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Abstract

We construct an advanced model for interacting multiple stellar systems in which we compute all trajectories with
a numerical N-body integrator, namely the Bulirsch–Stoer from the SWIFT package. We can then derive various
observables: astrometric positions, radial velocities, minima timings (TTVs), eclipse durations, interferometric
visibilities, closure phases, synthetic spectra, spectral energy distribution, and even complete light curves. We use a
modified version of the Wilson–Devinney code for the latter, in which the instantaneous true phase and inclination
of the eclipsing binary are governed by the N-body integration. If all of these types of observations are at one’s
disposal, a joint χ2 metric and an optimization algorithm (a simplex or simulated annealing) allow one to search for
a global minimum and construct very robust models of stellar systems. At the same time, our N-body model is free
from artifacts that may arise if mutual gravitational interactions among all components are not self-consistently
accounted for. Finally, we present a number of examples showing dynamical effects that can be studied with our
code and we discuss how systematic errors may affect the results (and how to prevent this from happening).

Key words: binaries: close – binaries: eclipsing – methods: numerical – techniques: interferometric – techniques:
photometric – techniques: radial velocities

1. Introduction

Traditional models of eclipsing binaries often have to
account for additional external bodies, particularly a third
light, which makes depths of primary and secondary minima
shallower; a light-time effect, which causes periodic variations
on O–C diagrams; a precession of the argument of perias-
tronω, which shifts the secondary minimum due to perturba-
tions by the 3rd body; or changes of the inclinationi with
respect to the sky-plane, otherwise known as disappearing
eclipses.

While analytical theories exist for descriptions of dynamical
perturbations in triple stellar systems and corresponding transit
timing variations (also known as TTVs, ETVs; see, e.g.,
Brown 1936; Harrington 1968; Söderhjelm 1975; Breiter &
Vokrouhlický 2015; Borkovits et al. 2016), we prefer a more
general approach—to account for all observational data; or at
least as much as feasible. Thus, our aim is to incorporate
astrometric or speckle-interferometric positions, radial velocities,
minima timings, eclipse durations, spectro-interferometric
visibilities, closure phases, synthetic spectra, spectral energy
distribution, and light curves. At the same time, we do not want
to be limited by inevitable approximations of the analytical
theories (the N-body problem is not integrable) and the only way
out seems to be an N-body integrator (as in Carter et al. 2011).

Another factor is that we cannot use analytical photometric
models (like those used for exoplanet transits; Mandel &
Agol 2002; Carter et al. 2008; Pál 2012) because the respective
simplifications are not acceptable for stellar eclipses or for
ellipsoidal variations outside eclipses.

In principle, our approach should be rather straightforward:
we merge two codes into a single one; namely the Levison &
Duncan (1994) SWIFT code, and the Wilson & Devinney
(1971) WD code. In practice, a lot of work has to be done;
because both of them have to be modified, we need to extract
and derive observable quantities, read observational data, and
check them by means of χ2 statistics. Then, we need to run a
minimization algorithm on top of them.

Even though we do not present new observational data here,
there is one recent application of our N-body model to the ξ
Tauri quadruple system that was described in a great amount of
detail in Nemravová et al. (2016). Moreover, there is a
comparison with a number of traditional, observation-specific
models. In this “technical” paper, we prefer to show mostly
results of numerical simulations, or even negative results
contradicting the observations, to demonstrate the sensitivity of
our model.
We have a few motivations to do so: (i)no complete and

fully self-consistent N-body model currently exists that can
account for all these observational constraints; (ii)we
improved the model significantly compared to Nemravová et
al., as we can now also fit complete light curves, and,
optionally individual spectra (to be matched by synthetic ones);
(iii)the previous paper was a bit lengthy and there was simply
not enough room for a more technical description of our code;
and (iv)we have to discuss the role of systematics, an
experience gained during modeling of real multiple stellar
systems.

2. Model Description

Let us begin with a description of the numerical integrator
and the photometric model; then we present principal
equations, a definition of the χ2 metric used to compare the
model with observational data, and alist of dynamical effects
that can be modeled.

2.1. Numerical Integrator

We use the Bulirsch–Stoer numerical integrator (Press
et al. 1999), with an adaptive time step, controlled by a unit-
less parameter òBS. The integrator sequentially divides the time
step Δt by factors 2, 4, 6, ..., checks if the relative difference
between successive divisions is less than òBS and then performs
an extrapolation Δt→0 by means of a rational function (see
Figure 1). If the maximum number of divisions nmax=10 is
reached, the basic time step Δt has to be decreased, with
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another maximum number of trials ntry=30. We recall this
well-known principle here, as it is important to always
understand the principles and limitations of the numerical
methods in use. This kind of integrator is quite general and
there are no restrictions for magnitudes of perturbations, so we
can handle Keplerian orbits, tiny N-body perturbations, or even
violent close encounters. Even though it is not symplectic, it
does not suffer from an artificial periastron advance. On long
timescales, it is worthwhile to check the energy conservation
and eventually decrease òBS, perhaps down to10−11.

