1 Rovnice vedení tepla

Ač by se vedení tepla v asteroidech mohlo zdát pouhou kuriozitou, jde o základní problém ve fyzice malých těles. Anizotropie tepelného vyzařování s povrchu asteroidu je příčinou *disipace* (nebo i růstu) mechanické energie; zatímco samotné gravitační působení by bylo konzervativní. Trajektorie proto nejsou přibližně eliptické, nýbrž přibližně spirálové, což se zřetelně projevuje na struktuře celého hlavního pásu asteroidů i počtu blízkozemních objektů.

1.1 Fourierovský rozvoj zářivého toku

Předtím, než budeme analyticky řešit rovnici vedení tepla uvnitř, se musíme zabývat jednou okrajovou záležitostí — ozářením. Pro určité místo na rovníku rotujícího asteroidu je tok dán periodickou funkcí ($P = 2\pi/\omega$):

$$\mathcal{F}(t) = (1 - A)\Phi \Xi(\cos \omega t), \qquad (1)$$

kde $\Xi(x) \equiv xH(x), H(x) = 0$ pro x < 0 a H(x) = 1 pro $x \ge 0$ je Heavisidova skoková funkce; $\Phi = L/(4\pi r^2)$ zářivý tok od Slunce v dané vzdálenosti r a A Bondovo albedo. Neboť je po částech spojitě diferencovatelná, lze počítat jí příslušnou Fourierovu řadu:

$$\mathcal{F}(t) = \sum_{n = -\infty}^{\infty} \mathcal{F}_n \,\mathrm{e}^{\mathrm{i}n\omega t} \,, \tag{2}$$

jejíž koeficienty:

$$\mathcal{F}_n = \frac{1}{P} \int_0^P \mathcal{F}(t) \,\mathrm{e}^{\mathrm{i}n\omega t} \,\mathrm{d}t \,. \tag{3}$$

Konkrétně člen \mathcal{F}_0 :

$$\frac{1}{P} \int_0^P \Xi(\cos \omega t) dt = \frac{2}{P} \int_0^{\frac{P}{4}} \cos \omega t dt = \frac{2}{P} \left[\frac{\sin \omega t}{\omega} \right]_0^{\frac{P}{4}} = \frac{1}{\pi}$$

a člen $\mathcal{F}_{\pm 1}$:

$$\frac{2}{P} \int_0^{\frac{P}{4}} \cos^2 \omega t dt = \frac{1}{P} \int_0^{\frac{P}{4}} (\cos 2\omega t + 1) dt = \frac{2}{P} \left[\frac{\sin 2\omega t}{2\omega} + t \right]_0^{\frac{P}{4}} = \frac{1}{4},$$

atd.

Do 6. řádu ($\mathcal{F}_{\pm 6}$) pak vypadá řada následovně (viz obr. 1):

$$\mathcal{F}(t) \doteq (1-A)\Phi\left(\frac{1}{\pi} + \frac{1}{2}\cos\omega t + \frac{2}{3\pi}\cos 2\omega t - \frac{2}{15\pi}\cos 4\omega t + \frac{2}{35\pi}\cos 6\omega t\right).$$
(4)

Obr. 1 — Zářivý tok $\mathcal{F}(t)$ od Slunce na rovníku rotujícího asteroidu a jeho postupná aproximace několika členy fourierovské řady, \mathcal{F}_0 až \mathcal{F}_6 . Hodnoty vynesené v grafu jsou v jednotkách $(1-A)\Phi$, kde A označuje Bondovo albedo a Φ tok záření (ve W m⁻²) v dané vzdálenosti od Slunce.

1.2 Analytické jednorozměrné řešení

Existují-li (alespoň přibližná) analytická řešení, lze pomocí nich ověřovat správnost (obdobně zjednodušených) numerických řešení. Proto se budeme zprvu zabývat rovnicí vedení tepla v nejjednodušším jednorozměrném případě. Neznamená to pochopitelně, že celý asteroid je jednorozměrný, nýbrž se představujeme sloupec materiálu s Neumannovou okrajovou podmínkou na povrchu a Dirichletovou v hloubce:

$$\rho C \partial_t u - \partial_x K \partial_x u = 0, \qquad (5)$$

$$K\partial_x u + \epsilon \sigma u^4 = \mathcal{F}(t) \quad \text{pro } x = 0,$$
 (6)

$$u = \text{konst.} \quad \text{pro } x \to -\infty \,, \tag{7}$$

kde u(x,t) označuje teplotu, jakožto neznámou funkci souřadnice a času, ρ hustotu, C měrnou tepelnou kapacitu, K tepelnou vodivost, ϵ infračervenou emisivitu, σ Stefanovu–Boltzmannovu konstantu a $\mathcal{F}(t)$ zářivý tok dle (1). Jakékoliv laterální vedení tepla zanedbáváme.

