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Accepted ???. Received ???; in original form ???

ABSTRACT
Infrared radiation emitted from an asteroid surface causes a torque that can signifi-
cantly affect rotational state of the asteroid. The influence of small topographic fea-
tures on this phenomenon, called the YORP effect, hasn’t been studied yet in detail.
In this work, we show that lateral heat diffusion in boulders of suitable sizes leads to
the emergence of a local YORP effect which magnitude is comparable to the YORP
effect due to the global shape. We solve a three-dimensional heat diffusion equation
in a boulder and its surroundings by the finite element method using the FreeFem++
code. The contribution to the total torque is inferred from the computed temperature
distribution. The general approach allows us to compute the torque induced by a real-
istic irregular boulder, including the influence of the global self-heating effect. For an
idealized boulder, our result is consistent with an existing one-dimensional model. We
estimated a size distribution of boulders on (25143) Itokawa, based on close-up images
of surface. We realized that topographic features on Itokawa can induce a rotational
acceleration of the order 10−7 rad/day2 and can therefore explain the observed phase
shift in light curves.
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1 INTRODUCTION

The Yarkovsky-O’Keefe-Radzievskii-Paddack effect is the
torque caused by the infrared emission from an asteroidal
surface and its impact on a rotational state of an asteroid
(Rubincam 2000). It is now widely recognized as an im-
portant factor, affecting the evolution of rotational states
of asteroids alongside mutual collisions and tidal torques.
The YORP effect helped to explain numerous observed phe-
nomenona, such as a spin axis alignment of asteroids in the
Korinis family (Vokrouhlický et al. 2003), a non-maxwellian
rotational frequency distributions of small main-belt aster-
oids (Pravec et al. 2008) or significant binary asteroid pop-
ulation among near-Earth objects (Walsh et al. 2012).

Even a direct evidence of a non-gravitational torque has
been found. A phase shift in light curves has been measured
for a few asteroids that can’t be explained by a solely grav-
itational model — (1862) Apollo (Kaasalainen et al. 2007),
(54509) YORP (Lowry et al. 2007; Taylor et al. 2007), (1620)
Geographos (Ďurech et al. 2008), (3103) Eger (Ďurech et al.
2012) and finally, (25143) Itokawa (Lowry et al. 2014).

The asteroid Itokawa has been a suitable candidate
for a detection of YORP effect for its highly asymmetric
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shape and its favourable position among near-Earth objects.
Vokrouhlický et al. (2004) predicted a measurable accelara-
tion of rotation of the order of 10−7 rad/day2, based on the
shape model derived by radar ranging. Itokawa was a target
of the Hayabusa spacecraft in 2005 and a state-of-the-art
shape model of the asteroid was constructed from silhou-
ette images (Gaskell et al. 2006). The torque computed us-
ing the latter model would lead to a significant deceleration
−(1.8 to 3.3) · 10−7 rad/day2 (Scheeres et al. 2007). How-
ever, the measured phase shift in light curves revealed accel-
eration +(3.54 ± 0.38) · 10−8 rad/day2 (Lowry et al. 2014).
Theoretical models didn’t predict even the sign of the effect
correctly. This discrepancy between observed and predicted
change of the angular frequency hasn’t been fully explained
to date.

The observed rotational acceleration could be atributed
to density inhomogeneities in the asteroid. Scheeres and
Gaskell (2008) showed that the YORP effect on Itokawa is
indeed sensitive to the position of the center of mass. Based
on the measured acceleration, Lowry et al. (2014) computed
the required offset between the center of mass and the center
of figure to be ∼ 21 m. Such offset indicates that the aster-
oid might consist of two parts with different densities —
(2850 ± 500) kg/m3 and (1750 ± 110) kg/m3. On the other
hand, the surface of the asteroid appears rather uniform.
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The differences in boulder distributions on the two parts do
not seem statistically significant (Mazrouei et al. 2014).

The deceleration predicted by Scheeres et al. (2007) was
computed from the shape model with ∼ 50 000 facets. Cal-
culations of the effect with a more detailed shape lead to an
even bigger deceleration. Furthermore, with increasing res-
olution the deceleration doesn’t show any sign of a conver-
gence, implying that even sub-meter sized surface features
possibly have a non-negligible influence (Breiter et al. 2009).

There is a problem that shapes with surface features of
sub-meter sizes cannot be easily included in existing mod-
els of the YORP effect. There are several reasons for this
limitation. First, numerical YORP models typically assume
that temperature changes only in the direction perpendicu-
lar to the surface (i.e. a plane-parallel approximation). This
assumption allows a solution of the one-dimensional heat
diffusion equation for each surface facet independently. This
is well justified as long as surface features are significantly
larger then the diurnal thermal skin depth, with varies from
mm to dm (Vokrouhlický and Brož 1999). This assumption
is no longer applicable for a high-resolution shape model
and a full three-dimensional solution of the heat diffusion
equation is required. Second, no shape is described to the
required level of detail. So far, the best shape model is that
of the asteroid Itokawa. The model in the best available res-
olution consists of over 3 million facets, which corresponds
to meter-sized surface features.