Apart from the internal time step, a user can choose the output
time step Δtout. The time stepping was adapted so that we first
prepare a list of “times of interest” (corresponding to all
observations) and the integrator outputs coordinates and
velocities at exactly these times. Consequently, the need for
additional interpolations is eliminated, except for minima timings
and eclipse durations, where a linear interpolation from two close
neighboring points separated by the expected duration is used,
and optionally one can use binning for light curves (see below).

2.2. Photometric Model

The only restriction for the geometry of the stellar system is
that only bodies 1 and 2 may be components of an eclipsing
binary (or an ellipsoidal variable). Nevertheless, there can be
any number of additional bodies, which do contribute to the
total light, but we do not compute eclipses for them.

For light-curve computations, we use the WD 2005 version,
in order to produce compatible and comparable results to
Phoebe 1.0 (Prša & Zwitter 2005), but we plan to upgrade in the
future. In brief, the WD code accounts for: blackbody radiation
or the Kurucz atmospheres, bolometric limb-darkening, gravity-
darkening, reflection, an axial rotation, or the Rossiter–
McLaughlin effect. This is a relatively complex photometric
model (more complex than analytical models of Mandel &
Agol 2002; Carter et al. 2008). We use no spots or circumstellar
clouds in this version. Usually, the code is called with mode0
(no constraints on potentials) or2 (the luminosity L2 of the
secondary is computed from the temperature T2). Note that a
number of parameters in the lc.in input file are useless (e.g.,
orbital elements, precession and period rates, luminosities,
potentials etc.) because they are driven from elsewhere.

To speed up light-curve computations, we can use a binning
of times Δtbin and then linearly interpolate light-curve points to
the times of observations. For high-cadence data, we can
possibly gain a factor of 10 or 100 speed-up this way, but we
have to be sure there is no physical process in our model that
could change magnitudes on a timescale shorter thanΔtbin.

2.3. Principal Equations

Principal equations of our N-body model can be summarized
as follows (the notation is described in Table 1): the equation of
motion1
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Apart from trivial sky-plane positionsxbi, ybi and radial
velocitiesvzbi, we can derive a number of dependent quantities,
such as mid-eclipse timings (including light-time effects)
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Figure 1. A principle of the Bulirsch–Stoer integrator. There is the timet as
anindependent variable on the abscissa and one of the coordinates xb on the
ordinate. A series of integrations with decreasing time steps D = D Dt , ,i
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2 4
D ,...t

6
is performed and then extrapolated for Δt → 0 using a rational function.

At the same time, relative differences between successive iterations have to be
smaller than òBS.

1 The program, including sources and example input data, is available
at http://sirrah.troja.mff.cuni.cz/~mira/xitau/.
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alimb-darkened complex visibility (Hanbury Brown et al. 1974;
pqQ = +u vj

2 2 , α=1−ulimb, β=ulimb)

å a b

a b
p

¢ = +

´
Q
Q

+
Q

Q
p

=

-

- +

⎜ ⎟⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

( )

( ) ( )

( )

( )

V u v
L

L

J J
e

,
2 3

2
;

8

j

N
j

i ux vy

1 tot

1

1 3 2

3 2
2 j j

bod

a a

with l( )u T g, , log ,j j jlimb eff interpolated from Van Hamme
1993); acomplex triple-product

¢ = ¢ ¢ ¢ - + - +( ) ( ) ( ( ) ( )) ( )T V u v V u v V u u v v, , , ; 93 1 1 2 2 1 2 1 2

the true phase of the eclipsing binary (at a time t modified by
the light-time effects)

j
p

¢ =
ˆ · ˆ
ˆ · ˆ ( )O Y

O X

1

2
arctan ; 10ecl

its inclination

¢ = -( ˆ · ˆ) ( )i O Zarccos ; 11ecl

Kopal potential (for the WD code that outputs relative
magnitudes ¢mV )

W + + + ( ) ( )
r

q

r
q r

1 1

2
1 12j

R
r

Kopal
1 2

3
2

circle ,where
j

12

Î = - = -
+

⎛
⎝⎜

⎞
⎠⎟( )r r r r x

q

q
ycircle, 1, 0, 0 ,

1
, , 0 ;1 2 1 3 1 1

anormalized synthetic spectrum (with appropriate Doppler
shifts)
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or aspectral energy distribution (in any of the UBVRIJHK
bands)
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where the component spectra (both Isyn and Fsyn) can be either
user-supplied or interpolated on-the-fly with Pyterpol (Nemravová
et al. 2016) from AMBRE, POLLUX, BSTAR, OSTAR, or
PHOENIX grids (Lanz & Hubený 2003, 2007; Palacios
et al. 2010; de Laverny et al. 2012; Husser et al. 2013).

