A single simulation gives us the SFD for a given size of the
parent body and several parameters of the impactor. However,
if one wishes to derive the size of the parent body and impactor
parameters from the observed SFD, it is necessary to conduct a
large set of simulations with different parameters and then find
the SFD that resembles the observed one as accurately as possi-
ble. This makes the problem difficult as the parameter space 1S
quite extensive. For one run, we usually have to specify the par-
ent body size Dy, the projectile size dpoject, the impact speed
Vimp, and the impact angle ¢imp (i.e. the angle between the ve-
locity vector of the impactor and the inward normal of the tar-
get at the point of collision). Other parameters of the problem
are the material properties of considered asteroids, such as bulk
density, shear modulus, porosity etc.

Due to the extent of the parameter space, a thorough study
would be highly demanding on computational resources. It is
therefore reasonable to fix the size of the parent body and study
breakups with various parameters of the impactor.

A large set of simulations was published by Durda et al.
(2007), who studied disruptions of 100 km monolithic targets.
Similarly, Benavidez et al. (2012) performed an analogous set
of simulations with rubble-pile targets. They also used the re-
sulting SFDs to estimate the size of the parent body for a num-
ber of asteroid families. As the diameter of the parent body
is never exactly 100 km, the computed SFDs have to be multi-
plied by a suitable scaling factor fiae to match the observed
one. However, small families have been already discovered
(e.g. Datura, Nesvorny et al. (2015)) and their parent-body size
is likely Dy, = 10km, i.e. an order-of-magnitude smaller. The
linearity of the scaling is a crucial assumption and we will as-
sess the plausibility of this assumption in this paper.

To fill up a gap in the parameter space, we proceed with small
targets. We carried out a set of simulations with Dy, = 10km
parent bodies and carefully compared them with the simulations
of Durda et al. (2007).

The paper is organised as follows. In Section 2, we briefly
describe our numerical methods. The results of simulations are
presented in Section 3. Using the computed SFDs we derive
parametric relations for the slope g and the masses Mj; and Ms
of the largest remnant and the largest fragment, respectively, 1n
Section 4. Finally, we summarize our work in Section 3.

2. Numerical methods

‘We follow a hybrid approach of Michel et al. (2001, 2002,
2003, 2004), employing an SPH discretization for the simula-
tion of fragmentation and an N-body integrator for subsequent
gravitational reaccumulation. Each simulation can be thus di-
vided into three phases: i) a fragmentation, ii) a hand-off, and
iii) a reaccumulation. We shall describe them sequentially in
the following subsections.

2.1. Fragmentation phase

The first phase of the collision is described by hydrodynami-
“cal equations in a lagrangian frame. They properly account for
supersonic shock wave propagation and fragmentation of the

material. We use the SPHS code by Benz and Asphaug (1994)
for their numerical solution. In the following, we present only a
brief description of equations used in our simulations and we re-
fer readers to extensive reviews of the method (Rosswog, 2009:
Cossins, 2010: Price, 2008, 2012) for a more detailed descrip-
tion.

Our problem is specified by four basic equations, namely the
equation of continuity, equation of motion, energy equation and
Hooke’s law:

dp

—  mm PV s 1
1

= = IV @)

dzt P

dU P 1

— = —=—Tre+ -8 :¢€, (3)

dt P P

dS 1 ,

E = 2].1(6—31TI'€), (4)

supplemented by the Tillotson equation of state (Tillotson,
1962). The notation is as follows: p is the density, v the speed,
o the stress tensor (total), where oo = —P1 + §, P the pressure,
1 the unit tensor, S the deviatoric stress tensor, U the specific in-

ternal energy, € the strain rate tensor, where € = % ’Vv + (VV)T],
with its trace Tr € = V - v, i the shear modulus.

The model includes both elastic and plastic deformation,
namely the yielding criterion of von Mises (1913) — given by
the factor f = min[Y?/(3S : S),1], where Y, is(material de-
pended) yield stress — and also failure of the material. The
initial distribution of cracks and their growth to fractures 1s
described by models of Weibull (1939) and Grady and Kipp
(1980), which use a scalar parameter D € (0, 1) called damage,
as explained in Benz and Asphaug (1994). The stress tensor of
damaged material is then modified as o0 = —(1 - DH (—P))P1 +
(1 — D)fS, where H(x) denotes the Heaviside step function. In
this phase, we neglect the influence of gravity, which is a major
simplification of the problem.

In a smoothed-particle hydrodynamic (SPH) formalism,
Egs. (1) to (4) are rewritten so as to describe an evolution of
individual SPH particles (denoted by the index i = 1..N):

%‘?f _ _p,.zj: T-jfi(vj —v)- VWi, (5)

= zﬂ[g_@;eﬁ], ®)
with:

éfﬁ e 2—}10: Zj:m;‘ l(V? = V?)i‘? + (V? i1 ‘f?)?ﬁj] , )

where m; denote the masses of the individual SPH particles,
Wi = W(|r; — rj|,h) the kernel function, & the symmetrized



smoothing length, & = %(hi + hj). Both the equation of motion
and the energy equation were also supplied with the standard
artificial viscosity term II;; (Monaghan and Gingold, 1983):

§ { ﬁ (—‘fﬂvﬂ‘sﬂu +6Awfj) wi—vp) (ri—r;) £0,
5 O otherwise,

(10)
where: -
oo A0 ) —Ty)
Hij = |ri — rj||* + €h?

, (11)

cs 18 the sound speed and a sy, B4y are free parameters of the

viscosity model, values of which were aay = 1.5 and By = 3,
as in Benz and Asphaug (1994). The corresponding term in
the energy equation is thefi: )

LA ?_

(1au
(id%)n = Z}: %Hij("i - v;) - VWj;. (12)
We sum over all particles, but since the kernel has a com-

pact support, the algorithm has an asymptotic complexity

O(N Nyeighbours).- The actual number of SPH particles we used

(including both the particles of the target and the impactor)

is N = 1.4 x 10°, and the number of neighbours is usually

Npeighbours = 0. There 1s also an evolution equation for the

smoothing length A; 1n order to adapt to varying distances be-
tween SPH particles.