As Golubov and Krugly (2012) pointed out, surface fea-
tures of sizes comparable to the thermal skin depth could
potentially have significant influence on the total YORP ef-
fect. They considered a stone wall (an idealized boulder) lo-
cated on the equator of a spherical asteroid and aligned with
a local meridian. The wall was assumed to be high enough
so that the heat would be mostly conducted in a transverse
direction and the heat diffusion equation can be solved us-
ing the one-dimensional approximation. They demonstrated
that the emission from the surface of the wall can create a
torque that won’t vanish after averaging over the rotational
period. Assuming a large number of such ”walls” placed
along the equator, the corresponding torque is comparable
to the torque arising from the global-shape asymmetry of
certain asteroids, scaled to equivalent diameter.

The goal of this paper is to solve the heat diffusion equa-
tion in a realistic boulder and infer the total torque boulders
contribute to the YORP effect on the asteroid Itokawa. The
problem requires a numerical solution in a general three-
dimensional mesh, which we construct using the TetGen code
(Si 2006). We solve the heat diffusion equation using the fi-
nite element method, which is suitable for irregular domains,
utilizing the FreeFem++ code (Hecht 2012). Our model in-
cludes the influence of shadows casted by the boulder and
the global self-heating effect from thermal emission and scat-
tered radiation.
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Figure 1. The domain and boundary conditions of the prob-

lem. The examined boulder constitutes the top of the domain Ω.
Coloured strips indicate the surface Γ2, where the temperature

is held fixed by Dirichled boundary conditions. The temperature

distribution inside the domain and on the surface Γ1 is computed
numerically, solving the heat diffusion equation (2) and the energy

balance equation (3).

2 THE HEAT DIFFUSION EQUATION AND A
WEAK FORMULATION OF THE PROBLEM

Our problem may be specified as follows. We search for a
temperature u(~r, t) inside the boulder and its surroundings,
i.e. an unknown scalar function on a domain Ω. The differ-
ential operator corresponding to the heat diffusion equation
(HDE) is:

L ≡ ρC∂t −∇ ·K∇ , (1)

where K denotes the thermal conductivity, ρ the density,
C the specific heat capacity of the material. The function u
thus has to fulfill the relation:

L(u) = 0 . (2)

At the same time, we require the boundary conditions to be
met at the boundary of the domain ∂Ω. The boundary con-
sists of two surfaces, which we denote Γ1 and Γ2, as shown
in Figure 1.

The surface Γ1 represents the surface of the asteroid,
the boundary condition is the energy balance equation

K∂nu+ εσu4 = E , (3)

where ∂n denotes a derivative along the normal, ε the in-
frared emissivity, σ the Stefan–Boltzmann constant, E the
total incoming radiative flux. The boundary ∂Ω is a non-
convex surface, thus the radiative heat exchange also con-
tributes to the total flux E (i.e. the global self-heating effect).
We denote the solar flux E� and the flux incoming from vis-
ible parts of the surface — the thermally emitted flux and
the scattered flux — as Erad and Esc respectively. The to-
tal flux is the sum E = E� + Erad + Esc. Summands can be
expressed as

E� = (1−A)Φµ~s · ~n , (4)

Erad = (1−A)

∫
Γ1

ε′σu′4
cosϑ cosϑ′

‖~r − ~r′‖ ν dΓ′ , (5)

Esc = (1−A)

∫
Γ1

A′Φµ′~s · ~n′ cosϑ cosϑ′

‖~r − ~r′‖ ν dΓ′ , (6)

where A is the Bond albedo, Φ the flux of solar radiation,

c© 2014 RAS, MNRAS 000, 1–9



The thermal emission from boulders 3

~s the body–Sun direction, ~n the outward normal to the sur-
face, ~r the position vector, ϑ the angle between the local
normal and the direction vector connecting points ~r and
~r′, µ the shadowing function, ν the visibility function. The
prime denotes a value of a quantity at the point of surface
element dΓ′. We assume the Lambert’s cosine law for the
intensity of thermal emission and scattered radiation, hence
the cosϑ′ in equations (5) and (6).

The shadowing function µ is defined on the surface Γ1.
The value of µ(~r) equals 1 if the point ~r is insolated, 0 if
it lies in the shadow. The visibility function ν is defined on
Γ1×Γ1. We assign the value of function ν(~r, ~r′) to 1 if points
~r and ~r′ have a visual contact, 0 otherwise. In most cases,
the value of ν is simply ν(~r, ~r′) = H(~n·(~r−~r′))H(~n′ ·(~r′−~r)),
where H is the Heaviside step function and ~n, ~n′ denotes the
local normal at point ~r, ~r′ respectively.

The boundary Γ1 is defined by a set of triangular facets
Si. Integrals in equations (5) and (6) can be therefore com-
puted by a formal substitution

∫
Γ1

dΓ′ →
∑
i Si. We also

restrict values of the shadowing function µ and the visibility
function ν to whole facets. This restriction gives rise to an
error; however, it can be limited substantially by choosing a
high-resolution surface mesh.

