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Preface

The purpose of the present set of notes is to provide the technical background for the study
of stellar pulsation, particularly as far as the oscillation frequencies are concerned. Thus
the notes are heavily biased towards the use of oscillation data to study the interior of stars;
also, given the importance of the study of solar oscillations, a great deal of emphasis is given
to the understanding of their properties. In order to provide this background, the notes go
into considerably more detail on derivations and properties of equations than is common,
e.g., in review papers on this topic. However, in a course on stellar pulsations they must
be supplemented with other texts that consider the application of these techniques to, for
example, helioseismology. More general background information about stellar pulsation can
be found in the books by Unno et al. (1989) and Cox (1980). An excellent description of
the theory of stellar pulsation, which in many ways has yet to be superseded, was given by
Ledoux & Walraven (1958). Cox (1967) (reprinted in Cox & Giuli 1968) gave a very clear
physical description of the instability of Cepheids, and the reason for the location of the
instability strip.

The notes were originally written for a course in helioseismology given in 1985, and they
were substantially revised in the Spring of 1989 for use in a course on pulsating stars.

I am grateful to the students who attended these courses for their comments. This has
led to the elimination of some, although surely not all, errors in the text. Further comments
and corrections are most welcome.

Preface to 3rd edition

The notes have been very substantially revised and extended in this edition, relative to
the previous two editions. Thus Chapters 6 and 9 are essentially new, as are sections 2.4,
the present section 5.1, section 5.3.2, section 5.5 and section 7.6. Some of this material
has been adopted from various reviews, particularly Christensen-Dalsgaard & Berthomieu
(1991). Also, the equation numbering has been revised. It is quite plausible that additional
errors have crept in during this revision; as always, I should be most grateful to be told
about them.

Preface to 4th edition

In this edition three appendices have been added, including a fairly extensive set of student
problems in Appendix C. Furthermore, Chapter 10, on the excitation of oscillations, is new.
The remaining revisions are relatively minor, although new material and updated results
have been added throughout.
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Preface to 5th edition

The present edition has been extensively revised. New material includes a presentation of
the recent data on solar-like oscillations in distant stars, which mark the beginning of a
new era of asteroseismology. Also, the discussion of asymptotic eigenfunctions of stellar
oscillations, and of stochastic excitation of solar-like oscillations, has been substantially
extended.

Unlike previous editions, the present one has been typeset using LATEX, leading to
substantial changes in appearance and changes to the equation numbering.

I am grateful to Ross Rosenwald for his careful reading of the 4th edition, which uncov-
ered a substantial number of misprints, and to Frank Pijpers for comments on a draft of the
present edition. I thank Sarbani Basu, Francois Bouchy, Bill Chaplin, Yvonne Elsworth,
Hans Kjeldsen, Jesper Schou, and Steve Tomczyk for help with figures or other material.

The present edition has been made available on the World Wide Web, at URL
http://astro.phys.au.dk/∼jcd/oscilnotes/.

Aarhus, 15 May, 2003

Jørgen Christensen-Dalsgaard
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Chapter 1

Introduction

There are two reasons for studying stellar pulsations: to understand why, and how, certain
types of stars pulsate; and to use the pulsations to learn about the more general properties
of these, and hence perhaps other, types of stars.

Stars whose luminosity varies periodically have been known for centuries. However,
only within the last hundred years has it been definitely established that in many cases
these variations are due to intrinsic pulsations of the stars themselves. For obvious reasons
studies of pulsating stars initially concentrated on stars with large amplitudes, such as the
Cepheids and the long period variables. The variations of these stars could be understood in
terms of pulsations in the fundamental radial mode, where the star expands and contracts,
while preserving spherical symmetry. It was realized very early (Shapley 1914) that the
period of such motion is approximately given by the dynamical time scale of the star:

tdyn '
(
R3

GM

)1/2

' (Gρ̄)−1/2 , (1.1)

where R is the radius of the star, M is its mass, ρ̄ is its mean density, and G is the
gravitational constant. Thus observation of the period immediately gives an estimate of
one intrinsic property of the star, viz. its mean density.

It is a characteristic property of the Cepheids that they lie in a narrow, almost vertical
strip in the HR diagram, the so-called instability strip. As a result, there is a direct relation
between the luminosities of these stars and their radii; assuming also a mass-luminosity
relation one obtains a relation between the luminosities and the periods, provided that the
latter scale as tdyn. This argument motivates the existence of a period-luminosity relation
for the Cepheids: thus the periods, which are easy to determine observationally, may be
used to infer the intrinsic luminosities; since the apparent luminosities can be measured, one
can determine the distance to the stars. This provides one of the most important distance
indicators in astrophysics.

The main emphasis in the early studies was on understanding the causes of the pulsa-
tions, particularly the concentration of pulsating stars in the instability strip. As in many
other branches of astrophysics major contributions to the understanding of stellar pulsa-
tion were made by Eddington (e.g. Eddington 1926). However, the identification of the
actual cause of the pulsations, and of the reason for the instability strip, was first arrived
at independently by Zhevakin (1953) and by Cox & Whitney (1958).

1



2 CHAPTER 1. INTRODUCTION

In parallel with these developments, it has come to be realized that some, and probably
very many, stars pulsate in more complicated manners than the Cepheids. In many in-
stances more than one mode of oscillation is excited simultaneously in a star; these modes
may include both radial overtones, in addition to the fundamental, and nonradial modes,
where the motion does not preserve spherical symmetry. (It is interesting that Emden
[1907], who laid the foundation for the study of polytropic stellar models, also considered a
rudimentary description of such nonradial oscillations.) This development is extremely im-
portant for attempts to use pulsations to learn about the properties of stars: each observed
period is in principle (and often in practice) an independent measure of the structure of the
star, and hence the amount of information about the star grows with the number of modes
that can be detected. A very simple example are the double mode Cepheids, which have
been studied extensively by, among others, J. Otzen Petersen, Copenhagen (e.g. Petersen
1973, 1974, 1978). These are apparently normal Cepheids which pulsate simultaneously
in two modes, in most cases identified as the fundamental and the first overtone of radial
pulsation. While measurement of a single mode, as discussed above, provides a measure
of the mean density of the star, two periods roughly speaking allow determination of its
mass and radius. It is striking that, as discussed by Petersen, even this limited information
about the stars led to a conflict with the results of stellar evolution theory which has only
been resolved very recently with the computation of new, improved opacity tables.

In other stars, the number of modes is larger. An extreme case is the Sun, where cur-
rently several thousand individual modes have been identified. It is expected that with more
careful observation, frequencies for as many as 106 modes can be determined accurately.
Even given likely advances in observations of other pulsating stars, this would mean that
more than half the total number of known oscillation frequencies for all stars would belong
to the Sun. This vast amount of information about the solar interior forms the basis for
helioseismology, the science of learning about the Sun from the observed frequencies. This
has already led to a considerable amount of information about the structure and rotation
of the solar interior; much more is expected from observations, including some from space,
now being prepared.

The observed solar oscillations mostly have periods in the vicinity of five minutes, con-
siderably shorter than the fundamental radial period for the Sun, which is approximately
1 hour. Both the solar five-minute oscillations and the fundamental radial oscillation are
acoustic modes, or p modes, driven predominantly by pressure fluctuations; but whereas
the fundamental radial mode has no nodes, the five-minute modes are of high radial order,
with 20 – 30 nodes in the radial direction.

The observational basis for helioseismology, and the applications of the theory developed
in these notes, are described in a number of reviews. General background information was
provided by, for example, Deubner & Gough (1984), Leibacher et al. (1985), Christensen-
Dalsgaard, Gough & Toomre (1985), Libbrecht (1988), Gough & Toomre (1991) and
Christensen-Dalsgaard & Berthomieu (1991). Examples of more specialized applications
of helioseismology to the study of the solar interior were given by Christensen-Dalsgaard
(1988a, 1996a).

Since we believe the Sun to be a normal star, similarly rich spectra of oscillations would
be expected in other similar stars. An immediate problem in observations of stars, however,
is that they have no, or very limited, spatial resolution. Most of the observed solar modes
have relatively short horizontal wavelength on the solar surface, and hence would not be
detected in stellar observations. A second problem in trying to detect the expected solar-
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like oscillations in other stars is their very small amplitudes. On the Sun the maximum
velocity amplitude in a single mode is about 15 cm s−1, whereas the luminosity amplitudes
are of the order of 1 micromagnitude or less. Clearly extreme care is required in observing
such oscillations in other stars, where the total light-level is low. In fact, despite several
attempts and some tentative results, no definite detection of oscillations in a solar-like star
has been made. Nevertheless, to obtain information, although less detailed than available
for the Sun, for other stars would be extremely valuable; hence a great deal of effort is
being spent on developing new instrumentation with the required sensitivity.

Although oscillations in solar-like stars have not been definitely detected, other types
of stars display rich spectra of oscillations. A particularly interesting case are the white
dwarfs; pulsations are observed in several groups of white dwarfs, at different effective
temperatures. Here the periods are considerably longer than the period of the fundamental
radial oscillation, indicating that a radically different type of pulsation is responsible for
the variations. In fact it now seems certain that the oscillations are driven by buoyancy,
as are internal gravity waves; such modes are called g modes. An excellent review of the
properties of pulsating white dwarfs was given by Winget (1988). Another group of stars of
considerable interest are the δ Scuti stars, which fall in the instability strip near the main
sequence.

The present notes are mainly concerned with the basic theory of stellar pulsation, par-
ticularly with regards to the oscillation periods and their use to probe stellar interiors.
However, as a background to the theoretical developments, Chapter 2 gives a brief intro-
duction to the problems encountered in analyses of observations of pulsating stars, and
summarizes the existing data on the Sun, as well as on δ Scuti stars and white dwarfs.
A main theme in the theoretical analysis is the interplay between numerical calculations
and simpler analytical considerations. It is a characteristic feature of many of the observed
modes of oscillation that their overall properties can be understood quite simply in terms
of asymptotic theory, which therefore gives an excellent insight into the relation between
the structure of a star, say, and its oscillation frequencies. Asymptotic results also form
the basis for some of the techniques for inverse analysis used to infer properties of the solar
interior from observed oscillation frequencies. However, to make full use of the observations
accurate numerical techniques are evidently required. This demand for accuracy motivates
including a short chapter on some of the numerical techniques that are used to compute
frequencies of stellar models. Departures from spherical symmetry, in particular rotation,
induces fine structure in the frequencies. This provides a way of probing the internal ro-
tation of stars, including the Sun, in substantial detail. A chapter on inverse analyses
discusses the techniques that are used to analyse the observed solar frequencies and gives
brief summaries of some of the results. The notes end with an outline of some aspects of
the theory of the excitation of stellar pulsations, and how they may be used to understand
the location of the Cepheid instability strip.
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Chapter 2

Analysis of oscillation data

Observation of a variable star results in a determination of the variation of the properties
of the star, such as the luminosity or the radial velocity, with time. To interpret the data,
we need to isolate the properties of the underlying oscillations. When only a single mode
is present, its period can normally be determined simply, and often very accurately. The
analysis is much more complicated in the case of several modes, particularly when their
amplitudes are small or their frequencies closely spaced. Here one has to use some form of
Fourier analysis in time to isolate the frequencies that are present in the data.

