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Abstract

In order to fully understand shapes of asteroids families in the 3-dimensional space of the proper elements ap, ep, sin Ip it is necessary
to compare the observed asteroids with N-body simulations. To this point, we describe a rigorous yet simple method which allows
for a selection of observed asteroids, assures the same size-frequency distribution of synthetic asteroids, accounts for the background
population, and computes a χ2 metric. We study Eos family as an example, and we are able to fully explain its non-isotropic features,
including the distribution of pole latitudes. We confirm its age t = (1.3± 0.3) Gyr; while this value still scales with the bulk density,
it is verified by a Monte-Carlo collisional model. The method can be applied to other populous families (Flora, Eunomia, Koronis,
Hygieya, Themis, etc.).

1. Introduction

A rigorous comparison of observations vs simulations of as-
teroid families is rather a difficult task, especially when we look
at Figure 1. Observed proper elements ap, ep, sin Ip, supplied
by physical data (colour indices a?, i − z in this case), show
a complicated structure of Eos family, halo, together with many
neighbouring families, overlapping halos, and background as-
teroids, of course. The hierarchical clustering method alone
(HCM, Zappalà et al. (1995)) is then practically useless.

Family identification itself affects dynamical studies and vice
versa. We would need the family to determine the initial condi-
tions. On the other hand, we would need a dynamical study to
understand where family members could be. There are several
well-known weaknesses of HCM, which were demonstrated
e.g. in a ‘crime-scene’ Fig. 8 of Nesvorný et al. (2015). The
HCM needs a free parameter, either the cutoff velocity vcutoff ,
or quasi-random level QRL. It is also unable to associate halos.
Last but not least, the background is never precisely uniform
what can be clearly see at the edges of currently stable zones,
close or inside gravitational resonances, or even in stable zones
where the population was deteriorated by dynamical processes
in the distant past (Cybele region).

On the other hand, synthetic families evolve in the course of
simulation, loose their members, consequently should a vari-
able vcutoff , but its optimal value is again generally unknown.
No direct comparison is thus possible.

That is a motivation for our work. We describe a method suit-
able to study 3-dimensional shapes of asteroid families which
enables a consistent fit of all proper orbital elements, including
the size-frequency distribution, and non-uniform background.
Because we are forced to select synthetic asteroids randomly
(a Monte-Carlo approach), we can expect some stochasticity of
the results.

We present an application to Eos family (family identifica-
tion number, FIN = 606), one of the most studied families to
date mentioned already by Hirayama (1918). Together with
our previous works (Vokrouhlický et al., 2006; Brož and Mor-

bidelli, 2013), it forms a long-term series focused on long-term
evolution. We use up-to-date catalogues of proper elements
(Knežević and Milani, 2003), and brand new spin data (Hanuš
et al., 2018).

Let us recall Eos family is of K taxonomic type, while the
background mostly C type. Mothé-Diniz et al. (2008) suggested
either a partially differentiated parent body, with meteorite ana-
logues CV, CO or R, or a undifferentiated one, with CK ana-
logues. There was a discovery of a recent breakup of (6733)
1992 EF (Novaković and Tsirvoulis, 2014), belonging to the
family core, what makes Eos even more interesting for space
weathering studies, because we may see both old (1.3 Gyr) and
young (4 Myr) surfaces.

2. Methods

Before we proceed with the description of the method, let
us explain three problems we have to solve and describe the
underlying dynamical model.

2.1. Problem 1: Selection of asteroids

In principle, we can select any subset of asteroids (e.g. by us-
ing SDSS, or WISE data) to decrease a contamination by inter-
lopers, or an overlap with other families in the neighbourhood
(Parker et al., 2008; Masiero et al., 2011). We can also simulate
any subset at will, be we should check surroundings where the
bodies can be scattered to, because this may be a key constraint.