We also need to specify boundary conditions on the
surface Γ2, which goes through the interior of the aster-
oid, closing the boundary ∂Ω. It can be selected arbitrarily;
we choose the shape corresponding to five walls of a block,
which is a convenient choice as we can simply set a zero-flux
boundary condition

K∂nu = 0 . (7)

This condition will be met as long as dimensions of the do-
main Ω are significantly greater than dimensions of the boul-
der. The influence of the boulder can be considered negligible
at large distances. At sides of the domain, the temperature
will only change in the direction perpendicular to the sur-
face, the dot product of the normal vector and the temper-
ature gradient will therefore be null. At a great depth, the
temperature will be effectively constant, which means the
temperature gradient at the bottom of the domain will be
null, satisfying the boundary condition (7).

We are going to solve the HDE numerically, using a
finite-element discretization in space. In this approach, the
function u is approximated by (Langtangen 2003):

u
.
= û =

M∑
j=1

ujNj , (8)

where Nj denote prescribed basis functions, uj unknown co-
efficients we search for and M corresponds to the number of
vertices defined on the domain. Since û is only an approx-
imation of u, applying the PDE operator would generally
yield a non-zero result:

L(û) 6= 0 , (9)

nevertheless, we require the integral of all residua over the
domain to be zero: ∫

Ω

L(û)WidΩ = 0 , (10)

where Wi are suitable weighting (test) functions. This is
called a weak formulation of the problem. In the Galerkin

method, the test functions are simply the basis functions,
Wi ≡ Ni, so that ∫

Ω

L(û)NidΩ = 0 . (11)

Essentially, it constitutes a system of M equations for uj
coefficients.

In our case of the HDE (Eq. 2):∫
Ω

ρC∂tûNidΩ−
∫

Ω

∇ · (K∇û)NidΩ = 0 . (12)

The second term may be rewritten according to the Green
lemma as:∫

Ω

∇ · (K∇û)NidΩ = −
∫

Ω

K∇û · ∇NidΩ +

∮
∂Ω

K∂nûNidΓ,

(13)
which enables to incorporate the boundary condition easily,
because we can express the normal derivative from boundary
conditions (3) and (7), that is K∂nû = −εσû4 + E on Γ1,
K∂nû = 0 on Γ2.

Regarding the temporal derivative, we use a finite-
difference discretization:

∂tû '
ûn − ûn−1

∆t
. (14)

and an implicit Euler scheme, so that we plug ûn in the re-
maining terms, whenever possible. The only exception is the
non-linear radiative term, where we perform a linearization

û4 ' v̂3û (15)

and we employ an iterative method to find a solution. The
v̂ denotes a solution of a previous iteration. In some cases,
the iterative method does not converge, thus we introduce
the relaxation parameter ω. In each iteration, we find the
solution û∗ of the linear problem and then assign the new
value of û by taking the linear combination of current and
previous solution

û = ωû∗ + (1− ω)v̂ . (16)

We achieved convergence for all considered values of param-
eters by selecting ω = 0.6

+ initial condition
The final equation is thus:∫

Ω

ρC

∆t
ûnNidΩ−

∫
Ω

ρC

∆t
ûn−1NidΩ +

∫
Ω

K∇ûn · ∇NidΩ +

+

∫
Γ1

εσv3ûnNidΓ−
∫

Γ1

EdΓ = 0 . (17)

We actually need not to substitute for û from Eq. (8) or
express the corresponding matrices, because this is done au-
tomatically by the FreeFem++ code. We use a conjugate
gradient method, which is suitable for sparse linear systems.

3 THE MEAN TORQUE CAUSED BY AN
IRREGULAR BOULDER

The magnitude of a recoil force varies during rotational pe-
riod and revolution of an asteroid around the Sun. A long-
term effect of the force is therefore given by its time-averaged
value. We follow the assumption of Golubov and Krugly
(2012) and consider an asteroid on a circular orbit with zero
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obliquity. Although the YORP effect depends on the obliq-
uity in a non-trivial way (Čapek and Vokrouhlický 2004),
the zero obliquity allows us to average the recoil force over
a rotational period only.

The direct radiation pressure has a negligible influence
on the YORP effect (Nesvorný and Vokrouhlický 2008), we
therefore consider the scattered radiation and the thermal
emission. We assume the Lambert’s cosine law for the in-
tensity of scattered and emitted radiation. The recoil force
from the surface element dS is then

d~frad = −2

3

AΦ

c
µ(~s · ~n)~ndS , (18)

d~fsc = −2

3

εσ

c
u4~ndS . (19)

The total torque caused by the boulder is given by the sur-
face integral over the boulder

~T =

∫
Γ1

~r × d~f . (20)

The direction of a torque is generally different from the
axis of rotation ~e. Both the direction and the magnitude of
the torque depends on exact shape of the boulder. However,
even a symmetric boulder can induce a non-zero torque due
to the lateral heat diffusion. The torque is caused by the
asymmetry of emission from the eastern side and western
side of the boulder, therefore it will have the direction of
the rotational axis ~e.

