
1. Julia family

There is an intriguing possibility that one of the craters on the
surface of (89) Julia is directly related to the observed Julia
family. In the following, we try to falsify this null-hypothesis,
discussing basic properties of the family, and using N-body or-
bital model, Monte-Carlo collisional model, or SPH collisional
model.

1.1. Basic observed properties

Regarding the context, Julia family is located in the main belt,
but at high inclinations where a low number density of aster-
oids is expected. At the same time, it is close to the 3/1 mean-
motion resonance with Jupiter (see Figure 1). Additionally, there
are several secular resonances between J3/1 separatrix and Julia
family (2.51 and 2.53 au).

Julia family was already reported in Nesvorný et al. (2015).
The family was extracted by a standard procedure, using the hi-
erarchical clustering method (HCM; Zappalà et al. 1995) and a
recent catalogue of synthetic proper elements (Knežević & Mi-
lani 2003), version Jun 2017. The cutoff velocity vcut is treated
as a free parameter as it should correspond to local conditions,
i.e. low background in our case. The number of family members
Nfam depends on vcum and this dependence turns out to be flat
around vcut = 80 m s−1, which was chosen for the identification.
This family has 66 members; it is composed mainly from small
asteroids (D ∈ (1; 2.5) km) and well separated from background.

No additional criteria were used to remove interlopers, even
though we checked Wise catalogue (Masiero et al. 2011) for vi-
sual geometric albedos pV , Sloan SDSS MOC4 catalogue (Ivezić
et al. 2002) for colour indices a?, i − z, or the semimajor axis vs
absolute magnitude (ap,H) plot for any outliers, but there are
physical data for only a handful asteroids (due to their faintness)
and none of the objects is distinct enough to consider it a clear
interloper. Using the population at slightly higher inclinations
(sin Ip = 0.30 to 0.32) as a representative background we can
expect at most 1 interloper among family members anyway.

The family in the space of proper semimajor axis ap, proper
eccentricity ep, and proper inclination sin Ip is shown in Fig-
ure 2. In the (ap, ep) plane, it looks like an ’inclined’ struc-
ture, somewhat similar to an ellipse, which can be actually ex-
pected for an isotropic ejection if the true anomaly f at the
time of impact was close to 180◦. The left-hand part is cut at
2.54 au, most likely due to the proximity of J3/1 resonance; the
right-hand part seems more scattered in ep. Moreover, its over-
all size is comparable to the escape velocity from (89) Julia,
vesc =

√
2GM/R � 115 m s−1 if we assume the bulk density

ρ = 4 300 kg m−3. There is a noticable offset in inclination by
0.002, likely arising from a cratering and ejection of all frag-
ments into an half-space.

The largest remnant (89) Julia is (148 ± 10) km in diameter,
with the geometric albedo pV = 0.184 ± 0.034. The only other
member with known albedo is (242057), but with a substantial
uncertainty, pV = 0.268±0.077. We thus use the former value for
all other family members. The mean colours of 9 members, a? =
0.044 mag, i − z = 0.103 mag, confirm their taxonomy belongs
to the S-complex. The slope of the size-frequency distribution is
relatively high, q = −3.9 ± 0.2, which is far from the collisional
equilibrium of Dohnanyi (1969). None of the above properties
contradicts the relation between (89) Julia and its family.
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Fig. 1. Surroundings of Julia family on the proper semimajor axis ap vs
proper inclination sin Ip plot. All asteroids with eccentricities ep = 0.11
to 0.14 are shown. Symbol sizes are proportional to the logarithm of
diameters D. Colours corresponds to the geometric albedos pV (namely
pV < 0.07 is blue, pV > 0.15 brown and yellow, gray if unknown).
The libration centre of the 3/1 mean-motion resonance with Jupiter and
its approximate width is denoted by a vertical strip. The black dashed
rectangle indicates a region which will be analyzed in detail; the gray
one is selected as a suitable background population. The large family
at sin Ip < 0.27 is Maria. The largest asteroid in the neighbourhood
is (13) Egeria. Julia family members identified at the cutoff velocity
vcut = 80 m s−1 are emphasized by orange colour. The family is com-
posed mainly from small asteroids (D ∈ (1; 2.5) km) and well separated
from background asteroids.