Internally, we use a barycentric left-handed Cartesian
coordinate system with xnegative in the right-ascension
direction, ypositive in declination, and zpositive in radial, i.e.,
away from the observer; the units are day, au, au/day and au3/
day2 for the time, coordinates, velocities, and masses, respec-
tively. We also need additional coordinate systems, namely:
Jacobian (for computations of hierarchical orbital elements),
1-centric (for an eclipse detection), 1+2photocentric, or

1+2+3photocentric (for a comparison with astrometric
observations of components 3 and 4).
One may immediately note a minor caveat of our model: the

geometric radius (in Equation (6)), the effective radius (in
Equation (7)), the limb-darkened radius (i.e.,θj in Equation (8)),
and the average radius (used in Equation (12)) are all assumed
to be approximately the same. If this does not hold, it would be

Table 1
Notation Used for Coordinates, Velocities, and a Number of Other Quantities

and Uncertainties That We Use in Our N-body Model

Nbod number of bodies
m mass (GMe units)
=q m

m
1

2
mass ratio

h =
+( )ij

m m

m m

j i

j i
2 symmetrized mass ratio

kL Love number
ωrot rotational angular velocity
xb, yb, zb barycentric coordinates
vxb, vyb, vzb barycentric velocities
xh, yh, zh 1-centric coordinates
vxh, vyh, vzh 1-centric velocities
xp, yp 1+2 photocentric sky-plane coordinates
xp3, yp3 1+2+3 photocentric coordinates

=x y,x

da a
h 1-centric coordinates in an angular measure

ˆ ˆ ˆX Y Z, , unit vectors aligned with 1+2 eclipsing pair
= -ˆ ( )O 0, 0, 1 observers direction

γ systemic velocity
vrad observed radial velocity
tecl mid-epoch of an eclipse of 1+2 pair
òecl eclipse duration
L, Ltot component luminosity and the total one
Teff effective temperature
R stellar radius
λ, Δλ effective wavelength and bandwidth
Bλ(T) the Planck function
V complex visibility; squared visibility is ∣ ∣V 2

T3 complex triple-product; closure phase is argT3
u, v projected baselines (expressed in cycles,

l
B )

q = R

d

2 angular diameter

ulimb linear limb-darkening coefficient
d distance to the system
mV magnitude (in V band or another)
m0 zero-point
Iλ, Isyn normalized monochromatic intensity
Fsyn absolute monochromatic flux (in erg s−1 cm−2 cm−1)
FVcalib calibration flux
fV filter transmission coefficient
=g GM

R2 surface gravity, glog in cgs

vrot projected rotational velocity
 metallicity
ssky major, minor uncertainty of the astrometric position,

angular sizes of the uncertainty ellipse
fellipse position angle of the ellipse
R(...) the corresponding 2×2 rotation matrix
σrv uncertainty of the radial velocity
σttv uncertainty of the eclipse mid-epoch timing
σecl uncertainty of the eclipse duration
σvis uncertainty of the squared visibility
σclo uncertainty of the closure phase
σt3 uncertainty of the triple-product amplitude
σlc uncertainty of the light-curve data
σsyn uncertainty of the normalized intensity
σsed uncertainty of the spectral energy distribution
m m,j j

min max minimum and maximum masses
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necessary to add three more equations describing the relations
between them.

2.4. Observational Data

When we compare our model with observations, we can
compute χ2 for astrometric positions, radial velocities, minima
timings (TTVs), eclipse durations, interferometric squared
visibilities, closure phases, triple-product amplitudes, light
curves, synthetic spectra, and spectral energy distribution:
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Again, the quantities are described in Table 1. The indexi
always corresponds to observational data, j corresponds to
individual bodies, and k corresponds to sets of data. The primed
quantities correspond to synthetic data, integrated (or inter-
polated) to the times of observationsti.

We can also add an artificial term,
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to keep the masses mj of the components within reasonable
intervals (e.g., according to spectroscopic classifications of

the components). The high exponent of the arbitrary function
prevents simplex from drifting away from the inter-
val ( )m m,j j

min max .
As usually, observational data have to be in a suitable format

and we provide some example scripts for a conversion or
extraction of data from OIFITS files (Pauls et al. 2005). Note
that one should not use RV measurements when it is possible to
fit the observed spectra with synthetic ones. Similarly, no
minima timings or durations are needed when we have
complete light curves available (cf. Figure 2); and no triple-
product amplitudes ∣ ∣T3 are needed when the same interfero-
metric measurements are used as squared visibilities ∣ ∣V 2. We
emphasize that it is always better to use directly observable
quantities rather than derived ones.
To find a local or a global minimum, we can use a standard

simplex algorithm or simulated annealing (Nelder &
Mead 1965; Press et al. 1999), with the cooling schedule

 = -+ ( )1i i1
temp , after a given number of iterations at  i.