2.2. Hand-off procedure

Although SPH is a versatile method suitable for simulating
both the fragmentation and the gravitational reaccumulation,
the time step of the method is bounded by the Courant crite-
rion and the required number of time steps for complete reac-
cumulation 1s prohibitive. In order to proceed with inevitably
simplified but efficient computations, we have to convert SPH
particles to solid spheres, a procedure called hand-off. In this
paper, we compute the corresponding radius R; as:

3m; |3
R,;:( """) . (13)
4rp;

The time g0 at which the hand-off takes place is deter-
mined by three conditions:

1. It has to be at least 2D,,/cs =~ 1s (¢s being the sound
speed), 1.e. until the shock wave and rarefaction wave
propagate across the target;

g

. Fractures (damage) in the target should not propagate any-
more, even though in catastrophic disruptions the shock
wave usually damages the whole target and material is then
practically strengthless;

3. The pressure in the fragmented parent body should be zero
so that the corresponding acceleration —}%VP 1S zero, or at
least negligible. According to our tests for Dy, = 10km
targets, such relaxation takes up to 10 s.

On- the other hand, there is an upper limit for 40 given
by the gravitational acceleration of the target, g = GMpb/Rib,

- oy use CODATA 2014 yalve

b

where G =6-674->+0=m == is the gravitational con-

stant. This acceleration has to be small compared to the escape
speed Vese = /2GMp, /Ry, i.e. a typical ejection speed v of
fragments. The corresponding time span should thus be defi-
nitely shorter than vee./g =~ 10° s.

2.3. Reaccumulation phase

Finally, gravitational reaccumulation of now spherical frag-

ments 1S computed with an N-body approach. We use the
pkdgrav code as modified by Richardson et al. (2000) for this
purpose. It accounts for mutual gravitational interactions be-

tween fragments:
= Gﬂlj
";'=—Z e rij, (14)

J#1 1j

An O(N?) problem is simplified significantly using a tree code
algorithm, 1.e. by clustering fragments to cells and evaluating
gravitational moments up to hexadecapole order, provided they
fit within the opening angle d6 = 0.5rad. The time step was
At = 107° (in G = 1 units, or about 5s in SI), and the time
span 50, 000 Az, long enough that the reaccumulation is over, or
negligible.

Regarding mutual collisions, we assumed perfect sticking
only, meaning no bouncing or friction. Consequently, we have
no information about resulting shapes of fragments, we rather
focus on their sizes, velocities and corresponding statistics.

3. A grid of simulations for Dy, = 10 km targets

We performed a number of simulations with Dy, = 10km
parent bodies, impact speed viy, varying from 3 to 7km/s, di-
ameter dproiece Of the impactor from 0.293 km to 1.848 km (with
a logarithmic stepping) and the impact angle ¢im,, from 15° to
75°. The kinetic energy of the impact:

1 2

Q- -y
pb latex
therefore varies from ~ 1072 QF to ~ 2007, where QF is the
critical energy for shattering and dispgrsing 50% of the parent
body. The critical energy QF is al§o used to compare runs
with different size ofﬁrent body,( see Srs\cal 3.4) We adopted
Q7 (D) value,s/ from the scaling law of basaltic materialy and
impact velocitieg'v,,, = 5 km, as given by Benz and Asphaug
(1999). We use the same value of O for all impact velocities
and impact angles, for simplicity. Using this scating law, the
critical energy for Dy, = 10km is Qf =~ 7.68 x 10’erg/g.

For comparison, the critical energy for D,, = 100km is
OX (HoHem)—=—F-68-x—10ergg-whilefor-Bsy——100km,-tk
)= : oF e oF

-eritieat-emergy 15 05(100km) = 1.74 x 10”erg/g. Note that

the selected values QOf) do not influence simulations at all,
we use them as abase unit to get a convenient, dimension-
off impact energies.

The fotal npmber of performed runs 1s 125. We assume a
' cture of both the target and the impactor, and the
\es were selected those of basalt (summarized

"

materigl prope
in Tablg 1).
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torted comparison of results.

Material parameters
density at zero pressTEe Io — 2700 kg / m°
bulk modulus A =2.67x 10 Pa
non-linear Tillotson term B =2.67x10"Pa
sublimation energy = 4.87 x 10° J/kg
energy of incipient vaporization wy = 4.72 %1007 /kg
energy of complete vaporization uey = 1.82x 107 J/kg
shear modulus u=227x%10'Pa
von Mises elasticity limit Yy = 3.50 x 10” Pa
Weibull coefficient k = 4.00 x 107
Weibull exponent m=39

SPH parameters

pr = 1.4--_—; 105
pr = 100 to 630

number of particles in target
number of particles in projectile
Courant number C sl

linear term of artificial viscosity apv =1
quadratic term of artificial viscosity Bay = 3.0

duration of fragmentation phase thandoff = 10 S

Table 1: Constant parameters used in our SPH simulations. We assumed the
same material parameters as Durda et al. (2007), which allows for undisa

3.1. Size-frequency distributions

For each run we constructed a cumulative size-frequency dis-
tributions N(>D) of fragments and we plotted them in Fig. 1.

At first sight, the SFDs are well-behaved. Both cratering
and catastrophic events produce mostly power-law-like distri-
butions. Some distributions, mainly those around Q/Q7 ~ 1,
have an increasing slope at small sizes (at around D ~ 0.3 km),
but since this is close to the resolution limit, it 1s possibly a
numerical artifact.

For supercatastrophic impacts with dprpject = 1.848 km, the
distributions differ from power laws substantially; the slope be-
comes much steeper at large sizes of fragments. These are the
cases where the gap between the largest remnant and the largest
fragment disappears (we therefore say the largest remnant does
not exist).

The situation is quite different for impacts with an oblique
impact angle, mainly for ¢, = 75°. We notice that these 1m-
pacts appear much less energetic compared to other impact an-
gles, even though the ratio Q/QF is the same. The cause of this
apparent discrepancy is simply the geometry of the impact. At
high impact angles, the impactor does not hit the target with all
its cross-section and a part of it misses the target entirely (graz-
ing impacts, see Leinhardt and Stewart, 2012). Therefore, a
part of the kinetic energy is not deposited into the target and the
impact appears less energetic, compared to head-on impacts.

3.2. Speed histograms

Similarly to the size-frequency distributions, we computed
speed distributions of fragments. The results are shown 1n
Fig. 2. As we are computing an absolute value of the velocity,

the resulting histogram depends on a selected reference frame.