3.1 The coordinate system and the parameters of
the problem

We choose a topocentric coordinate system centered on a
studied boulder. The z axis has therefore a direction of a
local normal, x axis is aligned with a meridian and y axis
completes a right-handed orthogonal Cartesian system.

We introduce quantities that help us reduce a number
of independent parameters of the problem. We define the
subsolar temperature

u? =
4

√
(1−A)Φ

εσ
, (21)

the diurnal thermal skin depth

L =

√
2K

ωρC
, (22)

where ω is the angular frequency of the asteroid, and the
thermal parameter

Θ =

√
KωρC

4
√

2π−
3
4 εσu3

?

. (23)

Numerical constants in these definitions arise from the
derivation of the analytical solution (see Appendix A), it
should be noted that some authors don’t include them
(Lagerros 1996; Golubov and Krugly 2012).

If we neglect self-heating terms, the heat diffusion equa-
tion (2) and its boundary condition (3) can be rewritten

using dimensionless variables ~ξ = ~r/L, ϕ = ωt, τ = u/u? as

1

2
∆ξτ −

∂τ

∂ϕ
= 0 , (24)

4π−
3
4 Θ~n · ∇ξτ + τ4 = ~s · ~n , (25)

Figure 2. The shape of a boulder used as a domain for a solution
of HDE.

regolith

boulder

Figure 3. The domain of the solution Ω is divided into two parts

of different thermal conductivities. Thermal properties of a re-
golith are given by Farinella et al. (1998).

where ∇ξ, ∆ξ is the gradient and the Laplacian with re-
spect to the variables ξ. The only independent parameter
in these equations is the thermal parameter Θ. However,
the boundary condition must hold for all L~ξ ∈ ∂Ω. If ` is
the characteristic size of the boulder, then the problem of
finding a dimensionless temperature τ has two independent
parameters — thermal parameter Θ and the dimensionless
size `/L.

3.2 The numerical solution of the heat diffusion
equation

We solve the weak formulation of the HDE (17) by a finite
element method. For the domain of the solution, we choose
the studied boulder and its surroundings. The shape of the
boulder can be arbitrary; the boulder we chose for computa-
tions is shown on image 2. As a special case, we can choose
the high wall and compare our results to the model of Gol-
ubov and Krugly (2012), see Appendix ??.

We considered different values of thermal conductivity
for the studied boulder and for the surrounding layer of re-
golith, as demonstrated in Figure 3. Thermal properties of
the regolith are given by Farinella et al. (1998), properties of
the boulder are determined by values of thermal parameter
Θ and skin depth L.

We should stress the importance of non-linearity of the
problem. We derived a linearized analytical solution of the
heat diffusion equation in half-space domain (see Appendix
A), where we deal with the non-linear term u4 by substitu-
ing u4

0 + 4u3
0δu, where u0 is a constant, δu is the change of

temperature. Same term appears in the expression for the
recoil force (18) from a thermal emission. In case of a sym-
metric boulder, the linearization of the problem would lead
to identically zero mean torque.

The solution of the HDE is a time-dependent tempera-
ture distribution in the boulder, particularly on its surface.
We can therefore determine the recoil force the boulder ex-
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Figure 4. Computed values of the mean dimensionless pressure

〈Π〉 as a function of the dimensionless boulder size `/L. Blue
curves correspond to the boulder rotated by 0 ◦, 90 ◦, 180 ◦ and

270 ◦. We notice that all curves show zero limit for `/L → 0, as

well as maximum for ` ∼ L. The orange curve is the arithmetic
mean of blue curves.

erts. The force is given by the formula (18); however, it is
convenient to introduce the dimensionless pressure

Π =
2

3

1

S

∫
Γ1

u4

u4
?
ny dΓ (26)

where ny is the y-th component of the local normal, S is
the base area of the boulder. The dimensionless pressure
allows us to compare the magnitude of the tangential force
for different sizes of the boulder. The projection of the total
torque to the rotational axis is then given by

~T · ~e =
(1−A)Φ

c
ΠSr cosϑ , (27)

where r cosϑ is the distance of the boulder from the rota-
tional axis.

Consider a wall aligned with a local meridian, which
face of area S has a constant temperature u. The definition
(26) is then reduced to

Π =
2

3

u4

u4
?
, (28)

which is the definition of a dimensionless pressure by Gol-
ubov and Krugly (2012). Our definition can be therefore
viewed as a generalization.

The dimensionless pressure varies during a rotation. We
obtain a parameter describing a long-term effect by averag-
ing over one rotational period, thus we introduce the mean
dimensionless pressure

〈Π〉 =
1

P

∫ P

0

Π dt . (29)

3.3 The invariant pressure from the set of various
orientations of the boulder

The mean dimensionless pressure 〈Π〉 as a function of the di-
mensionless size `/L varies significantly for different shapes
of a boulder, or even for different orientations of the same

boulder. It is evident that the limit of very high conductiv-
ity (that is `/L→ 0) leads to a zero dimensionless pressure
Π for all shapes of a boulder. In such case, the boulder is
isothermal and therefore emits the same radiant flux to the
western and eastern direction, resulting in a null torque.