Vzhledem k charakteru (4) zkusíme naléz
t $ustálené^{\,1}$ řešení ve tvaru Fourierovy řady:

$$u(x,t) = \sum_{n=-\infty}^{\infty} u_n(x) e^{in\omega t} .$$
(8)

Je-li K = konst., zavedeme tepelnou difuzivitu $\chi \equiv \frac{K}{\rho C}$. Dosadíme-li řadu do (5), obdržíme:

$$\sum_{n} u_n \mathrm{i} n \omega \,\mathrm{e}^{\mathrm{i} n \omega t} - \chi \sum_{n} \partial_{xx} u_n \,\mathrm{e}^{\mathrm{i} n \omega t} = 0 \,.$$

¹ Samozřejmě se tím připravujeme o možnost popisovat přechodové stavy, jež nejsou periodické, např. postupný ohřev z nějaké konstantní teploty.

čili pro každé n musí platit:

$$\partial_{xx}u_n = \frac{\mathrm{i}n\omega}{\chi}u_n\,.\tag{9}$$

Obecná řešení se evidentně liší pron=0,~n>0an<0.Neboť víme, že $\sqrt{\mathrm{i}}=\pm\frac{1}{\sqrt{2}}(1+\mathrm{i}),~\sqrt{-\mathrm{i}}=\pm\frac{1}{\sqrt{2}}(1-\mathrm{i}),$ vycházejí:

$$u_0(x) = a_0 + b_0 x,$$

$$u_n(x) = a_n e^{-(1+i)\beta_n x} + b_n e^{(1+i)\beta_n x},$$

$$u_{-n}(x) = a_{-n} e^{-(1-i)\beta_n x} + b_{-n} e^{(1-i)\beta_n x},$$

kde jsme kromě integračních konstant a_n , b_n byli nuceni pro zkrácení zápisu zavést $\beta_n \equiv \sqrt{\frac{1}{2} \frac{|n|\omega}{\chi}}$; shodou okolností je $1/\beta_n$ hloubka proniku tepelné vlny. Neboť nás vesměs zajímají řešení nedivergující, je $b_n = 0$, a tedy $u_0 = \text{konst.}$

Zatím neznámá a_n určíme jako obvykle z konkrétní okrajové podmínky (6). Povrchová teplota je zřejmě:

$$u(0,t) = \sum_{n} a_n \,\mathrm{e}^{\mathrm{i}n\omega t}$$

a její derivace:

$$\partial_x u(0,t) = -\sum_{n>0} a_n (1+\mathbf{i})\beta_n \,\mathrm{e}^{\mathbf{i}n\omega t} - \sum_{n>0} a_{-n} (1-\mathbf{i})\beta_n \,\mathrm{e}^{-\mathbf{i}n\omega t}$$

Abychom nemuseli umocňovat do nekonečna, budeme předpokládat (a později ověřovat) malé změny teploty $u_n \ll u_0$, což by umožnilo provést linearizaci:

$$u^{4} = \left(u_{0} + \sum_{n \neq 0} u_{n} e^{in\omega t}\right)^{4} \doteq u_{0}^{4} + 4u_{0}^{3} \sum_{n \neq 0} u_{n} e^{in\omega t}$$

Po dosazení do (6):

$$-K\sum_{n>0} a_n(1+i)\beta_n e^{in\omega t} - K\sum_{n>0} a_{-n}(1-i)\beta_n e^{-in\omega t} + \epsilon \sigma u_0^4 + 4\epsilon \sigma u_0^3 \sum_{n\neq 0} a_n e^{in\omega t} = \sum_n \mathcal{F}_n e^{in\omega t}$$

vidíme, že se musejí rovnat koeficienty u všech $e^{in\omega t}$, odkud:

$$u_0 = \sqrt[4]{\frac{\mathcal{F}_0}{\epsilon\sigma}},\tag{10}$$

$$a_n = \frac{\mathcal{F}_n}{4\epsilon\sigma u_0^3 + K(1+\mathrm{i})\beta_n},\tag{11}$$

$$a_{-n} = \frac{\mathcal{F}_{-n}}{4\epsilon\sigma u_0^3 + K(1-\mathbf{i})\beta_n} \,. \tag{12}$$

Obr. 2 — Povrchová teplota u(0,t) daného místa na asteroidu, získaná řešením jednorozměrné rovnice vedení tepla, respektive její postupné aproximace několika fourierovskými členy u_0 až u_6 . Volené parametry jsou: rotační perioda P = 1 h, vzdálenost od Slunce r = 2,5 au, Bondovo albedo A = 0,1, infračervená emisivita $\epsilon = 0,9$, hustota $\rho = 2500 \text{ kg m}^{-3}$, měrná tepelná kapacita $C = 480 \text{ J kg}^{-1}$ a tepelná vodivost $K = 1 \text{ W m}^{-1} \text{ K}^{-1}$.

Výsledná funkce u(0,t) je zobrazena na obr. 2. Zřetelný je fázový posun oproti $\mathcal{F}(t)$. Pohledem na něj zároveň ověřme náš předpoklad $u_n \ll u_0$; o.k.

1.3 Metoda konečných diferencí (FDM)

Když podmínky pro linearizaci nejsou splněny, uchýlíme se k řešení numerickému. Navíc lze studovat i stavy přechodové. Všechny derivace (operátory) proto převedeme na konečné diference, což je obzvláště snadné, když je geometrie jednoduchá (jednorozměrná).