We chose a barycentric system for all, simulations; however,

XL Whew we drop tHhe Swmallest parh cleg Gom Hu éitMLulﬂ'ﬁiﬂ'
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we excluded high-speed remainders of the projectile with ve-
locities vej > v = 1km/s. These outliers naturally appear
mainly for oblique impact angles. Because of very large ejec-
tion velocities, such fragments cannot belong to observed fam-
ilies and if we had included them in the constructed velocity
field of the synthetic family, it would artificially shift velocities
of fragments to higher values.

The main feature of cratering events is the peak around the
escape velocity vee.. This peak is created by fragments ejected
at the point of impact. With an increasing impact energy, the tail
of the histogram extends as the fragments are ejected at higher
velocities.

Interestingly, there is a second peak at around Q/Qp ~ 0.3.
This is because of ejection of fragments from the antipode ot
the target. If the shockwave is energetic enough, it causes an
ejection of many fragments. The second peak is barely visible
at oblique impact angles. especral)

One should be careful when intgpreting the speed his-
tograms of cratering events. The ejected fragments are
mestly poorly resolved as they are mergers of only few SPH

of +em

particles. It is not clear whether the resolution limit does not % 2
o P e e e e

affect the histograms or it introduces a systematic bias. For
mid-energy and catastrophic events, the fragments close to
the resolfitions limit fit mainly in the tail of the hlstogram
and are of lesser importance to the result.

3.3. Isotropy vs anisotropy of the velocity field

Fig. 3 shows angular distributions of the velocity fields in the
plane of the impact. The histograms are drawn as polar plots
with a 5° binning. The angles on plots correspond to the points
of impact for given impact angle ¢imp: for cratering events, all
the ejecta are produced at the point of impact and the distribu-
tion of fragments is therefore nicely clustered around ¢;mp.

Cratering impacts tend to produce velocity fields mainly in
the direction of the impact angle. Catastrophic 1mpacts, on
the other hand, generally produce much more isotropic veloc-
ity fields. However, the isotropy is not perfect, even though we
removed outliers as above. Even for the supercatastrophic 1m-
pacts, the number of fragments in different directions can vary
by a factor of 5. Further changes of the reference frame may
improve the isotropy. Note that for observed families, it 1s also
not clear where is the reference points, as the identification of
family members (and interlopers) 1s ambiguous.

3.4. A comparison with scaled-down Dy, = 100 km simulations

To compare D,, = 10km runs with D, = 100km runs,
we need to choose collisions in approximately the same
regimes (compare cratering events with cratering events,
etc.). The regime can be determined usmg the scaling law,

more specifically using the ratio Q/ QD as-a-compared-gquan-

, AS we
simulations, in

(enven velahvely )

ones for 100 km runs,
require the same Q/Q7 ratio for

/
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+ity: We thus compare the runs with approximately the
same ratio Q/ QB(' and the same impact angle.” This means Cimp

e impactors for 10 km runs are much smaller than the
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Figure 3: Histograms of velocity angular distribution (in the plane of the collision) of fragments. The velocities are evaluated in the barycentric coordinate system
with outliers removed. The angle 180° corresponds to the velocity direction of the projectile. The impact angle @imp = 45°.

Wwas a shghtly, e gemwa“y
some cases it is necessary to select different impact veloc-  a much larger largest fragment. Nete—Hrat eyen though the
iti%ﬁ{ as all 100km runs with the same velocity as-the-eon- 100km bodies have higher self-gravity and a bigger largest
stdered—10lkm- havﬁ‘gigniﬁcantly different ratio® Q/ QE; for fragment comparcdto—the1okm—rans might be expected,

example the D, = 10km simulation with dyjece = 0.736 km the higher self-gravity is already accounted for in the crit-
and vi,, = 5 km/s is being compared to D, = 100 km simu- ical energy OF. The Dy, = 10km supercatastrophic impacts

lation with d,yiec: = 18 km and v, = 6 km/s. also also produce a steeper part of the SFD at larger diameters,
Looking at Fig. 1., we can see that the mid-energy events which is not visible for 100 km simulations, at least not to the
with Q/Q% ~ 1 have SFDs comparable to scaled 100km ones. ~ Same extent. -

In this regime, down-scaling of the distribution for Dy, =

100km targets seems to be a justifiable way to approximate 4, Parametric relations for Monte-Carlo collisional models

SFDs for targets of smaller sizes. There is also a noticeable _ _ c\) _ i-e. 3 Shvangt (hne '
sostly  dependence onimpact angle, probably due to different sizes Size-frequency/distributiony/constructed from our simu-

of impactors in corresponding simulations. Comparing the lations consist mostly of thpée parts: the largest remnant
nts, the middle part of the SFD

SFDs W for each impact angle, we can see Se.parated from the frag ‘ . !
that for o&’imp — 15° ¢his best match of SFDs is achieved in  With a power-law shape (in log-log plot) and a ‘‘staircase’ of

e interval Q/QF = 0.4 to 0.9; for ¢im, = 30° this matching in- small fragments, marking the resolution limit of our simu-
terval is shiftDed to Q/ Q% '= 0.5 to 1.0, and for ¢y = 45°, lation® Ignoring the staircase, the slope of the middle part

ik Ghncie ] iswm Q/Q% = 1.0 to 3.0. The l:tetween D = 0.3 and 2 km can be fitted with a linear func-
match between betirsetsof SFDs is generally worse for im-  UON:
1y PACL-aBglEs 60° and 75° due to geometric effect mentioned log N(>D) = g log|Dlm + c. (16)
in Sec. 3.1. Supercatastrophic events behave differently though, and their
In case of cratering events, our simulations differ signifi- ~ SFDs can be well fitted with a two-slope function:

cantly from scaled ones. Impacts into 10 km targets produce
a much shallower fragment distribution compared to 100 km
impacts; see impacts with dypiece = 0.293km. We also note where:

that supercatastrophic runs have different outcomes than the 1

1 q1 — q2
100 km ones; our distributions are much shallower and have K(x) = '5(45}1 + g2)x + Eisy eon log (2 coshkx) . (18)

log N(>D) = K (log[Dlkm — log[Dolikm) + €. (17)
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In this approximation of the SFD, g, and g, are the limit slopes
for D — oo and D — 0, respectively, and k£ characterizes the
“bend-off™ of the function. As the fitting function 1s highly non-
linear and the dependence on k is very weak (given rather sparse
input data), the fit doesn’t generally converge, we thus fix £ =
10 and perform the fit using only four parameters: g1, g», Dy
and c.

