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1 Introduction

The Solar System has been a domain of important discoveries, which have helped us to justify and verify
basic laws of physics. The kinematics of planetary motion, described by Johannes Kepler (1571–
1630) at the beginning of the 17th century, and the corresponding dynamics, unveiled by Isaac Newton

(1642–1727) at the end of the 17th century, are the best known examples.
For a long time, the Newtonian gravitational attraction have been thought to be the only driving force

affecting the motion of celestial bodies. On the other hand, Kepler already speculated about some kind
of repulsive force, because he knew the tails of comets are directed away from the Sun. In the first half of
the 19th century, Johann Friedrich Bessel (1784–1846) noted the gases emanating from the cometary
surfaces might possibly change the orbits of comets.

Figure 1: A composite image of the comet Wild 2 taken by the Stardust spacecraft on January 2nd 2004. The
short exposure snapshot depicts the surface topography and the long exposure shows clearly several active jets.
The nucleus is approximately 5 kilometres in diameter. From Stardust, JPL, NASA.

The precise observations of Solar System objects in the 20th century allowed us not only to verify
the current theory of gravitaton, the General Theory of Relativity, but also to recognise the role of
electromagnetic force, which substantially affects the dynamics, escpecially of the small objects.

We can distinguish a number of ‘modes’, how the electromagnetic field interacts with the matter in
the Solar System. We describe this complex interaction in terms of cometary jets, radiation pressure,
the Poynting-Robertson effect, the Yarkovsky/YORP effect, the Lorentz force, etc. Such division is very
useful, because every mode is usually important only for bodies in a particular size-range or with special
surface properties. (For example, the Poynting-Robertson drag affects mainly micrometer dust particles;
the jets form on the surface consisting of volatile materials.)

We see an increasing interest in the non-gravitational phenomenon called the Yarkovsky/YORP effect
during the last 15 years. This is motivated by many observations of small asteroids (and their groups),
which properties can be elegantly interpreted with help of the Yarkovsky effect — an electromagnetic recoil
force arising due to anisotropic thermal emission from the surface of a celestial body. The implications
of this phenomenon on the evolution of small Solar System bodies are the main topic of this thesis.

1.1 Contents and structure of the thesis

We present a brief historical overview of non-gravitational phenomena observed in the Solar System
(Section 2.1). It is followed by a state-of-the-art review of the non-gravitational forces acting on small
bodies (Section 2.2); hereinafter, we focus on the Yarkovsky/YORP effect. The mathematical formulation
of the Yarkovsky/YORP effect and the analytical and numerical methods of its calculation are recalled
in Section 2.3.
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The major part of the thesis is a detailed description of models we developed to describe the long-term
evolution of meteoroids and main-belt asteroids, which reside in both unstable and stable regions. We
study transport mechanisms of putative meteoroids from (6) Hebe, (170) Maria and (8) Flora parent
bodies to Mars- and Earth-crossing orbits (Section 2.3.4), the case of the asteroid (2953) Vysheslavia
(Section 4), the asteroidal population in the 2/1 mean motion resonance with Jupiter (Section 4.5) and
the Eos and Agnia asteroid families (Sections 6 and 7). The objects under study or mentioned in the
reviews are depicted in Figure 2.

Finally, we describe a by-product of our research: an on-line catalogue of proper orbital elements (Sec-
tion 9.1), we present numerical tests of a new integrator (Section 9.2) and we reprint a ‘lost’ publication
by I.O. Yarkovsky (Section 9.3).

All major sections start with an abstract, summarizing the main motivation and aim of the following
work. We also list the refereed articles, where the results were already published.
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Figure 2: The contents of the thesis displayed as a the semimajor axis vs. eccentricity plot, with the Main
Asteroid Belt (red) and the near-Earth space (yellow). Positions of the objects studied (or reviewed) in this thesis
are enhanced and labelled: the asteroid (2953) Vysheslavia, the Zhongguos, Griquas and the unstable asteroids
in the 2/1 mean motion resonance with Jupiter, the Eos, Koronis and Merxia families, the Karin cluster, and the
near-Earth asteroid (6489) Golevka. The curves enclose the region of planet-crossing orbits (they are defined by
Q = qEarth, q < 1.3 AU, q < QMars, Q > q̄Jupiter, where q’s denote perihelia and Q’s aphelia).
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2 Non-gravitational forces in the Solar System

2.1 A brief history of non-gravitational phenomena

We present a historical ‘timeline’ of important discoveries connected with non-gravitational phenomena
here. The list is sorted by the year of discovery and it is supplemented by several figures, explaining
briefly the non-gravitational effects, which we do not discuss elsewhere in the thesis. Most of the data
were taken from Wikipedia.

1540 Peter Apian (1495–1552) recognised cometary tails are directed away from the Sun.
1619 Johannes Kepler (1571–1630) suggested the Sun exerts a repulsive force on the cometary

particles.
1835 Friedrich Wilhelm Bessel (1784–1846) noted, that the orbit of the Halley’s comet might

change unpredictably due to jets.
1873 James Clerk Maxwell (1831–1839) deduced the existence of a light pressure from his elec-

tromagnetic theory.
1884 Otto Boeddicker (1853–1937) measured, that the minimum of the Moon’s thermal emission

takes place later than the minimum of the Moon’s visible light during a total lunar eclipse, what
is caused by the thermal inertia of Moon’s material.

1888 Ivan Osipovich Yarkovsky (1844–1902) described the non-gravitational effect now called the
Yarkovsky effect (even thought in a different context we use it today; see Section 2.1.1).

1899 Pyotr Nikolaevich Lebedev (1866–1912) measured the direct effect of the radiation pressure
in a laboratory.

1903 John Henry Poynting (1852–1914) suggested dust particles and even centimetre meteoroids
can fall onto the Sun due to a drag force, because the light pressure is decreased behind a moving
particle.

1937 Howard Percy Robertson (1903–1961) calculated the radiative drag using an appropriate
relativistic theory; now it is called the Poynting-Robertson drag (Figure 4).

1950 Fred Lawrence Whipple (1906–2004) defined rocket effect acting on comets due to the sub-
limation of gases from their surfaces.

1951 Ernst Julius Öpik (1893–1985) described the force arising due to the anisotropic thermal
emission, when the surface is heated by the absorption of solar radiation; he noted the original
idea in Yarkovsky’s pamphlet (see Section 9.3).

1952 Vladimir Vyacheslavovich Radzievskii (1911–2003) described the same effect indepen-
dently.

1987 The small variations in motion of the LAGEOS artificial satellite were succesfully explained using
a Yarkovsky effect theory (Rubincam (1987); Figure 5 and Table 1).

1995 D.P. Rubincam introduced a seasonal variant of the Yarkovsky effect in asteroidal dynamics
(Rubincam (1995)).

1998 Paolo Farinella (1953–2000) and others pointed out the importance of the Yarkovsky effect
on meteoroids and small asteroids.

2000 D.P. Rubincam calculated Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect, which is able
to change rotational states of small asteroids (Rubincam (2000)).

2003 The Yarkovsky effect was measured for the first time on an asteroid (6489) Golevka (Chesley
et al. (2003)).

Figure 3: Some of the people involved in the explorations of non-gravitational forces. From the left: P. Apian,
J. Kepler, F.W. Bessel, J.C. Maxwell, P.N. Lebedev, J.H. Poynting, F.L. Whipple, E.J. Öpik, P. Farinella.
From Wikipedia.

See Section 2.2 for a review of recent developments in the theory and observation of non-gravitational
phenomena.
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the solar radiation is affected by the relativistic abberation and impings the particle preferentially from the front.
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Figure 5: The LAGEOS geodynamical satellite — a sphere with a radius 30 cm and mass 410 kg, covered by
426 retro-reflectors, which make it suitable for the laser tracking by Earth-based observatories. It orbits 5, 900 km
above the Earth. See also Table 1. From Bertotti, Farinella & Vokrouhlický (2003).
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Table 1: Accelerations a of the LAGEOS satellite in m · s−2 and their fractional uncertainities σa/a. LAGEOS
is probably the best studied object, for which a very tiny accelerations were detected. The observational limit of
the laser-tracking technique is of the order 10−12 m · s−2. The values below (sorted by their magnitude) are the
instantaneous accelerations; some of them might accumulate on the long term (e.g., the Yarkovsky/YORP effect)
but the rest produce quasi-periodic oscillations only (e.g, the tidal effects). The radiation effects acting on the
LAGEOS have two important sources: the Sun and the Earth. Of course, different spacecrafts have different values
of the accelerations: the objects at low Earth orbits typically have many orders of magnitude larger atmospheric
drag than LAGEOS; the interplanetery spacecrafts equipped with radio thermoelectric generators, like Cassini,
produce additional anisotropic infrared radiation and the corresponding acceleration is of the order 10−9 m · s−2.
Kinematic tides, the polar wobble and length of the day changes are not real accelerations acting on the spacecraft,
they only affect the positions of the observing stations. If we do not take them into account directly, we can see
these effects as apparent accelerations in the measured signal. Adapted from Bertotti, Farinella & Vokrouhlický
(2003).

origin a (m · s−2) σa/a
Earth’s monopole 2.65 2 × 10−9

Earth’s oblatness 0.001 7 × 10−8

geopotential ℓ,m = 2 5.8 × 10−6 3 × 10−5

Moon 2.1 × 10−6 10−7

apparent accelerations due to polar wobble and δ(LOD) upto 10−6

Sun 9.6 × 10−7 4 × 10−10

ℓ,m = 6 8.8 × 10−8 7 × 10−4

dynamic solid tide 3.7 × 10−8 0.002
kinematic solid tide 5.8 × 10−9 0.03
dynamic oceanic tide 3.7 × 10−9 0.1
solar radiation pressure 3.2 × 10−9 0.02
kinematic ocean loading 10−9 0.2
relativistic effects 9.5 × 10−10 2 × 10−9

Earth albedo 3.4 × 10−10 1
Venus 1.3 × 10−10 3 × 10−7

Yarkovsky/YORP effect 5 × 10−11 0.1
ℓ,m = 18 6.9 × 10−12 4 × 10−2

reference system due to non-rigid Earth 3.5 × 10−12 0.1
atmospheric drag 1 × 10−12 0.3–1
Poynting-Robertson effect 10−13 0.1
micrometeorite impacts 10−13

photoelectric effect due to UV ⊙ radiation and ⊕ ionosphere < 10−13
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Figure 6: Ivan Osipovich Yarkovsky. From Beekman (2006).

2.1.1 Ivan Osipovich Yarkovsky

The Yarkovsky effect is called after Ivan Osipovich Yarkovsky (Figure 6), a person mostly unknown
to present-day scientists. Only a very recent publication by Beekman (2006) unveiled some information
about his life and work. This is the reason, why we include an excerpt here. We also reprint Yarkovsky’s
‘lost’ publication in Section 9.3.

Ivan Osipovich Yarkovsky was born on 24 May 1844 in Osveya, Vitebsk province, Russia (now Be-
lorussia). He was of Polish nationality. After the death of his parents, he attended military school in
Moscow and served in army for several years. Then he succesfully studied in the Institute of Practical
Technology in St Petersburg and became a civil engineer in 1872.

He worked for Russian railway companies, but he was also interested in many other technologies as
well — manned aviation, ship design, rotary press, etc. He eventually became a president of the Russian
Technological Society in 1889.

In his spare time, Yarkovsky studied physical sciences. He tried to find a unified theory of the matter,
radiation and gravity and, similarly to other scientists of that time, he thought about the ether as an
immaterial medium, which enables interactions between separated objects.

His book Kinetic theory of universal gravitation in relation to the formation of the chemical elements
was published in French in 1888 (Figure 7). He endorsed the theory of the steady expansion of the
Earth by the absorption and condensation of the ether. He attributed the 0.1 mm difference found in the
length the metre (which was defined as a part of the Earth’s circumference) between the 1820 and 1880
measurements to this expansion. According to his ethereal theory of gravitation, the gravitational force
could be ‘screened’ by matter. Yarkovsky even errorneously measured a decrease of solar gravitation
during the total solar eclipse on 19 August 1887. Well, as we can see, he was mistaken mostly. . .

Nevertheless, this is the book, where Yarkovsky mentions the effect, now called after him. He thought,
that the planets are decelerated by the ether, as they move along their orbits, but this is compensated
by a Sun driven heat engine: the ether is compressed in front of the planet, the Sun heats the ether
up as the planet rotates and the warmer ether expands in the back of the planet causing the necessary
acceleration. (He tried to support this hypothesis by the observed motion of the great 1882 II comet.) In
a modern context, we talk about the solar radiation, absorption, temperature distribution and thermal
emission, but the basic priciple is the same.

Ivan Osipovich Yarkovsky died on 22 January 1902 in Heidelberg, Germany. His work fell into oblivion,
but ‘his’ effect was rediscovered in 1950’s by Öpik and Radzievskii.

12



Figure 7: The cover of Yarkovsky’s book Hypothése cinetique de la gravitation universelle en connection avec la
formation des éléments chimiques, where ‘his’ effect is mentioned for the first time. From Beekman (2006).
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2.2 Non-gravitational forces acting on small bodies

The following section reviews recent advances in the studies of non-gravitational forces. It focuses on mete-
oroids and small asteroids in the 10 cm–10 km size range, for which the principal force and torque arise from
an anisotropic thermal emission of the absorbed solar radiation energy. Related perturbations of the orbital and
rotational motion are called the Yarkovsky and YORP effects. We demonstrate, that many independent observa-
tions, like the current population and size-distribution of near-Earth objects, the existence of unstable resonant
asteroids or the structure of asteroid families, can be naturally interpreted in the framework of Yarkovsky/YORP
models. This section is an extended version of the reviews published in Brož et al. (2006) and in the Triennal
report 2003–2006 of the IAU Commission 7.

Current observations of small Solar System bodies provide many important constraints for dynamical
studies. Laboratory analyses of collected meteorite samples, astrometric and photometric observations of
small asteroids in the Earth’s neighbourhood or relatively larger asteroids orbiting in the Main Asteroid
Belt allowed us to recognise, during the last ten years, the importance of non-gravitational phenomena
affecting their orbital evolution.

In this review, we are going to focus on small asteroidal bodies in the size-range from 10 cm up to
10 km, which do not exhibit any outgassing and cometary activity. The principal accelerations affecting
the motion of these small bodies are listed in Table 2.

The largest non-gravitational accelerations caused by the interaction with the solar radiation field —
like the Yarkovsky/YORP effect, the radiation pressure or the Poynting-Robertson drag — are, roughly
speaking, 10 orders of magnitude weaker than solar gravity. At a first glimpse, they seem to be too subtle
phenomena, but we have to take into account also the direction of the acceleration vector and the effect
of its eventual long-term accumulation.

Of course, a small radial acceleration, not exceeding the solar gravity, does not have significant orbital
effects (it only slightly decreases or increases the orbital velocity), while a transversal acceleration may
cause a secular change of energy (and hence the semimajor axis of the orbit). Some types of accelerations
also tend to average-out along the orbit, while others can accumulate over millions or even billions of
years. If we take into the account these two issues, the Yarkovsky/YORP effect is by far the most
important non-gravitational force in the size-range 10 cm to 10 km and, hereinafter, we will focus on the
Yarkovsky/YORP only.

How much a body can change its orbit? What are the secular effects? Typically, the Yarkovsky/YORP
force can push a 10-m meteoroid’s semimajor axis by 0.1–0.2 AU, before being disrupted by a random
collision with another body. Similarly, a small 1-km Main-Belt asteroid can move by 0.05 AU (within
its collisional lifetime). These are certainly significant shifts, comparable to the distances between major
resonances or to the sizes of asteroid families (i.e., the prominent concentrations of asteroids in the
proper-element space). They give a hint that the Yarkovsky/YORP effect plays an important role in the
evolution of small Solar System bodies.

We present a brief overview of Yarkovsky and YORP effects principles in Section 2.2.1 and the most
direct observational evidences for these phenomena in Section 2.2.2. Section 2.2.3 is devoted to various
unstable populations, which the Yarkovsky/YORP helps to sustain, and Section 2.2.4 to evolutionary
processes shaping asteroid families.

2.2.1 The Yarkovsky/YORP effect principles

The basic principle of the Yarkovsky/YORP thermal effect is the absorption of solar radiation by a body
and its anisotropic thermal reemission. The temperature differences on the surface, together with an

Table 2: The approximate values of radial and transversal accelerations affecting bodies in the size-range 10 cm
to 10 km. The solar gravity is scaled to unity. For comparison, typical gravitational perturbations by planets and
large asteroids are GMpl ≃ 10−3 and GMast . 10−9.

acceleration radial transversal
gravity GM⊙ ≃ 1
Yarkovsky/YORP effect 10−7 to 10−11 10−8 to 10−12

radiation pressure 10−6 to 10−11

Poynting-Robertson drag 10−10 to 10−15

solar wind, Lorentz force, plasma drag < 10−15
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Figure 8: An illustration of the Yarkovsky/YORP effect principle. As an asteroid absorbs the solar radiation,
its part facing the Sun becomes hotter than the reverse one. The infrared emission from the surface is then
anisotropic, what gives rise to the Yarkovsky force, affecting the orbital motion of the asteroid, and the YORP
torque, modifying the spin state.

uneven shape of the body, then lead to a recoil force and torque (Figure 8). (A detailed discussion on
the mathematical theory describing the Yarkovsky/YORP effect can be found in Bottke et al. (2002b)
and references therein.) Contrary to the direct radiation pressure and its relativistic counterpart, the
Poynting-Robertson effect, the radiation is absorbed and thermally reprocessed here. Due to a finite
thermal conductivity of the material, there is some “thermal lag” between the absorption and the emission.
This is also the reason, why the Yarkovsky/YORP effect sensitively depends on the rotational state
(obliquity γ and period P ).

The Yarkovsky/YORP effect is negligible in case of very small and very large bodies: the upper limit
for size D is a natural consequence of the fact, that the force is approximately proportional to the surface
area (D2), the mass ∝ D3 and thus the resulting acceleration ∝ 1/D. The lower limit is given by the
conduction of heat across the whole small body, which effectively diminishes temperature differences on
the surface and the corresponding infrared emission is then almost isotropic.

In the next sections, we will need to know the principal secular effects of the force and torque on the
orbital and rotational dynamics. The Yarkovsky force is related to the orbital dynamics (Rubincam 1995;
Vokrouhlický 1998, 1999). Its diurnal variant, driven by the rotational frequency, dominates for bodies
with low thermal conductivity (e.g., with regolith on the surface). It can either increase or decrease
semimajor axis a and the change ∆a is proportional to the cosine of the obliquity γ. In case of the
seasonal variant, the changes of temperature on the surface are mainly driven by the orbital frequency.
It is a usual situation for bodies with higher thermal conductivity (regolith-free surface). The semimajor
axis a steadily decreases and ∆a ∝ − sin2 γ.

The YORP torque (Rubincam 2000; Vokrouhlický & Čapek 2002) works for non-spherical bodies only.
It has an asymptotic behaviour — it pushes the obliquity towards 0 or 180◦ and the rotation period
towards 0 or ∞. (We note, however, that the behaviour of the YORP and collisional evolution close to
these asymptotic spin states is poorly understood today and it will certainly be a subject of forthcoming
studies.) Because of the dependence of the Yarkovsky force on the obliquity we can expect a complicated
interplay between the Yarkovsky and YORP effects.

Of course all variants of the Yarkovsky forces and the YORP torque are produced by a single temper-
ature distribution on the surface of the body — they are actually a single phenomenon. Nevertheless, we
find the above division conceptually useful.

What do we need to calculate the Yarkovsky/YORP? To properly calculate the temperature distribu-
tion on the surface of an asteroid (and then straightforwardly the corresponding IR emission, force and
torque) we need to know its orbit (i.e., the position of the radiation source), size and shape, spin axis
orientation and period, mass, density of surface layers, albedo, thermal conductivity, capacity and IR
emissivity of the material.

These are many a priori unknown parameters. In the “worst” case (and for vast majority of asteroids),
we know only the orbit and broad-band photometry results (from which we can “guess” an approximate
albedo, size and thermal parameters). How to overcome this lack of physical parameters? One possibility
is to study only asteroids known very well, like (6489) Golevka (Figure 9). However, we can also use a col-
lective dynamics approach — study whole groups of bodies (like asteroid families) and treat the unknown
thermal parameters as statistical quantities, it means to select a reasonable probability distribution and
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Figure 9: (Left) The temperature distribution on the surface of the asteroid (6489) Golevka, calculated by a
numerical solution of the 1-dimensional heat diffusion equation, individually for all 4092 surface elements of the
shape model. (Right) For two selected surface elements, located on roughly opposite sides of the body, we plot the
time evolution of the temperature (the time is counted as the number of rotations and covers one complete orbit).
Both seasonal and diurnal variations of the temperature, due to the changing distance from the Sun, illumination
geometry and shadowing, are clearly visible. Adapted from Chesley et al. (2003).

assign them randomly to the individual bodies.

2.2.2 The Yarkovsky and YORP: direct observational evidence

Following a previous prediction by Vokrouhlický et al. (2000), Chesley et al. (2003) were the first to
directly detect the non-gravitational semimajor axis drift due to the Yarkovsky effect. Vokrouhlický et al.
(2000) computed the position of (6489) Golevka during its 2003 close approach to the Earth using all
previous radar and optical astrometry data and two models of Golevka’s motion: (i) purely gravitational
only and (ii) with the Yarkovsky acceleration included (Figure 10).

The respective radar ranging to Golevka, reported by Chesley et al. (2003), confirmed the 15 km O−C
difference in the distance from the dish, what is outside 3-σ error interval of the purely gravitational
model, but it fits very well with the Yarkovsky model. Because the latter involves a non-gravitational
acceleration, they were also able to constrain the bulk density of Golevka to 2.7+0.4

−0.6 g/cm3.

The current state-of-the-art model by Čapek & Vokrouhlický (2006) assumes Golevka consists of two
layers: low conductivity surface and high conductivity core. It enables to put a lower limit for the surface
thermal conductivity K, which should be at least 10−2 or 10−1 W/m/K, (i.e., substantially larger than
the laboratory-measured conductivity of the lunar regolith 10−3 W/m/K). This is in a rough agreement
with thermophysical models, which Delbó et al. (2003) use to interpret observed infrared fluxes coming
from near-Earth asteroids. The average value of K for all observed NEA’s seems to be of the same order.

Unfortunately, we do not have any direct measurement of the YORP effect yet. However, a strong
evidence of the ongoing YORP evolution comes from the analysis of a group of Koronis-family asteroids,
which has a bimodal obliquity distribution (Slivan 2002; Slivan et al. 2003). The prograde group has
periods 7.5–9.5h, obliquities 42◦–50◦ and even similar ecliptic longitudes of the poles within 40◦. The
values for the retrograde group are P < 5 h or > 13 h and γ ∈ (154◦, 169◦) (Figure 11). This observational
result was very surprising, because collisions should produce a random distribution of rotational states,
surely not the bimodal.

Vokrouhlickýet al. (2003) thus constructed a model of spin state evolution, which included solar torques
and the YORP thermal torque. Let’s take the prograde-rotating asteroids as an example (Figure 12).
They analysed the evolution of asteroids, which initially had periods P = 4–5 h and obliquities γ evenly
distributed in the interval (0◦, 90◦). They found the evolution is firstly driven by the YORP effect toward
an asymptotic state (γ decreases and P increases). After some 1 Gy, when the precession rate reaches the
value ≃ 26 ′′/y, the spin is captured in the s6 spin-orbit resonance and it pushes γ to ∼50◦, P to ∼8 h and
also forces the spin axes to be really parallel in space. Around the time 2.5 Gy, what is an approximate
age of the Koronis family, the match of the model with the observations is perfect. Similarly, it is possible
to explain the existence of the retrograde-rotating group; there is no significant spin-orbit resonance in
this case and the spin axes of the retrograde-rotating asteroids are let to evolve freely toward the YORP
asymptotic states.

Generally, thermal torques seem to be more important than collisions for asteroids smaller than 40 km,
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Figure 10: Range vs. range rate (i.e., the quantities measured by radar) for the close approach of (6489) Golevka
in May 2003. The predictions of the two theoretical models of Golevka’s motion, purely gravitational and with
Yarkovsky, are plotted with their 90 % confidence ellipses. The astrometric observation by the Arecibo radar is
denoted by the black symbol and arrow. Adapted from Chesley et al. (2003).

Figure 11: Shape models and spin vectors of 11 Koronis family asteroids (left) and a polar plot period vs.
obliquity for the same group (right). Adapted from Slivan et al. (2003).
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Figure 12: Period vs. obliquity polar plot depicting Slivan’s prograde-rotating group. The observed asteroids
are denoted by triangles, the initial state of the numerical model by gray circles and the final state after 2.5 Gy
by black circles. The dashed line with an arrow shows an evolutionary path and two phases: (i) the YORP driven
(Phase I) and (ii) the resonance capture (Phase II). Adapted from Vokrouhlický et al. (2003).

because today we can still clearly see the traces of the YORP-driven evolution and the collisions have
not been able to randomise the spin states during several past Gy.

2.2.3 Delivery into unstable regions

Various unstable populations, like meteoroids hitting the Earth, near-Earth asteroids, or Main-Belt as-
teroids located inside major mean motion resonances, have dynamical lifetimes shorter than the age
of the Solar System and provide a nice opportunity for dynamicists to look for sources and transport
mechanisms.

Meteorite transport from the Main Belt. Meteorite transport from the Main Belt is the eldest
application of the Yarkovsky effect (Öpik 1951; Peterson 1976; Farinella et al. 1998; Vokrouhlický &
Farinella 2000; Bottke et al. 2000). The meteorites reach the Earth in two stages: (i) a Yarkovsky-driven
change of the semimajor axis spanning ∼10 My, and (ii) a capture in a powerful gravitational resonance,
which increases eccentricity of the orbit up to 1 in a mere ∼ 1 My (Figure 13). Approximately 1 % of
meteoroids then collide with the Earth (and can be found as meteorites), but most of them fall directly
to the Sun.

The main motivation for the introduction of the above Yarkovsky model were the observed cosmic ray
exposure (CRE) ages of meteorites, which measure, how long time the meteorite spent in the interplan-
etary space as a small fragment. The model naturally explains that (i) the CRE ages are much longer
than resonance residence times alone; (ii) there is a strong dependence of the CRE’s on the material —
namely the CRE’s of iron meteorites are 10× longer than of stones; (iii) the most stony meteorites have
the CRE’s of the order 10 My (see Figure 14). The Yarkovsky drift is able to supply meteoroids from a
wide range of parent bodies (not only from the vicinity of resonances); it is effective enough to explain
the observed meteorite flux of the order 3 × 105 kg/y. Moreover, petrologic and mineralogical studies
(Burbine et al. 2002) show the number of parent bodies of iron meteorites is larger than of stones. This is
because hard irons are more resistant to collisions, their total semimajor-axis drift (within the collisional
lifetime) is larger and thus they can effectively sample larger volume of the Main Asteroid Belt.

Delivery of near-Earth asteroids from the Main Belt. Observations of the near-Earth asteroids
provide two important constraints: (i) the cumulative distribution of their absolute magnitudes has a
slope γ = 0.35 (N(<H) ∼ 10γH in the magnitude range 15.5 to 18; Figure 15), and (ii) their removal
rate by planetary scattering is ∼ 200 bodies larger than 1 km per My.

Morbidelli & Vokrouhlický (2003) assumed the same basic scenario as for meteorites and constructed a
Yarkovsky/YORP model of the transport from the Main Asteroid Belt (this source has the slope γ = 0.26,
again in the interval H ∈ (15.5, 18) mag). Their model yield a flux of 150–200 bodies (> 1 km) into the
main J3/1 and ν6 resonances (which then quickly became NEA’s) and the slope of the resulting model
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NEA population is γ = 0.33. So, the Yarkovsky/YORP effect is efficient enough to keep the current NEA
population in steady state and it also explains, why the observed slope of NEA’s is moderately shallower
than that of MBA’s.

Resonant populations resupplied from the Main Belt. Low-order mean motion resonances with
Jupiter usually harbour small populations of objects with dynamically unstable orbits (and sometimes
also stable ones). We consider here the J7/3 resonance at approximately 2.96 AU heliocentric distance
and the J2/1 resonance at approximately 3.25 AU as two examples, which were previously studied in
some detail.

There are 22 observed unstable asteroids in the J7/3 resonance. Tsiganis et al. (2003) proved, that
the Yarkovsky drift may keep the resonant population in steady state, as it pushes members of the
neighbouring Koronis and Eos families towards the resonance. An independent confirmation, that the
resonant bodies are truly related to the families is the observed confinement of inclinations — the mean
inclinations of the two resonant groups, 2◦ and 10◦ respectively, correspond to the mean inclinations of
the Koronis and the Eos family (Figure 16).

The J2/1 resonance harbours some 150 asteroids and 50 of them are on dynamically unstable orbits.
Brož et al. (2005b) simulated the evolution of neighbouring Main-Belt asteroids pushed by the Yarkovsky
effect towards the J2/1 resonance. They verified this flux of Main-Belt bodies keeps the unstable resonant
population in steady state. Moreover, the orbital evolutionary tracks of the Main-Belt asteroids, their
dynamical lifetimes inside the J2/1 resonance and also size distribution are consistent with the actual
observed unstable resonant asteroids. A few observed unstable objects, which escape from the J2/1 in
less then 2 My, are most probably inactive Jupiter-Family comets.

The long-lived asteroids, confined to stable island of the J2/1 resonance, cannot be explained within
the Yarkovsky model and the problem of their origin remains open.

2.2.4 Processes shaping asteroid families

Asteroid families are prominent clusters of asteroids, which are located close to each other in the space
of proper elements ap, ep and sin Ip and usually also exhibit some spectral similarities. Families are
thought to be remnants of large collisions producing fragments, which then has been evolving due to the
Yarkovsky/YORP effect, gravitational resonances and further secondary collisions. The primary collisions

20



Figure 16: Proper semimajor axis vs. proper eccentricity and inclination in the surroundings of 7/3 mean
motion resonance with Jupiter. The resonant asteroids and two adjacent asteroid families, the Koronis and Eos,
are plotted. From Tsiganis et al. (2003).

can scale from large catastrophic disruptions of parent bodies to smaller cratering events (Michel et al.
2001, Durda et al. 2006). Typical velocities, which fragments gain with respect to the parent body, are
of the order of a few tens of m/s.

Bottke et al. (2001) and Vokrouhlický et al. (2006a) demonstrated the post-impact evolution of asteroid
families using two examples: the Koronis and the Eos family. They reported three general processes, how
the Yarkovsky drift together with gravitational resonances can dramatically affect the overall shape of
the families, i.e., the distribution of their members in the space of proper orbital elements. We can call
these processes “bracketing”, “crossing” and “trapping”.

At first, notice the shape of the Eos family (Figure 17): it is sharply cut at a low value of proper
semimajor axis ap, there is a evident paucity of asteroids, especially the bigger ones, at large-ap’s and
the family is also somewhat distorted or elongated towards low-ap, low-ep and low-sin Ip. These observed
features nicely coincide with analytically computed borders of resonances, namely with the 7/3 mean
motion resonance with Jupiter at 2.955 AU, the J9/4 resonance at 3.03 AU and the z1 = g − g6 + s− s6
secular resonance.

We explain the observations this way: initially, just after the parent body disruption, the family was
more compact; asteroids drifting due to the Yarkovsky/YORP effect towards smaller semimajor axis meet
the powerful J7/3 resonance, which scatters their eccentricities and inclinations, or pumps them up to
planet crossing orbits, and consequently no family members are visible behind. The J7/3 resonance thus
brackets the Eos family (Figure 17, left).

The asteroids drifting in the opposite direction, towards larger semimajor axis, meet the weaker J9/4
resonance. Some of them are able to cross it, but the remaining are scattered. This crossing explains, why
there is less asteroids behind the J9/4, and why the paucity is size-dependent — the smaller asteroids
drift faster and typically cross the J9/4 resonance at low eccentricity and inclination (Figure 17, left).

Many Eos-family members are trapped in the z1 secular resonance; they drift in semimajor axis by the
Yarkovsky effect and they are also forced to follow the libration centre of the resonance, which position,
however, depends on all three orbital elements ap, ep and sin Ip. Thus, not only the semimajor axis
changes, but also eccentricity and inclination and the stream of asteroids forms at small values of ap, ep
and sin Ip, i.e., the elongated shape of the family (Figure 17, right).

In case of the Koronis family the situation is slightly different. This family is split in two parts, each
of which has a different mean value of proper ep (but the same mean sin Ip). Their division correlates
with the position of the secular resonance g + 2g5 − 3g6. A detailed study shows that, unlike in the Eos
case, long-lasting captures in this resonance are not possible and drifting orbits necessarily jump over it.
During this process their ep is always lifted by ∼ 0.025, right the observed difference between the mean
ep values of the two parts of the Koronis family (Figure 18). Because the resonance does not involve
s-frequencies, the inclinations are not affected at all.

21



Figure 17: The Eos family in the 3-dimensional space of proper elements ap, ep and sin Ip. The three resonances,
J7/3 and J9/4 (left) and z1 (right) are plotted together with examples of bodies drifting by the Yarkovsky effect
and interacting with these resonances. Adapted from Vokrouhlický et al. (2006a).

Figure 18: The Yarkovsky-driven evolution of 210 model asteroids (blue lines), placed initially close to (158) Ko-
ronis, as compared to the observed Koronis family asteroids (yellow dots). The interaction with the g + 2g5 − 3g6

secular resonance is clearly visible as a jump in eccentricities close to 2.92 AU. The Koronis family is also bracketed
by the strong J5/2 and J7/3 mean motion resonances. The time span of this simulation is 700 My (less then the
probably age of the family). From Bottke et al. (2001).
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Figure 19: The Merxia family members (identified by the HCM method at the cut-off velocity 80 m/s) in the
semimajor axis–absolute magnitude plot. The gray dots outside the ‘V’-shape are probable interlopers.

To conclude, if one assumes an initially compact impact-generated family (with a reasonable ejection
velocity field compatible with hydrocode models), and takes into account the above evolutionary processes,
it is possible to understand the currently observed extent of the family and its overall shape.

“Eared” families and their age determination by the analysis of the (a,H) distribution. The
age of an asteroid family, i.e., the time of the collision which generated the family, is a very important
parameter, not only for dynamical studies, but also for physical ones, space-weathering models, etc. One
indication of the family age seems to be a typical ‘V’-shape, which many families exhibit in the proper
semimajor axis ap–absolute magnitude H plane; see Figure 19 for an example of the Merxia family.
This shape is a natural consequence of two phenomena: (i) the initial impact, because smaller fragments
(with higher H ’s) gain higher velocities with respect to the parent body and fall farther from the centre,
and (ii) the Yarkovsky/YORP effect, because the smaller fragments drift faster in semimajor axis and
subsequently move farther from the centre.

There are several outliers visible at the (ap, H) plot, which do not fit to this scheme. Most probably,
they are interlopers, which are not related to the Merxia family. Indeed, the big asteroid (1327) Namaqua
is an X-type, which is spectrally incompatible with the S-type Merxia family asteroids.

The problem is, that we do not know the initial spread, just after the impact and we cannot calculate
the age simply from the current extent of the family, since the Yarkovsky drift is only responsible for an
unknown part of it. Luckily, there is more information hidden in the (ap, H) plot — notice the depletion
of small asteroids in the centre and the overdensity at extreme values of the semimajor axis. Sometimes
we call this funny feature an “eared” family (Figure 19). Might this be a YORP effect fingerprint? The
YORP effect tilts the spin axes of asteroids directly up or down what enhances the Yarkovsky semimajor-
axis drift and can drive the smaller asteroids towards the edges of the family. Possibly, it can allow us to
resolve the ambiguity and to determine the age more precisely.

To check it, Vokrouhlický et al. (2006b) constructed a family evolution model, which accounts for:
(i) an isotropic ejection of fragments (and random periods P and obliquities γ at the beginning), (ii) the
Yarkovsky drift, (iii) the YORP effect, and (iv) collisional reorientations. There are four free parameters
in the model: (i) the initial velocity dispersion V of 5-km fragments (for a size D, V (D) = V 5 km

D ), (ii) the
YORP “strength” cYORP (iii) the family age T , and (iv) the surface thermal conductivity K.

They fit this model with observations using a 1-dimensional C-parameter, which is closely related to
the semimajor axis ap and the absolute magnitude H : C = ∆ap/100.2H, where ∆ap is the distance from
the family centre. The best fit for the Merxia family (Figure 20) yields the following results: the initial
dispersion in semimajor axis was roughly one half of the currently observed one (what is in agreement
with a statistical argument of Dell’Oro et al., 2004); the initial velocity was small (V = 24+6

−12 m/s), what

is in agreement with impact models (Michel et al. 2001); the YORP effect is important (cYORP = 0.6+1.4
−0.4);

asteroids are probably covered with a low-conductivity layer (K = 0.005 W/m/K); and the family is of
the young age (T = 238+52

−23 My). See Table 3 for results concerning other asteroid families.
Up to now, the analysis of the Merxia family was done in the (ap, H) plane only. We can, however, use

also information hidden in the proper eccentricity ep and inclination sin Ip. The distribution of the Merxia
members is clearly uneven in the (ap, ep) plane — the spread of ep increases abruptly at ap

.
= 2.75 AU.

Vokrouhlický et al. (2006b) successfully explain it as a Yarkovsky transport across the three-body mean
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Table 3: List of asteroid families and their ages estimated by the method of Vokrouhlický et al. (2006b).

family age/My family age/My

Agnia 100+30
−20 Erigone 280+30

−50

Astrid 180+80
−40 Massalia 152+18

−18

Eos 1300+150
−200 Merxia 238−23

+52

Figure 21: The observed Merxia family asteroids (big orange dots) in the (ap, ep, sin Ip) proper element space
and simulated asteroids (black lines) drifting due to the Yarkovsky effect from the centre to larger semimajor axes
(i.e., in the direction of the blue arrow). The 3J−1S−1 three-body resonance (which position is indicated by the
gray plane at 2.752 AU) spreads the drifting bodies in eccentricity and inclination. The distribution of simulated
asteroids behind the resonance then corresponds to the observed positions of the Merxia family members.

motion resonance with Jupiter and Saturn 3J−1S−1. It is actually an independent confirmation that
the Yarkovsky semimajor-axis drift is calculated correctly, because the smaller spread of ep before the
resonance is increased by the resonance crossing and then matches the observed spread of the family
members behind the resonance (Figure 21).

The chronology method mentioned in this section does not work for “too young” or “too old” families.
The former have not had enough time to evolve by the Yarkovsky/YORP and to exhibit the “ears”. The
latter are much older than the typical time-scale of the YORP-driven evolution and the model does not
account for the evolution of totally spun-up or spun-down asteroids.
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Table 4: Young asteroid clusters exhibiting a clear convergence of longitudes of perihelia or longitudes of nodes (a
sign of a collision, which produced the cluster). The ages were estimated by direct N-body integrations. Nesvorný
et al. (2003) pointed out these three clusters are also associated with particular dust bands observed by IRAS
(the clusters and the corresponding bands have very similar proper inclinations). The large amount of dust was
most probably produced by the parent collision (and partially by a subsequent collisional cascade). Farley et al.
(2006) provided a completely independent confirmation: The plot of 3He abundance in marine sediments vs. their
age exhibits a large peak around (8.2 ± 0.1) My. The light helium is thought to be of interplanetary origin and
its excess can be attributed to the Veritas event.

cluster age/My IRAS dust band
Karin (5.8 ± 0.2) 2.11◦

Veritas (8.3 ± 0.5) 9.38◦

Iannini < 5 probably J/K (12.11◦)

Figure 22: The orbits of the Karin cluster members on the plots longitude of perihelion and longitude of node
vs. time. Left: without any non-gravitational forces (the dispersion of Ω and ̟ at the time −5.8 My is ∼ 40◦).
Right: with the Yarkovsky semimajor axis drift included (the dispersions are ∼ 5◦ only). The current extent of
the Karin cluster in semimajor axis is ∼ 10−2 AU (i.e., the Yarkovsky drift of the order 10−4 AU is clearly visible
only in Ω(t), ̟(t) plots). From Nesvorný & Bottke (2004).

The youngest clusters and the measurement of the Yarkovsky effect. A few of the compact
clusters, like Karin, Veritas or Iannini, exhibit a profound convergence of orbital nodes or perihelia, corre-
sponding to the time of the disruption event; it can be revealed by direct backward N-body integrations.
(Nesvorný et al. 2002, 2003). In case of the Karin cluster, the age determined this way was found to be
5.8 My (see also Table 4).

The precession rates of Ω and ̟ sensitively depend on the semimajor axis, which is in turn steadily
affected by the Yarkovsky acceleration. Nesvorný & Bottke (2004) discovered, that the convergence of
Karin orbits can be substantially improved, if they assume a particular value of the semimajor axis drift
rate for each Karin member individually (the spread of Ω and ̟ at the impact time drops from 40◦

downto 5◦, which is much more consistent with the observed spread of proper a, e, i, according to the
Gauss equations; see Figure 22).

In other words, they were able to actually measure the drift rates da
dt of real asteroids; the only re-

quirement was the better convergence of all orbits belonging to the Karin cluster. The most important
conclusion, regarding non-gravitational forces, is that these measured drift rates are of the same magni-
tude as the theoretically calculated Yarkovsky effect drift rates and, moreover, they also exhibit a clear
dependence on size (Figure 23). The model based on the Yarkovsky force also serves a testable prediction:
obliquities of asteroids, which can be measured by future photometric observations.

Recently, Nesvorný et al. (2006c), Nesvorný & Vokrouhlický (2006) identified four clusters younger
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Figure 23: The semimajor axis drift rate da
dt

vs. size for the 70 Karin cluster asteroids. The drift values
(triangles) plotted here are required for the orbits to have similar Ω’s and ̟’s at the time −5.8 My (Figure 22).
The diametres of asteroids were calculated from their absolute magnitudes, assuming the albedo 0.25. The curves
represent theoretical Yarkovsky drift rates, calculated for different values of obliquity (ranging from 0◦ to 180◦).
Larger asteroids have smaller observed maximum drift rates, in agreenment with the Yarkovsky model. The
position of the triangle with respect to the curves is essentially a prediction of asteroid obliquity. From Nesvorný
& Bottke (2004).

Figure 24: The convergence of Ω and ̟ angles for 3 members of the Datura cluster (relative to the asteroid
(1262) Datura; the total number of known members is 7). There is a histogram of plausible ages (with the
maximum mutual velocities δV < 5 m/s) determined from 106 various orbital histories. The trials differ due to
the uncertainity in orbit determination and the a priori unknown magnitude of the Yarkovsky effect. The cluster
formed most probably (450 ± 50) ky ago. From Nesvorný et al. (2006c).

than 1 My in the five dimensional space of osculating orbital elements (see Figure 24 for an example of
the Datura cluster). Even on this short timescale, one have to take the Yarkovsky effect into account, in
order to reach the convergence in the sixth element, the mean anomaly, too. The Yarkovsky semimajor
axis drift spreads the mean anomaly by 360◦ in 200 ky only for 1–2 km asteroids (and the effect on Ω and
̟ is also not negligible).
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2.2.5 Cometary bodies with outgassing

Cometary bodies are perturbed mainly by the Sun-driven sublimation of ices from the surface and the
corresponding rocket effect. The detailed review of the cometary motion modeling was given by Yeomans
et al. (2004).

The older four-parameter Extended Standard Model was superseded by the Rotating Jet Model, which
assumes one or more jets emanating from a rotating nucleus; it can also account for orbit-to-orbit and
seasonal changes of the outgassing activity. The jets activity is strongly supported by in-situ observations
of cometary nuclei, performed by Deep Space 1, Stardust and Deep Impact spacecrafts (Soderblom et al.
2002, Sekanina et al. 2004, A’Hearn et al. 2005). Chesley & Yeomans (2005) applied the latter model to
selected space mission targets. In some cases, it seems to be possible to deduce the physical parameters
(i.e., the orientation of the spin axis and the positions of the jets) from astrometric data alone. On the
other hand, models like Davidsson & Gutiérrez (2005) try to combine the non-gravitational changes of
orbital elements with the nucleus rotational lightcurve and the water production rate.

2.2.6 Conclusions and future work

The non-gravitational forces, namely the Yarkovsky/YORP effect relevant for small asteroidal bodies in
the size-range 10 cm to 10 km, are now inevitable ingredients of dynamical models. Today, there is a
dozen of important applications of the Yarkovsky/YORP models; we mentioned some of them in this
brief review.

The precise measurement of Golevka’s non-gravitational drift was only a first step. Within the next
decade, we expect a dozen of similar Yarkovsky detections by precise radar astrometry (Vokrouhlický
et al. 2005c, 2005d) or future optical astrometry with GAIA.

Yarkovsky semimajor-axis drift of the order ∼ 10 km per 10 years becomes crucial for an accurate
orbit determination and even for estimates of an impact hazard (Giorgini et al. 2002). Especially, when
the calculation of an impact probability depends on the fact, if the asteroid misses or hits a phase-space
“keyhole”, which is much smaller then the diameter of the Earth.

Further step forward might be a thorough combination of dynamical models with infrared observations
of NEA’s and their thermophysical models (Delbó et al. 2003) — they supply independent constraints
(with different correlations) on Yarkovsky/YORP-related parameters, like the thermal conductivity.

We can await the first direct detection of the YORP effect in the forthcoming years, either from
ground-based photometric measurements and corresponding lightcurve modelling, or from the space-
borne mission Hayabusa, which now orbits the asteroid (25143) Itokawa (e.g.,Vokrouhlický et al. 2004).

The dynamical studies of asteroid families provide also predictions of physical properties and rota-
tional states of individual asteroids, which can serve as good opportunities for further observational tests
(similar to Vokrouhlický et al. (2005e) who photometrically observed (2953) Vysheslavia and confirmed
its retrograde rotation predicted by Vokrouhlický et al. (2001)). For example, the small members of the
families with intermediate ages (discussed in Section 2.2.4) should exhibit preferential values of obliq-
uities due to the YORP torque and Yarkovsky drift: the asteroids located far from the family-centre
at lower/larger values of semimajor axis should have retrograde/prograde rotations. The most suitable
families for such survey seem to be the Massalia or the Erigone, located in the inner Main Belt, what
makes them more easily observable.

An appealing project would be to determine systematically the ages of all asteroid families, including
large and old ones. However, we have to face several obstacles: (i) we still lack the direct measurements
of basic physical parameters (albedos, masses, shapes, spectra) for most family members and we cannot
expect the situation dramatically improves in the next few years; (ii) a modelling of several subsequent
YORP cycles have not been developed yet.

There is already a number of examples, how the YORP torque affects rotational states of asteroids (we
discussed some in Sections 2.2.2 and 2.2.4). Moreover, there are further indications: (i) the distribution of
rotational periods of all ∼1500 asteroids, we have lightcurves for, reveals an excess of very slow and very
fast rotators (Pravec & Harris 2000); (ii) small NEA’s have a non-Maxwellian distribution of periods; and
(iii) there seems to exist a preference of retrograde-rotating asteroids among NEA’s (La Spina et al. 2004),
what is in concert with the positions of Main-Belt escape routes, fed by the obliquity-dependent Yarkovsky
drift. A detailed model for a long-term YORP-driven period and obliquity evolution, concerning the entire
Main-Belt and NEA’s, does not exist yet. Also a possible YORP origin of binaries created by asteroid
fission have not been studied in detail.
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2.3 A mathematical formulation of the Yarkovsky/YORP effect

The goal of this section is to present, at first, a very simple analytical solution of the 1-dimensional heat diffusion
equation, which allows us to quantitatively estimate the Yarkovsky acceleration. This solution, thougth being
simple and clear, holds basic properties of the Yarkovsky effect, such as its dependence on material, the rotational
or orbital frequency; we also discuss the dependence on size and obliquity. We follow the analysis by Bertotti,
Farinella & Vokrouhlický (2003) here. There is a description of the spherically symmetric solution by Vokrouhlický
(1998), Vokrouhlický & Farinella (1999) and Vokrouhlický (1999) in the second part, supplemented by notes on its
implementation in the swift rmvsy numerical integrator package, which we usually use for numerical simulations
involving the Yarkovsky effect.

How do we calculate the Yarkovsky/YORP effect? In order to estimate the recoil force and momen-
tum acting on an asteroid, which emits thermal radiation, we need to know, at first, the temperature
distribution on its surface. A rough estimate of the mean equilibrium temperature Teq can be obtained
easily, if we assume the asteroid is in the thermal equilibrium:

πR2(1 −A)
L⊙

4πr2
= 4πR2ǫσT 4

eq , (1)

where A denotes the Bond albedo, L⊙
.
= 3.83×1026 W the solar radiation power, r the distance from the

Sun, ǫ the infrared emissivity, σ the Stefan-Boltzmann constant (the radiusR is not important). If we drop
the number 4 from Eq. (1), we get the ‘noon’ subsolar temperature T⋆ =

√
2Teq. For (2953) Vysheslavia

(with r ≃ a = 2.83 AU and A ≃ 0.2; discussed in Sec. 4) we have Teq
.
= 160 K and T⋆

.
= 220 K.

Of course, a more realistic situation is more complicated — in order to find the temperature T (r, t),
as a function of the position r and time t, we have to solve a heat diffusion equation in the volume of the
body:

∇ · (K∇T ) = ρC
∂T

∂t
, (2)

with a boundary condition on the surface:

(

K
∂T

∂r

)

surface

+ ǫσT 4 = (1 −A) E(t) · n⊥(r) , (3)

where K denotes the thermal conductivity, ρ the density, C the specific thermal capacity and E(t) the
time dependent radiation flux (with respect to the local normal; E(t) differs from 0 only when the scalar
product E · n is positive).