The limit of the mean dimensionless pressure for zero
thermal conductivity differs from boulder to boulder. The
conductive term in the energy balance equation (3) is neg-
ligible and the temperature at a given point of a surface
is determined by the immediate balance between incoming
and outgoing radiant flux. Since we solve the HDE in a single
boulder, we need to obtain a torque (as a function of a boul-
der size) that would represent all boulders on the surface. If
we imagine boulders as wedges, it is reasonable to assume
that the wedges will be randomly oriented on the surface.
Although some orientations of boulders seems to be pref-
fered on certain parts of the surface of Itokawa (Miyamoto
et al. 2007), we anticipate that no orientaion prevails on the
global scale. The total torque induced by boulders will there-
fore vanish in the limit of zero conductivity. For that reason,
we demand the mean torque 〈Π〉 to approach zero as well.
However, in the general case of an asymmetric boulder, the
mean dimensionless pressure will approach a non-zero value.

We have several options how to resolve this issue. For
instance, we can restrict the model to symmetric boulders
only. If the boulder is symmetric with respect to a plane
of a local meridian, the mean pressure will vanish in the
limit case. Nonetheless, we want to maintain the universality
of the model and use the irregular asymmetric boulder. In
this case, we can compute the mean pressure 〈Π〉 for several
orientations of the boulder and then take the average of these
values. Another possibility is to calculate the mean pressure
for a single orientation and subtract the pressure in the limit
of zero conductivity. We employed the former option.

The Figure 4 shows the mean dimensionless pressure
for several orientations of the studied boulder as well as
averaged values. We chose the thermal parameter Θ = 0.5
and assumed the boulder lies on the equator of an asteroid.

3.4 A dependence of the mean pressure on
asteroidal latitude

For an asteroid with zero obliquity, the body-Sun vector ~s
has Cartesian coordinates

~s = (sinϑ cos t,− sin t,− cosϑ cos t) , (30)

where t is the hour angle and ϑ is the asteroidal latitude. The
dependence of the dimensionless pressure Π on the hour an-
gle t vanishes after averaging over a period, the dependence
on ϑ remains.

Assuming we can separater variables `, ϑ, we can write
the mean pressure 〈Π〉

〈Π〉(`, ϑ) = P(`)V(ϑ) , (31)

where P(`) = 〈Π〉(`, 0). The function V(ϑ) constitutes a lat-
itude dependence and is normalized such that V(0 ◦) = 1. It
obviously depends on the shape of a boulder. We chose ap-
proximately hemisherical boulder, because it is axially sym-
metric and thus doesn’t prefer one latitude over other values.

We show computed values of function V(ϑ) in Figure 5.
It can be approximated by a function cos aϑ, where a =
0.653 ± 0.004 is a constant determined by a least square
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Figure 5. The dependence of the mean dimensionless pres-

sure 〈Π〉 on the asteroidal latitude ϑ.

method. The mean pressure 〈Π〉 seems to be maximal for
boulders on the equator.

4 THE ANGULAR ACCELERATION OF THE
ASTEROID (25143) ITOKAWA

In the following, we focus our attention on the asteroid
(25143) Itokawa. We estimate the number of boulders on the
surface and show how the thermal emission from boulders al-
ters the angular acceleration predicted by global-shape mod-
els of the YORP effect.

Existing models of the YORP effect usually assume the
normal direction of the recoil force. For non-convex asteroid,
the force can be influenced by the absorption of emitted ra-
diation by the surface (Statler 2009). In previous chapter,
we showed that surface feature can alter the recoil force as
well. We pointed out that the lateral heat diffusion through
boulders leads to emergence of the tangential component of
the recoil force. The presence of tiny surface features change
the normal component as well, the complete solution would
require solving the heat diffusion equation in whole aster-
oid, including boulders. However, we neglect the change in
normal component and solve the tangential component sep-
arately.

The torque generated by a single boulder was discussed
in previous chapter. We place a large number of such boul-
ders on the shape model of Itokawa and calculate the torque
they induce. The total YORP torque and corresponding
change in angular velocity of the asteroid is then obtained
by adding our result to the result of the global-shape model
of the YORP effect.

4.1 The torque induced by boulders

Let δT (~r, `) be the torque caused by single boulder of a size
` at position ~r, N(`)d` the number of boulders on the sur-
face of the asteroid with size in interval (`, `+ d`), `min and
`max the assumed minimal size of the boulder, maximal size
respectively, and finally D the ”boulder spatial distribution
function”. Then the total torque caused by boulders is given

by

T =

∫
∂Ω

∫ `max

`min

δT (~r, `)N(`)D(~r) d`dΓ . (32)

As the boundary of Itokawa is represented by the set of n
triangular facets, we can write

T =

n∑
i=1

DiSi
∫ `max

`min

δT (~ri, `)N(`) d` , (33)

where Si is the area of i-th facet, ~ri its position vector, Di
spatial distribution coeficient such that

∑
iDi = (

∑
i Si)

−1.
We assume boulder size distribution N(`) is independent on
a location on the surface. Let N(`) = Ntot%(`), where Ntot

is the total number of boulders and %(`) is the probability
density function. Then we can write

T = Ntot

n∑
i=1

DiSiE[δT (~ri)] , (34)

where E[·] is the expected value. Assuming boulder spatial
distribution is isotropic (Di = const.), we obtain a recipe for
computing a total torque

T =
Ntot

S

N∑
i=1

SiE[δT (~ri, `)] , (35)

where S =
∑n
i Si is the surface area of the asteroid.