For lack of better information, it was often assumed in the past that stellar oscillations
have the simplest possible geometry, namely radial symmetry. This assumption is success-
ful in many cases; however, radial oscillations are only a few among the many possible
oscillations of a star, and the possible presence of nonradial modes must be kept in mind in
analyses of oscillation observations (evidence for such modes in stars other than the Sun was
summarized by Unno et al. 1989). A nonradial mode is characterized by three wavenum-
bers: the degree l and azimuthal order m which determine the behaviour of the mode over
the surface of the star (see below) and the radial order n which reflects the properties in
the radial direction (see Section 5.3). In general the frequencies ωnlm of stellar oscillations
depend on all three wave numbers. It is convenient, however, to separate the frequency
into the multiplet frequency ωnl, obtained as a suitable average over azimuthal order m and
corresponding to the spherically symmetric structure of the star, and the frequency splitting
δωnlm = ωnlm − ωnl.

Analyses of oscillation data must attempt to separate these different frequency com-
ponents. In the case of the Sun the oscillations can be observed directly as functions of
position on the solar disk as well as time. Thus here it is possible to analyze their spa-
tial properties. This is done by means of a generalized 2-dimensional Fourier transform in
position on the solar surface, to isolate particular values of l and m. This is followed by
a Fourier transform in time which isolates the frequencies of the modes of that type. In
fact, the average over the stellar surface implicit in observations of stellar oscillations can
be thought of as one example of such a spatial Fourier transform.

In this chapter I give a brief description of how the observable properties of the oscilla-
tions may be analyzed. The problems discussed here were treated in considerable detail by
Christensen-Dalsgaard & Gough (1982). There are several books specifically on time-series
analysis (e.g. Blackman & Tukey 1959; Bracewell 1978); an essentially “nuts-and-bolts”

5



6 CHAPTER 2. ANALYSIS OF OSCILLATION DATA

description, with computer algorithms and examples, was given by Press et al. (1986). In
addition, I summarize some observations of solar and stellar oscillations.

Figure 2.1: Contour plots of the real part of spherical harmonics Y m
l [cf.

equation (2.1); for simplicity the phase factor (−1)m has been suppressed].
Positive contours are indicated by continuous lines and negative contours by
dashed lines. The θ = 0 axis has been inclined by 45◦ towards the viewer, and
is indicated by the star. The equator is shown by “++++”. The following
cases are illustrated: a) l = 1, m = 0; b) l = 1, m = 1; c) l = 2, m = 0; d) l
= 2, m = 1; e) l = 2, m = 2; f) l = 3, m = 0; g) l = 3, m = 1; h) l = 3, m =
2; i) l = 3, m = 3; j) l = 5, m = 5; k) l = 10, m = 5; l) l = 10, m = 10.



2.1. SPATIAL FILTERING 7

2.1 Spatial filtering

As shown in Chapter 4, small-amplitude oscillations of a spherical object like a star can be
described in terms of spherical harmonics Y m

l (θ, φ) of co-latitude θ (i.e., angular distance
from the polar axis) and longitude φ. Here

Y m
l (θ, φ) = (−1)mclm Pml (cos θ) exp(imφ) , (2.1)

where Pml is a Legendre function, and the normalization constant clm is determined by

c2
lm =

(2l + 1)(l −m)!

4π(l +m)!
, (2.2)

such that the integral of |Y m
l |2 over the unit sphere is 1. The degree l measures the total

horizontal wave number kh on the surface by

kh =
L

R
, (2.3)

where L =
√
l(l + 1), and R is the radius of the Sun. Equivalently the wavelength is

λ =
2π

kh
=

2πR

L
. (2.4)

Thus L is, roughly speaking, the number of wavelengths along the solar circumference.
The azimuthal order m measures the number of nodes (i.e., zeros) along the equator. The
appearance of a few spherical harmonics is illustrated in Figure 2.1. Explicit expressions for
selected Legendre functions, and a large number of useful results on their general properties,
are given in Abramowitz & Stegun (1964). A summary is provided in Appendix A.

In writing down the spherical harmonics, I have left open the choice of polar axis. In
fact, it is intuitively obvious that for a spherically symmetric star the choice of orientation
of the coordinate system is irrelevant. If, on the other hand, the star is not spherically
symmetric but possesses an axis of symmetry, this should be chosen as polar axis. The
most important example of this is rotation, which is discussed in Chapter 8. In the present
section I neglect departures from symmetry, and hence I am free to choose any direction of
the polar axis.

Observations show that the solar oscillations consist of a superposition of a large number
of modes, with degrees ranging from 0 to more than 1500. Thus here the observations and
the data analysis must be organized so as to be sensitive to only a few degrees, to get time
strings with contributions from sufficiently few individual oscillations that their frequencies
can subsequently be resolved by Fourier analysis in time. The simplest form of mode
isolation is obtained in whole-disk (or integrated-light) observations, where the intensity
variations or velocity in light from the entire solar disk are observed. This corresponds to
observing the Sun as a star, and, roughly speaking, averages out modes of high degree,
where regions of positive and negative fluctuations approximately cancel.

To get a quantitative measure of the sensitivity of such observations to various modes,
we consider first observations of intensity oscillations. The analysis in Chapter 4 shows
that the oscillation in any scalar quantity, in particular the intensity, may be written on
the form

I(θ, φ ; t) =
√

4π<{I0 Y
m
l (θ, φ) exp[−i(ω0t− δ0)]}

= I0

√
4π(−1)mclmP

m
l (cos θ) cos(mφ− ω0t+ δ0) , (2.5)
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where <(z) is the real part of a complex quantity z. With the normalization chosen for the
spherical harmonic, the rms of the intensity perturbation over the solar surface and time
is I0/

√
2. The response in whole-disk observations is obtained as the average over the disk

of the Sun. Neglecting limb darkening, the result is

I(t) =
1

A

∫

A
I(θ, φ; t)dA , (2.6)

where A is area on the disk. To evaluate the integral, a definite choice of coordinate system
is needed. As mentioned above, we are free to choose the computationally most convenient
orientation, which is to have the polar axis point towards the observer. Then the integral
is zero unless m = 0, and for m = 0

I(t) = S
(I)
l I0 cos(ω0t− δ0) , (2.7)

where the spatial response function S
(I)
l is

S
(I)
l =

1

π

∫ 2π

0
dφ

∫ π/2

0

√
2l + 1Pl(cos θ) cos θ sin θdθ

= 2
√

2l + 1

∫ π/2

0
Pl(cos θ) cos θ sin θ dθ . (2.8)

This may be calculated directly for low l, or by recursion. Some results are shown in
Figure 2.2.

Observations of the velocity oscillations are carried out by measuring the Doppler shift
of spectral lines; hence such observations are only sensitive to the line-of-sight component
of velocity. For low-degree modes with periods shorter than about an hour, the velocity
field is predominantly in the radial direction [cf. equation (4.67)], and may be written as

V (θ, φ; t) =
√

4π<{V0 Y
m
l (θ, φ) exp[−i(ω0t− δ0)]ar} , (2.9)

where ar is the unit vector in the radial direction. Here the rms over the solar surface
and time of the radial component of velocity is V0/

√
2. The result of whole-disk Doppler

velocity observations may consequently be written, choosing again the polar axis to point
towards the observer, as

v(t) = S
(V)
l V0 cos(ω0t− δ0) , (2.10)

where

S
(V)
l = 2

√
2l + 1

∫ π/2

0
Pl(cos θ) cos2 θ sin θdθ (2.11)

is the velocity response function. This differs from S
(I)
l only by the factor cos θ in the

integrand, which is due to the projection of the velocity onto the line of sight. As a result
the response is slightly larger at l = 3 than for intensity observations (see Figure 2.2).

The response corresponding to a different choice of polar axis can be obtained by direct
integration of the spherical harmonics, with a different orientation, over the stellar disk.
A simpler approach, however, is to note that there are transformation formulae connect-
ing spherical harmonics corresponding to different orientations of the coordinate system
(Edmonds 1960). An important special case is when the polar axis is in the plane of the
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Figure 2.2: Spatial response functions S
(I)
l and S

(V)
l for observations of inten-

sity and line-of-sight velocity, respectively, in light integrated over a stellar
disk.

sky; this is approximately satisfied for the Sun, where the inclination of the rotation axis,
relative to the sky, is at most about 7◦. One then obtains the response as

S′lm = ΓlmSl , (2.12)

where Sl is the response as determined in equation (2.8) or (2.11), and the coefficients Γlm
can be evaluated as described by Christensen-Dalsgaard & Gough (1982). In particular it
is easy to see that Γlm is zero when l − m is odd, for in this case the Legendre function
Pml (cos θ) is antisymmetric around the equator. Also Γl−m = Γlm. The non-trivial values
of Γlm for the lowest degrees are:

Γ00 = 1

Γ11 = 1√
2

Γ20 = 1
2 Γ22 =

√
6

4

Γ31 =
√

3
4 Γ33 =

√
5

4

(2.13)

To isolate modes of higher degrees, one must analyse observations made as functions
of θ and φ. Had data been available that covered the entire Sun, modes corresponding to
a single pair (l0,m0) could in principle have been isolated by multiplying the data, after
suitable scaling, with a spherical harmonic Y m0

l0
(θ, φ) and integrating over the solar surface;

it follows from the orthogonality of the spherical harmonics that the result would contain
only oscillations corresponding to the degree and azimuthal order selected. In practice the
observations are restricted to the visible disk of the Sun, and the sensitivity to velocity
oscillations is further limited close to the limb due to the projection onto the line of sight.
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To illustrate the principles in the mode separation in a little more detail, I note that,
according to equations (2.1) and (2.9), the combined observed Doppler velocity on the solar
surface is of the form

VD(θ, φ, t) = sin θ cosφ
∑

n,l,m

Anlm(t)clmP
m
l (cos θ) cos[mφ− ωnlmt− δnlm(t)] . (2.14)

Now the axis of the coordinate system has been taken to be in the plane of the sky;
longitude φ is measured from the central meridian. [Also, to simplify the notation the factor
(−1)m

√
4π has been included in Anlm.] For simplicity, I still assume that the velocity is

predominantly in the radial direction, as is the case for five-minute oscillations of low or
moderate degree; the factor sin θ cosφ results from the projection of the velocity vector onto
the line of sight. The amplitudes Anlm and phases δnlm may vary with time, as a result of
the excitation and damping of the modes.

