, the eastern
side of the boulder is heated up and the boulder exerts a recoil
force of western direction. Provided the width of the boulder is
comparable to the thermal skin depth, the heat diffusion contributes
to heating of the western side in the afternoon. The emission from
the western side is therefore more intense. The recoil force has
an eastern direction and exceeds the force from the eastern side in
magnitude, thus creating a non-zero mean force of eastern direction.
The corresponding torque causes an angular acceleration of the
asteroid.

The global contribution of the shape asymmetry of boulders to
the YORP effect is likely to be null, because of the very large
number of boulders on the surface. In contrast, the lateral heat
diffusion leads to the torque with a direction of the rotational axis,
thus accumulating over individual boulders. Even though the torque
generated by a single boulder is tiny, the overall effect can be
comparable to the global-shape YORP effect, if there is a sufficient
amount of boulders, of course.

We showed the maximum pressure is exerted by boulders of sizes
comparable to the diurnal thermal skin depth L. Fig. 4 shows the
dependence of the pressure on the size of the boulder. However, this
graph does not reflect the actual contribution of boulders of different
sizes to the total torque. The decisive factor is the exponent γ of
the power-law size distribution. If γ > 2, smaller boulders will
exert a higher torque (compared to the Fig. 4). In our case, the
overall torque is generated mostly by boulders of sizes between
0.1 L and L.

The general approach allowed us to compare our three-
dimensional model with the one-dimensional model of Golubov
& Krugly (2012). In case of a symmetric boulder, we confirmed that
the torque vanishes in the limits of high conductivity and zero con-
ductivity, We showed that the maximum torque appears for � ∼ L.

Unlike Golubov & Krugly (2012), we found positive values of
the torque for all parameter ranges in the case of a symmetric
boulder. An asymmetric boulder could produce a negative torque,
but after averaging over orientations the resulting torque is again
strictly positive. Even Golubov & Krugly (2012) realized the torque
is mostly positive, and proposed a possibility of an equilibrium
between the global-shape torque and the torque induced by boulders,
resulting in a null total torque; they suggested this could be the case
of the asteroid (25143) Itokawa. However, Lowry et al. (2014)
detected a positive change in angular velocity of Itokawa, which
means this asteroid is not in such equilibrium state.

Of course, our model contains a number of free parameters that
can change the magnitude of the torque significantly. The crucial
factor is the total number of boulders and their size distribution. We
realized that the size distribution of large boulders on Itokawa of
Saito et al. (2006) cannot be extrapolated to centimetre sizes. Hav-
ing no better alternative, we estimated the size distribution from
close-up images of the surface of Itokawa and we extrapolated it for
sizes of indiscernible pebbles. We also assumed that other parts of
the surface have the same size distribution of boulders. If we neglect
an interaction between boulders (mutual shadowing or thermal ir-
radiation), which seems to be reasonable given the separations of
boulders seen on Fig. 7, the torque is directly proportional to the
number of boulders.

The choice of the lower limit of the size distribution might be
also a disputable parameter. Although the magnitude of the torque
induced by a boulder approaches zero as the size of the boul-
der approaches zero, even sub-millimetre pebbles could have a
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non-negligible influence on the total torque. However, it is doubt-
ful whether so small particles can be considered as boulders, or
whether they form a uniform layer of matter. We selected the lower
limit 1 mm.

The shape of the studied boulder is another key factor of our
model. We selected a boulder of a realistic irregular shape, but it
was selected ad hoc. There are two particularly important properties
of boulders: their height and flatness. The higher the boulder is,
the greater torque it likely induces. If the sides of the boulder are
perpendicular to the surface, the lever arm of the torque is maximal;
the lower the slope of sides, the lower lever arm.

We finally applied our model to the case of the asteroid (25143)
Itokawa. We showed that boulders could induce a torque that
would cause the angular acceleration of the order of 10−7 rad d−2.
We realized there was a significant uncertainty; nevertheless, we
clearly demonstrated that the emission from boulders is capa-
ble of producing the torque comparable in magnitude to the
global-shape YORP effect. Our result is consistent with the ob-
served acceleration (Lowry et al. 2014) and presents an alterna-
tive and viable explanation of the discrepancy between the ob-
served acceleration and the acceleration predicted by global-shape
models.