2.3.1 A 1-dimensional toy model.

To keep things as clear as possible, let us consider a 1-dimensional example: an half-space x ≥ 0 of a
homogeneous material irradiated by a periodic flux E(t) = E0 + E1 ei2πft, i.e., ‘something like’ alternating
day and night. (Only the real part Re{E} = E0 + E1 cos 2πft is relevant.) We can imagine, this is a
single thin ‘column’ of a big asteroid, with the surface element irradiated by the Sun, which changes its
position on the sky. (The frequency f can characterise either the diurnal or the seasonal motion.) The
heat diffusion equation (2) and the boundary condition (3) then read:

χ
∂2T

∂x2
=
∂T

∂t
, (4)

−K∂T

∂x
+ ǫσT 4 = (1 −A)E(t) , (5)

where χ = K
ρC is the thermal diffusivity of the material. In general, we want to find the temperature

T (x, t) as a function of the depth and time.
Because E(t) is a harmonic function, we ‘guess’ the response of T , in steady state, will be analogous.

Thus, we try to find a particular solution of the form T (x, t) = T0 + T1(x) ei2πft. (T1(x) might be
a complex function, which would mean a phase shift of the temperature with respect to the incident
radiation.) The Eq. (4) then reduces to an ordinary differential equation for T1(x):

d2T1

dx2
(x) =

i2πf

χ
T1(x) , (6)
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Table 5: Typical assumed values of the material thermal parameters we use for modelling of the Yarkovsky/YORP
effect. ̺bulk denotes the bulk density, ̺surf the surface density, K the thermal conductivity, C the specific thermal
capacity, and A the albedo.

material ̺bulk ̺surf K C A

kg · m−3 kg · m−3 W · m−1 · K−1 J · kg−1 · K−1

bare basalt 3500 0.5–2.5 680 0.1–0.16
regolith covered 3500 1500 0.001–0.01 680
metal 8000 ∼ 40 500 0.09–0.11
C-type 1000 0.1–1 1500 0.03–0.08

which non-divergent solution we find easily:

T1(x) = T1(0) e−
√

i2πf/χx = T1(0) e−(1+i)
√
πf/χ x . (7)

We see the changes of the temperature decrease with depth as e−
x
δ and the penetration depth of the

thermal wave is of the order δ =
√

χ/(πf). (And, moreover, there is some phase shift too.)
We still do not know the surface temperature T (0, t). Here, we exploit the boundary condition (Eq. 5),

where we substitute the already known derivative ∂T
∂x (x, t) = −(1 + i)

√

πf/χT1(x) ei2πft, so

K(1 + i)
√

πf/χT1(0) ei2πft + ǫσ(T0 + T1(0) ei2πft)4 = (1 −A)(E0 + E1 ei2πft) . (8)

The calculation of the fourth power, and especially the solution, would be ‘distressful’. Nevertheless, we
suppose T1(0) ≪ T0 (i.e., the changes of the temperature are small with repsect to the mean temperature)
and linearize Eq. (8) as (T0 + T1)4 = T0 + 4T 3

0 T1 + O(T 2
1 ) . We subtract the terms with T0 and E0 (they

correspond exactly to the equilibrium temperature in Eq. (1)) and we are left with a linear equation for
T1(0):

(1 + i)
√

πfKCρT1(0) + 4ǫσT 3
eq T1(0) = (1 −A)E1 .

The surface temperature is expressed as:

T (0, t) = Teq +
(1 −A)E1 ei2πft

(1 + i)
√
πfKCρ+ 4ǫσT 4

eq

.

The denominator is a complex number (it means a phase shift); after an algebra we see that:

T (0, t) = Teq +
(1 −A)E1

4ǫσT 3
eq

1

1 + 2Θ + 2Θ2
ei(2πft+φth) , (9)

where the thermal parameter Θ and phase lag φth are:

Θ =

√
πfKCρ

4πǫσT 3
eq

, tanφth = − Θ

1 + Θ
. (10)

For sake of completeness we can write the temperature at a depth (however, it is not crucial for us,
because the dynamical action is driven by T (0, t) only):

T (x, t) = Teq +
(1 − A)E1

4ǫσT 3
eq

1

1 + 2Θ + 2Θ2
ei(2πft+φth−

√
πf/χ x) e−

√
πf/χ x . (11)

There are two visualisations of this steady-state solution (Eq. 11) of the 1-dimensional heat diffusion
equation (Eq. 4) in Figures 25 and 26. Thermal properties of materials, from which asteroids probably
consist, are listed in Table 5. The summary of the thermal lag φth values (Eq. 10) and the temperature
amplitude values T1(0) (Eq. 9) for typical diurnal and seasonal frequencies is provided in Table 6. The
ratio T1(0)/Teq, which is of the order ≃0.1 in some cases, tells us, that we are just approaching the limits
of the linear theory and the temperature in a full non-linear theory might differ, probably by ≃10 % · T1.

Knowing the surface temperature T (on an object of any shape), we calculate the elementary radiation
force due to the emission of photons, carrying the momentum away from the single surface element dS,
as:

dFY = −2

3

ǫσT 4

c
dSn⊥ . (12)
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Figure 25: A 3-D plot of the depth x vs. time t vs. temperature T as resulted from the 1-dimensional toy model
(Eq. 11). The material properties correspond to a basaltic rock (see Table 5), with the thermal conductivity
K = 1 W/m/K. The flux amplitude E1 is one half of the equilibrium flux E0 at 2.5 AU from the Sun; the
frequency of the flux E(t) corresponds to the orbital period of P = 4 y. The flux is plotted as a thin line in the
(t, T ) plane and it is scaled the same as the amplitude of the surface temperature T1(0). The thermal lag between
the incident flux E(t) and the surface temperature T (0, t) is then clearly visible (φth

.
= −4◦).

Figure 26: An estimate of the temperature T (colour coded) in the depth x (vertical coordinate) — some sort
of “an asteroid cross-section” — for a regolith-like material with the thermal conductivity K = 0.01 W/m/K
(see Table 5). The situation depicted here corresponds to the 1-D toy model (Eq. 11), with the flux E(t) period
P = 1/f = 6 hours, i.e., a typical diurnal motion, and the particular time t = 1.5 h. The dotted line denotes
the depth 3δ, where δ =

p

χ/(πf) is the characteristic penetration depth of the thermal wave. There is a colour
coded flux E(1.5 h), scaled similarly as T , in the upper right square.
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Table 6: The penetration depth of the thermal wave δ (Eq. 7), the thermal parameter Θ (Eq. 10), the thermal
lag φth (Eq. 10) and the amplitude of the surface temperature T1(0) (Eq. 9) as resulted from the 1-dimensional
toy model. The flux amplitude E1 is one half of the equilibrium flux E0 at 2.5 AU from the Sun (Teq

.
= 170 K).

The values were calculated for two types of material (taken from Table 5) and two different periods P = 1/f of
the flux E(t) — a typical diurnal (6 hours) and a seasonal (4 years).

material P δ Θ φth T1(0)
m deg K

basalt 6 h 0.05 6 −40 1
4 y 4 0.08 −4 82

regolith 6 h 0.008 0.4 −15 47
4 y 0.6 0.005 −0.3 94

The factor 2
3 conforms to the Lambert law of scatterring; n⊥ denotes the external normal unit vector.

The Yarkovsky acceleration of a homogeneous body with the total mass m is then given by the integration
over the whole surface:

aY = −2

3

ǫσ

mc

∫

S

dS n⊥T
4 ≃ −8

3

ǫσ

mc
T 3

eq

∫

S

dS n⊥T1 , (13)

where we can use the linearization of T 4 again.
Similarly, we express the total YORP torque (affecting the spin of the body):

TY =

∫

S

r× dFY = −2

3

ǫσ

c

∫

S

r × n⊥dS T 4 . (14)

The major orbital perturbation caused by aY is the semimajor axis drift. The first Gauss equation
reads:

da

dt
=

2T
n

+ O(e) , (15)

where T denotes the transversal component of aY. As we can see from Eq. (13), the resulting total
transverse acceleration T (hence, the semimajor axis drift rate da/dt) is: i) proportional to the deviations
of temperature from the equilibrium, ii) the sine of the thermal lag angle sinφth (see Figure 27), and
iii) inversely proportional to the size (because FY ∝ surface area S and aY = F

m).1

The YORP torque TY changes the angular momentum L of the body: dL
dt = TY . In case the body

rotates around the shortest axis of the inertia tensor, then L = Cωe, where C denotes the moment of
inertia (assumed constant), ω the angular velocity and e the unit vector along the spin axis. The rate of
change of L is usually expressed in three angular variables:

dω

dt
=

T · e
C

, (16)

dγ

dt
=

T · e⊥1

Cω
, e⊥1 =

(N · e) e− N

sin γ
, (17)

dψ

dt
=

T · e⊥2

Cω
, e⊥2 =

e× N

sin γ
, (18)

where γ is the obliquity, ψ the longitude, T the total torque (aside the YORP one, there are usually
gravitational torques and inertial terms due to the motion of the reference frame), the unitvector N is
perpendicular to the orbital plane. dω

dt scales as 1
R2 (because TY ∝ R3 and C ∝ R5).2

1A typical magnitude of the radiation force per 1 m2 could be dFY
.
= 2

3
0.9·5.67·10−8 ·1604 ·1

3·108 N
.
= 10−7 N. For a typical

1-km asteroid, we have roughly (see the parameters for the regolith material and the diurnal frequency in Table 6): aY
.
=

8
3

0.9·5.67·10−8 ·1603

(4/3)·3.14·10003 ·3500·3·108 4·3.14·10002 ·47 m·s−2 .
= 10−13 m·s−2 (compare it to the gravitational acceleration aG =

GM⊙

r2

.
=

10−3 m·s−2); the transverse component T
.
= 10−13·sin 15◦ m·s−2 .

= 10−14 m·s−2, the mean motion n =
q

GM⊙

a3

.
= 0.004 rad

day

and the resulting semimajor axis drift rate da
dt

.
= 2·10−14 ·(864002/150·109)

0.004
· 365.25 · 106 AU

My

.
= 10−4 AU

My
. These order-of-

magnitude estimates are consistent with a more complex 3-D modelling (see Section 2.3.2, Figure 29).
2A crude estimate of the YORP torque acting on a 1-km asteroid with an irregular shape might be TY = |

R

S
r×dFY|

.
=

1000 · 10−7 · 10−2 · 4 · 3.14 · 10002 N ·m
.
= 101 N ·m. (Here, we naively assumed that 1 % of the whole surface area radiates in

31



Sun

F (t)

T (t) ls

τR

(

maximum
absorption

) (

maximum
emission

)

ω

s

θω =
τR
PR

∼ Γ
√
ω

σǫ T 3
m

⇒ transversal force component

Figure 27: The time lag between the absorption of the solar radiation and the thermal emission arising on
a rotating spherical body. The incident solar flux F (t) is maximum at the subsolar point, but the maximum
emission takes place somewhat later due to the rotation. Therefore, the radiation force has a non-zero tranversal
component, which is proportional to the sine of the thermal lag angle sin φth (measured between the yellow and
red semicircles on the sphere).

There are two important aspects we could not account for in the 1-D model above: i) the finite size of
the body, and ii) the dependence on the obliquity. If the size is of the order δ or smaller, the conduction
of heat across the body effectively equilibrates the surface temperature and thus spherically symmetric
bodies are not accelerated any more.

The obliquity γ (i.e., the angle between the rotational axis and the normal to the orbital plane) is
also an important parameter. Let us imagine a sphere orbiting the Sun (Figure 28) and distinguish three
special cases:

1. The prograde diurnal rotation (γ = 0◦) and the inevitable thermal lag give rise to a non-zero
transverse component TY of the Yarkovsky acceleration, which causes the body to spiral away from
the Sun (semimajor axis steadily increases, in agreenment with the Gauss equation da

dt

.
= 2T

n ).

2. On the contrary, the retrograde rotation (γ = 180◦) forces the semimajor axis to decrease.

3. The spin axis tilted in the orbital plane (γ = 90◦) means, there are large seasonal temperature
variations and the corresponding thermal lag (calculated for the orbital frequency) leads to a steady
decrease of semimajor axis (regardless on the sense of the diurnal rotation).

Both the dependence on size and obliquity arise naturally in 3-dimensional models (see Section 2.3.2).

2.3.2 A spherically symmetric linear model.

An analytical solution of the heat diffusion equation with a linearized boundary condition is also pos-
sible for a sphere and an appropriate solar flux E(t) (Vokrouhlický (1998), Vokrouhlický & Farinella
(1999), Vokrouhlický (1999)). Hereinafter, we use scaled quantities (denoted by dashes): r′ = r/ls,

one direction tangent to the surface.) The moment of inertia is approximately C = 8
15

πR5ρ
.
= 5 · 1018 kg · m2. Therefore,

dω
dt

.
= 101

5·1018
rad
s2

= 2·10−18 rad
s2

. What is the timescale for a complete spin-down? If we start with ω0 = 3·10−4 rad
s

.
= 5 rev

day
,

then τω
.
= 3·10−4

2·10−18 s = 1.5 · 1014 s
.
= 107 y. (The timescale for a spin-up is of the same order, because the upper limit is

ωcrit
.
= 11 rev

day
; if the rotation is faster, gravitationally bound bodies likely disintegrate.) Similarly, dγ

dt

.
= 101

5·1018 ·3·10−4
rad
s

.
=

10−14 rad
s

and a π
2

change of the tilt can be expected after τγ
.
= 1.57

10−14 s
.
= 107 y.
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Figure 28: Diurnal and seasonal variants of the Yarkovsky effect and the dependence on the obliquity γ. The
gray arrows denote the recoil force acting on the body. (a) The diurnal Yarkovsky effect, when the body rotates
around the spin axis perpendicular to the orbital plane. In this case of prograde rotation, the force causes an
increase of the semimajor axis a. Generally, the change ∆a ∝ cos γ. (b) The seasonal Yarkovsky effect, with
the spin axis in the orbital plane. The heating of the hemispheres, mainly at points A and C, and the delayed
emission of thermal radiation, mainly at points B and D, produce a recoil force, which magnitude changes along
the orbit, but which transverse component is always opposite to the velocity, thus causing a steady decrease of
the semimajor axis (∆a ∝ − sin2 γ).

ls =
√

K/ρCωrev, ∆T ′ = ∆T/T⋆, ǫσT
4
⋆ = αE⋆, α = (1 − A), ∆E ′ = ∆E/E⋆, ∆E = E − E⋆/4, ζ = eiλ,

λ = ωrev(t− t0). The flux can be written easily in terms of spherical harmonics:

∆E ′ =
∑

n≥1

n
∑

k=−n
ank(ζ)Ynk(θ, φ) . (19)

We need three dipole terms only (to express the flux differs from zero on the illuminated hemisphere
only):

a10(ζ) =

√

π

3
cos θ0 , a1±1(ζ) = ∓

√

π

6
sin θ0 e

∓iφ0 , (20)

where (θ0, φ0) are the coordinates of the Sun, which in turn change periodically with time, according to
cos θ0 = − sinγ sinλ = i

2 sin γ(ζ− ζ−1), sin θ0 e
±iφ0 = −(sin2 γ

2 ζ
∓(m+1) + cos2 γ

2 ζ
∓(m−1)), where γ is the

obliquity.
The heat diffusion equation and the boundary condition (Eqs. 2 and 3) in spherical coordinates (and

after the linearization) now read:

iζ
∂

∂ζ
∆T ′(r′; θ, φ; ζ) =

1

r′2

{

∂

∂r′

(

r′2
∂

∂r′

)

+
1

sin θ

[

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin θ

∂2

∂φ2

]}

∆T ′(r′; θ, φ; ζ) , (21)

√
2∆T ′ + Θ

(

∂∆T ′

∂r′

)

R′

= ∆E ′ . (22)

It is convenient to look for a solution T ′, which has a the same structure as the source flux (Eq. 19):

∆T ′(r′; θ, φ; ζ) =
∑

n≥1

n
∑

k=−n
t′nk(r′; ζ)Ynk(θ, φ) . (23)

The properties of the Eqs. (21) and (22) (namely the orthogonality of the Ynk functions) lead to a complete
separation of radial, angular and time variables and even individual Fourier modes. Vokrouhlický (1999)
found the solution for the three necessary dipole coefficients t′10(R′; ζ) and t′1±1(R′; ζ). (We do not write
them explicitly here, but see Sec. 2.3.3.)

33



10
-5

10
-4

10
-3

10
-2

10 km1 km100 m10 m1 m10 cm

s
e
m

im
a
jo

r 
a
x
is

 d
ri
ft
 |

δa
/δ

t|
 /
 A

U
/M

y

diameter D

P-R drag

regolith

basalt

Figure 29: The sum of absolute values |da/dt| of the diurnal and the seasonal semimajor axis drift rates vs.
size, calculated for spherical bodies with a moderate value of obliquity γ = 135◦ and consisting of two materials
from Table 5: bare basalt and regolith covered, i.e., with high and low thermal conductivity. (Of course, for
particular values of γ the diurnal or the seasonal Yarkovsky effect may vanish; they can even cancel each other,
when the diurnal rate is positive and the seasonal negative.) Nevertheless, the sum plotted here shows clearly an
approximate maximum total drift (per 1 My) one can expect. The mean collisional lifetime is roughly 50 My for
a 10-m stony meteoroid and 500 My for a 1-km asteroid (Farinella et al. (1998), Bottke et al. (2005b)). Note, that
we do not expect very small regolith-covered bodies to exist, thus the drift rates larger than 10−2 AU/My are not
realistic. The drift rate caused by the Poynting-Robertson drag is also plotted; it prevails for sizes smaller than
. 10 cm.

The Yarkovsky acceleration is given by the integration over the surface of the sphere:

f(ζ) = −2
√

2

3π
αΦ

∫

dΩ ∆T ′(R′; θ, φ; ζ) n , (24)

where Φ = (E⋆πR2/mc). We obtain the following expressions for the components (fX , fY , fZ):

fX(ζ) + ifY (ζ) = − 8

3
√

3π
αΦ t′1−1(R′; ζ) , (25)

fZ(ζ) = −4

3

√

2

3π
αΦ t′10(R′; ζ) . (26)

The equatoreal components (in the XY plane) are called diurnal (because it depends mainly on the
rotational frequency), while the along-axis component is called seasonal (because of the orbital frequency).
Note, there is zero YORP torque (Eq. 14) within spherical models.

In order to find secular effects of the Yarkovsky acceleration on the semimajor axis, we have to
transform it to the heliocentric reference frame, substitute to the Gauss equation da/dt = 2T /ωrev and
average over one orbit. The results for the diurnal and seasonal components are of the form:

(

da

dt

)

d

≃ −8α

9

Φ

ωrev

ER′
m

sin δR′
m

1 + χ
cos γ , (27)

(

da

dt

)

s

=
4α

9

Φ

ωrev

ER′ sin δR′

1 + χ
sin2 γ . (28)

The dependence of da/dt on the obliquity (discussed already within the 1-D toy model in Section 2.3.1)
is recalled here. An example, how the semimajor axis drift rates depend on size is depicted in Figure 29.

2.3.3 The implementation in the swift rmvsy package

Most of the simulations of the long-term orbital evolution presented in Sections 2.3.4 to 7 exploit the spher-
ical linear model of the Yarkovsky acceleration (Sec. 2.3.2). In our previous work (Brož, 1999) we modified
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the SWIFT integrator package (see SWIFT ; Levison & Duncan (1994)) to account for the Yarkovsky di-
urnal and seasonal accelerations. We distribute this add-on in the package called swift rmvsy, which can
be downloaded from Yarko-site. The latest version contains also filtering routines suitable for calculation
of proper and ‘resonant’ elements; see Section 9.1 for details.

How do we calculate the Yarkovsky acceleration in the SWIFT integrator? We follow Vokrouhlický
(1998) and Vokrouhlický & Farinella (1999), and we include several optimizations, which improve the
speed of the calculation and reduce round-off errors. We present the algorithm here as a ‘recipe’.3

The quantities have similar names as the variables in the relevant Fortran subroutines (io_init_th.f,
yarko_seasonal.f, getacc_yarko.f). The global arrays, in which we store quantities for all test parti-
cles, keep them in the memory and pass to next subroutines, are indexed by the subscript i. We do not
write the respective for-cycles explicitly.

The steps 1–4 have to be performed only once (in the io_init_th.f and io_init_spin.f subroutines),
at the startup.

1. Read the input quantities from the th.in file: R, ρ, ρsurf ,K,C,A, ǫ, [T ]h; and the spin unitvector
(s1, s2, s3)i from the spin.in file. If the period T < 0, calculate ω = 2π

5·3600 s
1

2R/1000 m , otherwise

ω = 2π
[T ]h·3600 s .

2. Calculate auxilliary quantities : M = 4
3πR

3ρ, Γ =
√
ρsurfCK, ls =

√

K
ρsurfCω

, R′ = R
ls

, R′
0i =

R√
K/ρsurfC

.

3. Evaluate complex numbers: z = 1√
2
(1 − i)R′,

sin z = 1
2i

(

cos Re{z} + i sin Re{z} − [cos(−Re{z}) + i sin(−Re{z})] e2 Im{z}),

cos z = 1
2

(

cos Re{z} + i sin Re{z} + [cos(−Re{z}) + i sin(−Re{z})] e2 Im{z})

(both the expressions were divided by the factor eIm{z} to avoid numerical problems; it would cancel anyway

in the following fraction),

ψi = (z2−3) sin z+3z cos z
sin z−z cos z .

4. Pre-calculate additional thermal parameters of TPs (in order to minimize the number of operations

performed every timestep; S0 = 1361 W · m−2 is the solar constant): λ0i = Γ
√
ω

ǫσ
√

2R′
, θ =

√
2R′λ0i,

λs0i = Γ
ǫσ

√
2
, T⋆40i = (1−A)S0

ǫσ , ρ0i = − 4
9
ǫσπR2

Mc
(86400 s)2

149597870·103 m , θsi = Γ

ǫσT
3/4

⋆40i

1√
86400 s/kgauss

, ρs0i =

πR2S0

Mc (1 −A).

In the steps 5–7, we evaluate the seasonal Yarkovsky coefficients, which do not depend on the fast mean
anomaly, but only on the slow elements. They are computed every dtfilter (usually 1 y) in the subroutine
yarko_seasonal.f. The mass m1 is the subroutine input parameter, the keplerian osculating orbital
elements (ai, ei, Ii, ωi,Ωi) are passed in a common block from the io_write_filter.f subroutine, where
they are calculated anyway.

5. Calculate powers of the eccentricity upto 7 in advance (e1 = ei, e
j = ej−1e1) and then the devel-

opment:

α1 = 1 − 3 1
23 e

2 + 5
6

1
22 e

4 − 7
72

1
27 e

6,

α2 = 4
(

2 1
22 e

1 − 16
3

1
24 e

3 + 4 1
26 e

5
)

,

α3 = 9
(

3 1
23 e

2 − 45
4

1
25 e

4 + 567
40

1
27 e

6
)

,

α4 = 16
(

16
3

1
24 e

3 − 128
5

1
26 e

5
)

,

α5 = 25
(

125
12

1
25 e

4 − 4375
72

1
27 e

6
)

,

α6 = 36
(

108
5

1
26 e

5
)

,

α7 = 49
(

16807
360

1
27 e

6
)

,

3We focus on the implementation in the SWIFT (which itself includes four different integration schemes), but, of course,
this algorith can be theoretically used in any other scheme, assuming it allows to incorporate accelerations, which depend on
positions, velocities and also explicitly on time (because we use some developments in eccentricity to calculate the seasonal
Yarkovsky effect).
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β1 = 1 − e2

8 + e4

192 − e6

9216 ,

β2 = 4
2e

1
(

1 − e2

3 + e4

24

)

,

β3 = 27
8 e

2
(

1 − 9
16e

2 + 81
640e

4
)

,

β4 = 16
3 e

3
(

1 − 4
5e

2
)

,

β5 = 25 125
384e

4
(

1 − 25
24e

2
)

,

β6 = 972
80 e

5,

β7 = 823543
46080 e

6.

6. Calculate the scalar products P · s and Q · s (one may wish to pre-calculate the sines and cosines)
and other thermal quantities:

sP = (cosωi cos Ωi−sinωi sin Ωi cos Ii)·s1i+(cosωi sin Ωi+sinωi cos Ωi cos Ii)·s2i+(sinωi sin Ii)·s3i,
sQ = (− sinωi cos Ωi − cosωi sin Ωi cos Ii) · s1i + (− sinωi sin Ωi + cosωi cos Ωi cos Ii) · s2i +

+ (cosωi sin Ii) · s3i,
η =

√
1 − e2, n =

√
m1a

−3/2
i , R′ = R′

0i

√

n/86400 s, X1 =
√

2R′, λs = θsi(aiη)3/4 1
X1

,

ath0 = 4
9

ρs0i

a2
i (1+λs)

(86400 s)2

149597870·103 m ,

7. Calculate the seasonal coefficients for each k = 1 upto kseasonal (usually 7); one may wish to pre-
calculate sinXk, cosXk and e−Xk :

Xk =
√

2kR′,

Ak = − e−Xk(Xk + 2) − [(Xk − 2) cosXk −Xk sinXk],

Bk = − e−Xk Xk − [Xk cosXk + (Xk − 2) sinXk],

Ck = Ak + λs

1+λs

{

e−Xk 3(Xk + 2) + [3(Xk − 2) cosXk +Xk(Xk − 3) sinXk]
}

,

Dk = Bk + λs

1+λs

{

e−Xk Xk(Xk + 3) − [Xk(Xk − 3) cosXk − 3(Xk − 2) sinXk]
}

(the factor eXk was cancelled here to prevent numerical problems),

cos δk = AkCk+BkDk

C2
k
+D2

k

, sin δk = BkCk−AkDk

C2
k
+D2

k

(the factor AkBk was cancelled),

Kcki = ath0(sP αk cos δk + sQ ηβk sin δk),

Kski = ath0(−sP αk sin δk + sQ ηβk cos δk)

(optionally, one may wish to calculate seasonal semimajor axis drift rate here4).

Finally, the time-critical part (steps 8–10), which has to be computed every timestep dt (usually
≃ 10 d) in the subroutine getacc_yarko.f. We need to know mean anomaly Mi and epoch t0 from
io_write_filter.f.

8. The Yarkovsky diurnal acceleration first (the heliocentric coordinates xhi, yhi, zhi are the input
parameters of the subroutine, the values Ri = 1

rhi
were already calculated earlier during the gravi-

tational interaction): GM =
√
m1, n01 = −xhiRi, n02 = −yhiRi, n03 = −zhiRi,

cos θ0 = n01s1i + n02s2i + n03s3i, sin θ0 =
√

|1 − (cos θ0)2| (note the absolute value due to round-off

errors),

T⋆4 = T⋆40iR2
i , T⋆3 =

√√
T⋆4 · T⋆4 · T⋆4 (this is faster than T

3/4
⋆4 ),

λ = λ0i

T⋆3
, Ψ2 = 1

1+ λ
1+λψi

(a complex number), ρ = ρ0iT⋆4

1+λ

(optionally, we can estimate diurnal semimajor axis drift rate here5),

f11 = ρ sin θ0 Re{Ψ2}, f12 = −ρ sin θ0 Im{Ψ2}, f13 = ρ cos θ0.

4In this case, we have to add a summation in the previous for-cycle: ∆a := ∆a + sin δk
k

(sP 2α2
k + sQ2(ηβk)2) and the

final value in AU
My

units is: ∆as = 4
9n

ρs0i

a2
i (1+λs)

∆a (86400 s)2

149597870·103 m
365.25 · 106.

5We compute n = GM/a
3/2
i , cos γi =

(rhi×vhi)·si
|rhi×vhi|

, where γi is the obliquity, ri = (xhi, yhi, zhi), vi = (vxhi, vxhi, vzhi),

si = (s1i, s2i, s3i); and finally ∆ad = ρ Im{Ψ2}
2
n

cos γi · 365.25 · 106 in AU
My

units.
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9. Transform it to the ecliptic coordinate frame:

x1 = 1
sin θ0

, exk = (n0k − cos θ0ski)x1 for k = 1, 2, 3,

ey1 = (s2in03 − s3in02)x1, ey2 = (s3in01 − s1in03)x1, ey3 = (s1in02 − s2in01)x1,

aYd = (ex1f11 + ey1f12 + s1if13, ex2f11 + ey2f12 + s2if13, ex3f11 + ey3f12 + s3if13).

10. The seasonal Yarkovsky acceleration second:

n = GM 1√
a3

i

, l = Mi + n(t− t0),

ath =
∑kseasonal

k=1 Kcki cos kl+Kski sin kl,

aYs = (aths1i, aths2i, aths3i)

(and finally add the components of aYd and aYs to axhi, ayhi, azhi)

The small thermal acceleration (thought being dissipative) is treated similarly as the conservative
planetary perturbations: it is applied at one instant (‘kick’) in symplectic integrators (Cordeiro et al.
(1997); see also Section 9.2 for accuracy tests).

2.3.4 1-D non-linear numerical methods

Čapek & Vokrouhlický (2004) use a numerical approach to calculate the surface temperature for a given
shape model of an asteroid. They divide the surface into a triangular mesh (typically consisting of
103 facets) and solve the 1-dimensional heat diffusion equation (Eq. 4) individually for all elementary
‘columns’ of the asteroid, stretching from the surface element to the centre. There are three boundary
conditions, which have to be satisfied for every element separately:

1. −K ∂T
∂x (0, t) + ǫσT 4(0, t) = (1 −A)E(t) (i.e., a fully non-linear case);

2. ∂T
∂x (∞, t) = 0 (i.e., the core is isothermal);

3. T (x, t) is periodic over the rotation and revolution cycles.

The radiation flux E(t) varies not only with the position of the Sun (with respect to the given surface
element), but the mutual shadowing is also handled properly.6 The partial derivatives in all equations
are transformed to finite differences and the set is solved numerically by the Crank-Nicholson scheme. At
t = 0 the whole mesh have the same equilibrium temperature, after several iterations it converges to the
desired solution.

This method assumes, the size of the body is much larger than the penetration depth δ of the thermal
wave (the isothermal core condition is actually applied at ≃ 10δ) and the neighboring columns do not
communicate thermally with each other. This is well satisfied for asteroids larger than ≃ 10 m. The
Yarkovsky accelerations and the YORP torques were calculated by Čapek & Vokrouhlický (2004) for
(6489) Golevka, 1998 KY26, (243) Ida and for a large set of artificial shapes (represented by random
Gaussian spheres).

This numerical method can be generalized relatively easily, e.g., to include the low-conductivity surface
layer, its variable thickness across the surface, variable albedo, etc.

6The shadowing by small craters, which are not incorporated in the shape model, is not taken into account, but its
influence on the dynamics is presumably minor. (On the other hand, such shadowing is surely important for the calculation
of the directional infrared flux as observed from the Earth, especially at large phase angles.)
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3 Transport of meteoroids ejected from (6) Hebe, (170) Maria
or (8) Flora

The Yarkovsky effect and gravitational resonances are the most important transport mechanisms of meteorite
precursors, meteoroids or asteroidal fragments in the size-range 1 m to 1 km. In this section, we simulate the
orbital evolution of putative particles ejected from three parent bodies: (6) Hebe, (170) Maria and (8) Flora. We
also study the interaction of orbits with weak high-order resonances and compute several statististical parameters
(e.g., the rate of delivery to Mars-crossing orbits, the probabilities that particles of a given size are captured
by a given resonance), which can be used to improve Monte-Carlo models of meteoroid transport (like that of
Vokrouhlický & Farinella (2000)). Some results of this study were summarised in the review Bottke et al. (2002b).

3.1 Introduction

More than 20,000 meteorites found on the Earth (Grady (2000)) provide crucial clues for dynamical
studies of small Solar System bodies. The mineralogy and petrology of meteorites suggest, that the total
number of their parent bodies is quite small, only ∼ 100, out of which ∼ 27 is chondritic, ∼ 2 primitive
achondritic, ∼ 6 differentiated achondritic, ∼ 4 stony-iron, and there are ∼ 10 iron groups, and ∼ 50 un-
grouped irons (Burbine et al. (2002)). We note, the meteorites may survive in the Earth environment
(and in favourable places like the Antarctic) only upto 0.1 My before they are eroded (Bland et al. (1998)).
They are thus samples of the interplanetary matter, which has been delivered to the Earth only very
recently.

The measured cosmic ray exposure ages (CRE) of meteorites are typically 10–100 My in case of stones
and 0.1–1 Gy in case of irons (Burbine et al. (2002)). The CRE ages tell us, i) how long meteoroids have
travelled from a parent body towards the Earth and that ii) the transport mechanism somehow depends
on the material properties. Both observations can be theoretically explained as the interplay between
collisions, the Yarkovsky effect and gravitational resonances (Vokrouhlický & Farinella (2000), Bottke
et al. (2000b); Figures 13 and 14).

Meteorites have spectra generally similar to Main-Belt asteroids, but one-to-one identification of the
individual meteorites and parent bodies is far from being complete (Burbine et al. (2002), Cellino et al.
(2002)). One of the obstacles is still uncertain rate of the space weathering, which typically produces
a reddening of spectra and a weakening of the absorption features; estimates of the relevant timescale
range from 50 ky upto 1 Gy (Nesvorný et al. (2005)).

Dynamical studies of the near-Earth objects (NEO) and the debiasing of the observed population also
strongly suggest the majority of NEO’s come from the main asteroid belt and that smaller meteoroids
should follow the same dynamical path (Bottke et al. (2000a), Bottke et al. (2002a)).

The meteorite flux observed today is of the order 3 × 105 kg/y and the calculated removal rate of
the NEO’s due to planetary scattering is ∼ 200 bodies larger than 1 km per My. We already know
the Yarkovsky semimajor axis drift is efficient enough to keep both populations of the Earth-crossing
meteoroids and near-Earth asteroids in steady state (Vokrouhlický & Farinella (2000), Morbidelli &
Vokrouhlický (2003); Figure 15). Note the Yarkovsky effect allows to supply meteoroids ejected from
practically any Main-Belt asteroid.

Recently, Bottke et al. (2005c) and Bottke et al. (2006) modelled the collisional/dynamical evolution
of stony and iron meteorites over the Solar System history. According to their results, stony meteorites
are likely remnants of a collisional cascade; they originate in the Main Belt, in ∼ 20 old (∼Gy) large-scale
(D > 100 km) breakup events and in ∼ 25 recent (≪ 1 Gy) smaller (D < 100 km) breakups. This is a
good match with the observed value of ∼ 30 parent bodies.

The precursors of iron meteorites, on contrary, seem to form very early (1–2 My before ordinary
chondrites) in the terrestrial planet region, from which they were ejected to the Main Belt. The small
precursors ‘wait’ there for billions (109) of years, until they can be driven by the Yarkovsky effect into
resonances and then to the near-Earth space. This scenario conforms to the observed lack of large
differentiated bodies in the Main Belt.

Below we describe a dynamical study of meteoroids and asteroid fragments, from 1 m to 500 m in
radius, originating from only three sources: asteroids (6) Hebe, (170) Maria and (8) Flora (Section 3.3).
These asteroids are possible parent bodies of many ordinary chondrites (see Section 3.2). We extend the
work of Bottke et al. (2000b), who studied orbital evolution of 1-m meteoroids from 11 parent asteroids;
we compare our results to their in the discussion (Section 3.4).
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3.2 The parent bodies

The Main-Belt asteroids (6) Hebe, (170) Maria and (8) Flora are likely parent bodies of many meteorites
(Vokrouhlický & Farinella (2000)). All the three asteroids belong to the S taxonomic class (Bus & Binzel
(2002b); an illustration of their spectra is at Figure 30). S-type asteroids are very probable sources
of ordinary chondrites (Burbine et al. (2002), Table 7). More specifically, (6) Hebe likely conforms to
H chondrites and (8) Flora is spectroscopically similar to L or LL chondrites.

Table 7: Meteorite types (ordinary chondrites), percentages of the observed falls and S-type asteroids or taxo-
nomic classes, which they are similar to. The L, H and LL chondrites together produce 80 % of all falls. Adapted
from Burbine et al. (2002).

meteorite type fall percentage asteroid analogue
L 38 % S(IV) asteroids
H 34 % 6 Hebe [S(IV)]
LL 8 % S(IV) asteroids

They are located close to the powerful low-order resonances: the ν6 secular resonance (where the
longitudes of perihelia precess with same rate as that of Saturn) and the 3/1 mean motion resonance
with Jupiter at approximately 2.5 AU (Figure 31, Table 8). (8) Flora is located in the inner belt close
to the ν6 border, (6) Hebe, with its large inclination, is close to both the ν6 and J3/1, and especially
(170) Maria is placed ‘strategically’ at the outer edge of the J3/1.

Table 8: Approximate osculating orbital elements of asteroids (6) Hebe, (170) Maria and (8) Flora, i.e., the
parent bodies of our simulated meteoroids. From the AstOrb catalogue (AstOrb).

name semimajor axis eccentricity inclination
AU ◦

(6) Hebe 2.4248 0.2018 14.771
(170) Maria 2.5525 0.0634 14.411

(8) Flora 2.2019 0.1561 5.885

Hebe and Flora have large diameters, 192 km and 136 km respectively, hence being good targets for
small impactors, which can eject fragments. Maria is relatively smaller with D = 46 km. The escape
velocities from Hebe and Flora are large, of the order 100–200m/s, so the fragments can be placed onto
orbits relatively far from the parent body (and some close to the major resonances).

There are dynamical families associated with the asteroids Maria and Flora; no family was identified
around Hebe (Nesvorný et al. (2005), see also Figure 31). The Maria family is probably (3.0±1.0) Gy old,
while the Flora family is younger, (1.0 ± 0.5) Gy (Nesvorný et al. (2002), Nesvorný et al. (2005)).

The Flora family members mostly belong to S-types. The relative reflectance peaks at 750 nm and
there is a wider range of spectral slopes; one can also identify several probable interlopers with a more
flatter X- or C-type spectra (Figure 30). The parent body of the whole Flora family seems to be less
homogeneous than in the case of other families. The spectra variability among family members might be
partly attributed to the space weathering. Probable meteorite analogues are L3, L4, L5, LL chondrites
(Cellino et al. (2002)).

The Maria family is also an S-type. The spectra, however, are slightly more homogeneous than
Flora’s, with similar spectral slopes and depths of the 1µm band. The maximum reflectance is at
770 nm. Generally, the spectra of family members are similar to ordinary chondrites (and also to large
near-Earth asteroids (433) Eros and (1036) Ganymedes).

3.3 N-body simulations

We performed N-body numerical simulations of meteoroid transport from the three parent bodies:
(6) Hebe, (170) Maria and (8) Flora. The typical integration time span was 150 My. We used the
symplectic integrator swift rmvsy (a modified version of SWIFT by Levison & Duncan (1994)) with a
time step 36 days. We included gravitational forces, the Yarkovsky effect (see Section 2.3) and a simple
treatment of collisional dynamics. The osculating orbital elements of meteoroids were sampled every 2 y
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Figure 30: An illustration of the SMASS spectra of the asteroids (6) Hebe (red), (170) Maria (green), (8) Flora
(blue), spectra of the Maria and Flora family members (thin gray lines) and also their mean colours from the
Sloan Digital Sky Survey (5 black error bars). Note the variability of slopes and depths of the absorption features.
Several interlopers among Flora family members are clearly visible (e.g., Xk-type (3533) Toyota denoted by
yellow colour). We plotted a mixture of spectra from SMASSI and SMASSII datasets, which are not entirely
homogeneous and we have to compare the spectra with caution (e.g., the depth of the 1 µm band seems smaller
in the SMASSI). Data from SMASS , Bus & Binzel (2002a), SDSS MOC .

and then digitally filtered to remove short-period oscillations (see Section 9.1); the output time step of the
resulting mean elements was 600 y. For the sake of particular analyses, we also computed averaged orbital
elements as an 0.5 My running window average with a time step 0.01 My. Our integrations included 7
planets (excluding Mercury and Pluto), which initial positions and velocities were taken from the DE405
ephemeris . The Hill sphere of Mars was scaled 4 times larger due to fairly large integration time step.

The simulated meteoroids form 30 groups, because we have:

• three parent bodies: Hebe, Maria and Flora;

• five particular sizes of meteoroids: R = 1 m, 10 m, 50 m, 100 m and 500 m;

• two types of surface properties: ‘regolith’ (with a low thermal conductivity K = 0.0015 W/m/K
and the surface density ρsurf = 1500 kg/m3), and ‘basalt’ (with high K = 2.65 W/m/K and ρsurf =
3500 kg/m3).

Each group contained 50 test particles, i.e., 1,500 test particles were integrated in total. Other thermal
parameters of meteoroids were set as follows: the bulk density ρ = 3500 kg/m3, the thermal capacity
C = 680 J/kg/K, the thermal emissivity ǫ = 1, the Bond albedo A = 0. The corresponding maximum
Yarkovsky semimajor axis drift rates are summarised in Table 9.

The initial conditions of the putative Hebe, Maria and Flora meteoroids are depicted in Figure 31. The
meteoroids were ejected from the parent bodies with an isotropic power-law velocity distribution. We
use a procedure by Farinella et al. (1994), with the power-law index α = 3.25 and the minimum velocity
vmin = 100 m/s.

The initial orientations of spins were isotropic and random. The rotational periods P are proportional
to radii R, with 2R = 1000 m bodies having P = 5 h. Non-disruptive collisions, which change spin axes
orientations of meteoroids, were modelled as random reorientations with a characteristic timescale

τreor = 15.01 My
√

[R]m , (29)
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Table 9: The Yarkovsky semimajor axis drift rates da
dt

in AU
My

estimated from the Gauss equations for Hebe
meteoroids with radii from 1 m upto 500 m, regolith and basalt thermal properties and the diurnal and seasonal
variants of the Yarkovsky effect. The diurnal variant dominates for the regolith-covered bodies, while the seasonal
for the basaltic ones. The variants can be combined as

`

da
dt

´

diurnal
cos γ +

`

da
dt

´

seasonal
sin2 γ, where γ denotes the

obliquity. For Flora, the drift would be slight faster, being closer to the Sun, and for Maria slightly slower.

material variant 1 m 10 m 50 m 100 m 500 m
regolith diurnal 0.02985 0.00744 0.00223 0.00121 0.00022

seasonal −0.00138 −0.00014 −0.00003 −0.00001 −0.00000
basalt diurnal 0.00053 0.00017 0.00007 0.00005 0.00002

seasonal −0.00065 −0.00363 −0.00106 −0.00052 −0.00010

where [R]m is the radius of the body in metres (Farinella et al. (1998), Bottke et al. (2005b), Table 10).7

The catastrophic disruptions occur in the Main Belt with a similar timescale

τdisr = 16.78 My
√

[R]m , (30)

but they were not taken into account during the integration. The particles were followed either until the
end of the integration (150 My) or earlier, when their perihelion dropped to 10−3 AU or semimajor axis
exceeded 103 AU. Nevertheless, we discuss the collisional lifetime issues below.

Table 10: The characteristic timescales of reorientations τreor and disruptions τdisr for the Main-Belt meteoroids
and asteroid fragments (R denotes their radius). They were calculated from Eqs. (29) and (30).

R 1 m 10 m 50 m 100 m 500 m
τreor / My 15 47 106 150 336
τdisr / My 17 53 119 168 375

The data analysis was focused on the estimate of i) the temporal decay of the meteoroid population,
ii) the probability of crossing gravitational resonances, iii) interactions with higher–order, 3-body and
secular resonances.

Let us present several comparisons among our simulations, which demonstrate important aspects of
the meteoroid orbital evolution. Figure 32 shows an overview of Hebe meteoroids at the mean semimajor
axis vs. time plots. We see clearly, that for regolith meteoroids, the diurnal Yarkovsky effect dominates
and meteoroids semimajor axes either increase or decrease. For basaltic, the seasonal variant is more
important and consequently all meteoroids drift towards the Sun with the maximum drift rate for the
radius 10 m. (This is in concert with analytical estimates in Figure 29 and Table 9.)

When an orbit encounters a strong resonance (J3/1 at 2.5 AU or ν6 around 2.35 AU), it starts to oscil-
late and usually it is quickly removed from the Main Belt by close encounters with planets. Nevertheless,
we can notice many orbits, especially of the small regolith meteoroids, which drift through the J3/1
resonance and continue further to the next resonances (J8/3, J5/2).

Figure 33 shows a sequence of the mean semimajor axis vs. mean eccentricity plots for basaltic 10 m
meteoroids ejected from Maria. They all drift towards smaller semimajor axes and encounter the J3/1
resonance. We see, what the resonance is capable to do: it drives eccentricities of most (but not all)
meteoroids beyond Mars- and then Earth-crossing limits. It happens very quickly, in 1 or 2 My. Close
encounters with planets then produce sudden ‘jumps’ in the semimajor axis. The remaining 10 %–20 %
of meteoroids (e.g, particle no. 34) cross the resonance; only their eccentricities are raised from 0.1 to
0.2. Note the group of a few meteoroids (nearby particle no. 17), which is captured in the z2 secular
resonance and is ‘lifted’ upto the eccentricity 0.2, well before it reaches the J3/1.

Orbital evolution of individual meteoroids can be quite complex: e.g., one 10 m regolith meteoroid from
Hebe (depicted at Figure 34): i) initially drifts slowly inwards (da

dt

.
= −0.004 AU

My ), having the obliquity

106◦. ii) En route, the orbit was captured in the exterior 1/2 mean motion resonance with Mars; the
capture spans the same time as a pure Yarkovsky drift across this region, i.e., the capture does not

7We computed a random number x ∈ [0, 1] every dtreor = 104 y and compared it to the probability p = 1−exp
“

− dtreor
τreor

”

;

if x < p the spin axis orientation was reset randomly.
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Figure 31: The parent bodies (crosses) and simulated ejecta (colour dots) at the osculating semimajor axis
vs. osculating eccentricity plot. We draw also approximate positions of major gravitational resonances (black
lines) and the Flora and Maria families (gray dots) in proper elements. We identified the Maria family by the
hierarchical clustering method with a cutoff velocity vcutoff = 70 m/s, using the AstDyS catalogue, version Nov
10th 2004. The Flora family was identified at vcutoff = 160 m/s among asteroids with H < 15 mag; for a larger
dataset, it blends with the background population (for all velocities) and cannot be easily separated by the HCM
algorithm.

affect the drift rate in this case. iii) Next, the orbit interacts with the 4J−2S−1 resonance (3-body
resonance with Jupiter and Saturn; Nesvorný & Morbidelli (1998)). A jump occurs this time and slightly
increases the drift rate. iv) The proximity of the ν6 secular resonance steadily increases oscillation of the
eccentricity and the meteoroid starts to encounter Mars, what produces notable jumps in the semimajor
axis (upto 0.02 AU). v) A random reorientation of the spin axis occurs at 95 My and the new value of
the obliquity is 53◦. A fast outward drift follows (da

dt

.
= 0.008 AU

My ) and persists until the semimajor axis

reaches 2.49 AU, the inner border of the 3/1 mean motion resonance with Jupiter. vi) After 1 My of
the in-resonance evolution, the eccentricity is increased beyond 0.9 and a close encounter with Jupiter
removes the particle from the Main Belt.

Large asteroid fragments, with R = 500 m, drift much slower (see Figure 35), Hebe ejecta of this size do
not reach any of the powerful resonances within 150 My. We can however observe numerous captures in
weaker resonances. The 7J−2S−2 resonance, for example, does not affect the drift rate. An unidentified
narrow resonance, on the other hand, decreases the drift rate by ∼ 10 %.

Another comparison of slow and fast drifting bodies is shown at Figure 36: the mean semimajor axis
vs. mean eccentricity plots for Flora 500 m basalt asteroid fragments and Maria 10 m regolith meteoroids.
There is a dense ‘net’ of resonances in the inner belt, which produces a chaotic diffusion in the eccentricity
and the slow drifting bodies can reach Mars-crossing orbits this way. The fast drifting bodies in the middle
belt (which is dynamically colder) jump over all weak resonances and they are depleted mainly by the
J3/1 and J5/2 resonances.

Temporal decay of the meteoroid population. When meteoroids reach Mars-crossing orbits, they
mostly continue to Earth-, Venus- or Jupiter-crossing, and they are removed from the Main Belt after
some time. We can therefore use a Mars-crossing criterion as a measure of the meteorite flux, keeping in
mind, that only a minor part (∼ 1 %) of the meteoroid population actually collides with the Earth (and
most of them fall on the Sun; Gladman et al. (1997)).

We use two criteria to decide whether the orbit of a meteoroid crosses the orbit of Mars:

1. the averaged pericentre of the meteoroid qavg < 1.665 AU, with the orbital elements averaged by a
running window 0.5 My (the so called q-criterion);
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Figure 32: The evolution of Hebe meteoroids at the mean semimajor axis vs. time plots; the meteoroids are
grouped according to the five different radii and two materials. The ranges of the t- and a- axes are always (0,
150) My and (2.25, 2.65) AU. Horizontal dashed lines denote positions of various mean motion resonances. The
major resonances, through which bodies escape, are located at 2.5 AU (J3/1) and ∼ 2.35 AU (ν6).
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Figure 33: The evolution of 10 m basaltic meteoroids ejected from Maria displayed at the sequence of mean
semimajor axis vs. mean eccentricity plots, spanning 40 My. Dashed lines denote approximate borders of the
J3/1 resonance, the ν6 resonance and the Mars-crossing region. The group of meteoroids around no. 17 had been
captured in the z2 secular resonance before it entered J3/1 resonance.
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Figure 34: The orbital evolution of a Hebe 10 m regolith meteoroid at the mean semimajor axis vs. time plot.
The capture in the M1/2 resonance and the jump over the 4J−2S−1 resonance are zoomed-in. The period of close
encounters with Mars (around 90 My) was interrupted by a sudden reorientation of the spin axis, which caused a
fast outward drift. Finally, the meteoroid reached the J3/1 resonance and was ejected from the Main Belt due to
a close encounter with Jupiter.