Free parameters of the model (which can be optionally fixed)
are: the masses mj of the components, orbital elements aj, ej, ij,
Ωj, ωj, Mj of the respective orbits, systemic velocity γ, distance
d, radii Rj, effective temperatures T jeff , projected rotational
velocities vrot j, and magnitude zero-points m0 k. For Nbod

bodies, this represents a set of + -( )N N10 4bod band para-
meters in total.
Unfortunately, neither of the numerical methods can

guarantee that the global minimum will be found. The
multidimensional parameter space is very extended and there
are many local minima, some of them statistically equivalent.
Running simplex many times from different starting points
(104–105) can help, but this problem is clearly both system-
dependent and data-dependent. To obtain uncertainties of the

Figure 2. Light curves of a detached eclipsing binary and three dynamical
models: (i)a Keplerian (two-body) assuming a fixed circular orbit (e = 0, black
dotted line); (ii)a locally optimized Keplerian with a non-zero fixed
eccentricity e=0.0139 (yellow); and (iii)a full N-body model with the initial
osculating e1(t = T0)=0 (red), but with a general trajectory affected by
perturbations among the four components. The last case corresponds to the
arrangement of a ξTauri quadruple system (as described in Nemravová
et al. 2016). The light curves and minima timings differ more than the usual
uncertainty σlc, or σttv, achievable by space-borne observations like that of
MOST (Walker et al. 2003; cf. blue line with the tiny error bars; quasi-periodic
oscillations were removed as explained in Appendix A.8). It is thus necessary
to use the N-body model for such compact stellar systems, even on this very
short (orbital) timescale.
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model parameters or a full covariance matrix, one can use the
bootstrap method (Efron 1979), for example.

2.5. Dynamical Effects

A number of well-known dynamical effects can be modeled
with the N-body integrator: self-consistent precession of ω
andΩ, inclination changes and eclipse durations, eccentricity
oscillations (Figure 3), Kozai cycles, variation and evection,
differences between prograde versus retrograde orbits, close
encounters, hyperbolic trajectories, mean-motion resonances
(Rivera et al. 2005), secular resonances, three-body resonances
(Nesvorný & Morbidelli 1998), or chaotic diffusion due to
overlapping resonances, which are also naturally accounted for
in our N-body model. Even more examples can be found in
Fabrycky (2010).

3. Model Testing

3.1. A Test on Synthetic Data

In order to test a basic functionality of our N-body model, we
created a mock system with 40known parameters; the system
actually closely corresponds to the quadruple star ξTau (see
Table 2). Synthetic observational data were created using the
same code with the same coverage and cadence as the real
observations of ξTau (Nemravová et al. 2016): 78,133spectral
measurements (individual data points Iλ i), 17 391squared
visibilities∣ ∣V i

2, 4 856complex triple productsT i3 , 2 974light-
curve pointsmVki, 17astrometric measurementsΔxij, Δyij of
the 4th component, and 13SED pointsmVi. A Gaussian noise
was applied to all of them, at levels typical for the data sets we
have for ξTau; and we assumed there are no systematics,
neither in these synthetic observations, nor in the model (but cf.
Appendices A.3–A.8). For the true solution, one would obtain
χ2=109,095, which is indeed a perfect solution given the
number of degrees of freedom ν≡Ndata−Mfree=
108,257–40=108,217, and the probability c n =( ∣ )P 0.9702

that the χ2 value is that large by chance.
We then performed several simplex optimizations, starting

from a number of neighboring points, farther and farther away

from the true solution. The convergence of the simplex to a
local minimum is clear (Figure 4) and we recovered the original
parameters (low χ2;ν) with some uncertainties, as expected;
unless the initial guess was too far away, say, more than a few
percent of the critical parameters (see Figure 5). More extended
surveys with many initial starting points and/or simulated
annealing would be needed in these unfortunate cases. The
differences between the final and true solutions roughly
correspond to the uncertainties we would obtain from bootstrap
testing.
Often some preliminary knowledge based on observation-

specific models is available (e.g., prominent periods, previously
published parameters). The N-body model is especially suitable
for such “semi-final” convergence—with all parameters free—
which should limit the systematics arising from the usage of
limited (Keplerian) models.
Regarding the fractional or missing data, there are several

rather trivial facts, e.g., if we miss RVs, it is impossible to
resolve low-e orbits from high-e with ω=0° or 180°. If there
are no eclipses and no interferometric measurements available,
one cannot precisely constrain the inclinationi. Without
closure phase measurements, there is practically no sensitivity
to asymmetries, etc. Of course, they are interesting when
dealing with real observational data sets (see also
Appendix A.2).
Let us point out that this kind of testing has somewhat

limited capabilities. First, if we create the mock data with the
same model, then this test is essentially a test of the numerical
methods (simplex and simulated annealing). Because these
methods are indeed classical (Nelder & Mead 1965), their
limitations are already very well known.
Second, to create the mock data independently, one would