As discussed above, it may be assumed that VD has been observed as a function of posi-
tion (θ, φ) on the solar surface. The spatial transform may be thought of as an integration
of the observations multiplied by a weight function Wl0m0(θ, φ) designed to give greatest
response to modes in the vicinity of l = l0,m = m0. The result is the filtered time string

Vl0m0(t) =

∫

A
VD(θ, φ, t)Wl0m0(θ, φ)dA

=
∑

n,l,m

Sl0m0lmAnlm cos[ωnlmt+ δ̂nlm,l0m0 ] . (2.15)

Here, the integral is over area on the solar disk, and dA = sin2 θ cosφdθdφ; also, I intro-
duced the spatial response function Sl0m0lm, defined by

(Sl0m0lm)2 =
(
S

(+)
l0m0lm

)2
+
(
S

(−)
l0m0lm

)2
, (2.16)

where

S
(+)
l0m0lm

= clm

∫

A
Wl0m0(θ, φ)Pml (cos θ) cos(mφ) sin θ cosφdA , (2.17)

and

S
(−)
l0m0lm

= clm

∫

A
Wl0m0(θ, φ)Pml (cos θ) sin(mφ) sin θ cosφdA . (2.18)

The new phases δ̂nlm,l0m0 in equation (2.15) depend on the original phases δnlm and on

S
(+)
l0m0lm

and S
(−)
l0m0lm

.
It is evident that to simplify the subsequent analysis of the time string Vl0m0(t), it is

desirable that it contain contributions from a limited number of spherical harmonics (l,m).
This is to be accomplished through a suitable choice of the weight function Wl0m0(θ, φ) such
that Sl0m0lm is large for l = l0, m = m0 and “small” otherwise. Indeed, it follows from the
orthogonality of the spherical harmonics that, if Wl0m0 is taken to be the spherical harmonic
Y m0
l0

, if the integrals in equations (2.17) and (2.18) are extended to the full sphere, and if,
in the integrals, sin θ cosφdA is replaced by sin θ dθdφ, then essentially Sl0m0lm ∝ δl0lδm0m.
It is obvious that, with realistic observations restricted to one hemisphere of the Sun,
this optimal level of concentration cannot be achieved. However, the result suggests that
suitable weights can be obtained from spherical harmonics. Weights of this nature are
almost always used in the analysis. The resulting response functions are typically of order
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unity for |l−l0| <∼ 2, |m−m0| <∼ 2 and relatively small elsewhere (e.g. Duvall & Harvey 1983;
Christensen-Dalsgaard 1984a); this is roughly comparable to the mode isolation achieved in
whole disk observations. That the response extends over a range in l and m is analogous to
the quantum-mechanical uncertainty principle between localization in space and momentum
(here represented by wavenumber). If the area being analyzed is reduced, the spread in l
and m is increased; conversely, intensity observations, which do not include the projection
factor sin θ cosφ, effectively sample a larger area of the Sun and therefore, in general, lead
to somewhat greater concentration in l and m (see also Fig. 2.2).

2.2 Fourier analysis of time strings

The preceding section considered the spatial analysis of oscillation observations, either
implicitly through observation in integrated light or explicitly through a spatial transform.
Following this analysis we are left with timestrings containing a relatively limited number of
modes. These modes may then be separated through Fourier analysis in time. Here I mainly
consider simple harmonic oscillations. These are typical of small-amplitude pulsating stars,
such as the Sun. Some remarks on periodic oscillations with more complex behaviour are
given in Section 2.2.5.

A simple harmonic oscillating signal can be written as

v(t) = a0 cos(ω0t− δ0) . (2.19)

Here ω0 is the angular frequency, and the period of oscillation is Π = 2π/ω0. Oscillations are
often also discussed in terms of their cyclic frequency ν = 1/Π = ω/2π, measured in mHz
or µHz. A period of 5 minutes (typical of the most important class of solar oscillations)
corresponds to ν = 3.3 mHz = 3300 µHz, and ω = 0.021 s−1. In studies of classical
pulsating stars it is common to measure the period in units of the dynamical time scale
tdyn [cf. equation (1.1)] by representing it in terms of the pulsation constant

Q = Π

(
M

M�

)1/2 ( R

R�

)−3/2

, (2.20)

where M� and R� are the solar mass and radius. Thus Q provides information about
the more intricate properties of stellar interior structure, beyond the simple scaling of the
period with the dynamical time scale.

2.2.1 Analysis of a single oscillation

The signal in equation (2.19) is assumed to be observed from t = 0 to t = T . Then the
Fourier transform is

ṽ(ω) =

∫ T

0
v(t)eiωtdt =

1

2
a0

∫ T

0

[
ei(ω0t−δ0) + e−i(ω0t−δ0)

]
eiωtdt (2.21)

=
1

2
a0

{
e−iδ0

i(ω + ω0)
[ei(ω+ω0)T − 1] +

eiδ0

i(ω − ω0)
[ei(ω−ω0)T − 1]

}

= a0

{
ei[T/2(ω+ω0)−δ0] sin[T/2(ω + ω0)]

ω + ω0
+ ei[T/2(ω−ω0)+δ0] sin[T/2(ω − ω0)]

ω − ω0

}

=
T

2
a0

{
ei[T/2(ω+ω0)−δ0]sinc [

T

2
(ω + ω0)] + ei[T/2(ω−ω0)+δ0]sinc [

T

2
(ω − ω0)]

}
,
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where

sinc (x) =
sinx

x
. (2.22)

Plots of sinc (x) and sinc 2(x) are shown in Figure 2.3. The power spectrum is

P (ω) = |ṽ(ω)|2 (2.23)

and has the appearance shown schematically in Figure 2.4.

Figure 2.3: The sinc function (a) and sinc 2 function (b) [cf. equation (2.22)].

If Tω0 � 1 the two components of the spectrum at ω = −ω0 and ω = ω0 are well
separated, and we need only consider, say, the positive ω-axis; then, approximately

P (ω) ' 1

4
T 2a2

0sinc 2
[
T

2
(ω − ω0)

]
. (2.24)

I use this approximation in the following. Then both the maximum and the centre of
gravity of P is at ω = ω0. Thus in principle both quantities can be used to determine
the frequencies from observations of oscillation. In practice the observed peak often has
a more complex structure, due to observational noise and fluctuations in the oscillation
amplitude. In such cases the centre of gravity is often better defined than the location of
the maximum of the peak. As a measure of the accuracy of the frequency determination,
and of the ability to separate closely spaced peaks, we may use the width δω of the peak,
which may be estimated by, say

T

2

δω

2
' π

2
, δω ' 2π

T
, δν ' 1

T
. (2.25)
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(More precisely, the half width at half maximum of sinc 2(x) is 0.443π.) Hence to determine
the frequency accurately, we need extended observations (T must be large.) In fact, the
relative resolution

δω

ω0
' 2π

ω0T
=

Π

T
(2.26)

is 1 divided by the number of oscillation periods during the observing time T . Note also
that for 8 hours of observations (a typical value for observations from a single site) the
width in cyclic frequency is δν = 34µHz.

Figure 2.4: Schematic appearance of the power spectrum of a single harmonic
oscillation. Note that the oscillation gives rise to a peak on both the positive
and the negative ω-axis.

Figure 2.5: Schematic representation of spectrum containing 3 well-separated
modes.

2.2.2 Several simultaneous oscillations

Here the time string is

v(t) = a1 cos(ω1t − δ1) + a2 cos(ω2t − δ2) + a3 cos(ω3t − δ3) + · · · . (2.27)

The spectrum might be expected to be, roughly, the sum of the spectra of the individual
oscillations, as shown schematically in Figure 2.5. This would allow the individual frequen-
cies to be determined. This is the case if the modes are well separated, with |ωi−ωj |T � 1
for all pairs i 6= j. However, in the Sun and other types of pulsating stars the oscillation
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frequencies are densely packed, and the situation may be a great deal more complicated. I
consider the case of just two oscillations in more detail:

v(t) = a1 cos(ω1t− δ1) + a2 cos(ω2t− δ2) . (2.28)

Then on the positive ω-axis we get the Fourier transform

ṽ(ω) ' (2.29)

T

2

{
a1ei[T/2(ω−ω1)+δ1]sinc

[
T

2
(ω − ω1)

]
+ a2ei[T/2(ω−ω2)+δ2]sinc

[
T

2
(ω − ω2)

]}
,

and the power

P (ω) =
T 2

4

{
a2

1sinc 2
[
T

2
(ω − ω1)

]
+ a2

2sinc 2
[
T

2
(ω − ω2)

]
(2.30)

+2a1a2sinc

[
T

2
(ω − ω1)

]
sinc

[
T

2
(ω − ω2)

]
cos

[
T

2
(ω2 − ω1)− (δ2 − δ1)

]}
.

Note that a naive summation of the two individual spectra would result in the first two
terms; the last term is caused by interference between the modes, which is very important
for closely spaced frequencies. The outcome depends critically on the relative phases, and
to some extent the relative amplitudes, of the oscillations.

In Figure 2.6 are shown some examples of spectra containing two oscillations. Here, to
limit the parameter space, a1 = a2. ∆ω = ω2−ω1 is the frequency difference (which is non-
negative in all cases), and ∆δ = δ2 − δ1 is the phase difference at t = 0. The vertical lines
show the locations of the frequencies ω1 and ω2. Note in particular that when ∆δ = 3π/2,
the splitting is artificially exaggerated when ∆ω is small; the peaks in power are shifted by
considerable amounts relative to the actual frequencies. This might easily cause confusion in
the interpretation of observed spectra. These effects were discussed by Loumos & Deeming
(1978) and analyzed in more detail by Christensen-Dalsgaard & Gough (1982). From the
results in Figure 2.6 we obtain the rough estimate of the frequency separation that can be
resolved in observations of duration T regardless of the relative phase:

δω ' 12

T
. (2.31)

Note that this is about twice as large as the width of the individual peaks estimated in
equation (2.25).

To demonstrate in more detail the effect on the observed spectrum of the duration of
the time series, I consider the analysis of an artificial data set with varying resolution, for
the important case of low-degree, high-order p modes of a rotating star. I use a simplified
approximation to the asymptotic theory presented in Chapter 7 [cf. equations (7.55) and
(7.58)], and the discussion of the effects of rotation in Chapter 8 [cf. equation (8.45)], and
hence approximate the frequencies of such modes as

νnlm ' ∆ν0(n+
l

2
+ ε0)− l(l + 1)D0 +m∆νrot , (2.32)

where n is the radial order (i.e., the number of nodes in the radial direction), and l and
m were defined in Section 2.1. Here the last term is caused by rotation, with ∆νrot =
1/Πrot, where Πrot is an average over the star of the rotation period. The remaining
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Figure 2.6: Spectra of two modes closely spaced in frequency, with the same
amplitude [cf. equation (2.30)]. The vertical lines the frequency and amplitude
of the two modes. ∆ω = ω2−ω1 is the frequency difference between the modes,
and ∆δ = δ2 − δ1 is the phase difference at t = 0.

terms approximate the frequencies of the nonrotating star. The dominant term is the first,
according to which the frequencies depend predominantly on n and l in the combination
n+ l/2. Thus to this level of precision the modes are organized in groups according to the
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parity of l. The term in l(l + 1) causes a separation of the frequencies according to l, and
finally the last term causes a separation, which is normally considerably smaller, according
to m. There is an evident interest in being able to resolve these frequency separations
observationally.

The frequencies were calculated from equation (2.32), with ∆ν0 = 120µHz, ε0 = 1.2,
D0 = 1.5µHz and a rotational splitting ∆νrot = 1µHz (corresponding to about twice the
solar surface rotation rate). These values are fairly typical for solar-like stars. The response
of the observations to the modes was calculated as described in Section 2.1; for simplicity
the rotation axis was assumed to be in the plane of the sky, so that only modes with even
l −m can be observed. For clarity the responses for l = 3 were increased by a factor 2.5.
The amplitudes and phases of the modes were chosen randomly, but were the same for all
time strings. The data were assumed to be noise-free.