For Eos family, it is easy because of its distinct K taxonomic
type which is defined for our purposes in terms of the SDSS
colour indices a∗= (0.0, 0.1), i − z = (−0.03, 0.08), and the ge-
ometric albedo pV > 0.07 (if known). As a result, only 1/10th
of asteroids remain, but this is still sufficient (Figure 2). Prac-
tically all families disappeared, the background is much more
uniform. The only exception may be some contamination from
Tirela, arising from a photometric noise on S-type asteroids,
and a gap at large sin Ip > 0.25.
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Figure 1: Top panel: the proper semimajor axis ap vs proper inclination sin Ip
for all asteroids in the broad surroundings of Eos family, and having colour
data in the SDSS MOC4 catalogue (Parker et al., 2008). The range of proper
eccentricities is ep ∈ (0.0; 0.3). Colours correspond to indices a?, i − z which
are closely related to taxonomy, namely blue is close to C-complex taxonomy,
red to S-complex, and magenta to K-type. The whole sample contains 18 471
asteroids. There are other prominent families visible: Hygeia (C-type, bottom-
right), Veritas (C, next to Eos), Tirela (S, upper right), Telramund (S, below
Eos); a close inspection would show 32 families in total! Bottom panel: the
same plot for a typical outcome of N-body simulations, assuming a disrup-
tion of a parent body, ejection of fragments with some velocity field, and their
long-term dynamical evolution due to gravitational perturbations, resonances,
chaotic diffusion, the Yarkovsky effect, the YORP effect, etc. The two panels
are not directly comparable.
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Figure 2: K-type asteroids selected from Figure 1, with known colour indices
a∗ ∈ (0.0; 0.1), i − z ∈ (−0.03; 0.08). The visual geometric albedo had to be
pV > 0.07 (or unknown). This subset is much more homogeneous and contains
1 991 asteroids. No other prominent families except Eos can be seen; the only
exception may be some contamination by Tirela (upper right) due to inherent
photometric noise. This subset seems suitable for a comparison with N-body
simulations.
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Figure 3: The observed differential distribution of visual geometric albedos pV
for Eos family from the WISE catalogue (Masiero et al., 2011) (black solid),
and for the same set of bodies with pV values assigned randomly, assuming a
Gaussian distribution with a constant mean p̄V = 0.158, and 1-σ uncertainty
declared in the catalogue (dashed gray). The widths of the two distributions are
similar, so using the constant p̄V (if unknown) is not a poor approximation.

Regarding the homogeneity of albedos, the WISE data ex-
hibit a wide distribution. The uncertainties arise mainly from
photon noise, and NEATM model systematics. From a statis-
tical sense, even the single albedo value p̄V = 0.158 would
result in a relatively wide distribution which is demonstrated
in Figure 3. Consequently, we use this value for bodies with
unknown pV .

2.2. Problem 2: Size-frequency distribution

The size-frequency distributions (SFDs) should match for
both the observed and synthetic populations, but the latter
changes in the course of time (Figure 4). In order to com-
pare apples with apples, we have to scale the SFD. In other
words, we randomly select the same number of synthetic bod-
ies (together with their orbits, of course) in prescribed size bins
(D,D + dD) as the number of observed bodies. To this point, it
is definitively useful to start with a larger number of synthetic
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Figure 4: Top panel: the cumulative size-frequency distribution (SFD) of the
observed K-type asteroids (orange), the synthetic SFD at the beginning of N-
body simulation (green), the scaled synthetic SFD constructed by a random
selection of bodies so that it matches the observed one (dotted black; hard to
distinguish from orange), and the background SFD (black). Bottom panel: an
evolution of the synthetic SFD in the course of an N-body simulation, from time
t = 0 up to 4 Gyr, which is indicated by changing colours (black→ yellow).
These changes (due to a dynamical decay) require rescaling in every time step.

bodies, so that at the end of simulation we still have more than
observed.

A random selection of synthetic asteroids is needed at every
single time step of the simulation; even multiple selections at
one time step are useful. This way, we would naturally account
for additional (and often neglected) uncertainty which arises
from the fact we always choose the bodies from some under-
lying distributions (e.g. from a prescribed velocity field), but
we cannot be absolutely sure that our single selection is not a
lucky fluke.