Explicitní schéma. Převeďme nejprve 1. derivaci podle času:

$$\frac{\partial u}{\partial t} \simeq \frac{u^n - u^{n-1}}{\Delta t} \,,$$

kde jsme zavedli horní indexy $n \ge n-1$, odpovídající času novému $(t + \Delta t)$ a starému (t). Vyjádření 2. derivace podle souřadnice je prostým rozdílem prvních:

$$\frac{\partial^2 u}{\partial x^2} \simeq \frac{\frac{u_{j+1}-u_j}{\Delta x} - \frac{u_j-u_{j-1}}{\Delta x}}{\Delta x} = \frac{u_{j+1}-2u_j+u_{j-1}}{\Delta x^2} \,,$$

kde jsme zavedli dolní indexy j + 1, j a j - 1 pro tři sousedící body. Při dosazování do (5) se musíme především rozhodnout, v jakém čase vyčíslíme prostorové derivace! Pokud ve starém:

$$\frac{u_j^n - u_j^{n-1}}{\Delta t} - \chi \frac{u_{j+1}^{n-1} - 2u_j^{n-1} + u_{j-1}^{n-1}}{\Delta x^2} = 0,$$

tak nám to umožňuje explicitně vyjádřit nové teploty:

$$u_j^n = u_j^{n-1} + \frac{\chi \Delta t}{\Delta x^2} \left(u_{j+1}^{n-1} - 2u_j^{n-1} + u_{j-1}^{n-1} \right) \quad \text{pro } j = 1 \dots M - 1 \,.$$

Toto numerické schéma se nazývá explicitní dopředný Euler, často angl. forward time centered space nebo zkr. FTCS.

Je sice nejjednodušší, ale před jeho použitím musíme zkontrolovat splnění *von* Neumannova kritéria:

$$\frac{2\chi\Delta t}{\Delta x^2} < 1\,,$$

bez kterého není zaručena stabilita, resp. je zaručena nestabilita. Je však třeba důsledně rozlišovat — stabilita v žádném případě není konvergence k neznámému řešení! Tu musíme jako vždy ověřovat např. sledováním změn u(x,t) při dalším zmenšování kroku časového Δt i prostorového Δx .

Na povrchu j = 0 ani v hloubce j = M nelze vyčíslovat druhou derivaci, neboť nemáme třetí bod. Právě proto potřebujeme (diskretizované) okrajové podmínky (6) a (7). Konkrétně je:

$$\left. \frac{\partial u}{\partial x} \right|_{x=0} \simeq \frac{u_0 - u_1}{\Delta t} \,,$$

čili:

$$K\frac{u_0^n - u_1^n}{\Delta t} + \epsilon \sigma(u_0^n)^4 = \mathcal{F}(t) \, ,$$

což představuje polynom 4. stupně pro u_0^n (u_1^n již známe):

$$\epsilon\sigma(u_0^n)^4 + \frac{K}{\Delta t}u_0^n - \frac{K}{\Delta t}u_1^n - \mathcal{F}(t) = 0;$$

řeší se numericky (např. Laguerrovou metodou).

Okrajová podmínka v (konečné) hloubce $x_M \gg \beta$ je o dost jednodušší:

$$u_M = u_{\rm eq}$$
,

ale rovnovážnou teplotu musíme volit obezřetně, abychom si nevynutili řešení nesmyslné.

Implicitní schéma. Použijeme-li namísto starých teplot nové:

$$\frac{u_j^n - u_j^{n-1}}{\Delta t} - \chi \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{\Delta x^2} = 0,$$

jedná se o poněkud jiný problém:

$$-\overbrace{\frac{\lambda}{\Delta x^2}}^{a} u_{j+1}^n + \left(1 + \frac{2\chi\Delta t}{\Delta x^2}\right) u_j^n - \frac{\chi\Delta t}{\Delta x^2} u_{j-1}^n = u_j^{n-1} \quad \text{pro } j = 1 \dots M - 1 \,,$$

neboli:

$$u_j^n A_{ij} = B_i \,,$$

kde matice je tridiagonální řídká:

$$A_{ij} = \begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 \\ -a & 1+2a & -a & 0 & \cdots & 0 \\ 0 & \ddots & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & -a & 1+2a & -a \\ 0 & \cdots & \cdots & 0 & 1 \end{pmatrix}$$
(13)

a pravá strana:

$$B = \begin{pmatrix} u_0^n \\ u_1^{n-1} \\ \vdots \\ \vdots \\ u_{M-1}^{n-1} \\ u_M^n \end{pmatrix}.$$
 (14)

V každém kroku tedy musíme invertovat matici (společně s neustále se měnící pravou stranou)! Takové schéma se nazývá implicitní zpětný Euler, angl. backward time centered space, zkr. BTCS.