need a completely independent model with exactly the same
capabilities. However, this is a test of systematic differences
between the models rather than a test of the method itself. We
consider this approach to be more useful, but it is rather
difficult to obtain the second model. Of course, any Keplerian
models (e.g., Phoebe 1.0) are useless. Any model that does not
produce all the observables (astrometry, RVs, TTVs, òecl, ∣ ∣V 2,
T3, mV, or Iλ) is impractical too, because we need as many
orthogonal constraints as possible. Analytical photometric
models (e.g., Carter et al. 2008) are too simplified for stellar
binaries. And so on. It may be possible to use Phoebe 2.0 (Prša
et al. 2016) for a such comparison in the future.
Finally, real observational data of real systems have their

own cadence, coverage, calibrations, uncertainties, and sys-
tematics. Even though one can play with artificial data, these
tests cannot be used straightforwardly, because we know
“nothing” a priori about the given data we obtain from
observers. Consequently, one will have to perform suitable
tests again and again for every subsequent system.

3.2. A Comparison with Other Models

As already mentioned in the Introduction, a comparison with
several observation-specific models was already done in our
previous paper (Nemravová et al.2016). In particular, our N-body
model produces results that are compatible within respective
approximations (e.g., on short timescales when the Keplerian
model can be regarded as a useful approximation) with the
following published works: the photometric model of Phoebe 1.0
(Prša & Zwitter 2006); the astrometric and speckle-interferometry

Figure 3. Evolution of radial velocities (RVs) of the four components of
ξTauri (denoted Aa, Ab, B and C), assuming two different values of the initial
osculating eccentricitye1(t = T0) of the inner orbit: (i)zero (thick lines); (ii)an
increased non-zero e1=0.01 (dotted lines). There is a significant phase shift
between them that can be easily detected because the respective RV
measurements cover the interval of JD from 2449300 to 2456889. For even
larger e1;0.1, the oscillations of RVs forced by the third body also have
larger amplitude, related to the evolution of e1(t). For comparison, some of the
observations are plotted (black points with error bars) along with residua with
respect to the worse non-zero e1 model (red lines).
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model of Zasche & Wolf (2007); the RV disentangling by Korel
(Hadrava 1997); the LitPro model for visibilities ∣ ∣V 2 (Tallon-Bosc
et al. 2008); the spectro-interferometric ∣ ∣V 2 and T3 (Nemravová
et al. 2016); and the synthetic spectra fitting by Pyterpol (dtto).

4. Conclusions and Future Work

Today, N-body models seem to be an absolutely necessary
tool for a careful inspection of observational data. It is
important to take care that discrepancies between Keplerian and
full N-body dynamics no longer spoil derived stellar para-
meters. After a removal of (some) systematic errors (some-
times) present in observations or reductions, N-body models
enable us to reveal even tiny N-body perturbations and
construct robust models of compact stellar systems (e.g., those
from Table 3).

Regarding future developments of (our or other) N-body
models, it seems worthwhile to also account for: calibration
factors of individual interferometric telescopes, gravity-darkening
in the visibility calculation of rotating stars (as in Aufdenberg
et al. 2006), especially when measuring on the longest baselines,
and eventually one may think of an upgrade to the WD 2015, or
Phoebe 2.0 (already used in Pablo et al. 2015).

Yet another work is needed to compute trajectories even
more accurately, with physics going beyond point-like masses,
equilibrium tides or oblateness, namely the following: higher
gravitational moments (J4) due to the non-sphericity of stellar
components, tidal dissipation and cross-tides (e.g.,
Mignard 1979), corresponding long-term evolution of orbits,
spin evolution (Eggleton & Kiseleva-Eggleton 2001), spin–
orbital resonances, or radiation of gravitational waves in
extreme cases.

The situation in stellar interiors also matters. The dissipation
occurs either because of viscosity in outer convective zones, or
inertial oscillations in radiative zones, which are excited on
eccentric orbits by dynamic tides and subsequently radiatively
damped (Zahn 2008). In triple systems, the excitations may
actually arise from abinary subsystem, and corresponding light
oscillations then have half of its period (Derekas et al. 2011;
Fuller et al. 2013). Another difficulty stems from certain
coupling of envelopes and cores (Papaloizou & Ivanov 2010).
Inevitably, a fully self-consistent model should account for a

back-reaction: the strongest tidal heating may inflate whole
objects (Mardling 2007).

The work of M.B. was supported by the grants no. P209-15-
02112S and P209-13-01308S of the Czech Science Founda-
tion. I thank Jana Nemravová and David Vokrouhlický for
valuable discussions on the subject and a fruitful collaboration
on the ξTauri paper. I also have to thank the referee Hagai
Perets for constructive criticism that determined the final
structure of the paper.