2.3. Problem 3: Non-uniform background

A background has to accounted for otherwise it is essen-
tially impossible to explain a lot of bodies far from the fam-
ily. First, we need to find some observed background, not very
far from the family; in our case, a suitable population seems to
be at sin Ip ∈ (0.06; 0.12) and (0.24; 0.30). It has its own size-
frequency distribution, and we should use the same SFD for the
synthetic background, of course. As a first approximation, we
model the background as a random uniform distribution in the
space of proper elements.

However, Murphy’s law for backgrounds states: Background
is never uniform. Especially below and above the 7/3 mean-
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Figure 5: A synthetic background generated as a random uniform distribution
in proper orbital elements ap, ep, sin Ip, with the same size-distribution as the
observed background. In this example, the number densities below and above
the 7/3 mean-motion resonance with Jupiter at 2.956 au are different (by a factor
of 2), because this resonance separates two distinct zones of the main belt.

motion resonance with Jupiter we can expect a difference (see
the example in Figure 5).

Again, there is a non-negligible stochasticity. We shall at
least try different random seeds. The number density of back-
ground objects can be also treated as a free parameter. There is
also a-priori unknown contamination by neighbouring families,
because this is not necessarily present ‘under’ Eos family.

2.4. Dynamical model
Our dynamical model was described in detail in Brož et al.

(2011). We briefly recall it contains a modified SWIFT in-
tegrator (Levison and Duncan, 1994; Laskar and Robutel,
2001), both the diurnal and seasonal Yarkovsky thermal ef-
fects (Vokrouhlický, 1998; Vokrouhlický and Farinella, 1999),
which induce a semimajor axis drift da/dt, captures in all mean-
motion and secular resonances, corresponding drifts de/dt,
dI/dt, the YORP effect, dω/dt, dγ/dt (Čapek and Vokrouh-
lický, 2004), with the efficiency parameter cYORP = 0.33
(Hanuš et al., 2011), collisional reorientations (Farinella et al.,
1998), mass shedding (Pravec and Harris, 2000), and suitable
digital filters for computations of mean and proper elements
(Quinn et al., 1991; Šidlichovský and Nesvorný, 1996).

Initial conditions are keep as simple as possible. We assume
an isotropic disruption, velocities proportional to 1/D, with
V5 = 93 m s−1 for D5 = 5 km, an estimate based on our previous
work (Vokrouhlický et al., 2006). We start with 6545 synthetic
bodies, with the SFD covering D ∈ (1.5; 100) km. Spins are
also isotropic and periods uniform, P ∈ (2; 10) h.

Thermal parameters remain the same as in our previous
works: the bulk density ρ = 2500 kg m−3, the surface density
ρ = 1500 kg m−3, the conductivity K = 0.001 W m−1 K−1, the
specific capacity C = 680 J kg−1, the Bond albedo A = 0.1, the
infrared emissivity ε = 0.9.

Free parameters of our model are the maximum of veloc-
ity distribution vmax, the true anomaly fimp, and the argument
of pericentre ωimp at the time of impact, which are related by
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means of Gauss equations. We may forced to tune also precise
orbital elements of the parent body, but for the moment we take
those of (221) Eos as the nominal case.

Among fixed parameters is the bulk density ρ. Usually, the
age scales linearly with ρ because of the non-gravitational ac-
celerations. Theoretically, if there are both gravitational and
non-gravitational accelerations acting at the same time (e.g.
Yarkovsky drift in a and chaotic diffusion in e) we may be able
to break this degeneracy. However, based on out previous expe-
rience, we do not expect this for the case of Eos. Neighbouring
Veritas may be more suitable for this approach, by the way. Al-
ternatively, we one can use collisional models which exhibit a
different scaling with ρ (cf. Sec. 4.1).

We integrate the equations of motion with the time step
∆t = 91 d, and the time span 4 Gyr. The output time step af-
ter computations of mean elements, proper elements, and final
running-window filter is ∆tout = 10 Myr.

