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ABSTRACT

This paper evaluates a dynamically and structurally stable size for Asteroid (216) Kleopatra. In particular, we
investigate two different failure modes: material shedding from the surface and structural failure of the internal
body. We construct zero-velocity curves in the vicinity of this asteroid to determine surface shedding, while
we utilize a limit analysis to calculate the lower and upper bounds of structural failure under the zero-cohesion
assumption. Surface shedding does not occur at the current spin period (5.385 hr) and cannot directly initiate the
formation of the satellites. On the other hand, this body may be close to structural failure; in particular, the neck
may be situated near a plastic state. In addition, the neck’s sensitivity to structural failure changes as the body size
varies. We conclude that plastic deformation has probably occurred around the neck part in the past. If the true
size of this body is established through additional measurements, this method will provide strong constraints on the
current friction angle for the body.
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1. INTRODUCTION

Asteroid (216) Kleopatra, classified as an M-type in the
Tholen (1984) taxonomy or as a Xe-type in the Bus & Binzel
(2002) taxonomy, has been of interest for a few decades due to
its odd shape and fast spin rate. It orbits in the main belt, and
asteroids of this type have not been targeted yet; therefore, this
asteroid is not well understood.

1.1. Observational Studies for Asteroid (216) Kleopatra

We have significant information on (216) Kleopatra including
the shape (Ostro et al. 2000), the spin period (5.385 hr,
Magnusson 1990), and the mass (4.64×1018 kg, Descamps et al.
2011). Not as certain, and subject to different interpretations, is
its total size.

Past studies have investigated this asteroid’s shape by dif-
ferent observation techniques. From light-curve observations,
Scaltriti & Zappala (1978) confirmed shape elongation of this
asteroid and small differences of the magnitudes at the max-
ima and the minima (see Figure 4 in their paper). They pointed
out that those differences came from either different reflectivity
or a shadowing effect. Weidenschilling (1980) estimated (624)
Hektor as a binary asteroid whose components are nearly in
contact, considering a hydrostatically stable equilibrium shape.
Then, he applied this technique to (216) Kleopatra, which has
a (624) Hektor-like light curve, and showed that an amplitude
of 3.3 mags slightly exceeds the value of a contact binary, but a
contact binary model with its spin period recovers a reasonable
density of 3.9 g cm−3. Light-curve observations by Zappala
et al. (1983) revealed that a triaxial ellipsoid model fits their
observations. On the other hand, Cellino et al. (1985) found that
a binary model is compatible with their light-curve data. They
also pointed out that the amplitude of 0.9 mag by Zappala et al.
(1983) is an estimation, while the amplitude of this asteroid
highly depends on the phase. Occultations by Dunham et al.
(1991) estimated the size as dimensions of 230 km by 55 km.
Furthermore, Mitchell et al. (1995) performed radar observa-
tions; however, although they obtained Kleopatra echoes which

are similar to those of bifurcated asteroid (4769) Castalia, their
coarse data set precluded them from determining the shape.
They also attempted to detect the shape from occultation data;
however, since the model used was simplistic, they could obtain
no evidence for a bifurcation.

From comprehensive radar observations, Ostro et al. (2000)
constructed a three-dimensional bi-lobed polyhedral shape
model with dimensions of 217 km by 94 km by 81 km, al-
though they indicated that the absolute size uncertainty was up
to 25%. On the other hand, from the Fine Guidance Sensors
(FGS) aboard the Hubble Space Telescope (HST), Tanga et al.
(2001) confirmed that their shape model is consistent with radar
observations by Ostro et al. (2000).

Later studies compared their observation analyses with the
Ostro et al. (2000) model. Hestroffer et al. (2002a) showed
that a larger and more elongated model is consistent with the
occultations as well as the photometric and interferometric
HST/FGS results. Adaptive-optics observations by Hestroffer
et al. (2002b) showed that their model is consistent with the
Ostro et al. (2000) shape model, although these observations
could not rule out the possibility that this asteroid is a binary
asteroid. Takahashi et al. (2004) performed light-curve simu-
lations based on the binary model by Cellino et al. (1985),
the contact binary model by Tanga et al. (2001), and the poly-
hedron model by Ostro et al. (2000) to report that while the
binary model and the contact binary model fit their light-
curve simulations, the Ostro et al. (2000) shape model could
not. It is worth noting that for simulations using the Ostro
et al. (2000) shape model, they used the size estimated by
Ostro et al. (2000), which may be smaller than the actual
size.

From near-infrared adaptive-optics observations, Descamps
et al. (2011) calculated the mass as 4.64 × 1018 kg from the
mutual gravitational interaction between (216) Kleopatra and
its satellites. Kaasalainen & Viikinkoski (2012) attempted to
construct a new shape model, using multiple observational
data (photometry, adaptive optics, occultation timings, and
interferometry); however, they mentioned that the data were
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Figure 1. Relation between the size scale and the density. Given the mass of
4.64 × 1018 kg by Descamps et al. (2011) and the shape by Ostro et al. (2000),
the curve describes the ideal density as a function of the size scale. The actual
density and the size scale should be on this curve. The error bars are observation
values by Ostro et al. (2000), Descamps et al. (2011), and Marchis et al. (2012).
Note that Marchis et al. (2012) did not take into account the shape modification
for their estimation (F. Marchis 2013, private communication).

(A color version of this figure is available in the online journal.)

not compatible and thus further analyses are necessary. We look
forward to their new shape model.