Figure 35: The orbital evolution of Hebe asteroid fragments with R = 500 m. Two types of bodies are plotted at
once: regolith (dark) and basalt (light). We observe captures in the resonances M1/2, 4J−2S−1 and others. The
arrow no. 1 points to the capture in the 7J−2S−2 resonance and the arrow no. 2 to an unidentified one (which
decreases the drift rate slightly).
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Figure 36: The averaged semimajor axis vs. eccentricity plots of the Flora 500 m basalt asteroid fragments (left)
and Maria 10 m regolith meteoroids (right). There are many weak resonances in the inner belt, so slowly drifting
bodies from Flora diffuse in eccentricity. The fast drifting bodies from Maria almost do not evolve in eccentricity
unless they reach low-order resonances (J3/1, J5/2, J8/3 or ν6).

2. the mean heliocentric distance of meteoroids node (measured along the common nodal line with
Martian orbital plane) is smaller than that of Mars8; the distances are calculated from mean orbital
elements with a 600 y time step (the MC-criterion).

Usually, the first simple q-criterion is fulfilled a bit later, because the 0.5 My averaging removes large
oscillations of the pericentre (which, in turn, cause the second MC-criterion is fulfilled earlier).

Figure 37 shows the temporal decays of all 30 groups according to our N-body simulations and the 1st q-
criterion. There is also a comparison with the Monte-Carlo model by Vokrouhlický & Farinella (2000),
which accounts for the Yarkovsky semimajor axis drift only (and complex collisional dynamics); their
meteoroids are removed, and ‘preliminary’ considered as Mars-crossers, as soon as they reach nominal
borders of major resonances. The differences between the two models, which are clearly visible, can be
only partly explained by the different ‘Mars-crossing’ criteria or by the disruptive collisions, which the
Monte-Carlo model accounts for. Mostly, they are caused by resonant phenomena: i) chaotic diffusion
in weak high-order resonances, especially in the inner belt, where many exterior resonances with Mars
and 3-body resonances are present, drives slowly drifting bodies to MC orbits; ii) smaller fast-drifting
meteoroids are able to cross the J3/1 resonance; iii) captures in high-order resonances effectively decrease
or increase the semimajor axis drift rate en route to low-order resonances; iv) captures in high-order
secular resonances do not affect the semimajor axis drift, but they decrease or increase eccentricity or
inclination, what is important, if the borders of low-order resonances depend on e or I.

For example, Flora 100 m and 500 m asteroid fragments and even smaller meteoroids often reach the
MC-orbits due to the chaotic diffusion in gravitational resonances. The corresponding decays in our
N-body simulations are thus almost size independent and faster than in the Monte-Carlo model.

8The keplerian mean orbital elements of the meteoroid are denoted (a, e, I, Ω, ω) and the elements of Mars by dashed
quantities (a′, e′, I′, Ω′, ω′). We define vectors:

n =

0

@

sin I sin Ω
− sin I cos Ω

cos I

1

A , Q =

0

@

− cos Ω sin ω − cos I sin Ω cos ω
− sin Ω sin ω + cos I cos Ω cos ω

sin I cos ω

1

A ,

and similarly n′ and Q′ for Mars. We compute

φ =
q

1 − (n · n′)2 , r± =
a(1 − e2)

1 ± e
φ
n′ · Q

, r′± =
a′(1 − e′2)

1 ± e′

φ
n · Q′

,

and finally r = min(r+, r−), r′ = max(r′+, r′−). The Mars-crossing criterion is then r ≤ r′.
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Tables 11 and 12 provide a summary of the median Mars- and Earth-crossing times according to the
2nd MC-criterion. The dependences of these quantities on the radius are plotted at Figure 38. Typical
values are of the order 10 My for the fast-drifting bodies and more than 100 My for the slow-drifting. It
takes relatively longer time for Flora meteoroids to move from MC to EC orbits, even thought they reach
MC orbits quite early.

Recall, we ignored collisional disruptions during the integrations, hence we shall briefly discuss them
here. We plotted the characteristic disruption timescale τdisr (Eq. 30) at Figure 38. We see, that most
of Hebe and Maria basalt 1 m meteoroids disrupt before they reach MC orbits, because their transport
takes much longer time than τdisr. Some Maria regolith meteoroids of all sizes may also disrupt en route.
On contrary, Hebe basalt fragments probably survive intact (their MC time ≪ τdisr). Disruptions and
reorientations of R = 500 m bodies are not important on the 150 My time span. We will not calculate
the effect of collisions on median MC (EC) times in detail, only note, that the disrupted bodies can be
resupplied by disruptions of larger ones.

The J3/1 resonance crossing. There is a significant number meteoroids, which crossed the 3/1
mean motion resonance with Jupiter and did not reach Mars-crossing orbits. This is due to the fast
Yarkovsky drift, which allows bodies to escape from the resonance, before their eccentricity is pumped-
up. We calculated the statistics of the J3/1 crossing (Figure 39) and we conclude, that the fraction of the
‘crossers’ is: ∼ 60 % for Maria 1 m regolith meteoroids, ∼ 30 % for Hebe and Flora regolith 1 m meteoroids
and ∼ 15% for Maria 10 m basalt meteoroids. Note the errors here are roughly 10 % due to the limited
number of meteoroids, which ever reached the J3/1 border. On average, the eccentricity of the crossers
from Maria was increased by 0.1. We were not able to calculate a precise statistics for larger 100 m or
500 m asteroid fragments, because they did not reached the J3/1 resonance mostly. Nevertheless, the
probability of their crossing is presumably very low (<5 %).

This phenomenon may modify some of the conclusions of the Monte-Carlo models of the meteoroid
transport (Vokrouhlický & Farinella (2000)). E.g., the delivery times of small meteoroids might be a bit
longer and more meteoroids can escape from the Main Belt through the ν6 or J5/2 resonance.

The ν6 resonance and Mars-crossing orbits. The Mars-crossing orbits occur earlier than the body
reaches the nominal position of the ν6 ≡ g−g6 resonance. The boundary of the ν6 resonance is not sharp
and in order to quantify this effect, we calculated proper g-frequencies of meteoroids at the moment,
when they reach Mars-crossing orbit for the first time (according to the MC-criterion), and compared
them to the g6 value (Figure 40).

We see, the distribution of g’s is clustered a bit higher than the g6, with ∼ 10 % of meteoroids having
the g’s within 1 arcsec/y of the g6 This shift in the frequency space, with respect to the border of the ν6,
corresponds to some shift in the (a, e, I) space, because the g’s depend on the actual values of the orbital
elements (the g-frequencies decrease as the semimajor axis decrease and the inclination increase). The
result might be useful for Monte-Carlo models of meteoroid transport, which include a fixed analytical
ν6 border only.

High-order secular resonances. Meteoroids, driven by the Yarkovsky effect, can reach the position
of a secular resonance and become trapped. The Yarkovsky semimajor axis drift continues, but the
resonance, being a 3-dimensional structure in the (a, e, I) space, drives the eccentricity or inclination (it
depends, if the critical argument of the resonance involves pericentric g- or nodal s-frequencies or both).
e or I can increase or decrease (it depends on the orientation of the secular resonance in the (a, e, I) space
and the direction of the Yarkovsky drift.

We already mentioned Maria meteoroids influenced by the z2 secular resonance (Figure 33), which
increased their eccentricities by 0.1 before they entered J3/1 mean motion resonance. Here, we present
another example (Figure 41): larger Flora meteoroids were often captured in the z2 resonance too. The
eccentricities and inclinations of the inward-drifting bodies were decreased (by ∼ 0.03), what substantially
prolonged the time until they reached Mars-crossing orbits, because the chaotic diffusion in e was inhibited
this way and also the border of the ν6 resonance, depending strongly on the inclination, is shifted more
inwards.

3.4 Discussion

We have verified that meteoroids can be delivered to Mars- and Earth-crossing orbits by the Yarkovsky
effect and gravitational resonances on the timescale of the order 10 My. Larger asteroids can escape from
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Figure 37: The ordinate gives a fraction of meteoroid population, which are not Mars crossers, vs. time for the
three parent bodies and two materials. Colours denote radii: 1 m (red), 10 m (orange), 50 m (yellow), 100 m (cyan)
and 500 m (blue). The crosses denote our N-body simulations (we use q < 1.665 AU Mars-crossing criterion,
with 0.5 My averaging) and the lines correspond to simpler analytical Yarkovsky semimajor axis drifts and fixed
resonant borders, which are used in the Monte-Carlo model by Vokrouhlický & Farinella (2000).
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Table 11: The median Mars-crossing times tMC in My and the corresponding number NMC of meteoroids (out
of 50), which reached Mars-crossing orbits within 150 My, for the six populations. The MC-criterion is used here.

body material R = 1 m 10 m 50 m 100 m 500 m
Hebe regolith 6.0 24.6 53.0 112.7 >150

basalt 126.1 28.2 >150 >150 >150
Maria regolith 14.0 42.3 >150 >150 >150 tMC/My

basalt 94.6 23.3 52.6 81.5 >150
Flora regolith 2.3 13.7 37.3 34.1 110.3

basalt 18.4 4.9 34.4 35.8 37.2

body material R = 1 m 10 m 50 m 100 m 500 m
Hebe regolith 50 47 43 33 0

basalt 33 50 7 22 3
Maria regolith 49 41 19 21 8 NMC

basalt 37 50 46 38 10
Flora regolith 50 46 37 30 27

basalt 44 49 44 40 33

Table 12: Median Earth-crossing times tEC in My (according to the ‘MC-criterion’) and the corresponding
number of meteoroids (out of 50), which reached Earth-crossing orbits within 150 My, for the six populations.

body material R = 1 m 10 m 50 m 100 m 500 m
Hebe regolith 8.3 29.4 80.5 137.7 >150

basalt >150 41.9 >150 >150 >150
Maria regolith 20.9 42.5 >150 >150 >150 tEC/My

basalt 96.4 23.9 57.1 82.3 >150
Flora regolith 10.1 45.2 109.0 >150 >150

basalt 105.0 25.7 91.5 146.9 >150

body material R = 1 m 10 m 50 m 100 m 500 m
Hebe regolith 50 46 41 26 0

basalt 9 49 7 12 1
Maria regolith 48 40 19 21 8 NEC

basalt 34 50 46 38 10
Flora regolith 49 43 31 21 13

basalt 37 49 34 26 23
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Figure 38: The dependence of the median Mars- and Earth-crossing times on the radius for regolith and basalt
meteoroids originating from three parent bodies. Typical values are of the order 10 My, but the meteoroids drifting
slowly or located far from the major escape routes have the median equal to 150 My (i.e., the time span of the
integration), because less than half of the bodies ever reached MC (EC) orbits. The dashed curves indicate the
characteristic disruption timescale τdisr(R), given by Eq. (30).
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Figure 40: The histogram of the gMC frequencies of meteoroids, i.e., the proper frequencies of longitudes of
perihelia calculated by the FMFT method (see Section 9.1), at the moment when the meteoroids reach Mars-
crossing orbits (according to the MC-criterion). The comparison to the g6 frequency of Saturn is given, and the
interval ±1 arcsec/y around the g6, i.e., the ‘area of influence’ of the ν6 resonance, is displayed as the two vertical
gray lines. This calculation was performed for 50 Flora basalt meteoroids with R = 10 m.
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Figure 41: The role of hight-order secular resonances in the orbital evolution of meteoroids: (left) the averaged
semimajor axis vs. eccentricity for Flora 100 m regolith meteoroids, with captures in the z2 resonance; (right) the
semimajor vs. sine of inclination. The ±1 arcsec/y borders of the secular resonances were calculated using the
secre8 program by A. Milani and Z. Knežević.

the Main Belt due to chaotic diffusion in weaker resonances, which are very common in the inner Main
Belt. Transport times to the EC- orbits might be generally consistent with the observed long CRE ages
of meteorites.

We presented examples of various processes involved in the meteoroid transport: i) Yarkovsky drift
and captures in low-order mean motion resonances (e.g., J3/1, J8/3) or the powerful ν6 secular resonance;
ii) crossing of resonances (which occurs commonly in the J3/1 case and rarely in the ν6 case for the fastest
drifting meteoroids); iii) interaction with weaker high-order resonances (e.g., J10/3); iv) exterior reso-
nances with Mars (M1/2); v) 3-body resonances (4J−2S−1); vi) capture in high-order secular resonances
(z2); vii) frequent collisional reorientations, which cause a random walk behaviour for low-conductivity
bodies and effectively decrease the diurnal Yarkovsky drift. All these processes affect delivery rates to
Mars- and Earth-crossing orbits, they can both increase or decrease the rate as compared to a simple
Yarkovsky semimajor axis drift towards the nominal position of gravitational resonances; it depends on
individual source regions and meteoroid properties.

Our results are consistent with the results of Bottke et al. (2000b) and we extend them in several
respects. Compared to their work, we integrated meteoroids not only 1 m in radius, but also larger
bodies. The time span of our integration was substantially longer (150 My vs. 50 My), which allowed
us to calculate population decay rates for the sizes R = 1 m, 10 m, 50 m and 100 m. (The time span
was still too short to properly model the decay of 500 m bodies.) We use a more precise Mars-crossing
criterion and we provide a direct comparison to the analytical decay rates used in the Monte-Carlo model
by Vokrouhlický & Farinella (2000), which were calculated from pure Yarkovsky semimajor axis drift
rates and fixed positions of major resonances. In the previous work, the initial velocities with respect to
the parent bodies were zero, but in our case we included the initial spread. Additionally, we reported
interactions with high-order secular resonances and we estimated the crossing probability of the J3/1
resonance.

We plan to use the results of our N-body integrations to improve Monte-Carlo models of meteoroid
delivery (like Vokrouhlický & Farinella (2000)), which include a complex collisional dynamics compared
to our model, but a simplified orbital dynamics only (i.e., there is only the Yarkovsky semimajor axis
drift, with no chaotic diffusion in eccentricity and inclination and no possibility of resonance crossing).

There are more proposals for future work: i) we can substantially increase the number of integrated
particles in order to improve the statistics, and ii) incorporate the YORP effect, which can possibly
change rotational state of meteoroids.
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4 Yarkovsky driven orbit and spin axis of (2953) Vysheslavia

The asteroid (2953) Vysheslavia and several others, located just above the 5/2 mean motion resonance with Jupiter,
are known to have unstable orbits. Vokrouhlický et al. (2001) and Brož & Vokrouhlický (2002) brought evidence,
that all these asteroids were transported to this unstable region from stable regions (with larger semimajor axes) by
the Yarkovsky semimajor axis drift. This scenario requires the asteroids have retrograde orientations of the spin
axes (in order to drift towards the J5/2 resonance) and this was later confirmed for Vysheslavia by photometric
observations, as reported by Vokrouhlický et al. (2005e). This chapter is based on the two latter articles. The
co-authors are D. Vokrouhlický, T. Micha lowski, S.M. Slivan, F. Colas, L. Šarounová and F.P. Velichko. MB is
responsible for the numerical simulations of the Yarkovsky transport and the construction of the stability map
(Section 4.2).

Abstract

The orbit of asteroid (2953) Vysheslavia is presently locked in a tiny chaotic zone very close to
the 5/2 mean motion jovian resonance. Its dynamical lifetime is estimated to be of the order of
only 10 My. Such a situation poses a problem, since Vysheslavia is a member of the Koronis family,
which is likely more than 2 Gy old. Three main hypotheses were developed to solve this apparent
contradiction: (i) Vysheslavia might be an outcome of a recent secondary fragmentation event in the
family, (ii) Vysheslavia might have been placed on its peculiar orbit by close encounters with nearby
massive asteroids, or (iii) the asteroid might have been transported by a slow inward–drift of the
semimajor axis due to the Yarkovsky effect. Though we cannot disprove the first two possibilities
completely, here we bring evidence for the third scenario.

At first, we present numerical simulations of the orbital evolution (with the Yarkovsky effect
included) for Vysheslavia and several neighbouring asteroids. We also argue against the possibility
that Vysheslavia reached its current orbit by a recent collisional breakup.

Second, photometric observations were made during the years 2000–2005 and used to determine
the pole orientation of (2953) Vysheslavia. We find admissible solutions for ecliptic latitude and
longitude of the rotation pole P3: βp = −64◦ ± 10◦ and λp = 11◦ ± 8◦ or P4: βp = −68◦ ± 8◦ and
λp = 192◦ ± 8◦. These imply obliquity values γ = 154◦ ± 14◦ and γ = 157◦ ± 11◦, respectively.
The sidereal rotation period is Psid = (0.2622722 ± 0.0000018) day. This result is consistent with
the prediction done by Vokrouhlický et al. (2001) that Vysheslavia has the obliquity between 90◦

and 180◦, because it has been transported to its unstable orbit by the Yarkovsky effect. Moreover,
with the obliquity close to 180◦, Vysheslavia seems to belong to one of the two distinct groups in the
Koronis family found recently by Slivan (2002).

4.1 Introduction and motivations

The fundamental argument of our work derives from the important finding of Milani & Farinella (1995)
who noticed that asteroid (2953) Vysheslavia is located in a tiny chaotic zone (about 10−3 AU wide)
very close to the outer border of the strong 5/2 mean motion resonance with Jupiter. The expected
dynamical lifetime of such an orbit before falling into the resonance is of order of only 10 My, what is in
an apparent contradiction with the estimated age of the whole Koronis family 2–3 Gy (Chapman 2002;
Bottke et al. 2001; Vokrouhlický et al. 2003). Vysheslavia is presumably its member: the spectroscopic
analysis indicates that Vysheslavia is an ordinary S–type asteroid (Bus & Binzel (2002a)) and the sta-
tistical analysis of the Koronis family predicts very few interlopers of the Vysheslavia size (Migliorini
et al. (1995)). Knežević et al. (1997) tentatively identified two other Koronis members very close to the
mentioned chaotic zone.

Milani & Farinella (1995) proposed two hypotheses: (i) Vysheslavia might be an outcome of a recent
secondary fragmentation event in the family, or (ii) Vysheslavia might have been placed on its present
orbit by close encounters with massive asteroids. However, none of these two possibilities were found
very likely: the probability of the disruption of large (25–50 km) parent asteroid during the last 100 My
is less than 5 % and the gravitational fluctuations in the semimajor axis due to Ceres and Pallas may
statistically accumulate to ≈ 10−3 AU over the age of the Solar System.

In Vokrouhlický et al. (2001) we proposed the Yarkovsky-driven origin of the Vysheslavia’s metastable
orbit. We have checked that the Yarkovsky force is able to change the semimajor axis of multikilometer
size asteroids by 0.01–0.02 AU within their expected collisional lifetime. Objects, originally located on
stable orbits further from the 5/2 resonance, may be thus brought to its vicinity. In course of this
evolution they may be temporarily captured in chaotic regions related to weaker resonances and thus
explain origin of the orbit of Vysheslavia. The probability of this process appears much higher than
in the previously mentioned possibilities. Here we report 9–14 more asteroids (likely members of the
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Figure 42: Mean semimajor axis (in AU) vs. time (in My) for Vysheslavia and its 14 “fictitious neighbours”.
The Yarkovsky effect is not included in this simulation, but the perturbations by all the planets (except Pluto)
are considered. The median lifetime against the fall to the 5/2 resonance is 11 My for this integration, while the
lifetime of the objects temporarily residing inside the 5/2 resonance is less than 1 My.

Koronis family) that have similarly metastable orbits as Vysheslavia, and we argue that this brings more
evidence for the Yarkovsky-driven origin of these orbits, including Vysheslavia’s.

In this section, we also report photometric observations of Vysheslavia that allowed us to determine
its pole orientation, and thus its obliquity. Our results confirm the Yarkovsky-driven scenario outlined
above and, additionally, they maintain the surprising dichotomy in the obliquity distribution of large
Koronis members (Slivan 2002; Slivan et al. 2003).

4.2 Numerical simulations

We have implemented linearised versions of both diurnal and seasonal variants of the Yarkovsky effect in
different numerical integrators; most importantly, we created a quasi-symplectic integrator swift rmvsy

(based originally on swift rmvs3 code by Levison & Duncan (1994)) that allows fast simulations. Though
the properties of symplecticity are violated due to the weak dissipation caused by the Yarkovsky effect,
we have extensively tested our code (by comparing its results with more precise integrators and by repro-
ducing the analytic results when available). These tests, as well as the Yarkovsky effect implementation,
are listed in Brož (1999) and Sections 2.3.2, 9.2.

Due to its peculiar location the Lyapunov time of the Vysheslavia’s orbit is ≈ 27 ky only. This is much
shorter than the time span of most of our simulations, and thus the simulations have a statistical meaning
only. This is, however, not an obstacle for our work, since our fundamental conclusions are of statistical
nature. To make a statistical sense of our work we have used a technique of integrating neighbour orbits.
We used two levels of “zooming” in this respect: (i) “fictitious neighbours” (FNs) cover a larger area
around a given orbit (typically up to displacements ∆a = 10−3 AU in the semimajor axis and ∆e = 10−3

in eccentricity), and (ii) “close clones” (CCs) that span basically the 3σ uncertainty ellipsoid of the given
orbit initial data (notably up to displacements ∆a = 10−7 AU and ∆e = 10−6).

The orbits of FNs and CCs were integrated both with and without the influence of the Yarkovsky
effect (we typically used 4 outer planets in our simulations, but checks with 8 planets except Pluto and
even with two massive asteroids Ceres and Pallas were systematically performed). Since we are dealing
with multikilometer asteroids, we assumed low surface thermal conductivity (K = 0.0015 W/m/K), as
indicated by many observations, but again checks with a higher value of K were performed. The major
unknown factor, that influences the strength of the Yarkovsky effect, is then the orientation of the asteroid
spin axis (and its possible temporal evolution). For that reason, we have performed tests with different
orientations of the spin axis.

Vysheslavia’s chaotic zone is visible in Figure 42, where the evolution (without the Yarkovsky effect)
of the mean semimajor axis of Vysheslavia and its 14 FNs is plotted. One recognises the zone 0.0015AU
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Figure 43: Mean semimajor axis (in AU) vs. time (in My) for asteroid (7340) = 1991 UA2 and its 14 fictitious
neighbours. The low value K = 0.0015 W/m/K of the surface conductivity is assumed, the orientations of the spin
axes are distributed isotropically in space (FNs here mean that the initial conditions were the same for all objects,
but the orientation of their spin axes was different). Apart from the Vysheslavia’s chaotic zone at 2.829 AU, one
may notice another tiny zone at about 2.833 AU. Given the orientation of the spin axis, the asteroids may drift
outwards or inwards. While being originally on a stable orbits, about a half of the FNs reaches the Vysheslavia’s
chaotic zone (and then the 5/2 resonance) in 70–500 My.

wide easily, because the semimajor axis randomly fluctuates. Notice also sporadic instants, when some of
the integrated objects fall into the 5/2 resonance. The uppermost FN has been placed on a stable orbit,
to contrast its behaviour with the others.

The transport towards the 5/2 resonance is depicted in Figure 43. It indicates the importance of the
Yarkovsky effect for overall mixing of small multikilometer asteroids in families (here the Koronis family
asteroid (7340) is integrated with its 14 FNs of different spin orientations; low surface conductivity is
assumed). Several facts may be concluded from this integration: (i) the Yarkovsky effect may spread
semimajor axes of small asteroids, initially of the same orbit, by as much as ≈ 0.05 AU within their esti-
mated collisional lifetime, (ii) the asteroid (7340) may slowly evolve toward the Vysheslavia’s dynamical
state (and thus Vysheslavia might have been originally on a similar orbit as (7340)), and (iii) even if the
asteroids drift outward from the 5/2 resonance, their origin in past is constrained by the presence of the
resonance.

Other asteroids on metastable orbits. We have selected ≈ 400 objects in the outer vicinity of the
5/2 resonance from the astorb.dat catalogue (vers. Jul 6, 2000; Bowell et al. (1994)) and integrated them
for 10 My (Yarkovsky effect was not included in these integrations). After eliminating objects initially
inside the 5/2 resonance and those on stable orbits, we have identified 9 objects with metastable orbits,
similar to that of Vysheslavia (5 more candidates with poorly known orbits were discarded from the
following considerations). Moreover, we found 3 objects on unstable orbits in between the Vysheslavia’s
chaotic zone and the 5/2 resonance and 1 asteroid just at the upper edge of the Vysheslavia’s zone
(having an unstable orbit on a very long time span; 5 more candidates of this type have been also found
but not integrated for sufficiently long time interval). We selected some of these objects and integrated
them (with a limited number of CCs) up to 500 My. Figure 44 shows the characteristic behaviour of the
three classes of orbits and we give information about the 7 objects, whose orbits have been integrated, in
Table 13. None of these new objects on metastable orbits is of Vysheslavia size, but there are about 7 of
them with half of its size (i.e., radii between 3.3–4 km). Others are smaller, with typical radii between
1–2.7 km. Their entire estimated mass is by about 20 % larger than that of Vysheslavia.

We note that the collisional lifetime of a hypothetical 20 − 30 km size parent body for Vysheslavia is
likely & 5 − 10 Gy (Bottke et al. 2005a,b), making the probability of the recent secondary break-up in
the Koronis family, with Vysheslavia being the largest fragment, less then 1 %.

We shall also consider the recent break-up of the Karin cluster (Nesvorný et al. 2002) as a “benchmark”
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Figure 44: Mean semimajor axis (in AU) vs. time (in My) for asteroids (9990), (13021), (14440), each with
4 “close clones”. The Yarkovsky effect is not included here; (9990) (upper body) is on an almost stable orbit but
some of the clones may drop to the 5/2 resonance, (13021) (middle body) exhibits behaviour very similar to that
of Vysheslavia (see Figure 42), and (14440) (lower body) is on a peculiar orbit very close to the 5/2 resonance.
None of these objects could be located on its orbit for the entire lifetime of the Koronis family (≈ 2 Gy).

Table 13: The sample of asteroids located on metastable orbits close to the 5/2 resonance (most likely Koronis
family members); radii estimated from absolute magnitudes and geometric albedo 0.2, dynamical lifetimes against
the fall into the 5/2 resonance are given as a median over 5 integrated close clones, proper elements for numbered
asteroids are taken from AstDyS (http://newton.dm.unipi.it/).

asteroid radius [km] lifetime [My] proper a [AU] proper e
(2953) 7.2 11 2.82767 0.0531
(6814) 3.6 >100 2.82856 0.0417
(9631) 2.7 268 2.82736 0.0393
(9990) 3.3 395 2.82967 0.0606

(13021) 3.6 147 2.82786 0.0550
(14440) 2.7 116 2.82692 0.0286
1996 TE 2.1 14
2000 GQ6 3.4 >100

and deduce what fraction of observable ejecta from a hypothetical secondary disruption event would sur-
vive dynamical evolution until the present. Assuming the same velocity distribution as observed in the
Karin cluster but centered on the position of Vysheslavia, we predict that from initially 20−40 fragments
larger than ≃ 3 km (depending on steepness of the size distribution), some 8 − 16 should survive 15 My.
This is based on the analysis of the dynamical stability of the fragments’ orbits (Figure 45). We find only
one object in this close vicinity to Vysheslavia today. Taken together with the low probability of a sec-
ondary break-up described above, the absence of accompanying ejecta in the Vysheslavia neighbourhood
make the recent collisional disruption scenario exceedingly unlikely.

4.3 Photometric observations

We observed Vysheslavia on 35 nights during five apparitions: January 2000, March–April 2001, Septem-
ber 2002, September–December 2003 and January–February 2005. The longest time span between the
first and the last observation within one apparition – 81 days in 2003 – allows us to unambiguously link
the sidereal rotation phase of all the other observations, prerequisite for a successful solution. The aspect
data of the observations and other information are summarized in Table 14.

The January 2000 Vysheslavia observation was performed at Saint Veran Observatory (France) using
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Table 14: Aspect data of the (2953) Vysheslavia observations.

Date (UT) r ∆ φ λ β α δ Filter Observation
(AU) (AU) (◦) (◦) (◦) (◦) (◦) site

2000
Jan 16.1 2.882 1.903 2.2 119.37 −0.79 123.42 18.66 R Saint Veran
Jan 17.1 2.882 1.901 1.8 119.58 −0.80 123.20 18.70 R Saint Veran

2001
Mar 16.4 2.786 2.002 14.9 207.00 −0.75 219.14 −16.40 V River Oaks
Mar 20.3 2.786 1.963 13.8 207.82 −0.74 218.90 −16.33 V River Oaks
Mar 21.3 2.785 1.954 13.5 208.06 −0.74 218.82 −16.31 V River Oaks
Apr 26.1 2.778 1.772 0.4 215.74 −0.62 212.97 −14.32 R Pic du Midi
Apr 27.0 2.778 1.772 0.6 215.92 −0.62 212.79 −14.25 R Pic du Midi
Apr 28.0 2.778 1.772 1.0 216.13 −0.62 212.58 −14.17 R Pic du Midi

2002
Sep 02.0 2.795 1.853 9.1 322.50 1.01 315.44 −15.33 R Pic du Midi
Sep 03.0 2.795 1.859 9.4 322.71 1.01 315.29 −15.37 R Pic du Midi

2003a

Sep 24.3 2.884 2.233 17.3 41.93 0.53 56.86 20.65 V Whitin
Sep 25.3 2.884 2.222 17.1 42.12 0.52 56.86 20.65 V Whitin
Sep 30.2 2.885 2.167 16.0 43.12 0.51 56.80 20.63 V Whitin
Oct 01.2 2.885 2.156 15.8 43.32 0.50 56.76 20.62 V Whitin
Oct 04.3 2.886 2.126 15.1 43.92 0.49 56.62 20.59 V Whitin
Oct 20.3 2.888 1.990 10.3 47.10 0.44 54.93 20.20 V Whitin
Oct 29.0 2.889 1.939 7.0 48.88 0.41 53.42 19.82 V Kharkiv
Nov 01.2 2.890 1.926 5.8 49.48 0.40 52.78 19.65 V Whitin
Nov 05.1 2.890 1.913 4.2 50.29 0.38 51.96 19.45 R Ondřejov
Nov 06.1 2.890 1.911 2.8 50.49 0.38 51.75 19.40 R Ondřejov
Nov 15.2 2.891 1.902 0.2 52.26 0.35 49.71 18.83 V Whitin
Nov 15.3 2.891 1.902 0.2 52.26 0.35 49.69 18.82 V Oakley
Nov 16.3 2.891 1.902 0.4 52.45 0.35 49.47 18.78 V Oakley
Nov 18.3 2.892 1.904 1.2 52.85 0.34 49.02 18.65 V Oakley
Dec 01.7 2.893 1.949 6.8 55.56 0.29 46.21 17.83 R Kharkiv
Dec 02.7 2.893 1.953 7.2 55.76 0.29 46.03 17.77 R Kharkiv
Dec 13.1 2.894 2.022 10.8 57.80 0.25 44.39 17.24 R Whitin
Dec 14.0 2.894 2.030 11.1 58.00 0.25 44.27 17.20 R Whitin

2005
Jan 05.1 2.866 2.077 13.8 134.93 -0.96 150.41 10.67 R Pic du Midi
Jan 06.2 2.866 2.067 13.5 135.13 -0.96 150.32 10.69 R Pic du Midi
Feb 06.2 2.859 1.877 2.2 141.40 -1.01 145.36 12.22 R Whitin
Feb 07.0 2.859 1.875 1.8 141.61 -1.01 145.19 12.28 R Pic du Midi
Feb 07.1 2.859 1.875 1.7 141.61 -1.01 145.17 12.28 R Whitin
Feb 07.9 2.859 1.874 1.3 141.81 -1.01 144.99 12.33 R Kharkiv
Feb 10.1 2.858 1.872 0.6 142.21 -1.01 144.52 12.50 R Pic du Midi

†Date is the mean epoch of the observation, r and ∆ are the heliocentric and geocentric distances, φ is the phase
angle, (λ, β) are the ecliptic longitude and latitude in the J2000.0 reference frame, and (α, δ) are the J2000.0
right ascension and declination.
‡The light-curve data can be found at http://sirrah.troja.mff.cuni.cz/yarko-site/2953 photometry/.
aThe 2003 observations provide the longest run within one apparition and enable unambiguous linking of sidereal
rotation phase throughout the whole period 2000–2005.
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Figure 45: Koronis family members (open circles) projected on the plane of synthetic proper semimajor axis and
proper eccentricity (Knežević et al. 2002); the Karin cluster is indicated in the lower right corner. Assuming an
isotropic velocity field, ejecta from a hypothetical secondary collisional disruption near Vysheslavia (full circle)
would fall in the region indicated by grey dots. Only one of the observed Koronis asteroids falls in this zone,
notably in its stable part exterior to the 5/2 mean-motion resonance with Jupiter. Orbital stability is indicated
by grey shading indicating a parameter σ = 1 − n(2)/n(1), where n(1) and n(2) are proper mean motions of test
particles calculated in the two consecutive time intervals, each spanning 1.2 My (see Robutel and Laskar, 2001;
dark zones of small σ value imply stability, white areas of high σ value, such as the 5/2 mean motion resonance
with Jupiter, are unstable). The family members were identified using the hierarchical clustering method with
the standard metric and the velocity cutoff 60 m/s (e.g., Zappalà et al. 1995; Bottke et al. 2001).

a 0.62-m telescope equipped with a HiSys22 CCD camera (KAF400 chip) and a non-standard R filter. As
a result, no transformation to the standard photometric system was possible. The data were processed
with the software APHOT developed at Ondřejov Observatory. The aperture photometry was used as
described by Pravec et al. (1996).

During the next four apparitions the asteroid was observed at Pic du Midi Observatory (France) using
a 1.05-m reflector equipped with the Thomson 7863 CCD camera and R filter. A standard reduction was
performed with the ASTROL software developed at the Institut de Mécanique Céleste in Paris. The aper-
ture photometry was obtained with the CCLRS STARLINK package (see also Micha lowski et al.2000).
Due to occasional non-photometric weather conditions, the data obtained were not transformed to the
standard system and only relative instrumental magnitudes were used.

In March 2001, Vysheslavia was also observed by Bill Holliday at the River Oaks Observatory, New
Braunfels (Texas) using a 0.4-m Newtonian telescope equipped with an SBIG ST8E CCD camera. The
standard dark subtraction, flat fielding and differential photometry were performed using the Mira soft-
ware (http://www.axres.com).

In 2003 and 2005 lightcurve observations were made at the Whitin Observatory at Wellesley College
(Massachusetts), using the 0.61-m Sawyer telescope with a Photometrics camera housing a Tektronics
(SITe) back-illuminated CCD detector. The data were calibrated to the standard system, yielding V and
R magnitudes in 2003 and R magnitudes in 2005. Image processing and synthetic aperture photometry
were performed using the IRAF software applications from NOAO. The calibrated data from 2003 are
sufficient to derive the color index V −R = 0.49 ± 0.01, and also Lumme-Bowell solar phase coefficients
at that aspect: H = 11.92 ± 0.04 and G = 0.19 ± 0.02.

At the Kharkiv Observatory, where observations were also performed in 2003 and 2005, we used the
0.7-m reflector equipped with a CCD camera (ST-6UV in 2003 and IMG1024S in 2005) and standard V
and R filters. Frames were reduced with the synthetic aperture package ASTPHOT developed at DLR
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(e.g., Mottola et al. 1995).
Three additional lightcurves were kindly provided by Richard Ditteon, who observed Vysheslavia in

mid November 2003 from Oakley Observatory, Terre Haute (Indiana). A 0.36-m telescope was equipped
with an AP7 CCD camera and a standard V filter. Relative photometry was obtained and analysed using
the Canopus program.
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Figure 46: Composite rotation lightcurves of (2953) Vysheslavia in five consecutive apparitions: January 2000,
March–April 2001, September 2002, September–December 2003 and January–February 2005. The abscissa is the
rotational phase with a common zero point corrected for light-time and related to the first observation in the
panel and a synodic period 6.295 h. On the ordinate, relative instrumental magnitudes, either in the R or V
bands, adjusted so that dispersion with respect to the neighbours is minimized. Variations in the lightcurves are
mainly due to changing Sun-asteroid-observer geometry (see the phase angle in Table 14). Data are on our web
site http://sirrah.troja.mff.cuni.cz/yarko-site/2953 photometry/.

The observations are presented as composite lightcurves (Fig. 46) consistent with a synodic period of
(6.295 ± 0.001) hours. For presentation purposes the magnitude offset of each lightcurve was obtained
by minimizing the dispersion of data points relative to their neighbours. The variations in the lightcurve
amplitudes are due mainly to changes in the Sun-asteroid-observer phase angle; the mean amplitudes
range from about 0.09 magnitude at the smallest phase angles to 0.15 − 0.17 magnitude at the largest
phase angles. We estimate the error of the lightcurve amplitudes to be ≃ 0.02 magnitude, while the error
of the lightcurve maximum/minimum epochs is ≃ 10 minutes. A preliminary look at the data, notably
the small amplitude variations remaining after accounting for phase angle changes across the (0◦, 17◦)
interval, suggest a non-ecliptic pole for Vysheslavia.
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4.4 Shape and spin model of (2953) Vysheslavia

To strengthen the robustness of our conclusions we used two independent and different solution methods
described below. Because we confirm the pole aspect close to 90◦, further observations will help reduce
the uncertainty in the pole solution but probably will not improve much the shape solution. Already, the
2005 apparition appears to closely repeat the 2000 configuration with only a moderate shift in the ecliptic
longitude. Further data will improve the longitude coverage, but will likely not change the solution in a
significant way.

4.4.1 Method # 1

First, the orientation of the spin vector, sidereal period, and triaxial ellipsoid model of Vysheslavia
have been determined using the method described by Micha lowski (1993). This approach combines
epoch, amplitude-aspect, and magnitude-aspect methods by building a set of nonlinear equations whose
solutions are found by least squares fitting the model to the times of lightcurve maxima, the lightcurve
amplitudes, and (if available) the calibrated magnitudes. The amplitude-aspect equations represent
basically the weighted amplitude-aspect (WAA) method (see also Drummond et al. 1988) that models
the asteroid as a triaxial ellipsoid of uniform surface reflectivity. To a good approximation the brightness
variations are given directly by the changing cross-section of the asteroid as it rotates about the shortest
body axis; lightcurve amplitudes observed at different viewing aspects are used to deduce the spin axis
orientation. The magnitude-aspect equations are based on a similar approach, except that they model
lightcurves’ overall brightnesses instead of their amplitudes. To resolve the sense of rotation about the
axis we complemented the amplitude and magnitude information with equations representing the epoch
method, namely tracking in time a chosen “prominent feature” on the rotation curve, assuming that it
corresponds to a pattern at a fixed longitude on the asteroid.

This combined amplitude-magnitude-epoch analysis leads to a set of nonlinear equations for the pole
longitude λp and latitude βp, the sidereal rotation period Psid, and ratios a/b and b/c of the best-
fit ellipsoid axes; Micha lowski (1993) discusses the appropriate iterative method of their solution. At
convergence, we obtained the following best-fit solutions (there is an obvious near-180◦ ambiguity in
determination of the ecliptic longitude of the pole):

Psid = (0.2622732± 0.0000008) days ,

P3 : λp = 15◦ ± 3◦ , βp = −60◦ ± 8◦ ,

P4 : λp = 190◦ ± 3◦ , βp = −65◦ ± 8◦ ,

a/b = 1.15 ± 0.01 , b/c = 1.0 ± 0.1 ,

implying indeed a retrograde sense of rotation and a pole far from the ecliptic. The mirror solutions, P1

and P2, with prograde rotation are rejected having χ2 value 3 times larger than P3 and P4 and statistically
poor. This configuration is unfavorable to solve for the ratio b/c, and its value above is only formal (see
eqs. (3) and (5) in Micha lowski, 1993).

4.4.2 Method # 2

An independent analysis of the same data was done using the method described by Slivan et al. (2003).
Brightness and epoch information related to low-order shape were extracted from the lightcurves by
least-squares fitting Fourier series, and then analyzed with the sidereal photometric astrometry (SPA),
weighted amplitude-aspect (WAA), and simultaneous amplitude-magnitude (SAM) methods based on
those of Drummond et al. (1988).

Using only the timing information, SPA constrains the pair of pole solutions to be quite far from the
ecliptic plane, with retrograde rotation and ecliptic longitude near 0◦ or 180◦. A second pair of solutions
with prograde rotation and ecliptic longitude near 90◦ or 270◦ is rejected, because the fit to the epochs is
poor and unlikely multiple exchanges of the primary and secondary extrema are required over the range
of aspects observed. The χ2 acquires a value 2.3 times larger than that of the favored retrograde poles.

It is more difficult to use the lightcurve amplitude and brightness methods to reliably determine the
spin axis of Vysheslavia, because the observed aspect-dependent changes in the available data are so small
that they are comparable to the measurement uncertainties. In fact, for the adopted poles, neither the
largest- nor the smallest-amplitude aspects have yet been observed. The WAA analysis of the amplitudes
alone does not give satisfactory results; it finds spin axes consistent with only the rejected SPA solutions.
The SAM analysis uses both amplitudes and overall brightness, and it does find axis solutions consistent
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with the favored SPA solutions, but the standard-calibrated data it needs have been recorded during only
two of the five apparitions observed so far.

The adopted poles for method #2 were found at the intersections of the SPA “E-Method arcs” and
the SAM “AM Solution Curves” as described by Magnusson (1986). These poles were used with SPA to
calculate the sidereal period. The same poles were also used with SAM to calculate axial ratios, but the
limited aspect coverage of calibrated lightcurves leads to very large formal uncertainties and no useful
constraints on the shape. We thus obtained (the shape parameters are not reported):

Psid = (0.2622713± 0.0000002) days ,

P3 : λp = 8◦ ± 6◦ , βp = −68◦ ± 4◦ ,

P4 : λp = 194◦ ± 7◦ , βp = −71◦ ± 4◦ .

4.4.3 Adopted solution

The previous results indicate formal statistical errors of the solved parameters. They are close to each
other9, but the fact they are not identical signals a presence of non-random errors in the data and/or not
complete adequacy of the used solution methods and their assumptions (such as the triaxial shape of the
asteroid). We also note that the numerical algorithms to solve for the best-fit parameters are different in
methods #1 and #2, and this may also contribute to the observed difference in the two solutions.

A conservative, though perhaps too pessimistic, approach to merge the previous results into a single,
adopted solution is to use an average of the best-fit values for the corresponding parameters and “realistic”
errors that embrace formal uncertainty intervals of both solutions. With that approach we obtain:

Psid = 0.2622722± 0.0000018 (days)

P3 : λp = 11◦ ± 10◦ , βp = −64◦ ± 10◦

P4 : λp = 192◦ ± 8◦ , βp = −68◦ ± 8◦ .

Using the orbital inclination of 1.1◦ and longitude of the ascending node 251.3◦ for Vysheslavia, we thus
obtain obliquity values γ = 154◦ ± 14◦ (P3) and γ = 157◦ ± 11◦ (P4), respectively.

The spin vector determination methods we used also suggest a low-order shape for Vysheslavia, but this
shape information is very approximate owing to the simplifying assumptions of the models and the limited
data available. Given sufficient data a more sophisticated analysis such as the convex inversion approach
of Kaasalainen et al. (2001) should give better shape information, however, the science implications
discussed in the following section do not depend on details of the shape model used, so such analysis is
outside the scope of our present work. Slivan et al. (2003), and more recently Micha lowski et al. (2004),
demonstrated that the amplitude-magnitude-epoch and convex inversion methods give generally good
agreement between derived pole locations, even if there are not enough data to derive a detailed model
shape.

4.5 Discussion

Our solution for the Vysheslavia pole has two interesting implications. Together with the dynamics of
Vysheslavia’s neighbours (Section 4.2), it agrees with a general model of dynamical evolution of asteroid
families in which they continually spread due to the Yarkovsky effect (e.g., Bottke et al. 2001, Tsiganis
et al. 2003; Vokrouhlický et al. 2005a,b). Vysheslavia makes sense as the largest member of an aster-
oid population “on the brink”, continually resupplied by new objects. In the Koronis family, another
argument for the ongoing spread in the semimajor axes is the existence of the Prometheus clan, whose
asteroids have a significantly higher eccentricity value beyond the g+2g5−3g6 secular resonance (Bottke
et al. 2001).

The alternative possibility, discussed by Milani and Farinella (1995), is that Vysheslavia has a colli-
sional origin, either as a result of a recent disruptive secondary break-up in the Koronis family or that a
non-disruptive impact on Vysheslavia shifted its semimajor axis into the dynamically unstable region. A
possible result of this collision could be a non-principal-axis rotation of Vysheslavia, provided it occurred
so recently that internal dissipation would not damp the wobble energy. For a ≃ 15 km size asteroid and
6.29 h rotation period the characteristic damping time scale is 0.5 − 5 My, depending on the physical
parameters of the body (e.g., Vokrouhlický and Čapek, 2002; Paolicchi et al.2002). The higher value, if

9The sky plane uncertainty ellipses of the pole solution overlap but the sidereal rotation period uncertainty intervals are
disjunct.
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Figure 47: Spectra (relative reflectaces) of 22 Koronis family members; the first one, for (158) Koronis, is in
order, the rest are subsequently shifted by 0.2 due to visibility. Data from the SMASSII web site http://smass.

mit.edu.

correct, is a non-negligible fraction of the dynamical lifetime of Vysheslavia’s orbit. Our observations,
however, do not support the non-principal-axis rotation. Rather, they are consistent with a stable ro-
tation mode about the short axis with a single rotation period over all five apparitions. This obviously
does not rule out the recent collisional origin of Vysheslavia, but it makes it less likely.

Additionally, we examined spectra of 22 Koronis members, including Vysheslavia, available at the
SMASSII web site http://smass.mit.edu. The reflectance spectrum of Vysheslavia is quite typical for
the Koronis family (S-type; e.g., Chapman et al. 1989; Bus and Binzel 2002) and does not exhibit any
anomalous feature that would be possibly related to its hypothetical younger age (Figures 47 and 48).

Secondly, Slivan (2002) and Slivan et al. (2003) analyzed spin vectors of the largest members in the
Koronis family. They found a markedly non-random distribution with two statistically significant clusters
having obliquity near 50◦ (prograde rotators) and between 150 − 180◦ (retrograde rotators). Though
Vysheslavia is little smaller than the asteroids observed by Slivan et al. (with sizes of 20− 40 km), it still
seems to marginally fit the bimodal distribution of the pole directions in the family, namely it matches
the observed characteristics of the retrograde rotators. Vokrouhlický et al. (2003) argue that the known
spin vectors of Koronis members underwent a remarkable dynamical evolution driven by YORP effect,
a rotational variant of the Yarkovsky effect. They also predict, that at small sizes the bimodal pattern
should disappear, because of increasing strength of the YORP effect. It appears that Vysheslavia may be
just in a transition interval of sizes. Photometric observations of further 10− 20 km sized Koronis family
members, with the goal to determine their spin vectors, is thus an important project for the future.
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Figure 48: Smoothed visible spectra of 22 Koronis family members, all normalized to unity at 550 nm. The
asteroid (2953) Vysheslavia is plotted in bold; it does not exhibit anomalous features with respect to the other
asteroids. Data from the SMASSII web site http://smass.mit.edu.
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5 Yarkovsky origin of the unstable asteroids in the 2/1
resonance with Jupiter

The asteroidal population inside the J2/1 mean motion resonance was recently identified by Brož et al. (2005a)
and the Yarkovsky model, which succesfully explains the existence unstable asteroids, was constructed by Brož et al.
(2005b); this chapter is a sligtly extended version of these articles. The co-authors are: D. Vokrouhlický, F. Roig,
D. Nesvorný, W.F. Bottke and A. Morbidelli; MB is responsible for the update of the resonant population and all
N-body simulations in Sections 5.2, 5.3.1 and 5.3.3.

Abstract

The 2/1 mean motion resonance with Jupiter, intersecting the main asteroid belt at ≈ 3.27 AU,
contains a small population of objects. Numerical investigations have classified three groups within
this population: asteroids residing on stable orbits (i.e., Zhongguos), marginally stable orbits with
dynamical lifetimes on the order 100 My (i.e., Griquas) and unstable orbits. In this paper, we reex-
amine the origin, evolution and survivability of objects in the 2/1 population. Using recent asteroid
survey data, we have identified one hundred new members since the last search, which increases the
resonant population to 153. The most interesting new asteroids are those located in the theoretically-
predicted stable island A, which until now had though to be empty. Next, we investigated whether
the population of objects residing on the unstable orbits could be resupplied by material from the
edges of the 2/1 resonance by the thermal drag force called the Yarkovsky effect (and the YORP
effect, which is related to the rotational dynamics). Using N-body simulations, we showed that test
particles pushed into the 2/1 resonance by the Yarkovsky effect visit the same regions occupied by
the unstable asteroids. We also found that our test bodies had dynamical lifetimes consistent with
the integrated orbits of the unstable population. Using a semi-analytical Monte-Carlo model, we
computed the steady-state size distribution of magnitude H < 14 asteroids on unstable orbits within
the resonance. Our results provide a good match with the available observational data. Finally, we
discuss whether some 2/1 objects may be temporarily-captured Jupiter family comets or near-Earth
asteroids.