Figure 2.7: Power spectra of simulated time series of duration 600 h
( ), 60 h ( ), 10 h ( ) and 3 h ( ). The
power is on an arbitrary scale and has been normalized to a maximum value
of 1. The location of the central frequency for each group of rotationally split
modes, as well as the value of the degree, are indicated on the top of the
diagram. (From Christensen-Dalsgaard 1984b.)

Short segments of the resulting power spectra, for T = 3 h, 10 h, 60 h and 600 h, are
shown in Figure 2.7. The power is on an arbitrary scale, normalized so that the maximum
is unity in each case. For T = 600 h the modes are completely resolved. At T = 60 h
the rotational splitting is unresolved, but the modes at individual n and l can to a large
extent be distinguished; however, a spurious peak appears next to the dominant peak with
l = 1 at 2960µHz. For T = 10 h modes having degrees of the same parity merge; here



2.2. FOURIER ANALYSIS OF TIME STRINGS 17

the odd-l group at ν ' 2960µHz gives rise to two clearly resolved, but fictitious, peaks of
which one is displaced by about 20µHz relative to the centre of the group. These effects
are qualitatively similar to those seen in Figure 2.6. Finally, the spectrum for T = 3 h is
dominated by interference and bears little immediate relation to the underlying frequencies.

The case shown in Figure 2.7 was chosen as typical among a fairly large sample with
different random phases and amplitudes. The results clearly emphasize the care that is
required when interpreting inadequately resolved data. Furthermore, in general all values
of m are expected to be observed for stellar oscillations, adding to the complexity.

Figure 2.8: Sketch of interrupted time series. This corresponds to two 8 hour
data segments, separated by a 16 hour gap.

2.2.3 Data with gaps

From a single site (except very near one of the poles) the Sun or a star can typically be
observed for no more than 10–12 hours out of each 24 hours. As discussed in connection
with Figure 2.7, this is far from enough to give the required frequency resolution. Thus
one is faced with combining data from several days. This adds confusion to the spectra.
I consider again the signal in equation (2.19), but now observe it for t = 0 to T and τ to
τ + T . The signal is unknown between T and τ , and it is common to set it to zero here,
as sketched in Figure 2.8. Then the Fourier transform is, on the positive ω-axis,

ṽ(ω) =

∫ T

0
v (t) eiωtdt+

∫ τ+T

τ
v(t)eiωtdt

' T

2
a0

{
ei[

T
2

(ω−ω0)+δ0] + ei[(τ+T
2

)(ω−ω0)+δ0]
}

sinc [
T

2
(ω − ω0)]

= Ta0e
i[1/2(τ+T )(ω−ω0)+δ0] cos[

τ

2
(ω − ω0)]sinc [

T

2
(ω − ω0)] , (2.33)

and the power is

P (ω) = T 2a2
0 cos2[

τ

2
(ω − ω0)]sinc 2[

T

2
(ω − ω0)] . (2.34)

Thus one gets the spectrum from the single-day case, modulated by the cos2[1
2τ(ω − ω0)]

factor. As τ > T this introduces apparent fine structure in the spectrum. An example with
τ = 3T is shown in Figure 2.9.

When more days are combined this so-called side-band structure can be somewhat
suppressed, but never entirely removed. In particular, there generally remain two additional
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Figure 2.9: Power spectrum of the time series shown in Figure 2.8 [cf. equation
(2.34)].

peaks separated from the main peak by δω = 2π/τ or δν = 1/τ . For τ = 24 hours, δν =
11.57 µHz.

Exercise 2.1:

Evaluate the power spectrum for the signal in equation (2.19), observed between 0 and
T , τ and τ + T , ... Nτ , Nτ + T , and verify the statement made above.

If several closely spaced modes are present as well, the resulting interference may get
quite complicated, and the interpretation correspondingly difficult. An example of this is
shown in Figure 2.10, together with the corresponding spectrum resulting from a single
day’s observations.

The effects of gaps can conveniently be represented in terms of the so-called window
function w(t), defined such that w(t) = 1 during the periods with data and w(t) = 0 during
the gaps. Thus the observed data can be written as

v(t) = w(t)v0(t) , (2.35)

where v0(t) is the underlying signal (which, we assume, is there whether it is observed or
not). It follows from the convolution theorem of Fourier analysis that the Fourier transform
of v(t) is the convolution of the transforms of v0(t) and w(t):

ṽ(ω) = (w̃ ∗ ṽ0)(ω) =

∫
w̃(ω − ω′)ṽ0(ω′)dω′ ; (2.36)

here ‘∗’ denotes convolution, and w̃(ω) is the transform of a timestring consisting of 0 and
1, which is centred at zero frequency. It follows from equation (2.36) that if the peaks in
the original power spectrum P0(ω) = |ṽ0(ω)|2 are well separated compared with the spread
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Figure 2.10: In (a) is shown the spectrum for two closely spaced modes with
T∆ω = 10, ∆δ = 3π/2, observed during a single day, from Figure 2.6. In
(b) is shown the corresponding case, but observed for two 8 hour segments
separated by 24 hours.

of the window function transform Pw(ω) = |w̃(ω)|2, the observed spectrum P (ω) = |ṽ(ω)|2
consists of copies of Pw(ω), shifted to be centred on the ‘true’ frequencies. Needless to
say, the situation becomes far more complex when the window function transforms overlap,
resulting in interference.

There are techniques that to some extent may compensate for the effects of gaps in
the data, even in the presence of noise (e.g. Brown & Christensen-Dalsgaard 1990). How-
ever, these are relatively inefficient when the data segments are shorter than the gaps. To
overcome these problems, several independent projects are under way to construct net-
works of observatories with a suitable distribution of sites around the Earth, to study solar
oscillations with minimal interruptions. Campaigns to coordinate observations of stellar
oscillations from different observatories have also been organized. Furthermore, the SOHO
spacecraft has carried helioseismic instruments to the L1 point between the Earth and the
Sun, where the observations can be carried out without interruptions. This has the added
advantage of avoiding the effects of the Earth’s atmosphere.

2.2.4 Further complications

The analysis in the preceding sections is somewhat unrealistic, in that it is assumed that the
oscillation amplitudes are strictly constant. If the oscillation is damped, one has, instead
of equation (2.19)

v(t) = a0 cos(ω0t− δ0)e−ηt , (2.37)

where η is the damping rate. If this signal is observed for an infinitely long time, one obtains
the power spectrum

P (ω) =
1

4

a2
0

(ω − ω0)2 + η2
. (2.38)

A peak of this form is called a Lorentzian profile. It has a half width at half maximum of η.
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Exercise 2.2:

Verify equation (2.38).

If the signal in equation (2.37) is observed for a finite time T , the resulting peak is
intermediate between the sinc 2 function and the Lorentzian, tending to the former for
ηT � 1, and towards the latter for ηT � 1. This transition is illustrated in Figure 2.11.

Figure 2.11: Power spectrum for the damped oscillator in equation (2.37),
observed for a finite time T . The abscissa is frequency separation, in units
of T−1. The ordinate has been normalized to have maximum value 1. The
curves are labelled by the value of ηT , where η is the damping rate.

Equation (2.37) is evidently also an idealization, in that it (implicitly) assumes a sudden
excitation of the mode, followed by an exponential decay. In the Sun, at least, it appears
that the oscillations are excited stochastically, by essentially random fluctuations due to
the turbulent motion in the outer parts of the solar convection zone. It may be shown that
this process, combined with exponential decay, gives rise to a spectrum that on average has
a Lorentzian profile. The statistics of the determination of frequencies, amplitudes and line
widths from such a spectrum was studied by Sørensen (1988), Kumar, Franklin & Goldreich
(1988) and Schou (1993). These issues are discussed in more detail in Section 10.3. It should
be noted (see also Figure 10.4) that the stochastic nature of the excitation gives rise to a
number of sharp peaks, with a distribution around the the general Lorentzian envelope;
thus, in particular, it cannot be assumed that the maximum power corresponds to the true
frequency of the mode. Substantial care is therefore required in analyzing data of this
nature.

So far I have considered only noise-free data. Actual observations of oscillations contain
noise from the observing process, from the Earth’s atmosphere and from the random velocity
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(or intensity) fields in the solar or stellar atmosphere. At each frequency in the power
spectrum the noise may be considered as an oscillation with a random amplitude and
phase; this interferes with the actual, regular oscillations, and may suppress or artificially
enhance some of the oscillations. However, because the noise is random, it may be shown
to decrease in importance with increasingly long time series.

Figure 2.12: (a) Example of non-sinusoidal oscillation, plotted against relative
phase ν0t = ω0t/2π. This is roughly similar to observed light curves of large-
amplitude Cepheids. (b) The first 3 Fourier components of the oscillation
shown in panel (a). The remaining components have so small amplitudes that
they do not contribute significantly to the total signal.

2.2.5 Large-amplitude oscillations

For large-amplitude pulsating stars, such as Cepheids, the oscillation typically no longer
behaves like the simple sine function in equation (2.19). Very often the oscillation is still
strictly periodic, however, with a well-defined frequency ω0. Also the light curve, for exam-
ple, in many cases has a shape similar to the one shown in Figure 2.12, with a rapid rise
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and a more gradual decrease.
It is still possible to carry out a Fourier analysis of the oscillation. Now, however, peaks

appear at the harmonics kω0 of the basic oscillation frequency, where k = 1, 2, . . . . This
corresponds to representing the observed signal as a Fourier series

v(t) =
∑

k

ak sin(k ω0t− φk) . (2.39)

Figure 2.12b shows the first few Fourier components of the oscillation in Figure 2.12. More
generally the shape of the oscillation is determined, say, by the amplitude ratios ak/a1

and the phase differences φk − k φ1. These quantities have proved very convenient for the
characterization of observed light curves (e.g. Andreasen & Petersen 1987), as well as for
the analysis of numerical results. One may hope that further work in this direction will
allow an understanding of the physical reasons underlying the observed behaviour.

In a double-mode, large-amplitude pulsating star, with basic frequencies ω1 and ω2,
Fourier analysis in general produces peaks at the combination frequencies kω1 + jω2, for
integral k and j. Thus the spectrum may become quite complex. In particular, the detection
of additional basic frequencies is difficult, since these might easily be confused with the
combination frequencies, given the finite observational resolution.

2.3 Results on solar oscillations

By far the richest spectrum of oscillations has been observed for the Sun; this allows detailed
investigations of the properties of the solar interior. Thus it is reasonable to summarize the
observational situation for the Sun. Figure 2.13 shows schematically the modes that have
been definitely observed, as well as modes for which detection has been claimed in the past.
Only the modes in the five-minute region have definitely been observed and identified. As
mentioned in Chapter 1, they are standing acoustic waves, generally of high radial order.
It is interesting that they are observed at all values of the degree, from purely radial modes
at l = 0 to modes of very short horizontal wavelength at l = 1500. Furthermore, there is
relatively little change in the amplitude per mode between these two extremes. The p and f
modes have now been detected to frequencies as low as 500µHz (e.g. Schou 1998; Bertello
et al. 2000). The apparent existence of oscillations at even lower frequency has caused very
substantial interest; if real and of solar origin, they would correspond to standing gravity
waves, or g modes, whose frequencies are very sensitive to conditions in the deep solar
interior. However, it should be noted that recent analyses have provided stringent upper
limits to the amplitudes of such modes, which makes highly questionable earlier claims of
detections (e.g. Appourchaux et al. 2000).