Ostro et al. (2000) estimated the equivalent diameter3 as
108.6 km by radar observations and the surface bulk density
as 3.5 g cm−3 from the surface reflectivity. Note that the latest
version of the shape model provides a mass of 7.09 × 105 km3,
which is equal to an equivalent diameter of 111.1 km. Tedesco
et al. (2002) reported the IRAS equivalent diameter as 135.07 km,
while the estimation by Descamps et al. (2011) is consistent
with the Tedesco et al. (2002) size. On the other hand, from
observations with Spitzer/IRS, Marchis et al. (2012) derived
the equivalent diameter as 152.5 km by using the Near-Earth
Asteroid Thermal Model (we referred to Table 5 in their paper).
These papers indicate that the size of (216) Kleopatra is not
well understood. Figure 1 shows the comparison between the
estimated size scale and the bulk density. Scale size means an
equivalent diameter relative to that of the Ostro et al. (2000)
size, i.e., 7.09 × 105 km3. The Ostro et al. (2000) size is 1.00,
the Descamps et al. (2011) size is 1.22, and the Marchis et al.
(2012) size is 1.37. For Ostro et al.’s (2000) estimation, we only
show the error bar of the size scale (the region of the horizontal
axis). Note that the Ostro et al. (2000) density is based on their
surface reflectivity estimation.

From these papers, it seems that the Ostro et al. (2000) shape
has been confirmed by other teams but that the size has not.
This study, therefore, utilizes the Ostro et al. (2000) shape and
keeps its size as a free parameter. Note that although our model
provides insight on a surprisingly important role that the total
size is related to its stability, future measurements will be able
to provide real insight on the strength of this body by using our
current analysis.

1.2. Theoretical Studies of the Internal Structure
of a Rotating Ellipsoid

Theoretical studies of the internal structure of a rotating
triaxial ellipsoid have been of interest for a long time. In
particular, the elastic stresses have been discussed for more than

3 An equivalent diameter is a diameter of a sphere with the same volume as
the shape.

100 years. Chree (1889) provided a complete elastic solution
for a rotating sphere in terms of polar coordinates, although
Chree (1891) pointed out that an application of the Chree (1889)
theory to the Earth may be limited because the dependency of
the initial internal stress state on the history causes difficulty in
determining the ellipticity. Love (1944) discussed this point in
detail4 and avoided this difficulty by assuming that a rotating
body is homogeneous and incompressible. Dobrovolskis (1982)
provided an elastic solution in Cartesian coordinates with a
nearly incompressible Poisson’s ratio of ν = 0.46, but gave
the comment that this Poisson’s ratio eases the difficulty for the
sudden collapse of the surface due to turning on the self-gravity;
this situation may be unrealistic. Washabaugh & Scheeres
(2002) focused on the elastic energy of a rotating ellipsoid;
they found that the stress state in the compressible case can
relax around the lowest elastic energy point more easily than
that in the incompressible case. Kadish et al. (2008), on the
other hand, investigated internal elastic stresses of a uniformly
rotating self-gravitating accreted ellipsoid.

On the contrary, approaches using plastic theory are relatively
new. Deriving a general solution of the internal stress on the
zero-cohesion assumption with regard to the Mohr–Coulomb
(MC) yield criterion, Hosapple (2001) found that for a uniformly
rotating ellipsoid, the upper-limit load and the lower-limit load
are identical. Holsapple (2004) proposed new definitions of
local stability of shapes and applied this stability condition
to a uniformly rotating solid ellipsoid. On the other hand, in
the case of a rod, a disk, and an ellipsoid, Holsapple (2008)
confirmed that an actual failure occurs between the lower- and
upper-limit loads. Holsapple (2010) derived deformation paths
of an ellipsoid due to a YORP-induced spin. His result was
consistent with numerical simulations by Sanchez & Scheeres
(2012). Using a plastic material condition with regard to
the Drucker-Prager yield criterion, Sharma (2010) formulated
equilibrium shapes of rubble-pile binaries and investigated the
current material properties of contact binary asteroids. In this
experiment, he modeled (216) Kleopatra as a contact binary and
mentioned, “We will model Kleopatra as a congruent contact
binary with prolate ellipsoidal members. We thus ignore the
“bridge” connecting the binary’s members, thereby assuming
that the bridge’s internal strength and mass are negligible.”

1.3. Outline of the Present Study

Our goal here is to investigate the failure mode that (216)
Kleopatra most likely experiences and to evaluate a structurally
stable size in the hope of finding constraints on and predictions
of what its current size should be. The spin rate by Magnusson
(1990), the shape model by Ostro et al. (2000), and the mass by
Descamps et al. (2011) are considered to be constant properties,
while the size is varied for determining the stable size. This paper
discusses two possible failure modes: material shedding from
the surface and structural failure due to plastic deformation.

The surface-shedding condition is given by using zero-
velocity curves. This technique allows us to visualize allowable
and non-allowable regions of orbital motion of a massless
particle about the primary and its dynamical equilibrium points.
It is also interesting that surface shedding initiates the formation
of the satellites. According to Descamps et al. (2011), the
satellites are formed by material shedding. We develop a model
used for predicting whether or not these satellites result from
surface shedding.

4 See Articles 75 and 176 in Love (1944).
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Figure 2. Projection of (216) Kleopatra’s shape model by Ostro et al. (2000).
This shape model consists of surface points (vertices) and the order of surface
elements (faces). The plot shows the vertices in a Cartesian coordinate frame.
The upper plot shows the projection onto the x − y plane, while the lower plot
is onto the x − z plane. Note that x, y, and z lie along the minor, intermediate,
and major principal axis, respectively. The size scale of these plots is adjusted
so as to be the same as 1.22, i.e., the Descamps et al. (2011) size.

(A color version of this figure is available in the online journal.)

On the other hand, the structural-failure condition is discussed
by a limit analysis. Note that a limit analysis explicitly assumes
that materials are elastic-perfectly plastic, the yield envelope is
smoothly convex, the material behavior follows an associated
flow rule, and the velocity fields are homogeneous. This tech-
nique gives the lower and upper bounds of structural failure.
The lower bound is the condition where a body does not expe-
rience plastic collapse. We obtain this bound by solving elas-
tic solutions with commercial finite element software ANSYS
(Academic Teaching Introductory, 14.0). On the other hand, the
upper bound is the condition where a body must fail plastically
due to its limit load. We calculate this bound for both a whole
volume and a partial volume. To determine plastic failure of a
partial volume, we assume that (216) Kleopatra is symmetric
about the principal axes.