5.1 Introduction

In 1869 the first asteroid, 108 Hecuba, was found to reside near the 2/1 mean motion resonance with
Jupiter (Luther 1869; Tietjen 1869). (Hereafter, we denote this resonance as J2/1, with other resonances
denoted accordingly.) Since that time, asteroidal dynamics near or inside mean motion resonances with
Jupiter have attracted attention. For example, Hansen, Bohlin and von Zeipel were among the first in a
long list of researchers who tried to deal with the difficulties of insufficient convergence of the resonant
trigonometric perturbation series for Hecuba-like orbits (historical notes in Hagihara 1975). These cases
demonstrated the limits of analytical methods (e.g., perturbation theory). More recently, semi-analytical
and numerical methods have allowed to make great progress in our understanding of resonant dynamics.
In particular, we can now decipher some of the minute details of asteroid motion inside the J2/1 (e.g.
Murray 1986; Henrard & Lemâıtre 1987; Lemâıtre & Henrard 1990; Morbidelli & Moons 1993; Ferraz-
Mello 1994; Henrard et al. 1995; Morbidelli 1996; Nesvorný & Ferraz-Mello 1997; Moons et al. 1998;
Morbidelli 2002).

Although today we recognize that Hecuba itself is just outside the J2/1, we know that more than
hundred asteroids reside inside the J2/1. This sample is large enough to allow us to quantitatively analyse
their origin. Recently, Roig et al. (2002) published a catalogue of 53 asteroids residing in the J2/1 and
placed them into 3 groups according to their dynamical lifetime in the resonance (tJ2/1). Half of the
orbits were found to be stable (tJ2/1 ≈ 1 Gy), much like that of (3789) Zhongguo, the first stable asteroid
discovered in the J2/1 resonance. The remaining bodies are either marginally stable (tJ2/1 ≈ 100 My) or
unstable (tJ2/1 ≈ 10 My), with the leading asteroids in each group being (1362) Griqua and (1922) Zulu.
Importantly, the largest asteroids of all three groups are between D = 20 − 30 km in diameter.

Asteroidal sizes and dynamical lifetimes are very basic indicators of their origin. We know that
unstable resonant asteroids are not primordial because they cannot reside on their current orbits for
4.6 Gy.10 Moreover, small asteroids are unlikely to survive 4.6 Gy of collisional evolution. Bottke et al.
(2004) estimate the collisional lifetimes of D < 10 km asteroids are less than the age of the Solar system.

10Besides that, Michtchenko & Ferraz-Mello (1997) and Ferraz-Mello et al. (1998) have pointed out that stability inside
the J2/1 might have been significantly reduced early after formation of the Solar system during the migration of giant
planets. The period of the Great Inequality in Jupiter’s motion could have been closer to the libration period of asteroids
inside the J2/1, which would have caused significant depletion of any primordial resonant population.
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The situation is different for asteroidal populations inside the J3/2 (the so called Hilda group) and in
the J4/3 (the Thule group). The dynamical lifetimes of their members tend to be long (e.g. Nesvorný
& Ferraz-Mello 1997), while the largest observed asteroids are substantially larger (D = 170 km and
125 km respectively) that those in the J2/1 (D = 20 − 30 km). Given that these objects are big and
their eccentric orbits cross only a portion of the main belt (e.g. Dahlgren 1998), their collisional lifetimes
are definitely larger than the age of the Solar system. As a consequence, the Hilda and Thule groups are
likely to be primordial.

There are two end-member cases to explain the origin of the J2/1 population:

1. The population is far from steady state, such that the observed objects were produced by a recent
disruption event (instantaneous-injection model), or

2. The population is in steady state and we need to find the process that sustains it (continuous-flow
model).

It is also possible that both cases are partially correct, and that different resonant groups have different
origins.

In the 1990’s, the preferred hypothesis was type (i). Here the resonant asteroids were fragments injected
into the J2/1 during the Themis family formation event (e.g. Morbidelli et al. 1995; Moons et al. 1998).
Recent asteroid family results, however, suggest this possibility is unlikely. Numerical simulations of large
break-up events in the asteroid belt predict escape velocities significantly smaller than would be needed
to directly inject asteroids into the J2/1 (Michel et al. 2001; in fact, characteristic velocities are too small
to populate the currently observed family outside the resonance). In addition, there are several lines of
evidence to suggest that prominent asteroid families like Koronis (Vokrouhlický et al. 2003) or Themis
are several Gy old (Morbidelli et al. 2003; Bottke et al. 2004). Such ages are incompatible with the
relatively short dynamical lifetimes of the Griquas and unstable resonant asteroids. On the other hand,
Roig et al. (2002) argue that the steep size distribution seen among the Zhongguos (i.e., the stable J2/1
objects) may be more consistent with a recent collisional origin.

At first glance it might seem possible, that the majority of the unstable asteroids were produced
by a recent catastrophic disruption event, with some of the fragments directly injected into the J2/1.
Although the stochastic nature of such events make it difficult to rule this scenario out apriori, we
believe the available evidence suggests that most J2/1 asteroids are unlikely to have formed by this
process, mainly because the dynamical lifetime of most unstable asteroids is of the order 10 My and this
time-scale implies that a collisional event capable of injecting fragments into the J2/1 should have leave
behind an observable asteroid family along the J2/1 border. As described in Nesvorný et al. (2003), it
is now possible to systematically search for clusters of bodies in proper element space using a database
of more than 100,000 asteroids computed by A. Milani and Z. Knežević (e.g. Knežević et al. 2003).
Though the outer main belt is more observationally incomplete than the inner main belt, Nesvorný et al.
(2003) found no evidence for new families along the J2/1 border. This limits the size of any potentially-
disrupted parent bodies to objects smaller than Karin, a D ≃ 30 km asteroid that disrupted and produced
a small cluster of fragments in the Koronis asteroid family 5.8 My ago (Nesvorný et al. 2002b; Nesvorný
& Bottke 2004). Because some unstable asteroids are comparable in size to the Karin parent body, it
appears that Karin-sized disruption events cannot produce the largest unstable asteroids. For smaller
unstable asteroids, we can use the limits provided by the Karin cluster to estimate, in a back-of-the-
envelope fashion, whether they could have been produced by a recent breakup event. Here we assume the
unstable asteroids were the by-product of a recent disruption among one of the D = 20−30 km asteroids
bordering the J2/1. As shown by Nesvorný et al. (2002b), the Karin disruption event ejected km-sized
fragments at velocities of ≤ 15 m/s, with the maximum distance reached by the observed fragments
from the centre of the family being ∆a ≃ 0.005 AU. This constrains our putative forming event for the
unstable asteroids to a distance of 0.005 AU or smaller from the J2/1 border. Searching main belt orbital
elements, we find that only ≃ 1% of D = 20 − 30 km asteroids fulfil this criterion. If the time interval
between D = 20 − 30 km disruption events across the whole main belt is ≃ 10 My (Bottke et al. 2004),
there is only a 0.5 − 3% chance that such an event occurred near the J2/1 border within the dynamical
lifetime of the unstable asteroids (5 − 30 My). Given these odds and the lack of evidence for any recent
family-forming events near the J2/1, we conclude that most unstable asteroids were not produced by a
collisional injection.

Alternatively, the current view of asteroid family evolution, namely that the initial break-up event
was followed by a subsequent dynamical spreading due to the effect of the Yarkovsky forces and chaos
in weak resonances (e.g. Bottke et al. 2001; Nesvorný et al. 2002a; Bottke et al. 2003), offers a natural
continuous-flow model of type (ii) mentioned above. As asteroids slowly diffuse in semimajor axis over
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time, they can reach the border of a resonance and fall into it. This scenario provides a continuous
resupply of resonant asteroids (dominated by the Yarkovsky effect), and is supported by observations of
asteroids on highly unstable orbits adjacent to the resonances (e.g. Milani & Farinella 1995; Vokrouhlický
et al. 2001; Guillens et al. 2003) and by a quantitative model of the transport of near-Earth asteroids
(NEAs) from the main belt (Morbidelli & Vokrouhlický 2003).

In this paper, we show the continuous-flow of asteroids driven by the Yarkovsky effect may explain
the presence of unstable asteroids in the J2/1 (as already suggested by Roig et al. 2002). We note
that Tsiganis et al. (2003) developed a similar model for the small unstable population in the J7/3,
where the asteroids are resupplied from the Koronis and Eos families, and Vokrouhlický et al. (2006)
did comparable work for the J9/4 being visited by members of the Eos family. Because the population
of bodies in the J2/1 is substantially larger than in the weaker J7/3 and J9/4, the model for the J2/1
can be tested in a more quantitative way. In fact, our work combines techniques that have been used to
explain properties of the NEA population, namely (i) Tracking test bodies from their source region into
a target region using numerical integration techniques (e.g. Bottke et al. 2000; Bottke et al. 2002), and
(ii) A semi-analytical technique for investigating the steady-state size distribution of bodies in the target
region, including the absolute number of objects (e.g. Morbidelli & Vokrouhlický 2003).

In Section 5.2, we update the observed population in the J2/1. In Secs. 5.3.1 and 5.3.2, we describe our
numerical and semi-analytical models of Yarkovsky-driven transport from the main belt on to resonant
orbits, as well as results from those models. In the Sec. 5.3.3, we discuss other possible sources of very
unstable resonant asteroids in the J2/1.

5.2 Update of the resonant population

Our first task is to update the known population of asteroids inside the J2/1. Note that a preliminary
analysis which included a more detailed description of some of our techniques was reported in Brož et al.
(2005a). We find many new asteroids have been discovered in the J2/1 since the work of Roig et al.
(2002), with most of the new data provided by NEA survey systems like LINEAR, Spacewatch, NEAT,
LONEOS, etc. (e.g. Stokes et al. 2003). Moreover, refined orbital identification techniques make the
orbits more accurate than in the past (e.g. Milani et al. 2001). We discuss the new objects below.

5.2.1 Pseudo-proper resonant elements

In order to identify and classify resonant asteroids, we need to properly characterize their orbits. However,
the osculating orbital elements (including semimajor axis) undergo large changes inside the resonance
due to planetary perturbations, and their elimination requires a different technique than that used in the
case of non-resonant asteroids (e.g. Knežević et al. 2003) — the averaging over a fundamental variable
is not possible here. In the case of J2/1, we have the resonance critical angle defined as

σ = 2λJ − λ−̟, (31)

where λJ is the mean longitude of Jupiter’s orbit, λ is the asteroid’s mean longitude and̟ is the asteroid’s
longitude of pericentre.

The easiest surrogate to this problem is to define intersections of trajectories with some suitably defined
plane (Roig et al. 2002) and record the values of orbital semimajor axis, eccentricity and inclination only
here. These values are nearly fixed, apart from short-periodic variations, and may be called pseudo-proper
(resonant) elements. Previous experience shows that a combined constraint

σ = 0 ∧ dσ

dt
> 0 ∧̟ −̟J = 0 ∧ Ω − ΩJ = 0 (32)

is a good choice (here ̟J and ΩJ are Jupiter’s longitude of pericentre and longitude of node). When
these conditions are satisfied, the semimajor axis a is minimum, the eccentricity e is maximum and the
inclination I is maximum over a fairly long (≈ 10 ky) interval of time.

In practice, however, short-period perturbations or secular-resonance effects make difficult to satisfy
the above conditions exactly. A good operational compromise (e.g. Roig et al. 2002) is

|σ| < 5◦ ∧ ∆σ

∆t
> 0 ∧ |̟ −̟J| < 5◦, (33)

i.e., the condition for σ and ̟ −̟J is satisfied only with a 5◦ precision and the time derivative of σ is
substituted by the difference of σ in the two successive time steps.
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Time series of the resulting pseudo-proper elements, hereafter denoted ap, ep and Ip, are thus not
technically constant but their variations are very small for stable orbits. Conversely, large variations of
the pseudo-proper elements indicate orbit instability. We thus record pseudo-proper elements once per
≈ 10 ky, which is the characteristic circulation period of ̟ − ̟J). From these data, we compute the
standard deviations, σa, σe and σI over 1 My (see Table 15).

To make our work efficient, we implemented an on-line procedure for the pseudo-proper element com-
putation and the second-order symplectic integrator11 by Laskar & Robutel (2001) in the framework of
the Swift package (Levison & Duncan 1994). The numerical simulations include gravitational pertur-
bations by 4 giant planets and, when necessary (Sec. 5.3.1), Yarkovsky thermal forces. Perturbations by
the terrestrial planets are neglected, except for a barycentric correction which we applied to the initial
conditions of both massive planets and massless bodies. This approximation is reasonable for small ec-
centricity orbits in the outer part of the asteroid belt. The terrestrial planets are of minor importance
even for high-eccentricity resonant orbits that cross their paths because the removal from the J2/1 res-
onance mostly happens when bodies have close encounters with Jupiter (e.g. Gladman et al. 1997).
The terrestrial planets become more important when discussing whether Jupiter family comets or NEAs
provide some objects to the J2/1 (Sec. 5.3.3), however, a full description of this issue is beyond the scope
of this paper.

5.2.2 Resonant population

To properly characterize the J2/1 asteroid population, we proceed in two steps:

1. We integrate a large number of multi-opposition asteroids located near the J2/1 for 10 ky to identify
those residing in the resonance;

2. We track the orbital evolution of the identified resonant asteroids for 1 Gy, with the goal being to
place them in one of the three resonant groups mentioned above.

Numerical simulations discussed in this section do not include Yarkovsky thermal forces. Initial orbital
data for the asteroids were taken from the AstOrb (ftp.lowell.edu) database as of May 2004, while
the initial orbital data and masses for the planets were from the JPL DE405 ephemeris. We only used
numbered and multi-opposition asteroids in order to eliminate poorly constrained orbits. To select the
initial sample of asteroids, we used the same criterion as Roig et al. (2002; Fig. 1), namely we considered
asteroids whose osculating orbital elements are located in some broad region near the J2/1. With that
procedure, we obtained ≈ 4200 asteroids whose orbits were propagated forward for 10 ky. We note the
second-order symplectic integrator allows a longer time-step, 91.3125 days in our case, which speeds up
the computation.

We output time series of the resonance critical angle σ for each asteroid. The orbits, characterized
by the libration of σ and the osculating semimajor axes oscillating about an approximate centre at
≃ 3.276 AU, reside inside the J2/1. We find 153 such cases,12 including all asteroids found by Roig et al.
(2002). We find additional 100 J2/1 objects, some discovered after 2001 and others that are previously
known objects with more accurate orbits.

As a second step, we integrated our J2/1 asteroids for 1 Gy, with the goal being to classify them into
one of the three groups described by Roig et al. (2002). Because of the inherent chaoticity of resonant
motion, finite orbit accuracy, roundoff errors etc., any single integrated orbit may not represent that
body’s true future motion (especially on time-scales significantly longer than the Lyapunov time, which
is of order 10 ky here). To account for this, we gave each body a multitude of orbits so near the nominal
solution that they represent statistically equal realizations of the orbit. We call these fictitious bodies
“close clones”. Unlike previous studies, we consider 12 close clones for each of the identified resonant
asteroids, produced by changing the nominal value of the semimajor axis by multiples of 10−9 AU and
the eccentricity by multiples of 10−9 (well inside 1σ uncertainty interval, as resulted from the orbit
determination procedure).

11The code, its documentation and a former poster presentation at the Asteroids, Comets and Meteors 2002 conference
are publicly available at the web-site http://sirrah.troja.mff.cuni.cz/yarko-site/. We present tests of numerical
integration accuracy, particularly in regards to how it depends on the selected time-step. This led us to the optimum
time-step value used in this work.

12We also found additional 9 asteroids for which the critical angle alternates between periods of circulation and libration
in our 10 ky integration; these bodies are probably at the edge of the J2/1. There are also large families of non-resonant
orbits, which exhibit libration of σ, but they circulate about the pericentric and apocentric branches of periodic orbits (e.g.
Lemâıtre & Henrard 1990; Morbidelli & Moons 1993). We consider neither of them in our analysis.
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Table 15: Numbered and multi-opposition asteroids (situation as of May 2004) residing in the in the 2/1 mean
motion resonance with Jupiter: the unstable population with median residence lifetime tJ2/1 ≤ 70 My in our
numerical simulation. ap, ep and Ip are pseudo-proper resonant elements, computed with the method recalled in
Sec. 5.2.1, and σa, σe and σI are their standard deviations computed over 1 My time interval. H is the absolute
magnitude taken from the AstOrb database. The term “NEA” indicates bodies that are currently near-Earth
asteroids; some additional objects will become NEAs in the next ∼10 ky due to the resonant variations of orbital
semimajor axis and eccentricity.

No. Name ap ep Ip σa σe σI tJ2/1 H Remark
[AU] [deg] [AU] [deg] [My] [mag]

1921 Pala 3.193 0.398 17.791 0.004 0.103 3.63 6 14.3
1922 Zulu 3.231 0.457 33.672 0.001 0.019 3.03 8 12.2
5201 Ferraz-Mello 3.100 0.531 4.984 — — — 0 14.8
5370 Taranis 3.212 0.457 29.510 0.005 0.154 11.47 7 15.7 NEA
8373 Stephengould 3.248 0.578 30.923 0.007 0.195 11.64 7 13.8
9767 Midsomer Norton 3.163 0.697 34.687 0.005 0.196 7.13 0 16.4

23577 1995 DY8 3.203 0.302 1.435 0.001 0.008 0.37 28 14.6
26166 1995 QN3 3.251 0.524 28.578 0.002 0.106 10.53 8 17.3 NEA
31339 1998 KY30 3.198 0.311 15.793 0.003 0.058 3.22 9 13.5
37237 2000 WZ161 3.171 0.514 13.131 0.007 0.164 2.60 1 13.6
55068 2001 QX83 3.211 0.218 18.071 0.004 0.042 2.20 15 13.2
65541 9593 P-L 3.190 0.423 8.266 0.002 0.018 1.84 10 14.2
82009 2000 RF68 3.220 0.224 22.374 0.002 0.016 0.53 25 13.22
83943 2001 WK14 3.192 0.432 22.758 0.001 0.048 3.26 7 13.40
86358 1999 XB143 3.186 0.419 7.300 0.002 0.036 2.77 8 12.65
86367 1999 XY223 3.178 0.366 5.411 0.002 0.019 0.59 17 14.65

1977 OX 3.177 0.444 21.623 0.005 0.190 12.08 1 15.20
1994 JC 3.167 0.930 30.446 — — — 0 15.14
1997 WW 3.201 0.377 14.567 0.002 0.031 3.93 14 16.47
1997 YM3 3.195 0.511 15.583 0.004 0.149 8.11 13 16.95 NEA
1999 RM19 3.160 0.505 14.064 0.005 0.061 2.55 0 13.68
2000 DB62 3.221 0.175 7.752 0.003 0.021 1.58 21 13.95
2000 EU170 3.204 0.294 12.022 0.004 0.076 4.76 11 13.64
2000 FH13 3.239 0.124 15.768 0.008 0.034 1.89 39 13.38
2000 JV60 3.181 0.347 11.824 0.002 0.016 1.56 4 17.21
2000 WL10 3.142 0.633 27.852 — — — 0 17.99 NEA
2001 FF185 3.195 0.431 1.094 0.002 0.011 0.47 51 16.32
2001 KD50 3.216 0.287 26.087 0.002 0.016 0.69 45 13.35
2001 RP53 3.212 0.266 27.293 0.004 0.058 1.78 10 14.21
2001 TK15 3.207 0.294 13.039 0.001 0.009 0.53 43 13.50
2001 VE 3.196 0.500 24.716 0.002 0.090 5.06 4 15.05
2002 CP56 3.205 0.385 5.863 0.002 0.009 2.62 25 15.00
2002 GQ1 3.207 0.431 19.687 0.002 0.020 2.80 21 14.39
2002 JH36 3.190 0.354 14.123 0.004 0.073 2.07 12 15.91
2002 LN53 3.204 0.313 19.867 0.004 0.067 6.28 9 14.53
2002 RC20 3.155 0.449 7.480 — — — 0 15.95
2002 RB107 3.186 0.427 23.613 0.003 0.118 7.67 0 14.09
2002 WL 3.210 0.403 31.064 0.005 0.129 7.32 9 14.43
2003 GP45 3.169 0.363 7.937 0.005 0.033 0.88 0 16.53
2003 HG38 3.162 0.390 8.435 0.004 0.019 0.64 0 15.65
2003 NS8 3.191 0.361 23.914 0.003 0.066 2.27 2 13.72
2003 QW42 3.165 0.606 1.127 0.007 0.074 0.24 9 14.41
2003 UL12 3.214 0.408 41.632 0.003 0.092 4.21 1 17.19 NEA
2003 WB8 3.206 0.485 26.748 0.003 0.127 5.86 6 13.98
2003 WO87 3.203 0.422 8.123 0.002 0.018 4.37 23 14.43
2004 GT2 3.228 0.179 37.394 0.006 0.056 0.89 8 14.42
3260 T-1 3.166 0.409 12.321 0.004 0.045 1.56 0 15.11
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Figure 49: The distribution of the residence lifetime tJ2/1 for the 153 asteroids inside the 2/1 mean motion
resonance with Jupiter; note the log-scale on the abscissa. The unstable asteroids (i.e., those with tJ2/1 ≤ 70 My)
are separated from the long-lived asteroids by a dotted line. The first set includes two groups, one with extremely
unstable asteroids (tJ2/1 ≤ 2 My) in the first bin and another with relatively longer lifetimes (tJ2/1 > 2 My). The
Griquas (i.e., dynamical lifetime greater than 70 My but shorter than the time-span of our 1 Gy integration) do
not seem separated from the Zhongguos (with tJ2/1 > 1 Gy).

Table 16: Numbered and multi-opposition asteroids residing in the stable island A of the J2/1. The quantities
are the same as in Table 15. The last column indicates, whether the asteroid is classified as a Zhongguo (Z) or
Griqua-like (G). Asteroid (4177) Kohman is a border-line case (see the text for discussion).

No. Name ap ep Ip σa σe σI tJ2/1 H Remark
[AU] [deg] [AU] [deg] [My] [mag]

78801 2003 AK88 3.260 0.318 7.309 0.002 0.006 0.14 1000 15.2 Z
1999 VU218 3.241 0.295 14.125 0.001 0.002 0.82 771 15.25 G
2001 FY84 3.253 0.217 26.727 0.007 0.020 0.89 152 14.06 G
2003 SA197 3.252 0.351 15.807 0.001 0.006 0.09 1000 14.63 Z
2003 YN94 3.255 0.293 10.451 0.002 0.005 0.24 1000 15.20 Z
2004 FG32 3.247 0.278 21.816 0.001 0.004 0.37 536 14.53 G

4177 Kohman 3.233 0.320 16.598 0.001 0.001 1.52 1000 12.7 Z

About half of the objects were eliminated before the end of integration (due to perihelion distances
smaller than the solar radius or heliocentric distances larger than 100 AU). This indicates they belong
to the unstable or marginally stable populations. The remaining half of the objects survived in our
simulation for 1 Gy inside the J2/1, suggesting a low diffusion rate among the stable population. We
combine results for the close clones with that of the nominal orbit and define the residence lifetime tJ2/1

for an asteroid inside the 2/1 resonance as their median value. Figure 49 shows the distribution of the
lifetime values tJ2/1 for the entire population of 153 resonant asteroids. Hereafter, we use this distribution
to define the various asteroidal groups:

• long-lived: tJ2/1 > 70 My,

– stable (“Zhongguos”): tJ2/1 > 1 Gy,

– marginally stable (“Griquas”): tJ2/1 ∈ (70, 1000〉My,

• short-lived (unstable): tJ2/1 ≤ 70 My,

– extremely unstable: tJ2/1 ≤ 2 My.

The results for individual unstable asteroids are summarized in Table 15. The Zhongguos and Griquas are
listed in Tables 16 to 19. The classification and properties of all resonant asteroids can be also accessed
at our web-site http://sirrah.troja.mff.cuni.cz/yarko-site/.

Figure 49 shows it is reasonable to divide the short-lived and long-lived populations with an approxi-
mate threshold at 70 My. Our data further indicate that the unstable population – 47 asteroids in total
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Figure 50: Pseudo-proper orbital elements of the asteroids residing in the J2/1 – semimajor axis ap vs. eccen-
tricity ep (top), semimajor axis ap vs. inclination sin Ip (bottom). Bodies of different populations are indicated
by different symbols: (i) the stable Zhongguos by full circles, (ii) the marginally stable Griquas by open squares,
and (iii) the unstable asteroids by crosses. The error bars depict standard deviations of the pseudo-proper el-
ements computed from a 1 My interval of time. The thin solid line labelled J2/1 is the libration centre (the
pericentric branch) and the thick solid line J2/1 is the separatrix of the resonance (both shown for I = 0◦). The
dashed and dashed-dotted lines indicate borders of the most important secular resonances embedded inside the
J2/1 (all shown for I = 10◦; adapted from Moons et al. 1998), namely the ν16 resonance (short-dashed), the
Kozai resonance (dashed) and the ν5 resonance (dash-dotted). A majority of the stable asteroids is clustered in
the island B, while a few of them (see Table 16) are located in the island A, characterized by a higher mean
eccentricity and inclination. All unstable asteroids are located in the chaotic zone where various secular reso-
nances overlap. Griquas are a border-line population mostly at the edge of the B-region. In fact, 2-D projections
shown here always lack clarity in showing 3-D structures; for that reason we posted a 3-D animation of the
resonance structure with positions of the embedded asteroids at our web-site http://sirrah.troja.mff.cuni.

cz/yarko-site/.
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Table 17: Numbered and multi-opposition asteroids residing in the J2/1 resonance: the stable population in the
island B (B-Zhongguos) with median residence lifetime tJ2/1 longer than 1 Gy in our numerical simulation. The
quantities are the same as in Table 15. The ν16 symbol means the asteroid is close to the corresponding secular
resonance.

No. Name ap ep Ip σa σe σI tJ2/1 H Dynamical
[AU] [deg] [AU] [deg] [My] [mag] class

11097 1994 UD1 3.232 0.268 1.684 0.002 0.002 0.66 1000 13.4 B
11266 1981 ES41 3.224 0.268 2.138 0.001 0.004 0.47 1000 13.7 B
11573 Helmholtz 3.221 0.294 3.141 0.001 0.003 0.50 1000 12.9 B
13963 Euphrates 3.219 0.314 1.907 0.002 0.004 0.50 1000 13.7 B
14871 Pyramus 3.214 0.284 1.483 0.001 0.005 0.40 1000 13.7 B
16882 1998 BO13 3.227 0.274 1.388 0.001 0.003 0.57 1000 13.7 B
18888 2000 AV246 3.231 0.265 1.036 0.002 0.002 0.48 1000 13.6 B
22740 1998 SX146 3.233 0.231 3.073 0.002 0.003 0.54 1000 13.2 B
24514 2001 BB58 3.226 0.281 0.863 0.001 0.003 0.35 1000 14.2 B
26112 1991 PG18 3.238 0.244 2.853 0.002 0.004 0.66 1000 13.6 B
26553 2000 DO75 3.229 0.245 0.825 0.002 0.003 0.43 1000 14.2 B
29524 1998 AE 3.217 0.254 10.447 0.002 0.006 0.49 1000 13.4 Bi
31249 1998 DF14 3.223 0.307 0.973 0.001 0.003 0.50 1000 14.6 B
31293 1998 FP70 3.234 0.286 1.990 0.002 0.001 0.86 1000 14.1 B
34901 2699 P-L 3.216 0.245 1.515 0.001 0.005 0.37 1000 15.1 B
36140 1999 RC168 3.227 0.217 0.995 0.002 0.004 0.31 1000 14.0 B
37528 1975 SX 3.223 0.219 2.214 0.002 0.005 0.36 1000 14.8 B
37991 1998 KZ5 3.224 0.269 3.084 0.002 0.004 0.47 1000 14.5 B
38984 2000 UZ4 3.228 0.292 1.030 0.001 0.002 0.25 1000 14.9 B
39018 2000 UM53 3.232 0.278 3.966 0.001 0.002 0.76 1000 14.4 B
39309 2001 TE59 3.224 0.232 2.397 0.001 0.004 0.39 1000 14.4 B
41262 1999 XZ55 3.221 0.219 1.432 0.001 0.005 0.38 1000 14.8 B
46168 2001 FK86 3.226 0.265 1.508 0.001 0.002 0.47 1000 14.7 B
46204 2001 FC155 3.232 0.275 2.463 0.002 0.002 0.68 1000 14.2 B
47547 2000 AM121 3.233 0.271 2.858 0.001 0.001 0.79 1000 13.8 B
51070 2000 GO158 3.219 0.275 2.249 0.002 0.004 0.44 1000 14.0 B
51537 2001 FT133 3.223 0.314 1.825 0.001 0.003 0.64 1000 15.5 B
55192 2001 RN2 3.222 0.247 11.704 0.001 0.005 0.45 1000 14.5 Bi
55222 2001 RP63 3.241 0.240 1.454 0.002 0.002 0.66 1000 15.0 B
68738 2002 EJ35 3.223 0.331 1.043 0.001 0.003 0.12 1000 15.9 B
71694 2000 FN44 3.218 0.238 2.762 0.001 0.005 0.37 1000 14.1 B
73396 2002 LV18 3.214 0.254 2.133 0.002 0.006 0.40 1000 15.1 B
73995 1998 FQ25 3.230 0.237 10.301 0.002 0.003 0.51 1000 14.5 Bi
77869 2001 SA 3.225 0.279 1.730 0.001 0.003 0.48 1000 14.5 B
79482 1998 EX12 3.227 0.244 1.266 0.001 0.003 0.43 1000 13.97 B
79500 1998 FK133 3.223 0.307 1.061 0.001 0.003 0.51 1000 14.87 B
86343 1999 XZ56 3.239 0.255 1.880 0.001 0.001 0.85 1000 14.01 B
87362 2000 QS45 3.228 0.273 2.257 0.001 0.003 0.61 1000 13.83 B
89175 2001 UM57 3.215 0.259 2.392 0.002 0.006 0.36 1000 15.21 B
89908 2002 DK17 3.220 0.287 3.452 0.001 0.004 0.45 1000 14.10 B

1993 FB25 3.227 0.290 1.792 0.001 0.003 0.65 1000 14.90 B
1994 SK1 3.232 0.282 2.500 0.002 0.001 0.84 1000 15.08 B
1997 EQ38 3.232 0.277 2.031 0.002 0.001 0.75 1000 14.51 B
1998 RO49 3.223 0.280 0.864 0.002 0.004 0.39 1000 14.84 B
1999 FE42 3.224 0.324 2.783 0.001 0.003 0.73 1000 15.12 B
1999 XT23 3.232 0.275 1.273 0.001 0.002 0.64 1000 14.07 B
2000 AY135 3.225 0.313 1.625 0.002 0.003 0.64 1000 14.19 B
2000 EF60 3.239 0.274 2.606 0.001 0.001 0.36 1000 15.51 B/ν16
2000 HN33 3.217 0.308 3.287 0.001 0.005 0.44 1000 14.87 B
2000 JS29 3.224 0.311 3.658 0.001 0.003 0.65 1000 14.67 B
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Table 18: Continuation of Table 17; B-Zhongguos residing in the J2/1.

No. Name ap ep Ip σa σe σI tJ2/1 H Dynamical
[AU] [deg] [AU] [deg] [My] [mag] class

2000 SL77 3.228 0.299 2.732 0.001 0.002 0.74 1000 14.79 B
2000 SF206 3.234 0.265 3.310 0.002 0.002 0.79 1000 15.00 B
2000 TG65 3.229 0.312 2.427 0.001 0.002 0.92 1000 14.41 B
2001 AO22 3.235 0.279 2.516 0.002 0.001 0.99 1000 14.89 B
2001 DY27 3.227 0.264 1.181 0.001 0.003 0.50 1000 14.46 B
2001 HZ11 3.230 0.278 3.479 0.001 0.002 0.72 1000 14.57 B
2001 QH88 3.223 0.252 1.738 0.002 0.004 0.44 1000 16.02 B
2001 SM234 3.231 0.289 3.695 0.001 0.002 0.84 1000 14.88 B
2001 XZ58 3.229 0.284 2.235 0.001 0.002 0.73 1000 14.29 B
2001 XZ59 3.229 0.251 1.150 0.001 0.003 0.53 1000 14.59 B
2001 XQ129 3.218 0.279 2.314 0.001 0.005 0.43 1000 15.69 B
2002 AL75 3.215 0.233 1.216 0.001 0.006 0.36 1000 15.18 B
2002 EP69 3.225 0.218 2.820 0.002 0.004 0.39 1000 14.99 B
2002 GT45 3.227 0.298 3.814 0.001 0.002 0.72 1000 14.56 B
2002 JO22 3.220 0.289 1.931 0.002 0.005 0.49 1000 13.70 B
2002 VD35 3.216 0.275 3.634 0.001 0.005 0.39 1000 14.85 B
2002 VB124 3.222 0.275 1.123 0.001 0.003 0.44 1000 15.69 B
2003 BS48 3.224 0.281 1.701 0.001 0.003 0.47 1000 14.93 B
2003 LU5 3.228 0.303 1.389 0.001 0.002 0.71 1000 14.92 B
2003 SZ204 3.222 0.307 2.629 0.002 0.003 0.55 1000 14.75 B
1294 T-2 3.221 0.310 1.123 0.001 0.004 0.46 1000 15.55 B

– may contain ≈ 25 % of objects on extremely unstable orbits (with tJ2/1 ≤ 2 My). These objects may
be separate from the remaining asteroids in this group. In the past, asteroids with long-lived orbits were
previously classified as either Griquas (marginally stable) and Zhongguos (stable). We find, however, that
this division is somewhat arbitrary and depends on the integration time-span and the exact definition of
the lifetime.13 Indeed, Fig. 49 suggests there is no significant separation of lifetime values of the stable
and marginally stable orbits. The marginally stable population appears to be a short-lived “tail” that
adheres to the stable population; out of the 106 long-lived orbits we find 75 have lifetimes longer than
1 Gy, thus considered “stable”. In fact, our analysis, based on the 1 Gy integration only, does not permit
a fine characterization of the stable population (e.g. the distribution of tJ2/1 beyond the 1 Gy threshold).

Figure 50 shows a projection of the pseudo-proper orbital elements of the resonant asteroids on to
the (ap, ep) and (ap, sin Ip) planes. The most important result here is a confirmation of the population
classification discussed above. Orbits found to be unstable are located in the phase space region right
where a number of secular resonances (like ν16, ν5 or Kozai resonance) embedded in the J2/1 overlap with
one another. Because this zone of overlap extends to high orbital eccentricity values, the chaos caused
by these overlapping resonances produces strong instability. Five bodies within the unstable population
are currently NEAs, and several more will become NEAs within the next period of their libration cycle.
This indicates there is an open “communication” between the NEA zone and the J2/1. In Sec. 5.4, we
consider the possibility that NEAs feed part of the unstable population inside the J2/1. Conversely, the
long-lived orbits are located in a stable zone, predicted previously by numerical and analytical methods
(e.g. Nesvorný & Ferraz-Mello 1997; Moons et al. 1998). The marginally stable orbits occupy borders of
this zone, while the stable orbits are confined near its centre. This explains the close connection between
the two groups.

The long-lived asteroids in our sample tend to populate the stable niche called island B (Nesvorný
& Ferraz-Mello 1997; Moons et al. 1998). However, Brož et al. (2005a) reported for the first time
the presence of several asteroids inside the twin niche of stability called island A (Fig. 50). We detect
6 asteroids inside the island A (Tab. 16), i.e., having higher eccentricities and inclinations than the

13As a result, a number of asteroids classified stable by Roig et al. (2002) using their 520 My integration are marginally
stable in our simulation spanning 1 Gy. For example, (3789) Zhongguo itself appears to reside on a marginally stable
orbit with a median lifetime of 943 My (see also Moons et al. (1998) who reported a similar result). Note that we define
characteristic lifetime as a median of the individual values for 12 close clones and the nominal orbit, while the previous
studies usually only considered the nominal orbit.
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Table 19: Numbered and multi-opposition asteroids residing in the J2/1: the marginally stable population
in the surrounding of the stable island B (B-Griquas) with median residence lifetime tJ2/1 ∈ (70, 1000〉 My. The
quantities are the same as in Table 15. ν16 or “Kozai” means the motion probably interacts with the corresponding
secular resonance.

No. Name ap ep Ip σa σe σI tJ2/1 H Dynamical
[AU] [deg] [AU] [deg] [My] [mag] class

1362 Griqua 3.213 0.363 23.691 0.002 0.008 0.70 131 11.18
3688 Navajo 3.216 0.502 3.776 0.002 0.002 1.02 179 14.9 Kozai
3789 Zhongguo 3.237 0.221 1.956 0.002 0.004 0.52 943 12.4 B

11665 Dirichlet 3.218 0.240 16.783 0.002 0.011 0.54 143 14.1
24491 2000 YT123 3.224 0.197 1.107 0.001 0.005 0.35 439 13.5 B
28459 2000 AW144 3.218 0.348 1.549 0.001 0.004 0.56 883 14.3 B
35989 1999 NF10 3.211 0.277 0.504 0.002 0.007 0.20 619 14.6 B
45511 2000 BC23 3.221 0.206 1.905 0.002 0.005 0.38 865 13.8 B
45796 2000 OG54 3.210 0.282 2.361 0.002 0.006 0.37 620 14.5 B
52700 1998 FG62 3.253 0.228 3.057 0.002 0.003 1.24 470 15.0 ν16
57838 2001 XF49 3.212 0.336 0.657 0.001 0.005 0.13 201 15.3 B
65297 2002 JB31 3.239 0.258 3.025 0.001 0.002 1.02 472 15.2 B
68706 2002 CX234 3.224 0.317 18.520 0.001 0.005 0.86 570 15.0 ν16
77911 2001 TB239 3.270 0.183 10.575 0.005 0.006 1.33 179 13.0 ν16
78814 2003 PX3 3.204 0.314 3.262 0.001 0.008 0.37 108 14.7 B
87375 2000 QN55 3.208 0.266 1.641 0.001 0.007 0.37 204 13.6 B

1999 XS52 3.214 0.314 2.826 0.001 0.006 0.47 698 15.08 B
2000 HY9 3.215 0.300 0.656 0.002 0.005 0.19 758 14.75 B
2000 WK17 3.214 0.334 1.466 0.001 0.005 0.48 412 15.16 B
2001 QP242 3.230 0.323 16.406 0.002 0.004 4.44 371 14.23 ν16
2001 XC85 3.244 0.189 7.548 0.003 0.010 0.60 113 14.05
2001 YZ113 3.213 0.306 2.815 0.001 0.006 0.39 229 14.77 B
2002 HB11 3.218 0.222 4.399 0.002 0.005 0.37 639 14.37 B
2002 QD23 3.222 0.212 5.153 0.002 0.004 0.39 756 14.92 B
2002 TD170 3.213 0.349 21.460 0.002 0.007 0.61 347 14.94
2002 TU252 3.227 0.208 4.552 0.002 0.005 0.40 390 14.45 B
2004 BY19 3.208 0.306 3.559 0.001 0.007 0.38 181 15.34 B
2004 DR26 3.215 0.309 1.100 0.001 0.004 0.43 433 16.53 B

separatrix of the ν16 secular resonance. Three of them reside on the marginally stable orbits and another
three on the stable orbits. One of the Zhongguos – asteroid (4177) Kohman – is a border-line case
because the critical angle of the ν16 secular resonance (Ω−ΩS) alternates between periods of circulation
and libration. Except (4177) Kohman, all asteroids inside the stable island A are small, with sizes ranging
from 5.5 to 7.5 km (if 0.05 albedo is assumed). Interestingly, all asteroids in the island A have orbits
with high inclination. Their proximity to the ν16 secular resonance may be the reason, but we did not
investigate this possible link in detail.

Despite these new island A asteroids, we confirm previous results suggesting that the stable island
A appears under-populated as compared to the stable island B (e.g. Nesvorný & Ferraz-Mello 1997;
Moons et al. 1998). In addition, our work allows us to place a quantitative constraint on the ratio of
the number of A-Zhongguos (excluding A-Griquas) and the the number of B-Zhongguos: 3/71 ∼ 0.04,
but this ratio may change substantially as new asteroids residing on the stable islands will be discovered.
Anyway, future work aim at explaining the origin of the long-lived resonant population should meet this
constraint.

Figure 51 shows cumulative distributions of the absolute magnitude H for the resonant groups (we use
magnitudes from the AstOrb database). We approximate these distributions over H = 12 − 14, with a
power law: N(<H) ∝ 10γH. The indices γ (slopes), calculated for the resonant groups, have the following
mean values: 0.69 (with the interval of variation (0.64, 0.79)) for long-lived asteroids, 0.91 (0.81, 1.01)
for Zhongguos, 0.33 (0.28, 0.48) for Griquas, and 0.78 (0.68, 0.88) for unstable asteroids. If we discard
extremely unstable asteroids (i.e. those with tJ2/1 ≤ 2 My) from the unstable group, we obtain somewhat
shallower size distribution with the power-law slope of 0.66 (and the variation (0.56, 0.76)). We give here
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Figure 51: Cumulative distribution of the absolute magnitude for asteroidal populations inside the J2/1: (i) the
long-lived asteroids together (top left), (ii) Zhongguos (top middle), (iii) Griquas (top right), (iv) the short-lived
(unstable) asteroids (bottom left), and (v) the short-lived (unstable) asteroids with tJ2/1 > 2 My (i.e. extremely
short-lived objects excluded; bottom right); note the semi-log axes. The straight lines indicate the best fit power-
law approximations N(< H) ∝ 10γH in the H-range of 12 − 14, delimited by vertical grey lines. The adjacent
numerical labels are the resulting power-law indices γ. To convert γ into the slope of a power-law size distribution,
we multiply by −5, making their cumulative slopes −3.5, −4.6, −1.7, −3.9, and −3.3 respectively. For reference,
a Dohnanyi-like cumulative slope is −2.5 (Dohnanyi 1969).

realistic maximal errors that were obtained by the variation of the interval over which γ was fitted and
by random removal of a single asteroid from the population. To convert γ into the slope of a cumulative
power-law size distribution, we multiply it by −5, making their mean cumulative slopes: −3.5 (with the
variation (−4.0,−3.2)), −4.6 (−5.1,−4.1), −1.7 (−2.5,−1.4), −3.9 (−4.4,−3.4), and −3.3 (−3.8,−2.8)
respectively. For reference, a Dohnanyi-like cumulative slope is −2.5 (Dohnanyi 1969). The indices for
Zhongguos, Griquas and unstable asteroids are significantly different from each other, but the results
for Zhongguos and Griquas depend sensitively on the threshold chosen for the division of the long-lived
asteroids (1 Gy in our case).14 Moreover, the Griquas have an unusual distribution of H that becomes
steeper between H = 14 − 15. Because the Zhongguos and Griquas are not easily separable from each
other, these source of these differences is difficult to investigate.

There are 16 asteroids with H ≤ 14 residing on unstable orbits. (This number is relevant for our
analysis in Sec. 5.3.2.) Out of these 16 asteroids, 2 have extremely unstable orbits.

Except the problems with partitioning the long-lived population (which is not critical for this work),
our results confirm those of Roig et al. (2002): at large sizes the resonant populations have a rather steep
size distribution. Their slopes are steeper than a simple Dohnanyi-like collisionally evolved system would
predict (Dohnanyi 1969), though this kind of system is unlikely to represent the main belt population
except for bodies with D < 0.1 km (e.g., Durda et al. 1998; O’Brien and Greenberg 2003; Bottke et al.
2004).

14If we select a smaller dynamical lifetime threshold, the size distribution of the Zhongguos generally becomes shallower
and that of the Griquas becomes steeper. For example, for 0.5 Gy γZhongguos = 0.77 and γGriquas = 0.45.
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Figure 52: Cumulative distribution of the absolute magnitude for the three plausible source populations adhering
to the J2/1 resonance: (i) the background asteroids (solid line), (ii) the Themis family (dashed line), (iii) the
Hygiea family (dotted line). Lines are power-law approximations as in Fig. 51.

5.2.3 Source populations

An important conclusion follows from the comparison of the size distributions of the resonant groups and
that of the plausible source populations: background asteroids, Themis family and Hygiea family. (These
are the same populations as discussed later in Sec. 5.3.) Figure 52 shows the distribution of the absolute
magnitudes for them, with the following fitted values of the power-indices: background 0.51±0.01, Themis
0.57±0.02 and Hygiea 0.84±0.02. We note the first two populations have distributions compatible with a
Dohnanyi-like collisionally relaxed system for H ≤ 12 and H ≤ 11, respectively (thus sizes approximately
larger than 25 − 35 km). Hygiea’s distribution is considerably steeper at large sizes, but as shown by
Morbidelli et al. (2003) it becomes significantly shallower at small sizes.

A significant difference in the exponent γ can be found between the source and resonant populations.
The background asteroids differ from the unstable resonant asteroids by ≃ 0.2± 0.1 (depending whether
the extremely unstable asteroids are included in this comparison or not). A slope difference near 0.2 is
compatible with the Yarkovsky-driven transport from the source region, because the Yarkovsky effect is
size dependent (it scales as D−1 for “our” asteroids) and thus naturally causes this change of the source
size distribution. On the other hand, the YORP effect, acting together with Yarkovsky, may cause the
slope difference to decrease by ≃20 % (i.e. down to ≃0.15; Morbidelli & Vokrouhlický 2003).

5.3 Origin of the unstable resonant population

We now turn our attention to the origin of the unstable population. Our working hypothesis, motivated
by similar studies of the NEAs and some of the weaker main-belt resonances, is that asteroids drifting
in semimajor axis via Yarkovsky thermal forces should continuously resupply bodies to the J2/1 and
keep the unstable population in an approximate steady state. For now, we assume that other sources,
such as planet-crossing asteroids, Jupiter-family comets, collisional injection of material, and dynamical
injections of bodies from weak resonances, provide only few bodies to the J2/1. We discuss this issue
further in Sec. 5.3.3.

To test our hypothesis, we use both numerical and semi-analytical methods. Each has its strengths and
weaknesses. For example, direct N -body simulations allow us to characterize the resonant dynamics, but
computer time requirements do not allow us to track a statistically large sample of orbits. On the other
hand, the semi-analytical approach foregoes any detailed description of a test body’s orbital evolution,
but it does allow us to track a large enough sample of bodies that we can quantify results statistically
while testing a wide range of model parameters. Our results for both approaches are described below.
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Figure 53: Initial orbital data for our numerical propagation of Themis family asteroids into the J2/1 resonance:
pseudo-proper semimajor axis vs. eccentricity (top), semimajor axis vs. sine of inclination (bottom). The two
groups of bodies are compared: (i) the Themis family members (gray dots), which were firstly identified in the
proper element space at 70 m/s cutoff velocity (using data from AstDyS database) and then we calculated their
pseudo-proper elements using the method described in Sec. 5.2.1; (ii) the test particles in our simulation (black
circles). The initial osculating elements (not shown here) of the test particles are very close to the pseudo-proper
ones, because of our choice of the initial longitude of pericentre. There is a large difference between the proper
(non-resonant) and pseudo-proper (resonant) semimajor axis and eccentricity of the Themis family members;
inclination is much less affected (this is because the fundamental resonant angle σ does not depend on the nodal
longitude).

5.3.1 Numerical N-body model

Using a N -body model, our primary goals are to determine:

1. Residence time probability distributions (maps) indicating which portions of the orbital phase space
are statistically most likely to be visited by test particles injected into J2/1 by Yarkovsky forces;
and

2. The characteristic lifetime test bodies spend inside the J2/1 before leaving it.

In a steady-state scenario, (i) can be directly compared with the orbital parameters of the observed
asteroids, with a positive match supporting our model results. For (ii), the results, after some analysis
and normalization, should be comparable to the dynamical lifetime distribution obtained for the observed
population in Fig. 49. This information is also used in the semi-analytical analysis described in Sec. 5.3.2.

Here we use the second-order symplectic integrator from Sec. 5.2 with Yarkovsky forces included.
This is done by including Yarkovsky forces at the perturbation phase of the integrator. Test simulations
verified analytical semimajor axis drift results for the thermal effects on asteroids on circular orbits. Both
diurnal and seasonal variants of the thermal effects were included using a linearized approximation; the
diurnal part is described in Vokrouhlický (1998, 1999) and the seasonal part is described in Appendix of
Vokrouhlický & Farinella (1999). We use thermal parameters that are consistent with those expected for
C-type asteroids: thermal conductivity K = 0.01 W/m/K, specific thermal capacity C = 800 J/kg/K,
and surface and bulk densities ρs = ρb = 1.5 g/cm3. To let the bodies drift outward toward the J2/1,
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Figure 54: An example of a test body evolving into the J2/1 via Yarkovsky thermal forces; running-box mean
orbital elements are shown as functions of time by bold black lines: semimajor axis am (top), eccentricity em

(middle), and sine of inclination sin Im (bottom). The grey curve in the upper panel shows the osculating
semimajor axis. At 22 My, the test body falls into the resonance, with the mean value of the semimajor axis
“jumping” to ≃ 3.276 AU (that of the stable periodic orbit in the resonance) while the osculating value starts to
exhibit large oscillations. The eccentricity and inclination are pushed to high values, with their values affected by
the ν5 and ν16 secular resonances embedded in the J2/1.

we set the initial obliquity to be 45◦. We assumed rotation periods uniformly distributed in the range
4 − 12 h. Because Yarkovsky forces are size-dependent, we consider bodies with diameters in the range
D = 4 − 40 km. A combination of these parameters determines the magnitude and direction of the
Yarkovsky perturbation and thus the orbital drift rate. However, our results only weakly depend on the
strength of the Yarkovsky forces (see also Roig et al. 2002). The primary role of the Yarkovsky forces is
to deliver the asteroids to the J2/1.