1.2. N-body orbital model

As a first step, we construct an orbital-evolution model. It is
based on a symplectic N-body integrator from the Swift pack-
age Levison & Duncan (1994), modified according to Laskar &
Robutel (2001). This integration scheme makes possible to use
the time step ∆t = 91 d and the time span reaches up to 4 Gyr.
Our dynamical model contains perturbations by 4 giant plan-
ets (with initial barycentric correction), Yarkovsky diurnal and
seasonal effects (Vokrouhlický 1998; Vokrouhlický & Farinella
1999), which induce a systematic drift in a, but interactions
with resonances which may also induce drifts in e, or I Brož
& Vokrouhlický (2008); the YORP effect with thermal torques
from Čapek & Vokrouhlický (2004), corresponding secular evo-
lution of spins, collisional reorientations, mass shedding at a crit-
ical spin rate, as outlined in Brož et al. (2011).

For an appropriate comparison with observations, we use on-
line digital filters. To compute mean elements, we perform sam-
pling 1 yr and use convolution filters A, A, A, B from Quinn
et al. (1991), with decimation factors 10, 10, 5, 3. Proper el-
ements are computed by the frequency-modified Fourier trans-
form (Šidlichovský & Nesvorný 1996), from 512 samples; plan-
etary frequencies (forced oscillations) are removed to obtain re-
quired amplitudes of free oscillations. Finally, we use a running
window up to 10 Myr to suppress remaining oscillations due to
long-period secular resonances. This averaging involves certain
amount of data and delays the initial output (by about 5 kyr for
the mean-element filter, 0.8 Myr for the proper-element filter,
and 10 Myr for the running window).

Initial conditions of planets were taken from DE405
ephemeris, and osculating elements of asteroids from Astorb
catalogue. All planets and (89) Julia were integrated from the
epoch of osculation until the true anomaly reached f = 180◦
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Fig. 2. Julia family in the space of proper elements (ap, ep, sin Ip), as
extracted by the hierarchical clustering method (HCM) with the cutoff
velocity vcut = 80 m s−1. The ellipses correspond to a constant veloc-
ity difference with respect to (89) Julia, equal to the escape velocity
vesc � 115 m s−1 from the respective parent body. Their shape is deter-
mined by the Gauss equations, the true anomaly f , and the argument of
perihelion ω at the time of breakup. In particular, we show the values
f = 180◦, 170◦, 160◦, 150◦ (top panel); f + ω = 90◦, 80◦, 70◦, and 60◦
(bottom panel). These ellipses seem to indicate that the relation between
(89) Julia and its family is reasonable.

and ω + f = 80◦. We then generated 660 bodies, i.e. 10 times
the observed number in order to get a large sample of orbits, so
that it can be easily resampled off-line. For simplicity, we as-
sumed an isotropic velocity field, and a distribution of Farinella
et al. (1994), with the slope α = 1.25 and the maximum ve-
locity vmax = 500 m s−1 (to get also outliers). This distribution
peaks at about the escape velocity vesc. We also assumed ini-
tially isotropic spins, and a uniform distribution of spin periods,
P ∈ (2; 10) h.

Thermal parameters of synthetic bodies were selected as fol-
lows. The bulk density ρ = 4 300 kg m−3, the density of sur-
face layers (regolith) ρsurf = 1 500 kg m−3, the heat capacity C =
680 J kg−1 K−1, the thermal conductivity K = 10−3 W m−1 K−1,
the Bond albedo A = 0.10, and the infrared emissivity ε = 0.9.
Diameters were taken from the observed SFD, with 10 clones
for each.