2.5. Black-box method

We then proceed with a so-called ‘black-box’ method: (i) we
choose 180 boxes with ∆a = 0.0243 au, ∆e = 0.025 in our
case aligned with resonances1; (ii) count the numbers of ob-
served asteroids located in these boxes; (iii) compute the ob-
served differential SFD; (iv) the background differential SFD;
(v) at every single output time step we compute the synthetic
differential SFD (saving also lists of bodies in the respective
bins); (vi) for every single size bin (D,D + dD) we draw a syn-
thetic background population from a random uniform distribu-
tion (in ap, ep, sin Ip), because our volume is relatively small;
if the background volume differs from our volume, we have to
use a suitable factor f ; (vii) we rescale the synthetic SFD to the
observed one by randomly choosing Nobs − f Nbg bodies from
the lists above; (viii) we count the numbers of all synthetic as-
teroids located in the boxes; (ix) finally, we compute the metric

χ2 =

Nbox∑
i=1

(Nsyn i − Nobs i)2

σ2
syn i + σ2

obs i

, (1)

where the uncertainties are assumed Poisson-like, σ =
√

N.
Using both σobs and σsyn in the denominator prevents ‘extreme’
χ2 contributions in boxes where Nobs → 0. We shall keep in
mind thought the corresponding probability distribution of χ2

may be somewhat skewed.
Unlike traditional simplified method fitting an envelope to

(a,H) or (a, 1/D), we obtain not only an upper limit for the
age, but also a lower limit.

3. Results

Hereinafter, we discuss not only the best-fit model, but also
several bad fits which are actually more important, because the
‘badness-of-fit’ assures a solid conclusion about Eos family.

1possibly also in sin Ip, or D

3.1. The nominal model
The nominal model is presented in Figure 6. We focus on the

proper semimajor axis ap vs proper eccentricity ep distribution,
having only one box in inclination sin Ip. The initial conditions
(top left) are so different from the observations (bottom middle)
it is almost hopeless to expect a good fit anytime in the future.
However, at around t = 1.3 Gyr the situation suddenly changes
(top middle); it is almost unbelievable that the synthetic family
is so similar to the observations! The final state (top right) is
again totally different. The χ2 reaches values as low as Nbox,
so we may consider the best fit to be indeed reasonable. The
age interval is t = (1.3 ± 0.3) Gyr. Let us emphasize that the
fit so good only because we carefully accounted for all three
problems outlined in Section 2.

3.2. Bad fit 1: Ejection velocity tail
Because our sample is 3 times larger than the observed sam-

ple, we can easily resample our synthetic bodies without actu-
ally computing the N-body simulation anew, e.g. selecting only
bodies with low ejection velocity vej < 200 m s−1. Initially, all
bodies were located above the J7/3 resonance, and below the
J11/5.

Using the same post-processing as above we arrived at Fig-
ure 7. It is clear that the ‘best fit’ is actually a poor fit compared
to the nominal model. The notable differences are below the
J7/3 resonance, and above the J11/5 where the numbers of bod-
ies are never sufficient to match the observations (cf. Fig. 6,
bottom middle).

It is worth to note there is small family just below the J7/3
resonance, namely (36256) 1999 XT17 (FIN 629). It seems
aligned with the original velocity field of Eos family, it has the
same sin Ip as the family core, but slightly larger ep ' 0.1, be-
cause of the ‘ellipse’ in (ap, ep) visible in Fig. 6 (top left). We
thus conclude, (36256) family is actually a remnant of the orig-
inal velocity field.

If this is true, it may further contribute to the contamination
of the ‘pristine zone’ between the J7/3 and J5/2 resonances,
apart from low-probability crossings of the former resonance.
This region was analysed by Tsirvoulis et al. (2017), where au-
thors carefully subtracted the contribution of all families (in-
cluding Eos), extracted the SFD of remaining background aster-
oids and computed the slope of the primordial (post-accretion)
SFD.

3.3. Bad fit 2: Parent body inclination
If we look on contrary on the proper semimajor axis ap vs

proper inclination sin Ip distribution (Figure 8) there is a prob-
lem with the nominal model. Inclinations are all the time too
low (and the χ2 too high compared to Nbox).