This paper is organized as follows: The first part summarizes
physical properties used in this analysis. The second part
defines surface shedding and structural failure. Third, this paper
introduces the techniques for determining these failure modes.
Then, the surface-shedding condition and the failure condition
are compared. In particular, the satellites’ formation and the
stable-size estimation are the prime results in this paper.

2. KNOWN PHYSICAL PARAMETERS OF
ASTEROID (216) KLEOPATRA

The spin period is fixed at 5.385 hr (Magnusson 1990). On
the other hand, we utilize the shape model by Ostro et al. (2000)
available at http://echo.jpl.nasa.gov/. Figure 2 shows the pro-
jection of the surface points onto the x − y and x − z plane,
where x, y, and z are the minor principal axis, the intermediate
principal axis, and the major principal axis, respectively. The
size in this figure is the same as the estimation by Descamps
et al. (2011). The bifurcation structure can be confirmed in
the middle of the body. Furthermore, the mass is fixed at the
Descamps et al. (2011) mass, i.e., 4.64 × 1018 kg. Those prop-
erties are described in Table 1. This analysis assumes density

Table 1
Constant Properties of (216) Kleopatra

Property Value Units Reference

Mass 4.64 × 1018 kg Descamps et al. (2011)
Period 5.385 hr Magnusson (1990)
Cohesion 0 N m−3 Holsapple (2007)
Shape . . . . . . Ostro et al. (2000)

Table 2
Physical Properties of (216) Kleopatra’s Satellites

Property Satellite (Outer) Satellite (Inner)

Diameter (km) 8.9 ± 1.6 6.9 ± 1.6
Orbital period (days) 2.32 ± 0.02 1.24 ± 0.02
Semi-major axis (km) 678 ± 13 454 ± 6
Orbit pole right ascension (deg) 74 ± 2 79 ± 2
Orbit pole declination (deg) 16 ± 1 16 ± 1

Note. Note that the primary’s spin pole is given by λ = 76◦ ± 3◦ and
β = 16◦ ± 1◦ in J2000 ecliptic coordinates (Descamps et al. 2011).

homogeneity and uniform rotation. In addition, physical param-
eters of the satellites are given by Descamps et al. (2011) (see
Table 2). To discuss dynamics of the satellites, we assume that
the orbital planes of the satellites are parallel to the equatorial
plane of (216) Kleopatra. This result comes from the hypothe-
sis of Descamps et al. (2011); however, it finally allowed them
to derive a relevant orbit solution. Moreover, from the obser-
vation of a stellar occultation by (216) Kleopatra in 1980 (see
Section 3.4 in Descamps et al. 2011), they could interpret the re-
ported secondary event from their simple solution (P. Descamps
2013, private communication).

Material properties are also critical parameters for character-
izing the body behavior, although they are usually unknown. It
is assumed that materials considered here are elastic-perfectly
plastic, the yield envelope is smoothly convex, the material be-
havior follows an associated flow rule, and the velocity fields are
homogeneous. Those assumptions are crucial in using a limit
analysis. Here, the MC yield criterion, a function of a friction
angle and cohesion, is utilized to describe (216) Kleopatra’s
yield condition. This study assumes zero-cohesion. Holsapple
(2007) reported that large bodies such as (216) Kleopatra are
located in the gravity regime in which cohesion is negligible.

3. POSSIBLE FAILURE MODES

3.1. Surface Shedding

Surface shedding is a dynamical-oriented process of small
particles on the surface. The process occurs due to the balance
of the total forces acting on these particles. When the spin
rate is above this condition, any particles that experience
outward forces fly off and do not immediately come back to
the surface (see the right side in Figure 3). At this point, the
internal body should be below structural failure. Note that the
necessary condition for loose material to fly off the surface is
that dynamical equilibrium points reach the surface. Guibout &
Scheeres (2003) gave a similar analysis for the surface stability
of a uniformly spinning ellipsoid. Their results showed that as
the spin period increases gradually, the stable regions move to
the extremities along the minor principal axis. Finally, the saddle
equilibrium points touch the surface and the stable regions
disappear from the extremities. Throughout the text, we call
this condition the “first shedding.”
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Figure 3. Structural failure (left) and surface shedding (right).

(A color version of this figure is available in the online journal.)

Another curious question is the origin of the satellites.
Descamps et al. (2011) estimated the physical properties of
the satellites (Table 2). They also stated, “as to the origin of
Kleopatra’s companions, they could be a by-product of the
spinning-up process leading to mass shedding in orbit.” Is it
possible that surface materials were shed to form the satellites in
the past? To answer this question, we perform a simple analysis,
using the necessary condition of the first shedding.

3.2. Structural Failure

We define the term “structural failure” as the end condition
where plastic flow spreads over a target volume given by ar-
bitrary cuts. The volume experiencing structural failure subse-
quently deforms after the first yield. This statement implies that
plastic flow appearing in a small volume does not always lead to
structural failure. In such a case, when this element is unloaded,
it is sustained by residual stress (Chakrabarty 2006). The present
study focuses on structural failure of a slice perpendicular to the
minor principal axis, because the centrifugal force causes the
strongest tension and shear over this volume. At the structural-
failure condition, the slice initiates a catastrophic breakup of a
body, which is depicted on the left side in Figure 3. Note that the
situation where a body is separated into two components may
need further angular momentum gain from structural failure.