Figure 2.14 shows an example of an observed power spectrum of solar oscillations.
This was obtained by means of Doppler velocity measurements in light integrated over the
solar disk, and hence, according to the analysis in Section 2.1, is dominated by modes of
degrees 0 – 3. The data were obtained from the BiSON network of six stations globally
distributed in longitude, to suppress the daily side-bands, and span roughly four months.
Thus the intrinsic frequency resolution, as determined by equation (2.25), is smaller than
the thickness of the lines. There is a visible increase in the line-width when going from low
to high frequency. The broadening of the peaks at high frequency is probably caused by
the damping and excitation processes, as discussed in Section 2.2.4; thus the observations
indicate that the damping rate increases with increasing frequency. Finally, there is clearly
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Figure 2.13: Schematic illustration of the oscillations observed in the Sun. The
5 minute oscillations are standing acoustic waves. They have been completely
identified. Each of the lines in this part of the diagram corresponds to a given
value of the radial order n. The f mode, which is essentially a surface gravity
wave, has been observed at high degree; acoustic modes have frequencies ex-
ceeding that of the f mode. The presence of the long-period oscillations was
suggested by early observations, but the reality, let alone solar origin, of these
oscillations has not been established; had they corresponded to oscillations
of the Sun, they would likely have been g modes of low degree. Note that
g modes are restricted to lie underneath the frequency indicated as “g mode
upper limit”. The hatching indicates the region in l that can be observed in
light integrated over the disk, as is generally the case for stars.

a well-defined distribution of amplitudes, with a maximum around 3000 µHz and very small
values below 2000, and above 4500, µHz. The maximum power corresponds to a velocity
amplitude of around 15 cm s−1; observations in broad-band intensity show amplitudes up
to around 4 ppm. The power distribution is essentially the same at all degrees where the
five-minute oscillations are observed. An interesting analysis of the observed dependence of
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Figure 2.14: Power spectrum of solar oscillations, obtained from Doppler ob-
servations in light integrated over the disk of the Sun. The ordinate is nor-
malized to show velocity power per frequency bin. The data were obtained
from six observing stations and span approximately four months. Panel (b)
provides an expanded view of the central part of the frequency range. Here
some modes have been labelled by their degree l, and the large and small
frequency separations ∆ν and δνl [cf. equations (2.40) and (2.41)] have been
indicated. (See Elsworth et al. 1995.)
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mode amplitudes on degree, azimuthal order and frequency was presented by Libbrecht et
al. (1986). Woodard et al. (2001) recently made a careful investigation of the dependence
of the mode energy on degree and frequency of oscillation, based on observations from the
SOHO spacecraft.

The spectrum illustrated in Figure 2.14 evidently has a highly regular frequency struc-
ture, most clearly visible in the expanded view in panel (b). This reflects the asymptotic
expression in equation (2.32), apart from the rotational effects which are invisible at this
frequency resolution. According to the leading term in equation (2.32), the peaks should
occur in groups corresponding to even and odd degree, such that n+ l/2 are the same, the
groups being uniformly spaced with a separation ∆ν/2; this apparent degeneracy is lifted
by the second term in equation (2.32). Thus the spectrum is characterized by the large
frequency separation

∆ν = νn+1 l − νnl , (2.40)

and the small frequency separation

δνl = νnl − νn−1 l+2 ' (4l + 6)D0 . (2.41)

These separations are indicated in Figure 2.14b, where also selected peaks corresponding
to l = 0 and 1 have been labelled, in each case with a neighbouring peak with l = 2 or
3, respectively. It should be noticed that the observed amplitudes of the l = 3 peaks are
much reduced relative to the l = 1 peaks, as predicted by the spatial response function

S
(V)
l shown in Figure 2.2; on the other hand, the observed amplitudes for l = 0 and 2 are

roughly similar, as expected.
To illustrate in more detail the properties of the frequency spectrum, it is convenient

to use an echelle diagram (e.g. Grec, Fossat & Pomerantz 1983). Here the frequencies are
reduced modulo ∆ν by expressing them as

νnl = ν0 + k∆ν + ν̃nl , (2.42)

where ν0 is a suitably chosen reference, and k is an integer such that ν̃nl is between 0 and
∆ν; the diagram is produced by plotting ν̃nl on the abscissa and ν0 + k∆ν on the ordinate.
Graphically, this may be thought of as cutting the frequency axis into pieces of length ∆ν
and stacking them above each other. If the asymptotic relation (2.32) had been precisely
satisfied, the result would be points arranged on a set of vertical lines corresponding to the
different values of l, the lines being separated by the appropriate δνl. The actual behaviour is
shown in Figure 2.15, based on frequencies from BiSON observations. The general behaviour
is clearly as expected, although with significant departures. The curvature of the lines
indicate that the frequency for each l are not precisely uniformly spaced; as discussed in
Section 7.7.3 this results from variations in structure near the solar surface. Also, it is fairly
evident that the small separation varies with mode order.

To illustrate the quality of current frequency determinations, Figure 2.16 shows observed
frequencies at low and moderate degree from one year’s observations with the High Altitude
Observatory’s LOWL instrument (see Tomczyk et al. 1995). The error bars have been mag-
nified by a factor 1000 over the usual 1σ error bars. For the most accurate measurements,
the relative standard deviation is well below 10−5, thus substantially exceeding the preci-
sion with which the solar mass is known. Precise measurements of frequencies, frequency
separations and rotational splittings for low-degree modes were published by Elsworth et
al. (1990), Toutain & Fröhlich (1992), Fröhlich et al. (1997), Lazrek et al. (1997), Chaplin
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Figure 2.15: Echelle diagram for observed solar frequencies obtained with
the BiSON network (Chaplin et al. 2002), plotted with ν0 = 830µHz and
∆ν = 135µHz (cf. eq. 2.42). Circles, triangles, squares and diamonds are
used for modes of degree l = 0, 1, 2 and 3, respectively. For clarity the points
for l = 0 and 2 have been repeated in the right-hand part of the diagram; the
dotted vertical line indicates ∆ν.

et al. (1998, 1999, 2001ab); such measurements are of great diagnostic importance for the
properties of the solar core (cf. Section 7.3). An extensive set of high-degree frequencies
was obtained by Bachmann et al. (1995).

From spatially resolved observations, individual frequencies ωnlm can in principle be
determined. Because of observational errors and the large amount of data resulting from
such determination, it has been common to present the results in terms of coefficients in
fits to the m-dependence of the frequencies, either averaged over n at given l (Brown &
Morrow 1987) or for individual n and l (e.g., Libbrecht 1989). A convenient form of the
expansion was established by Ritzwoller & Lavely (1991); this can be expressed as

ωnlm = ωnl0 + 2π
jmax∑

j=1

aj(n, l)P(l)
j (m) , (2.43)

in terms of the so-called a coefficients aj(n, l). Here the P(l)
j are polynomials of degree j

which satisfy the orthogonality relation
∑
m P

(l)
i (m)P(l)

j (m) = 0 for i 6= j (see also Schou
et al., 1994). Explicit expressions for these polynomials were given by Pijpers (1997). As
discussed in Chapters 8 and 9 [cf. Section 8.2 and equation (9.25)] the coefficients aj with
odd j arise from rotational splitting; the coefficients with even j are caused by departures
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Figure 2.16: Plot of observed solar p-mode multiplet frequencies, as a function
of the degree l, from one year of observations. The vertical lines show the 1000σ
error bars. Each ridge corresponds to a given value of the radial order n, the
lowest ridge having n = 1. (See Tomczyk, Schou & Thompson 1996).

from spherical symmetry in solar structure, or from effects of magnetic fields.
It is probably a fair assessment that the major developments in helioseismology in recent

years have resulted from improvements in the observations. The principal problems in early
data was the presence of gaps, leading to sidebands in the power spectra, and the effects
of atmospheric noise. The problems with gaps have been overcome through observations
from global networks; nearly continuous observations, which are furthermore free of effects
of the Earth’s atmosphere, have been obtained from space. The result has been greatly
sets of frequencies, extending to high degree, which has very substantially improved our
knowledge about the solar interior.

As shown in Figure 2.9, gaps in the timeseries introduce sidebands in the spectrum;
these add confusion to the mode identification and contribute to the background of noise
in the spectra. Largely uninterrupted timeseries of several days’, and up to a few weeks’,
duration have been obtained from the South Pole (e.g. Grec et al. 1980; Duvall et al.
1991); however, to utilize fully the phase stability of the modes at relatively low frequency
requires continuous observations over far longer periods, and these cannot be obtained from
a single terrestrial site.

Nearly continuous observations can be achieved from a network of observing stations,
suitably placed around the Earth (e.g. Hill & Newkirk 1985). An overview of network
projects was given by Hill (1990). A group from the University of Birmingham has operated
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the BiSON1 network for many years, to perform whole-disk observations using the resonant
scattering technique (e.g. Chaplin et al. 1996). A similar network (the IRIS2 network) has
been set up by a group at the University of Nice (Fossat 1991).

An even more ambitious network has been established in the GONG3 project, organized
by the National Solar Observatory of the United States (for introductions to the project,
see Harvey, Kennedy & Leibacher 1987; Harvey et al. 1996). This project has involved
the setting up at carefully selected locations of six identical observing stations. They use
an interferometric technique to observe solar oscillations of degrees up to around 250. In
addition to the design and construction of the observing equipment, a great deal of effort is
going into preparing for the merging and analysis of the very large amounts of data expected,
and into establishing the necessary theoretical tools. The network became operational in
October 1995 when the last station, in Udaipur (India) started observing. The GONG
network, and early results obtained with it, was described by Gough et al. (1996) and in
accompanying papers.

Major efforts have gone into the development of helioseismic instruments for the SOHO4

spacecraft, which was launched in December 1995 (e.g. Domingo, Fleck & Poland 1995),
as a joint project between ESA and NASA. SOHO is located near the L1 point between
the Earth and the Sun, and hence is in continuous sunlight. This permits nearly unbroken
observations of solar oscillations. A further advantage is the absence of effects from the
Earth’s atmosphere. These are particularly troublesome for observations of high-degree
modes, where seeing is a serious limitation (e.g. Hill et al. 1991), and for intensity obser-
vations of low-degree modes, which suffer from transparency fluctuations.

SOHO carries three instrument packages for helioseismic observations:

• The GOLF instrument (for Global Oscillations at Low Frequency; see Gabriel et
al. 1995, 1997). This uses the resonant scattering technique in integrated light.
Because of the great stability of this technique, it is hoped to measure oscillations at
comparatively low frequency, possibly even g modes. Unlike the p modes, which have
formed the basis for helioseismology so far, the g modes have their largest amplitude
near the solar centre; hence, detection of these modes would greatly aid the study of
the structure and rotation of the core. Also, since the lifetime of p modes increases
rapidly with decreasing frequency, very great precision is possible for low-frequency
p modes.

