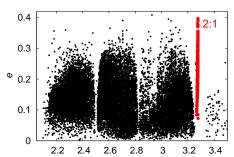
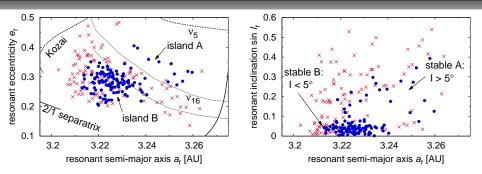
On the Origin of the Long-Lived Asteroids in the 2:1 Mean-Motion Resonance with Jupiter



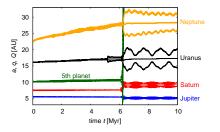
O. Chrenko¹, M. Brož¹, D. Nesvorný²

Astronomical Institute, Faculty of Mathematics and Physics,
Charles University in Prague


² Southwest Research Institute, Boulder, Colorado

a [AU]

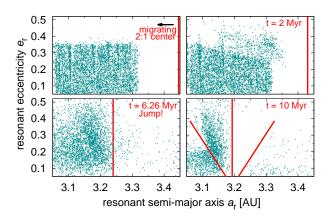
Motivation and update

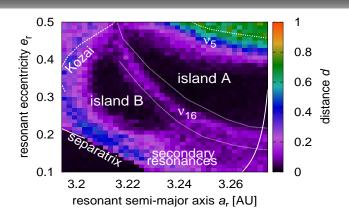


124 dynamically stable asteroids (lifetime $> 1\,\mathrm{Gyr}$) and 106 marginally stable asteroids (0.07 $\mathrm{Gyr} < \mathrm{lifetime} \le 1\,\mathrm{Gyr}$)

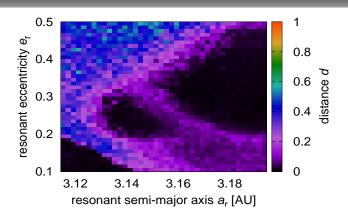
- ▶ resonant elements computed according to Roig et al. (2002)
- primordial origin or resonant capture? the presentation is focused on the latter

Migration scenarios and methods

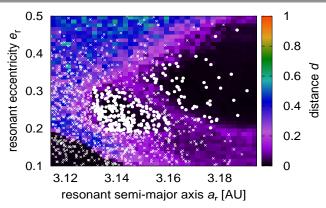

- orbital evolution of planets prescribed according to scenarios by Nesvorný & Morbidelli (2013), Morbidelli et al. (2010)
 - fifth giant planet scenario
 - jumping Jupiter scenario with four giant planets
- ▶ planets: interpolation in cartesian coordinates (x, y, z) along Keplerian ellipses; input data sampling $\Delta t = 1 \, \text{yr}$


► test particles: symplectic SWIFT-RMVS algorithm (Levison & Duncan 1994) with 0.25 yr timestep

Capture in the fifth-giant-planet scenario

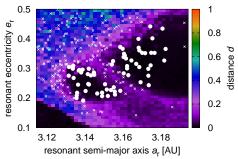

▶ initial population of 5000 test particles with isotropic (a, e, I) distribution in the outer main belt; $I \in (0^{\circ}, 15^{\circ})$

capture is significant, but which asteroids are long-lived?



- lacktriangleright $\delta \equiv$ the difference between the initial and final resonant element over 10 Myr timespan
- lacktriangledown distance $d \equiv \sqrt{\left(rac{\delta a_{
 m r}}{ar{a}_{
 m r}}
 ight)^2 + \left(\delta e_{
 m r}
 ight)^2 + \left(\delta \sin I_{
 m r}
 ight)^2}$
- ▶ 24000 test particles per simulation

 the post-migration map is used to extract the long-lived asteroids at the end of our simulations (i.e. similar structure, stable islands exist)


Result: Captured long-lived asteroids

- ▶ initial population rescaled to outer main belt values
 − captured population increased by factor 10 to 13
- long-term depletion rate applied
 93% to 95% decay over 4 Gyr; by Skoulidou et al. (CPS-IAU, 2014)
- ▶ 158 to 219 test particles in B (vs 180 observed) match
- ▶ 37 to 51 test particles in A (vs 11 observed) mismatch

Conclusions (and confusions)

- ► **capture** works in the fifth-giant-planet scenario with 1.5% efficiency in the island A and with 5% efficiency in B
- moreover, 3% of the primordial population survives the jump!

- ▶ how to explain the observed steep SFD (cumulative slope -4.3)?
- is primordial population really primordial?