3.3. Relation between Surface Shedding and Structural Failure

Past investigations reported that surface shedding and struc-
tural failure are highly correlated in terms of shapes and material
properties. Eriguchi et al. (1982) pointed out that a symmetri-
cally incompressible fluid becomes a dumbbell shape before
a breakup, while an asymmetrically incompressible fluid be-
comes pear-shaped before mass shedding. Using the N-body
code, pkdgrav, Walsh et al. (2008) and Walsh et al. (2012)
demonstrated that mass shedding from a spherical aggregate
initiates a binary system. Their analysis also revealed that the
(66391) 1999 KW4 type equatorial ridge may be formed by
landslides. On the other hand, using a Soft-Sphere Discrete El-
ement Code, Sanchez & Scheeres (2012) reported that particle-
particle surface friction makes a spherical shape experience sur-
face shedding near its equatorial plane and makes an ellipsoidal
shape break into two components.

4. ANALYSIS METHOD

4.1. Determination of the First Shedding

We note that a classic technique of this type is to compute
the effective gravity slope, which is the direction of the total
force (usually the gravitational acceleration and the centrifugal
acceleration) from the local downward normal. For example,
Ostro et al. (2006) visualized the effective gravity slope of
(66391) 1999 KW4. This technique is useful when one wants to

focus on the surface condition of general shapes. However, the
capability of this technique is limited if one wants to track the
orbital motion in the vicinity of the primary.

The zero-velocity curves allow us to visualize both the
equilibrium points and the constraints on the motion. However,
for the use of this method, there are some cautions that should
be noted.

First, this computation only considers the balance between
the gravitational acceleration and the centrifugal acceleration.
In other words, some attractive and repulsive forces that may be
significant in an asteroid’s environment are not involved in this
analysis. For example, a cohesive force is one of the effective
attractions that may be significant for a small asteroids. On the
contrary, (216) Kleopatra is assumed to be zero-cohesion, so the
zero-velocity curve computation gives reasonable estimations
for the first shedding. Second, even when the spin state is below
the first shedding, there is a phenomenon that ejects materials
into space by some processes, i.e., saltation by landslides.
The present technique does not consider this phenomenon.
As given earlier, surface shedding is the process where any
particles experiencing zero-forces are about to fly off and do
not immediately come back to the surface after lifting off. This
condition is different from the condition where particles are
simply ejected from the surface. Particles ejected below the
first shedding usually come back to the surface immediately
and do not contribute to major collapse processes. Third, we
assume that the original shape does not change. This assumption
implicitly makes the first condition more conservative than
the actual first shedding because shape deformation allows the
equilibrium points to touch the surface at a slower spin period.
Consideration of this effect is beyond the present paper.

4.1.1. Zero-velocity Curves

The motion of a massless particle affected by the gravity from
the primary in the rotating frame is described as

ẍ − 2ωẏ = − Ux + ω2x,

ÿ + 2ωẋ = − Uy + ω2y, (1)

z̈ = − Uz,

where U is the potential and the subscripts of U mean the partial
derivative with respect to the position. The x axis, the y axis, and
the z axis lie along the minor principal axis, the intermediate
principal axis, and the major principal axis, respectively.

The Jacobi integral CJ is given by multiplying each equation
of Equation (1) by x, y, and z, summing these equations, and
integrating:

CJ = ω2(x2 + y2) − 2U − ẋ2 − ẏ2 − ż2. (2)

If ẋ = ẏ = ż = 0, then Equation (2) becomes

CJ � ω2(x2 + y2) − 2U. (3)
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Equation (3) gives constraints on the motion of the particle. The
closed boundary defined by CJ = ω2(x2 + y2) − 2U is the zero-
velocity curve. It also describes the force that points normal
to them and toward the allowable regions. In general cases,
there exist more than four equilibrium points, especially when
the primary is nearly spherical. However, because of its highly
bifurcated shape, (216) Kleopatra only has four equilibrium
points: two of them sitting along the minor principal axis (saddle
points) and the other two lying around the intermediate principal
axis (center points). When one of the equilibrium points first
touches the surface,5 the condition is called the first shedding
condition.

Yu & Baoyin (2012, 2013) investigated the zero velocity
curves and the equilibrium points of (216) Kleopatra using
the same technique that we showed above. We emphasize
that our computation results are different from their results
for the following reason: This paper uses a constant mass
of 4.64 × 1018 kg based on comprehensive observations by
Descamps et al. (2011). On the other hand, although Yu &
Baoyin (2012, 2013) stated that Descamps et al. (2011) obtained
an accurate mass, they utilized the estimations by Ostro et al.
(2000), i.e., a volume of 7.09 × 105 km3 and a density of
3.6 g cm−3. In the Appendix, we describe a computational
comparison between Yu & Baoyin (2012, 2013) and our
calculation.

4.1.2. Numerical Search for the First Shedding

The numerical algorithm by Werner & Scheeres (1997)
will be used to calculate accurate external gravity forces of
a polyhedral model. The following is the numerical scheme:
First, given a spin period, we compute the zero-velocity curves.
Second, we explicitly calculate the equilibrium points in each
iteration. If the zero-velocity curve at the energy level of the
saddle points touches the surface, the iterative scheme stops;
otherwise, the spin period is updated to be faster. At the same
energy level, the saddle points usually reach the surface first.
Since the size is a free parameter, our code searches for this spin
period in the test size scale range (we will show the range later).

4.2. Determination of the Upper and Lower
Bounds of Structural Failure

4.2.1. The Mohr–Coloumb Yield Criterion for Cohesionless Materials

The MC yield criterion for cohesionless materials is given as

g(σ1, σ3, φ) � 0, (4)

where

g(σ1, σ3, φ) = σ1 − σ3

2
sec φ +

σ1 + σ3

2
tan φ (5)

and φ is the angle of internal friction. The principal stresses
are denoted by σi (i = 1, 2, 3), where σ3 < σ2 < σ1. The
MC envelope is identical to the slopes touching the Mohr circle
centered at (σ1 +σ3)/2 with a radius of (σ1 −σ3)/2 (see Figure 4)
in the σ–τ space, where σ is the normal stress and τ is the shear
stress. The slopes go through the origin, if materials are zero-
cohesion. The angle between the slope and the σ axis is identical
to φ. The elastic region is inside the yield envelope, while the
plastic region is on the envelope.6

5 The saddle point always reaches the surface first.
6 This comes from our assumption of elastic-perfectly plastic materials.