The orbital evolution of the synthetic family is shown in
Figure 3 (left column). Qualitatively, it is clear that in about
100 Myr the synthetic family becomes too dispersed compared
to the observations. However, we cannot directly (quantitatively)
compare the outcome of N-body simulations and observations
as there are at least three problems (Brož 2016): observed as-
teroids have to be carefully selected, not only the family iden-
tified by HCM, but also its surroundings, where the bodies can
be scattered to (cf. Brož & Morbidelli (2013)); the SFD is dif-
ferent and it even changes in the course of the simulation; there
is an inevitable contribution of background asteroids, and this
background can be even variable.

To overcome these limitations we post-process the output
of our N-body simulation. As a preparation, we have to se-
lect all observed asteroids which encompass the family, i.e.
ap ∈ (2.52; 2.58) au, ep ∈ (0.11; 0.14), sin Ip ∈ (0.28; 0.30),
with physical parameters (if known) pV ∈ (0.07; 0.40), a? ∈

(0.0; 0.2) mag, i − z ∈ (−0.2; 0.2) mag, i.e. S-complex taxon-
omy (or unknown). Suitable background population is almost the
same, except sin Ip ∈ (0.30; 0.32) (see the rectangles in Fig. 1).

We then proceed with a so-called ’black-box’ method
(cf. Fig. 3 middle column): (i) we choose 4 boxes with ∆a =
0.03 au, ∆e = 0.015; (ii) we compute the numbers of observed
asteroids located in these boxes; (iii) the observed differential
SFD; (iv) the background differential SFD; (v) at every single
output time step we compute the synthetic differential SFD (sav-
ing also lists of bodies in the respective bins); (vi) for every
single size bin (D,D + dD) we draw a synthetic background
population from a random uniform distribution (in ap, ep, sin Ip),
because our volume is relatively small; if the background vol-
ume differs from our volume, we have to use a suitable factor f ;
(vii) we rescale the synthetic SFD to the observed one by ran-
domly choosing Nobs− f Nbg bodies from the lists; (viii) we com-
pute the numbers of all synthetic asteroids located in the boxes;
(ix) finally, we compute the metric

χ2 =

Nbox∑
i=1

(Nsyn i − Nobs i)2

σ2
syn i + σ2

obs i

, (1)

where the uncertainties are assumed Poisson-like, σ =
√

N. Un-
fortunately, in our case the family is rather small, so are the num-
bers of bodies in boxes, and consequently the uncertainties are
relatively large. We have to keep in mind that the temporal evolu-
tion χ2(t) is somewhat noisy, and sometimes a random selection
of bodies may also lead to a good fit. Nevertheless, according
to Fig. 3 (right column) it is clear that systematically good fits
are only possible for ages t . 100 Myr, with the best one at
t = 20 Myr. The lower limit t & 10 Myr stems from the fact that
the left-hand part of the family below 2.54 au needs to be dis-
persed. Having these results, the N-body model of Julia family
seems to be reasonable.

Let us note, however, that our dynamical model is simpli-
fied and may be insufficient. For example, we do not account
for massive asteroids (89) Julia, (13) Egeria which may possi-
bly perturb the orbits and create an additional dispersion of the
family between ap = 2.55 to 2.57 au. Another possibility is that
the velocity field was substantially anisotropic, apart from being
shifted wrt. (89) Julia. This may also help to precisely match the
observed dispersion in orbital elements.

In order to account for the dynamical decay also in Monte-
Carlo collisional models we computed the relative numbers of
asteroids N(t)/N0 located within the respective region (Figure 4).
They can be approximated by exponentials, N/N0 = exp(−t/τ),
and the respective time scales τ for five different size bins D ∈
(0.5; 2.5) km, and 150 km to account for the largest remnant, are
as follows: 226, 434, 595, 424 Myr (and formally 42 200 Myr,
i.e. very long).

1.3. Monte-Carlo collisional model

Knowing the orbital evolution, we are ready to construct a colli-
sional model. To this point we use a Monte-Carlo code called
Boulder (Morbidelli et al. 2009), which computes the evolu-
tion of size-frequency distributions due to fragmentation (and
reaccumulation). We only performed a few modifications (as in
Cibulková et al. 2014), most importantly we account for a size-
dependent dynamical decay (mostly due to the Yarkovsky effect
and neighbouring resonances), including a handling of fractional
probability.