• The SOI-MDI experiment (for Solar Oscillations Investigation – Michelson Doppler
Imager; see Scherrer et al. 1995; Rhodes et al. 1997) uses the Michelson interferom-
eter technique. By observing the entire solar disk with a resolution of 4 arcseconds,
and parts of the disk with a resolution of 1.2 arcseconds, it is possible to measure
oscillations of degree as high as a few thousand; furthermore, very precise data have
been obtained on modes of degree up to about 1000, including those modes for which
ground-based observation is severely limited by seeing. As a result, it has been pos-
sible to study the structure and dynamics of the solar convection zone, and of the
radiative interior, in great detail.

1Birmingham Solar Oscillation Network
2International Research on the Interior of the Sun
3Global Oscillation Network Group
4SOlar and Heliospheric Observatory
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• The VIRGO experiment (for Variability of solar IRradiance and Gravity Oscilla-
tions; see Fröhlich et al. 1995, 1997). This contains radiometers and Sun photome-
ters to measure oscillations in solar irradiance and broad-band intensity. It is hoped
that this will allow the detection of g modes; furthermore, the observations supple-
ment those obtained in Doppler velocity, particularly with regards to investigating
the phase relations for the oscillations in the solar atmosphere.

Several very extensive tables of five-minute oscillation frequencies have become avail-
able in recent years. As examples, tables of multiplet frequencies are provided at
http://astro.phys.au.dk/∼jcd/oscilnotes/data/. One set, described in more detail
by Basu et al. (1997), consists of a combination of BiSON low-degree data and data for
modes of low and intermediate degree from the LOWL instrument. The second set was
obtained from around 4 months of observations with the GONG network (see Schou et al.
2002). Links to further data are also given; these in particular include very extensive results
obtained with the MDI instrument on SOHO, covering both multiplet frequencies and a
coefficients (cf. eq. 2.43) (see Schou 1999; Schou et al. 2002).

2.4 Other types of multi-periodic stars

Observations of stellar oscillations provide constraints on the properties of the star and, as
mentioned in Chapter 1, the information content increases with the number of observable
modes. Fortunately, pulsating stars are found throughout the Hertzsprung-Russell diagram.
This is illustrated schematically in Fig. 2.17, which summarizes the known classes of stars,
in relation to selected evolution tracks; some of these classes will be discussed in more detail
in the following,

An important region in the diagram is the Cepheid instability strip, populated by the
Cepheids (‘Ceph’) and RR Lyrae stars (‘RR Lyr’) as well as, close to the main sequence,
the δ Scuti stars (‘δ Sct’). These are believed to be excited by an opacity mechanism
associated with the second helium ionization zone; as discussed in detail in Chapter 10
this provides an explanation for the localized nature of these stars in the HR diagram.
In the Cepheids and RR Lyrae stars typically only a single period is observed, in most
cases assumed to correspond to the fundamental radial mode. The stars near the main
sequence, on the other hand, generally show several periods, making them potentially more
interesting for investigations of the stellar interiors. This is also true for the more massive
slowly pulsating B stars (‘SPB’) and β Cephei stars (‘β Cep’); the former have periods
of around a day or more whereas the latter have periods of the order of hours. These
oscillations are also excited by opacity mechanisms, although related to opacity features
dominated by iron-group elements.

The rapidly oscillating Ap stars (‘roAp’) are also located in the instability strip, but
with fairly peculiar characteristics. They oscillate in high-order acoustic modes, rather like
the Sun, but the oscillations are closely tied to the large-scale magnetic field found in these
stars; this is probably related to the abundance inhomogeneities set up across the stellar
surface as a result of the suppression of convection by the magnetic field.

Red giants show oscillations of very long periods, corresponding to the large dynamic
timescale resulting from their huge radii (cf. eq. 1.1). The Mira variables have very large
amplitudes in the visible band, up to eight magnitudes, although the amplitude in the
luminosity oscillations are more modest; much of the effect in the visible arises from the
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Figure 2.17: Schematic Hertzsprung-Russell diagram illustrating the location
of several classes of pulsating stars. The dashed line shows the zero-age main
sequence, the continuous curves are selected evolution tracks, at masses 1, 2,
3, 4, 7, 12 and 20M�, the dot-dashed line is the horizontal branch and the
dotted curve is the white-dwarf cooling curve.

temperature-sensitivity of the formation of molecules in the stellar atmospheres. They are
typically single periodic. The irregular variables (‘Irr’) have lower amplitudes and show
variations in the amplitudes and possibly periods.

The final stages of stellar evolution are represented by the subdwarf B variable stars
(also known as ‘EC 14026’ stars, after the first member of the group to be discovered),
discussed in more detail in Section 2.4.3 below. Their pulsations are also, as for the main-
sequence B stars, caused by an opacity mechanism related to iron-group elements. Several
groups of white dwarfs, discussed in Section 2.4.4, also pulsate.
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Finally, oscillations corresponding to those observed in the Sun are expected in a broad
group of stars. The solar oscillations are believed to be excited stochastically by the near-
surface convection (see also Section 10.6). Thus oscillations of a similar nature are expected
in all stars with effective temperature Teff <∼ 7000 K, which have vigorous outer convection.
As discussed in Section 2.4.1, this expectation has recently been dramatically confirmed.

2.4.1 Solar-like oscillations in other stars

The archetypal example is obviously the spectrum shown in Figure 2.14, obtained for the
Sun observed as a star, in disk-averaged light. This is characterized by a broad spectrum
of almost uniformly spaced peaks, approximately satisfying the asymptotic relation (2.32)
and hence characterized by the large frequency separation ∆ν and the small frequency
separation δν [cf. equations (2.40) and (2.41)]. The power distribution results from the
broad-band nature of the excitation (see also Section 10.6) which causes all modes in a
fairly extensive frequency range to be excited. This greatly simplifies the identification
of the modes and hence the comparison with stellar models. In the search for solar-like
oscillations the nearly uniformly spaced frequency pattern, and the distribution of mode
power, are typically the characteristics to look for.

The main difficulty in observing solar-like oscillations are the extremely small ampli-
tudes, either in Doppler or intensity observations, judging from the maximal solar am-
plitudes of around 15 cm s−1 and 4 ppm, respectively. Christensen-Dalsgaard & Frandsen
(1983a) made rough estimates of the expected amplitudes from which Kjeldsen & Bedding
(1995) concluded that the amplitudes approximately scaled proportional to

L

M
∝ T 4

eff

gs
, (2.44)

where L and M are the luminosity and mass of the star, and gs is the surface gravity.
More detailed calculations by Houdek et al. (1999) largely confirmed these results (see also
Section 10.3). Accordingly, main-sequence stars more massive than the Sun are expected
to have substantially higher amplitudes, and relatively large amplitude are predicted for
red giants.

A major improvement in the observational techniques has recently resulted from the
development of very stable radial-velocity measurements to search for extra-solar planets
as reflected in the motion of their central stars. As discussed below, these have led to
striking detections of solar-like oscillations in a few cases, and more detections and detailed
investigations are expected in the near future from such observations.

Very substantial observational efforts have been made to detect solar-like oscillations
in stars near the main sequence. For example, Gilliland et al. (1993) carried out an
extensive coordinated campaign on the open cluster M67, with most of the world’s largest
telescopes; this failed to detect any oscillations, in some cases with upper limits well below
the theoretical predictions. Perhaps the first plausible detection was made by Kjeldsen et
al. (1995), who observed the subgiant η Bootis using a technique based on measurements
of equivalent widths of spectral lines. The resulting power spectrum, shown in Figure 2.18,
does display the enhancement of power expected for solar-like oscillations; the determination
of the oscillation frequencies was complicated by the fact that only observations from a single
site were observable, leading to the window function (cf. Section 2.2.3) illustrated in the
inset. However, Kjeldsen et al. were able to determine both the frequency separations ∆ν
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Figure 2.18: Observed power spectrum of η Bootis, based on equivalent-width
observations by Kjeldsen et al. (1995). The inset shows the window function
of these single-site observations. (From Bedding & Kjeldsen 1995.)

and δν0, which were in reasonable agreement with expectations based on evolution models
of the star. It should be noted, however, that Brown et al. (1997) failed to find oscillations
in this star in Doppler velocity, with an upper limit which they estimated to be well below
the amplitudes claimed by Kjeldsen et al.; thus the reality of these oscillations remains
somewhat questionable.

Figure 2.19: Observed power spectrum of Procyon, based on radial-velocity
observations. (From Barban et al. 1999.)

A promising case is Procyon (α CMi) where Brown et al. (1991) reported oscillations
in radial velocity with approximately the expected dependence on frequency. This early
detection has recently been confirmed by Martić et al. (1999), again using radial-velocity
observations; a power spectrum of these observations is shown in Figure 2.19. A careful
analysis by Barban et al. (1999), comparing the observed spectra with simulated data for
models of Procyon, led to a determination of the large separation ∆ν ' 56µHz, in good
agreement with model predictions. Interestingly, the observed amplitude was only about
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1/3 of the predictions, confirming the inference from M67 that the theoretical estimates
provide an overestimate; it should be noted that both Procyon and the stars observed in
M67 are somewhat hotter than the Sun.

Figure 2.20: Power spectrum of β Hydri, from radial-velocity observations by
Bedding et al. (2001). The white line marks the noise level.

Detection of a power enhancement at the expected frequency was recently reported by
Bedding et al. (2001) from radial-velocity observations of the star β Hyi. This is a subgiant
with approximately the same effective temperature as the Sun, while the luminosity is
higher by a factor of around 3.5. The resulting power spectrum is shown in Figure 2.20;
there is a very clearly defined enhancement of power around 1 mHz, far exceeding the noise
level. This is perhaps the first incontrovertible detection of solar-like oscillations in another
star; the amplitude is approximately consistent with theoretical expectations.

A star of particularly great interest is α Cen A: it is quite similar to the Sun and, being
member of a nearby well-studied binary system, its parameters are known quite precisely.
Detailed modelling of the α Cen system has been carried out by Guenther & Demarque
(2000) and Morel et al. (2000). Kjeldsen et al. (1999) carried out extensive observations of
line-intensity variations in α Cen A; although hints of oscillations were found, they were
only able definitely to determine an upper limit to the oscillations, consistent with expecta-
tions. Very encouraging results have been obtained using the star tracker on the otherwise
failed WIRE satellite (see Buzasi 2000). Schou & Buzasi (2001) obtained a convincing de-
tection of oscillations in continuum intensity, with a maximum amplitude of around 6 ppm,
roughly consistent with theoretical expectations and a large separation of 106µHz, again
largely consistent with model predictions. Definite Doppler-velocity observations, with a
remarkable signal-to-noise ratio, were obtained by Bouchy & Carrier (2001) with the Swiss
CORALIE instrument5 on La Silla. The resulting power spectrum, shown in Figure 2.21,
has a power distribution similar to what is observed in the Sun, although shifted to slightly
lower frequency. A substantial number of modes have been identified in the spectrum, al-
though at the time of writing these have not yet been definitely identified. As in the other
cases a serious difficulty with the analysis is the fact that the observations shown in Figure
2.21 are from a single site; however, simultaneous observations from the Anglo-Australian
Telescope in Australia are currently being analyzed and will likely help substantially in
reducing the sidebands in the spectrum. These results show the power of modern carefully
stabilized spectrographs for this type of observations. Even more dramatic results can be

5developed to search for extra-solar planets by measuring the resulting radial velocity of the central
stars
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Figure 2.21: Power spectrum of oscillations of α Cen A, from radial-velocity
observations with the CORALIE spectrograph. (From Bouchy & Carrier
2001.)

expected when the HARPS instrument starts operations on the ESO 3.6-m telescope on La
Silla.