Figure 4. Mohr–Coloumb yield envelope identical to the slope touching a Mohr
circle. The inclination depends on a material’s properties. If the stress state is
within the envelope, only elastic deformation occurs. On the other hand, if the
stress is on the envelope, a body experiences plastic strain.

In the three-dimensional principal stress space, the MC
yield envelope is a hexagonal cone opening to the negative
direction along the hydrostatic pressure and is not smooth at
the tension and compression meridians. The smoothness of
the yield envelope plays a role in a limit analysis technique.
However, since our interest is to investigate real shapes, we
barely encounter the stress state at these meridians.

4.2.2. Computation of Body Forces

The gravitational acceleration and the centrifugal acceleration
are calculated by decomposing the original body into smaller
elements: cubes (inside of the body) and polygons (on the
surface). On the assumption that the density is constant and
each element is so small that we can use a simple inverse-square
law for spheres, the gravitational acceleration of element s is
described as

bsg = −Gρ
∑
t �=s

Vt

r3
st

(rs − r t ), (6)

where ρ is the density, G is the gravitational constant, V is
the volume of an element, and element t does not overlap
s. r is a position vector from the origin to an element and
r is the Euclidean norm of r . The centrifugal acceleration is
described as

bsc = −� × � × rs = Ω2

[
xs

ys

0

]
, (7)

where Ω is the spin vector Ω[0, 0, 1]T . The total body force
vector is now given as

bs = bsg + bsc. (8)

The following discussion will use scalar notations bi (i =
1, 2, 3) for the components of the body force vector, instead
of vector notation bs . For computation of the stresses, bi is
substituted into the equilibrium equation, which is given as

∂Tij

∂xj

+ ρbi = 0, (9)

where Tij is a stress component in Cartesian coordinates.
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4.2.3. Limit Analysis

Limit analysis is a technique for calculating the plastic
collapse load at which an idealized body deforms without limit.
Here, an idealized body means that a body is characterized by
(1) elastic-perfectly plastic materials, (2) convex yield criterion,
(3) an associated flow rule, and (4) homogenous velocity fields.
The last idealization allows us to apply average-stress techniques
(shown below) to a determination of the upper bounds by a limit
analysis. Further details of limit analysis can be found in Chen
& Han (1988) and Chakrabarty (2006).

Let us discuss the definition and computation of the lower
bound. According to Chen & Han (1988), the lower-bound
theorem states, “if an equilibrium distribution of elastic stress
can be found which balances the body force in a specific volume
and the applied loads on the stress boundary and is everywhere
below yield, then the body at the loads will not collapse.” This
theorem is interpreted as the condition where there first appears
an element at which the elastic stress reaches the yield. We
solve an elastic solution on commercial finite element software
ANSYS (Academic Teaching Introductory, 14.0). Then, we find
a friction angle such that a stress state first appears on the yield
envelope, i.e., g(σ1, σ3, φ) = 0. This friction angle is always
larger than the actual structural failure.

On the other hand, the upper-bound theorem states, “if
plastic deformation is assumed to be zero on the displacement
boundary, then the loads determined by equating the rate at
which the external forces do work to the rate of internal
dissipation will be either higher than or equal to the actual
limit load.” We utilize the theorem by Holsapple (2008) that
guarantees the equivalence of the upper-bound theorem and
the yield condition of volume-average stresses. This paper uses
two different types of volume-average stresses: the total-volume
stress and the partial-volume stress. The total-volume stress is
the stress averaged over the whole body, which provides global
failure of the body:

T̄ t
ij = 1

V

∫
V

Tij dv = 1

V

∫
V

ρxjbidv, (10)

where i, j = 1, 2, 3; (x1, x2, x3) = (x, y, z); and V describes
the whole volume. This stress was also discussed by Holsapple
(2008). For a real shape, however, the upper condition of this
average stress is usually far away from the actual condition.
For example, the stress state of a bifurcated body may be more
complex than that of a spherical body. The partial-volume stress,
which is newly defined in this paper, is the stress averaged
over an arbitrary slice normal to the minor principal axis (see
Figure 5):

T̄
p

ij = 1

Vp

∫
Vp

ρxjbidv +
1

Vp

∫
Sp

lxjT1idx2dx3, (11)

where l is the direction cosine of the external normal to the cross
section perpendicular to the x axis; l = 1 for the cross section
opening to the positive direction while l = −1 for that opening
to the negative direction. The first term is an integral over the
slice volume, Vp, while the second term is an integral over the
cross sections, Sp. The upper-bound condition by this stress is
closer to the actual structural failure if a slice is properly chosen.

Computation of Equation (10) and the first term of
Equation (11) is straightforward; however, that of the second
term of Equation (11) needs to be explained. If j = 1, then xj
can be treated as a constant value, and the integration becomes

Figure 5. Illustration of the upper bound computation associated with the partial
volume stress. To investigate structural failure of the neck, we consider the slice
in the middle normal to the minor axis.

(A color version of this figure is available in the online journal.)

force balance on the cross sections. This procedure allows us to
fix three out of six stress components. Computational difficulty
of this term appears when j �= 1. This results from the stress
distribution on the cross sections. To avoid this difficulty, we
assume that those three components are zero, using the fact that
(216) Kleopatra is almost symmetric about the principal axes.
After giving all stress components, we calculate the eigenvalues
of this stress tensor to obtain the principal stresses.

The partial-volume stress will be used after the most sensitive
slice to structural failure is determined. We search for the slice,
considering a peak of the minimal principal axis component of
normal stresses averaged over a cross section. The component is
denoted as T̄ a

11. Davidsson (2001) proposed this stress-average
component to determine the failure condition of a biaxial body.
Note that the area-stress technique will be used only for finding
the location of the most sensitive cross section, but not for
determining structural failure. Sharma (2009) reported that T̄ a

11
is identical to the yield condition of the averaged normal stresses
with φ = 90◦.