Hereinafter, we assume two populations: the main belt and
Julia family. Because the family is located at the outskirts of the
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Fig. 3. The proper semimajor axis ap vs the proper eccentricity ep for the synthetic family (left column). It is an output of the N-body simulation
which initially included 660 bodies (i.e. 10 times more than observed). It was later rescaled to the same size-frequency distribution (SFD) as
the observed one, and we included also a random background population (middle column). Colours correspond the numbers of bodies Nbox in
the respective boxes. Finally, there is the observed family, and the corresponding χ2 metric (right column). The ’initial’ conditions are shown
as t = 0 Myr (top row), as well as the best fit at t = 20 Myr (bottom row). Dotted lines on the χ2(t) plot correspond to the 1-σ and 3-σ levels.
A reasonable match is only possible for young ages t . 100 Myr.
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Fig. 4. A relative number N/N0 of the synthetic family members
vs time t (solid lines), for five different size bins spanning D ∈

(0.5; 2.5) km, and 150 km to account for the largest remnant. A body is
removed from the population whenever it leaves a region in the proper
element space outlined by: ap ∈ (2.52; 2.58) au, ep ∈ (0.11; 0.14),
sin Ip ∈ (0.28; 0.30). This dynamical decay can be approximated by
exponentials (dashed lines), N/N0 = exp(−t/τ). The respective time
scales τ are then used for the Monte-Carlo collisional model.

main belt we computed intrinsic collisional probabilities anew,
using the algorithm by Bottke & Greenberg (1993). The ac-
tual values are Pi = 2.99 × 10−18 km−2 yr−1 within the main
belt, 3.84 × 10−18 km−2 yr−1 for mutual collisions, and 6.10 ×
10−18 km−2 yr−1 within the family (even though these collisions
are clearly negligible). The respective median impact velocities
are vimp = 5.04, 6.62, and 6.57 m s−1. Main-belt decay is taken
from Bottke et al. (2005), Julia from above.

Physical properties of the populations are described by the
scaling law Q?

D = Q0ra + Bρrb, where we use the parameters
from Benz & Asphaug (1999) for basalt at 5 km s, with one
exception for Julia family for which we use a higher density
(ρ = 4.3 g cm−3) what makes it slightly stronger in the gravity
regime.

Initial conditions or SFDs are rather similar to the observa-
tions except the tails which were prolonged down to Dmin =
0.005 km, or eventually bend-off below slope q = −3 to prevent
a divergence in mass. The time step is ∆t = 10 Myr (or smaller
if necessary), the time span up to 4 Gyr. The model has to be run
multiple times because of the fractional probabilities.

Results are shown in Figure 5 (left column). It turns out that
Julia family is by no means an exception, because collisions with
(89) Julia creating such populations are relatively frequent. On
the other hand, if we focus on a single event (right column),
without (89) Julia itself which creates fragments all the time,
this transient population decays within a few 100 Myr, partly be-
cause of the dynamical decay and partly due to collisional grind-
ing. This young age is consistent with the previous orbital model.
Again, we can state that our (statistical) collisional model of Ju-
lia family seems reasonable.

1.4. SPH collisional model

Last but not least, we try to use an SPH model, from which
we can estimate the ejected mass, size-frequency distribution of
fragments, their velocity field, and most importantly, the crater
size. All of these may potentially contradict the observations.
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Fig. 5. Cumulative size-frequency distributions N(>D) resulting from two Monte-Carlo collisional models: the main belt and Julia family (left
column); the main belt and the family without the largest remnant (89) Julia (right column). The main belt SFD is plotted in blue and the family
SFD in red; the respective initial conditions in cyan and yellow, and the observations are in gray; the bend-off at around D ' 1 km is mostly due
to the observational incompleteness. The situation at time t = 100 Myr (top row), and t = 1000 Myr (bottom row) is shown. There are always 10
runs with a different random seed, in order to see also lower-probability events. The first model demonstrates that Julia family is by no means an
exception, while the second one that small fragments (from a single breakup) decay quickly within a few 100 Myr at most.