6 FU T U R E WO R K

We postpone the following topics for future work. We assumed
a rotational axis perpendicular to the orbital plane, therefore we
need not consider the orbital movement and the torque is averaged
over the rotational period only. Luckily, the obliquity of Itokawa is
approximately 178◦ (Demura et al. 2006), which is very close to the
perpendicular state. Considering a general direction of the rotational
axis, the insolation will change during the revolution about the Sun
and the seasonal changes of temperature will occur. We expect a
seasonal variant of the studied effect to appear on boulders whose
size is comparable to the seasonal thermal skin depth.

We already discussed that the diurnal torque has a direction of
the rotational axis, as it is caused by the asymmetry of emission
between the western and the eastern part of the boulder due to the
lateral heat diffusion. Following the same principle, the seasonal
torque could be caused by the asymmetry between the northern
and the southern part of the boulder. The direction of this torque
would therefore be perpendicular to the rotational axis. We thus
anticipate the seasonal component of the effect will not affect the
angular velocity of the asteroid, it will only cause an evolution of
the obliquity.

In our model, we assumed a shadow is casted by the boulder;
however, we did not take into account shadows casted by global-
shape inconvexities of Itokawa. The same goes for the self-heating
effect, which is also considered only locally. To resolve this issue,
it would be necessary to determine the insolation function for each
facet of the shape model separately and then solve many three-
dimensional heat diffusion problems.
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Vokrouhlický D., Nesvorný D., Bottke W., 2003, Nature, 425, 147
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A P P E N D I X A : A L I N E A R I Z E D A NA LY T I C A L
S O L U T I O N O F T H E O N E - D I M E N S I O NA L H D E

The general three-dimensional HDE with a non-linear boundary
condition in an irregular domain has no analytical solution. To find
the temperature distribution, we must employ a numerical approach
such as the finite element method. Nevertheless, it is useful to derive
an analytical solution for a simplified case of a half-space domain,
which allows us to reduce the problem to one spatial dimension
only, as in Čapek (2007). The solution can be used as a test for our
numerical model and also as a Dirichlet boundary condition (see
Fig. 1).

Suppose the Sun illuminates an (infinite) plane z = 0 and a half-
space z > 0 represents the domain �. We seek for the temperature
u as a function of the depth z and time t, solving the HDE

α ∂2
zu − ∂tu = 0 , (A1)

with boundary conditions:

− K∂zu(0, t) + εσu4(0, t) = F (t) , (A2)
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∂zu(∞, t) = 0 , (A3)

where α ≡ K
ρC

is the thermal diffusivity, K the thermal conductivity,
ρ the density, C the specific heat capacity, ε the infrared emissivity,
σ the Stefan–Boltzmann constant and F (t) the incoming radiant
flux. The first boundary condition is the energy balance equation
and the second one is necessary for a uniqueness of the solution –
it eliminates solutions where the temperature rises ad infinitum as
z → ∞.

The radiant flux is a periodic function, therefore we can rep-
resent it as a Fourier series, F (t) = ∑∞

n=−∞ Fneinωt. We look
for a stationary solution, which we can represent by a sum
u(z, t) = ∑∞

n=−∞ un(z)einωt. Substituting into (A1) and applying
the constraint (A3), we obtain the solution:

u0(z) = a0 , (A4)

un(z) = ane−(1+i)βnz , (A5)

u−n(z) = a−ne(i−1)βnz , (A6)

where βn ≡
√

|n|ω
2α

. Note that β1 is the reciprocal of the thermal

skin depth L introduced in Section 3.1, hence the
√

2 factor. We
determine constants an from the boundary condition (A2). Here,
we encounter problems with the non-linear term u4. A substitution
of the Fourier sum for the temperature u would lead to a set of
non-linear equations, which – unsurprisingly – does not have an
analytical solution. Nevertheless, we can solve the problem ana-
lytically under the assumption that the changes of the temperature
are significantly smaller than its absolute value. In such a case,
we can linearize the fourth power u4 ≈ u4

0 + 4u3
0

∑
n�=0 uneinωt. The

boundary condition (A2) then composes a set of linear and sep-
arated equations for the coefficients an. We immediately see the
solution for the constant term:

u0 = 4

√
F0

εσ
. (A7)