4.2 The observed size distribution of small
boulders

In order to obtain the torque caused by boulders, it is nec-
essary to find out the total number of boulders and their
size distribution. The differential size distribution of boul-
ders larger than 5 m on whole surface of Itokawa can be
approximated by power law (Saito et al. 2006)

N(`)d` ≈ 1.3 · 105 · [`]−3.8
m d` . (36)

Surface images taken by the Hayabusa spacecraft revealed
that the power law (36) can be extrapolated down to sizes
of 1 dm on certain parts of the surface (Miyamoto et al.
2007), although the slope of a log-log graph falls significantly
for smaller sizes. However, other parts of surface clearly
shows different topography. Furthermore, extrapolation of
the above mentioned size distribution down to 1 mm is un-
acceptable. Boulders of sizes between 1 mm and 1 dm alone
would take about 4 · 107 m2, but the surface of Itokawa is
only 3.93 · 105 m2 (Demura et al. 2006).

Therefore, we sought for a different size distribution of
small pebbles. We estimated the size distribution from close-
up images taken by the Hayabusa during its descend, namely
images ST 2563537820 v and ST 2563607030 v. The resolu-
tion of these images is 7 mm/pixel, 6 mm/pixel respectively,
which allows us to find distinct boulders only few centime-
ters in size. Identified boulders are shown on Figure 6. We
constructed histogram of sizes (see Figure 7). Applying the
least squares method, we get the power law

N(`) d` = (3.9± 1.8) · 105 · [`]−(2.4±0.3)
m d` . (37)

The slope of ∼ −2.4 is indeed much lower than the slope
∼ −3.8 of the power law (36). We assume the power law (37)
can be extrapolated to milimeter-sized pebbles. This assum-
tion is plausible as the total area of small pebbles does not

c© 2014 RAS, MNRAS 000, 1–9
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Figure 6. The image ST 2563607030 v with highlighted boulders

from which we derived the size distribution used for computation
of the total torque.
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Figure 7. The histogram of small boulder sizes on the sur-
face of Itokawa, constructed from images ST 2563537820 v and

ST 2563607030 v.

diverge — the power law exponent is lower than 3. Neglect-
ing uncertainties, pebbles of sizes between 1 mm and 1 dm
would take about 1.5 · 105 m2, which is about 40 % of the
Itokawa surface.

4.3 The integration of the local effect to the
global-model prediction

The global-shape YORP effect model of the asteroid Itokawa
predicts a significant rotational deceleration, which is in-
constistent which an observed acceleration. As mentioned
above, the lateral heat diffusion through boulders induces
an additional torque, which affects the change of angular
velocity. Let the magnitude of the total torque generated by
boulders be T , as given by equation (35). The asteroid will
undergo rotational acceleration

dω

dt
=

(
dω

dt

)
global

+
T

I
, (38)

where (dω/dt)global is the prediction of the global-shape
YORP model, I

.
= 7.77 · 1014 kg m2 is the moment of in-

ertia of Itokawa (Scheeres et al. 2007).
The global-shape model of the YORP effect predicts the

rotational deceleration −(2 to 6) ·10−7 rad/day2, depending
on the resolution of the shape model (Breiter et al. 2009).
In order to determine the torque induced by boulders, it is
necessary to select values of the parameters — the thermal
parameter Θ and the thermal skin depth L. We selected
Θ = 0.5, L = 0.01 m.

Utilizing the size distribution of boulders derived in the
section 4.2, we obtain a result

T

I
= (4.6± 2.2) · 10−7 rad/day2 (39)

The error is given by the multiplicative constant of the power
law (37).

We notice that the result is comparable to the result
of the global-shape model in magnitude, but has an oppo-
site sign. The torque induced by boulders and the torque
from the global asymmetry could effectively cancel out,
resulting in the change of angular velocity much smaller
than predicted by global-shape models. Remarkably, the
observed angular acceleration of Itokawa is (3.54 ± 0.38) ·
10−8 rad/day2 (Lowry et al. 2014), which is a value con-
stistent with our findings. Our model therefore presents an
alternative explanation of observed acceleration.

5 CONCLUSIONS

We presented the numerical model of the local YORP ef-
fect, induced by a boulder. The three-dimensional heat dif-
fusion equation in the boulder was solved using the finite
element method. Unlike the finite difference method, the
finite element method has basically no restriction on the
shape of a domain, allowing us to solve the heat diffusion
equation in the boulder of a realistic shape. Furthermore,
we assumed the studied boulder has a different thermal con-
ductivity than the surrounding layer of regolith. We adopted
thermal values of regolith from Farinella et al. (1998).