To test our hypotheses, we performed 3 simulations using 3 different source regions: (i) Themis family
(using 1000 test particles with sizes from 4 to 40 km), (ii) Hygiea family, and (iii) the background main-
belt population (both with 500 test particles with sizes from 16 to 40 km). The main difference between
(i)-(iii) is the confinement of each source region’s initial eccentricity and inclination values. The initial
inclination of Themis and Hygiea family members are ≃ 1◦ and ≃ 5◦, respectively. The orbital data of
the background population, however, have inclinations over the interval 〈0◦, 18◦〉. As an example, Fig. 53
shows the initial conditions of our simulation for asteroids evolving from the Themis family. All our test
particles are started outside the J2/1 (the critical angle σ initially circulates), though to save computer
time, they are placed close to the resonance. To that end, we chose the initial longitude of perihelion
equal to that of Jupiter; this implies their eccentricity is at the top of the perturbation cycle. We note the
pseudo-proper elements of the integrated particles match those of the family. Typically it takes several
My to tens of My for our particles to evolve into the resonance (e.g. Fig. 54).

Example of an orbit evolving to the 2/1 resonance. Figure 54 shows a representative example of
a test body evolving toward the J2/1 by the Yarkovsky effect. For analysis purposes, we compute mean
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Figure 55: Mean semimajor axis am of the orbit from Fig. 54 as a function of time. Rectangles 1 to 4 represent
diagnostic zones for the measurement of residence time in the J2/1. They move in time together with the orbital
evolution, with rectangles 1, 3 and 4 staying centred at aJ2/1 ≃ 3.2764 AU. Here we designate the rectangles
Ri, their widths tI , and their heights ai (i = 1, . . . , 4). The operational condition for the entry time into the
J2/1 is at least n1 data points are in R1 and the oscillations of am are smaller than R2. A similar condition for
their ejection time out of J2/1 is at least n3 data points are outside R3 or at most n4 data points are in R4. In
practice we use the following values: ti = 2 My (i = 1, . . . , 4), a1 = a4 = 0.05 AU, a2 = 0.01 AU, a3 = 0.13 AU,
n1 = n3 = 50 %, n4 = 10 %.

values of the orbital elements – am, em, Im – using on-line digital filters based on Kaiser window (Quinn
et al. 1991) with an output time step 5 ky and further averaged over a running window 50 ky wide. Such
“mean elements” do not have theoretical significance but they are useful auxiliary variables for our work.

We find the mean semimajor axis value am instantly jumps to ≃ 3.276 AU upon entering the J2/1, with
the osculating semimajor axis exhibiting large oscillations. This value corresponds to the J2/1 centre.
Since the width of the J2/1 in semimajor axis is large, tracking the am time series allows us to easily
determine when the orbit becomes trapped in the resonance (Fig. 55). A similar criterion applies to the
instant the orbit leaves the resonance. For the latter, this mostly occurs when the J2/1 pushes the test
body’s orbital eccentricity to a high enough value that it falls into the Sun or it is ejected from the inner
Solar system as a consequence of a close encounter with Jupiter. We also computed the pseudo-proper
orbital elements for each of the integrated orbits. These values were used to compare the evolutionary
tracks of our test particles to observed asteroids located inside the J2/1 (Fig. 50).

In the next sections we separately analyse results for test bodies started in the Themis, Hygiea and
the background populations.

Themis family asteroids. To determine whether test bodies entering the J2/1 match with the location
of asteroids inside the resonance, we need to define a quantitative measure of their residence. To do that,
we assume there is a steady-state flow of asteroids into the J2/1 (see Sec. 1). Thus, any particle removed
from the J2/1 is replaced by another from the source region. Assuming our sample of integrated orbits
is representative, we track the amount of time spent by these test bodies in different regions of the J2/1.
The cumulative time distribution produced by this procedure is believed to represent the true steady-
state population inside the resonance (see Bottke et al. 2000, 2002 for similar ideas on populating the
near-Earth asteroid orbits).

We construct a local number density nTP of the test particles by summing the number of particles
residing in the cell of the volume (∆ap,∆ep,∆ sin Ip) around the point (ap, ep, sin Ip) for all time steps
during the whole span of our integration. Of course, values of the spatially dependent nTP(ap, ep, sin Ip)
scale in some simple way with the volume of the cells, the time step ∆t of the proper elements sampling
and the time span ∆T of the integration. In our case, we have ∆ap = 0.0075 AU, ∆ep = 0.0025,
∆ sin Ip = 0.04, ∆t = 0.01 My, and ∆T = 1 Gy. If one test particle stays in one cell for the whole 1 Gy,
it would cause nTP = 105. Regions with high nTP values are likely locations to find observed asteroids
(provided our hypothesis is correct). Regions with nTP = 0 are never visited by any of our integrated test
particles and observed asteroids found in those locations cannot be explained by the Yarkovsky-driven
transport from the given source region. Below, we show that the observed unstable asteroids are located
in the regions of high nTP, but the Zhongguos and Griquas are not. For the purpose of two-dimensional
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Figure 56: An nTP = 500 iso-surface of the number density in the pseudo-proper orbital element space, resulting
from our numerical simulation of test particles originating from the Themis family; nTP reaches its maximum
value of ≃ 3×104 inside this zone. Symbols denote positions of the observed populations inside the 2/1 resonance:
(i) Zhongguos (filled circles), (ii) Griquas (squares), and (iii) the unstable asteroids (crosses). The 3-D surface
is plotted as semi-transparent and one can distinguish the objects, which are in front of, inside or behind the
surface, because they are gradually more and more gray/hidden. An illustrative animation with several coloured
and partially transparent iso-surfaces can be found on http://sirrah.troja.mff.cuni.cz/yarko-site/.

projections, we also define a column number density QTP as a sum of nTP over all cells in the given
direction, e.g. QTP(ap, ep) =

∑

sin Ip
nTP(ap, ep, sin Ip).

One difficulty in plotting our results is that the space of our pseudo-proper elements is in 3-D. This
means that 2-D projections such as in Fig. 50 may result in misinterpretations. For that reason, we start
with the complete 3-D representation and only with caution we use the 2-D maps. Figure 56 shows an
iso-surface of moderately high value of the number density nTP = 500 in the space of pseudo-proper
orbital elements. (its maximum value occurs inside the region). There is no important dependence of
nTP on size: bodies with size ≥10 km in our simulation yield the same result as those with size <10 km.
Thus we present results for all particles together. Positions of the observed asteroids inside the J2/1
are shown by different symbols: Zhongguos (filled circles), Griquas (squares) and the unstable asteroids
(crosses). Both long-lived populations (Zhongguos and Griquas) are situated outside the region of high
nTP values. The unstable asteroids, however, are located inside or close to the depicted iso-surface. This
suggests their origin is compatible with our model of the Yarkovsky-driven transport into the J2/1.

Figure 57 shows 2-D projections of our previous results, where we focus on the long-lived asteroids.
Note that their orbits tend to have low values of the pseudo-proper eccentricity and inclination. Thus,
in plotting the (ap, ep) projection, we restrict ourselves to orbits with Ip ≤ 5◦ only (left panel), while
in plotting the (ap, sin Ip) projection, we restrict ourselves to orbits with ep ≤ 0.3 (right panel; see also
Fig. 56 to get insight to the procedure). The value of the appropriate column number density QTP is
given as the grey-scale colour. Our results confirm that the long-lived asteroids are mostly located in the
blank regions where QTP = 0. Accordingly, their origin is incompatible with the delivery to the J2/1
by Yarkovsky forces. Note that while the 2-D representation suggests our integrated orbits populate
the correct inclination values, this is not the case when the pseudo-proper eccentricity is also taken into
account (left panel and Fig. 56).

Figure 58 shows additional 2-D projections of our results, but now we focus on the unstable asteroids
that typically have large eccentricity and/or inclination values (Table 15). Here we restrict to Ip ≥ 5◦ in
the projection on the (ap, ep) plane (left panel) and to ep ≥ 0.3 in the projection on to the (ap, sin Ip)
plane (right panel). The orbits of the unstable asteroids, shown by crosses, match the zone of maximum
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Figure 57: Two-dimensional projections QTP of the density particle function nTP on to (i) (ap, ep) axes (with
the restriction of Ip ≤ 5◦; left panel), and (ap, sin Ip) axes (with the restriction of ep ≤ 0.3; right panel). The
scale of grey indicates QTP in a logarithmic measure (blank for QTP = 0 and the darkest for the maximum QTP).
Symbols denote positions of the observed populations inside the J2/1: (i) Zhongguos (filled circles), (ii) Griquas
(squares), and (iii) the unstable asteroids (crosses).

Figure 58: The same as in Fig. 57 but now data in the (ap, ep) projection show orbits with Ip ≥ 5◦ (left panel),
and the (ap, sin Ip) projection show orbits with ep ≥ 0.3 (right panel). Symbols as in Fig. 57.
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Figure 59: Here we show the same quantity as in Fig. 56 but now for the number density nTP given as a weighted
mean of the contributions by the three source populations: the background population (contributing by 84.5 %),
the Themis family (contributing by 14.2 %) and the Hygiea family (contributing by 1.3%).

Figure 60: Here we show the same as in Fig. 57 but now for the column number density QTP given as a weighted
mean of the contributions by the three source populations.
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Figure 61: Here we show the same as in Fig. 58 but now for the column number density QTP given as a weighted
mean of the contributions by the three source populations.

QTP value (dark grey) in both projections. Only a few outliers can be found. This suggests our test
bodies preferentially populate the resonant orbits occupied by the asteroids residing on the unstable
orbits. In a few rare cases not shown here, we also observe test particles that jump across the J2/1 and
populate the Cybele region (i.e., asteroids having a ∈ (3.3, 3.6) AU).

Hygiea family and background asteroids. We repeat our analysis for the Hygiea family and the
entire background asteroid population. We find our results are nearly identical to those given above,
such that we only plot the composite nTP values constructed as a weighted sums from the three source
regions. The weights used are the source contribution to the resonant population of H ≤ 14 asteroids
estimated by our semi-analytical Monte-Carlo model (Sec. 5.3.2): the background population contributes
by 84.5 %, Themis and Hygiea families by 14.2 % and 1.3 %, respectively.

Figures 59 to 61 show the same results as Figs. 56 to 58, but now the composite number density nTP is
given. These results confirm that our test particles, evolving by the Yarkovsky forces from the adjacent
main belt population to the J2/1, visit cells where the unstable asteroids are located and shy away
from regions where long-lived asteroids are found. We note that none of our source regions match the
distribution of the unstable population better than any other. This suggests the inclination of asteroids
driven into the J2/1 is quickly mixed upon entry into the resonance, such that we cannot use the unstable
population’s orbital elements to estimate the source of a given resonant asteroid.

Figure 62 shows the residence time distribution tJ2/1 for our test particles (bold solid line). As above,
this is a weighted mean of the results for the 3 different source regions (the background population, Themis
and Hygiea families), but there is only minor statistical difference between them. For the same reason,
we also combine results here for large (≥ 10 km size) and small (< 10 km size) bodies. No permanent
captures in the J2/1 were found, and no object entered stable resonant islands (see, e.g., Figs. 59 and
60).

A comparison between our test body residence times and those of the observed unstable objects shows
the same order of magnitude (Fig. 49 and the dashed curve in Fig. 62). If we do not take into account
the extremely unstable J2/1 object (with tJ2/1 ≤ 2 My), the median of tJ2/1 is 10.3 My for the observed
unstable population (with tJ2/1 ∈ (2, 70〉My), and 14.7 My for our test particles. To make a more detailed
comparison, we would need to perform additional modelling, mainly because we do not know how much
time each of the observed asteroids already spent in the resonance. (The difference between the medians
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Figure 62: Distribution of the residence time inside the J2/1 for: (i) test bodies which were delivered into
the J2/1 by the Yarkovsky effect (bold solid curve) and (ii) observed members of the unstable J2/1 population
currently residing in the resonance (dashed curve; see also Fig. 49). In the case (i), the residence time records
the time interval from entry into the J2/1 till escape out of the J2/1, while the case (ii) records the time interval
from the present day to escape. The number of bodies dN in each logarithmic bin has been normalized by their
total number N .

of tJ2/1 can be attributed to this effect.) However, the most important difference between the two plots
is that our model does not predict the anomalously large number of extremely unstable J2/1 objects. We
suspect some of these objects may be populated by other sources (Sec. 5.3.3).

5.3.2 Semi-analytical Monte-Carlo model

Next, we apply our semi-analytical model to the problem. Our primary goals are to determine, for a
given source population adjacent to the J2/1:

1. The steady-state number of unstable asteroids inside the J2/1 with sizes larger than some threshold;
and

2. The slope of their size distribution.

We assume the steady-state situation for unstable J2/1 objects is valid and that the ≈ 16 unstable
asteroids with H ≤ 14 are the steady-state number. We use the residence lifetimes of J2/1 test bodies
estimated in the previous section. Given that Yarkovsky forces are size-dependent, we expect small
asteroids will be delivered to the 2/1 resonance more efficiently than large ones. As a result, the size
distribution of the target population should be different (steeper) than that of the source population.
Figures 51 and 52 are consistent with this hypothesis, but we need to verify that the change of the
power-law slope is what our model would predict.

Model setup. Our method is essentially the same as of Morbidelli & Vokrouhlický (2003). The first
task is to characterize the source population for the J2/1. We then let the population evolve into the
J2/1 by Yarkovsky forces, where the semimajor axis drift speed depends on the spin-axis obliquity of each
object. We assume that every asteroid removed from the J2/1 is replaced by a new object in the source
population, which maintains a steady state. We neglect collisional disruption events since the dynamical
lifetime for our bodies of interest in the J2/1 is short (∼10 My) compared to their collisional disruption
lifetime (∼ 1 − 2 Gy for 10 km bodies; Bottke et al. 2004). Once the population in the J2/1 has reached
the steady state, we compute the power-law slope of the resonant size distribution and compare it to
observations (Fig. 51). Fluctuations in this population occur from time to time due to random injections
of individual bodies (especially at large sizes). Our simulation is run for 4 Gy.

To construct the source region, we use the AstDyS (http://newton.dm.unipi.it) database, which
includes all numbered and multi-opposition asteroids for which proper orbital elements have been com-
puted. Somewhat arbitrarily, we use all asteroids that have proper semimajor axis a > 3.1 AU and are
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Figure 63: The distribution of albedo values derived by Tedesco et al. (2002) for asteroids located near the
J2/1.

located below the border of the J2/1. The J2/1 border is approximated in the proper semimajor axis a
– proper eccentricity e plane by

e = c0 + c1 a , (34)

where c0 ≃ 10.82 and c1 ≃ −3.32 AU−1. Tests show that our results are not sensitive to these limits.
To compare our results with those in Sec. 5.3.1, we again split the population into 3 groups (i.e.,

Themis, Hygiea, and the background population). In Sec. 5.2, we characterized each in terms of their
absolute magnitude H distribution (Fig. 52), but here we need to convert H into diameter D to obtain
the correct strength of the Yarkovsky effect for each body.

The H–D relationship depends on apriori unknown value of the geometric albedo pV for each test
asteroid. For this reason, we used two approaches: (i) we assumed a constant value pV = 0.05 appropriate
for C-type asteroids, and (ii) we characterized pV by a distribution function spanning some finite interval
of values. For (ii), the albedo becomes a statistical quantity and thus our results become statistical
properties requiring numerous simulations. The albedo distribution function maps on to parameters such
as the estimated number of H ≤ 14 unstable asteroids residing inside the J2/1 resonance.

To determine appropriate albedo distribution for our model, we use values derived by Tedesco et al.
(2002) from IRAS infrared observations. Unfortunately, the only resonant asteroid listed in this catalogue
is (1362) Griqua. For this reason, we assume the albedo distribution of the resonant asteroids is similar
to that of main belt asteroids in the neighbourhood of the J2/1. We thus select IRAS asteroids that
fulfil the condition a > 3.1 AU ∧ a < (3.260 + 0.301e) AU, where a is the osculating semimajor axis
and e the osculating eccentricity. The procedure yields 542 objects and a reasonably constrained albedo
distribution (Fig. 63; we also verified that this distribution depends weakly on the orbit threshold chosen
for the J2/1 border). Our albedo distribution peaks at 0.05, that same as assumed in (i), but there is a
significant spread.

Figure 52 indicates the background population dominates the family contribution by a factor ≃ 5 for
H ≤ 14 − 15, though we need to account for observational biases. To estimate the true background
population, we extrapolated the observed H distribution above the H ≃ 14 threshold using the exponent
γ ≃ 0.51 (see Sec. 2.3). Using this procedure, we obtain a bias factor that is given by the ratio between
the estimated and observed populations for different values of H for H > 14. The same factor is applied
to the Themis and Hygiea families since they occupy roughly same main belt region. As described in
Morbidelli et al. (2003), this procedure produces a bend in the slope of the family size distributions
that is more shallow than the background main belt slope (this is especially remarkable for the Hygiea
case, since it has a steep size distribution among its H < 14 bodies). This simple debiasing procedure
is acceptable for our purposes. Note that the H ≤ 14 source population is only increased ≃ 5% relative
to the observed sample. In our simulation, we consider asteroids down to H < 17.5, with the cumulative
number being roughly half a million.15

15Data on the faint asteroids, dominated by the inner main belt population, indicate the absolute magnitude distribution
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Because our approach tracks individual test asteroids, every body has to have initial proper elements
assigned to them. The observed asteroids are assigned their own orbital elements. The test asteroids
obtain orbital elements of a randomly-chosen observed asteroid in the source population. This procedure
somewhat neglects high inclination asteroids, which are harder to detect than low inclination asteroids,
but this problem does not significantly affect our results.

We use a simplified orbital evolution model for our test asteroids that only accounts for changes in
proper semimajor axis due to the Yarkovsky effect. We neglect the effects of weak mean motion resonances
that force the population to diffuse in proper eccentricity and inclination (e.g. Nesvorný & Morbidelli
1998; Morbidelli & Nesvorný 1999). The proper semimajor axis of each asteroid changes according to:

da

dt
= κ1 cos ǫ+ κ2 sin2 ǫ , (35)

corresponding to the linearized analysis of the thermal effects (e.g. Vokrouhlický 1999). Here the first
term is the contribution of the diurnal variant and second term is the contribution of the seasonal variant
of the Yarkovsky effect. Both are dependant on the obliquity ǫ. The diurnal case (κ1) is dependant
on the rotation frequency ω, while the seasonal case (κ2) is dependant on the mean orbital motion n.
The dependence on thermal and bulk parameters, given in Sec. 5.3.1, is the same for both κ1 and κ2

functions. For our test asteroids, the diurnal Yarkovsky effect dominates, with κ1 larger by about an
order of magnitude than κ2. Hence, a test asteroid can migrate both inward or outward, depending on
its obliquity ǫ. For multi-kilometre bodies, both κ-functions are inversely proportional to the size of the
body.

The orbital evolution of each asteroid is coupled to the evolution of its rotation frequency ω and
obliquity ǫ. The evolution of these terms is complicated by torques from the variant of the Yarkovsky
effect called Yarkovsky-Öpik-Radzievskii-Paddack (YORP) (e.g. Rubincam 2000; Vokrouhlický & Čapek
2002; Bottke et al. 2003; Vokrouhlický et al. 2003). Here we simplify YORP-driven dynamics to a steady
variation of ω and ǫ as described by a system of two differential equations:

dω

dt
= f(ǫ) , (36)

dǫ

dt
=

g(ǫ)

ω
, (37)

where the functions f and g have been obtained by Čapek & Vokrouhlický (2004) for a large sample of
objects with irregular shapes. Here we use their effective values obtained as medians over this sample. To
recall a fundamental property of the YORP dynamics, we note it secularly drives the obliquity to some
asymptotic values (for bodies with non-zero surface thermal conductivity the most likely values are 0◦

or 180◦), where the rotation speed is accelerated or decelerated with approximately the same probability
(Čapek & Vokrouhlický 2004).

YORP evolution is expected to be temporarily halted by interactions with secular spin-orbit reso-
nances. For low inclinations, it is a similar situation to Koronis prograde-rotating asteroids (Vokrouh-
lický et al. 2003). At sizes smaller than ≃ 10 km, however, the YORP contribution might dominate.
The evolution to asymptotic rotation states by YORP – very-fast or very-slow rotation rate – is still
poorly understood, but the conventional wisdom is that (i) the acceleration of the rotation may result in
mass loss and (ii) de-spinning triggers non-axial rotation or eventually drains so much rotational angular
momentum from the body that collisions can re-orient and spin up the body. We use these assumptions
in our simulation. We consider a given asteroid disrupted (and thus eliminated from our simulation)
when its rotation period drops below 2 hr (see, e.g., Pravec et al. 2003). On the other hand, as the ro-
tation period grows by YORP to a very large value (1000 hr in our simulations), we assume a collisional
re-orientation event is likely to take place (see below).

The Yarkovsky and the YORP effects make our initial source population evolve smoothly toward the
boundary of the J2/1 (Eq. (34)). Once the orbit crosses the resonance border, it is recorded as a resonant
asteroid in our model. Numerical simulations from Sec. 5.3.1 suggest these test asteroids become members
of the unstable population. We use these simulations to estimate the residence time of the objects in the
J2/1 (Fig. 62). We assume the body is eliminated from the resonance after some period of time, with a
new body injected into the source population to maintain the steady state. The output of our simulation
is a time series of asteroid residence times inside the J2/1.

Finally, our simulation also includes a rough treatment of collisional disruptions. We assume these
events occur with a time-scale τdisr. Additionally, because of the Yarkovsky effect dependence on the

of the true population becomes shallower above a value of ≃ 15 mag; e.g. Ivezić et al. (2001).
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Figure 64: Cumulative H distribution of the simulated unstable population in the J2/1 (solid curves) compared
with the source population (dashed curve). All 3 source populations are considered together. Large H values were
found by extrapolating from small H values using a power law (compare the dashed curve with the dotted curve
in Fig. 52). The 4 solid lines are distributions of resonant population collected during 2 Gy windows: 0.5−2.5 Gy,
1 − 3 Gy, 1.5 − 3.5 Gy and 2 − 4 Gy. They are nearly identical at small sizes but fluctuate at large sizes because
some large asteroids occasionally fall in the resonance. Straight lines are local power-law approximations in the
H range 12 − 14 (labels are the corresponding exponent value). Here we use our nominal model, A = Anom and
B = Bnom. All asteroids have the same albedo value pV = 0.05.

obliquity and the rotation frequency, we assume non-disruptive collisions can change asteroid’s spin state
with a time-scale τreor. Following Farinella et al. (1998), with an update by Farinella & Vokrouhlický
(1999), we have

τdisr = A (R/R0)α , (38)

τreor = B (ω/ω0)β1(R/R0)β2 . (39)

The coefficients A and B in the equations are somewhat uncertain and depend on assumptions about
the internal structure and physical processes associated with large asteroid disruptions and dispersal into
fragments. Farinella et al. (1998) give: (i) Anom = 16.8 My and α = 1/2 for the collisional time-scale
(R0 = 1 m is the reference value for the radius), and (ii) Bnom = 84.5 ky, β1 = 5/6 and β2 = 4/3
for the reorientation time-scale (with the reference rotation frequency ω0 corresponding to the rotation
period of 5 hr). These estimates were obtained for a projectile population with the equilibrium exponent
−2.5 of the cumulative size distribution (different values of this parameter produce different values of the
exponents α, β1 and β2).

The effective calibration of the time-scale, coefficients A and B, were obtained for the mean material
parameters of silicate bodies and mean impact parameters in the main-belt. For this study, we note that
A ∝ S5/6 (Farinella et al. 1998), where S is the impact strength of a target. Since the prevalent C-type
objects in the outer part of the main asteroid belt have a strength about an order of magnitude less than
basaltic material (e.g. Davis et al. 1985; Marzari et al. 1995, Sec. 4.2), about an order of magnitude
smaller value A ≃ 1.7 My might be also possible. For that reason we introduce an empirical scaling
parameter c1, so that A = c1Anom and c1 ∈ 〈0.1, 1〉. Similarly, we introduce a scaling parameter c2, so
that B = c2Bnom, and c2 ∈ 〈0.1, 1〉.

Results. Figures 64 and 65 summarize results of our nominal simulation, with A = Anom and B = Bnom

(thus c1 = c2 = 1), and a geometric albedo pV = 0.05. Figure 64 shows the size distribution of the
resulting unstable population (solid lines). In order to characterize its power-law slope, we do not consider
the population at any given time instant but instead we include all asteroids residing in the J2/1 resonance
during a given interval of time (i.e., a running window of 2 Gy with initial epochs 0.5 Gy, 1 Gy, 1.5 Gy
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Figure 65: Estimated steady-state population of the unstable asteroids with H ≤ 14 inside the J2/1 in our
nominal simulation where all asteroids are assumed to have pV = 0.05. Fluctuations around the mean value of
≃ 12 are due to random injections into the resonance. The bottom dotted curve shows the contribution of the
Themis and Hygiea families, ≃ 15% of the total.

and 2 Gy, with the initial epoch excluded to let the system settle near steady-state equilibrium). Thus, in
this plot, the absolute number of J2/1 asteroids is not relevant.16 The power-law index is found by fitting
a line to the mean value of the fluctuating indices during the time window of 2 Gy. In spite of fluctuations
produced by large asteroids, we note the distribution function of 12 < H < 14 is well characterized by a
power-law index ≃ 0.68 ± 0.05 (the error bar is dominated by fluctuations over time). This agrees with
the observed population (Figs. 51; recall that the observed slope of the H ≤ 14 asteroids on the unstable
orbits becomes 0.66 ± 0.1 when the extremely unstable orbits are excluded) and is significantly steeper
than the slope of the main belt source population adjacent to the J2/1 (0.51 ± 0.01). This change in
slope is produced by Yarkovsky and YORP forces (e.g. Morbidelli & Vokrouhlický 2003).

Figure 65 shows the simulated number of resonant asteroids with H ≤ 14 residing in the unstable
population during the 4 Gy simulation. After a ≃ 0.1 Gy transition phase, the system settles into fluc-
tuations about the stationary value of ≃ 12 asteroids. This number comes primarily from a combination
of the available source population and strength of the Yarkovsky effect. This result agrees well with the
observed 16 asteroids with H < 14 on unstable orbits (Sec. 5.2). Note that fluctuations as high as 25
bodies are possible. It is also possible that several of the highly unstable bodies came from a different
source (see Sec. 5.3.3).

Using our nominal parameters for collisional effects, A = Anom and B = Bnom, we tested how varying
the albedo – approach (ii) above – would change our results. Using a different seed for our random-
number generator, we created 50 possible source populations with different albedo values attributed to
the individual asteroids and ran 50 simulations. Each time, we recorded the parameters shown in Figs. 64
and 65, namely the equilibrium number of asteroids with H ≤ 14 inside the J2/1 and the index γ of the
cumulative H-distribution for 12 < H < 14.

We find the mean value of the expected power-index γ of the resonant population is ≃ 0.68 ± 0.05
(Fig. 66). The expected steady-state number of resonant asteroids on unstable orbits is ≃14±1. This is a
slight increase from our previous simulation because asteroids with higher albedo values have, for a given
H , smaller D values and thus they drift faster via Yarkovsky forces. The albedo distribution shown in
Fig. 63 is slightly asymmetric about the mean value 0.05, with a longer tail toward higher albedo values.
On the other hand, the observed increase in the steady-state number of resonant asteroids is within the
time fluctuations seen in Fig. 67.

We find the results of the nominal simulations do not change much with varying c1 and c2 (Fig. 68).
For example, for the lowest values of c1 and c2, the estimated equilibrium number of H ≤ 14 unstable
resonant asteroids drops to ∼9. This is because frequent collisions and spin axis re-orientations effectively

16We also occasionally obtain very large asteroids – up to 60 km size – injected into unstable population of the J2/1
resonance, but these events are very rare, about ≃ 0.5% probability. This may be why we currently do not observe them.
We obtained our probability estimate by comparing the typical residence lifetime – ≃ 10 My (Fig. 62) – with the width of
the sampling window (2 Gy). It is also possible that these large asteroids are missing in the resonant population because
the assumption of their steady-state production in the source population is violated.
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weaken Yarkovsky delivery to the resonance. The work on collisional evolution of the main asteroid belt
(Bottke et al. 2004), and hints from anomalous spin axes distribution of asteroids in the Koronis family
(Vokrouhlický et al. 2003) suggest that the lowest c1 and c2 values are unlikely.

Similar values are found by weakening the YORP effect. For example, dropping the strength of YORP
by an order of magnitude produces, with our nominal time-scales (i.e. c1 = c2 = 1), some 10 unstable
asteroids. Only removing the YORP effect entirely from our simulation produces a smaller number – ≃5
– of large unstable asteroids. This shows how the YORP effect helps deliver asteroids into the J2/1: by
preferentially tilting obliquity toward extreme values, YORP increases Yarkovsky drift.

5.3.3 Very unstable objects in the J2/1 resonance

As described previously, the J2/1 objects with very short dynamical lifetimes (≤ 2 My; Fig. 49) do not
appear to come from the asteroid populations located along the J2/1 periphery. Instead, we explore in
this section whether these very unstable objects are Jupiter family comets (JFCs) or near-Earth asteroids
(NEAs) that have become temporarily captured inside the J2/1. Note that such trapping behaviour near
separatrix of resonant zones has been observed in many different numerical simulations (e.g. Levison &
Duncan 1994; Malyshkin & Tremaine 1999; Efthymiopoulos et al. 1999; Levison & Duncan 1997; Bottke
et al. 2000, 2002).

To test our hypothesis, we turn to the results of Bottke et al. (2002), who tracked test bodies from
numerous near-Earth object (NEO) sources in order to model the orbital (a, e, i) distribution of the NEO
population. As part of their model, Bottke et al. (2002) numerically integrated test bodies from their
source regions until they struck a planet, the Sun, or were ejected via a close encounter with Jupiter.
Using results from their modelling work, we find that the objects most likely to become temporarily
trapped in the J2/1 are active and dormant comets from the transneptunian disk (see also Levison &
Duncan 1997, whose numerical integration runs are used in Bottke et al. 2002). We use these results to
quantify the number of test bodies in the J2/1.

Bottke et al. (2002) estimated approximately (6 ± 4) % of all NEOs with a < 7.4 AU are dormant
JFCs. If there are a steady-state number of ≃ 1100 NEOs with H < 18, this works out to be roughly
20 − 110 H < 18 NEOs from the dormant JFC population. Using the Bottke et al. (2002) residence
time probability distribution computed for Jupiter-family comets, we estimated the number of dormant
comets in the J2/1 at any given time. Our residence time distribution was normalized to those objects
reaching perihelion q < 1.3 AU and a < 7.4 AU. We found that the fraction of comets trapped in the
J2/1 resonance (i.e., 3.2 AU ≤ a ≤ 3.4 AU and q > 1.3 AU) is ≃ 9% of the JFC/NEO population. Thus,
this implies that the dormant comet population in the J2/1 is 2 − 10 objects with H < 18.

To include active comets, we turn to results described in Levison et al. (2002), who estimated that the
ratio of dormant comets with H < 18 to active comets in the JFC population is roughly 2. Using this ratio,
we expect the number of active comets in the J2/1 should be 1−5. The upper limit is consistent with the
observed number of ≃ 5 active comets currently trapped in the J2/1 (i.e., 83P/Russell 1, 104P/Kowal 2,
124P/Mrkos, P/LINEAR (2000 B3) and P/LINEAR (2000 R2)). Note that these bodies were identified

90



by numerical integrating comets (without non-gravitational forces) using the orbital elements contained in
the Jet Propulsion Laboratory database http://ssd.jpl.nasa.gov/sb elem.html. Our results indicate
these comets typically remain trapped in the J2/1 for tens to hundreds of ky, consistent with the dynamical
lifetimes of the very unstable objects.

Our results imply the upper limit of the H < 18 dormant comet population described above (10
objects) is the most applicable to our estimates. We caution, however, that active JFCs with q < 1.3 AU
pass closer to the Sun than those with q > 1.3 AU and thus may be more prone to thermal-driven splitting
and disruption events. Because results from Bottke et al. (2002) have only been calibrated for bodies
with q < 1.3 AU, we may be somewhat underestimating the number of dormant comets in the J2/1.

Levison et al. (2002) claim that dormant comets are likely to follow a cumulative H distribution with
a power-law index of γ = 0.23− 0.28, where N(< H) ∝ 10γH. Using the values above, this suggests that
≃ 1 dormant comet with H < 14 should reside in the J2/1 at any given time. A check of the available
data suggests that 2 such H < 14 objects currently reside in the J2/1, and that the power-law index
of the 11 objects with H < 17 is γ ≃ 0.31. These values are in reasonable agreement with our results,
enough that we predict the very unstable population in the J2/1 is likely to be dominated by dormant
JFCs.

5.4 Conclusions

We have shown that the unstable asteroids residing in the 2/1 mean motion resonance with Jupiter have
most likely been transported to their current orbits by the Yarkovsky effect; similarly we argued that
objects on very unstable orbits are mostly dormant (or active) Jupiter family comets. This model satisfies
several constraints: the total number of observed resonant asteroids (larger than some threshold), the
slope of their power-law H distribution, and their location in phase space inside the J2/1. To further
strengthen our model we need to improve our constraints or find new ones.

To add to our constraints, we need further observations (both recoveries and new discoveries) of faint
asteroids in the J2/1. At the present rate of discovery, ground-based surveys may increase the population
of multi-opposition resonant asteroids up to ≃ 500 by the end of 2005. Advanced survey programs (e.g.,
Pan-STARRS) or space-borne programs (e.g., GAIA) will further boost the rate of discoveries, such
that by the end of this decade the population of known resonant asteroids might very well increase to
thousands.

Our model also provides some testable predictions. For instance, we would expect the majority of
asteroids on unstable orbits to have prograde rotations because Yarkovsky transport toward larger values
of semimajor axis requires obliquities in the range 0◦ − 90◦. We can check this conclusion by testing
what happens when we track the evolution of asteroid spin states (e.g., Vokrouhlický et al. 2003, 2004).
This would include numerically integrating spin orientations for asteroids evolving toward the J2/1 along
the orbits described in Sec. 5.3.1. Initially, we assume low obliquity values. When an asteroid enters
the J2/1, orbital changes and interactions with various secular resonances produce chaotic evolution of
the spin axis, in particular forcing the obliquity to span a large interval of values. This effectively erases
the “memory” of the pre-resonance state. However, we find the rotation stays prograde in the majority
of cases. Unfortunately, photometry and light-curve inversion for faint distant objects is too difficult to
allow us to obtain obliquity solutions for most unstable resonant asteroids. New data from large observing
programs will be needed (e.g., Kaasalainen 2004).

While the origin of the unstable asteroids in the J2/1 resonance can be partially understood by the
model described above, the origin of Zhongguos and Griquas remains puzzling. We know from Sec. 5.2
that both islands A and B are populated, with the former significantly less than the latter. Planetary
migration might be responsible for such a differential depletion of primordial populations in both islands
(e.g. Ferraz-Mello et al. 1998) or even cause their secondary re-population (see the work of Morbidelli
et al. (2005) for Trojan asteroids). However, a steep size distribution of B-Zhongguos make us think of
a disruption which occurred recently and dominantly populated with ejecta this island. On contrary, the
shallow size distribution of B-Griquas poses a problem for a model explaining them as B-Zhongguos slowly
leaking by Yarkovsky effect, because such mechanism should more effectively act on smaller asteroids. We
noted in Sec. 5.2 that the island A objects could hardly be ejecta from a disruptive event in the island B,
because, for instance, the difference of mean inclination of their orbits would require ejection velocities
of several km/s (a possibility is, though, that their inclination values have been later influenced by the
near-by ν16 secular resonance). This makes the situation even more puzzling, with possibly complex
hypotheses such as recently formed population of asteroids in the island B and primordial population of
asteroids in the island A.
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6 Yarkovsky footprints in the Eos family

The influence of the Yarkovsky/YORP effect on the evolution of the Eos asteroid family was studied by Vokrouh-
lický et al. (2006a). Their scenario is supported by several independent observations (the structure of the family
in the proper element space, asteroids colour data and new spectroscopic measurements). This chapter is a reprint
of the refereed article. The co-authors are D. Vokrouhlický, A. Morbidelli, W.F. Bottke, D. Nesvorný, D. Lazzaro
and A.S. Rivkin. MB is responsible namely for the identification of the family in the space of proper elements
(Section 6.2.1), N-body simulations of the long-term orbital evolution and their analysis (Secions 6.3, 6.3.1, 6.3.3).

Abstract

The Eos asteroid family is the third most populous, after Themis and Koronis, and one of the
largest non-random groups of asteroids in the main belt. It has been known and studied for decades,
but its structure and history still presented difficulties to understand. We first revise the Eos family
identification as a statistical cluster in the space of proper elements. Using the most to-date catalogue
of proper elements we determine a nominal Eos family, defined by us using the hierarchical-clustering
method with the cut-off velocity of 55 m/s, contains some 4400 members. This unforeseen increase
in known Eos asteroids allows us to perform a much more detailed study than was possible so far.
We show, in particular, that most of the previously thought peculiar features are explained within
the following model: (i) collisional disruption of the parent body leads to formation of a compact
family in the proper element space (with characteristic escape velocities of the observed asteroids of
tens of metres per second, compatible with hydrocode simulations), and (ii) as time goes, the family
dynamically evolves due to a combination of the thermal effects and planetary perturbations. This
model allows us to explain sharp termination of the family at the J7/3 mean motion resonance with
Jupiter, uneven distribution of family members about the J9/4 mean motion resonance with Jupiter,
semimajor axis distribution of large vs. small members in the family and anomalous residence of
Eos members inside the high-order secular resonance z1. Our dynamical method also allows us to
estimate Eos family age to 1.3+0.15

−0.2 Gy. Several formal members of the Eos family are in conflict with
our model and these are suspected interlopers. We use spectroscopic observations, whose results are
also reported here, and results of 5-color wide-band Sloan Digital Sky Survey photometry to prove
some of them are indeed spectrally incompatible with the family.

6.1 Introduction

The study of asteroid families has experienced a renaissance over the last several years from the discovery
of several previously unknown, compact asteroid clusters (e.g., Nesvorný et al., 2002b, 2003; Nesvorný
and Bottke, 2004). These discoveries can be credited, in part, to automated search programs constantly
scan the sky for new near-Earth objects (e.g. Stokes et al., 2002). In the process, they have also found
large numbers of main belt asteroids, which has resulted in an unprecedented increase in the catalog of
known asteroids over the last decade. These clusters are young enough that their formation ages can be
directly determined by integrating their members’ orbits backwards in time. Using these data, we have
been able to glean new insights into space weathering processes (Jedicke et al., 2004; Nesvorný et al.,
2005), the origin of the IRAS/COBE dust bands (e.g. Dermott et al., 2001; Nesvorný et al., 2002b, 2003,
2006a), and the physics of asteroid breakup events (Nesvorný et al., 2006b).

Here, however, we focus our analysis on the Eos family, one of the largest asteroid concentrations in
the main belt. This family has been studied by many groups over time; classical early references are
Hirayama (1918) and Brouwer (1951), with more work in the 1970’s from a variety of authors (see review
in Bendjoya and Zappalà, 2002). Brouwer (1951) was the first to discover that the Eos family has some
puzzling features that cannot be easily reconciled within a standard model. He noticed that the spread
of family members in semimajor axis was anomalously small when compared to their proper eccentricity
and inclination (see Table IV in his paper and, e.g., Zappalà et al., 1984). He hypothesized that Eos
likely experienced an unusual ejection velocity field or inadequacies of the linear secular theory.17

Brouwer (1951) also speculated about the Eos family’s age. This issue is important, because a family’s
age determines how long its members have been subject to post-formation dynamical evolution. Note
that the chronology of asteroid families is needed to constrain collisional evolution in the main asteroid
belt (e.g. Bottke et al., 2005a,b). Brouwer noticed that within the simplest, linearized secular theory, the
sum of proper longitude of pericenter ̟p and proper longitude of node Ωp stays constant because their
related proper frequencies are exactly the opposite of one another. He thus proposed to use (̟p + Ωp) as
an additional parameter to test the properties of asteroid families. In particular, any strong clustering in

17As a historical curiosity, we mention that Brouwer (1951) was an opponent of the scenario that families, since their
formation, had been subject to unknown perturbations, including those of non-gravitational origin (Brown, 1932).
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Figure 69: The Eos family determined by the HCM with Vc = 50 m/s (left figures) and 55 m/s (right figures)
projected onto perpendicular planes in the space of proper elements: (i) semimajor axis a and eccentricity e
(upper figures), and (ii) semimajor axis a and sine of inclination sin i (bottom figures). Family members are
shown by thick symbols, while the background asteroids in a surrounding box delimited by the axes range are
dots. Position of major mean motion resonances with Jupiter (J7/3 and J9/4) is also shown.

this parameter would suggest the family is . 1 My because more accurate secular theory would inevitably
break this property.

An investigation of the limited number of known Eos members by Brouwer (1951; see Table V) indicated
that the distribution of (̟p + Ωp) was strongly nonuniform, which could be used to argue that the Eos
family is young. In spite of Carpino et al.’s (1986) finding that the (̟p+Ωp) time variation is anomalously
slow in this particular zone of the main asteroid belt, Farinella et al. (1989) critically reassessed Brouwer’s
argument concluding it might have been fluke. By associating smaller asteroids with the Eos family,
these groups showed that (̟p + Ωp) is fairly uniform, with some residual non-uniformity stemming from
a potentially younger subcluster of asteroids inside the Eos family. Farinella et al. (1989) instead argued
for an older age based on fact that large disruption events in the main belt occur very infrequently. They
found additional support for their old age argument from the uniform rotation period distribution of
the family members, which could have been produced by collisions over long time periods (Binzel, 1988).
Hence, they dismissed the usefulness of the (̟p+Ωp) parameter for future family studies (except for very
young families; Nesvorný et al., 2002b, 2003). We share this point of view; in Sec. 6.3.3, we show that this
parameter follows a nearly uniform distribution with deviations compatible with statistical fluctuations
and the expected influence of the secular resonance z1 (compare with Milani and Knežević, 1992, 1994).

Morbidelli et al. (1995) have also pointed out problems in determining the formation history and age
of the Eos family. The Eos family is both bracketed by the J7/3 mean motion resonance (MMR) at
∼ 2.96 AU and is intersected by the J9/4 MMR at ∼ 3.03 AU (Fig. 69). Morbidelli et al. reported that
the number of family members with a > 3.03 AU appears to be significantly smaller than those with
a < 3.03 AU. It is unclear how the initial velocity distribution of fragments produced by the parent body
break-up could have produced this odd arrangement. One possibility was that there was a cascade of
secondary fragmentations inside the original family. No other family, however, shows any evidence for a
such a process.
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Morbidelli et al. (1995) also noted that 5 asteroids associated with the family were residing inside
the J9/4 MMR. By numerically integrating their orbits, they found these objects are ejected from the
main belt on a timescale of 100 − 200 My. Rather than postulate that these fragments were directly
injected into the resonance by the family-forming event, Morbidelli et al. instead suggested that they
were probably placed on those orbits via a secondary breakup. They also predicted that asteroids in the
J9/4 MMR at higher (or lower) eccentricities and inclinations may also be former Eos members. Zappalà
et al. (2000) confirmed this prediction when they found that 5 of the 7 objects they observed inside the
J9/4 MMR (but unrelated to the family with a simple clustering method in orbital element space) had
spectra compatible with Eos family members. The interesting problem with this scenario, however, is
that the 5 fugitive asteroids are large enough (diameter 14 < D < 30 km) that collisional injection over
the last 100 − 200 My is highly unlikely.

Another way to estimate the age of the Eos family is to analyze the collisional evolution of its size-
frequency distribution (SFD). Using a 1-D self-consistent collisional evolution code, Marzari et al. (1995)
considered the SFD evolution of three prominent families: Themis, Koronis and Eos. While partially
succeeding in the Themis and Koronis cases, their match to the Eos family SFD was poor, with their best
fit indicating that the Eos family was surprisingly young. It is important to note here that while Marzari
et al.’s results provided us with many useful insights, their work does have important limitations: (i) the
initial family SFDs were unknown, (ii) they used a disruption scaling law that allowed their asteroids to
break up far more frequently than suggested by numerical hydrocodes (e.g., Benz and Asphaug, 1999),
(iii) their main belt evolution results are discordant with current constraints (Bottke et al., 2005a,b), and
(iv) the observed family SFDs used by Marzari et al. had not been debiased and thus were limited to
D & 10 km bodies.

In what follows, we show that most, though not all, of the enigmatic issues about the Eos family
are naturally solved within the framework coined by Bottke et al. (2001, 2002b). They argued that
the asteroid families are initially more compact clusters in (a, e, i) proper element space than currently
observed. The assumed ejection velocities are then compatible with numerical simulations of the asteroid
catastrophic disruptions (e.g., Love and Ahrens, 1996; Ryan and Melosh, 1998; Benz and Asphaug, 1999;
Michel et al., 2001, 2002), with the observed fragments with diameters larger than few kilometres launched
away at relative velocities smaller than ≃ 100 m/s. As time proceeds, the family undergoes evolution by
two processes: (i) collisional, with D . 10 km asteroids suffering catastrophic disruption within a few
Gy (and producing secondary fragments), and (ii) dynamical, where the thermal (Yarkovsky) forces, as
a function of size, thermal parameters and rotation state (the obliquity and rotation rate, in particular;
for a review see Bottke et al., 2002b), spread the initial cluster in semimajor axis and allow the bodies
to interact with various secular and mean motion resonances (see also Milani and Farinella, 1994, 1995;
Morbidelli and Nesvorný, 1998; Farinella and Vokrouhlický, 1999; Bottke et al., 2001; Nesvorný et al.,
2002a; Carruba et al., 2003; Tsiganis et al., 2003; Nesvorný and Bottke, 2004; Brož et al., 2005b; Carruba
et al., 2005).

In this paper, we investigate whether the Eos family has experienced substantial evolution via the
Yarkovsky effect. In Sec. 6.2, we review what we know about the Eos family (i.e., its structure in proper
element space, its size-frequency distribution, the spectral properties of its members). In Sec. 6.3, we
discuss anomalous family features and show, using numerical integration techniques, that they are easily
understood within the Yarkovsky-dispersion model. Our model also produces some testable predictions,
such as whether interloper asteroids exist inside the family. For many of these bodies, we have determined
their spectra and have determined whether their spectral types are consistent with predictions (Sec. 6.4).

6.2 Eos family: basic facts

In this section, we describe the known properties of the Eos family. First we applied formal clustering
methods on the most updated database of asteroids to identify the Eos family in the orbital element
space. Our work significantly increases the number of asteroids associated with the family as compared
to previous searches (e.g., Zappalà et al., 1995; Bendjoya and Zappalà, 2002). Second, we have collected
spectral information about various family members (e.g. Cellino et al., 2002 and references therein).

6.2.1 Identification in the proper element space

We applied the hierarchical clustering method (HCM; e.g. Bendjoya and Zappalà, 2002 and references
therein) to identify clustered Eos family members in proper element space (semimajor axis a, eccentricity e
and sine of inclination sin i). Our database included the analytically-determined proper elements of nearly
170, 000 main belt numbered and multi-opposition asteroids from the AstDyS database (http://newton.
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Figure 70: Number of asteroids associated with a family (using the HCM approach) as a function of the cut-off
velocity Vc for Eos (thick line) and Veritas (thin line). The large Eos family steadily accumulates asteroids as
Vc increases, while identification of the compact Veritas family shows only little dependence on Vc. At a critical
value of Vc = 78 m/s the two neighboring families coalesce into a single structure.

dm.unipi.it/) as of November 2004. We tested different values of the cut-off velocity 30 < Vc < 85 m/s,
the principal free parameter in the HCM method. Lower values were not used to avoid the intrinsic noise
of analytical proper elements.

At the largest Vc values, the cluster starts to accumulate a significant portion of the surrounding region
in proper element space. This is seen in Fig. 70 where we show the number of HCM identified members
of the neighboring Eos and Veritas families as a function of Vc. At the critical value Vc = 78 m/s, the two
families coalesce into a single cluster of asteroids. This plot also demonstrates the intrinsic difficulty of
family identification in case of the large families like Eos. The compact (and young; e.g. Nesvorný et al.,
2003) Veritas family depends very weakly on Vc until it passes a threshold value that allows it to “join”
with the background population; this means the family is distinctly defined (see also Fig. 4 of Nesvorný
et al. 2005a). Conversely, as Vc is increased for Eos, the family population steadily increases as well. Not
surprisingly, we expect this process to accumulate numerous interlopers. Trials and tests are needed to
eliminate as many of these objects as possible from the final set.

Figure 69 shows two examples of Eos family identification for Vc = 50 m/s (left) and 55 m/s (right;
dots are background main belt asteroids inside a orbital-element box defined by the ranges of the axes).
The identification of family members for different values of Vc is available at our web-site http://sirrah.
troja.mff.cuni.cz/yarko-site/. We believe Vc = 55 m/s provides a reasonable compromise between
completeness and overshooting; at larger Vc values, the family starts to accumulate more distant asteroids
with a > 3.03 AU, i.e. on the far side of the J9/4 MMR with Jupiter. We use it as our nominal definition
of the Eos family. Figure 71 shows the Eos family projected onto the plane of proper a and absolute
magnitude H (data are taken consistently from AstDyS web-site) again for two Vc values. The structure
seen in this figure will be discussed in Sec. 6.3.

Note that 2-D projections of the family (Fig. 69) miss details that can be seen in 3-D proper orbital
elements space. In Fig. 72 we show the Eos family as a 3-D cluster (bold symbols) embedded in the
background population of asteroids (dots). We have chosen the view to emphasize the low-e and i side in
order to bring attention to a stream-like structure radiating out from the family (on our website http://
sirrah.troja.mff.cuni.cz/yarko-site/ we provide a computer animation that allows one to see the
Eos family from many different directions in proper element space). The two planes shown in the same
figure roughly mark the libration zone of the high-order secular resonance z1 (e.g. Milani and Knežević
1990, 1992, 1994, and Sec. 6.3.3). We see that the peculiar structure observed in the Eos family tightly
adheres to this resonance (see Sec. 6.3.3 for details).