It is convenient to introduce auxiliary parameters that help us to
get rid of complex numbers in the solution. First, we present the
thermal parameter �n of the nth mode:

�n ≡ Kβn

4εσu3
0

. (A8)

Once again, �1 corresponds to the thermal parameter � defined in
Section 3.1. Secondly, let the phase shift ϕn of the nth mode be

tan ϕn = −
(

�n

�n + 1

)
sgn n . (A9)

Since the solution is periodic, we can choose the initial time ar-
bitrarily. Therefore, we choose the insolation function in the form
of cosine series: F (t) = (1 − A)� �(cos ωt), where �(x) = x for
x ≥ 0, �(x) = 0 for x < 0. First four Fourier modes of this function
are:

F (t)≈ (1 − A)�

(
1

π
+ 1

2
cos ωt + 2

3π
cos 2ωt − 2

15π
cos 4ωt

)
.

(A10)

Now, we can write the solution u of the problem in a simple
form:

u(z, t) = 4

√
F0

εσ
+

∞∑
n=1

Fn

2εσu3
0

e−βnz cos (nωt − βnz + ϕn)√
2�2

n + 2�n + 1
.

(A11)

We see that for each cosine term in the series of the insolation
functionF there exists a corresponding cosine term in the solution u,
but with some phase shift. For the surface temperature in particular,
the offset of the nth Fourier mode is equal to ϕn, defined above.

A P P E N D I X B : VA R I A N T S O F T H E
I N S O L AT I O N F U N C T I O N A N D A
C O M PA R I S O N W I T H T H E E X I S T I N G
O N E - D I M E N S I O NA L M O D E L

The influence of topographic features on rotational dynamics of
an asteroid has been studied by Golubov & Krugly (2012). Their
model uses a one-dimensional approximation, which implicitly cor-
responds to a ‘wall’ of an infinite height. Such an infinite domain
cannot be used in our numerical model; therefore, we used the wall,
the height of which is about three times the width. The vertical
heat diffusion along the wall is therefore significantly reduced (in
comparison to the boulder studied in Section 3). Furthermore, we
employed four variants of our model, called (i) shadowing, (ii) fac-
tor, (iii) self-heating and (iv) complete. They can be understood as
sorted by a degree of their completeness.

The first variant is called the ‘shadowing’ model. It takes into
account shadows casted by the boulder only. The self-heating effect
is ignored, the influence of absorption on the direction of the recoil
force is neglected as well. The insolation function is simply

F = (1 − A)�μs · n . (B1)

The second model, which we call the ‘factor’ model, accounts
for the self-heating by including simply the factor of 2 to the solar
flux. The corresponding insolation function is therefore:

F = 2(1 − A)�μs · n . (B2)

This model has been used by Golubov & Krugly (2012).
The third ‘self-heating’ model computes the self-heating contri-

bution directly by a calculation of the thermal emission and the
scattered flux as described in Section 2:

F = (1 − A)�μs · n + Fth + Fsc , (B3)

where Fth, Fsc are the fluxes defined by equations (5) and (6).
We called the fourth model ‘complete’, as it contains the direct

computation of the self-heating, but also the influence of the ab-
sorption on the direction and magnitude of the recoil force. We
assume that the thermally emitted radiation falling on the surface is
absorbed and does not contribute to the torque. The recoil force is
then given by

d f
dS

= − εσu4

c

(
2

3
n −

∫
�1

cos α cos α′

π(r − r ′)2

r ′ − r
‖r ′ − r‖ν d�′

)
. (B4)

The mean dimensionless pressure 〈
〉 (see Section 3.2) as a
function of the dimensionless width d/L of the wall is shown in
Fig. B1. We notice certain common properties of the functions.
All of them have a global maximum at d ∼ L, but there is also
either a secondary local maximum or an inflection at d ∼ 0.1 L.
These properties are evident for an irregular boulder as well, as we
pointed out in Section 3.

The maximal value of the ‘factor’ curve is ∼0.014, which is a
result consistent with the findings of Golubov & Krugly (2012).
We also see that this model is a remarkably viable approximation
of the ‘self-heating’ model. We thus confirm that the multiplication
of the solar flux by the factor of 2 leads to a similar outcome
as the inclusion of the self-heating effect (which is much more
computationally demanding).
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Figure B1. The mean dimensionless pressure 〈
〉 as a function of the
dimensionless width d/L for four different variants of our model for an
idealized boulder: (i) shadowing only, (ii) factor, (iii) self-heating and (iv) a
complete model. See text for a detailed explanation.