Because impacts at high angles appear weaker due the geom-
etry (see Section 3.1), we have to account for the actual kinetic
energy delivered into the target. We chose a slightly different
approach than Leinhardt and Stewart (2012) and modified the
specific impact energy Q by a ratio of the cross-sectional area
of the impact and the total area of the impactor. Using a formula
for circle-circle intersection: let R be the radius of the target, r
the radius of the projectile and d a projected distance between
their centers. The area of impact is then given by:

&£+ - R & +R -1
PR Y Lo S WSRCT Lt et
- ( 2dr ) - 2dR

1

ee——

2

(R+r—-d){d+r—R)(d—-r+R){(d+r+R). (19)

As both spheres touch at the point of the impact, we have:
d = (r + R) sin ¢imp, . (20)

Using these auxiliary quantities, we define the effective specific

impact energy:

A

Qeﬂ’ = P (21)
nr

In Fig. 4, we separately plot slopes g, constants ¢ of the linear
fits of the SFDs, and the masses of the largest remnants M), and
largest fragment Mj¢. Each of these quantities shows a distinct
dependence on the impact speed vip,p, suggesting parametric re-
lations cannot be well described by a single parameter O.5/0p.
We therefore plot each dependence separately for different vip,
and we explicitly express the dependence on viy,, in parametric
relations.

For low speeds, slopes g can be reasonably fitted with a func-

tion:
Qe
(11.5 — 1igﬁvimp) exp (—5 1077 Qf]
q = —123 -+ 0*75Vimp -+ - . —T—-—I}—,
Qeff |
13 1%8 [——-——)
-0.02 QB

| (22)
where vim;, 1 expressed in km/s. However, for high speeds (es-
pecially for v = 7 km/s), the individual values of g for different
impact angles differ significantly and thus the fit has a very high
uncertainty. We account for this behaviour in Eq. (22), where

- the uncertainty increases with an increasing speed.

The constant ¢ can be well fitted by linear function:

Qeﬂ"
op

The high scatter noted in the parametric relation for the slope g
1s not present here. This parameter is of lesser importance for

¢ = 0.9 + 2.3 exp(—0.35Vimp) + (1.3 - O.lvimp)( ) . €23)

Monte-Carlo models though, as the distribution must be nor-
malized anyway to conserve the total mass.

Largest remnants are also plotted in Fig. 4. Notice that some
points are missing here as the largest remnant does not exist for
supercatastrophic impacts. As we are using the effective impact
energy Q. as an independent variable, the runs with impact
angle ¢ = 75° produce largest remnants of sizes comparable to
other impact angles. This helps to decrease the scatter of points
and make the derived parametric relation more accurate. We
selected a fitting function:

_ Mo

1 + [0.6jg*§ + 56 exp(—l.Ofgzgvimp)] (Qef]
il QD

(24)

Largest fragments (fourth row) exhibit a larger scatter, sim-
ilarly as the slopes g. The masses of the largest fragment can
differ by an order of magnitude for different impact angles (no-
tice the logarithmic scale on the y-axis). Nevertheless, the val-
ues averaged over impact angles (red circles) lie close the fit in

most cases. The fitting function for the largest remnant 1s:

0.84+8 exp(—=0.7Vjmp)

Mtﬂt
le - Q—mwﬂji’jmp) Q
e eff
026380 S| +ex0(03 80 G4 11854 20
: p QD - QD |
above (25)

This function bends and starts fo decrease for Q.q/Qp > 1.
Even though this behaviour is ot immediately evident from the
plotted points, the largest frggment must become a decreasing
function of impact energy i1 the supercatastrophic regime.

The derivedfelations could be compared with relations
for Dy, = 100km bodies, published in Cibulkova et al.
(2014). The comparison is not straightforward, hewever, as
we chose different fitting functions and also different vari-
ables to parametrize the relations. Nevertheless, the para-
metric relations only approximate SFDs amd-the differences
between SFDs of D, = 10km and 100 km bodies have al-

ready been discussed in Sec. 3.4. ,
d y Wl s

5. Conclusions and future work

In this paper, we studied disruptions and subsequent gravita-
tional reaccumulation of asteroids with diameter Dy, = 10 km.
Using an SPH code and an efficient N-body integrator, we per-
formed impact simulations for various projectile sizes dproject,
impact speeds vimp, and angles ¢imp. The size-frequency distri-
butions, constructed from the results of our simulations, appear
similar to the scaled-down simulations of Durda et al. (2007)
only in the transition regime between cratering and catastrophic
events (Q/ Qg =~ 1); however, they differ significantly for both
the weak cratering impacts and for supercatastrophic impacts.

The resulting size-frequency distributions can be used to es-
timate the size of the parent body, especially for small families.
As an example, we used our set of simulations to determine
D, of the Karin family. This cluster was studied in detail by
Nesvorny et al. (2006) and we thus do not intend to increase
the accuracy of their result, but rather to assess the uncertainty

Hhoo jh t



of linear SFD scaling. The closest fit to the observed SFD of
the Karin cluster yields a parent body with Dy, = 25km —
a smaller, but comparable value to Dy, = 33 km, obtained by
Nesvorny et al. (2006). Using the set of Dy, = 100km simu-
lations, Durda et al. (2007) obtained an estimate Dy, ~ 60 km.
It is therefore reasonable that the best estimate is intermediate
between the result from upscaled 10 km runs and downscaled
100 km runs. We do not consider our result based on “generic”
simulations more accurate than the result of Nesvorny et al.
(2006); however, the difference between the results can be seen

as an estimate of uncertainty one can expect when scaling the
SFDs by a factor of 3.

We derived new parametric relations, describing the masses
M, and My of the largest remnant and the largest fragment, re-
spectively, and the slope g of the size-frequency distribution as
functions of the impact parameters. These parametric relations
can be used straightforwardly to improve the accuracy of colli-
sional models, as the fragments created by a disruption of small

bodies were previously estimated as scaled-down disruptions of
Dy, = 100 km bodies.