Aby matice nezůstala singulární, je naprosto nezbytné v B_i dosadit za u_0^n , u_M^n z okrajových podmínek:

$$\epsilon\sigma(u_0^n)^4 + \frac{K}{\Delta t}u_0^n - \frac{K}{\Delta t}u_1^{n-1} - \mathcal{F}(t) = 0, \qquad (15)$$

$$u_M = u_{\rm eq} \,, \tag{16}$$

kde j
sme si pomohli "faulem", neboť jsme použili starou hodnotu podpovrchové teplot
y u_1^{n-1} namísto nové u_1^n , kterou zatím nikdo nezná; "za trest" provedeme několik i
terací.²

Hybridní schéma. Jako výhodná se ukazuje být kombinace schémat explicitního a implicitního, parametrizovaná parametrem θ :

$$\frac{u_j^n - u_j^{n-1}}{\Delta t} - \theta \chi \frac{u_{j+1}^n - 2u_j^n + u_{j-1}^n}{\Delta x^2} - (1-\theta) \chi \frac{u_{j+1}^{n-1} - 2u_j^{n-1} + u_{j-1}^{n-1}}{\Delta x^2} = 0 \,,$$

což opět vede na soustavu:

$$u_j^n A_{ij}' = B_i' \,.$$

² Druhou možností by byla linearizace 4. mocniny v (15), použití u_1^n a této rovnice namísto 1. řádku matice A_{ij} , ale linearizace se musí taktéž odčinit iteracemi.

θ	schéma	přesnost	stabilita
0	explicitní dopředný Euler	$\Delta x^2, \Delta t$	von Neumannovo kritérium
1/2	implicitní Crank–Nicolson	$\Delta x^2, \Delta t^2$	stabilní
1	implicitní zpětný Euler	$\Delta x^2, \Delta t$	stabilní

Tab. 1 — Hodnoty parametru $\theta,$ určující konkrétní schéma numerické metody FDM, přesnost
schématu a případná podmínka stability.

Obr. 3 — Numerické řešení rovnice vedení tepla metodou FDM, schématem BTCS, zobrazené na grafu čas t, hloubka x; teplota u je znázorněna barevně. Počáteční podmínka byla $u(x, t = 0) = u_{eq}$, okrajová podmínka na povrchu je zářivá (odpovídá obr. 1) a v hloubce $u(x = -0, 2 \text{ m}, t) = u_{eq}$. Výpočet byl proveden včetně přechodového stavu. Tepelné parametry jsou tytéž jako na obr. 2, stejně jako průběh u(x = 0, t).

Výhodou hybridního schématu s $\theta = 1/2$, nazývaného Crankovo–Nicholsonovo, je kromě bezpodmínečné stability také vyšší přesnost integrace, neboť pro výpočet 2. derivací využíváme 6 bodů (viz tab. 1; Langtangen 2003).

1.4 Slabá formulace problému

Přejděme nyní k obecnému trojrozměrnému numerickému řešení, které je možné použít v libovolné nepravidelné geometrii, tzn. i pro celý šišatý asteroid. Rovnici vedení tepla si nejprve zapíšeme pomocí operátoru:

$$\mathcal{L} \equiv \rho C \partial_t - \nabla \cdot K \nabla \,, \tag{17}$$

abychom její zápis maximálně zjednodušili:

$$\mathcal{L}(u) = 0; \tag{18}$$

okrajovou podmínku už máme jen jednu:

$$K\partial_n u + \epsilon \sigma u^4 = (1 - A)\Phi \Xi(\boldsymbol{s} \cdot \boldsymbol{n}) \text{ na } \Gamma, \qquad (19)$$

přičemž tentokrát je hranice domény v podstatě libovolná uzavřená, prozatím konvexní, takže v argumentu zářivého toku vystupuje směr ke Slunci $\boldsymbol{s}(t)$ a normály $\boldsymbol{n}(\boldsymbol{r})$.

Obr. 4 — Dole nejjednodušší jednorozměrné lineární bázové funkce $N_j(x)$; zvýrazněná je pro j = 4. Nahoře je odpovídající funkce \hat{u} pro případ, kdyby koeficienty byly číselně rovny: $u_1 = 20$, $u_2 = 100$, $u_3 = 80$, $u_4 = 150$, $u_5 = 66$, $u_6 = 33$. Ve dvou rozměrech by $N_j(x, y)$ měly podobu čtyřbokých jehlanů. Ve třech rozměrech bychom $N_j(\mathbf{r})$ kreslit nechtěli.

Slabá formulace problému spočívá v nahrazení (neznámé) funkce $u(\mathbf{r})$ za její přibližný rozvoj:

$$u \doteq \hat{u} = \sum_{j=1}^{M} u_j N_j , \qquad (20)$$

kde u_j jsou neznámé číselné koeficienty a $N_j(\mathbf{r})$ známé bázové funkce (též "konečné prvky"). Nejjednodušší funkce jsou obyčejné střechovité, které jsou nenulové jen mezi několika nejbližšími body sítě; schematicky jednorozměrně (obr. 4):

$$N_{j}(x) = \begin{cases} \frac{x - x_{j-1}}{x_{j} - x_{j-1}} & \text{pro } x \in (x_{j-1}, x_{j}) ,\\ \frac{x - x_{j+1}}{x_{j} - x_{j+1}} & \text{pro } x \in (x_{j}, x_{j+1}) ,\\ 0 & \text{jinak} . \end{cases}$$
(21)

Samozřejmě lze volit též funkce kvadratické, kubické, harmonické, pokrývající celou oblast Ω , vlastní funkce operátoru \mathcal{L} , jsou-li známy, různé speciální atd. Volba vhodné báze se podobá umění.