We also investigated cumulative distribution N(< H) of absolute magnitudes H for Eos family as-
teroids. This can be achieved with high reliability, since even with low Vc values the family contains
thousands of members (e.g., the nominal family with Vc = 55 m/s has about 4400 asteroids). Fig-
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Figure 71: The Eos family determined by the HCM with Vc = 55 m/s projected onto a plane of proper semimajor
axis a and absolute magnitude H . As in Fig. 69, the family members are thick symbols, surrounding background
asteroids are dots. Observation limits prevents detecting asteroids smaller than about 1 − 2 km in size (H ≃ 17).
Major mean motion resonances are also shown.

Figure 72: The Eos family (bold symbols) shown in 3-D space of proper orbital elements; dots are background
asteroids not associated with the family by the HCM method (here Vc = 55 m/s is used). We emphasize existence
of an asteroid stream escaping from the family toward low values of the proper eccentricity and inclination. Semi-
transparent surfaces indicate approximate borders of the high-order secular resonance z1 discussed in Sec. 6.3.3.
We show ±0.8 arcsec/yr region about the exact resonance whose location is determined using a semianalytic
theory of Milani and Knežević (1990, 1992); this width corresponds to the numerical results from Sec. 6.3.3.
Unlike the principal MMRs, the z1 resonance is a strongly curved 3-D structure in the space of proper elements.
The observed anomalous asteroid stream and the position of the z1 resonance strongly correlate; this suggestive
link is investigated in more detail in Sec. 6.3.3.
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Figure 73: Cumulative distribution N(< H) of absolute magnitude values H for members of the Eos family
determined by the HCM with Vc = 55 m/s. The straight line is a power-law approximation with index γ = 0.47
that best fits the family in the magnitude range H ∈ (11.5, 13.5) (denoted with the two vertical lines); at larger
sizes (i.e. smaller values of H) the distribution becomes steeper and dependent on individual objects, while at
smaller sizes (larger values of H) the observation bias affects the data.

ure 73 shows this quantity for the nominal cut-off velocity 55 m/s; we used a power-law approximation
N(< H) ∝ 10γH in the magnitude range (11.5, 13.5) and obtained γ ≃ 0.47 ± 0.02. Our value of γ
is close to some previously reported values (e.g. Fujiwara, 1982) but discordant with some others who
predict a considerably steeper distribution from their method (e.g. Tanga et al. 1999). This value of
the power index suggests that the family has undergone significant collisional and dynamical evolution
at small asteroid sizes that drove it toward the equilibrium state (e.g. Dohnanyi, 1969; O’Brien and
Greenberg, 2003; Bottke et al. 2005c). In particular, Bottke et al. (2005a,b) estimate a 15 − 20 km size
asteroid (roughly H = 11.5 for Eos family members) has a collisional lifetime of ≃ 2 Gy; thus we would
tentatively infer an age for the Eos family of 1−2 Gy from this simple argument. Interestingly, our more
quantitative work in Sec. 6.3.2 will provide additional support for this age.

Figure 74 shows the best-fit power-index γ for family members with 11.5 < H < 13.5 as a function of the
cut-off velocity Vc. Except the anomalous “step” at Vc = 44 m/s, which is caused by a sudden extension
of the family to the region beyond the J9/4 MMR (see also Fig. 70), we find that γ steadily increases. The
limiting value ≃ 0.52 can be attributed to the overall main-belt population in this particular heliocentric
zone; here Vc has become large enough to fill the entire region. The smaller γ values found for small Vc is
consistent with Morbidelli et al. (2003), who predicted shallow slopes for most prominent families where
their members had H & 15.

6.2.2 Spectroscopic observations

Information about the physical properties of the Eos family members derives from spectroscopy of large
asteroids, completed by numerous observers using a variety of telescopes and instruments, and broad-
band photometry of small asteroids taken by the Sloan Digital Sky Survey (SDSS). Here we provide some
information about both sources.

We start with results from spectroscopic surveys. Some caution is warranted when comparing data
from different sources because: (i) taxonomic systems have significantly evolved over the past two decades
and (ii) major surveys have only performed spectroscopy in the visible wavelengths. This later point
is important because discriminating the physical properties of asteroids, especially for an object at the
outskirts of the broad S-type asteroid color complex, requires additional data in the infrared. For example,
asteroid (221) Eos and several other large Eos members have visual spectra that resemble S-type objects
(apart from finer details introduced only later on). It was only when an extended spectrum of (221) Eos,
covering both visual and infrared bands, was obtained that Bell et al. (1987) and Bell (1989) were able to
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Figure 74: The power-law index γ of the cumulative magnitude distribution N(< H) fitted in the range H ∈
(11.5, 13.5) as a function of the HCM cut-off velocity Vc. At the largest velocity the system represents basically
the whole local main-belt population around the Eos family. At any smaller value of Vc the family is shallower;
at our nominal family definition of Vc = 55 m/s we have γ = 0.47 ± 0.02 (see Fig. 73).

propose that Eos family members comprise a distinct spectral class now called K-type (see Veeder et al.
(1995), Doressoundiram et al., (1998) and Zappalà et al., (2000) for reviews of this topic).

Objects that are not related to K-type are assumed to be interlopers. For example, a dedicated
visual spectroscopic survey of large Eos members by Doressoundiram et al. (1998) found two asteroids,
(1910) Mikkailov and (4455) Ruriko, that were spectrally similar to C-type asteroids (out of a sample
of 45 observed family members). Still, there appears to be a modest spectral heterogeneity among Eos
members ranging from the K types, such as (221) Eos itself, to T types (see also Xu et al. 1995). Because
K- and T-types lie along the edge of the S-type complex, it can be difficult to precisely classify asteroids
with these characteristics. Bus and Binzel (2002b), who examined 6 of the 45 asteroids discussed by
Doressoundiram et al. (1998) as part of the SMASSII survey, found that 4 were K-types and 2 were S-
types (633 Zelima and 1186 Turnera). Doressoundiram et al. (1998) interpreted the spectral differences
among these bodies as some kind of weathering process or as perhaps a sign of compositional differences
in the Eos parent body (see also Mothé-Diniz and Carvano, 2005). As far as we know, however, there is
no general consensus about this interpretation to date.

We also note that the SMASSII survey detected 19 asteroids that are associated with the Eos family
at the HCM cut-off velocity Vc = 55 m/s (Bus and Binzel, 2002a,b; see also updates at http://smass.

mit.edu/). Most of them were given K-type classifications, with the exceptions being the two S type
asteroids mentioned above and two interloper asteroids classified as Xc-type asteroids: (1604) Tombaugh
and (3214) Makarenko.

Another rich and recent source of spectroscopic data is the S3OS2 survey by Lazzaro et al. (2004)
(see http://www.daf.on.br/~lazzaro/S3OS2-Pub/s3os2.htm). They observed 13 asteroids from our
nominal Eos family and obtained the following results: Asteroids (1075) Helina (Xc-type), (1605) Mi-
lankovitch (X-type), (3328) Interposita (Xc-type), and (4100) Sumiko (B-type) are all spectrally diverse
from prevalent K and T types in the Eos family and contribute to the interloper population. Asteroids
(251) Sophia (Sl-type) and (4843) Megantic (X-type) are also recognized as interlopers. Moreover, sev-
eral asteroids were re-classified as D types within the new Bus taxonomy (Bus and Binzel, 2002a,b) from
former T types of the Tholen taxonomy (Tholen, 1989), confirming difficulties in spectral classification.

Both datasets, SMASS and S3OS2, have been compiled together and applied systematically to asteroid
families by Mothé-Diniz et al. (2005). For the Eos family, which was likely identified by these authors at
a slightly higher Vc value, they determined that 55 out of 92 asteroids with known spectra belong to the
KTD sequence; this sets the classification system for additional Eos family members. The mineralogical
interpretation of these data, however, is more uncertain (e.g. D types here often have high albedo values,
unlike the well interpreted low-albedo D type objects in the outer part of the asteroid belt and among
Trojan asteroids). If we include Xk types in the KTD complex, which are related in the optical band, the
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KTD’s form 74% of Eos family members. Alien, or more distant spectral types (X, C and B) constitute
26% of asteroids in the Eos family; these values are somewhat higher than expected (Migliorini et al.,
1995). Their fraction increases with larger Vc, suggesting the family is embedded in a spectrally alien
zone. In spite of the ambiguous compositional implications of the KTD spectral sequence inside the Eos
family, the fact that they are surrounded by primitive C-type asteroids may allow us to recognize some
interlopers.

As far as broad-band photometry is concerned, we skip in this paper the older observations made for
the Johnson UBV system (e.g. Zellner et al., 1985) and instead turn to more recent work of Ivezić et al.
(2001, 2002), who analyzed the homogeneity of asteroid families using the broad-band 5-color data of
SDSS (see http://www.astro.princeton.edu/~ivezic/sdssmoc/sdssmoc.html). Interestingly, in the
case of Eos, they find a slight scatter of spectral features. Because the SDSS data are available mostly
for small asteroids (H ≥ 12, say), the result of Ivezić et al. might indicate spectral heterogeneity in the
Eos family (e.g., Doressoundiram et al., 1998).

Nesvorný et al. (2005) has investigated this issue using release 2.0 SDSS data. While their main
focus was space weathering effects, they were able to identify SDSS colors for 457 members of the Eos
family (using a larger Vc value). The average principal component values found for Eos members were
PC1 = 0.466±0.095 and PC2 = −0.104±0.083 (standard deviations), placing this family on the outskirts
of the S-complex. While that borderline position complicates interpretations, the unusual colors of some
objects may help us identify them as interlopers within the Eos family (see Sec. 6.4).

Additional possible interlopers in the Eos family, suggested by the infrared broad-band photometry
reported by Veeder et al. (1995), are (562) Saloma and (1723) Klemola, whose J-H color index is signif-
icantly offset from other observed members of the family. Some authors, e.g. Bell (1989), suspect the
third largest asteroid associated with Eos family, (639) Latona, might be an interloper based on S-like
behavior of in the infrared band.

In Sec. 6.4 we report additional spectral observations of the Eos members made over the past few years
by members of our team. We also analyze the most updated SDSS data, release 3.0.

6.3 Eos family: Yarkovsky traces

Hereafter we analyze several outstanding features of the Eos family. We show they can best be explained
within a model where the family was formed in a more compact configuration in the proper element
space about 1 Gy ago and then experienced dispersion via the Yarkovsky effects and interactions with
resonances (Sec. 6.1). To that end, we performed a numerical simulation to determine how an initially
compact cluster near the center of the Eos family expands in proper (a, e, i) over time. Note that our
initial orbital data was chosen to be consistent with the ejection velocities predicted from laboratory
experiments and numerical hydrocode simulations of asteroid disruption events (e.g. Love and Ahrens,
1996; Ryan and Melosh, 1998).

The initial orbital elements of our synthetic family asteroids were chosen according to the procedure
described in the Appendix of Carruba et al. (2003). For the Eos family, the estimated mass ratio of the
largest fragment and parent body is ≃ 0.1 (e.g. Tanga et al., 1999; Campo Bagatin and Petit, 2001).
Using this value, we obtain a parent body diameter of DPB ≃ 240 km. To disrupt this object, we assumed
a specific energy Q⋆D ≃ 0.1 ρD1.36

PB , where the bulk density ρ ≃ 2.5 g/cm3 (Benz and Asphaug, 1999).
We assume that only a small part of this energy is transformed into the kinetic energy of the dispersed
fragments, such that their mean quadratic velocity vej is v2

ej = 2 fKE Q
⋆
D (e.g. Davis et al., 1989; Petit

and Farinella, 1993). The fundamental anelasticity parameter fKE ≃ 0.02 is intentionally chosen small,
such that vej is on the order of a few tens of m/s.

Following the work of Petit and Farinella (1993), we also adjust our velocities to account for the self-
gravity of the parent body, such that the escaping fragments must have a positive binding energy value.
We also assumed vej had a Maxwellian distribution. For simplicity, no mass/size dependence of vej was
assumed. The initial velocity field was set to be isotropic in space, although below we shall argue that
the properties of the family indicate this may be an unrealistic assumption. Finally, we transformed the
initial velocity field into orbital elements using Gauss equations and estimates of the parent body’s true
anomaly f and argument of pericenter ω: f = 90◦ and ω + f = 45◦ (see e.g. Morbidelli et al., 1995).
This latter choice is somewhat arbitrary, but it produces an initial family which has a characteristic, but
not extreme, extent in the proper element space for the given ejection velocities.

We use a Swift-RMVS3 integrator (e.g. Levison and Duncan, 1994) modified to account for the
Yarkovsky forces (see http://sirrah.troja.mff.cuni.cz/yarko-site/ for details of its implemen-
tation, speed and accuracy tests). We also complemented the original version of the integrator with
computations of synthetic proper elements in a manner compatible with definition laid out in Knežević
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and Milani (2000, 2003). This means that we first apply a Fourier filter to the (non-singular) orbital
elements in a moving window of ≃ 0.7 My (with steps of 0.1 My) to eliminate all periods smaller than
some threshold (1.5 ky in our case; we use a standard sequence of Kaiser windows as in Quinn et al.,
1991, a procedure equivalent to what is used by Knežević and Milani, 2000). The filtered signal, mean
orbital elements, is then output from the simulation for further checks and passed through a frequency
analysis code adapted from Šidlichovský and Nesvorný (1997) to obtain (planetary) forced and free terms
in Fourier representation of the orbital elements. The isolated free terms are what we use as the proper
orbital elements.

The 4 Jovian planets are included in our simulation with their masses, initial positions and veloci-
ties taken from the JPL DE405 ephemeris. The effect of the terrestrial planets are accounted for as a
barycentric correction of the initial conditions only, which we believe is justified in this distant zone of
the asteroid belt. A timestep of 20 days is used. We used 210 test particles (asteroids) in our runs. Their
diameters range from D = 2 km to 60 km. Smaller bodies dominate our integrated sample such that we
have 10 bodies with D = 60 km in our sample and there are ∝ 1/D bodies in different size bins.

Their rotation rate distribution is set to be a Maxwellian with a peak value corresponding to a period of
8 hr (though we prevent shorter/longer periods than 4/12 hr; e.g. Binzel, 1988). The orientation of their
spin axes is assumed to be uniform in space.18 The rotation parameters of the asteroids are assumed to be
constant for these runs. We acknowledge this is an over-simplification; thermal and gravitational torques
produce large variations of asteroid spin vectors on Gy timescales (see e.g. Sec. 6.3.2). Here, however,
we trade complexity for simplicity. The thermal parameters of the asteroids, necessary for modeling
Yarkovsky forces, are: thermal conductivity K = 0.005 W/m/K, specific heat capacity Cp = 680 J/kg/K,
and surface/bulk densities 1.5 and 2.5 g/cm3, respectively. We assume that multi-km asteroids in the Eos
region have an insulating surface layer of dust or at least a significant porosity which makes K small. We
use analytic formulæ from Vokrouhlický (1998, 1999) and Vokrouhlický and Farinella (1999; Appendix) to
compute the diurnal and seasonal variants of the Yarkovsky effect. With our chosen thermal parameters,
the diurnal effect is about an order of magnitude larger than the seasonal effect, allowing asteroids with
retrograde spins to spiral toward the Sun and those with prograde rotations to spiral away from the Sun.

After setting the initial conditions and thermal parameters for our test asteroids, we let our synthetic
family evolve for 1 Gy (this end-time was chosen to be in rough accordance with our estimate of the
family age in Sec. 6.3.2). Figures 75 and 76 show the dynamical evolution of their proper (a, e, i) over
time (solid lines), superimposed onto positions of the currently observed Eos family members (dots).
The former figure tracks evolution of asteroids with size D ≥ 7 km, while the latter is for asteroids with
D ≤ 7 km. In both figures, we show the position of major MMRs –J7/3, J9/4 and J11/5– as well as
numerous weaker MMRs such as high-order resonances (e.g. J16/7 or J23/10) and three-body resonances
with Jupiter and Saturn (e.g. 8J−3S−3, 6J+2S−1, 5J−1S−2 or 3J−2S−119; Nesvorný and Morbidelli,
1998; Morbidelli and Nesvorný 1999; Morbidelli 2002).

The effect of resonances on orbits migrating in a is twofold, depending of the strength of the resonance
and the drift rate (da/dt). Weak resonances can temporarily capture an orbit and change its proper e
and/or i by a small amount upon leaving the resonance (Fig. 77; see also Bottke et al. 2000; Vokrouhlický
and Brož, 2002). This effect, while small enough to keep asteroids in the family, increases the mean
dispersion of e and i over time. Our simulations suggest that this effect allows our test asteroids to
match the full extent of the observed family in e but not in i, where it misses about a factor of two.
Our integrations, however, assume fixed orientation of the spin axis in space for our test asteroids; in
reality, thermal and gravitational torques, together with collisional effects, may produce more complicated
evolutionary paths. For example, da/dt can change, or even reverse sign, in time in response to spin axis
evolution, allowing them to cross back and forth across weak resonances at variable speeds. This could
help increase their dispersal in e and i. It is also possible that our initial velocity field was unrealistic;
perhaps a more accurate velocity field would help eliminate the “inclination problem” (Sec. 6.5). We
note, however, that effect of dispersion in e and i is size-dependent since smaller asteroids have chance
to meet more tiny resonances as they migrate faster than large asteroids. This effect helps explaining
“triangular” shape of the families in the e−H and i−H planes discussed by Cellino et al. (2002).

Powerful MMRs, namely the J7/3, J9/4 and even the J11/5, can remove Eos asteroids from the family
by significantly increasing (or decreasing) their e and/or i values. The strength of this effect is proportional
to the order of the resonance (e.g. Morbidelli, 2002), but it also depends on the Yarkovsky da/dt rate. In

18A semi-empirical model of Paolicchi et al. (1996) suggests a size-rotation relation with smaller fragments rotating faster
than the large ones. Given other uncertainties in our simulation, we stay with our simple formulation.

19We adopt the notation of Nesvorný and Morbidelli (1998) and Morbidelli (2002) who characterize a three-body MMR
(+mJ J + mSS + m) with a condition mJ λ̇J + mS λ̇S + mλ̇ ≃ 0, where λJ , λS and λ are mean longitudes of Jupiter, Saturn
and the asteroid.
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Figure 75: Evolution tracks of our synthetic Eos asteroids with size ≥ 7 km during 1 Gy in our simulation; dots
are ≥ 7 km members of the currently observed family with the HCM threshold velocity Vc = 55 m/s. Top: proper
eccentricity vs. proper semimajor axis; bottom: proper sine of inclination vs. proper semimajor axis. The initially
compact family extends in course of time due to a combination of the (i) Yarkovsky forces that produce diffusion
in the semimajor axis, and (ii) interaction with MMRs that, upon capture, cause eccentricity and inclination to
change. The latter effect is proportional to the resonance strength scaling with its order. Thus the principal
resonances –here J9/4– make many of the captured asteroids eliminated from the family. Weaker MMRs, such
as 16/7 or the three body resonances (shown in the figure), do not have a capability to eliminate asteroids from
the family, yet they can make the family to extend in eccentricity and inclination. A special effect is produced
by the high-order secular z1 resonance (Sec. 6.3.3) that make the Yarkovsky drifting orbits frequently captured
and driven along it for a long period of time. This is because this resonance varies along all proper elements,
approximately diagonally across the family. The grey curves show nominal location of the resonance ±0.8 “/y
zone for: (i) sin i = 0.17 (top), and (ii) e = 0.04 and e = 0.08 (bottom). The particle moving toward small proper
eccentricity value at ∼ 3.02 AU shows a rare temporarily capture in a weak secular resonance g − 3g6 + 2g7.
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Figure 76: The same as in Fig. 75 but here for asteroids with size ≤ 7 km (view dominated by 2 km size
bodies). These objects have a faster semimajor axis drift due to the Yarkovsky forces and some manage to cross
the whole extend of the family in semimajor axis. As in Fig. 75 we note both interaction with the weak MMRs
and significant role of the z1 secular by trapping the migrating objects and transporting them to smaller values
of proper inclination and eccentricity. With that process, nearly the complete eccentricity extend of the family is
achieved, though effect on inclination is still small. Transparency of the J9/4 MMR for the migrating objects is
higher now, yet many asteroids still get ejected from the Eos family via this route. The J7/3 MMR may eventually
be also crossed by few of these smaller asteroids, but upon this crossing the eccentricity and inclination get largely
changed. The black sections of the evolutionary tracks indicate the particle is still associated with the Eos family
at the nominal HCM cut-off velocity Vc = 55 m/s; the dark-gray section indicate the particle escaped too far
from the family and ceases to be associated with it. Note, that the few objects that crossed the J7/3 resonance
became unrelated to the Eos family at the adopted nominal HCM cut-off velocity.
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Figure 77: A zoom of the Fig. 75 showing tracks of particles in our simulation near a pair of weak mean
motion resonances J23/10 and 5J-1S-2 (see the text for nomenclature); dots are the currently observed asteroids.
Upper panel is a projection onto the proper eccentricity vs. proper semimajor axis values, lower panel gives
a projection onto the proper sine of inclination vs. proper semimajor axis values. Because of the Yarkovsky
forces the orbits migrate toward smaller semimajor axis values. Upon encounter the mean motion resonances,
the proper eccentricity might be significantly changed; the inclination effect is quite less for these resonances.
The bottommost migrating particles are trapped in the z1 secular resonance and stay so even after a period of
interaction with the mean motion resonances.
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Figure 78: A zoom of the evolutionary paths of the Eos members in our simulation near the J11/5 and 3J-2S-1
resonances. This doublet causes a non-negligible elimination rate and only orbits at sufficiently low initial e value
have a good chance to continue populating the family at a ≥ 3.08 AU.

the Eos family, we have a wide range of possible outcomes, from the near total elimination of observable
asteroids (J7/3 MMR) to their partial elimination (J9/4 MMR). Both produce quantitatively testable
effects: termination of the family in the former case and a rate-dependent drop in the semimajor axis
density of asteroids after passage of the latter. We devote Sec. 6.3.1 to a careful study of this effect.

Figure 78 shows a close up of asteroids drifting into the J11/5 and 3J−2S−1 resonances. This doublet
may cause the partial elimination of bodies from the family, mainly because the bodies reaching this
resonance may have had their eccentricities “pumped up” by a previous interaction with the J9/4 reso-
nance. The probability of crossing this doublet is higher at low eccentricity. For example, Fig. 69 shows
the family at Vc = 55 m/s first extends beyond the J11/5 and 3J−2S−1 resonances at e values.

The last resonant effect, very specific to the Eos family, is the influence of the high-order secular
resonance z1 (e.g. Milani and Knežević, 1990, 1992, 1994). While it will be described it more detail in
Sec. 6.3.3, we note that many asteroids in our simulation adhere to this resonance and follow a “diagonal
route” toward smaller values of proper e and i. At the same time, their location in this resonance makes
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their proper e and i values oscillate with large amplitudes and a period of several My. Asteroids migrating
toward large a values can also follow this secular resonance, but they are frequently blocked and removed
from the family by the J9/4 MMR.

Using these simulations to set the stage for our work, we are now ready to discuss some of the more
interesting features of the Eos family in greater detail.

6.3.1 J7/3 and J9/4 MMR tests

The fact that the Eos family is terminated by the J7/3 MMR (Figs. 69 and 71) is one of its most important
and interesting properties. Examples of other prominent families terminated by resonances include the
Koronis family (terminated by the J5/2 and J7/3 MMRs; Bottke et al., 2001) and Eunomia families
(terminated by the J3/1 MMR; Morbidelli and Vokrouhlický, 2003). We note that the width of J7/3
MMR, at the mean eccentricity value of the Eos orbits, is (∆a)7/3 ≃ 7 × 10−3 AU. This value can be
approximately interpreted in terms of a HCM velocity distance (∆v)7/3 as (∆a)7/3/a7/3 ≃ (∆v)7/3/v7/3;
here a7/3 is the position of the resonance and v7/3 is the characteristic orbital velocity at the resonance.
With this relation (that assumes no difference in eccentricity and inclination), we estimate the J7/3
MMR presents an “obstacle” of (∆v)7/3 ≃ 10 m/s in the HCM scheme. This estimate was obtained
using the circular three-body problem. The true width of the J7/3 MMR might be little larger, but using
Vc = 55 m/s should allow us to pick up any missing components of the Eos family that happen to reside
beyond the J7/3 MMR. Even at Vc = 70 m/s, however, very few asteroids are found, and these objects
most likely represent the background population.

We thus conclude that the Eos family does not extend beyond the J7/3 MMR, even though it tightly
adheres to it along a significant range of e and i values. This configuration is inconsistent with its
emplacement from the initial velocity field (e.g., Zappalà et al., 1996; Cellino et al., 1999). Instead,
we conclude the initial family dynamically evolved to meet the J7/3 MMR border over time via the
Yarkovsky effect. Asteroids reaching the resonance were presumably eliminated by becoming trapped in
the resonance and then having their e values pumped up to planet-crossing values (Bottke et al., 2001).

To verify our claim, we placed 102 test asteroids of a given size along the outside border of the
J7/3 MMR (a > 2.96 AU) and then used numerical integration to track the evolution of these bodies
into the resonance by the Yarkovsky effect. As initial data, we used the osculating orbital elements
of real Eos members located close to the J7/3 MMR. the obliquities of the objects were set to 135◦

for each test asteroid. The thermal parameters and rotation rates were chosen to be the same as in
the numerical simulation described above. We investigated five characteristic sizes corresponding to the
absolute magnitudes H = 13, 14, 15 and 16 (we use the mean albedo pV = 0.13 for the size-magnitude
conversion). Note that H = 13 is the approximate limiting value at which the family members adhere
to the J7/3 MMR (see Fig. 71). We also note that H = 13 − 14 is about a current completeness limit
at the location of the Eos family (R. Jedicke, personal communication). The observation incompleteness
beyond this limit is, however, uncorrelated with processes we study below and thus should not affect our
conclusions.

Table 20 summarizes the results of our experiment. In general, only the smallest asteroids with low
e and i crossed the J7/3 MMR. For H = 16 bodies (D ≃ 2.4 km), we recorded 13 such cases (out of
102). We conclude that (i) most Eos family members cannot cross this resonance and (ii) a few km-sized
asteroids with a < 2.96 AU might be Eos escapees. These putative objects would originate from the
low e, i tail of the Eos family that is not densely populated (see below for explanation); most family
members have e ≥ 0.07. Finally, we point out that H > 16 bodies are hard to detect with current
survey capabilities and the first populated magnitude bin is centered about H = 15 with lower crossing
probability.

The case of the J9/4 MMR is even more interesting than the J7/3 MMR because it allows us to
quantitatively test our Yarkovsky-drift model. This is because the J9/4 MMR is weak enough that many
observable asteroid can jump the resonance (Bottke et al., 2000b). On the other hand, the J9/4 MMR
is powerful enough to trap and eliminate some fraction of asteroids trying to cross it. Thus, the J9/4
MMR is analogous to a river with a strong current; weak swimmers are swept downstream while strong
swimmers can reach the opposite bank.

The ratio of eliminated/crossing test asteroids for a given size can be compared to observations of Eos
family members on both sides of the J9/4 MMR. To make this comparison, we again integrated a large
number of test asteroids and let them drift into the J9/4 MMR. Here we chose the osculating orbital
elements of 106 real Eos members with proper a ∈ (3.023, 3.027) AU and gave them H = 10 − 16. The
obliquity was set to 45◦, allowing the asteroids to drift outward to encounter the J9/4 MMR.

Table 21 gives our results. As expected, significantly more asteroids, as compared to the J7/3 case,
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Table 20: Statistics of Yarkovsky-drifting orbits crossing the J7/3 MMR.

H D N Nc

(mag) (km)
13 9.4 102 0
14 5.9 102 6
15 3.7 102 7
16 2.4 102 13

†H and D are the absolute magnitude and size of the particles (assuming pV = 0.13), N is the number of
integrated orbits, Nc is the number of orbits that crossed the J7/3 MMR without being scattered enough in the
inclination and eccentricity to remain approximately in the appropriate range of Eos members.

Table 21: Statistics of Yarkovsky-drifting orbits crossing the J9/4 MMR.

H D N Nc

(mag) (km)
10 37.4 102 2
11 23.6 106 6
12 14.9 102 12
13 9.4 106 15
14 5.9 106 21
15 3.7 106 30
16 2.4 106 35

†The first three columns as in Table 20 except here for the J9/4 MMR; Nc is the number of particles that were
still associated with the nominal Eos family after the passage through J9/4 MMR during their further evolution.

crossed this higher-order resonance. To compare this data with observations, however, we need to make
additional assumptions. This is because of two reasons. First, the J9/4 MMR is miscentered in the
family, for its position at a9/4 ≃ 3.03 AU is to be compared with the family center at ac ≃ 3.02 AU.
Thus, there is a priori bias to have more Eos members below the J9/4 than above and we have to correct
for this effect. Second, the left side of the family is cut by the J7/3 resonance. As a result, distribution
of asteroids with a ≤ ac gives us only a limited information not extending below a7/3 ≃ 2.957 AU. Our
procedure is as follows.

We first concentrate on the Eos region that corresponds to a ≤ ac, where the family’s center ac ≃
3.02 AU. We denote the density distribution of members with a given H by B(a;H). Thus

B(a;H) =
dN

da
, (40)

where dN is number of Eos members in the semimajor axis interval (a, a+da) with a ≤ ac and having an
absolute magnitude near H . Assuming that the initial distribution of Eos members is symmetric about
ac, we expect

N<
exp(H) =

∫ a9/4

a7/3

B(a;H) da (41)

asteroids of absolute magnitude H to reside in the Eos family on the left hand side of J9/4 MMR, thus
with a7/3 < a < a9/4 where a7/3 ≃ 2.9757 AU and a9/4 ≃ 3.03 AU. We also define

N>
exp(H) =

∫ 2ac−a7/3

a9/4

B(a;H) da (42)

as the number of asteroids with a given H to reside in the Eos family with a > a9/4 (we also assume
here B(a;H) = B(2ac − a;H) which expresses symmetry of the B-function about ac). Denoting N<

obs(H)
and N>

obs(H) the numbers of truly observed family members on either size of the J9/4 MMR, and with
semimajor axis value specified by limits in Eqs. (41) and (42), we finally define

r(H) =
N>

obs(H)/N>
exp(H)

N<
obs(H)/N<

exp(H)
. (43)
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Figure 79: The thin line shows ratio r(H), from Eq. (43), of the observed vs expected Eos members on the
right over left hand sides of the J9/4 MMR as a function of the absolute magnitude H ; we consider bodies binned
in 0.5 zones of H about H = 10 − 16 with the last value, however, having large uncertainty due to few known
objects only (see Fig. 71). The shaded uncertainty interval is based on computed r(H) values for Eos family
identifications with Vc in the range 50 − 60 m/s (lower values for smaller Vc). Values r < 1 indicate a relative
paucity of Eos members above the J9/4 MMR as regards to the population below the J9/4 MMR. The solid
line shows probability to cross the J9/4 MMR for orbits migrating toward larger semimajor axis values by the
Yarkovsky forces (symbols are data in Table 21). The lowest dashed line is the same for the J7/3 MMR.

The value of r(H) is a measure of how the true Eos population disperses/evolves toward smaller/larger
a values. In particular, if r ≃ 1, the family dispersion is equal on both sides of J9/4 MMR.

Figure 79 shows the ratio r(H) for the Eos family identified with three HCM velocity cut-offs: 50 m/s,
55 m/s (nominal value; thin line) and 60 m/s. The fact that r(H) is always smaller then unity quanti-
tatively confirms that there is a net depletion of the observed members in the Eos family on the right
side of the J9/4 MMR. We also note, that r(H) is strongly size dependent, such that there is a paucity
of large family members beyond the J9/4 MMR with a > a9/4.

This observation is inconsistent with a static model where Eos family members remain in the same
orbits (see the discussion in Morbidelli et al., 1995). In our scenario, however, the r(H) values are a
natural outcome of Yarkovsky evolution, with larger Eos members eliminated as they try to cross the
resonance. In fact, if we had an ideal model, the r(H) values should equal the probability that our
integrated test asteroids cross the J9/4 MMR (c(H)) (Table 21). For his reason, Fig. 79 shows the
crossing probability c(H) together with r(H).

Overall, we find a rough agreement between r(H) and c(H). In particular, both indicate very few
bodies with H ≤ 10 should be able to cross the J9/4 MMR. The principal difference is in the crossing
probabilities for H = 12 − 14 asteroids, where r(H) > c(H). We find several possible reasons for this
mismatch:

• For r(H) to match c(H), all asteroids must cross the resonance. Our model in Sec. 6.3.2, however,
indicates that some asteroids might be initially thrown to orbits with a > a9/4. If true, we need
to modify our model assumptions. The best fit solution from Sec. 6.3.2 predicts this happens for
H ≥ 13 and it may help increasing the local population of the Eos members with a ≥ a9/4.

• Asteroids below some size threshold might reach the J9/4 MMR with smaller obliquity values and
thus would migrate faster than the model asteroids in our simulation. Such a result might be
produced by the YORP effect, which would have perhaps 1 Gy to work (Sec. 6.3.2). The work
of Vokrouhlický et al. (2003), and previous theoretical studies, suggest D ≃ (30 − 40) km Koronis
asteroids complete the YORP cycle (i.e., approach an asymptotic obliquity value) in ∼ 2.5 Gy.
Scaling from this result, and using the mean albedo value pV ≃ 0.13 for Eos family members, we
estimate that H ≥ 12 asteroids are small enough (D ≤ 15 km) to reach near asymptotic YORP
obliquity states within 1 Gy. This would efficiently shift data points corresponding to H ≥ 12 in
Fig. 79 by −0.75 while helping bring c(H) and r(H) closer together.
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Thus, while model and observation are not in perfect agreement, we consider the results of our test
satisfactory.

6.3.2 a−H projection analysis

Like other families, the Eos family shows an inverted triangular pattern when its members are projected
onto the plane defined by a and H : the largest asteroid resides near the mean value of a for the family,
while extreme values of a are occupied by small asteroids (Fig. 71). Because it appears natural that
smaller fragments received larger relative velocities with respect to the parent body during the initial
ejection phase, Cellino et al. (1999) attempted to use this distribution to calibrate the unknown size-
velocity distribution for the fragments. It turns out, however, that a significant portion, though not
100%, of this plot is produced by Yarkovsky evolution (Bottke et al., 2001, and below). Thus, we can
only reconstruct the initial size-velocity distribution by first accounting for evolutionary processes.

As we will describe below, we used the methods described in Vokrouhlický et al. (2005) to determine
the initial velocity distribution of the Eos family. Our results indicate that ejection velocities gave the Eos
family an extension in a equivalent to ∼ 30−50% of the spread of the observed family. The remainder was
produced by Yarkovsky drift/dynamical dispersion produced by resonances. These results are in good
agreement with an independent analysis of Dell’Oro et al. (2004), who suggest that the initial families
were statistically smaller than the observed families by a factor of two. Our work is quantitative enough
to allow us to estimate the age of the Eos family, and it complements and improves upon the results
described in Nesvorný et al. (2005a).

Method. Here we briefly describe the method of Vokrouhlický et al. (2005) used to analyze the semi-
major axis dispersion on an asteroid family. Consider family members plotted in the 2-D space (a,H).
In order to transform this data into a 1-D space, Vokrouhlický et al. (2005) introduced the parametric
relation

0.2H = log (∆a/C) (44)

between H and ∆a. Here ∆a = a − ac, where ac is the center of the family and C is a free parameter
that can be positive or negative. The family can then be characterized by a distribution of C values. We
define the distribution function as:

D(C) =
dN

dC
, (45)

where dN is the number of family asteroids in a strip of (a,H) generated by changing C in the range
(C,C + dC). This approach allows the function D(C) to contain all of the family’s data. We can then
test various family configuration models in (a,H) space by comparing them with the observed D(C)
distribution (using a pseudo-χ2 methods).

The choice of the template function (44), and the related distribution (45), instead of the simple
distribution B(a;H) of semimajor axis values has been motivated by simple models involving purely
either Yarkovsky dispersion or fragment ejection with velocity strictly inversely proportional to their
size. Both would yield D(C) constant. So any deviation from a uniform D(C) distribution could be
translated into a deviation from these “toy models”. Luckily, these go in a rather opposite way. A static
model, with no dynamical evolution of the family, but velocity field either anisotropic and/or with a
velocity dispersion for fragments of a given size, give typically D(C) concentrated near the origin or with
a single maximum, asymmetric to the origin. Conversely, the model where combined Yarkovsky and
YORP dynamical evolution of the family plays an important role results in D(C) that has two maximum
values symmetrically offset from the origin C = 0.

Yarkovsky/YORP Family Evolution Model. Figure 80 shows D(C) for the Eos family identified
using the Vc = 55 m/s with a ≤ ac (to avoid problems with the J9/4 MMR). The ordinate is the number
Nobs(C) of Eos members in the interval (C,C+ ∆C), with ∆C = 4×10−6 AU (there are 41 contributing
bins/data points in this distribution). To match up the features in the plot as best as possible, we
assumed ac was uniformly distributed between 3.015 AU and 3.025 AU. These values are close to (221)
Eos.

We find that D(C) has a maximum at C ≃ −7.5 × 10−5 AU. The value D(0) is roughly half of
the maximum value. The error bars defined using

√

Nobs(C) in each C bin. We discarded 3 objects,
(1845) Helewalda, (8340) Mumma, (9711) Zeletava, from our analysis that had their |C| value larger
than 1.6 × 10−4 AU. In Fig. 71, they form a “triangle” of bodies with a ≤ 2.98 AU and H ≤ 12 that
are separated from the bulk of the family. We suspect these objects are objects interlopers in the family.
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Figure 80: Comparison of the observed and modeled distribution D(C) for the Eos family; here we use model
with size-independent velocity VSD that charaterizes dispersal of the initial fragments along all directions. We
actually show directly number Nobs(C), and N(C), of asteroids within a strip (C, C +∆C) for ∆C = 4×10−6 AU
used in the target function Ψ∆C in Eq. (50). Symbols are the observed bodies Nobs(C) with the assigned formal
uncertainty

p

Nobs(C); only the left branch of the family with asteroids having a ≤ ac is used here. This is an
averaged result where ac is assumed to be uniformly distributed in the range (3.015, 3.025) AU. Broken solid line
is our modeled family that minimizes the target function Ψ∆C .

Indeed, in Sec. 6.4 we show that the first 2 are spectrally alien to the KTD-types common among Eos
family members.

The D(C) maximum in Fig. 80 is produced by the unusual (a,H) distribution of the Eos family
(Fig. 71), where small asteroids populate regions near the outskirts of the family and leave the the center
underpopulated. This distribution is unlikely to have been created by any reasonable ejection velocity
field. Instead, we believe this artifact was produced by Yarkovsky/YORP evolution. Recall that the
Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect (e.g. Rubincam, 2000; Vokrouhlický and Čapek,
2002; Bottke et al., 2002b) is a variant of the Yarkovsky effect that can modify the rotation rates and
obliquities of irregularly-shaped bodies. In the Eos family, YORP preferentially tilts the obliquities of
family members toward extreme values (Čapek and Vokrouhlický, 2004) that, in turn, help increase
Yarkovsky da/dt rates. Hence, Yarkovsky/YORP should move small asteroids from the center of the
family to more distant a values.

To test this hypothesis, we constructed a simple numerical model that tracked the evolution of test
Eos family asteroids. Our goal was to quantitatively match the observed distribution D(C). Its main
features and parameters are as follows:

• The initial orbits for our Eos family members were based on a test velocity distribution. The velocity
components VR, VT and VN along the radial, transverse, and normal directions with respect to the
parent body’s orbit were given the same Gaussian distribution with standard deviation VSD. We
consider two models for VSD: (i) It is a size-independent free parameter with values of the order
≃ 0 − 100 m/s, or (ii) VSD = V (5 km/D), where V is a free parameter of the model. The number
of fragments used in our simulations is the same as number of observed asteroids in the family.
They were assigned the same H as the observed objects, with H converted to D using two methods
(Tedesco et al., 2002): (i) all asteroids were given albedo pV = 0.13 corresponding to the mean value
of the Tedesco et al. Eos sample, and (ii) we assign random pV to individual asteroids that follow the
observed distribution of pV (Fig. 81). In the latter case, we ran several simulations because the size
of each asteroid is a statistical quantity. The results were then averaged over several simulations.

• The test asteroids are assigned initial diameters, orbital elements, obliquity (ǫ), and angular velocity
of rotation (ω). The initial orientation of the spin axes is random in space. We assume ω follows a
Gaussian distribution peaked at period P = 8 h (e.g. Binzel, 1988).

• The orbital evolution of each of the fragments is tracked individually, with Yarkovsky drift rates
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Figure 81: Distribution of the geometric albedo values pV for Eos members determined by Tedesco et al. (2002);
abscissa is pV , ordinate is number of asteroids with pV in a given bin. The arrow indicates the mean value.

(e.g. Vokrouhlický, 1998, 1999):
da

dt
= κ1 cos ǫ+ κ2 sin2 ǫ . (46)

Here κ1 and κ2 are functions depending on surface thermal parameters and asteroid size. In accord
with the numerical simulation above, we used the following set of thermal constants: thermal con-
ductivity K = 0.005 W/m/K, specific heat capacity Cp = 680 J/kg/K, and surface/bulk densities of
1.5 and 2.5 g/cm3, respectively. Eq. (46) assumes (i) our model asteroids reside on a circular orbit
and (ii) that we can use a restricted, linearized analysis to describe heat diffusion in the asteroid’s
surface layers. Our tests indicates that Eq. (46) is within a 2 of more sophisticated treatments of
Yarkovsky/YORP.

• The two rotation state parameters, ǫ and ω, undergo YORP evolution according to:

dω

dt
= cYORP f(ǫ) , (47)

dǫ

dt
= cYORP

g(ǫ)

ω
(48)

(e.g. Vokrouhlický and Čapek, 2002; Čapek and Vokrouhlický, 2004). The f - and g-functions
here are the median strength of the YORP torques derived by Čapek and Vokrouhlický (2004)
for asteroids with the surface thermal conductivities described above. We also introduce a free
parameter cYORP by which we can multiply the f - and g-functions in Eqs. (47) and (48); this
“fudge” factor helps account for the uncertainties in modeling the YORP effect.

• We assume that non-catastrophic collisions can reorient the spin vectors of the test asteroids with
a timescale:

τreor = B (ω/ω0)β1(D/D0)β2 . (49)

Here B = 84.5 ky, β1 = 5/6, β2 = 4/3, the reference size D0 = 2 m, and the rotation frequency ω0

corresponding to a rotation period of 5 hr. This basic approach was pioneered by Farinella et al.
(1998). We ignore for now the effects of disruptive collisions.

With a given initial configuration of the family, we run our code for a time T , ranging from 0.5 to
2 Gy, and we let the family evolve by the Yarkovsky/YORP effects. Our solutions are a function of
three parameters: T , V , and cYORP. To determine the quality of the fit between the simulation and the
observed Eos family, we define a pseudo-χ2 target function

Ψ∆C =
∑

∆C

(N(C) −Nobs(C))2

Nobs(C)
. (50)
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Figure 82: Projection of the target function Ψ∆C onto planes defined by the model parameters: (a) T vs. cYORP,
(b) T vs. V , and (c) cYORP vs. V (as in the previous figure VSD = V is size-independent). Each time we plot
the smallest Ψ∆C value along the ray of the third parameter (i.e. in the first case we fix T and cYORP values of
seek the minimum value for all tested values of V ). We show shaded contours of Ψ∆C with the value indicated
by a bar on the right; the best fit value is Ψ∆C = 27.8. This compares to 41 bins in ∆C, which set the formal 1 σ
uncertainty level (shown in bold curve).

The errors assigned to the numberNobs(C) in a given bin (C,C+∆C) is
√

Nobs(C). N(C) is the simulated
number of asteroids in the appropriate C-bin. Our procedure seeks to minimize Ψ∆C(T, V, cYORP) by
varying the 3 parameters over a large range of values. Admissible solutions are characterized by Ψ∆C

values of the order equal to the number of bins in C (41 in our case), while solutions giving much larger
Ψ∆C are incompatible with the observed family.

Results. For simplicity, our first simulations assumed the test asteroids had a single albedo value
pV = 0.13 and that VSD = V is size-independent. Figure 82 shows contour plots of Ψ∆C projected onto
several 2-D parameter planes: T vs. cYORP, T vs. V and cYORP vs. V . The best-fit solution for N(C),
together with the observed data Nobs(C) and their formal error-bars, is shown in Fig. 80. Each time we
picked the best Ψ∆C-value along the suppressed dimension. The “critical” isoline value of 41 is plotted
in bold; recall this value formally corresponds to solutions that barely match the observed family at the
chosen 1σ-interval from all data points.

The best-fit solution is: T = 1160+40
−100 My, cYORP = 0.7+0.3

−0.2 and V = 52+10
−14 m/s. Note that the 3

parameters are not uncorrelated in our solution, such that stronger YORP (i.e. larger cYORP) pushes
the family age T to smaller values. The least correlated are cYORP and V . The best-fit V is compatible
with values expected from the hydrocode modeling. The initial family thus had about half of its current
a spread.

The cYORP ≃ 0 value is strongly incompatible with observations; this means that YORP is needed
to match observations. Its strength, however, is poorly constrained. The best-fit value of the target
function (50) is Ψ∆C = 27.8, smaller than 41 and statistically significant (assuming our approximations
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Figure 83: The same as in Fig. 80 but here for the model where VSD = V (5 km/D) is size-dependent.

are reasonable; note the value of the standard goodnes-of-fit parameter Q = 0.89 for our solution, see,
e.g., Press et al., 2001).

Figures 83 and 84 show the best fit solution for N(C) and 2-D contour plots of the target function
Ψ∆C in case of our more refined model where VSD = V (5 km/D). Now V is a solved-for parameter
with the ejection velocity set for D = 5 km fragments. Our best-fit solution is: T = 1150+150

−100 My,

cYORP = 1.1+0.9
−0.7 and V = 93+25

−20 m/s. The uncertainty limits are derived from the Ψ∆C = 41 contour
plot. The minimum target function, Ψ∆C = 26.2, is below the admissible limit of 41; hence we consider it
statistically significant and slightly better than the previous solution. The general features of the solution
are similar to the previous one. In our opinion, two results are of particular interest: (i) the estimated age
of the Eos family consistently spans the same interval of values, and (ii) the estimated YORP strength
is within a factor 0.5 − 1 of the modeled value by Čapek and Vokrouhlický (2004).

In the previous tests we assumed the luminosity of the Sun was constant. Evolutionary models of the
solar interior, however, suggest the Sun was ∼ 25% fainter some 4 Gy ago (e.g. Bahcall et al., 2001;
Table II). A smaller radiation flux in the past should produce weaker thermal Yarkovsky/YORP effects
and thus may modify our conclusions. For that reason, we have rerun our previous simulations to account
for a time-variable solar luminosity (L(t)):

L(t) ≃ L0

[

1 + 0.3

(

1 − t

t0

)]−1

, (51)

where L0 is the current current solar luminosity, t0 ≃ 4.57 Gy is the age of the Sun, and t is time (in Gy)
measured from the origin of the Solar system (e.g. Bertotti et al., 2003; Chap. 7). Our results indicate
that while the best-fit values for cYORP and V are comparable to our previous results, the estimated age
T of the family is slightly increased: T = 1200+120

−100 My. Note that according to Eq. (51), the mean solar
luminosity over the past Gy was about 4% lower than today, which corresponds to a ≃ 4% increase in
the Eos family’s age. Thus, for a moderately young family like Eos, the effect of a fainter Sun in the past
appears to be smaller than other model uncertainties.

Finally, we tested how our results change as a function of asteroid geometric albedo pV . To do so,
we used a pV distribution determined for 98 Eos members (selected from our nominal family at HCM
Vcut = 55 m/s) by Tedesco et al. (2002) - Fig. 81. Note that the data show a considerable spread about
the mean value of pV = 0.13, with some skew toward values that are smaller than the median value.
We ran 10 simulations similar to those above using the mean ejection velocities of fragments inversely
proportional to their D (our second model above). Our asteroid diameters were determined by randomly
assigning pV values.

We found that our best fit values of Ψ∆C ranged from 17 to 26, which means our solutions were a
reasonable fit with observations. Considering the mean value of the best-fit solution for each of the free
parameters (weighted by the best-fit value of the target function), and an envelope of the Ψ∆C = 41
region in the parametric space, we obtain T = 1300+150

−200 My, cYORP = 0.7+1
−0.5 and V = 70+20

−20 m/s. In
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Figure 84: The same as in Fig. 82 but here for the model where VSD = V (5 km/D) is size-dependent. The
best-fit value is Ψ∆C = 26.2.

comparison with the fixed albedo pV = 0.13 model, we find that our family’s age T slightly increased.
This is because lower albedo values imply larger asteroid sizes and thus slower Yarkovsky da/dt rates
(and slower YORP torques).

6.3.3 Asteroids in the z1 secular resonance

So far, there has been little work on how high-order secular resonances affect the long-term fast of
asteroid families. In part, this is because the topic is analytically and numerical challenging from the
orbital dynamics point of view. Milani and Knežević (1990, 1992, 1994) and Knežević and Milani (2003)
have been pioneers in the investigation of high-order secular resonances. They found that the Eos family
is intercepted by the z1 = g + s − g6 − s6 resonance.20 While no significant effects on family evolution
are expected on My timescales, Milani and Knežević (1990, 1992) speculated that they might affect the
structure of the Eos family over longer timescales. Note that this hypothesis has been cited several times
over the last 15 years (e.g. Zappalà et al., 1990; Marzari et al., 1995) but no one has yet tested it.