The studied boulder had a general asymmetric shape,
so it showed a non-zero torque even in the limit of zero ther-
mal conductivity. However, this limit torque depends on the
orientation of the boulder. In order to obtain an invariant
torque representing all boulders, we computed a torque for
several orientations and then found the average of these val-
ues. We showed that the averaged torque approaches zero in
the zero conductivity limit.

The non-zero torque arise from the asymmetry of the
emission indicatrix (averaged over the rotational period).
There are two ”sources” of the emission asymmetry. The first
is the asymmetry of the boulder shape. Rubincam (2000)
demonstrated the emergence of the YORP effect on the toy
model of a spherical asteroid with two wedges attached to
its equator. The torque created by the emission from the
vertical wall is greater in magnitude than the torque cre-
ated by the emission from the inclined wall, thus resulting
in a non-zero total torque. The second source of the emission
asymmetry comes from the lateral heat diffusion through the
boulder. Imagine a boulder on the equator. In the morning,
the eastern side of the boulder is heated up and the boul-
der exerts a recoil force of western direction. If the width
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of the boulder is comparable to the thermal skin depth, the
heat diffusion contributes to heating of the western side in
the afternoon. The emission from the western side is there-
fore more intense. The recoil force has an eastern direction
and exceeds the force from eastern side in magnitude, thus
creating a non-zero mean force of eastern direction. The cor-
responding torque causes the acceleration of the asteroid.

We pointed out that the global contribution of the shape
asymmetry of boulders to the YORP effect is likely to be
null, because of the very large number of boulders on the
surface. In contrast, the lateral heat diffusion leads to the
torque with a direction of the rotational axis, thus accu-
mulating over individual boulders. Even though the torque
generated by a single boulder is tiny, the overall effect can
be comparable to the global-shape effect, if there is sufficient
amount of boulders.

The general approach allowed us to compare our model
with the one-dimensional model of Golubov and Krugly
(2012). In case of a symmetric boulder, we confirmed that
the torque vanishes in the limit of high conductivity and zero
conductivity, and also for both slow and fast rotating bod-
ies. Introducing the thermal parameter Θ and the thermal
skin depth L, we showed that the maximum torque appears
for Θ ∼ 1, L ∼ 1.

Unlike Golubov and Krugly (2012), we found positive
values of the torque for all values of parameters in case of
symmetric boulder. The asymmetric boulder can produce
negative torque, but after averaging over orientations the
resulting torque is again strictly positive. Nevertheless, even
Golubov and Krugly (2012) realized the torque is mostly
positive, and proposed the posibility of a equilibrium be-
tween the global-shape torque and the torque induced by
boulders, resulting in a null total torque. They suggested
this could be the case of the asteroid (25143) Itokawa; how-
ever, Lowry et al. (2014) detected the positive change in
angular velocity of Itokawa, which means the asteroid is not
in the equilibrium state.

Our model contains number of free parameters that can
change the magnitude of the effect significantly. The crucial
factor is the total number of boulders and the size distribu-
tion. We showed that the size distribution of large boulders
on Itokawa cannot be extrapolated to centimeter sizes. For
lack of a better alternative, we estimated the size distri-
bution from close-up images of the surface of Itokawa and
extrapolated it for sizes of indiscernible pebbles. We also as-
sumed that other parts of the surface have the same size dis-
tribution of boulders. Based on this size distribution, boul-
ders of sizes between 1 mm and 1 dm would occupy about
40 % of the surface of Itokawa. Provided we neglect an in-
teraction of boulders (mutual shadowing, irradiation), the
torque is directly proportional to the number of boulders.

The choice of the lower limit of the power-law size dis-
tribution is also a disputable parameter. Although the mag-
nitude of the torque induced by a boulder approaches zero as
the size of the boulder approaches zero, even sum-milimeter
pebbles could have a non-negligible influence on the total
torque. However, it is doubtful whether so small particles
can be considered as boulders, or whether they form a uni-
form layer of matter. We selected the lower limit 1 mm.

The shape of the studied boulder is anothey key factor
of our model. We selected a boulder of a realistic irregular
shape, but it was selected ad hoc. Particularly important

properties of boulders are their height and their flatness.
The higher the boulder is, the greater torque it is likely to
induce. If the walls of the boulder are perpendicular to the
surface, the lever arm of the torque is maximal. The lower
the slope of walls, the lower lever arm.