Appendix A
Possible Problems due to Systematics

We have to admit that any modeling (compact stellar
systems included) can be spoiled, either when there are
systematic deficiencies of the model, e.g., Keplerian versus
N-body, or serious systematic errors in observational data,
especially when we use very heterogeneous data sets. In the
following, we thus discuss several “dangerous” cases.

A.1. Discretization Errors

Of course, any numerical computation suffers from dis-
cretization errors and interpolation errors, even though we tried
to decrease the latter as much as possible (cf. Section 2). This is
probably the most important disadvantage compared to
analytical computations. A general rule is a convergence of
results (and corresponding χ2 values) for Δt→0.
However, let us add the warning that rarely, a decrease of the

time step, e.g., by a factor of2, may lead to unexpected results.
For example, when eclipses are almost disappearing, the
trajectory with Δt/2 is more curved and may thus miss the last
eclipse, which suddenly increases cttv

2 because the next eclipse
is now one orbital periodP far away. The solution is to
converge the model once again, withΔt/2.
Also, there is yet another discretization related to the WD

code, or the surfaces of the eclipsing binary. For low numbers
Nwd, one can see numerical artifacts on the light curve, as
rectangular surface facets appear from behind the limb, or
disappear. Again, it is worthwhile to check largerNwd.

Table 2
The Mock System Parameters That Were Used to Generate Synthetic Data for Testing

Par. Value Unit

m1 2.238483 m2 2.009645 m3 3.7472 m4 0.92 Me

a1 0.1176356 a2 1.08420 a3 28.39 L L au
e1 0.0000 e2 0.2167 e3 0.568 L L L
i1 87.6 i2 86.3 i3 −18.2 L L deg
Ω1 329.1 Ω2 328.6 Ω3 114.7 L L deg
ω1 275.65 ω2 0.00 ω3 1.0 L L deg
M1 174.44 M2 88.04 M3 32.7 L L deg
γ 8.82 L L L L L L km s−1

d 67.9 L L L L L L pc
Teff1 10727 Teff2 10275 Teff3 13120 Teff4 6526 K
R1 1.586 R2 1.642 R3 2.727 R4 0.877 Re

vrot1 16.2 vrot2 12.5 vrot3 234.9 vrot4 80.1 km s−1

m01 1.000 m02 3.335 m03 3.646 m04 3.730 mag

Note. The notation is the same as in Table 1. Values rounded to typical uncertainties of the parameters are presented in this table. The osculating elements correspond
to the epoch T0=2,456,224.724705.
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A.2. Mirror Solutions

Quite often, we can expect one or more (m) mirror solutions
(and 2m combinations of them). A typical situation is that we
have no RVs for faint components (so that both inclinations i
and ¢ = -i i are admissible), or no unambiguous astrometry or
closure-phase measurements (so that Ω and Ω′=180°−Ω are
both admissible). Consequently, one may save some time when
surveying the parameter space.

However, with the N-body model at hand it is worthwhile to
check not only the total χ2 but also individual contributions
toχ2 for all the mirror models. In particular, cttv

2 is very
sensitive to the mutual perturbations, and we may be able to
resolve some of the ambiguities mentioned above.

Of course, the statistics must not be corrupted by systematics
or strongly underestimated uncertainties in other observational
data sets. If this is the unfortunate case, one may try to use

weightsw of individual χ2ʼs, but this should be used as “a
method of last resort.” The reason is that it is too easy to hide
all systematics this way, even though it is better to get rid of
them (see below).

A.3. Heterogeneous Data Sets of RVs

Radial-velocity measurements might be affected by zero-
point offsets, which then lead to different systemic velocities γ
for different observatories. This can be a bit misleading because
it is not possible to a priori distinguish systematic differences in
dispersion relations from real perturbations, when the observa-
tions were acquired at epochs distant in time.
A well-known viable approach is to use an independent

calibration by narrow interstellar lines (DIBs; Chini
et al. 2012), if they are present and resolved in the given

Figure 4. Left: a convergence of the simplex to a local minimum vs. the number of iterations for the mock system from Table 2. Individual contributions to the total χ2

corresponding to Equation (15) are shown. Initially, all of the 40 parameters were shifted by 0.1% and the χ2 value suddenly increased up to 1.19×107 because the
model is very sensitive to some of them. The final value after ;103 iterations is χ2=120 625. This is quite close to the true solution, but still some restarts of the
simplex (or simulated annealing) would be needed to obtain a χ2 as low as 109 095, i.e., the value of the true solution (albeit with noisy synthetic data). Moreover,
iterations with increased weights wsky and wsed would also be needed. Right: the same convergence of χ2 with respect to semimajor axes a1, a2 (i.e., 2 out of 40 free
parameters). One may see the initial (offset) and final positions (black crosses), successful steps (red solid lines), unsuccessful trials (gray dotted), and the true solution
(orange cross). While the simplex approaches the true solution, it is often stuck halfway in a local minimum.