The second reason why the high-order secular resonances received a little attention so far is that the
asteroid families were assumed by many to deviate from simple models for other, more obvious reasons
such as uncertain geometry of the initial velocity field. These were expected to mask any noticeable
trace of the dynamics in weak secular resonances. New results, however, suggest the asteroids drifting by
Yarkovsky effect into these resonances can follow unusual orbital paths. For example, Bottke et al. (2001)
showed that Koronis family asteroids experience a significant jump in proper eccentricity (≃ 0.025) when

20This resonance causes the secular angle ̟+Ω−̟6−Ω6 to librate rather than circulate on a typical timescale of 3−5 My;
here ̟ is longitude of pericenter and Ω is longitude of node of the asteroid, while ̟6 and Ω6 are the same parameters for
Jupiter. In an analytical theory, such as Milani and Knežević (1990, 1992), the g + s− g6 − s6 frequency appears as a small
divisor associated with this resonance. More in general, a zk resonance corresponds to a divisor k (g − g6) + s − s6 with
an integer k. All zk resonances are secondary modes of the g − g6 secular resonance and thus have larger width than other
nonlinear secular resonances of the same order (e.g., Milani and Knežević, 1994; Carruba et al., 2005).
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they drift into (and interact with) the g + 2g5 − 3g6 secular resonance.
Below we will show that the shape of the Eos family has also been affected by secular resonances. As

asteroids migrate in the proper element space by the Yarkovsky effect, they become captured by the z1
secular resonance and are driven to a specific region at the outskirts of the family (Fig. 72).

Theoretical basis. A fundamental model used to track a perturbed asteroid’s motion is the restricted
three-body problem of Sun-Jupiter-asteroid (e.g. Morbidelli, 2002). Many aspects of asteroid motion,
including fine perturbations, can be studied within this framework. Each of the various problems, such
as motion in/near mean motion or secular resonances, is best understood if properly chosen variables are
used. We thus start with a brief review of the variables tailored to understand the z1 resonance.

The restricted three-body problem is a 4-degree of freedom autonomous system with the first 3-degrees
describing 3-D motion of the test body (asteroid) and the last degree being Jupiter’s orbital longitude
(removing time-dependence due to Jupiter’s motion). In a Hamiltonian approach, the asteroid-related
degrees of freedom can be described using Delaunay variables (L,G,H ; l, g, h) or variables derived from
them by canonical transformations (e.g. Morbidelli, 2002). For instance, we can choose





L l
G g
H h



 →





Λ = L λ = l+ g + h
Σ = L−G σ = −g − 2h
Θ = 2G−H − L θ = −h



 , (52)

where the new canonical variables (Λ,Σ,Θ;λ, σ, θ) replace the original Delaunay set.
Representations of Jupiter’s motion become more involved when we include perturbations with Saturn;

these produce secular variations of its orbital elements. This extends the problem by at least 3 degrees
of freedom (e.g. Moons et al., 1998; Morbidelli, 2002); notably nonsingular elements (e′ cos̟′, e′ sin̟′;
sin(I ′/2) cos Ω′, sin(I ′/2) sin Ω′) of Jupiter are going to be expressed as harmonic functions of the secular
angles λ5 = g5t, λ6 = g6t and λ16 = s6t (here g5, g6 and g16 are the corresponding fundamental frequencies
of the planetary system; e.g. Morbidelli, 2002). The conjugated momenta to these angular variables are
Λ5, Λ6 and Λ16. Using another canonical transformation









Σ σ
Λ6 λ6

Λ16 λ16

. . . . . .









→









−Σ −σ − λ6 − λ16

Σ − Λ6 −λ6 − λ16

Λ6 − Λ16 −λ16

. . . . . .









, (53)

we obtain variables suitable to analyze orbital motions in the z1 resonance because Σ′ = −Σ and σ′ =
−σ − λ6 − λ16 appear to be resonant momentum and critical argument of this secular resonance.

In a simplified model where all other degrees of freedom are eliminated by averaging, the resonance
becomes represented by a 1-D model in resonant variables (Σ′, σ′). In particular, σ′ circulates outside
the resonance with secular frequency −σ̇ − g6 − s6 (overdot is a time derivative), while σ′ librates inside
the resonance, i.e. near the hypersurface Z1 : −σ̇ − g6 − s6 ≃ 0. Because Σ′ = −√

a (1 −
√

1 − e2),
and a is constant due to the eliminated variable λ, the resonance produces long-term variations in
eccentricity e. Moreover, because Θ is also constant, due to the elimination of θ, we have a quasi-integral
√

a(1 − e2) (2 − cos I). Thus the long-term variations of orbital eccentricity e and inclination I are
resonantly coupled and the inclination is given long-term variations.

Difficulties arise when non-gravitational forces like the Yarkovsky effect are included in the model.
In the simplest representation, we can only retain the major secular effect, namely a steady a change.
Because the characteristic timescale for this perturbation is long, even when compared to secular dynamics
timescales in the weak z1 resonance, one must still assume a is constant during one resonant cycle of
σ′ and investigate the evolution of the system under slowly (adiabatically) changing parameter a. This
approach could, in principle, yield capture probabilities in the z1 resonance for bodies with different da/dt
rates. Once in the resonance, however, the asteroids show coupled oscillations in e and I superposed over
a slow migration along the Z1 hypersurface. This takes place until the asteroid reaches conditions that
allow it to jump out of the resonance.

z1 resonance in the Eos family. To examine evolution inside the z1-resonance, we first need to
identify those Eos family asteroids currently inside the resonance. This was accomplished by taking our
nominal family with 4394 members and numerically integrating their orbits for 10 My. Our goal was
to compute the behavior of the critical angle σ′. To do this accurately, we excluded Yarkovsky forces
from our integrations. We output the mean orbital elements of the asteroids every 1.5 ky using Fourier
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Figure 85: Configuration space of the z1 secular resonance: critical angle σ′ at the abscissa and secular frequency
g + s − g6 − s6 on the ordinate. Left: all family asteroids included; right: zoom of the previous figure near z1

resonance zone. Solid curves show evolution tracks of several Eos-family asteroids during our 10 My orbital
integration (high-frequencies have been eliminated). The innermost librating orbit is (221) Eos itself, while other
asteroids show and example of transitions between libration and circulation –(2216) Kerch– and circulations –
(513) Centesima and (520) Franziska. Dots are current position of Eos asteroids (HCM family with Vc = 55 m/s).
The negative value of g + s− g6− s6 frequency occurs when orbital semimajor axis is smaller than the z1 libration
centre for given value of the eccentricity and inclination; thus the bulk of the family (adhering eventually to the
J7/3 MMR; see Fig. 72) projects to this part of our plot.

filtering of high-frequencies taken from the osculating orbital elements. The mean orbital elements were
then processed to identify asteroids residing in the z1 resonance. In particular, we used a running window
filter that was 750 ky wide and had steps of 100 ky.

In each interval, we Fourier-analyzed the time series of the non-singular orbital elements and de-
termined the frequency and phase of the proper and forced terms. Among the forced terms, we were
principally interested in isolating the g6 and s6 frequencies and their associated phases. The phases were
used to construct the critical angle σ′ of the resonance, where ̟ and Ω are substituted by the phases of
the corresponding proper terms in non-singular orbital elements, and ̟6 and Ω6 are the phases of the
corresponding forced terms. We replaced the momentum Σ′ with the frequency combination g+s−g6−s6
and plotted asteroid tracks in the configuration space of these two variables.

Figure 85 shows several examples including asteroid (221) Eos that is currently trapped in the z1
resonance (e.g. Milani and Knežević, 1990, 1992). We show the motion of asteroids whose (i) σ′ librates
at small amplitudes, which allows them to residing near the center of the resonance, (ii) σ′ alternates
between libration and circulation, which allows them to reside near the separatrix of the resonance, and
(iii) σ′ circulates. Typical libration periods of σ′ inside the resonance are 3 − 5 My, with the resonance
width ∼ 0.8 arcsec/yr.

Figure 72 helps to translate this information into a portion of the proper element space affected by
the z1 resonance. Interestingly, we find that it stretches over a non-negligible fraction of the Eos family.
We find that 13% (575 out of 4394) of all Eos family members are captured inside this resonance. (As
an aside, we also found that ≃ 1.5% of Eos family members both reside and librate in the g+ s− g5 − s7
secular resonance. This is because this resonance is much weaker than the z1; Milani and Knežević,
1990, 1992). Figure 86 shows the distribution of the critical angle σ′ of all 4394 asteroids associated
with the family. Unlike previous studies, we show the distribution of σ′ separately for Eos members
residing inside (top) and outside (bottom) the z1 resonance. The first is non-uniform because σ′ values
are naturally confined near the stable resonant point at 180◦. However, when non-resonant Eos members
are considered, we find that σ′ distribution is uniform up to random fluctuations.

For sake of completeness, we also show a σ′ histogram for the 58 Eos family asteroids known to Brouwer
(1951): dashed histogram in both panels of Fig. 86. Like Brouwer, we also find they show some degree of
non-uniformity. The reason is that large asteroids near (221) Eos are preferentially located inside the z1
resonance (the same applies, to a lesser degree, to data reported by Milani and Knežević, 1992). Hence
the previously-reported non-uniform distribution of σ′ is a selection effect unrelated to the age of the
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Figure 86: Distribution of the critical angle σ′ values determined for members of our nominal Eos family (solid
line and left ordinate). Previous analyses, e.g. Brouwer (1951) or Milani and Knežević (1992), found it non-
uniform and suspected a young age of the family; the dashed curve (and right ordinate in the bottom panel) in
both figures reconstructs the similar quantity for the 58 Eos members known to Brouwer (1951). Here, we show
that (i) with modern data, many more asteroids added in the family, the distribution is fairly uniform, and (ii)
the anomaly reported by the previous studies is due to selecting asteroids preferentially inside the z1 resonance,
for which σ′ is limited to their libration interval (and the σ′ values are preferentially found near extremes of the
libration cycle). This is proved by showing the σ′ distribution separatelyfor asteroids which were found to librate
in the z1 resonance (top), and for those which are outside the resonance (bottom). In each case the horizontal
lines show the

√
Nm-uncertainty strip about the mean value Nm of the uniform distribution. In the bottom panel,

where asteroids residing in the z1 were eliminated, the fluctuations of Nm fall in this uncertainty strip.
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family.
We found that the z1 produced no significant instability among Eos family members over our 10 My

integration. Nevertheless, as shown in Fig. 87, it produces a non-negligible spread of the family in
eccentricity and inclination, likely contributing to solve the old problem of the Eos family (see Sec. 1).
This is partly surprising given the weakness of the resonance: for a near-separatrix case, such as (2216)
Kerch, the synthetic proper eccentricity, determined from an integration spanning ≃ 1 My, may oscillate
in time by nearly 0.02, about a half of the total eccentricity extension of the family. The same applies to
the inclination.

The role of the z1 resonance changes and strengthens, however, when Yarkovsky forces are taken into
account. As demonstrated by our numerical integration above (see also Vokrouhlický and Brož, 2002),
migrating asteroids encountering the z1 resonance can become captured for several tens to hundreds of
My. During this time, its orbital parameters slide along the z1 resonance while its semimajor axis changes.
Hence, Eos family members moving toward the Sun experience a decrease in their mean a, e, I values.
This populates the anomalous tail of the Eos family (Sec. 6.2). Investigating Eos family members whose
proper elements satisfy a ≤ 3.01 AU, e ≤ 0.065 and sin i ≤ 0.17, we found that 67% (246 out of 366)
reside in the z1 resonance. This high fraction, when compared to the rest of the Eos family, suggests they
reached their current orbits via an interaction between the resonance and Yarkovsky-induced drift.

6.4 Additional data and observations

In order to check our results, we conducted spectroscopic observations of about a dozen asteroids in the
Eos zone. Our objective was to determine whether particular asteroids were related to the KTD-types
seen among the majority of Eos family members or whether they were more likely to be interlopers in the
family. In one case, we investigated asteroids located inside the z1 secular resonance with anomalously
small values of proper e, i as compared to the other Eos family members (Sec. 6.3.3). In a second case,
we examined suspected interlopers in the Eos family that were far from from the family members plotted
in Fig. 3. We start by describing our own observations in Sec. 6.4.1. We then add to this database using
an updated SDSS color information in Sec. 6.4.2.

6.4.1 Spectroscopy

Asteroids inside the z1 resonance. Table 22 summarizes our target asteroids and the observational
circumstances. The asteroids inside the z1 stream are generally small, so their spectroscopy is challeng-
ing even with moderately large instruments. Our sample of the observed asteroids is random, mainly
derived from observational possibilities from available instruments and times. The Kitt Peak National
Observatory (KPNO) and Palomar observations reported here were acquired both through a dedicated
program for this work and also as targets of opportunity during the ongoing Small Main-Belt Asteroid
Spectroscopic Survey (SMASS). The KPNO observations used the RCSP spectrometer on the Mayall
4-m telescope, generally covering the spectral range 500−920 nm, and the Palomar observations used the
Double Spectrograph on the Hale 5-m telescope and generally covered the spectral range 320 − 950 nm.
Details of the observations and reductions can be found in Binzel et al. (2004), which used the same
telescopes and instruments and had identical data reduction and analysis techniques. To summarize,
well-known solar-type stars were observed frequently during the night interspersed with target objects
in order to account for the influence of the solar spectrum and the terrestrial atmosphere on the target
asteroids. Commonly used IRAF routines and packages21 were used to extract the spectra of the aster-
oids and stars, and a set of mean extinction coefficients appropriate for each observing site was used for
additional corrections. The resulting asteroid/star ratios were then tied into the spectral taxonomy of
Bus and Binzel (2002a,b).

Figure 88 shows the collected reflectance spectra for our 4 objects, indicating three are T-class and
one –(62948) 2000 VE32– is an X-type. As discussed in Sec. 6.2.2, the T-types are compatible with the
bulk Eos family and thus we interpret these 3 objects as potential Eos members that were pushed to their
present orbits by Yarkovsky forces. The X-type asteroid in the same zone appears to be an interloper
object caught in the z1 resonance. The ∼ 25% fraction of alien asteroids in our observing sample, though
not statistically significant, may correspond to the overall ∼ 25 − 30% interloper fraction inside the Eos
family inferred from spectroscopic observation of large members (see Sec. 6.2.2). In fact, we might even
expect higher interloper fraction among small Eos members because of shallower exponent of the families’
size distribution as compared to the background population (Morbidelli et al., 2003).

21See Tody (1986) and http://iraf.noao.edu/iraf-homepage.html for details.
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Figure 87: Stability of the proper elements for the nominal Eos family. In black dots we show the nominal
family from proper elements of the AstDyS catalogue, used also in previous parts of this paper. In grey lines we
show variation of the synthetic proper elements determined from our 10 My integration for all 4394 members.
In particular, the grey intervals delimit minimum and maximum values of the proper elements (eccentricity e
and inclination sin i) determined by Fourier filtering on a running 700 ky wide window in our integration. The
principal diagonal grey strip in both plots is the effect of the z1 secular resonance. In this case, the period of
e and sin i oscillation is several My (e.g. Fig. 85). Note the amplitude of the z1 driven variation of the proper
orbital elements is surprisingly large (as opposed to the resonance weakness) and it amounts to a fair fraction
of the whole dispersion of the family in the appropriate elements. The thick bars are the four asteroids from
Fig. 85; obviously, the largest amplitude of the oscillation occurs for (2216) Kerch, which resides near separatrix
of the z1 resonance. We also indicate effects of several MMRs, whose nomenclature is indicated at top. The most
significant are effects of J7/3 and J9/4, but we can notice also J11/5 and the three-body resonance 3J-2S-1.
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Table 22: Observations of the asteroids in the z1 resonance zone (Fig. 88).

Asteroid a H Vc ST Date Site
(AU) (m/s)

(20845) 2000 UY102 2.979 12.3 48 T 20-Jan-02 KPNO
(21211) 1994 PP36 2.976 13.41 48 T 20-Jan-02 KPNO
(33780) 1999 RU171 2.973 13.05 48 T 06-Mar-02 KPNO
(62948) 2000 VE32 2.960 13.73 58 X 22-May-03 KPNO

†Orbital data and family association (2nd through 4th columns): a is the proper semimajor axis, H absolute
magnitude (AstOrb source), Vc is the critical HCM velocity cutoff at which the asteroid associates with the
family.
‡ST stands for the inferred spectral type from our observation (5th column).
⋆Observational circumstances (6th through 7th columns): UT date, observatory (KPNO stands for the 4-m Kitt
Peak National Observatory telescope).
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Figure 88: Relative reflectance spectra, normalized to unity at 550 nm, of asteroids in Table III. For (20845)
UY102 the ordinate is in order, while for the other objects we arbitrarily shifted the data each time by 0.4 for
visibility. For sake of comparison, we also show average reflectance spectra of T-type and X-type asteroids from
the SMASS dataset (Bus and Binzel, 2002a,b, and http://smass.mit.edu/).

Suspected interlopers. Next we comment on observations of suspected interlopers in the Eos family
(Table 23). In this case we used three sites and instruments to collect the data: (i) the 1.52-m European
Southern Observatory (ESO) telescope at La Silla, (ii) 4-m telescope at KPNO, and (iii) 5-m telescope
at Palomar.

The observations carried out at La Silla were an extension of the S3OS2 survey (Lazzaro et al., 2004)
during two observational runs in March and November 2002. The ESO 1.52-m telescope was equipped
with a Boller and Chivens spectrograph and a 2048 × 2048 pixels CCD detector with a readout noise
of 7[e− rms] and square pixels of 15µm. A grating of 225 gr/mm with a dispersion of 33 nm/mm in
the first order was used. This configuration resulted in an useful spectral range of 490 − 920 nm with
a FWHM of 1 nm. The spectra were taken through a 5 arcsec slit oriented in the East-West direction.
The spectral data reduction was performed using the IRAF package and the classical procedure with
averaged bias and dome flat-fields. Wavelength calibration was performed using a He-Ar lamp, which
spectrum was obtained several times during each night. The spectra were corrected for airmass by using
the mean extinction curve of La Silla (Tüg, 1977). Different solar analogs (Hardorp, 1978) were observed
in each observational run in order to compute reflectivities. Tests made using different solar analogs
produced differences in the reflectance spectra smaller than 1%/100 nm. The solar analogs HD44594 and
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Table 23: Observations of the suspected interlopers in the Eos family (Fig. 89); data as in the Table 22.

Asteroid a H Vc ST Date Site
(AU) (m/s)

(251) Sophia 3.095 9.84 55 L 22-May-03 KPNO
(1755) Lorbach 3.092 10.74 58 T 21-Jan-02 KPNO
(2193) Jackson 3.108 10.31 60 X 23-Mar-02 La Silla
(3937) Bretagnon 3.066 11.45 55 X 22-Mar-02 La Silla
(4431) Holeungholee 3.060 11.4 65 X 20,21-Mar-02 La Silla
(8340) Mummaa 2.970 11.9 48 D 23-Nov-01 Palomar

(11993) 1999 XX 3.086 12.86 49 Xk 22-May-03 KPNO
(27789) 1993 BB7 3.072 12.18 45 K 08,11-Nov-02 La Silla
(36151) 1999 RG193 3.087 12.45 52 Xk 22-May-03 KPNO

a(8340) Mumma is also the largest asteroid in the z1 stream from the Eos family.
⋆Additional sites: Palomar (60-inch Palomar telescope), La Silla (1.52-m ESO telescope located at La Silla, Chile,
operated under the agreement with the CNPq/Observatório Nacional, Rio de Janeiro).

HD20630 were used in the March and November run, respectively. The obtained asteroid spectra have
been normalized around 550 nm by convention.

Figure 89 folds all acquired spectra into a common frame with a necessary shift in the reflectance scale
for visibility. The lowest shown are three X-type objects, certainly spectrally alien to the Eos family. The
same holds for (251) Sophia, a large target seemingly offset in semimajor axis from the family members
of comparable sizes (Fig. 90). Our data make us classify this target as L-type, dissimilar to the main
KTD sequence in the family. All these four objects are our searched, high-C interlopers. Further objects
require closer discussion.

Asteroid (8340) Mumma is the only object we observed with semimajor axis smaller than ac = 3.02 AU
and a high value of the C parameter (see Fig. 90 where we summarize positions of our observed targets
in the (a,H) projection; an X-type asteroid (1845) Helewalda was added here for sake of interest, Mothé-
Diniz et al., 2005). We note that this is the largest object located inside the z1 secular resonance. With
a = 2.97 AU, it is largely offset from the family center, so that the Yarkovsky forces could not have
transported it to its location from the family center in ≃ 1 Gy. For these reasons, we believe it is an
interloper. We find (8340) Mumma a possibly D-type object, though its spectral steepness sets it apart
from other D-type asteroids embedded inside the Eos family. In the next section, we use SDSS data to
show that (8340) Mumma is likely to be an interloper.

Asteroid (27789) 1993 BB7 has a spectrum resembling that of the K-type asteroids, suggesting that it
is an Eos family member even though it has a large value of C = 1.77× 10−4 AU. Figure 90 suggests this
object is at the furthest extreme of the family. We speculate that its C value might have been enhanced
by a favorable initial orbit and/or jumping through the J9/4 MMR on its way toward larger semimajor
axis values. Indeed, the finite width of this resonance, 0.005−0.01 AU (Figs. 75 and 76), helps dispersing
family members on far side of the J9/4 MMR.

Of the 2 Xk-type objects, (11993) 1999 XX and (36151) 1999 RG193, the first lies close to the periphery
of the family. Its flat spectra, however, makes a match less likely. The most intriguing case is that of
(1755) Lorbach, a T-type asteroid well beyond a reasonable association with the family (Fig. 90); note
that this asteroid is associated with the Eos family at Vc = 58 m/s. T-types are not exclusive members of
the Eos family but rather are found throughout the main belt. This suggests that (1755) Lorbach could
be an interloper.

Searching two different spectroscopic databases, SMASS and S3OS2, we found 49 T-type asteroids.
Out of this sample, 5 are members of the Eos family. Note that an additional 22 T-type Eos members are
known through dedicated observing programmes (Doressoundiram et al., 1998; Mothé-Diniz et al., 2005),
but we restrict our sample to the general purpose databases described above. The zone surrounding
the Eos family contains another 12 T-type asteroids.22 This suggests the background zone near the Eos
family contains a non-negligible number of T-type asteroids, of which (1755) Lorbach may be a member.

22These are: (96) Aegle, (465) Alekto, (596) Scheila, (717) Wisibada, (979) Ilsewa, (986) Amelia, (987) Wallia, (1006)
Lagrangea, (1209) Pumma, (1306) Scythia, (2813) Zappala, (2929) Harris.
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Figure 89: Relative reflectance spectra, normalized to unity at 550 nm, of asteroids in Table IV. For (2193)
Jackson the ordinate is in order, while for the other objects we arbitrarily shifted the data each time by 0.4 for
visibility. Noisier data for some objects reflect their relative faintness. For sake of comparison, we also show
average reflectance spectra of X-type, Xk-type and D-type asteroids from the SMASS dataset (Bus and Binzel,
2002a,b, and http://smass.mit.edu/).

6.4.2 SDSS data

In addition to narrow-band spectroscopy, we also examined the SDSS database containing 5 color data
in order to characterize smaller asteroids inside the Eos family. We use the same methodology and data
analysis as in Nesvorný et al. (2005a), though here we take advantage of the third, updated release of the
SDSS data. This source contains five color information about 43424 objects. We found 985 Eos members
in this database, which were used to construct normalized reflectance spectra and compute their principal
components PC1 and PC2 (see Eq. (1) in Nesvorný et al., 2005a). For the final analysis, we choose only
499 asteroids with formal PC1 and PC2 errors smaller than 0.1.

Figure 91 shows our results. The left panel gives the mean 5-point spectrum (dashed line) together
with a formal standard deviation strip (shaded zone). The overall shape is a good match to the T-type
classification. This comparison, however, may be partially flawed because of the unique properties of the
SDSS broad-band filters. Namely, the long-wavelength SDSS z filter spans a rather broad wavelength
interval centered about 909.7 nm (e.g. Fukugita et al., 1996) and it smears the absorption feature near
0.9µm that is crucial for the spectral taxonomy in optical bands.

For this reason, we projected the family into the principal component axes (Fig. 91, right panel).
Though some scatter is noticeable here, the Eos members appear to constitute a distinct cluster in
these variables. Assuming the Eos cluster represents a formal relation of the two principal component
parameters PC1 and PC2, we may determine confidence levels corresponding to this relationship (see e.g.
Bertotti et al., 2003, Sec. 20.5). In Fig. 91 we show the ellipses of 90% and 99% Eos membership based
of our analysis. Asteroids close to these limits, or beyond them, are weakly connected with the bulk of
the family and likely represent outliers.

We searched for large objects close to or beyond the 90% confidence level which correspond to a large
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Figure 90: The nominal Eos family, Vc = 55 m/s, projected onto the plane of proper semimajor axis a and
absolute magnitude H – dots. Symbols indicate position of asteroids whose spectra are reported in the paper: (i)
open circles are objects inside the z1 secular resonance (Table 1 and Fig. 88), all T-types except for (62948) 2000
VE32 which is X-type and resides nearest to the J7/3 MMR; (ii) triangles are objects nominally associated with
the family but which correspond to extremal values of C parameter from Eq. (44), such that |C| ≥ 1.6×10−4 AU,
which are suspected interlopers; (iii) squares are the same as blue in (ii) but for asteroids associated with the Eos
family at HCM cutoff velocity larger than 55 m/s. In the latter two classes we show the asteroid designation,
spectral type and, in the (iii) case, the HCM cutoff velocity at which the body associates with the family (the
number in squared brackets in m/s).

|C| from Eq. (44), i.e. objects detached from the family in (a,H). We found 4 cases of interest (shown as
crosses in Fig. 91). (4843) Megantic and (4431) Holeungholee, denoted 3 and 4, have both been classified
X-types using narrow-band spectroscopy (Lazzaro et al., 2004; Mothé-Diniz et al., 2005). They are shifted
out of the center of the Eos group toward smaller PC1 values; this indicates they have a flatter spectrum
than other objects. These objects are likely interlopers.

The other two are (8340) Mumma, denoted 1, and (1755) Lorbach, denoted 2. They are particularly
interesting because our analysis of their narrow-band photometry (Sec. 6.4.1) classified them as D and T,
respectively. These classes are generally compatible with the family (Sec. 6.2.2) but they could also be
interlopers. For (8340) Mumma, SDSS photometry places it toward the D group (high PC2 value). In fact
its displacement in PC2 component, relative to the family center, is larger than other D-type Eos members,
such that (8340) Mumma occurs beyond the 99% confidence level of the family PC1-PC2 identification.
Thus, SDSS data suggests that (8340) Mumma is an interloper, in spite its D-type classification. The
same analysis rejects (1755) Lorbach as an Eos member in spite of its T-type classification because this
asteroid resides at the 90% confidence level line for being associated with the Eos family.

Finding these last two asteroids incompatible with membership to the Eos family is “good news” since
their respective values of the C parameter (C = −2.1× 10−4 AU for (8340) Mumma; C = 5.1× 10−4 AU
for (1755) Lorbach) are far too large to explain them using our Yarkovsky diffusion model (see e.g.
Figs. 80, 83 and 90).
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Figure 91: Left: Dashed curve shows a mean 5-color spectrum for 499 small Eos members from the SDSS
database (release 3.0; see Jurić et al., 2002 and http://www.astro.princeton.edu/~ivezic/sdssmoc/sdssmoc.

html) whose principal spectral components have an error smaller than 0.1 (here we normalized the result to unity
at 550 nm as conventional). The shaded zone shows a standard deviation interval about the mean. Right: The
Eos family members (light symbols) projected onto the plane of spectral principal components PC1 and PC2 (e.g.
Nesvorný et al., 2005a); here we use again the sample of 499 asteroids observed with SDSS with small enough
errors. The two ellipses show a 90% (inner ellipse), resp. 99% (outer ellipse), confidence level of a formal relation
between the two components that define the Eos family as a cluster of data in these variables. Objects outside
these limits are likely alien to the family. Here we list large members in this zone: (i) 1 – (8340) Mumma, (ii) 2 –
(1755) Lorbach, (iii) 3 – (4843) Megantic, and (iv) 4 – (4431) Holeungholee; the horizontal and vertical intervals
show error-bars of the data. The last two were classified X-types by the narrow-band spectroscopy, while (8340)
Mumma received D classification and (1755) Lorbach T classification (see Fig. 89). For sake of comparison we
also show the neighboring Veritas family (dark symbols), classified as C-type group.

6.5 Conclusions

In this paper, we have attempted to understanding the structure and history of the Eos asteroid family.
Using our Yarkovsky diffusion model, we were able to match several outstanding features seen in the
proper element space (e.g., the sharp termination of the family at the J7/3 MMR; the the migration of
asteroids along the z1 secular resonance). Our model also predicted the relative fraction of Eos family
members on both sides of the J9/4 MMR and it can be used to understand the concentration of small
asteroids at extreme semimajor axis values (see also Vokrouhlický et al., 2005). Moreover, by matching
the semimajor axis distribution of Eos family members, we were able to estimate that the family is
T = 1.3 Gy old, some 30% younger than used by Nesvorný et al. (2005a). Interestingly, this brings
the Eos “data point” closer to the empirical relation between the average spectral slope PC1 within the
family and its age determined by these authors (see Fig. 11 in Nesvorný et al., 2005a).

The mineralogy of the Eos parent body is still a puzzle (e.g. Burbine et al., 2001; Mothé-Diniz and
Carvano, 2005). For this reason, caution should be used when interpreting the spectra of Eos family
members. Nevertheless, we predict that the majority of small asteroids inside the z1 stream are most
likely from the Eos family. Similarly, we ruled out several asteroids as interlopers based on their orbital
position, which was inconsistent with Yarkovsky evolution, and their spectral features/taxonomic type
(e.g., (8340) Mumma and (1755) Lorbach).

Despite our successes, we cannot yet fully reproduce the large eccentricity and, especially, inclination
dispersion of the Eos family (Sec. 1). We believe this problem may have been produced by a projectile
striking the Eos parent body from the out-of-plane direction. Bottke et al. (1994) analyzed the impact
velocity distribution for main belt projectiles on a putative Eos family progenitor and found that asteroids
are a factor ≃ 4 more likely to strike from the out-of-plane than in-plane direction. This feature could
produce an anisotropic ejecta velocity field, with the highest-velocity fragments having the same trajectory
as the projectile. Given the probabilities above, this could produce a larger dispersion of inclinations
(and eccentricities) than one might expect.

To examine this issue more closely, we note that our best-fit solution from Sec. 6.3.2 indicates that
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D ≃ 4 km asteroids, which dominate the observed Eos population, were ejected with an along-track
velocity component of ≃ 100 m/s (we investigated only the semimajor axis dispersion). If this value were
applied used to the other two components, radial and normal, we would expect maximum eccentricity and
inclination dispersions of ≃ 0.024 and ≃ 0.012. The observed dispersion, however, is ≃ 0.040 and ≃ 0.025,
larger than the maximum estimated values. By accounting for the larger characteristic velocities of ejecta
in the normal and radial directions as explained above, we believe we can explain this mismatch.23

Other than the Koronis family (Bottke et al., 2001), the Eos family is the second main belt family
to have received a thorough analysis using the modern dynamical tools. By studying other families, we
hope – among other goals – to constrain their ages enough to decipher the overall history of the main
belt.
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23The same feature is seen in the young Veritas family (e.g. Nesvorný et al., 2003), whose initial velocity field holds a high
degree of anisotropy. For instance, from the relative measure of the inclination and semimajor axis dispersion of Veritas
multi-kilometer members we determine that the ratio of the mean normal vs transverse velocity components was 3 − 5 in
this case. It is tempting to assume a similar explanation as for the Eos.

125



126



7 The Agnia family embedded inside the z1 secular resonance

The Agnia asteroid family is an exceptional case — it is located inside a secular resonance, which causes large
oscillations of eccentricity and inclination, nevertheless, it preserves very well the information about the initial
spread, just after the disruption event. We determine the upper and lower bounds for the age of the Agnia family
by two independent methods. The co-authors are D. Vokrouhlický, W.F. Bottke, D. Nesvorný and A. Morbidelli.
MB is responsible mainly for the N-body simulations and their analysis in Sections 7.3.2 and 7.4.1.

Abstract

The Agnia asteroid family, a cluster of asteroids located near semimajor axis a = 2.79 AU, has
experienced significant dynamical evolution over its lifetime. The family, which was likely created
by the breakup of a diameter D ∼ 50 km parent body, is almost entirely contained within the
high-order secular resonance z1. This means that unlike other families, Agnia’s full extent in proper
eccentricity and inclination is a byproduct of the large-amplitude resonant oscillations produced by
this resonance. Using numerical integration methods, we found that the spread in orbital angles
observed among Agnia family members would have taken at least 40 My to create; this sets a lower
limit on the family’s age. To determine the upper bound on Agnia’s age, we used a Monte Carlo
model to track how the small members in the family evolve in semimajor axis by Yarkovsky thermal
forces. Our results indicate the family is no more than 140 My old, with a best-fit age of 100+30

−20 My.
Using two independent methods, we also determined that the D ∼ 5 km fragments were ejected
from the family-forming event at a velocity near 15 m/s. This velocity is consistent with results from
numerical hydrocode simulations of asteroid impacts and observations of other similarly-sized asteroid
families. Finally, we found that 57% of known Agnia fragments are prograde rotators. The reason for
this limited asymmetry is unknown, though we suspect it is a fluke produced by the stochasic nature
of asteroid disruption events.

7.1 Introduction

Asteroid families, which are clusters of asteroids in proper semimajor axis (a), eccentricity (e), and
inclination (i) space produced by asteroid collisions, are among the more intriguing features found in the
main asteroid belt. Since their discovery early in the past century (e.g., Hirayama, 1918; historical notes
in Bendjoya and Zappalà, 2002), considerable effort has gone toward trying to understand these enigmatic
formations. Moreover, as the number of known asteroids has increased, we have become increasingly aware
that extended families are “witness plates” to a variety of interesting and poorly understood phenomena.

In this paper, we build on the work described in Vokrouhlický et al. (2005a,b; see also Bottke et al. 2002;
2005a,b) to understand the dynamical structure of asteroid families using modern methods and numerical
tools. This means studying (i) how cratering and/or catastrophic disruption events on asteroids produce
fragments and (ii) how those fragments evolve over time through collisional and dynamical processes. We
focus here on the Agnia family, which resides in the central part of the main asteroid belt at a ≈ 2.79 AU.
This places this family on the periphery of the 5/2 mean motion resonance (MMR) located at a ≈ 2.8 AU.
Other than this resonance, the Agnia family is unaffected by any other MMR of significant strength. On
the other hand, we find Agnia exceptional among known asteroid families for how it interacts with the
high-order secular resonance z1. Both of these facts will play an important role in story presented below.

7.2 Agnia family: basic facts

We start our work by identifying the members of the Agnia family using the hierarchical clustering method
(HCM; e.g., Bendjoya and Zappalà, 2002 and references therein). Our code can detect concentrations
of asteroids in (a, e, i) space among analytically-determined proper elements; more than 170, 000 main
belt numbered and multi-opposition asteroids exist in the AstDyS database (http://newton.dm.unipi.
it/) as of November 2004. We adopt the “standard metric” of Zappalà et al. (1990, 1995) and compute
the relative velocity V found between two asteroid orbits. Families are identified when asteroids have V
lower than a cut-off velocity value Vc between a neighboring pair of members.

As it is characteristic of compact families, the number of members found by the HCM method increases
slowly as a function of Vc until a critical point is reached. At that point, the family members link
themselves with the surrounding background population. For the Agnia family, we find this threshold
occurs at Vc = 63 m/s. Thus a conservative approach for the Agnia family is to keep Vc as low as possible
in order to characterize its main features. Hence, our adopted nominal value for the Agnia family is
Vc = 33 m/s; the interested reader can find data files for this family at different cutoff values on our
website http://sirrah.troja.mff.cuni.cz/yarko-site/ .
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Figure 92: Projection of the Agnia family, as identified by the HCM method with a cut-off velocity Vc = 33 m/s,
onto different planes of proper element space parameters: semimajor axis a, eccentricity e and inclination i. H
is the absolute magnitude. The strong correlation of the e and sin i values (bottom left) indicates presence of a
high-order secular resonance z1 into which most of the family members are immersed (Fig. 95). The center of
H ≥ 14 asteroids in semimajor axis, approximately 2.79 AU (dashed line), is offset from position of the largest
asteroid (847) Agnia (shown as filled square in the bottom right panel). Their difference corresponds to about
30 m/s in terms of along-track velocity. The right ordinate on the bottom right figure indicates the best guess for
the size of the members (assumes a geometric albedo pV = 0.17, that of the largest asteroid (847) Agnia). Filled
symbols are Agnia members whose critical angle of the z1 resonance librates, open symbols are those with the
critical angle of the z1 resonance circulating.

Figure 92 shows 2-D projections of our nominal Agnia family distribution in proper a, e, i and in abso-
lute magnitude H . Though each of these projections coincides with some interesting feature which will be
analyzed below, the most peculiar and singular one is the strong correlation between proper eccentricity
e and inclination i values (Fig. 1c). This almost linear relationship is unlikely to be a consequence of the
initial ejection velocity field produced by the parent body’s disruption, mainly because the inclination
and eccentricity dispersions depend on different velocity components. Note that an exception to this
rule would be a velocity field in the shape of a highly collimated jet, which has yet to be observed in
real families or in numerical simulations of catastrophic disruption events (e.g., Durda et al., 2004). We
therefore postulate that the e-i relationship is a consequence of some dynamical effect that shaped the
family after it had been formed. Indeed, in the next section we show that the family has been stretched in
a specific direction of the (e, i) plane by the influence of high-order secular resonance z1 = g+ s− g6− s6.

Figure 93 shows the cumulative H distribution N(< H) for the Agnia family. It is useful to adopt
a power-law approximation N(< H) ∝ 10γH to quantitatively express the power law index (or slope)
of N(< H) by a single parameter γ. In the range (13.5, 15.5), we find γ ≃ 0.61. We argue below (see
Conclusions) that this exponent is unlikely to be a byproduct of collisional evolution; instead, it most
likely corresponds to that of the post-breakup distribution of fragments. Note that the accumulation of
additional bodies near Agnia makes the size distribution shallower, ultimately reaching a value γ ∼ 0.55.
The slope of N(< H) distribution also becomes shallow for H > 15; this either stems from observational
incompleteness or from an actual change in slope (see e.g., Morbidelli et al., 2003). In the latter case, the
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likely cause is collisional evolution between the family members and the background main belt population
(Morbidelli et al., 2003; Bottke et al., 2005a,b).

Spectroscopic surveys have determined that (847) Agnia is an S-class asteroid (e.g., Bus and Binzel,
2002a,b; Lazzaro et al., 2004). SMASS II survey also identified (3491) Fridolin, (4051) Hatanaka, (4261)
Gekko, (5242) Kenreimonin, (6077) Messner, (7056) Kierkegaard and (7728) Giblin to be Sq-type aster-
oids and (1020) Arcadia and (3701) Purkyne to be S-type asteroids. Mothé-Diniz et al. (2004) claim that
another five S-type asteroids are associated with the Agnia family, but they lie at Vc ∼ 50 m/s, which
is beyond our nominal identification at Vc = 33 m/s. These authors also point out that the dominant
spectral classes of the background asteroids in the Agnia vicinity are C or X, very different from family
dominating Sq-type asteroids.

Sunshine et al. (2004) claim that Agnia family members, which have a high-calcium pyroxene compo-
nent in their spectra (and possibly minor amounts of olivine), may have experienced igneous differentia-
tion. A close examination of the family, shows that the members have nearly identical spectra. Sunshine
et al. (2004) claim this homogeneity may mean that Agnia is a secondary family produced by the breakup
of a basaltic fragment from a primary asteroid parent body. Note that the Agnia parent body is only
thought to have had a diameter D ∼ 50 km (Durda et al., 2006, in preparation), which would be con-
sistent with such a scenario. The source and fate of the asteroid that Agnia is derived from is unknown.
Bottke et al. (2005c) hypothesize that Agnia may be linked to large M-type asteroids like (16) Psyche
and (216) Kleopatra, which are generally thought to be iron cores from disrupted differentiated bodies.

IRAS observations of (847) Agnia suggest its albedo is pV = 0.172 ± 0.022 (Tedesco et al., 2002).
This value is consistent with typical S-type asteroids. Little is known about Agnia family members with
H ≥ 13 (approximately D ≤ 8 km). In particular, their albedo value has not been determined yet.

We have also attempted to characterize the reflectance spectra of Agnia family members using five
color photometry data from the Sloan Digital Sky Survey’s (SDSS) (e.g., Ivezić et al., 2001; Jurić et al.,
2002). We adopted the same methodology and data anlysis as in Nesvorný et al. (2005). Searching the
SDSS database, we found information on 99 Agnia family asteroids. For each of them, we constructed
normalized reflectance spectra and computed their principal components PC1 and PC2 (see Eq. (1) in
Nesvorný et al., 2005). We then winnowed this down to 26 objects with formal PC1 and PC2 errors
smaller than 0.1.

Figure 94 shows these data (filled circles) together with other family members whose PC1 and PC2

errors exceed the chosen threshold 0.1 but still fall within the limits of the axes (open circles; there
are more asteroids falling even outside). Assuming the bodies have a common mineralogy and hence a
parametric relation between PC1 and PC2, we identify the Agnia family as a distinct cluster in spectral
parameter space in much the same manner as families are identified as clusters in proper element space.
From the available high-quality data (filled circles) we can construct a 90% confidence level zone showing
family membership (see e.g. Bertotti et al., 2003, Sec. 20.5). This is shown with the ellipse on Fig. 94.
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Figure 94: Principal spectral components PC1 and PC2 of the Agnia members from the SDSS five color photom-
etry: (i) full circles are asteroids for which the formal PC1 and PC2 errors are smaller than 0.1, (ii) open circles
are asteroids for which either of the formal PC1 and PC2 errors exceed 0.1. The 90% confidence level region of
the family cluster from the good data is shown by the ellipse. Only two members with reliably determined PC1

and PC2 values fall outside this limit: (i) (15675) Goloseevo, and (ii) (46611) 1993 TH4.

Two asteroids, (15675) Goloseevo and (46611) 1993 TH4, fall outside this 90% confidence level threshold,
indicating they are only marginally linked to the family. These bodies could be outliers or instead may
support a possible larger spectral diversity in the family (see Sunshine et al. 2004); in the a−H plane,
these two asteroids lie at the border of the family with a ≃ 2.773 AU. Note the PC1 = 0.3 spectral slope
is the dividing line between the S-complex (for which PC1 > 0.3) and C-complex (for which PC1 < 0.3;
e.g. Bus and Binzel, 2002a; Nesvorný et al., 2005). The Agnia family members fall on both sides of
this limit, consistent with more precise spectroscopic data that suggests the family contains numerous
asteroids with taxonomic type Sq (Bus and Binzel, 2002a). The mean values for the spectral components
from SDSS data are PC1 = 0.38 and PC2 = −0.17.

7.3 Agnia family: relation to the z1 resonance

As described above, the most interesting dynamical aspect of the Agnia family, unique among the known
families, is the fact that it is nearly entirely embedded within the high-order secular resonance z1. In
this section, we describe the major features of this peculiar resonance and then discuss our proof that
the resonance contains most of the known Agnia family members. The long-term evolution of the Agnia
family is described in Sec. 7.4.

7.3.1 z1 resonance main features in brief

A resonance occurs when a combination of angular variables of the asteroid and planets, called a resonant
(critical) angle σ, becomes stationary over long time periods, such that it librates about a fixed center.
When the constituting variables do not involve mean anomalies, but only longitudes of node and pericenter
of the asteroid and planets, we speak about a secular resonance (e.g., Morbidelli, 2002). This is because
σ, as well as the angles on which it depends, is stationary in the two-body problem and changes only as
a result of planet-asteroid interactions. Thus, their evolution, as well as that of the resonance angle σ, is
slow. Consequently, this coherent influence allows even a weak secular resonance to produce significant
orbital perturbations over time. Developing a theory describing secular resonances therefore requires to
delve into perturbation theory. This can be complicated, particularly when σ comprises more than two
secular angles. In that and our case, we are dealing with a high-order secular resonance.

Methods that allow one to systematically analyze high-order secular resonances in the motion of
asteroids were pioneered by the work of Milani and Knežević (1990, 1992, 1994). At present, however, no
complete analytic or semi-analytic theory is yet available for use. Milani and Knežević were principally
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interested about the degree of instability that high-order secular resonances can produce in the definition
of proper orbital elements (e.g., Knežević and Milani, 2000, 2003; Knežević et al., 2002).

However, the high-order secular resonances are important for yet another reason. As demonstrated by
several groups (Bottke et al. 2001; Vokrouhlický et al. 2002, 2005a; see also Vokrouhlický and Brož 2002
and Carruba et al. 2005), high-order secular resonances may also serve as pathways for small asteroids
drifting in semimajor axis due to the Yarkovsky effect. This process is most clearly identified when it
affects the dynamical evolution of asteroids in some well-defined, localized structure such as an asteroid
family. For instance, Koronis family asteroids drifting outward (away from the Sun) by the Yarkovsky
effect have their proper eccentricities significantly increased when they interact with the g + 2g5 − 3g6
secular resonance at a ∼ 2.92 AU (Bottke et al., 2001). A second example includes the small asteroids in
the Eos family, which form a stream spreading toward small eccentricity and inclination values along the
z1 resonance (Vokrouhlický et al., 2002, 2005a). Finally, some V-type asteroids appear to have escaped
from the Vesta family by migrating along the z2 = 2 (g − g6) + s− s6 resonance (Carruba et al., 2005).

A fundamental aspect to understanding the Agnia family structure is the z1 = g+s−g6−s6 resonance
with resonant angle σ = ̟+ Ω−̟6 −Ω6. Here ̟ and Ω are the longitude of perihelion and node of the
asteroid orbit, while ̟6 and Ω6 are angles that change linearly with time and have frequency g6 and s6
from planetary theory (e.g., Morbidelli, 2002). The proper frequencies g and s taken from the time series of
the ̟ and Ω angles are relevant for the critical angle σ. We thus have dσ/dt = g+s−g6−s6, which is where
the nomenclature z1 = g+s−g6−s6 arises. It can be easily shown (e.g., Vokrouhlický et al., 2005a) that the
conjugated resonant momentum is Σ = G − L =

√
a (

√
1 − e2 − 1), given here in terms of the Delaunay

variables L and G or the Keplerian orbital elements a and e. At the simplest level of perturbation
theory, the resonant variables are assumed “active”, while angles related to the additional dimensions
are eliminated from the problem by the averaging principle (e.g., Morbidelli, 2002). Their conjugated
momenta are therefore conserved. These are K1 = L =

√
a and K2 = 2G−H =

√

a (1 − e2) (2 − cos i).
As (Σ, σ) periodically change due to the resonance, e oscillates (note the a is conserved by K1). Due to
conservation of K2, i is forced to change in a correlated way with e.

Obviously, K1 and K2 are conserved only when the sole resonant gravitational perturbations are taken
into account. Non-resonant effects will then oscillate with small amplitudes and short periods. More
importantly, when non-gravitational effects such as the Yarkovsky forces are active, they slowly change
and allow asteroids to enter, follow, or leave the z1 resonance. For the sake of discussion below, we
also introduce a modified quantity K ′

2 =
√

1 − e2 (2 − cos i); that is, by virtue of integrals K1 and K2,
also conserved in the resonant motion. Below we show by direct numerical integration that it stays
approximately constant even when Yarkovsky forces modify the semimajor axis a.

7.3.2 Agnia members inside the z1 resonance

Here we show that the orbits of most Agnia members are located inside the z1 resonance. To do so, we
numerically integrated the orbits of all 553 known members of the family for 10 My using a Swift-Rmvs

integrator (e.g., Levison and Duncan, 1994). Modifications to this code were made to include the second-
order symplectic map from Laskar and Robutel (2001) and to account for Yarkovsky forces (see http://

sirrah.troja.mff.cuni.cz/yarko-site/ for details of its implementation, speed and accuracy tests).
We computed synthetic proper elements from the code’s results in a way compatible with the definitions
provided by Knežević and Milani (2000, 2003). This means that we first apply a Fourier filter to the
(non-singular) orbital elements in a moving window of ≃ 0.75 My (with steps of 0.1 My) to eliminate all
periods smaller than some threshold value (in our case, 1.5 ky). The filtered signal, in the form of mean
orbital elements, is then output from the simulation for further checks and passed through a frequency
analysis code adapted from Šidlichovský and Nesvorný (1997) to obtain (planetary) forced and free terms
in the Fourier representation of orbital elements. The isolated free terms are identified as the proper
orbital elements.

The giant planets are included in our simulation with their masses, initial positions and velocities
taken from the JPL DE405 ephemeris. We do not include terrestrial planets in the simulation, but we do
account for a barycentric correction of the initial conditions; this approximation is justified in the zone
of the asteroid belt where Agnia is located (for the problem at hand). The initial orbital elements of the
asteroids are taken from the AstOrb database.

