
Simulation
Because the three dimensions allow much more complex topo-

logical structures we decided to build up a pure MHD (not PIC)
3D simulator. The general resistive compressible MHD equations

∂tρ = −∇ · (ρv) p∂tv = −ρ (v · ∇) v −∇p + j × B

∂tU = −∇ · S ∂tB = ∇× (v × B)−∇× (ηj)

E = −v × B + ηj

where the electric current j, internal energy U and Poynting
flux
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with the pressure defined as p = (γ − 1) ρw and γ = 5/3 are
written into dimensionless form. We use one-liquid model, but
with locally artificially raised anomal resistivity wherever the vir-
tual drift velocity |vD ≡ (mi/e)j/ρ| ≥ vcr, where vcr is parameter
of the model. Then the equations are rewritten into the comoving
frame according to ∆x → L (t) ∆x, where the ∆x differential
size of the length-scale. This resembles the Big Bang expansion.
We assume that the reconnection rate (we scan in every step of
the simulation) is proportional to the velocity of the bulk motion
Γ ∼ (1−α)∆pm where α represents the fraction of radiated losses
in the magnetic field dissipation. We calculate the reconnections in
Newtonian framework using Lax-Wendroff 2nd order integration
scheme, then at the end recalculating it from the outflowing jet of
Γ(t) into the observer frame.

We plan to implement in several pseudo-relativistic tricks into
the equations to simulate the special relativistic effects (e.g. η → η/Γ,
ρ → Γρ). The sketch of an elementary cell in the simulation is
shown in Figure 5.

As initial conditions we have chosen anti-parallel magnetic
field multi-layers. The separation between the layers is assumed to
be λ = Γ2πc/Ω, where Ω is the rotational velocity of the magnetic
field progenitor, e.g. a magnetar. To simulate the stochastic nature
of the magnetic reconnection process we use spatially periodic
boundary conditions. Due to the technical limits we are restricted
to maximally 512 × 512 × 512 cells in the grid/matrix. Each cell
contains ρ, v, E, B, η, u, p the particle density, the velocity, the
electric and magnetic field, the resistivity, the internal energy and
the pressure located in the cell as it is seen from Figure 5.
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Figure 5: Description of the simulation and an elementary cell in
the model.

Outlook to the Future
We will inform you about the progress. Chromo-stereoscopic

projection will be written in IDL to visualize the results.
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Magnetic Reconnection
Magnetic reconnection is a consequence of non-ideal MHD

concept where E = E′+ v×B = ηj. A basic scheme of magnetic
reconnection is drawn in Figure 3. The velocity of the outflow
from the X-type null point is controlled by the reconnection rate
M that represents the efficiency as well. In two basic models of
2D reconnection it yields

M ≡ v

vA
≈
{
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π

8 logRm
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where vout = vA = B0/
√
4πρ0 is the Alfven speed andRm ≡ L0v0/η

the magnetic Reynolds number of MHD turbulence.

Figure 3: Magnetic reconnection a) anti-parallel magnetic field
lines b) entering diffusion region c) change of topology.

Thus the magnetic reconnections change the topology of the
field lines. In terms of helicity H it yields

dH

dt
≡ d
dt

∫

V
A · BdV 6= 0 B ≡ ∇× A

Naturally question arises, can we achieve a feasible configu-
ration in the case of GRBs? There could be an extreme magnetic
field ∼ 1014 G induced e.g. by the α-Ω dynamo process (Usov
1994). Also the striped magnetic wind could produce anti-parallel
magnetic field behind the the light cylinder of a non-axisymmetric
pulsar or a magnetar (Coroniti 1990).

Figure 4: The striped wind configuration of magnetic field around
a millisecond pulsar.

Model
We try to run a simulation of the resistive MHD processes in

the magnetically driven fireball. We assume a relativistic Poynting
flux outflow in the form of a jet where the magnetic reconnections
happen.

The interesting part of our model (suggested by Spruit & Dren-
khahn 2003) is that magnetic field dissipation can solve both the
acceleration of the jet and the radiation mechanism at once. The
law of the energy conservation yields

dw

dt
+∇ · S = −j · E

where w =
(

E2/8π +B2/8π
)

is the electromagnetic energy
density and S is the Poynitng flux. It can be seen that the energy
trapped in the magnetic field and available to dissipate is not
only the magnetic energy density B2/8π but the energy driven by
S = B2/4π. It is useful to think about it in the term of magnetic
enthalpy

wm = um + pm

Dissipation of the magnetic energy is converted into the internal
energy um which can be radiated away through synchrotron radi-
ation mechanism if it happens in the optically thin region above
the photosphere, or it heats the plasma and let it expand if it occurs
within the photosphere. The dissipation of of magnetic field leads
to the pressure losses and gradient of pressure accelerate the flow,
its Lorentz factor Γ(t).

Abstract

We report on the first steps in 3D simulation of magnetic field
dissipation in gamma-ray burst prompt emission (GRB). The mo-
del is based on magnetically driven Poynting flux outflow.

Introduction

While the internal shock model has had some success in re-
producing GRB characteristics, it suffers from an efficiency pro-
blem (the relatively low efficiency with which the central engine’s
energy is converted to prompt gamma-rays), and a field strength
problem (generating the field strength needed to produce efficient
synchrotron emission).

In several of the more promising models of the central engine,
a rotating relativistic object powers the outflow. These objects
naturally have strong magnetic fields, and the transmission of
rotational energy to the outflow via the field (Poynting flux) is
also the the most effective ways of satisfying the baryon loading
constraint (the large energy-to-rest-mass ratio needed to explain
GRBs).

Such magnetically powered outflows come in two basic vari-
eties: the DC model (axisymmetric, e.g. Blandford and Lyutikov
2002), and the AC model (flow generated by a central engine
with a nonaxisymmetric magnetic field, e.g. Drenkhahn and Spruit
2003). Their advantage over the internal shock model is that they
can produce prompt emission with high (50%) efficiency, natu-
rally provide the strong magnetic field needed for synchrotron
emission, and are very effective at accelerating the flow.
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Figure 1: A primitive sketch of the magnetically driven fireball
model. Millisecond pulsar in the center of γ-optically thick region,
Poynting flux of anti-parallel magnetic field, reconnection of the
field in the γ-optically thin region. An afterglow is produced in the
framework of relativistic shock wave in the interstellar medium.

Power Density Spectrum
We have done an analysis of 10 long multi-peak GRBs the

BATSE triggers 1440, 1676, 2156, 2856, 6472, 7906, 7994, 8001,
8026 and 8036 (BATSE). We subtracted white noise and we show
that the slope of Fourier power density spectrum (PDS) of these
GRBs is closed to Kolmogorov turbulent spectrum −5/3, typical
for MHD turbulence and magnetic reconnection. High diversity
of peaks in the lightcurve yields that the stochastic process we
encounter works near the critical regime.

Figure 2: Example of the PDS analysis for BATSE trigger 1676.
The fitted slope gives the value of −5/3.
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