5. RESULTS

In this section, we show the results given in the range of the
size scale from 1.0 to 1.5. In the following section, we call this
range the test scale range.

5.1. Surface Shedding

5.1.1. First Shedding Condition

As an example, we show the first shedding condition of (216)
Kleopatra with a size of 1.22. Figure 6(a) shows the zero-
velocity curves at the current spin period, while Figure 6(b) is
for the first shedding (2.85 hr). The red dots describe the shape
projection onto the equatorial plane. The contour curves indicate
the same energy levels, while the stars are the equilibrium points:
two saddle points along the minor axis and two center points
along the intermediate axis. In Figure 6(a), a massless particle
on the surface is in the primary’s gravity-dominant region and
cannot lift off because none of the equilibrium points touches the
surface. However, as this asteroid spins faster, the equilibrium
points move to the surface, and the gravity-dominant region
shrinks. Eventually, as seen in Figure 6(b), the saddle point
on the left side reaches the surface at 2.85 hr. In addition,
the saddle point on the right side is also about to touch the
surface.

Figure 7 indicates the relation between the first-shedding
condition (the dotted line) and the current spin period (the
dashed line). To compare the first shedding with structural
failure, we also plot the upper bound of structural failure of
the whole volume (discussed later) at friction angles of 0◦, 45◦,
and 90◦ by solid lines. If the spin state is below these lines,
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Figure 6. Zero-velocity curves for a size scale of 1.22, i.e., the Descamps et al.
(2011) size. (a) shows the curves for the current spin period, i.e., 5.385 hr, and
(b) describes those for a spin period of 2.81 hr at which the equilibrium point
on the left reaches the surface.

(A color version of this figure is available in the online journal.)

the body must experience structural failure. It is found that the
first-shedding condition occurs with a much faster spin period
than structural failure. Also, the current spin period is not faster
than the first-shedding condition in the test scale range.

It is worth noting that although the first shedding is obtained
numerically, the force balance between the gravitational and
the centrifugal force, i.e., rOstroαΩ2

cr ∝ GM/(rOstroα)2, gives an
analytical trend as

Tcr ∝ α3/2, (12)

where rOstro is the distance between the origin of the primary
and the surface of the Ostro et al. (2000) size, M is the mass of
the primary, α is the size scale, Ωcr is the first shedding, and
Tcr = 2π/Ωcr .

Current spin period 5.385 hr
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Figure 7. First shedding (the dotted line) and the yield condition by the total-
volume stresses (the solid lines) as a function of the size scale. φ is the angle of
friction. The first shedding is always below structural failure.

5.1.2. Hypothesis of Satellites’ Origin

As stated by Descamps et al. (2011), the satellites are
considered byproducts of a spin-up process leading to material
shedding. Here, we use the technique for determining the first
shedding; however, since we have already seen the zero-velocity
curves of this asteroid earlier, we only track the location of the
equilibrium points. The physical properties of these satellites
are given in Table 2. Also, it is assumed that their orbital planes
are parallel to the equatorial plane of (216) Kleopatra, as given
by Descamps et al. (2011).

The satellites are supposed to be small uniformed spheres.
We call these satellites the test bodies. Initially, the test bodies
are supposed to be located at the edges along the minor principal
axis. The initial spin period is given by conservation of the total
angular momentum. Here, we neglect any other mass ejections’
processes in the past for this consideration. On the assumption
of zero eccentricity, the initial spin rate of the primary ω0 can
be written as

ω0 = Izωc + m1R1Ω2
1 + m2R2Ω2

2

Iz + (m1 + m2)r2
Ostroα

2
, (13)

where mi and Ri (i = 1, 2) are the mass and the current distance
from the center of mass of the primary, respectively; Iz is the
moment of inertia of the z axis of the primary; and ωc is the
current spin rate. Substitutions of the physical values in Table 2
into this equation determines the initial spin period as 5.086 hr.

In this model, if the lifting condition satisfies, it is possible for
the test bodies to initiate the satellites’ formation. Technically,
this condition is equivalent to the condition where the saddle
points are closer to the surface than the center of mass of the test
bodies at this spin period. However, in this analysis, to make a
stronger condition, we define that the test bodies lift off when
the distance between the saddle points and the surface is less
than the sum of these bodies’ diameters, i.e., 15.8 km. Figure 8
shows the distance of the saddle points from the surface, deqm
(the solid lines), and a distance of 15.8 km (the dashed line).
Since, as shown earlier, surface shedding may occur on the left
and right sides at almost the same rotation period, we track the
distances of both points. The saddle point on the left side is
always closer to the surface. The result shows that in the test
scale range, the distances of the saddle points on both sides
from the surface are never shorter than 15.8 km, and the test

7
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Figure 8. Relation between the distance of the equilibrium points from the
surface (the solid lines) and the minimal distance where material shedding does
not occur, i.e., 15.8 km (the dashed line). This plot shows the case of a spin
period of 5.086 hr. The period is obtained by Equation (13). The necessary
condition for material shedding to originate the satellites is that the equilibrium
point on the left goes below the minimal distance.

bodies cannot lift off the surface. It implies that the satellites
do not result from simple fission of the original system but
may involve other processes such as the re-accumulation of an
impact-generated debris disk.

5.2. Structural Failure as a Function of Size

First, we discuss the lower bound. Since elastic solutions
are independent of Young’s modulus, we set the modulus as
10 GPa, which may be larger than usual geological materials
on the Earth. On the other hand, different Poisson’s ratios
provide different solutions; therefore, we investigate two cases:
Poisson’s ratio = 0.2 and 0.333. In the experiments, we
investigate elastic solutions of 25 different size scales in the
test scale range, i.e., α = 1.00, 1.02, 1.04, ..., 1.50. The result
shows that in all the size scales, the solution includes elastic
states which violate the MC condition even when φ = 90◦. It
implies that (216) Kleopatra has plastic deformation of some
small elements somewhere in all the test scale ranges. Again,
this does not mean that it experiences plastic failure.