We applied the computed torque to a case of the as-
teroid (25143) Itokawa. We showed that boulders could in-
duce a torque that would cause the acceleration (4.6 ±
2.2) · 10−7 rad/day2. We realize the uncertainty of our re-
sult; nevertheless, we demonstrated that the emission from
boulders is capable of producing the torque comparable
to the global-shape YORP effect. Models of global YORP
effect on asteroid Itokawa predict significant deceleration
dω/dt = −(2 to 6) · 10−7 rad/day2, where the value varies
with the shape resolution used (Breiter et al. 2009). The
observed change in angular frequency is dω/dt = (3.54 ±
0.38) · 10−8 rad/day2 (Lowry et al. 2014). Simply by adding
the local and the global values, we arrive to the result that
is consistent with the observed acceleration, thus present an
alternative explanation beside the shift in center of mass by
Lowry et al. (2014).

We assumed the rotational axis perpendicular to the or-
bital plane, therefore we don’t have to consider the orbital
movement and the torque is averaged over the rotational
period only. The obliquity of Itokawa is approximately 178 ◦

(Demura et al. 2006), which is very close to the perpendicu-
lar state. Considering the general direction of the rotational
axis, the insolation will change during the revolution over
the Sun and the seasonal changes of temperature occurs.
We expect the seasonal variant of the studied effect to ap-
pear on boulders whose size is comparable to the seasonal
thermal skin depth.

We discussed the diurnal torque has a direction of the
rotational axis, as it is caused by the asymmetry of emission
between the western and the eastern part of the boulder
due to the lateral heat diffusion. Following the same princi-
ple, the seasonal torque could be caused by the asymmetry
between the northern and the southern part of the boulder.
The direction of the torque would therefore be perpendicular
to the rotational axis. We anticipate the seasonal component
of the effect won’t affect the change in angular velocity of
an asteroid; at the most, it will cause an evolution of the
rotational axis. Our model cannot estimate the magnitude
of the seasonal component, a future research is required.

Future works ??

6 ACKNOWLEDGEMENTS

The work of MB has been supported by the Grant Agency
of the Czech Republic (grant no. 13-01308S) and the Re-
search Programme MSM0021620860 of the Czech Ministry
of Education.

REFERENCES

Breiter, S., Bartczak, P., Czekaj, M., Oczujda, B., Vokrouhlický, D., Nov.
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Nesvorný, D., Vokrouhlický, D., Mar. 2008. Vanishing torque from radia-

tion pressure. Astronomy and Astrophysics 480, 1–3.
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APPENDIX A: A LINEARIZED ANALYTICAL
SOLUTION OF THE ONE-DIMENSIONAL
HEAT DIFFUSION EQUATION

The general three-dimensional heat diffusion equation with
a non-linear boundary condition in an irregular domain has
no analytical solution. To find the temperature distribution
we must employ a numerical method, such as the finite el-
ement method. However, it is useful to derive an analytical
solution for simplified case of a half-space domain, which al-
lows to reduce the problem to only one spatial dimension.

The solution can be used as a test for the numerical model
and also as a Dirichlet boundary condition (see ??).

(Lagerros 1996)
Suppose the Sun illuminates (infinite) plane z = 0 and

a half-space z > 0 represents the domain. We seek for the
temperature u as a function of depth z and time t, solving
the heat diffusion equation

∂2u

∂z2
− 1

α
∂tu = 0 (A1)

with a boundary conditions

−K∂u

∂z
(0, t) + εσu4(0, t) =E(t) , (A2)

∂u

∂z
(∞, t) =0 , (A3)

where α = K
ρC

is the thermal diffusivity, K the thermal con-
ductivity, ρ the density, C the specific heat capacity, ε the
emissivity, σ the Stefan-Boltzmann constant and E(t) the
incoming radiant flux. The first boundary condition is the
energy balance equation and the second for definite (jed-
noznacne ??) solution — it eliminates the solution where
the temperature rises ad infinitum as z →∞.

The radiant flux is a periodic function, therefore we can
represent it as a Fourier series E(t) =

∑∞
n=−∞ Ene

inωt. We
look for a stationary solution, which we can represent by
the sum u(z, t) =

∑∞
n=−∞ un(z)einωt. Substituing into (A1)

and applying the constraint (A3) we obtain the solution

u0(z) = a0 , (A4)

un(z) = ane
−(1+i)βnz , (A5)

u−n(z) = a−ne
(i−1)βnz , (A6)

where βn ≡
√
|n|ω
2α

. We determine constants an from the

boundary condition (A2). Here we run into problems with
the non-linear term u4.

u4 ≈ u4
0 + 4u3

0

∑
n 6=0 une

inωt

The thermal parameter of the n-th mode Θn = Kβn
4εσu3

0

and the phase offset tanϕn = −
(

Θn
Θn+1

)
sgnn

We can choose the initial time arbitrarily, we choose
E(t) = (1 − A)ΦΞ(cosωt) where Ξ(x) = x for x > 0,
Ξ(x) = 0 for x < 0. First six Fourier modes are E(t) ≈ (1−
A)Φ

(
1
π

+ 1
2

cosωt+ 2
3π

cos 2ωt− 2
15π

cos 4ωt+ 2
35π

cos 6ωt
)

u(z, t) =
4

√
E0
εσ

+

∞∑
n=1

En
2εσu3

0

e−βnz cos (nωt− βnz + ϕn)√
2Θ2

n + 2Θn + 1
.

(A7)
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