Právě provedená diskretizace v prostoru převádí problém spojitý (hledání $u(\mathbf{r}, t)$) na diskrétní konečný (hledání u_j). Pak ale nemůže všude přesně platit (18)! Obecně je tedy:

$$\mathcal{L}(\hat{u}) \neq 0 \,,$$

s čímž nelze být spokojen.

1.5 Metoda konečných prvků (FEM)

V metodě konečných prvků se s tím smíříme. Avšak požadujeme, aby součet *reziduí* byl nula. Nelze ovšem napsat bez rozmyslu:

$$\int_{\Omega} \mathcal{L}(\hat{u}) \mathrm{d}\Omega = 0$$

protože to bychom mohli mít v levé části domény Ω kladné odchylky a v pravé záporné. Ba co hůř, s jednou rovnicí pro M neznámých u_j nenaděláme nic. Proto musíme splnění podmínky požadovat mnohokrát, vždy v omezené části Ω , kterou si vymezíme pomocí *testovací funkce* (váhy) $W_i(\mathbf{r})$:

$$\int_{\Omega} \mathcal{L}(\hat{u}) W_i \mathrm{d}\Omega = 0 \quad \text{pro } i = 1 \dots M \,.$$
(22)

Zvolíme-li jednoduše $W_i \equiv N_i$, hovoříme o tradiční *Galerkinově metodě*:

$$\int_{\Omega} \mathcal{L}(\hat{u}) N_i \mathrm{d}\Omega = 0 \quad \text{opět pro } i = 1 \dots M \,.$$
(23)

Rozepsáním ${\mathcal L}$ pro náš problém pak obdržíme:

$$\int_{\Omega} \rho C \partial_t \hat{u} N_i \mathrm{d}\Omega - \int_{\Omega} \nabla \cdot (K \nabla \hat{u}) N_i \mathrm{d}\Omega = 0$$

Protože divergence všeho (součinu):

$$\int_{\Omega} \nabla \cdot (K \partial_n \hat{u} N_i) \mathrm{d}\Omega = \int_{\Omega} \nabla \cdot (K \nabla \hat{u}) N_i \mathrm{d}\Omega + \int_{\Omega} K \nabla \hat{u} \cdot \nabla N_i \mathrm{d}\Omega$$

a protože zároveň platí Gaussova věta:

$$\int_{\Omega} \nabla \cdot (K \partial_n \hat{u} N_i) \mathrm{d}\Omega = \int_{\Gamma} K \partial_n \hat{u} N_i \mathrm{d}\Gamma, \qquad (24)$$

plyne odtud Greenovo lemma:

$$\int_{\Omega} \nabla \cdot (K\nabla \hat{u}) N_i \mathrm{d}\Omega = -\int_{\Omega} K\nabla \hat{u} \cdot \nabla N_i \mathrm{d}\Omega + \int_{\Gamma} K\partial_n \hat{u} N_i \mathrm{d}\Gamma, \qquad (25)$$

které se využívá pro elegantní dosazení za $K\partial_n \hat{u} = -\epsilon\sigma \hat{u}^4 + (1-A)\Phi\Xi(\mathbf{s}\cdot\mathbf{n})$ z okrajové podmínky (19), čímž ji automaticky splňujeme a nemusíme se jí dále zabývat.

Musíme ještě provést diskretizaci v čase:

$$\partial_t \hat{u} \simeq \frac{\hat{u}^n - \hat{u}^{n-1}}{\Delta t} \,, \tag{26}$$

1.5

kde jsme opět horními indexy n a n-1 označili hodnoty nové a staré.

Aby výsledná soustava rovnic byla a zůstala lineární, aproximujeme novou teplotu jako:

$$\hat{u}^4 \simeq (\hat{u}^{n-1})^3 \hat{u}^n;$$
(27)

případnou nelinearitu budeme řešit *ex post* iteracemi.

Shrneme-li naše dosavadní snažení:

$$\int_{\Omega} \frac{\rho C}{\Delta t} \hat{u}^{n} N_{i} \mathrm{d}\Omega - \int_{\Omega} \frac{\rho C}{\Delta t} \hat{u}^{n-1} N_{i} \mathrm{d}\Omega + \int_{\Omega} K \nabla \hat{u}^{n} \cdot \nabla N_{i} \mathrm{d}\Omega + \int_{\Gamma} \epsilon \sigma (\hat{u}^{n-1})^{3} \hat{u}^{n} N_{i} \mathrm{d}\Gamma - \int_{\Gamma} (1-A) \Phi \Xi(\mathbf{s} \cdot \mathbf{n}) N_{i} \mathrm{d}\Gamma = 0 \quad \text{pro } i = 1 \dots M; \quad (28)$$

kde to jen šlo, použili jsme nové hodnoty \hat{u}^n , jak je obvyklé v implicitních metodách. Evidentně jde o soustavu M lineárních rovnic pro M neznámých u_j , kterou zbývá vyřešit.