Figures 9–11 show the elastic solutions which exceed φ =
50◦ (the stars) and those which cannot be in the elastic region
even when φ = 90◦ (the circles). The dots indicate the shape
of (216) Kleopatra. In addition, these figures describe the cases
α = 1.00, α = 1.30, and α = 1.50, respectively. Each case
is shown by the two Poisson’s ratios: (1) 0.2 and (2) 0.333.
It is found that in all the cases, although different Poisson’s
ratios give different solutions, the results are not significantly
different. In Figure 9, there are the stars around the surface of
the neck, while the circles are scattered on the whole surface. In
Figure 10, the stars appear around the surface of the neck, but
on the opposite side of α = 1.00. On the other hand, as shown
in Figure 11, the case α = 1.50 indicates that the stars and the
circles are condensed around the neck. From this analysis, it is
found that (216) Kleopatra is always above the lower bound of
structural failure in the test scale range.

The upper-bound condition of the partial volume is calculated
by the following: The most sensitive cross section to structural
failure is evaluated by using T̄ a

11. Figure 12 shows the stress
component in the vertical axis and a scaled length normalized
by the equivalent radius in the horizontal axis. The body size
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Figure 9. Elastic solutions for α = 1.00. The stars describes the stress states
at which the friction angle exceeds 50◦. The circles mean that the stress states
cannot be in the elastic region, even when the friction angle is 90◦. The dots
describe the shape of (216) Kleopatra. (a) indicates the solution for Poisson’s
ratio = 0.2, while (b) shows the solution for Poisson’s ratio = 0.333. It is
found that different Poisson’s ratios give different results, but they have similar
features. The stars mainly appear around the surface of the neck, while the
circles are scattered on the whole surface.

along the minor principal axis ranges from −2.1 to 1.9. Later,
any lengths are introduced by the normalized length. When
α = 1.00, since the body density is large, the body force
is dominated by the self-gravity. As the size scale increases,
however, the magnitude of the centrifugal force increases, and
there appears a stress peak in the middle. At α = 1.30, the peak
reaches the zero-tension, and the tension region starts spreading
over the body. This result implies that the neck part located in the
middle is quite sensitive to structural failure. In the following,
to focus on the neck, we define the partial volume by the cuts at
−0.21 and 0.58.

Since (216) Kleopatra is considered a cohesionless body, only
the angle of friction is a free parameter. Here, we obtain the
friction angle using the upper-bound techniques. This friction
angle is identical to the minimal friction angle at which the
body can keep the original shape. More precisely, if the actual
friction angle of the total (partial) volume is lower than the
minimal friction angle, the total (partial) volume should fail.
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Figure 10. Elastic solutions for α = 1.30. We use the definitions given in
Figure 9. The stars assemble on the surface of the neck; however, in contrast to
α = 1.00, their locations are on the opposite side of the neck. The circles also
appear near the stars.

Since the most sensitive part is chosen as the partial volume,
the actual friction angle should be always above the minimal
friction angle of the partial volume. Figure 13 shows the minimal
friction angles of the total volume and that of the partial volume
as functions of the size scale α. The minimal friction angle of
the total volume keeps small angles in small scales and increases
gradually. Also, when the size scale is 1.24, there is the minimal
value ∼1◦. On the other hand, the minimal friction angle of
the partial volume is relatively high in a small scale, ∼43◦ at
α = 1.0, but small around the middle, ∼14◦ at α = 1.28.
Then, when the size scale is larger than 1.28, this friction angle
increases dramatically. Since the minimal friction angle of the
partial volume is always larger than that of the total volume, it
can be concluded that the neck part is more sensitive to structural
failure than the whole body.

6. DISCUSSION

Before the discussion, we introduce a possible friction angle
of (216) Kleopatra. Scott (1963) showed that friction angles
depend on a materials’ porosity (see Figures 7–5(a)–(c) on
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Figure 11. Elastic solutions for α = 1.50. Again, we use the definitions given
in Figure 9. In this case, the stars and circles spread out over the whole neck.
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Figure 12. Minor-axis component of the averaged normal stresses as a function
of locations of the normal cross sections. The negative value is compression,
while the positive value is tension. Note that using the normalized length, we
adjust the locations of the cross section so that the bodies with different size
scales match their edges equally. The normalized length is given by dividing the
location by the equivalent radius. When α = 1.3, the part around the neck starts
experiencing zero tension, which is the most sensitive to structural failure.

p. 309). On the other hand, according to Ostro et al. (2000),
(216) Kleopatra’s surface properties are comparable to lunar
soil. They also stated that the estimated bulk density, 3.5 g cm−3,
is consistent with either a solid enstatite-chondritic surface or
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Figure 13. Minimal friction angles of the total-volume stress and partial-volume
stress (the solid lines) and the assumed Kleopatra’s friction angle of 32◦ (the
dashed line). The shaded region where the actual friction angle is larger than
the minimal friction angle associated with the partial-volume stress is allowable
for the existence of the current shape.

(A color version of this figure is available in the online journal.)

a metallic surface with porosity of <60%.7 We assume this
asteroid’s porosity as 44%, the mean value for lunar soil (which
ranges from 33% to 55%). Figures 7–5(a) on p. 309 by Scott
(1963) shows that at a porosity of 44%, an allowable friction
angle is 32◦. We suppose that the body has a uniform structure
as well. From these facts and assumptions, in the following
discussion, the friction angle of (216) Kleopatra is fixed at 32◦.
This implies that the body fails when the minimal friction angle
is greater than 32◦.