Figure 5. Final χ2 values (filled circles) after  103 simplex iterations vs.
relative shifts of the initial parameters (expressed in percentages). For
comparison, there are also initial χ2ʼs (open circles) we started simplex at.
The true solution reference value is χ2=109,095 (dotted line). For the
purpose of this test, we used osculating periods Pi as fixed (and unshifted)
parameters, instead of free semimajor axes ai, as they are usually well
constrained by period analyses. We also kept ai fixed Teff j, vrot j and used
simple bandpasses and Planck approximation to speed-up computations.

Table 3
Suggested Examples of Compact Stellar Systems for Which the N-body Model

Could Be Useful (or Inevitable)

Designation Reference

λTau Fekel & Tomkin (1982)
ξTau Nemravová et al. (2016)
VWLMi Pribulla et al. (2008)
V994 Her=HD 170314 Zasche & Uhlár ̌ (2016)
V907 Sco=HD 163302 Lacy et al. (1999)
HD 91962 Tokovinin et al. (2015)
HD 109648 Jha et al. (2000)
HD 144548 Alonso et al. (2015)
HD 181068=KIC 5952403 Fuller et al. (2013)
KIC 05255552 Borkovits et al. (2016)
KIC 05771589 L
KIC 06964043 L
KIC 07289157 L
KIC 07668648 L
KIC 07955301 L
KIC 09714358 L

Note. This “catalog” obviously cannot be considered comprehensive.
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spectral range. Another possibility is atmospheric lines for
which the relative RVs can be computed easily. If this is
impossible, one should use the N-body model with great
caution, because simply increasing σrv;Δγ to get c  Nrv

2
rv

is the wrong approach. The RV measurements in question will
still “push” the model elsewhere and there will be systematic
departures with respect to other (more or less orthogonal)
observational data.

It may be too much freedom, but if the dispersion relations
can be considered stable from night to night, some calibration
factors frv k of RVs—assigned to individual observatories or
data sets—might actually be a better solution. In any case, such
factors have to always be treated as additional free parameters
of the N-body model.

A.4. RVs from Disentangling

Sometimes, RVs are derived in the Fourier domain by means
of disentangling (e.g., by Korel; Hadrava 1995), with the
advantage that one obtains disentangled spectra of individual
components. There is a “hidden” caveat, though, because one
can expect a strong correlation of RVs and the fixed Keplerian
orbital elements used during the disentangling procedure. This
is a problem because we vary initial osculating orbital elements
in the N-body model and they most likely will contradict the
previous elements.

Note that the disentangled spectra should not be re-used as
templates, because they contain slight systematic asymmetries
or wavy continua. If we try to match the observed spectra
with such templates again, we will obtain artificially small
uncertainties σrv (and extremely large crv

2 ). Asolution is to
use synthetic spectra similar to the disentangled ones, but with
no direct relation to Korel, as an intermediate step to derive
new RVs.

A.5. RVs from Synthetic Spectra

Alternatively, RVs of the individual components can be
derived directly in the time domain by fitting a luminosity-
weighted sum of suitable synthetic spectra (e.g., by Pyterpol;
Nemravová et al. 2016). Instead of fitting the observed spectra
individually (one-by-one), it is advisable to assume that most of
the free parameters (projected vrot j, Teff j, gravity glog j, and
metallicityZj of the stellar components) are the same for all
spectra, with the exception of RVs that are surely time-
dependent. Luckily, these RVs are not strongly correlated with
the orbital elements, so they seem suitable as an input for the
N-body model.

On the other hand, this method can have problems of its own
when RVs are small (at conjunctions) and vrot is large, which
causes the lines to be totally blended. As a provisional solution,
one may try to discard the lowest RVs that cause the problems,
or not use RVs at all and instead fit synthetic spectra directly
with the N-body model (csyn

2 ), which is definitely a better
approach, because RVs will be correctly tied to each other (see
Figure 6).

A.6. Rectification Procedure

Inevitably, RVs might have been systematically affected
already during a basic reduction, namely a rectification
(normalization) of spectra. If the rectification procedure is
automated by fitting a low-degree polynomial to continua, it is

worthwhile to try a different maximum degree of the
polynomial and run the above synthetic spectra optimization
once again.

A.7. Visibility Calibration

Contrary to closure phase arg T3 measurements, the squared
visibility∣ ∣V 2 has to be calibrated by close-in-time observations
of comparison stars with known angular diameters or
unresolved (point-like) sources. Sometimes, even the calibrated
measurements exhibit unrealistically quick changes of ∣ ∣V 2 or
sudden decreases of ∣ ∣V 2, possibly caused by unfavorable
weather conditions, or seeing comparable to the slit width,
affecting a light contribution from barely resolved components,
or other obscure instrumental defects.
In the end, dropping these suspicious observational data may

be the only way to prevent the systematics to unrealistically
shift the model. Using a low weight wvis=0.1 is not a
satisfactory option. To this point, we always retain a data set
identification for each single measurement that enables us to
quickly perform a bootstrap testing.