Kdybychom to vyjádřili otrocky:

$$\begin{split} \int_{\Omega} \frac{\rho C}{\Delta t} \sum_{j} u_{j}^{n} N_{j} N_{i} \mathrm{d}\Omega &- \int_{\Omega} \frac{\rho C}{\Delta t} \sum_{j} u_{j}^{n-1} N_{j} N_{i} \mathrm{d}\Omega + \int_{\Omega} K \nabla \sum_{j} u_{j}^{n} N_{j} \cdot \nabla N_{i} \mathrm{d}\Omega + \\ &+ \int_{\Gamma} \epsilon \sigma \left(\sum_{j} u_{j}^{n-1} N_{j} \right)^{3} \sum_{j} u_{j}^{n} N_{j} N_{i} \mathrm{d}\Gamma - \int_{\Gamma} (1 - A) \Phi \Xi(\mathbf{s} \cdot \mathbf{n}) N_{i} \mathrm{d}\Gamma = 0 \end{split}$$

a přeuspořádali:

už by bylo nad slunce jasné, že jde o soustavu typu:

$$u_j^n A_{ij} = B_i \,,$$

kde prvky matice jsou buď integrály, které lze pro danou síť bodů předpočítat předem (1. a 2. člen), nebo jednoduché integrály známých funkcí (3. člen). Totéž platí pro pravou stranu. Při jemné diskretizaci (velkém M) je matice A_{ij} nebezpečně velká a její inverze obtížná, nicméně bývá řídká.

1.6 Implementace v programu FreeFem++

Prakticky lze pro řešení použít program FreeFem++ (Hecht 2012), který dovoluje symbolický zápis integrálů ve stejné podobě jako rovnice (28):

```
real C = 680;
                                         // specific heat capacity [J/kg/K]
real K = 2.5;
                                         // thermal conductivity [W/m/K]
                                         // bulk density [kg/m^3]
real rho = 2500:
real epsil = 1.0;
                                         // infrared emissivity []
real sigma = 5.66962e-8;
                                         // Stefan-Boltzmann constant [W/m<sup>2</sup>/K-4]
                                         // Bond albedo []
real A = 0.0;
real SO = 1371.;
                                         // solar constant [W/m^2]
real r = 2.5:
                                        // distance [AU]
real Phi = S0/r^2;
                                         // solar flux [W/m^2]
real sx, sy, sz;
                                         // Sun direction []
real phi;
                                       // corresponding longitude [rad]
real theta = pi/2.;
                                        // co-latitude [rad], 0 deg ... north pole
                                        // rotation period [s]
real P = 7200.;
real t;
                                        // time [s]
                                        // time step [s]
real dt = 72.0;
                                        // time to stop [s]
real tstop = 100.*P;
int iterations = 3;
                                         // number of iterations
real chi = K/(rho*C);
                                        // thermal diffusivity [m^2 s^-1]
cout << "chi = " << chi << " m^2 s^-1" << endl;
func u0 = ((1.-A)*Phi/(4*epsil*sigma))^(1./4.); // equilibrium temperature [K]
cout << "u0 = " << u0 << " K" << endl;
load "msh3";
mesh3 Th = readmesh3("file.1.msh");
                                         // read the mesh produced by tetgen
mesh3 Thirr;
                                         // a copy of the mesh (for shadowing)
fespace Vh(Th, P1);
                                         // the space of (linear) finite elements
Vh u, uold, v, b;
                                         // definitions of functions on this space
problem HDE(u,v)
                                         // the PDE definition, weak formulation
  = int3d(Th) (rho*C/dt * u*v) // linear term
- int3d(Th) (rho*C/dt * uold*v) // from time discretization, implicit Euler
  + int3d(Th) (K * (dx(u)*dx(v) + dy(u)*dy(v) + dz(u)*dz(v))) // bilinear part
  + int2d(Th) (b * u*v)
                                                               // Neumann BC
                                                             // zero on night side
// simple irradiation
  - int2d(Thirr,1) ( ((sx*N.x + sy*N.y + sz*N.z) > 0) *
    (1-A)*Phi * (sx*N.x + sy*N.y + sz*N.z) * v);
include "savedat.edp";
include "shadowxm.edp";
u = uold = u0;
                                         // initial condition
for (t=dt; t <= tstop; t+=dt) {</pre>
                                        // cycle in time
  phi = t/P*2*pi;
                                         // change solar unitvector
  sx = cos(phi)*sin(theta);
  sy = sin(phi)*sin(theta);
  sz = cos(theta);
                                         // determine non-shadowed facets (Thirr)
  shadowxm(sx, sy, sz);
  for (int k=0; k < iterations; k++) { // iterations due to non-linearity of BC
   b = epsilon*sigma * u^3;
                                         // semi-linearization of the u^4 term
                                         // solution of the PDE
    HDE;
  }
  uold = u:
                                         // time step
  savedat("output.dat", t, sx, sy, sz); // data output
}
```

Jediným rozdílem je drobná změna notace \hat{u} na u, N_i na v. Navíc je zde naznačeno volání výpočtu stínění pro nekonvexní tvary, kde nestačí použít jen skalární součin $\boldsymbol{s} \cdot \boldsymbol{n}$.