Interestingly, Figure 13 reveals that the allowable size scale
lies between 1.18 and 1.32. This fact implies that if the size scale
is not in this range, (216) Kleopatra cannot hold the current neck
part. At a friction angle of 15◦, the lowest minimal friction angle
of the partial volume, where the size scale is 1.15, this asteroid
encounters the most relaxed configuration. However, it does
not mean that this asteroid’s stress should be at this point. The
important point here is that only the range between 1.18 and
1.32 is structurally allowable. Since the bulk density is from 2.9
to 3.8 g cm−3, our estimation is consistent with Ostro et al.’s
(2000) surface density estimation and with Descamps et al.’s
(2011) bulk density estimation. From this result, the nominal
size estimated by Ostro et al. (2000) is somewhat small, while
that by Marchis et al. (2012) is relatively large. On the other
hand, the estimation by Descamps et al. (2011) corresponds to
our size evaluation. Note that their error estimations include our
result. If the size is assumed to be the Descamps et al. (2011)
size, the minimal friction angle is no less than 27◦, which is
within the usual friction angles of geological materials (from
30◦ to 45◦).

(216) Kleopatra may be sitting near plastic structural failure
at the current spin period because the stable region for the
current shape, especially the neck, is relatively small. Pravec
et al. (2007) showed the spin barrier as a function of light curve
amplitude (which is a proxy for asteroid equatorial elongation).
Especially, in Figure 2 in their paper, the theoretical curves
defined for ellipsoidal figures and for a friction angle of 90◦
indicate that the barrier shifts to lower spin rates for complex
shapes and lower friction angles. Our result is consistent with

7 As discussed earlier, given the Descamps et al. (2011) mass, the Ostro et al.
(2000) density may be more than 6.0 g cm−3.

their interpretation. Therefore, the neck may play an important
role in sustaining the whole body; this asteroid may not be
a contact binary composed of two bodies that loosely rest on
each other. It means that this part might have been stretched
plastically to get the current shape. It can be imagined that the
narrow neck part is the byproduct of plastic deformation, and the
original shape should have a wider neck and be less elongated
than the current shape. We emphasize anew that neither a
Yarkovsky-O’Keefe-Radzievskii-Paddack (YORP) effect nor
tidal perturbation have a significant effect on the spin-state
change of this asteroid.

In contrast to plastic failure, material shedding cannot occur
at the current spin period. As shown in Figure 7, material
shedding does not happen even if this asteroid spins up to
the condition where a material with a friction angle of 90◦
encounters structural failure of the whole body. In addition,
Figure 8 shows that the distance between the surface and the
equilibrium points does not reach the size of these satellites in
the test scale range.

7. CONCLUSION

This paper explored the dynamical and structural stability
of the shape of Asteroid (216) Kleopatra at the current spin
period, varying the shape size. We separately investigated the
material shedding condition and the structural failure condition.
To find the condition where material shedding occurs first, we
constructed the zero-velocity surfaces to find the dynamical
equilibrium points and the constraints of the motion. The result
shows that (216) Kleopatra cannot experience material shedding
at the current spin period, and the satellites orbiting about the
primary do not result from the shedding process. On other hand,
to determine the lower and upper bounds of structural failure,
we utilized limit analysis. It is found that the body, especially
the neck part, is very sensitive to structural failure. Using elastic
solutions, we revealed that (216) Kleopatra is always above the
lower bound in the test scale range. Referring to Scott (1963) to
determine the friction angle of (216) Kleopatra as 32◦, we found
that only the size scale between 1.18 and 1.32 allows the body
to be structurally stable. Our study agreed with the Descamps
et al. (2011) size estimation.

The authors thank Dr. Keith A. Holsapple for his dedi-
cated technical advice. The authors are also grateful to Dr.
Pascal Descamps for the information about the estimation for
the orbits of the satellites, Dr. Petr Pravec for useful discus-
sion about the spin barrier for large elongated asteroids, Dr.
Mikko Kaasalainen for useful discussion about their model of
Kleopatra, and Dr. Frank Marchis for useful discussion about
their estimation techniques.

APPENDIX

COMPARISON OF THE EQUILIBRIUM POINTS
BETWEEN YU & BAOYIN (2012, 2013) AND

OUR COMPUTATION

We show a comparison between Yu & Baoyin (2012, 2013)
and our computation in Table 3. Note that we recalculate their
results of the equilibrium points by using our code, so these
values are slightly different from those by Yu & Baoyin (2012,
2013). This difference results from computational thresholds in
our code. As mentioned in the main text, we assume that the
mass is fixed at 4.64 × 1018 kg. If we choose the Ostro et al.
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Table 3
Comparison of the Equilibrium Points by Yu & Baoyin (2012, 2013)

and Our Computations

Property Yu & Baoyin (2012, 2013) Our Computation

Volume (km3) 7.09 × 105 7.09 × 105

Density (g cm−3) 3.6 6.5
Mass (kg) 2.55 × 1018 4.64 × 1018

Equilibrium (km)

x 1.43 × 102 1.66 × 102

E1 y 2.44 2.27
z 1.18 7.91 × 10−1

x −1.45 × 102 −1.67 × 102

E2 y 5.19 4.97
z −2.72 × 10−1 −5.47 × 10−2

x 2.22 1.26
E3 y −1.02 × 102 −1.31 × 102

z −2.72 × 10−1 1.71 × 10−1

x −1.17 −1.59
E4 y 1.01 × 102 1.30 × 102

z −5.46 × 10−1 −3.32 × 10−1

Notes. Notations Ei (i = 1, . . . , 4) are based on Table 1 in Yu & Baoyin (2012).
Note that we recalculate their results by using our code, but they are slightly
different from their values in Table 1 in Yu & Baoyin (2012). This arises from
the convergent thresholds defined in our code.

(2000) size, the density should be ∼6.5 g cm−3. Therefore, the
equilibrium points from our code are farther away from the
surface than those from Yu & Baoyin (2012, 2013).
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