In our simulations, we always assumed monolithic targets.
The results can be substantially different for porous bodies,
though, as the internal friction has a significant influence on the
fragmentation (Jutzi et al., 2015; Asphaug et al., 2015). This re-
quires using a different yielding model, such as Drucker—Prager
criterion. We postpone a detailed comparison between mono-
lithic and porous bodies for future work.
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Appendix A. Initial distribution of SPH particles

For a unique solution of evolutionary differential equations,
initial conditions have to be specified. In our case, this means
setting the initial positions and velocities of SPH particles. We
assume non-rotating bodies, all particles of the target are there-
fore at rest and all particles of the impactor move with the speed
of the impactor.

Optimal initial positions of SPH particles have to meet sev-
eral criteria. First of all, the particles have to be distributed
evenly in space. This requirement eliminates a random distri-
bution as a suitable method, for using such a distribution would
necessarily lead to clusters of particles in some parts of space

and a lack of particles in other parts.

We therefore use a hexagonal-close-packing lattice in the
simulations. They are easily set up and have an optimal in-
terpolation accuracy. However, no lattice 1s isotropic, so there
are always preferred directions in the distribution of SPH parti-
cles. This could potentially lead to numerical artifacts, such as
pairing instability (Herant, 1994). Also, since the particle con-
centration is uniform, the impact is therefore resolved by only
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a few SPH particles for small impactors. We can increase accu-
racy of cratering impacts by distributing SPH particles nonuni-
formly, putting more particles at the point of impact and fewer
1n more distant places.

Here we assess the uncertainty introduced by using different
initial conditions of SPH particles. A suitable method for gen-
erating a nonuniform isotropic distribution has been described
by Diehl et al. (2012) and Rosswog (2015). Using 1nitial con-
ditions generated by this method, we ran several SPH/N-body
simulations, and we compared the results to the simulations
with lattice initial conditions.

The comparison is in Fig. A.5. Generally, the target shatters
more for the nonuniform distribution. The largest remnant 1s
smaller; the difference is up to 10% for the performed simula-
tions. There are also more fragments at larger diameters, com-
pared to the lattice distribution. This is probably due to slightly
worse interpolation properties of the nonuniform distribution.
A test run for a random distribution of particles led to a com-
plete disintegration of the target and a largest remnant smaller
by an order of magnitude, suggesting the smaller largest rem-
nant is a numerical artifact of the method. On the other hand,
the SFD is comparable at smaller diameters. This leads to more
bent, less power-law-like SFDs for nonuniform runs.

Appendix B. Sensitivity to Weibull parameters

parameters fixed to the nominal values listed in Table 1. We did
not study the dependence of the resulting distributions N(> D)
and dN(v)/dv on these parameters, as the size of the parameter
space would be exceedingly large, and also to make the com-
parison with 100km runs of Durda et al. (2007) easier; both sets
of simulation used the same material parameters.

However, the fragmentation process is mainly determined by

the flaw distribution in the selected material, approximated by
the Weibull power-law (Weibull, 1939):

n(e) = ke™, (B.1)

2!
where m is th¢' Weibull exponent and & is the normalization co-
efficient. For basaltic material, the Weibull exponent can range
from m = 6 to 12 (Jaeger et al., 2007) and the coefiicient £ can
possibly vary by an order of magnitude, making them the most
uncertain material parameters. valve of B

To assess the uncertainty which propagates to the resulting
SFDs, we ran a few simulations with d,piecc = 0.736 km, vip,, =
Skm and ¢imp B 45°, varying the/ Weibull parameters. Two
simulations have different Wetbull exponent, m = 6 and m =
12, two simulations differ in the coefficient k.. The produced
SFDs can be seen in Fig. B.6. As expected,|the differences
between individual runs are noticeable, howeyer, they do not
change the overall characteristics of SFD. Theslope of the SFD
between D = 0.3 and 1 km is approximately/the same (within
0.2) in all runs, while the sizes of the largest femnant differ in a
predictable way: more flaws with higher activation strain means

, . a
higher fragmentation and subsequently smaller largest remnant.

We can conclude that the Weibull paranieters may introduce a
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Figure A.5: SFDs constructed from five different simulations with Dpp = 10km, dproject = 0.736 km and impact angle ¢y, = 45°. Black histogram shows the runs
with the nonuniform distribution generated by the method of Diehl et al. (2012), while red are the previous (lattice) results shown in Fig. E.11.
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Figure B.6: Size-frequency distributions for various Weibull parameters k and
m. Here kg = 4.0 x 10?? is the nominal value used in main text, see Table 1.

also
(systematic) uncertainty, but there are¥other model parameters,

for example the initial distribution of SPH particles, which may
result in a bias of similar order.

Appendix C. Energy conservation vs. timestepping

Modelling of smaller breakups seems more difficult. Apart
from poor resolution of the impactor, if one uses the same (op-
timum) SPH particle mass as in the target, and a relatively low
number of ejected fragments, weak impacts may also exhibit
problems with energy conservation (see Fig. C.7). This is even
more pronounced in the case of low-speed collisions, e.g. of
D = 1km target, d = 22 m projectile, at Vimp = 3km/s and
Qﬁimp =45°

At first, we thought that small oscillations of density — with
relative changes Ap/p smaller than the numerical precision —
are poorly resolved, and subsequently cause the total energy
to increase. But when we performed the same simulation in
quadruple precision (with approximately 32 valid digits) we re-
alised there is essentially no improvement (see Fig. C.8), so this
cannot be the true reason.

Instead, we changed the timestepping scheme and super-

seded the default predictor/corrector with the Bulirsch—Stoer

integrator (Press et al., 1992), which performs a series of trial
steps with Az divided by factors 2, 4, 6, . . ., and checks if the rel-
ative difference between successive divisions is less than small
dimensionless factor egg and then extrapolates to At — 0. In
our case, a scaling of quantities is crucial. In principle, we have
three options: (i) scaling by expected maximum values, which
results in a constant absolute error; (ii) current values, or con-

L. waliflce 2ehiit
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stant relative error; (ii1) derivatives times time step, a.k.a. con-
stant cumulative error. The option (i) seems the only viable one,
otherwise the integrator is exceedingly slow during the initial
pressure build-up. According to Fig. C.9, we have managed to
somewhat improve the energy conservation this way, but more
work 1s needed to resolve this issue.