As a preparatory task, we employ a set of Durda et al.
(2007) size-frequency distributions and a simple scaling (up to
D = 150 km) discussed therein to preliminary estimate impact
parameters from the observed SFD (cf. Figure 7). Given the
’vast’ difference between the largest remnant (i.e. the 1st largest
body) and the largest fragment (2nd), it is not surprising that the
best-fit SFD corresponds to a smallest cratering at an oblique
angle which imparts only a limited amount of energy on to the
target. The expected projectile size is thus d = 8.117 km, the
velocity vimp = 6 km s−1, and the angle ϑimp = 75◦.

We use the following tools for computations: SPH5 code
for the fragmentation phase (Benz & Asphaug 1994), Pkdgrav
for the reaccumulation phase (Richardson et al. 2000), Tillotson
(1962) equation of state, von Mises (1913) yielding criterion,
and Grady & Kipp (1980) fracture model.

Material parameters mostly correspond to basalt (except
ρ0): the zero-pressure density ρ0 = 4.3 g cm−3, bulk modulus
A = 2.67 · 1011 erg cm−3, non-linear compressive term B =
2.67·1011 erg cm−3, Tillotson parameters E0 = 4.87·1012 erg g−1,
a = 0.5, b = 1.5, α = 5.0, and β = 5.0, incipient vapor-
ization Eiv = 4.72 · 1010 erg g−1, complete vaporization Ecv =
1.82 ·1011 erg g−1, shear modulus µ = 2.27 ·1011 erg cm−3, yield-
ing Y = 3.5 · 1010 erg g−1, melt energy Emelt = 3.4 · 1010 erg g−1,
tensile failure using Weibull flaws, with fracture parameters
k = 4.0 · 1029 cm−3, and m = 9.0.

The time step ∆t is controlled the Courant criterion with
a factor 1.0. The time span 100 s is more than twice longer that
the travel time of the shock wave, 2D/vimp, and much shorter
than the ejection time scale, vej/g. Artificial viscosity parameters
were set a bit higher than standard ones, αav = 4.0, βav = 8.0.
We use a modification of the scalar damage D as explained in
Ševeček et al. (2017) (App. C). The number of SPH particles
was Npart � 7.0 × 105.

The handoff, or conversion of SPH particles to solid spheres,
was performed with the relation Ri = [3mi/(4πρi)]1/3, which

allows for some expansion below ρ0. In the reaccumulation
phase, the self-gravity was computed approximately, with gravi-
tational moments up to hexadecapole order and the opening an-
gle θ = 0.5 rad. We assumed a perfect merging, so that no shape
information is preserved. The time step was 10−6 (in G = 1 units)
and the time span 50 000∆t so that the reaccumulation is defini-
tively over.

Before we proceed with the discussion of the crater visible
in Figure 6, we have to check the resulting size-frequency dis-
tribution (after the reaccumulation) which is plotted in Figure 7.
The largest fragment (2nd) is resolved and matches quite well
the observations, even though its size is a bit larger (3 vs 2 km).
The remainder of the SFD cannot be directly compared thought,
because its slope is driven by the limited resolution; the sizes
of individual (not reaccumulated) particles differ only due their
expansion during the fragmentation phase. Nevertheless, we can
retain the original impact parameters and also the resolution, be-
cause our model SFD does not contradict the observations.