As mentioned above, solar-like oscillations of relatively large amplitude may be expected
in red giants. Strong evidence has been found for solar-like oscillations in the star Arcturus
(e.g. Smith, McMillan & Merline 1987; Innis et al. 1988; Merline 1998), including indica-
tions of a frequency pattern in accordance with the dominant behaviour of equation (2.32).
Also, Edmonds & Gilliland (1996) found variations in K giants in the globular cluster 47
Tuc which were apparently consistent with solar-like pulsations. Based on observations
with the WIRE star tracker Buzasi et al. (2000) claimed detection of solar-like oscillations
in α Ursa Majoris A, a giant of spectral type K0 III, with an estimated mass, from mem-
bership of a binary system, of around 5M�. Guenther et al. (2000) analyzed the evolution
and oscillation frequencies of this star. They noted that, as a result of the late evolutionary
state of the star, the spectra for l > 0 were completely dominated by modes behaving like
g modes, leading to very dense frequency spectra; thus the only modes that could real-
istically be identified were the radial modes, which are purely acoustic. Comparing with
the observed frequencies, they obtained a tentative identification of some of the modes,
although they noted that this was not yet unique. Dziembowski et al. (2001) carried out a
more careful analysis of the possible causes of oscillations of α UMa A and concluded that
the observed properties of the amplitudes were unlikely to be consistent with solar-like,
stochastic excitation. Thus the current results on α UMa should perhaps be regarded with
some caution.

Even so, red giants remain promising targets for asteroseismology. Frandsen et al.
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Figure 2.22: Power spectra of 5 stars showing solar-like oscillations, compared
with solar data from the GOLF instrument. The power scale is arbitrary.
(Figure kindly provided by Hans Kjeldsen.)
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(2002) obtained clear evidence for solar-like oscillations in ξ Hydrae, using the CORALIE
instrument. This star is in the shell hydrogen-burning, or perhaps more likely in the core
helium-burning, stage (see also Teixeira et al. 2003). With a radius of 10R� and a mass of
3M�, the maximum power is at periods of around 3 – 4 hours; but the power distribution
is otherwise quite similar to the solar case.

An overview of some of the stars for which solar-like oscillations have been observed is
provided by Figure 2.22, based largely on data obtained by the Aarhus and Sydney groups.
Here solar data from the GOLF instrument are included, analyzed over a period of 55 hours,
to provide a frequency resolution corresponding approximately to the data for α Cen A.
The similarity of the power distributions, over a large range in stellar parameters and hence
frequencies, is obvious.

For red supergiants the relevant periods are of order weeks or months, and hence decades
of observations are required to resolve the oscillations and study their properties. Fortu-
nately, very extensive sets of data are available from amateur observations, spanning in
some cases a century. Although the precision of these mostly visual estimates is not as
high as for professional observations, the large amplitudes of the variability allow reliable
analysis of the oscillations; also the very extensive base of observations makes it possible to
study the statistical properties of the variability. In a very interesting analysis, Mattei et
al. (1997) related the variability in the oscillation amplitudes to the amplitudes. This iso-
lated the semi-regular variables as a clearly defined class, with a strong correlation between
variability and amplitude. Christensen-Dalsgaard, Kjeldsen & Mattei (2001) argued that
this relation corresponded closely to what would result from stochastically excited oscilla-
tions where the amplitudes have an exponential distribution, as has indeed been verified
for the Sun (e.g. Kumar, Franklin & Goldreich 1988; Chaplin et al. 1997; Chang & Gough
1998; see also Section 10.3). Also, Bedding (2003) analyzed several examples of long-period
variables, obtaining oscillation spectra reminiscent of solar-like oscillations. If confirmed
by more detailed analyses, such studies would provide extensive data on the excitation of
solar-like oscillations over a very broad range of stellar parameters.

The increasing observational basis for the study of solar-like oscillations in other stars
evidently promises extremely valuable information about the interior properties of these
stars and hence tests of the theory of stellar structure and evolution. In addition, the results
provide information about the excitation mechanisms responsible for the oscillations. From
the unexpectedly low amplitude found in Procyon, and the low upper limit to detections in
M67, it is already clear that the scaling in equation (2.44) predicts too high amplitudes for
stars hotter than the Sun. Interestingly, the amplitudes observed so far appear rather to
be consistent with a scaling with g−1

s (evidently, for stars with effective temperature close
to the that of Sun such as η Boo, α Cen A or β Hyi, the two scalings are equivalent). The
physical reason for this behaviour is so far not understood.

2.4.2 Observations of δ Scuti oscillations

The δ Scuti stars fall in an extension of the Cepheid instability strip, close to the main
sequence. They typically have masses around 2 − 2.5M� and are either near or just after
the end of core hydrogen burning. Although they have been recognized as a separate class
of pulsating stars since the work of Eggen (1957ab), only within the last decade have the
details of their spectra of pulsations become clear. The fact that these stars typically
have periods of the order of one hour presents a considerable difficulty: observations from
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Figure 2.23: Schematic oscillation spectra of a number of δ Scuti stars.

a single site will lead to a great deal of confusion from the side-bands (cf. Section 2.2.3),
complicating the determination of the oscillation frequencies. However, thanks to a number
of observing campaigns involving two or more observatories extensive data for a number of
stars have become available (e.g. Michel & Baglin 1991; Michel et al. 1992; for reviews,
see Breger 1995ab). A detailed discussion of many aspects of the study of δ Scuti stars was
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provided in the volume edited by Breger & Montgomery (2000).
The most extensive observations of δ Scuti stars have been photometric, although the

oscillations have also been observed spectroscopically. Recent multi-site campaigns have
resulted in the determination of very substantial sets of frequencies in some cases (e.g.
Breger et al. 1998, 1999; Handler et al. 2000). Schematic spectra of several stars are
shown in Figure 2.23. The observed frequency range corresponds to low-order acoustic
modes. However, the distributions of modes excited to observable frequencies are evidently
strikingly different: in some cases only modes in a narrow frequency band are found, whereas
in other cases the observed modes extend quite widely in frequency. So far, no obvious
correlation between the frequency distribution and other parameters of the stars has been
found.

From a comparison with computed oscillation spectra (see Section 5.3.2) it is clear that
only a subset of the possible modes of oscillation are excited to observable amplitudes in
these stars. However, the reasons for the mode selection is currently unclear. This greatly
complicates the mode identification. A further complication comes from the fact that the
basic parameters of these stars, such as their mass and radius, are in most cases known with
poor accuracy. On the other hand, the δ Scuti stars have the potential for providing very
valuable information about stellar evolution: unlike the Sun, these stars have convective
cores, and hence the frequency observations may give information about the properties of
such cores, including the otherwise highly uncertain degree of overshoot from the cores.
Therefore, a great deal of effort is going into further observations of δ Scuti stars as well
as in calculations to elucidate the diagnostic potential of the observations and analyze the
existing data. Particularly promising are observations of δ Scuti stars in open clusters.
With CCD photometry it is possible to study several variable stars in such a cluster at
once, and furthermore “classical” observations of the cluster can be used to constrain the
parameters of the stars, such as their distance, age and chemical composition (e.g. Breger
et al. 1993ab; Hernández et al. 1998).

2.4.3 Subdwarf B variables

This group of stars6 was identified as pulsating in parallel theoretical (Charpinet et al. 1996)
and observational (Kilkenny et al. 1997; Billères et al. 1997) investigations. It consists of
hot so-called horizontal-branch stars, in the phase of core helium burning, following ignition
in a helium flash at the tip of the red-giant branch. Their location at the blue end of the
horizontal branch, with effective temperature around 35 000 K, is a result of their having
lost most of the original hydrogen envelope. For a recent review, see O’Donoghue et al.
(1999).

Since their discovery, around 20 members of this group have been detected. The os-
cillations are excited through the opacity mechanism operating in the opacity bump com-
ing from iron-group elements, likely enhanced by radiatively driven levitation and settling
(Charpinet et al. 1997). They are characterized by rich spectra of oscillation frequencies,
potentially allowing detailed investigations in this late and relatively poorly understood
phase of evolution.

Most observations of these stars have been carried out in broad-band photometry. How-
ever, recently two groups have succeeded in measuring oscillations in radial velocity. Such

6Also known as EC 14026 stars, after the first member of the class to be discovered.
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observations are potentially very important in providing information about the identifica-
tion (i.e., the degree and possibly azimuthal order) of the modes. O’Toole et al. (2000)
observed the star PG 1605+072 and found clear evidence of oscillations in three modes
(or groups of modes) in the Balmer lines of hydrogen. The frequencies agreed with those
obtained through photometry, with substantially higher frequency resolution, from a multi-
site campaign by Kilkenny et al. (1999). Interestingly, O’Toole et al. found that for a given
mode the radial-velocity amplitudes decreased with increasing order in the Balmer series
(i.e., decreasing wavelength). This presumably reflects aspects, so far not understood, of
the behaviour of the oscillations in the stellar atmosphere. Jeffery & Pollacco (2000) ob-
served the stars KPD 2109+4401 and PB 8783; in the latter case, five or six modes were
identified, again agreeing in frequency with modes observed in photometry; the photometric
observations show strong evidence for rotational splitting of most of these modes, indicat-
ing that they are nonradial. Further spectroscopic observations, with longer time basis, are
required to resolve the modes and obtain more precise information about the amplitude
and phase relations, for use in the mode identification. Additional information can also be
expected from other properties of the spectral lines; an important example is observation
of oscillations in equivalent widths.

The rich spectra of oscillation frequencies potentially strongly constrain the properties of
the stars, provided the observed frequencies can be identified with modes of stellar models.
Even without further observational information about the degrees of the modes, this may
be possible through fits of the frequencies to those of models of varying parameters. A very
interesting example was provided by the analysis by Brassard et al. (2001) of observations
of PG 0014+067. Identification of the modes led to stringent constraints on the parameters
of the star, including the mass Menv of the outer hydrogen-rich layer, which was determined
as logMenv/M = −4.31 ± 0.22. Also, the surface gravity was obtained with a precision of
around 2 per cent. Interestingly, the remaining residuals between the observed and fitted
frequencies were substantially larger than the observational errors, indicating errors in the
model calculations; one might hope that further analysis of these residuals may indicate
how the models should be improved, beyond the assumptions of the original calculation.

2.4.4 Pulsating white dwarfs

The first observations of oscillations in white dwarfs were made in 1970 – 1975 (McGraw
& Robinson 1976). The initial results were obtained for so-called DA white dwarfs, char-
acterized by the presence of hydrogen in their spectra, with effective temperatures around
10 000 K. Since then, additional groups of pulsating white dwarfs have been detected, each
characterized by a fairly sharply defined instability region. These regions are indicated
schematically in the HR diagram in Figure 2.17; they include planetary-nebula nuclei vari-
ables (‘PNNV’) which are in a stage of rapid evolution.