A.8. Quasi-periodic Oscillations

A removal of quasi-periodic light oscillations that are
sometimes present (or always for high-precision measure-
ments) outside eclipses is very important, because they may
otherwise systematically offset the minima timings themselves.
One wave of the oscillations behaves like a “ramp,” which
skews the light curve around the minimum.
The observed light curve should thus be locally fitted by a

suitable function (e.g., harmonic with a variable period and
amplitude) and then subtracted from the data. If the (synthetic)
light curve out of eclipses is flat beyond doubt, it seems better
to drop these segments of the (observed) light curve
completely, because they would increase clc

2 ; but there is no

Figure 6. A small subset of the observed spectra of ξTauri (blue), fitted by a
triplet of synthetic spectra (orange) for components Aa, Ab (sharp-lined), and B
(broad-lined). The Doppler shifts were set according to the N-body model;
consequently, there is no problem with the blending of lines in the top
spectrum. The respective parameters of the components were assumed as
follows: the effective temperature Teff=10,700, 10,480, 14,190 K; surface
gravity =glog 4.08, 4.01, 4.527; projected rotational velocity vrot=12.6,
14.3, 229.2 km s−1; and the metallicity was solar. The relative luminosities
were L=0.203, 0.134, 0.644 Le, while the component C was considered too
faint. The synthetic spectra were prepared with Pyterpol (Nemravová
et al. 2016).
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useful information, as we have no physical model for these
oscillations (yet).

A.9. Osculating versus Fixed Elements

Some care is also needed when comparing results of (old)
Keplerian and (new) N-body models. They actually can differ
by more than a few σ, because the former orbital elements are
fixed, while the latter are only osculating initial conditions at
t=T0. Generally, all elements are time-dependent quantities,
a1(t), e1(t), i1(t), etc., whereas their oscillations are often
larger than the uncertainties of the initial osculating elements.
In fact, one can perform some averaging over the observa-
tional time span to facilitate the comparison. Nevertheless, the
N-body model is more complete, and it should be probably
preferred.

A.10. Stability, Aliasing, Mean, and Proper Elements

It is also possible to run the N-body integrator separately,
regardless of an observational time span, and study the long-
term evolution and stability of stellar systems. We may wish to
prefer those orbital solutions that are indeed stable. One of the
difficulties is that the output of osculating elements is either
prohibitively long or an aliasing occurs when the output time
stepΔtout is larger than half of the shortest orbital period, P1/2.

In a modified version of the BS integrator (swift_bs_fp), we can
use an online digital filtering of non-singular osculating elements
hj, kj, pj, qj to overcome these problems: first a multi-level
convolution based on the Kaiser windows (Quinn et al. 1991) to
obtain mean elements, and second a frequency-modified Fourier
transform (Šidlichovský & Nesvorný 1996) to extract proper
elements. ForN mutually interacting bodies, one can expect N2
eigenfrequencies of the system, which are usually denoted gj and
sj. The corresponding amplitudes epj, isin j

1

2 p can be considered
approximate integrals of motion that only evolve on timescales
longer than secular.

To conclude pessimistically, the above list of possible
problems and systematics cannot be treated as complete,
unfortunately.

Appendix B
Technical Notes

B.1. Different Hierarchy

By default, we assume a hierarchy of ((1+2)+3)+4, for
which Jacobian orbital elements seem to be a suitable
description. For a substantially different hierarchy, say, two
pairs (1+2) and (3+4), where we would prefer a different
definition of elements, only a very small part of the code has to
be rewritten, namely in the geometry.f subroutine, where the
elements are converted to barycentric Cartesian coordinates.
Alternatively, one may wish to use 1-centric Cartesian
coordinates as actual parameters, because sometimes precise
observational data may constrain (“fix”) some of them (xh2, yh2,
etc.), thus decreasing the dimensionality of the parameter
space.

B.2. Jacobian Orbital Elements

Unlike the usual stellar-astronomy convention, where the
brightest component is always at the origin of the reference
frame, in our N-body model we usually select the most compact

eclipsing pair as bodies 1 and 2, or the most massive
component as1. The reason is that orbital elements in
hierarchical systems are usually computed in Jacobian
coordinates, where the center of mass 1+2 is the reference
point for the coordinates and velocities of the third body; the
1+2+3 center of mass is a suitable reference for the fourth
body, and so on. The corresponding Jacobian elements then
have a nice interpretation. Because of the above definition, it
may be necessary to adjust to-be-fitted astrometric measure-
ments by 180° in the position angle—not due to an ambiguity,
but simply because the reference body is different in our case.
Similarly, avalue ofΩ from the literature may actually differ
by 180°.
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