Nevertheless, it seems sufficient to adjust the inclination by
approximately 0.005 rad to get a significantly better fit, χ2 de-
creased from 238 down to 181. This seems still too high, but
this approach is possibly too simplified, because we only shifted
the output data. In reality, the resonances (in particular the z1)
do not shift at all, they are determined by the positions of giant
planets, and we should perform the N-body integration anew to
obtain a correct (ap, sin Ip) distribution.
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Figure 6: The proper semimajor axis ap vs proper eccentricity ep for the nominal simulation scaled to the observed SFD (as described in the main text) (top row).
Bodies are plotted as green dots. Colours correspond to the number of bodies in 180 boxes, outlined by ∆a = 0.0234 au, ∆e = 0.025. The range of inclinations is
always sin Ip ∈ (0.06; 0.30). Positions of major mean-motion and 3-body resonances are also indicated (J7/3, J9/4, J11/5, and 3J− 2S− 1). The z1 secular resonance
goes approximately from the lower-left corner to the upper-right. There are the initial conditions (left column), the best-fit at t = 1340 Myr (middle), the end of
simulation (right); as well as the observations (bottom middle), and the respective χ2 metric compared to the actual number of boxes Nbox (bottom right). The
correspondence between the best-fit and the observations is surprisingly good, with χ2 = 141, Nbox = 134 (not all boxes are populated), and χ2 ' Nbox. The 1-σ,
2-σ and 3-σ levels (dotted lines) and the inferred 3-σ uncertainty of the age (yellow strip) are indicated too.

t = 1430 Myr
J7/3 J9/4 J11/5 and 3J-2S-1
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Figure 7: Bad fit 1: the proper semimajor axis ap vs proper eccentricity ep (top
panel), and the temporal evolution of χ2 (bottom panel) for a subset of bodies
with the ejection velocities vej < 200 m s−1, i.e. without the tail of the distribu-
tion. Initially, all bodies were located above the J7/3 resonance. Observations
are visible in Fig. 6 (bottom middle). The ‘best-fit’ at t = 1430 Myr, with
χ2 = 197, Nbox = 134, is much worse than the nominal case. The number of
bodies below the J7/3 resonance is too low. Consequently, the velocity tail is
needed to get a better fit.

t = 1270 Myr
J7/3 J9/4 J11/5 and 3J-2S-1
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Figure 8: Bad fit 2: the proper semimajor axis ap vs proper inclination sin Ip for
the synthetic population (top panel), and the temporal evolution of χ2 (bottom
panel). The boxes are consequently different, ∆a = 0.0243 au, ∆ sin I = 0.02,
ep ∈ (0.0; 0.3), so is the resulting ‘best-fit’ value χ2 = 238, Nbox = 130. The
parent body would have to be shifted in inclination by approximately 0.005 rad
to get a better fit.
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t = 1280 Myr
J7/3 J9/4 J11/5 and 3J-2S-1
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Figure 9: Bad fit 3: A detail of the proper semimajor axis ap vs proper eccen-
tricity ep (top panel), and the temporal evolution of χ2 (bottom panel) for the
simulation with the true anomaly at the time of impact f = 0◦, and the argu-
ment of perihelion ω = 30◦. The ‘best-fit’ χ2 = 582 is so high compared to
Nbox = 67 that the simulation was not computed up to 4000 Myr. The value has
to be f & 120◦ to get a better fit.

3.4. Bad fit 3: True anomaly f < 120◦

To demonstrate the sensitivity of our ‘black-box’ method
with respect to the impact parameters, we present an alternative
N-body simulation which started with the true anomaly f = 0◦.
The orientation of the ellipse is then the opposite and there is
practically no chance for a good fit (see Figure 9).

All the time, there is a serious mismatch within the family
core, it is impossible explain observed bodies in the box with
ap ' 2.97 au, and ep ' 0.08. Generally, it is surprising that
even 1.3 Gyr after the impact, there are clear traces of the orig-
inal velocity field! As already reported in Brož and Morbidelli
(2013), the ‘true’ true anomaly should be f > 120◦.

4. Conclusions

Let us conclude, it is important to use a suitable selection of
asteroids, match the size-frequency distributions, and account
for the background population, when comparing N-body sim-
ulations with observations. To this point, we presented and
tested a simple method how to fit a 3-dimensional distribution
of proper elements.