Triangulace. Důležitá otázka: "Jak zkonstruovat síť?" Tzn. nejen seznam bodů, ale i jejich spojnic, podle nichž se vyčíslují bázové funkce N_j . Závisí na ní nejen přesnost numerického řešení, ale i samotná možnost inverze matice A_{ij} , protože nevhodná síť může vést k singularitě. Často užívanou metodou je *Delaunayho triangulace*. V *k*-rozměrném prostoru zajišťuje, že pro každý útvar s k + 1 body (trojúhelník, čtyřstěn) jemu opsaná kružnice neobsahuje žádný další vrchol. Prakticky je možné triangulaci provést programem TetGen (Si 2006; viz obr. 5).

Obr. 5 — Různé diskretizace v prostoru, tzn. sítě čtyřstěnů vytvořené programem TetGen (Si 2006), které byly použity pro numerické řešení rovnice vedení tepla ve sférickém tělese. Číslo M označuje počet vrcholů sítě.

Radiační síla. Známe-li již povrchovou teplotu $u(\mathbf{r}, t)$, můžeme vypočítat i příslušné dynamické působení. Element radiační síly za předpokladu Lambertova rozpylu je:

$$\mathrm{d}\boldsymbol{F} = -\frac{2}{3}\frac{\epsilon\sigma}{c}u^4\boldsymbol{n}\,\mathrm{d}\Gamma\,.\tag{29}$$

Celkové zrychlení je zřejmě $\mathbf{a} = \frac{1}{m} \int_{\Gamma} d\mathbf{F}$ a moment síly $\mathbf{T} = \int_{\Gamma} \mathbf{r} \times d\mathbf{F}$. Kromě toho musíme počkat na ustálení a provést středování přes periodu rotační, v horším případě i orbitální. Z historických důvodů se působení nazývají Jarkovského jev a YORP. Pro ověření přesnosti numerického výpočtu jej můžeme porovnat s analytickou teorií pro koule (Vokrouhlický 1998; obr. 6). Příklad pro nepravidelný meteoroid je na obr. 7.

1.7 Nekonvexní stínění, tepelný a rozptýlený tok

Dokonalejší modely mívají úplnější popis zářivého toku. Jednak je v zářivém toku od Slunce zohledněno stínění od jiných míst povrchu (Ševeček aj. 2015):

$$\mathcal{F} = (1 - A)\Phi\mu(\mathbf{s}, \mathbf{r})\Xi(\mathbf{s} \cdot \mathbf{n}), \qquad (30)$$

kde μ je funkce stínění, nabývající hodnoty 0 nebo 1. Protože je třeba pro každou plošku kontrolovat všechny plošky s $\Xi > 0$, šlo by o problém složitosti $\mathcal{O}(N^2)$. Pro daný nekonvexní tvar je ale možné jí předpočítat s určitým krokem v úhlech; pro konvexní by bylo všude $\mu = 1$.

Obr. 6 — Podíl Jarkovského driftu velké poloosy da/dt = 2T/n spočteného numericky a analyticky, pro různé diskretizace v prostoru (počet M vrcholů sítě) a diskretizace v čase (časový krok Δt). Předpokládali jsme zde sférické těleso, poloměr R = 0,1 m, rotační periodu $P_{\rm rot} = 2$ h. Pro $M>10^3$ a $\Delta t/P_{\rm rot}<0.02$ je rozdíl mezi numerickým a analytickým řešením menší než 3%. Drift je úměrný $2\mathcal{T}/n'$ (dle ??), kde \mathcal{T} označuje transverzální složku zrychlení **a** a n' střední pohyb.

Obr. 7 — Rozložení teploty $u(\mathbf{r}, t)$ na povrchu meteoroidu o efektivním poloměru $R \simeq 10$ cm, spočtené metodou FEM. Osy $\hat{x}, \hat{y}, \hat{z}$ jsou fixní v tělese, zatímco vektor **s** směřuje ke Slunci. Zohledněno je i nekonvexní stínění. Maximum teploty i vyzařování jsou posunuté oproti s, což vede k nenulovému transverzálnímu zrychlení měnícímu orbitální pohyb (Jarkovského jevu). Anizotro-

Další je tepelné záření přicházející od jiných míst povrchu:

$$\mathcal{F}_{\rm th} = (1 - A_{\rm th}) \int_{\Gamma} \epsilon' \sigma u'^4 \frac{\cos \alpha \cos \alpha'}{\pi (\mathbf{r} - \mathbf{r}')^2} \nu(\mathbf{r}, \mathbf{r}') \mathrm{d}\Gamma' , \qquad (31)$$

kde $\nu(\mathbf{r}, \mathbf{r}')$ je funkce viditelnosti, opět nabývající hodnoty 0 nebo 1, v závislosti na tom, zda se plošky \mathbf{r} a \mathbf{r}' mohou ozařovat; pro konvexní tvar by bylo všude $\nu = 0$. Pro vyzařování předpokládáme také Lambertův kosínový zákon. Zde musíme pro každou plošku počítat integrál přes povrch, jde tedy o problém složitosti $\mathcal{O}(N^2)$. Navíc zde v integrálu vystupuje hledaná funkce u, tzn. že se problém formálně stává integrodiferenciální; buď bychom se museli smířit s použitím starých teplot u^{n-1} , anebo provést iterování, abychom v okrajové podmínce měli skutečně u^n .