Let us compare the ‘shadowing’ and ‘self-heating’ models. We
see a notable property of the local YORP effect: the self-heating
effect causes an increase of the mean pressure by ∼50 per cent in our
model. The YORP effect induced by boulders therefore qualitatively
differs from the global-shape YORP effect, where an inclusion of
the self-heating effect leads to a decrease of the torque magnitude
for most cases (Rozitis & Green 2013).

Finally, we compare the ‘shadowing’ and ‘complete’ model. We
observe that the ‘complete’ model is well approximated by the
‘shadowing’ model in the vicinity of the global maximum, although
it differs significantly for smaller boulders. Nevertheless, this result
allowed us to proceed with the simple ‘shadowing’ model. Regard-
ing the conclusions of this paper, a computation with the complete
model would lead to very similar results.

A P P E N D I X C : T H E N U M E R I C A L
U N C E RTA I N T Y O F T H E F I N I T E
E L E M E N T M E T H O D

The discretization of both space and time inevitably introduces a
numerical uncertainty to the solution. In order to estimate this uncer-
tainty and find its upper bound, we utilize the linearized analytical
solution of the HDE, derived in Appendix A. We select a simple
block as a domain for our numerical model, i.e. we use a flat surface
without any boulders or other surface features.

We are aware that the analytical solution is valid only if the am-
plitude of temperature is significantly smaller than its mean value.
That essentially corresponds to high values of the thermal conduc-
tivity K (more precisely, of the thermal parameter �). Namely, we
select such parameters that the average temperature is ∼180 K and
the changes of temperature reach up to ∼6 K. In such a case, the
linearized analytical solution is a sufficiently good approximation.

The numerical uncertainty is influenced by the selection of three
parameters.

(i) The spatial discretization parameter ��, which corresponds
to the upper bound for the tetrahedra volume in the three-

Figure C1. The maximal absolute difference of the numerical and analyt-
ical solution, plotted as a function of the discretization parameters – the
maximum volume �� of tetrahedra and the time step �t. The limit δ of the
iterative procedure is constant, δ = 10−4.

dimensional mesh. We use this parameter during the generation
of the mesh by the TETGEN code (Si 2006).

(ii) The time step �t. If P denotes the rotational period, then
P/�t time steps are evaluated during one period.

(iii) The limit δ of the iterative process. Since the problem is
non-linear, we use an iterative method and solve a given sequence
of linear problems in each time step. We stop the process when the
relative difference of two consecutive solutions is less than δ.

We measure the uncertainty by the metric

max(u, utheory) = max
j

∣∣∣uj − u
j
theory

∣∣∣ , (C1)

where uj denotes the temperature in the jth time step. Fig. C1 shows
the dependence of this metric on the tetrahedra volume �� and the
time step �t; the limit δ is a constant here. We checked not only
the maximum difference of u − utheory but also its mean dispersion,
nevertheless, the results were very similar. We see that the uncer-
tainty indeed decreases with a refinement of the discretization. We
use P/�t = 1000 and ��−1 = 100 000 in our analyses.

For high values of the thermal conductivity K, the changes of
temperature are small and the iterative procedure converges quickly
– the limit δ = 10−4 was reached after only two or three iterations.
For lower values of K, the procedure with the same δ took about 10
iterations. As we foreshadowed in Section 2, the procedure did not
converge for the lowest values of considered range of K and we had
to solve the problem using the relaxation method.

Moreover, we have two possibilities of a posteriori uncertainty
estimates. First, we can compare our results to Golubov & Krugly
(2012, see Appendix B). Although our and their approaches are sub-
stantially different, both results are indeed comparable. Secondly,
the mean torque induced by a boulder must vanish in the limit of
zero conductivity, K → 0, as we mentioned in Section 3.3. This is
especially important as the low-K case cannot be tested with the
analytical solution (A11). Luckily, low-K effectively corresponds
to larger boulders (�/L) which do not contribute much to the total
torque, so we consider this case as being of lesser importance.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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