For Eos family, it is possible to explain its shape in the
(ap, ep, sin Ip) space and estimate the age at the same time, but
this estimate still scales with the bulk density ρ, because most of
the perturbations are non-gravitational (including all systematic
drifts da/dt, de/dt, dI/dt).

While we believe our model include the key contributions, no
dynamical model is complete. For example, we miss inner plan-
ets, gravitational perturbations by large asteroids, or short-term

spin axis evolution due to gravitational (solar) torques. Initial
condition might be also too simple. In particular, the velocity
field might have been non-isotropic even though in catastrophic
disruptions (like Eos) we rather expect a high degree of isotropy
(Ševeček et al., 2017).

Generally, it is better to keep both as simple as possible to
have the lowest possible number of free parameters. Let us at
least compare our nominal best-fit model to another two distri-
butions (size and spin) and the respective models (collisional
and rotational).

4.1. Collisional evolution

In a Monte-Carlo collisional model, size-frequency distribu-
tions are evolved due to fragmentation and reaccumulation. We
assume two populations, the main belt, and Eos family. Their
physical parameters are summarized by the scaling law Q?

D(r),
for which we assume parameters of basalt at 5 km s−1 from
Benz and Asphaug (1999). To compute the actual evolution,
we use the Boulder code by Morbidelli et al. (2009). Parametric
relations in the Boulder, which are needed to compute fragment
distributions, are derived from SPH simulations of Durda et al.
(2007).

We assume the initial SFD of the main belt relatively similar
to the currently observed SFD, because we focus on the already
stable solar system, with the fixed intrinsic impact probability
Pimp = 3.1 × 10−18 km−2 yr−1 and the mean velocity vimp =

5.28 km s−1. The initial SFD of Eos family has the same slope
as the observed SFD in the range D ∈ (15; 50) km, and it is
prolonged down to Dmin = 0.005 km. The dynamical decay
time scale is taken from Bottke et al. (2005).

The resulting collisional evolution is shown in Figure 10.
The observed knee at D ' 15 km is very important, because
this usually arises from a collisional grinding. If we start with
the constant slope from above, we can match the observed SFD
at about 1300 Myr which is in accord with the dynamics.

It is worth to note the scaling with ρ is different from dynam-
ics, which in principle allows to resolve the problem, however,
the collisional model is sensitive to the initial conditions and us-
ing a slightly steeper SFD would result in longer age. In other
words, everything is based on the simple assumption of the con-
stant slope. It would be useful to base the initial conditions on
a specific SPH model for Eos family, with the parent body size
reaching up to 380 km (according to the simple scaling of Durda
et al. 2007 results).

4.2. Spin distribution

At the same time, it is possible to fit the observed distribution
of pole latitudes β, reported in Hanuš et al. (2018). If we use
the same dynamical model, with the same post-processing, but
focus on (ap, sin β) boxes instead, we obtain the results summa-
rized in Figure 11.

If we start from an isotropic distribution of spins, which
means isotropic also in sin β, after about 1.3 Gyr it is possi-
ble to fit both the asymmetry of the distribution with respect
to ac = 3.014 au, and the substantially lower number of bodies
at mid-latitudes | sin β | < 0.5. There are two systematics still
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Figure 10: The cumulative size-frequency distributions computed by our
Monte-Carlo collisional model of the two populations: main belt (red), Eos
family (orange), together with the respective initial conditions (gray), and ob-
servations (black). At the time around t = 1300 Myr the correspondence is
good, except the tail below D . 2 km, where an observational incomplete-
ness makes the SFD’s shallow. In particular, we successfully fit the knee of the
family at D ' 15 km.

present in our analysis, as we account neither for the observa-
tional selection bias, nor for the bias of the inversion method.

Unfortunately, uncertainty is larger than in the previous case,
because the number of observed bodies is limited, namely 46
within the family core. As a solution, we may use the distri-
bution of |β| of Cibulková et al. (2016) which is available for
many more asteroids, but we would need to determine the PSF
function for this (approximate) method, which smears the dis-
tribution substantially. The observed sample also contains a lot
of bodies smaller than we had in the previous simulations, so
we would have to compute everything again. This is postponed
as a future work.
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