Appendix D. Energy conservation vs sub-resolution acous-
tic waves

Even though we always start with intact monolithic targets,
we realized that prolonged computations of the fragmentation
phase require a more careful treatment of undamaged/damaged
boundaries. The reason is the following rather complicated
mechanism: (1) The shock wave, followed by a decompression
wave, partially destroys the target. After the reflection from the
free surface, the rarefaction (or sound) wave propagates back
to the target. (i) However, neither wave can propagate into
already damaged parts, so there is only an undamaged cavity.
(111) This cavity has an irregular boundary, so that reflections
from it create a lot of small waves, interfering with each other.
(iv) As a result of this interference, there is a lot of particles
that have either high positive or high negative pressure, so that
the pressure gradient — computed as a sum over neighbours
— 18 zero! (v) VP = (0 means no motion, and consequently
no pressure release is possible. (vi) However, at the boundary
between undamaged/damaged material, there are some parti-
cles with P > 0, next to the damaged ones with P = 0, which
slowly push away the undamaged particles in the surroundings.
(vi1) Because the pressure is still not released, the steady push-
ing eventually destroys the whole target (see Fig. D.10).

In reality, this does not happen, because the waves can in-
deed become very small and dissipate. In SPH, the dissipation
of waves at the resolution limit is impossible. Increasing resolu-
tion does not help at all — the boundary is even more irregular
and the sound waves will anyway become as small as the reso-
lution.

As a solution, we can use an upper limit for damage, very
close to 1, but not equal to 1, e.g. (1 — D) = 107'°. Then the
acoustic waves are damped (in a few seconds for D = 1km
targets) and the energy is conserved perfectly. Another op-
tion would be to use a more detailed rheology of the material,
namely the internal friction and Drucker—Prager yield criterion
(as 1n Jutzi et al., 2015).
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Figure D.10: A simulation of the classical Nakamura (1993) experiment, but
prolonged up to 200 us, which exhibits problems with energy conservation,
as explained in the main text. We show a cross section in the (x,y) plane
and pressure P in colour logarithmic scale. There are acoustic waves with
wavelengths close to the resolution limit in the inner monolithic cavity, sur-
rounded by fully damaged material (with 9 = 1). In our setup, Diarger = 6 cm,
dproject = 0.7cm, p = 2.7, or 1.15gcm™ respectively, vimp = 3.2kms™!,
Gimp = 30°, Npary = 7 - 10°.

Appendix E. Additional figures

Figures D. 10 to D.21 show the situation for non-standard
impact angles.
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Reviewer 1

Please find enclosed my review of the paper " SPH/N-body simulations of
small (D=10 km) asteroidal breakups and improved parametric relations for
MonteCarlo collisional models" by Broz et al., submitted to Icarus. In this
work, the authors present a new set of impact simulation, extending the
Durda et al. (2007) study to D=10 km. In addition, they use this new set of
simulation to derive parametric relations, which could be useful as input in
collisional models, in particular to study asteroid families formations.

W, N W NN Y

V

Uverall I feel that this work is a good attempt to merge new data in order
to constrain the physical properties of asteroids. I recommend the submitted
> paper for publication with moderate revision.

Vv

> I have a list of points that deserve some comments and/or changes, which are
> not listed in strict order of importance.

> Section 2.1
> — Line 117, Y_0 is not defined.
> - Equations 7 to 9, \alpha, \beta and \gamma superscript are not defined.

— Also at line 133 the authors give values for \alpha_AV and \beta_AV, which
do not appear in any equation. I guess these refer to alpha and beta in
equation 10, but subscripts are missed and that fact could confuse the
reader. So, this paragraph would be more readable if every constant is
explicitly defined.

vV V V VvV V

We would like to thank the referee for carefully reading the text and pointing
out the missing definitions. Each quantity is now properly defined in the
resubmitted manuscript.

> — Line 135, Is N the same that N_pb + N_p in table 17 The number does not
> agree. Beside, check in table 1 N_pb is used for the number of particles in
> the target and for the projectile also.

Here, we mainly wanted to give an order-of-magnitude comparison between the
total number of particles (N) and number of neighbours (N_neighbours). However,
i1t could be confusing for the reader that the number is different than the one
used in Table 1. To be consistent, we changed N to 1.4 x 10°5 in the text.

> - Line 156, define G (the gravity constant) please.
The gravitational constant G is now defined in the text.

Section 3.1

— This comment applies to all of the size distribution plots (Fig.1l and D.10.
to D.13). A significant fraction of the plot-is used up by the "stair case"
from 1000 to 1074 (and y-axis extend up to 10°5), this is due to the
resolution limit and not an interesting bit to be plotting. I recommend stop
at halfway between 1000 and 1074 and give more space to the resolved section
of the size distribution.

vV VV V V VYV

We beg to disagree on this point. Referee is absolutely right that the

"staircase" part of the plot is not“relevant result from the physical point of

view, on the other hand it clearly shows the resolution limit and sizes of the |
smallest fragments in the simulation. We believe it is an important feature of

the plots for numerical reasons and we would rather leave the plots unchanged. Newer Hae less | we 2does

- - | . | 3, warning" for rendexs .. .
> — Line 177: Given Benz and Asphaug (1999) derived the scaling law from impact

> simulations at impact speed of 3 and 5 km/s. It is worst to give some more ln eleehamc fovma ‘ HAz tlokg

tav be 200m4d - in .



details about the procedure to estimate Q"*_D for every impact conditions of
the present article. It is said, did you make any estimation to get Q"*_D for
each impact speed and projectile size? Could you provide the value assumed

for Q7%_D7

vV V V V

- Related to this, in caption of figure 1: the authors said -To compare
Aapples with apples, we compare runs with (approximately) the same Q/Q"*_D
ratios and the same impact angle . Given that all the comparison is base on
this equivalence, it could be useful for the reader to have some example or
illustrate in some way the correspondence (in terms of impact parameters)
between D=10 km and D=100 km runs with the same Q/Q"*_D ratio.

- Silh‘-jl.ﬁ- /{ s )d‘ @"3)3 am*\leﬂ! 67 Be,m.,kp(spwzuj
We agrt-ae with the refe%‘ee, the scaling !{aw and Q7 *_D Vf.lues e not explained FOT D=40 kows amd fov N ...
sufficiently. To explain, we used the _same valuey(af W"*_D for—eati—performed
stmuiationsy—using-the—scaling law-derived—feor impact velocity v_imp=5 km/s.
This makes it easier to compare different runs. We expanded this section in the
resubmitted manuscript, adding above mentioned and also the exact values of
Q°*_D for 10km and 100km bodies. Furthermore, we give an example of how the

corresponding D_pb=100km simulations were selected, see Sec. 3.4.

vV V V V V V

L‘bﬁesrbu()ihj o B scaling lew

Section 3.2.