Figure 95 shows the current position of the Agnia members in the plane defined by the critical angle σ
of the z1 resonance and the conjugated frequency σ̇ = g + s− g6 − s6 (that replaces here the conjugated
momentum Σ). In this test we do not include Yarkovsky forces. Our procedure to compute the quantities
in Fig. 95 is as follows. The mean orbital elements of asteroids, computed each 0.1 My as described above,
are Fourier filtered to identify the forced g6 and s6 frequencies and their associated phases. The same

131



-1

-0.5

 0

 0.5

 1

 0  50  100  150  200  250  300  350

g
 +

 s
 –

 g
6
 –

 s
6
 (

"/
y
r)

σ’ (deg)

 847

 3701

 2002AA43

Figure 95: Agnia family members (symbols) projected onto the plane of critical angle σ of the z1 resonance vs.
the associated frequency σ̇ = g + s − g6 − s6. Bulk of the family asteroids reside inside this resonance and close
to its separatrix. Filled symbols for librating orbits, open symbols for circulating orbits. The solid lines show
evolution paths as determined from 10 My numerical integration for three characteristic cases: (i) asteroid (3701)
Purkyne is the most typical evolutionary track in the family (large-amplitude libration), (ii) asteroid 2002 AA43
is a rare case of small-amplitude libration in the resonance, and (iii) asteroid (847) Agnia is located right outside
the resonance, but very near to its separatrix. Libration period for (3701) Purkyne is about 8 My, circulation of
(847) Agnia, very close to the separatrix, is even slower. Dispersion of the family members along all values of the
resonance angle σ shows the age of the family to be at least several times the characteristic libration period.

procedure is followed to get the free frequencies g and s. The frequencies are then plotted on the ordinate
and their phases are used to construct the resonant angle σ.

The symbols in Fig. 95, which are given as full or open circles, tell us whether during the 10 My
timespan the resonant angle σ (i) librates over some restricted interval of values (indicating that the
orbit is inside the z1 resonance) or (ii) circulates and spans all values. Three examples, low-amplitude
libration, large-amplitude libration (the most typical for the family), and circulation, are shown by the
lines and are identified by the asteroid’s name. We found that 478 asteroids (thus 86%) are currently
located inside the z1 resonance. We find this to be an exceptional situation; we are not aware of any
other asteroid family that is similarly embedded inside a high-order secular resonance. In other families
that have been investigated to date (e.g., Eos, Vesta or Erigone), the secular resonance only affects a
small percentage of its members.

What are the implications of this unique feature of the Agnia family? Figure 96 shows the evolutionary
tracks over 10 My for our Agnia asteroids, which are now projected onto the plane of synthetic proper
elements e and sin i. The effect of this secular resonance forces the proper elements to oscillate in a
correlated way, such that K ′

2 =
√

1 − e2 (2 − cos i) stays constant. It is important to note that the
amplitude of these oscillations covers the full extent of the family. This means that the computed values
of proper e and i, as given e.g. in the AstDyS database used above, only have limited meaning and they
change in time along the direction shown in this figure. Because there is a strong sensitivity in this
calculation on initial orbital conditions, the relative configuration of the family in the e-i projection, as
seen today, does not conserve information about its initial state.

If K ′
2 is conserved, however, there may be ways to make use of this information. For the sake of

simplicity, let us neglect for the moment the effect of Yarkovsky dispersion of the family (to be analyzed
in the next Section). We would conclude, in absence of other perturbations (such as weak mean motion
resonances; Nesvorný and Morbidelli, 1998; Morbidelli and Nesvorný, 1999), that motion in the z1
resonance is sufficiently stable to conserve the K ′

2 value for each asteroid over an extremely long timescale
(hundreds of My; this value was verified for asteroids in the Eos and Erigone families for both z1 and
z2 resonances, Vokrouhlický et al., 2005a,b). Thus, the distribution of K ′

2 values, rather than e and i
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Figure 96: Agnia family members (symbols) projected onto the plane of proper eccentricity e and sine of
inclination sin i. The thick solid lines indicate evolutionary tracks of the three asteroids from Fig. 95. The largest
variations correspond to (3701) Purkyne, the large-amplitude libration case. The grey lines are similar 10 My
evolutionary tracks for all family members. The family is thus stretched along the direction of quasi-integral
K′

2 =
√

1 − e2 (2 − cos i) and its extension fully determined by the z1 resonance dynamics.

themselves, stays constant over long time spans, during which it conserves information about the initial
state of the family.

Figure 97 shows the distribution of K ′
2 for all 553 Agnia members. It is a tight, near Gaussian

distribution with a standard deviation (dispersion) of ∼ 1.5 × 10−4. In a simple experiment, we tried
to transform this information into a characteristic velocity dispersion produced by the breakup of the
Agnia parent body (i.e., its initial, post-breakup velocity field). Considering an isotropic velocity field,
and assuming that the fragments are dispersed with a Gaussian distribution with a standard deviation
V (such as in Petit and Farinella, 1993), our best fit case for the observed Agnia distribution yields
V ∼ 15 m/s. This low-velocity dispersion value is compatible with results from hydrocode simulations
(e.g., Love and Ahrens, 1996; Ryan and Melosh, 1998; Benz and Asphaug, 1999). A similar velocity
dispersion was also observed for the Karin family, whose parent body was only slightly smaller than
Agnia (D = 32 km for Karin vs. 50 km for Agnia) (e.g., Nesvorný et al., 2002, 2006b; Durda et al., 2006,
in preparation).

7.4 Agnia family: evolutionary model

Up to this point, we have focused on how the z1 secular resonance affects proper e and i. Fig. 92, however,
shows other interesting features related to the a distribution of Agnia members. It is well-known that the
semimajor axis values of small asteroids affected by Yarkovsky forces disperse families over time (e.g.,
Bottke et al., 2002 and references therein). In this section we investigate how this process can be used
to constrain the age of the Agnia family.

7.4.1 Simple numerical model

We first performed a numerical simulation to determine how a synthetic realization of the Agnia family
evolves over a timespan of 150 My. This final time was not chosen arbitrarily. Rather, it is in agreement
with an upper estimate of this family’s age from our analysis in Sec. 7.4.2. Our primary goal here is to find
a lower bound of the family’s age based on observations of a nearly-uniform distribution of its members
along the separatrix of the z1 resonance (Fig. 95). For that task, we do not include the Yarkovsky forces
into our simulation. We also perform a second simulation containing Yarkovsky forces to verify that the
K ′

2 distribution discussed above is conserved (and thus can be used to infer information about the initial
state of the family).
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Figure 97: Distribution of the quasi-integral K′
2 =

√
1 − e2 (2− cos i) values for Agnia members. The character-

istic dispersion of δK′
2 ≃ ±10−4 in this quantity agrees very well with an initial ejecta dispersion with a typical

velocity of ≃ 15 m/s. This is also a value found below by an independent method of semimajor axis dispersion.
Unlike the proper orbital elements, the K′

2 variable undergoes little dynamical evolution (Fig. 100) and thus in
this way the true initial velocity field is imprinted in K′

2-distribution.

First we note that Agnia members are nearly-uniformly distributed along the separatrix of the z1
resonance (Fig. 95). This implies that the Agnia family cannot be very young. Note that reasonable
ejection velocity fields produced by collisional breakup events yield longitudes of perihelion and node
dispersed by . 10◦. For a typical velocity of ∼ 15 m/s, suggested above from the K ′

2 dispersion, it
would be even less. Hence, the “uniformity” of Agnia family members in σ does not necessarily require
Yarkovsky forces. It can be fully understood from the differential rate of circulation/libration of the angle
σ for different asteroids. The time it takes this to happen can be used to infer a lower limit on the age
of the Agnia family.

For this purpose, we conducted the following numerical experiment. We started with a synthetic Agnia
family as a tightly compact cluster in a, e, i and σ. Within the z1 resonance, this fake family is initially
a compact cloud as shown in the first panel of Fig. 98. To better define the circulation time, our fake
family is composed of a subgroup of 23 observed Agnia family members and 3 sets of “clones” produced
by adding small values to the eccentricities and inclinations of the real objects. Thus, we integrated 92
bodies in total.

Figure 98 shows the evolution of our synthetic family as tracked in the space of z1-resonance variables
(σ, σ̇). We note that the initially tight cluster of objects spreads in time. After ∼ 40 My, it becomes
uniformly dispersed along the separatrix of the z1 resonance. This result confirms that the Agnia family
is more than 40 My old. To describe the dispersal quantitavely (instead of a trivial observation in (σ, σ̇)
plots), we can use one of the following techniques:

1. We define an auxiliary polar angle φ in the (σ, σ̇)-plane (see Figure 98), with a scaling that maps
a (0◦, 360◦) interval of σ and (−1, 1) ′′/yr interval in σ̇ = g + s − g6 − s6 into common intervals
(−1, 1). At each timestep of our numerical simulation, we compute a dispersion Dφ in the polar
angle φ as

D2
φ =

1

N(N − 1)

∑

i6=j
(φi − φj)

2
, (54)

where N = 92 is the number of integrated bodies and φi is the polar angle of the i-th body
(Figure 99). Since we start with a compact cluster, Dφ is small at the beginning (∼ 7◦) but grows
with time due to the differential libration of the bodies in the resonance. After ∼ 40 My it saturates
at ∼ 103.5◦, the value corresponding to a uniform distribution of bodies along a circle.
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Figure 98: Snapshots of the numerically integrated evolution of the Agnia family projected onto the z1 resonance
variables: initial state of 92 tightly clustered bodies (top left), 2 My (top right), 10 My (middle left), 20 My (middle
right), 40 My (bottom left), 150 My (bottom right). After about 40 My the clump becomes entirely dispersed
near separatrix of the resonance with no memory of the initial state; the last frame (at 150 My) shows both the
numerically integrated particles (bold symbols) and the true Agnia family (light symbols). The auxiliary angle
φ, whose origin and sense is shown on the top left panel, is used to better describe dispersion of the clump (see
Fig. 99 and the text). An animation of our complete simulation can be found at http://sirrah.troja.mff.

cuni.cz/yarko-site/ .
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Figure 99: Temporal evolution of Dφ from Eq. (54) issued to measure dispersion of the synthetic Agnia family
along the separatrix of the z1 resonance. Initially, the family starts very compact, but after ≃ 40 My Dφ attains
the value of ≃ 103◦ with no further evolution. This value corresponds to a uniformly distributed bodies along the
separatrix and also to the currently observed Agnia family members. The oscillations, especially near the initial
epoch, are due to slower change in φ near the unstable stationary foci of the z1 resonance (i.e., near σ = 0◦ and
360◦).

2. We calculate the dispersions De and Dsin i of the proper eccentricity and the sine of the proper
inclination (defined similarly as Dφ). They exhibit the same pattern and reach an equilibrium
state after ∼ 40 My, but with larger oscillations (Figure 100). Moreover, the proper e and sin i
distributions of the observed asteroids exhibit a depletion in the family centre. (Actually, there is
a ‘hole’ in the 3-D space of (a, e, i) visible at Figure 92; see Section 7.4.2 for the discussion of the
semimajor axis.) This is a natural consequence of the fact, that the asteroids spend more time near
the unstable loci of the z1 resonance at σ = 0◦ and 360◦ (similarly to the well-known pendulum
case).

3. We use a standard 2-dimensional Kolmogorov-Smirnov test (Press et al. (2001)): we calculate a
time series of probabilities p(>D), that the two 2-D distributions in the (e, sin i) plane of the
observed family members and of the dispersing cluster are identical (i.e., the Kolmogorov-Smirnov
difference D between the two distributions might be a product of statistical fluctuations). We show
the probability p(>D) vs. time t plot in Figure 101 and an example of the (e, sin i) plot at the
particular time t = 92.4 My, when the probability is high.

Next, we repeat our numerical simulation above with Yarkovsky forces included. The goal here is to
verify the near-conservation of the K ′

2 variable even in this generalized case. We start with the same
initial data as before. The sizes of the our integrated bodies (23 asteroids and clones) are computed from
their H values and a geometric albedo of 0.17. Most of these bodies are 3 < D < 8 km in diameter. We
assign them low-surface conductivity values of K = 0.002 W/m/K, surface and bulk densities of 1.5 and
2.5 g/cm3 and specific heat capacity 680 J/kg/K (values expected for regolith-covered multi-kilometer
main belt asteroids). Rotation periods are given a Gaussian distribution peaked at 6 hr, but values
smaller than 3 hr and larger than 12 hr are excluded. Spin axis obliquities are set to represent a random
distribution of spin axes in space. Because these initial data are unconstrained, we do not attempt in
this simulation to fit the observed a distribution among the Agnia family members. This will be tackled
in the next section using a Monte Carlo technique.

All our previous results are similar to the new runs, except now 4 bodies out of 92 managed to escape
from the resonance due to Yarkovsky drift. We focus our attention on the behavior of the dispersion
DK of the K ′

2 quantity defined above (shown as a bold lower curve in Fig. 100). Interestingly, DK is
nearly constant over the entire integration timespan of 150 My; major perturbations only occur when
some of the bodies leave the z1 resonance. This result is important because it confirms that we can use
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Figure 101: Kolmogorov-Smirnov test of difference D between the combined 2-D eccentricity and inclination
distribution of the observed Agnia family and in our simulation. We show probability p(>D) of such a difference
arises just as a statistical fluke and the two distributions are identical (log-scale). Since we start with a compact
cluster, p(>D) is initially very small, but then it periodically attains values very close to unity (with a period of
large-amplitude librations in the z1, of course). A maximum of more than 80% coincidence is attained at time
∼ 92 My.
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Figure 102: The nominal Agnia family members projected onto the plane of proper eccentricity e and inclination
sin i (light symbols) and the configuration of of numerically integrated sample of bodies at time 92.4 My when the
Kolmogorov-Smirnov probability of their coincidence shows a maximum. Both distributions indicate concentration
toward extreme values of the proper elements and depletion near their mean values for the family. This effect
occurs periodically due to libration cycle in the z1 resonance.

the currently-observed K ′
2 distribution to infer quantitative information about the initial velocity field

(Sec. 7.3.2 and Fig. 97).

7.4.2 Semimajor axis distribution fitted

We are now finally in a position to explore the semimajor axis evolution of Agnia family members. We
find that the observed a distribution is characterized by those small members that have achieved extreme
a values (Fig. 92). Our method here closely follows the work of Vokrouhlický et al. (2005b), who showed
that such a skewed distribution is a consequence of the Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP)
effect. Objects have their spin axes evolve to alignments perpendicular to the orbital plane, which in
turn accelerates the Yarkovsky migration of asteroids and depletes the family center. In what follows, we
apply the method of Vokrouhlický et al. (2005b) to the Agnia case.

Consider family members projected onto the plane of proper semimajor axis a and absolute magnitude
H . By choosing a center ac of the family, typically (but not necessarily) close to the largest body, we assign
a parameter C to each asteroid according to: 0.2H = log(∆a/C), with ∆a = a−ac. We characterize the
distribution of these family members using a one-dimensional array Nobs(C) that indicates the number
of asteroids occupying a bin (C,C+∆C) for some suitable value of ∆C. An effort is then made to match
the observed distribution Nobs(C) with a model prediction of N(C) objects in the (C,C + ∆C) bin. To
that end, Vokrouhlický et al. (2005b) search to minimize a “target (χ2-like) function” (see also Press
et al., 2001)

Ψ∆C =
∑

∆C

[N (C) −Nobs (C)]
2

Nobs (C)
(55)

by varying the free parameters in the model. Note the occurrence of Nobs(C) in the denominator of (55)
which may be formally interpreted as assigning

√

Nobs(C) errors to the observed number of asteroids in
the appropriate bin. Admissible solutions are characterized by Ψ∆C of the order equal to the number of
used bins in C, while solutions giving much larger Ψ∆C are incompatible with the observed family. We use
the incomplete gamma function Q(a,Ψ⋆

∆C) as a goodness-of-fit parameter (see, e.g., Press et al., 2001),
where a is the number of ∆C-bins minus three (number of free parameters) and Ψ⋆

∆C is the minimum
value of the target function (55). Since our best solution yields a high-quality fit (Q = 0.97), we simplify
the parameter-error analysis by deriving them from the level curve of Ψ∆C = a + 3, i.e. level curve of
the target function equal to the number of ∆C-bins (“observations”). Solution of this Ψ∆C level-curve
correspond to Q ∼ 0.2 − 0.3 according to number of degrees.
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As far as our theoretical model is concerned, we use the same Monte Carlo approach as described in
Vokrouhlický et al. (2005b). Namely, we start with an initial, post-breakup a distribution for the family
asteroids using a simple model with an isotropic velocity field. Fragments of a characteristic size, 5 km
in our case, are assumed to be dispersed with a Gaussian distribution of velocity components having
a standard deviation value of V . V is one of the free parameters to be solved for in minimalization
of Ψ∆C . After defining the initial conditions, each asteroid evolves in a from Yarkovsky forces over
a time interval defined as the age of the family T . The strength of the Yarkovsky forces depends on
some assumed thermal parameters and also on the spin state of the asteroid.24 The latter quantity is
folded into a dependence on the obliquity ǫ and rotation period P . While these parameters are set at
the initial time, they are assumed to evolve over the long-term due to the YORP effect (Rubincam,
2000; Vokrouhlický and Čapek 2002). We use a characteristic strength of the YORP effect computed by
Čapek and Vokrouhlický (2004) for a large sample of objects with different random shapes and surface
conductivities. The uncertainties in modeling of the YORP effect are adjusted by including a third free
parameter cYORP that linearly multiplies the YORP influence on ǫ and P . Finally, we run numerous
simulations over a matrix of different values for the free parameters (T, V, cYORP). Then, for each run,
we compute the target function Ψ∆C and search for parameters that lead to its minimum value.

Figure 103 (symbols in the upper left part) shows the distribution of Nobs(C) values for the Agnia
family and ∆C = 1.5 × 10−6 AU. The computed distribution was derived as a mean over central values
ac in (2.788, 2.792) AU (i.e., near the center of small members in the family). If we were using only
a single ac value from this interval, some of the bin occupancies would show random fluctuations that
would affect our fit. We eliminated this potential problem by computing the Nobs(C) distribution using
an average over results for which ac spans a small interval near the unknown center of the family. The
concentration of small Agnia members toward extreme values of a is seen in Nobs(C) as two significant
maxima that are offset from the center at C ∼ ±10−5 AU. They are slightly asymmetric to express little
more Agnia asteroids with a ≥ ac (see also Fig. 92).

The largest asteroid, (847) Agnia, is offset by ≃ 0.005 AU from the center of the smaller members
in the family (Fig. 92). Though unusual, this feature may mean the fragments were ejected with an
anisotropic velocity field (see, e.g., examples in Marzari et al., 1996). The a displacement described
above corresponds to ∼ 30 m/s in the transverse velocity component, comparable with the characteristic
velocity dispersion of smaller family members that are discussed below.

Figure 103 shows results from our simulation where we considered the surface conductivity K of Agnia
members as a random variable in the range 0.001−0.01 W/m/K. More precisely, we distribute the quantity
logK uniformly in the interval (−3,−2). We assumed surface and bulk densities of 1.7 and 2.5 g/cm3

and specific thermal heat C = 680 J/kg/K. In addition to the three solved-for parameters (T, V, cYORP),
we introduced a fourth parameter ξ which yields the fraction of prograde rotating asteroids. Each set
of matrix runs assumed a different value of ξ. The goal was to better describe the asymmetry of the
Nobs(C) distribution. Figure 103 suggests ξ ≥ 0.5. Thus, we tested values in the interval (0.5, 0.75).

The minimum value of the target function Ψ∆C obtained with our model was 22, significantly less
than the number of C-bins (39). For this reason, we consider our result statistically sound; this is also
confirmed by the quality-factor value Q = 0.97. If, for simplicity, we thus used the threshold Ψ∆C = 39 to
define the standard error of the solved-for parameters, our best fit solution would read: T = 100+30

−20 My,

V = 16+4
−6 m/s and cYORP = 0.9+1.1

−0.3. These values correspond to ξ = 0.57, which may indicate a slight
asymmetry between the number of prograde and retrograde rotating asteroids produced by the initial
breakup of the family. Figure 104 shows how the minimum-acquired Ψ⋆

∆C depends on different choices
of ξ, indicating even an equal partition (ξ = 0.5) could still offer a statistically reasonable though less
satisfying solution. Conversely, ξ must be smaller than 0.68, a value that would lead to an unjustified
asymmetry between the initially prograde and retrograde rotators.

Interestingly, our best fit value of ξ = 0.57 is similar to that found by Nesvorný and Bottke (2004)
for the members of the young Karin cluster. The source of this asymmetry is unknown. One possibility
is that there is something intrinsic in the breakup process that produces more prograde than retrograde
objects (e.g., La Spina et al., 2005). A second possibility is that the value of ξ produced in different
breakup events follows a Gaussian distribution centered around ξ = 0.5. If true, the similarities between
Agnia and Karin families may be a statistical fluke. Finally, a third possibility is that immediately after a
family-forming event, fragments take some time to generate regolith. In the interim, their higherK values,
which may be closer to bare rock than a regolith-covered surface, may allow the seasonal Yarkovsky effect
to dominate the diurnal variant, such that all asteroids drift inward. This effect would create an offset

24We use a linearized approximation by Vokrouhlický (1998, 1999) and Vokrouhlický and Farinella (1999) to obtain the
diurnal and seasonal components of the semimajor axis secular change da/dt.
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Figure 103: Results of our simulation for the Agnia family with mean albedo pV = 0.17 and surface thermal
conductivity randomly spanning K = 0.001 − 0.01 W/m/K. The best-fit solution N(C) (solid line in the top
left panel) is shown with the observed data Nobs(C). These were obtained by (C, C + ∆C) binning with ∆C =
1.5×10−6 AU and ac uniformly averaged in the range (2.788, 2.792) AU. We assign a formal error-bars of

p

Nobs(C)
to Nobs(C). Note a slight asymmetry of the data about C = 0 with significant maxima at C = ±10−5 AU. The
other three panels show projection of the best value of the target function Ψ∆C for various pairs of the solved-for
parameters: (i) age T vs. YORP strength parameter cYORP, (ii) age T vs. characteristic velocity V of initial
ejection of D = 5 km fragments, and (iii) cYORP vs. V . Formal 1σ contour, defined by Ψ∆C = 39 (number of
bins in C; see the text), is shown in bold; contours for other values of the target function are shown in light (their
increment is ∆Ψ∆C = 10).

in the family’s semimajor axis distribution that would be skewed toward smaller a values. Eventually,
the family asteroids would develop regolith and return to a state where their migration was dominated
by the diurnal Yarkovsky effect (which allows asteroids to evolve both inward toward and outward away
from the Sun). Of these three possibilities, we can rule out the last one for Agnia because it appears to
have more members further from the Sun than closer to the Sun.

According to Vokrouhlický et al. (2005b) the best-fit value of T roughly scales with
√
pV , such that

a smaller mean albedo value for Agnia family members (in the multi-km range) would make the family
older. An albedo value smaller than ∼ 0.1, however, is unlikely. For this reason, we consider the upper age
of the Agnia family to be ∼ 140 My. If small family members have higher albedo values than predicted
here (e.g., Tedesco et al., 2002), the Agnia family’s age might be smaller than 100 My, with the lower
bound set at 40 My (Sec. 7.4.1). We also find it interesting that the best-fit value of the characteristic
dispersion velocity V of D = 5 km Agnia members is compatible with our estimate from an analysis of
the K ′

2 function distribution (Fig. 97). As in Vokrouhlický et al. (2005b) the strength of the YORP effect
is loosely constrained with only the no-YORP solution (cYORP = 0) statistically excluded.

140



 20

 25

 30

 35

 40

 45

 50

 55

 60

 65

 0.5  0.55  0.6  0.65  0.7  0.75

M
in

im
u
m

 t
a
rg

e
t 
fu

n
c
ti
o
n

ξ

Figure 104: Minimum values of the target function Ψ⋆
∆C for different values of the asymmetry parameter ξ

characterizing initial proportion of the prograde vs retrograde rotating fragments. The best-fit solution slightly
prefers more prograde rotators among initial collision ejecta (57% vs 43%). Statistically admissible solutions are,
however, obtained also for symmetric partition of prograde/retrograde rotators.

7.5 Conclusions

The unique relation of the Agnia asteroid family to the high-order resonance z1 allows a deeper insight
into its evolution and initial state than is possible with other families of comparable size and age. We
have shown this by placing independent, and consistent, constraints on the age of this family. We have
also derived a characteristic velocity for multi-kilometer family members that is consistent with estimates
from other small families.

Interestingly, Bottke et al. (2005a,b) find that the mean disruption lifetime of a D ∼ 2 km asteroid in
the main belt is ∼ 700 My. If this estimate is true, most observed Agnia members are original fragments
that have not yet experienced secondary fragmentations. The Agnia family, together with other even
younger families (Nesvorný et al., 2002, 2003), might be thus a good laboratory to study outcome of the
collisional fragmentation of large main belt asteroids (see e.g., Nesvorný et al., 2006b).

We note that a relatively young age found for this family is in agreement with the dominant Sq spectral
type of its members, and a related small mean value of PC1 found from the SDSS data. Nesvorný et al.
(2005) interpret both in the frame of a space weathering scenario.

A preliminary analysis indicates that the Agnia family is unlikely to be a significant contributor to
the dust and micrometeorite population produced by main belt collisions. Using the code described in
Bottke et al. (2005d), we examined dust population from the present-day Agnia family. Our results
suggest that Agnia-derived dust is likely to be 2 − 3 orders of magnitude smaller than that produced by
the background main belt population. This is because the family is both small (parent body D ∼ 50 km)
and modestly old (∼ 100 My); the combination means that its dust/micrometeorite population has likely
reached quasi-collisional equilibrium with the background population. Thus, unless the tight (a, e, i)
clustering of the Agnia family can overcome its putative low dust production rate, the Agnia family is
unlikely to be a source of some of the weak dust bands proposed by Sykes (1988).

Finding smaller asteroid families in the main belt, studying their structure, and linking this analysis
to the physics of collisional processes, origin of interplanetary dust and meteorite science is an interesting
long-term project. Our study of the Agnia family is a piece of mosaic indicating our current ability to
fulfill this task.

Acknowledgments. This work has been supported by the Grant Agency of the Czech Republic (grant
205/05/2737) and NASA’s Planetary Geology & Geophysics program (WFB and DN).
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8 Conclusions

We studied the influence of non-gravitational forces on the long-term evolution of small asteroids. The
major results presented in this thesis can be summarized as follows:

1. We reviewed the applications of the Yarkovsky/YORP effect and its mathematical formulation.

2. We described major aspects of the orbital evolution of meteoroids and small asteroid fragments
under the influence of gravitational resonances and the Yarkovsky effect. We computed several
statistics (e.g., the crossing probability of the J3/1 resonance) which may be used in future to
improve Monte-Carlo models of meteoroid transport.

3. The short-lived orbits of (2953) Vysheslavia, and several other asteroids located just above 5/2
mean motion resonance with Jupiter, can be explained as a consequence of the Yarkovsky effect,
which pushes the asteroids from stable regions into the current unstable positions. We supported
this conclusion by photometric observations of (2953) Vysheslavia — they reveal the retrograde
spin-axis orientation, which is in concert with negative Yarkovsky semimajor axis drift.

4. The unstable asteroids inside 2/1 mean motion resonance with Jupiter have been most proba-
bly transported from the neigbouring Main Asteroid Belt; the Yarkovsky/YORP effect is efficient
enough to keep this transient population in steady-state. Unfortunately, we were not able to unveil
the origin of the long-lived Zhongguos and Griquas yet.

5. We studied the Eos asteroid family, namely the three dynamical procesess, how the Yarkovsky
drifting orbits interact with resonances: “bracketing” by strong mean motion resonances, “crossing”
of weaker resonances, and “trapping” in secular resonances. The Yarkovsky effect seems to be
essential to understand the current observed shape of the family in the space of proper orbital
elements. We were also able to determine the family age to be 1.3 Gy.

6. The Agnia family is located almost entirely inside the z1 secular resonance, a lucky coincidence,
which allowed us to disclose the family age (surely more than 40 My and less then 140 My) and the
magnitude of the mutual velocities (15 m/s for 5 km fragments) gained due to the original disruption
event.

7. We implemented computation of proper and resonant orbital elements into the commonly used
SWIFT integration package.
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9 Appendices

9.1 A catalogue of synthetic proper elements

In order to study fine details of orbital dynamics and small structures in the (a, e, I) elements space, we
have to apply a suitable digital averaging to the osculating elements produced by numerical integrators.
We use the following approach for regular (non-resonant) orbits:

1. We sample osculating orbital elements with a typical sampling period 1 y and store the non-singular
elements: a, h = e cos̟, k = e sin̟, p = sin I

2 cos Ω and q = sin I
2 sin Ω in a running window

array (typically, it holds data for all planets and test particles and for the last 80 timesteps in the
memory).

2. We apply a multi-level convolution filter (the so called Kaiser windows), similarly as Quinn et al.
(1991). One have to carefully select the sequence of filter functions (denoted A and B) and the
corresponding decimation factors, to avoid aliasing. For example, we use filters A, A, A, B and
factors 10, 10, 5, 3 and the resulting mean elements then have an output timestep 1500 y.

3. The mean elements are stored in another running window array (with 2N elements) and a frequency
modified Fourier transform (FMFT) is calculated for the (h, k) and (p, q) pairs (Šidlichovský &
Nesvorný (1997); the FMFT C-function was kindly provided by N. Nesvorný). We obtain g and s
frequencies, corresponding amplitudes and phases for the 10 terms with the 10 largest amplitudes.

4. Now, we have to drop terms with planetary frequencies (because the amplitudes of these forced
terms are proportional to e or I of the planets; they are not proper elements of the asteroid).

5. The ep or Ip proper elements are the amplitudes of the largest remaining g or s terms. Proper
semimajor axis ap is a simple running average. The width of the running window is usually 29 =
512 elements (i.e., 0.768 My) and the output time-step 0.1 My.

We implemented the filtering outlined above in the framework of the SWIFT integrator (SWIFT ); the
routines can be used both on-line during the numerical integration (to reduce the output storage) and
off-line. See Yarko-site for download.

As a particular test of our algorithms, we prepared a catalogue of proper elements (prop_fmft.dat;
presented at Yarko-site). The system allows a fully automated calculation of proper elements for all
numbered asteroids, listed the Bowell’s AstOrb catalogue (AstOrb)25 of osculating elements, a comparison
with the already existing AstDyS proper elements catalogue (AstDyS ) by Milani and Knežević, and
possibly an update on a regular basis. (The computation of 105 orbits takes approximately 2 weeks of
CPU time on a 4 CPU MOSIX cluster.)

A comparison between the AstDyS catalogue and our prop_fmft.dat (one example is at Figure 105)
shows that both methods mostly produce equivalent results (with a relative difference between the ec-
centricities or the inclinations smaller than 10 %). The differences are larger for 10 % of orbits, which
can be attributed to: i) the shorter integration time span in our case, ii) the better spectral resolution of
the FMFT method (especially, when the integration spans longer time, a single spectral line splits-up to
a multiplet with different amplitudes and phases), iii) proximity of chaotic mean motion resonances, or
iv) secular resonances with very long libration periods (we do not remove ≃My oscillations).

25There is a WWW interface to the astorb.dat catalogue at the Yarko-site also. It allows to search asteroids by their
designations (regular expressions), grep the most important orbital and physical data, calculate ephemerides and plot sky
maps (either generated from the GSC catalogue or downloaded from the Palomar Digitized Sky Survey). The Earth’s
ephemeris is calculated according to the VSOP82 theory, the orbital motion of the asteroid around the Sun is approximated
by a two-body ephemeris. Because the up-to-date versions of the astorb.dat catalogue have the osculation epoch always
close to the present, the precision of the ephemeris is of the order 1 arcsec. This is sufficient to predict the position of an
asteroid on the sky at the time of an intended observation and to pin-point a telescope, which has a field of view 10 arcmin.
We use this tool during photometric observations at the Hradec Králové Observatory. The long-term observational program
is partly devoted to the photometry of the Eos family asteroids; the lightcurves obtained so far can be downloaded from
HPHK Observer services (see also Figure 106).

145



 0

 0.1

 0.2

 0.3

 0.4

 2  2.2  2.4  2.6  2.8  3  3.2  3.4  3.6

p
ro

p
e

r 
e

c
c
e

n
tr

ic
it
y
 e

p

proper semimajor axis ap / AU

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 2  2.2  2.4  2.6  2.8  3  3.2  3.4  3.6

p
ro

p
e

r 
in

c
lin

a
ti
o

n
 s

in
 I

p

proper semimajor axis ap / AU

prop_fmft.syn proper elements

relative difference in ep or sin Ip > 10 %

> 50 %

Figure 105: The proper semimajor axis vs. eccentricity (top) and vs. proper sine of inclination (bottom) calcu-
lated for the first ≃30,000 orbits from the AstOrb catalogue of osculating elements, version Mar 2nd 2003. The
comparison with the AstDyS catalogue of proper elements is provided: the orbits, which differ by more then 10 %
(or 50 %) in inclinations are plotted green (red). The principal differences are caused by the secular resonances:
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relative differences are smaller than 10−4).
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Figure 106: An example of the photometric observations acquired at the Hradec Králové Observatory: the Eos
family asteroid (1210) Morosovia on Feb 23rd 2003. A 40-cm f/5 reflector (Jan Šindel Telescope) equipped with
a SBIG ST-7 CCD camera and an photometric I filter was used. Instrumental relative magnitudes are plotted
here. This observation was perfomed by Martin Lehký. We usually exploit the WWW facilities at the Yarko-site
during these observartions.
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9.2 The SWIFT-MVS2 integrator, a faster variant of the MVS

The package SWIFT (Levison & Duncan (1994), SWIFT ) is a well known and commonly used tool for
solar system studies. It allows to integrate a set of massive, mutually interacting bodies, and massless
“test particles”. SWIFT includes 4 integration methods: Wisdom-Holman Mapping (WHM or MVS),
Regularised Mixed Variable Symplectic (RMVS), a fourth order T+U Symplectic (TU4) and Bulirsch-
Stoer (BS).

We have modified the original code in the following manner: i) We have incorporated Yarkovsky
(hereinafter such an integrator is referred with the suffix -Y) and Poynting-Robertson (-PR) dissipative
accelerations into the integrators and checked their results against analytic predictions (see Section 2.3.3).
ii) We have implemented on-line digital filters based on the Kaiser windows (-F) (see Section 9.1). iii) We
have implemented the 2nd order symplectic integration scheme (MVS2) by Laskar & Robutel (2001), which
seems to be at least 2 times faster than MVS, while keeping the same relative energy error. However, the
algorithm is not “regularised”, i.e., no close encounters are allowed. iv) We have parallelised integrators
(namely the calculation of the TP accelerations) according to the OpenMP standard (OpenMP), which
allows to run SWIFT on multiprocessor machines. We will present results of tests involving the new
integrators, the parallelisation, the filter and the Yarkovsky acceleration implementation.

The swift rmvsy package is available for download on our web Yarko-site. It can be compiled, together
with the original SWIFT package, for various Unix-like systems and Windows.

The Yarkovsky and Poynting-Robertson accelerations. The theory of the Yarkovsky effect was
published in Vokrouhlický (1998), Vokrouhlický & Farinella (1999). We have modified original SWIFT
subroutines and added several new ones to incorporate the Yarkovsky acceleration (and later also the
Poynting-Robertson force to study dust particle dynamics). Our method corresponds to Cordeiro et al.
(1997), i.e., the thermal acceleration is applied during a ‘kick’ phase of the symplectic integrator, similarly
as the conservative perturbation.

The addition of a weak dissipative force to the symplectic integrator does not affect its stability —
it was proven by the comparison of secular changes of semimajor axis da/dt with the analytic estimates
from Gauss equations (Figure 107).

A comparison of BS, MVS, RMVS and -FY integrators. A typical test run setup (unless specified
otherwise) is: 4 + 50 particles, timestep 20 days, stop time 0.2 My. (Initial orbital elements of the TPs
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Figure 107: The absolute values of the semimajor axis drift rates da/dt (in AU/My) for particles with several
values of radii (from 0.1 m to 1 km) and three different types of thermal parameters: regolith, basalt and metallic-
like. The initial orbits of test particles were a = 2 AU, e = 0, i = 0◦. The two variants of the Yarkovsky
acceleration (diurnal and seasonal) are plotted separately. The lines correspond to the analytic estimates, the
points are computed numerically by a LSM fit of the output a(t).
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red dots are visible), while the results are equivalent in the stable regions (only the black dots are visible). The
output of mean orbital elements starts at ≃0.02 My due to the initialisation of the digital filter.

are randomly distributed in the region of the Eos family, just below the J9/4 mean motion resonance.)
The integrators BS, BSFY, MVS, RMVS3, RMVSF and RMVSFY have been tested. All a(t) plots for
individual runs look very similar, as they should; only chaotic orbits differ significantly (Figure 108). The
summary of the CPU running times is presented in Table 24. We conclude, the on-line digital filter slows
down the RMVS3 integrator by 30 %. Subroutines for the Yarkovsky effect calculation slow integrator
further by a factor 1.8. The Bulirsch-Stoer integrator (with Yarkovsky subroutines) is approximately
10 times slower than RMVSFY.

Table 24: A comparison of the CPU times for several integrators (see text for the explanation of the abbrevia-
tions). The computation was performed on an Athlon 1.4 GHz processor; ‘omf77’ refers to the Omni compiler .

integrator (compiler) time/sec notices
BS (omf77) 4092 local error 10−8

BSFY (omf77) 12200
MVS (omf77) 273
RMVS3 (omf77) 356
RMVSF (omf77) 480
RMVSFY (omf77) 874

A comparison of g77, omf77 and other compilers. The comparison of different compilers has
been performed for the RMVSFY integrator (see Table 25). The compiler omf77 seems to be faster than
g77 by approximately 10 %. The commercial Fujitsu/Lahey and Portland group compilers ‘beat’ g77
by 30 %.

Table 25: A comparison of 5 different compilers available for the Linux operating system; computed on a Celeron
1 GHz processor.

RMVSFY (g77) 1652 g77–0.5.24
RMVSFY (omf77) 1496 Omni–1.3 (Omni compiler)
RMVSFY (fujitsu) 1371 Fujitsu F95
RMVSFY (lf95) 1147 Fujitsu/Lahey F95 Express 6.0
RMVSFY (pgf90) 1133 Portland group Fortran90

1164 (with -mp on 1 CPU)
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A Parallel version of SWIFT. The parallel program RMVSFY have been started on a two-processor
machine. However, the RMVSFY is only 1.5 faster on two processors than on a single one (Table 26).

Table 26: A test of the parallelised RMVSFY integrator on a dual Pentium III 800 MHz machine. (The Omni
compiler is able to compile it for SMP machines; see also OpenMP .)

RMVSFY (omf77) 1857 run only on 1 CPU
1263 2 CPUs (SMP architecture)

A similar test has been performed for the MVSFY integrator (which allows no close encounters) and
also for an integration involving one half of test particles (Table 27). The MVSFY turns out only 1.2
times faster than RMVSFY due to the delay caused by the filter and Yarkovsky subroutines (as compared
to the factor 1.3 between the pure MVS and RMVS3). On 2 CPUs the integration by MVSFY takes 1.55
times shorter time span. (In case of 10 times larger number of TPs, i.e. 500, the ratio is even slightly
better: 1.62.) When we manually split the job into two pieces and run two separate jobs, it will take
1.9 shorter time than the single run on 1 CPU. (It means: we loose 20 % of the computation speed on
2 CPUs, compared with 2 single runs, but we gain a simple manipulation with the output data files —
there is no need to merge 2 output binary files.)

Table 27: A test of the MVSFY integrator. The setup is the same as in Table 26.

MVSFY (omf77) 1613 run only on 1 CPU (50 TPs)
1044 2 CPUs (SMP architecture)
846 1/2 of TPs

MVSFY (omf77) 1537 1 CPU, NTP = 500, tstop = 0.02 My
945 2 CPUs

Tests of a MOSIX cluster. We have tested the MVSFY integrator on a heterogeneous MOSIX cluster
(Mosix ) with 8 CPUs and slow 10 Mb network (Table 28) The speed of the migrated process is almost
the same (98 %), but only for low I/O. (Luckily, it is a typical case for our runs). Of course, on a 100 Mb
or 1 Gb LAN the difference is not that substantial.

It is not yet possible to use the parallel version of SWIFT on Mosix, because Mosix does not support
distributed shared memory. A usual surrogate is to split the calculation to several separate runs (e.g.,
using the automated swiftsplit script, included in the swift rmvsy package). Nevertheless, the Mosix
cluster is now still very useful for a comfortable job management.

Table 28: Running times for a single job migrating over a Mosix cluster to a Celeron 850 MHz machine and for
2 threads on a single CPU.

MVSFY (omf77) 1624 run on the home node, migration forbidden
2030 started elsewhere, migrated to the same node
1654 the same run, but with low I/O operations

MVSFY (omf77) 5078 2 threads on a single CPU

A new symplectic integrator SWIFT-MVS2FY(PR) (τ4ǫ + τ2ǫ2). The SWIFT-MVS2FY is a
new implementation of the integrator SBAB2 by Laskar & Robutel (2001), which is of the order τ4ǫ+τ2ǫ2

and of index 2 (i.e., the number of evaluations of Hamiltonian parts A and B). This integrator is yet
without regularisation, i.e., it does not handle close encounters correctly. We use larger timestep 80 days
(i.e., 4 times larger than before) for tests in Table 29, but the precision of the integration remains
comparable to the MVS. The MVS2FY integrator is approximately 1.7 times faster than MVSFY and
2 times faster than RMVSFY at the same level of precision. One can still enlarge the timestep.

150



Table 29: Running times for MVS2FY integrator with the timestep 80 days. (Nevertheless, the integration is
still more precise than the MVS one.)

MVS2FY (omf77) 940 1 CPU
588 2 CPUs
945 1 CPU, -omp (without OpenMP pragma)

The energy and momentum errors do not accumulate, when we use the symplectic integrators. Never-
theless, the energy and momentum integrals oscillate and we can measure the precision of the integrator
as the dispersion of the energy values over a sufficiently long time interval.

Both the total energy error and the CPU time depend on the integration timestep (Figures 109 and
110). The MVS2F is more precise by two orders of magnitude in a wide range of timesteps — from 2 up
to 200 days. On the other hand, for a given timestep, it is usually 1.8 times slower than the MVSF. We
usually use the timestep 20 days for the MVSF (or RMVS3F) integrators in our studies of the Main Belt
Asteroids. So, if we want to keep the total energy error the same with the MVS2F, we can safely use
100 days timestep. In this case, however, the MVS2F is more than two times faster the MVSF.

To conclude, the SWIFT-MVS2FY integrator seems to be more efficient than the original MVS.
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Figure 109: The relative timestep τ ′ vs. the relative energy error, computed for the Sun-Jupiter-Saturn system
evolving for 0.1 My. τ ′ is the timestep dt divided by the method index, i.e., 1 for the classical leap-frog MVS
and 2 for the new MVS2. The relative energy error is computed as the standard deviation σE of the total energy
E(t), in course of the integration, divided by the mean total energy 〈E〉.
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9.3 A reprint of Yarkovsky’s ‘lost’ pamphlet

We reprint here the work of Ivan Osipovich Yarkovsky, which he privately published in 1901 and where
he describes the phenomenon, now called the Yarkovsky effect. (Even thought, the very first note on
the Yarkovsky effect was later discovered in his Hypothése cinetique, published in French in 1888.) The
booklet is called Plotnostь sv�tovogo efira i okazyvaemoe imъ soprotivlenie dviжeni� (The
density of luminiferous ether and the resistance it offers to motion); it was printed in Bryansk. This is
the Yarkovsky’s ‘lost’ pamphlet quoted by Öpik (1951). We decided to include the reprint here, because
of the historical interest and because the original publication is not easily accessible (while this thesis can
be downloaded from the Yarko-site).

All credit goes to George Beekman (e-mail: gbeek@xs4all.nl). His outstanding effort led to the
rediscovery of Yarkovsky’s ‘lost’ publication. After several travels to Russia, he found it in the library
of the Sternberg Astronomical Institute in Moscow in 2002 (see Beekman (2006)). English translation is
being prepared under the custody of D.P. Rubincam and V. Slabinski.
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perturbations and the evolution of the asteroid main belt, in: Dynamics of Populations of Planetary
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Tatranská Lomnica.
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dynamical diffusion in asteroid families via Yarkovsky effect, poster presented at Asteroids 2001 con-
ference, Palermo.

1 P. Michel, W. Benz, P. Tanga and D. Richardson, Collisions and gravitational reaccumulation: Forming asteroid
families and satellites, Science 294, 1696, 2001.

2 S.F. Dermott et al., Asteroidal dust, in: Asteroids III, Eds. W.F. Bottke, A. Cellino. P. Paolicchi and R. Binzel,
(Arizona Univ. Press, 2003), p. 423.
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2:1 resonance asteroids with the Themis family?, poster at Asteroids, Comets and Meteors, Berlin.
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Brož, M., Vokrouhlický, D., 2002. The peculiar orbit of Vysheslavia: further hints for its Yarkovsky driven origin?
in: Dynamics of Natural and Artificial Celestial Bodies (H. Pretka-Ziomek, E. Wnuk, P.K. Seidelmann &
D. Richardson, Eds.), pp. 307–312. Kluwer Academic Press, Dordrecht.
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Farley, K.A., Vokrouhlický, D., Bottke, W.F., Nesvorný, D. 2006, A late Miocene dust shower from the break-up
of an asteroid in the main belt. Nature 439, 295–297.

Ferraz-Mello, S., 1994. Dynamics of the asteroidal 2/1 resonance. Astron. J. 108, 2330–2337.

Ferraz-Mello, S., Michtchenko, T.A., Roig, F., 1998. The determinant role of Jupiter’s Great Inequality in the
depletion of the Hecuba gap. Astron. J. 116, 1491–1500.

Fujiwara, A., 1982. Complete fragmentation of the parent bodies of Themis, Eos, and Koronis families. Icarus
52, 434–443.

Fukugita, M., Ichikawa, T., Gunn, J.E., Doi, M., Shimasaku, K., Schneider, D.P., 1996. The Sloan Digital Sky
Survey photometric system. Astron. J. 111, 1748–1756.

Giorgini, J.D., Ostro, S.J., Benner, L.A.M., Chodas, P.W., Chesley, S.R., Hudson, R.S., Nolan, M.C., Klemola,
A.R., Standish, E.M., Jurgens, R.F., Rose, R., Chamberlin, A.B., Yeomans, D.K., Margot, J.-L., 2002.
Asteroid 1950 DA’s encounter with Earth in 2880: Physical limits of collision probability prediction. Science
296, 132–136.

Gladman, B.J., Migliorini, F., Morbidelli, A., Zappala, V., Michel, P., Cellino, A., Froeschle, C., Levison, H.F.,
Bailey, M., Duncan, M. 1997. Dynamical lifetimes of objects injected into asteroid belt resonances. Science
277, 197–201.

Grady, M.M., 2000. Catalogue of Meteorites, Cambridge University Press, Cambridge.

Guillens, S.A., Vieira Martins, R., Gomes, R.S., 2002. A global study of the 3:1 resonance neighborhood: a search
for unstable asteroids. Astron. J. 124, 2322–2331.

Hagihara, Y., 1975. Celestial Mechanics. Volume IV — Periodic and quasi-periodic solutions. Japan Society for
the promotion of Science, Tokyo.

Hardorp, J., 1978. The Sun among the stars. Astron. Astrophys. 63, 383–390.
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Morbidelli, A., Zappalà, V., Moons, M., Cellino, A., Gonczi, R., 1995. Asteroid families close to mean motion
resonances: Dynamical effects and physical implications. Icarus 118, 132–154.
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Vokrouhlický, D., Farinella, P., 2000. Efficient delivery of meteorites to the Earth from a wide range of asteroid
parent bodies. Nature 407, 606–608.
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interloper, 23, 120
island A, 70
isothermal core, 37

JFC, see Jupiter family comets
Jupiter family comets, 90

Karin cluster, 25, 55

Kohman, 74
Koronis family, 16, 21, 53

LAGEOS, 10, 11
Lambert law, 31
linearization, 29
Lorentz force, 14
Lyapunov time, 54, 68

Maria, 40
Mars-crossing criterion, 43
mean elements, 145
Merxia family, 23
meteorite parent bodies, 39
meteorites, 18, 39
meteoroids, 40

NEA, see near-Earth asteroids
near-Earth asteroids, 18, 27, 90
non-gravitational accelerations, 14
non-principal-axis rotation, 61

obliquity, 15, 32
ordinary chondrites, 40
osculating elements, 145

penetration depth, 29
photoelectric effect, 11
photometric observations, 56
plasma drag, 14
Poynting-Robertson drag, 10, 11, 14, 34
proper elements, 145
pseudo-proper resonant elements, 67

radiation pressure, 9, 11, 14
regolith, 29
reorientations, 41
resonance 4J−2S−1, 43
resonant populations, 20
rocket effect, 9, 27
rotating jet model, 27

seasonal Yarkovsky effect, 15, 33, 34
secular effects, 14
secular resonance ν6, 48
secular resonance g + 2g5 − 3g6, 21
secular resonance g + g5 − 2g6, 146
secular resonance z1, 21, 114, 127
secular resonance z2, 48
semimajor axis drift, 31
shadowing, 37
shape model, 37, 60
Slivan group, 16
solar wind, 14
space weathering, 39
spherical harmonics, 33
subsolar temperature, 28
SWIFT, 35
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SWIFT-MVS2, 148
swift rmvsy, 34

Themis family, 66, 76
thermal conductivity, 29
thermal diffusivity, 28
thermal inertia, 9
thermal lag, 29
thermal parameter, 29
thermoelectric generator, 11
thermophysical model, 27
three-body resonance 3J−1S−1, 24

Veritas family, 25
Vysheslavia, 53

Yarkovsky force, 15, 31
Yarkovsky’s pamphlet, 153
Yarkovsky, I.O., 9, 12
Yarkovsky-O’Keefe-Radzievskii-Paddack effect,

see YORP torque
Yarkovsky/YORP effect, 11, 14

numerical method, 37
spherical linear model, 32
toy model, 28

YORP torque, 15, 31

Zhongguos, 72
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