Konečně jde o rozptýlené záření od jiných míst povrchu:

$$\mathcal{F}_{\rm sc} = (1-A) \int_{\Gamma} A' \Phi \mu' \mathbf{s} \cdot \mathbf{n}' \frac{\cos \alpha \cos \alpha'}{\pi (\mathbf{r} - \mathbf{r}')^2} \nu(\mathbf{r}, \mathbf{r}') \mathrm{d}\Gamma' \,. \tag{32}$$

Platí obdobná tvrzení jako v předchozím případě.

Při výpočtu radiační síly bychom pak měli zohlednit, že záření z dané plošky nemůže vždy nerušeně uniknout, ale může zapůsobit na tytéž plošky, které ji ozařují:

$$d\mathbf{F}' = +\frac{\epsilon\sigma}{c} u^4 \int_{\Gamma} \frac{\cos\alpha \cos\alpha'}{\pi(\mathbf{r} - \mathbf{r}')^2} \frac{\mathbf{r}' - \mathbf{r}}{|\mathbf{r}' - \mathbf{r}|} \nu(\mathbf{r}, \mathbf{r}') d\Gamma', \qquad (33)$$

i účinek rozptylování sama o sobě:

$$\mathrm{d} \boldsymbol{F}_{\mathrm{sc}} = -\frac{2}{3} \frac{A\Phi}{c} \mu(\boldsymbol{s}, \boldsymbol{n}) \boldsymbol{n} \,\mathrm{d} \Gamma$$

Balvany na Itokawě. Kromě celkového tvaru je u malých planetek nutné zohledňovat i vedení tepla v malých útvarech v transverzálním směru. Například planetka (25143) Itokawa má rozměr zhruba 0,5 km, ale na detailních fotografiích je poseta balvany o rozměrech řádově $1/\beta_1 \simeq 10$ cm, což je mnohem méně než rozlišení modelu tvaru.

Slunce přitom každé ráno svítí na východní stranu balvanů, teplo je vedeno skrz od východu k západu, odpoledne je západní strana navíc osvětlená Sluncem, její teplota je tedy v průměru vyšší, což vytváří značnou asymetrii tepelného vyzařování a radiační sílu d**F** ve směru východním. Moment síly **T** od všech balvanů působí ve směru osy rotace $\vec{\omega}$ a tudíž způsobuje zrychlování dle momentové věty $\frac{d\mathbf{L}}{dt} = \mathbf{T}$, které klidně může převažovat nad zpomalováním od celkového tvaru. Pro pozorované rozdělení velikostí balvanů ze sondy Hayabusa (Saito aj. 2010) vychází řádově $d\Omega/dt \simeq 10^{-7}$ rad d^{-2} (Ševeček aj. 2015).

Obr. 8 — Celkový snímek planetky (25143) Itokawa ze sondy Hayabusa. Rozměr planetky dosahuje $0.54 \times 0.31 \times 0.25$ km. Pozorovaná rotační perioda P = 12,1 h není konstantní, úhlové zrychlení dosahuje $d\Omega/dt = (0.35 \pm 0.04) \cdot 10^{-7}$ rad d⁻². Z dálky jsou viditelné jednotlivé velké balvany. © JAXA.

- ČAPEK, D. Thermal effects in the physics and dynamics of the small Solar System bodies. PhD. Thesis, Charles Univ., 2007.
- [2] HECHT, F. New development in FreeFem++. J. Numer. Math., 20, 251, 2012.
- [3] LANGTANGEN, H. P. Computational partial differential equations. Numerical methods and Diffpack programming. Berlin: Springer-Verlag, 2003.
- [4] SAITO, J. AJ. Hayabusa AMICA V1.0. NASA Planetary Data System 90, 2010.
- [5] SI, H. TetGen A quality tetrahedral mesh generator and three-dimensional Delaunay triangulator. 2006. (http://tetgen.berlios.de).
- [6] ŠEVEČEK, P. Vliv tepelné emise topografických útvarů na rotační dynamiku planetek. Bc. Thesis, Charles Univ., 2014.
- [7] ŠEVEČEK, P., BROŽ, M., ČAPEK, D., ĎURECH, J. The thermal emission from boulders on (25143) Itokawa and general implications for the YORP effect. Mon. Not. R. Astron. Soc., 450, 2104–2115, 2015.
- [8] VOKROUHLICKÝ, D. Diurnal Yarkovsky effect as a source of mobility of meter-sized asteroidal fragments. I. Linear theory. Astron. Astrophys., 335, 1093–1100, 1998.