-At previous section (3.1) you mention that the resolutions limit is around D
=0.3 km. In this section it could be included some comments about if you had
removed these fragments from the histogram or if you have checked if these
smaller fragments produce any bias on the speed distribution.

VYV VvV vV ¥V V¥

This is an interesting point that we did not address in the paper. Small
fragments close to the resolution limit are of little importance for histograms
of supercatastrophic impacts, but they are certainly significant for cratering
impacts, as the families created by cratering events consist of only few
particles and the majority of particles form the largest remnant. We added a
note about the isgue in Sec. 3.2 of the revised manuscript.

Sy YWwelhe
Section 3.4
- This section attempt to address the global SFD comparison for impacts into
D=10 km target and the scaled-down D=100 km from Durda et al. (2007).
Reading this section one can think that always Q/ Q°*_D ™~ 1lconvenite t could
be convenitnetever, analising every figure for diffeent if these samller
fragments be include some comments convenite t could be convenitnetever,
analising every figure for diffeent if these samller fragments be include
some comments , it is suitable to scale the SFDs. However, analysing every
figure for different impact angles including D.10 to D.13 I see that this
condition does not apply for all impact angles. For instance, at impact
angles of 15 and 30 the comparable SFDs seem to be those with Q/Q"*_D
around 0.6 and 0.9. However at 45 such range shifts to 1.2 to about 3, and
for more oblique impact angle it is no possible to match the SFD.

il ¥ e
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v

In order to be more consistent with what figures show, I consider that it
might be convenient to soften this claim and include a more detailed
> discussion for different angles.

V

Hao
We thank the referee for pointing out the dependence of SFDs on impact angle

that we did not mention in the paper. We believe it does not invalidate our

claims, though. For all impact angles, the best correspondence between the 10km

and 100km runs is achieved in the mid-energy regime and the differences are

larger in both the cratering and the catastrophic regime? However, the best |
match clearly depends oﬁ"‘i’mpact angle as mentioned by the referee, prebabily most Mﬂtb
because of different projectile sizes in both compared simulations. We discuss

this dependence in more detail in Sec. 3.4 of the paper.

> — At the end of this section, the authors explain the different SFD behaviour
> for supercatastrophic impacts. It would be expected that larger targets

> produce larger largest remnant due to self-gravity. Could the authors offer
> any discussion for this outcome?



y Awvi 'EC"UQ\
Regarding this point, we argue that the higher self gravitzyééﬁthe 100km bodies
is already accounted for in the critical energy Q *#_D; the energy is
considerably higher compared to D_pb=10km bodies. Impact to D=100km body with <\
given ratio Q/Q_D"* does not necessarily produce a bigger largest remnant
(fragment) compared to impact to D=10km body with the same Q/Q_D"*, actually
the largest fragment seem>to be smaller for D=100km bodies in supercatastrophic
regime, as mentioned in the paper. We realize this is not explicitly mentioned
in the text\ and might confuse Some readers, we thus added a note to the end of

Sec. 3.4. gﬂ$uyb7

> Section 4

> — My major concern here is the follow one. The authors are getting parametric
> relations that could be used in collisional models. Form the text in this

> section; I understand that only the new set of simulations (D=10 km) was used
> to derive the parametric relations, but not offer a comparison with the set

> of simulations from Durda et al. (2007) for D=100 km, to test out if these

> follow the same relationship. Just in case, why didnt you consider both

> sets?

)’In case both set of simulations were considered to get the parametric
):relations, it should be explicitly said in the text. If it is not included, it
> could be interesting such comparison and discussion. |
el whan ¥ N s 2Rty
We thank the refer for thispoint, as it is also something Eﬁ/;;ft out of our
paper. We believe includieg/égf; sets of simulation®would not provide more
accurate results. Even ¥ we consider only D_pb=10km simulations, the relevant
quantities (slope q, largest remnant M_lr and fragment M_l1f) are not %=l
constrained, as seen from Fig. 4 of the paper. Adding one more parameter -
the parent body s8ize M_pb - would make ] } LL L] lnd generic
relations fitting all considered data. X N Fluding |
ey hgdie\y awd Hreve 1 2 3{9.«{&-5‘&“(’90&*’&!‘ ol IMJHMA\D-l JZh-FN“*S .
We conclude it is better to restrict the dataset and provide more constrained
parametric relations. It can be also seen that the D_pb=100km bodies do NOT

¥ gven wove JiERault

follow the same relations. This is evident from plots of SFDs in Fig. 1 and JHL'

At - ' : - Moveovay D = 100 kw
E.11-14 - the differences in slopes and largest remnants (fragments) imply we T
would have to generalize the parametric relation in order to fit both D_pb=10km 'm relzhhewg Wwexe

and D_pb=100km results. \ siawiKeontly alber _
ngey HAI g ahrem\y eublishad 5‘7

P B Regarding to the estimations of the SFD slope. Are the authors considering Movti delll cla). (200 9)‘ e £7
> the full size range of fragments, or have been excluded the fragments under : e
> the resolution code? Such consideration could be included in the text. C\ulkew e¥2t. (201 )
WeS "H'\L. F\)r M&(.NSWP{C vubble fﬂ‘(f -
We only considered the middle part of/the SFD, £xcluding both the largest
remnant (if there is one) and the pakt close ¥o the resolution limit. We did Qnz tan vse 2 LLweev inkvpoleRov,
not specify what part of the SFD ds used for fitting, so we corrected our ‘t.P
mistake by defining the lower and upper cutoff for fitting the power-law, see w;[‘bk,

e . S
the beginning of Sec. 4 in the new paper, PLQ“ =

> — line 283: Do you mean Q_eff/Q"*_D? On the other hand, concerning to this
> last paragraph, the author mention an interesting point here, which could be
> extended. Is that behaviour related to the fact that the largest remnant

> does not exist?

be
There should indeed}pyfﬂ_eff instead of (, we corrected the typo.