Regarding the crater, we should estimate its final size, e.g.
rim-to-rim, but we only have a transient crater at the end of the
fragmentation phase. To overcome this issue, we overplotted dis-
tances s which would be travelled by particles within a ballistic
time t = 2v sin 45◦/g at a given (approximately homogeneous)
gravity g = GM/R2. If s < h, h denoting the smoothing length,
the particle cannot travel anyway far from its current position.
Consequently, if we carefully measure Fig. 6, the diameter of the
resulting crater should be at least dcrater & 60 km, but this is still
transient (it can become larger due to later landslides) and with-
out the ejecta blanket, of course. This value seems in a striking
agreement with the observed sizes of the four craters (ranging
from ??? to ??? km).
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Fig. 6. An SPH model of the breakup of a D = 150 km target. Its
cross-section in (x, y) plane is shown, with colours corresponding to
the logarithm of velocity |v|. The number of SPH particles used was
Npart � 7.0 × 105. The time t � 100 s corresponds to the end of
fragmentation phase. (The reaccumulation phase is computed later by
an N-body model with self-gravity.) The original projectile had size
d = 8.117 km, velocity vimp = 6 km s−1, and hit the target at a very
oblique angle ϑimp = 75◦. Green lines indicate the distances s which
would be travelled by particles within a ballistic time t = 2v sin 45◦/g
at a given (approximately homogeneous) gravity g = GM/R2. Conse-
quently, the diameter of the resulting (transient) crater should be at least
dcrater ' 60 km.
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Fig. 7. The cumulative size-frequency distribution resulting from the
SPH plus N-body simulation of the breakup (black solid line), compared
to the observed SFD of Julia family (red dashed line). Fast-moving pro-
jectile fragments were removed from the plot as they can never be as-
sociated with the family. The largest remnant (i.e. the 1st largest body)
remains practically the same; the largest fragment (2nd) is already re-
solved, even though its size is a bit larger than the observations (3 vs
2 km). The remainder of the SFD cannot be directly compared, because
its slope is driven by the limited resolution; the sizes of individual (not
reaccumulated) particles differ only due their expansion during the frag-
mentation phase.

1.5. Ejecta half-space position

We can further analyze the velocity field resulting from the SPH
model. As expected for a cratering event, ejecta can only fly to
an half-space, and there is a significant shift between the largest
remnant and remaining fragments (although we remind they are
not fully resolved). Ejection velocity with respect to the barycen-

ter (without outliers like projectile fragments) is of the order of
vej ' 100 m s−1. Using Gauss equations, this translates to a shift
in ∆I = ∆vW/(na

√
1 − e2)r/a cos(ω + f ) ' 0.002 rad for a suit-

able orientation of the ejection half-space, i.e. just above the or-
bital plane. This is indeed comparable to the difference observed
for Julia family (as discussed in Sec. 1.1).

Because the orbital angular momentum Lorb of the projectile
is only about 1/10 of the rotational angular momentum Lrot of the
target, we can also assume that even the most oblique impacts
cannot ’flip’ the rotation axis. This actually allows us to identify,
or at least try to, which of the four craters is the one related to
Julia family.

Given the known orientation of the spin axis and the orienta-
tion of the orbit, the obliquity of (89) Julia is γ = −17◦. It means
that latitude φ = γ is the one at which ejecta can fly mostly above
the orbital plane (in W direction). Because the centres of the
three northern-hemisphere craters are located at about φ ' +30◦,
i.e. offset by almost 50◦, we can prefer the southern-hemisphere
crater as the origin of Julia family.

Of course, we cannot exclude a possibility that the situation
is more complicated, e.g. by very anisotropic velocity fields,
two (or more) overlapping families, material properties differ-
ent from what we assumed, etc. We also admit the norther-
hemisphere craters are simply more numerous and more prob-
able (3/4) from the statistical point of view.

2. Conclusions

Using a detailed study of Julia family, we were not able to
rule out a hypothesis that one of the craters is related to Ju-
lia family. On contrary, all three models (N-body, Monte-Carlo
and SPH) and their mutual consistency indicate that fragments
ejected from (89) Julia indeed formed a family, 10 to 100 Myr
ago. We can even prefer one crater (out of four), because it is
located on the southern hemisphere which seems more suitably
oriented with respect to the family. For the first time, we were
able to suggest such a link solely on the basis of ground-based
observations. It may be considered a beginning of a new era of
asteroid-family studies, which shall include families ↔ craters
identifications.
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