Appendix A

- This 1s an interesting point in order to assess the uncertainty introduced
by using initial conditions of SPH. I have no complain here, but I am
wandering how could change the SFD outcomes if you consider lower impact

energy and on the contrary very high impact energy (supercatastrophic
events) .

vV V V V V.V



The differences between both particle distributions are largest for cratering
impacts with;wery'small impactor. The bigger the impactor, the more similar the
SFD is to the SFD of the ’standard’ particle grid.

AN We added a wele ... !

> Appendix B
> — line 254: sl1, s2, D_O are no defined along the text.

We thank the referee for another discovered typo, the variables were corrected
to ql and qZ2.

> - line 358: Do you really mean D=1km and d=22 m? The same in caption figure B.7.

In this appendix, we do indeed use D=1km bodies instead of D=10km. The
discussed issues of energy conservations are more prominent in these cases and
thus make lkm bodies more suitable for numerical tests, even though the same

issue is present for 10km and also for k()()km bodies, a\-H,\Bus\n i 2 vu-j\igi\h. lewed

DU
> Appendix C
> — line 399, D=1km 10 km77
> Here is a list of less important remarks:
> Line 154 and 171, it is used D_PB however in other cases (i.e. line 172)
> D_pb, please use a uniform notation along the manuscript, check for other
> cases.
> Figures 1: D/ km D (km), also check others figures, most of them have the same typo.
> Figure 2: caption, 2nd line, Do you really mean Fig. D.10 or Figure 17

> Reviewer 2

> Overall this is a straightforward paper presenting results of numerical
experiments by the first author and collaborators. I have a few comments that
I hope will improve the presentation of the work.

vV V

My main question concerns the sensitivity of the results to the particular
values of the Weibull parameters that the authors have chosen. Why did the
authors choose those particular values for k and m? My understanding is that
m, in particular, is known to vary over a wide range (m=9 lies in the middle
of that range, I believe). How sensitive are the results to choices of other
values for those parameters? In particular, the authors emphasize that their
results for D=10 km targets are different from the results for previous work
by Durda et al (2007) with D=100 km targets. (I haven’t checked the Durda
et al 2007 paper, did that paper use the same values for k and m? If so, that
should be stated, or for that matter, whatever values Durda et al used.)

VWV W W W N YW W W

Given that the main results of the paper are concerned with the mass,
velocity, and angular distributions of fragments after impacts, it would
seem to me that this might be an issue? Have the authors carried out any
> calculations with different values of k and m? I don’t know that the authors
> need to carry out a whole suite of calculations with different k and m, but
> some assurance or comparison would be a good thing.
Tn Hae O\ manvsen pt |
We did not check the dependence on material properties and instead considered
them fixed for all performed runs. Selected values are the same as the ones
used in Durda at al. 2007; we added a note to Table 1 mentioning this fact.
Lﬂﬁowever,-it is certainly pa- important to test the sensitivity of our results to
eibull parameters. To this point, we ran a few simulations for different
values of k and m in order to estimate the expefted uncertainty Weibull
parameters introduce into our results. The testf are described in Appendix B of
the new manuscript. fe Béai*hywy\

vV V V



> A few other notes: I think it would be good if equations 6-7 were written so
> as to explicitly show the contribution of the artificial viscosity Pi_ij, or
> perhaps its contribution to the pressure P, if that is how it is done.

W rote
It is indeed not clear from tFéHtext how the artificial viscosity enters the
equations; we explicitly added the terms into the equation of motion and,energy
equation in the resubmitted paper. e

> Likewise it would be good to see an explicit expression for the damage D, if
> not in the text, then perhaps in a short appendix.
e 7

The equation for evolution of damage D is taken straight from the referenced

paper by Benz and Asphaug, 1994. It is quite tricky to correctly discretize
the Grady-Kipp damage in SPH (far from a single equation) and it is explained in

detail in Sec. 3.2 of Benz and Asphaug, 1994. We would not want to hi the  creale a3 impngg;gm

damage discretization is our work, as we use an existing code (SPHS)and the

computation of damage was leit unchanged. We thus beliewve the damage

discretization -inteo—this—section. ?m&r to leave e discussion of

ovut. N
Another interesting comparison (in my opinion) would be one between the
‘authors’ results for fragment mass and velocity distribution and the
"classical" results for ejecta from cratering impacts into a half-space.
Given that the authors make a point of discussing their results in the
‘cratering" regime where the impactor diameter is much smaller than the
target, such a comparison is interesting and appropriate. The classic paper
for this is Housen et al 1983, J. Geophys. Res. vol. 88, p 2485 but a more
recent and extensive paper is Housen and Holsapple 2011, Icarus vol. 211, p
856. A plot like the log-log plots in Fig 1 of the paper would be
appropriate. One imagines that the authors’ results for the smallest
impactors would be similar to those from half-space experiments and
calculations, but is that the case?
rebkvc\?

Twe Referee raises an interesting question. The cratering €vents should indeed
produce comparable results to impacts intgﬁha1f~5p e, experimental data from
Housen and Holsapple 2011 could then serve as an ndependentrvalidation of the
used SPH code. We did not attempt to validate ghe code in ouy work as we are//_ anh7 2 Coiag
using already well tested code SPH5 (Benz Asphaug, 1994, 1995) with but” a
few modificatioﬁg:t£§ we wished to compare¢/cratering impacts with impacts into i
half-space, the problem setup would alsg/have to be adjusted; currently the ¥ (cf. Nalamwnn EWMQ')
lmpact point and ejected fragments are poorly resolved for cratering events.
Twig Rough discretization does not allow us to compare ejected fragments in detail,
forghuantitative comparison we would need more SPH particles at the point of
impact, possibly using method described in Appendix A of the paper. We can at
least say that our results are qualitatively consistent with the impact
experiment. Experimental data show that the velocity of ejecta depends on their
distance from the point of impact - the ejec%"gﬁlocity decreases with
increasing distance - and this is indeed what we see in our simulations. Ad‘ We ate Housem S 'Hb‘sq,"lf___, ?

We uploaded one animation of cratering simulation to ;X;
Q

vV VV V VV V V V V V V

http://sirrah.troja.mff.cuni.cz/"sevecek/ for Hax favm ma:%rals

NavevHaelags this gulikhwe
We therefore beg to leave out $he comparison from the paper, as i

require . We believe it is W related, but dis
and a good idea for future\work in this field. C

2 lot ef work Yo do 1% crz:re&'-'ullp and in a th‘hﬁmwy .

A vim: set spell spelllang=en fdm=marker:
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