The typical periods of pulsating white dwarfs are in the range 3 – 10 mins. This is far
longer than the dynamical timescales tdyn for these stars [cf. equation (1.1)] which are of
the order of seconds. In fact, the observed modes are identified with the so-called g modes,
i.e., standing gravity waves. As discussed in Chapter 5, such modes may have arbitrarily
long periods. As for the δ Scuti stars, it is characteristic that not all the possible modes
in a given frequency range are observed; the mode selection is apparently related to the
possibility of trapping of modes in regions of chemical inhomogeneity, although the precise
mechanism is so far not understood.
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Figure 2.24: Power spectrum of the DB variable GD358, obtained with the
Whole Earth Telescope. Numbers with arrows represent multiplet identifi-
cations. As discussed in Section 2.2.5, nonlinear effects give rise to linear
combinations of the basic frequencies (see also Appendix C, Problem 1.4);
these are indicated in the figure as, e.g., ‘(15+18)’ or ‘2(17)’. (From Winget
et al. 1994.)

The oscillations have been observed photometrically. As in other cases the complications
associated with gaps in the data from a single site have led to collaborative efforts to
obtain continuous data through the combined efforts of several observatories. This has
been organized in the very ambitious Whole Earth Telescope (WET) project, where more
than ten observatories have been involved in campaigns to observe a single star over 1 –
2 weeks (for overviews, see Winget 1993; Kawaler 1995). This has led to some of the the
most detailed pulsation spectra for stars other than the Sun. As an example, Figure 2.24
shows the spectrum obtained for a DB variable.

The analysis of the observed frequencies is providing a great deal of information about
the white dwarfs, such as accurate determination of white-dwarf masses and rotation rates
(e.g. Bradley & Winget 1994). Metcalfe, Winget & Charbonneau (2001) made a detailed
analysis of the frequencies of GD358, resulting amongst other parameters in a determination
of the mass fraction of oxygen in the core of the white dwarf; they noted that, when
combined with evolution models of the preceding phases of evolution, this constrains the
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rate of alpha-particle capture in carbon twelve. Perhaps the most interesting result is
the measurement of period changes in white dwarfs, caused by the evolution of the stars
along the white-dwarf cooling sequence (e.g. Winget et al. 1985; Kepler et al. 1991).
In early stages of the evolution towards the white-dwarf phase the cooling is dominated
by neutrino emission from the core of the stars; thus the observations promises to yield
information about physical processes involving electrons and neutrinos which cannot be
studied experimentally (e.g. O’Brien et al. 1998; Costa, Kepler & Winget 1999; O’Brien
& Kawaler 2000). Measurements of period changes of cooler white dwars, in particular
the DA variables, may provide a test of the crystallization of matter in the stellar interiors
and yield constraints on the overall cooling timescale of white dwarfs (e.g. Winget et al.
1997). This is crucial for estimates of the age of the Galaxy from the observed distribution
in luminosity of white dwarfs (e.g. Wood 1992).
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Chapter 3

A little hydrodynamics

To provide a background for the presentation of the theory of stellar oscillations, this
chapter briefly discusses some basic principles of hydrodynamics. A slightly more detailed
description, but still essentially without derivations, was given by Cox (1980). In addition,
any of the many detailed books on hydrodynamics (e.g. Batchelor 1967; Landau & Lifshitz
1959) can be consulted. Ledoux & Walraven (1958) give a very comprehensive introduction
to hydrodynamics, with special emphasis on the application to stellar oscillations.

3.1 Basic equations of hydrodynamics

It is assumed that the gas can be treated as a continuum, so that its properties can be
specified as functions of position r and time t. These properties include the local density
ρ(r, t), the local pressure p(r, t) (and any other thermodynamic quantities that may be
needed), as well as the local instantaneous velocity v(r, t). Here r denotes the position
vector to a given point in space, and the description therefore corresponds to what is seen
by a stationary observer. This is known as the Eulerian description. In addition, it is often
convenient to use the Lagrangian description, which is that of an observer who follows the
motion of the gas. Here a given element of gas can be labelled, e.g. by its initial position r0,
and its motion is specified by giving its position r(t, r0) as a function of time. Its velocity

v(r, t) =
dr

dt
at fixed r0 (3.1)

is equivalent to the Eulerian velocity mentioned above.
The time derivative of a quantity φ, observed when following the motion is

dφ

dt
=

(
∂φ

∂t

)

r
+∇φ · dr

dt
=
∂φ

∂t
+ v · ∇φ . (3.2)

The time derivative d/dt following the motion is also known as the material time derivative;
in contrast ∂/∂t is the local time derivative (i.e., the time derivative at a fixed point).

The properties of the gas are expressed as scalar and vector fields. Thus we need a little
vector algebra; convenient summaries can be found, e.g. in books on electromagnetism (such

43
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as Jackson 1975; Reitz, Milford & Christy 1979). I shall assume the rules for manipulating
gradients and divergences to be known. In addition, we need Gauss’s theorem:

∫

∂V
a · n dA =

∫

V
div a dV , (3.3)

where V is a volume, with surface ∂V , n is the outward directed normal to ∂V , and a is
any vector field. From this one also obtains

∫

∂V
φn dA =

∫

V
∇φdV (3.4)

for any scalar field φ.

3.1.1 The equation of continuity

The fact that mass is conserved can be expressed as

∂ρ

∂t
+ div (ρv) = 0 , (3.5)

where ρ is density. This is a typical conservation equation, balancing the rate of change of
a quantity in a volume with the flux of the quantity into the volume. Had there been any
sources of mass, they would have appeared on the right-hand side. By using the relation
(3.2), equation (3.5) may also be written

dρ

dt
+ ρdiv v = 0 , (3.6)

giving the rate of change of density following the motion. Note that ρ = 1/V , where V is
the volume of unit mass; thus an alternative formulation is

1

V

dV

dt
= div v . (3.7)

Hence div v is the rate of expansion of a given volume of gas, when following the motion.

3.1.2 Equations of motion

Under solar or stellar conditions one can generally ignore the internal friction (or viscosity)
in the gas. The forces on a volume of gas therefore consist of

i) Surface forces, i.e., the pressure on the surface of the volume

ii) Body forces.

Thus the equations of motion can be written

ρ
dv

dt
= −∇p+ ρ f , (3.8)

where f is the body force per unit mass which has yet to be specified. The pressure p is
defined such that the force on a surface element dA with outward normal n is −pn dA.
This may be identified with the ordinary thermodynamic pressure.
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By using equation (3.2), we may also write equation (3.8) as

ρ
∂ v

∂t
+ ρv · ∇v = −∇p+ ρ f . (3.9)

Among the possible body forces I consider only gravity. Thus in particular I neglect
effects of magnetic fields, which might otherwise provide a body force on the gas. The force
per unit mass from gravity is the gravitational acceleration g, which can be written as the
gradient of the gravitational potential Φ:

g = −∇Φ , (3.10)

where Φ satisfies Poisson’s equation

∇2Φ = 4πGρ . (3.11)

It is often convenient to use also the integral solution to Poisson’s equation

Φ (r, t) = −G
∫

V

ρ(r′, t)dV
|r− r′| . (3.12)

3.1.3 Energy equation

To complete the equations we need a relation between p and ρ. This must take the form of
a thermodynamic relation. Specifically the first law of thermodynamics,

dq

dt
=

dE

dt
+ p

dV

dt
, (3.13)

must be satisfied; here dq/dt is the rate of heat loss or gain, and E the internal energy, per
unit mass. As before V = 1/ρ is specific volume. Thus equation (3.13) expresses the fact
that the heat gain goes partly to change the internal energy, partly into work expanding
or compressing the gas. Alternative formulations of equation (3.13), using the equation of
continuity, are

dq

dt
=

dE

dt
− p

ρ2

dρ

dt
=

dE

dt
+
p

ρ
div v . (3.14)

By using thermodynamic identities the energy equation can be expressed in terms of other,
and more convenient, variables.

dq

dt
=

1

ρ(Γ3 − 1)

(
dp

dt
− Γ1p

ρ

dρ

dt

)
(3.15)

= cp

(
dT

dt
− Γ2 − 1

Γ2

T

p

dp

dt

)
(3.16)

= cV

[
dT

dt
− (Γ3 − 1)

T

ρ

dρ

dt

]
. (3.17)

Here cp and cV are the specific heat per unit mass at constant pressure and volume, and
the adiabatic exponents are defined by

Γ1 =

(
∂ ln p

∂ ln ρ

)

ad

,
Γ2 − 1

Γ2
=

(
∂ lnT

∂ ln p

)

ad

, Γ3 − 1 =

(
∂ lnT

∂ ln ρ

)

ad

. (3.18)
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These relations are discussed in more detail in, e.g., Cox & Giuli (1968).
It is evident that the relation between p, ρ and T , as well as the Γi’s, depend on the

thermodynamic state and composition of the gas. Indeed, as will be discussed below, the
dependence of Γ1 on the properties of the gas forms the basis for using observed solar
oscillation frequencies to probe the details of the statistical mechanics of partially ionized
gases and to infer the helium abundance of the solar convective envelope. However, in many
cases one may as a first approximation regard the gas as fully ionized and neglect effects of
degeneracy and radiation pressure. Then the equation of state is simply

p =
kBρT

µmu
, (3.19)

where kB is Boltzmann’s constant, mu is the atomic mass unit and µ is the mean molecular
weight. Also

Γ1 = Γ2 = Γ3 = 5/3 . (3.20)

I note that radiation pressure decreases Γ1 below this value; this effect becomes noticeable
in stars whose mass exceeds a few solar masses. Thus Otzen Petersen (1975) showed that
radiation pressure caused a systematic increase of the pulsation constant (cf. eq. 2.20) with
increasing luminosity along the Cepheid instability strip.

We need to consider the heat gain in more detail. Specifically, it can be written as

ρ
dq

dt
= ρ ε− div F ; (3.21)

here ε is the rate of energy generation per unit mass (e.g. from nuclear reactions), and F
is the flux of energy. In general, radiation is the only significant contributor to the energy
flux; in particular, molecular conduction is almost always negligible.

In convection zones turbulent gas motion provides a very efficient transport of energy.
Ideally the entire hydrodynamical system, including convection, must be described as a
whole. In this case only the radiative flux would be included in equation (3.21). However,
under most circumstances the resulting equations are too complex to be handled analytically
or numerically. Thus it is customary to separate out the convective motion, by performing
averages of the equations over length scales that are large compared with the convective
motion, but small compared with other scales of interest. In this case the convective flux
appears as an additional contribution in equation (3.21). The convective flux must then
be determined, from the other quantities characterizing the system, by considering the
equations for the turbulent motion. A familiar example of this (which is also characteristic
of the lack of sophistication in current treatments of convection) is the mixing-length theory.

The incorporation of convection in the hydrodynamical equations was discussed in some
detail by Unno et al. (1989). However, it is fair to say that this is currently one of the
principal uncertainties in stellar hydrodynamics.

The general calculation of the radiative flux is also non-trivial. In stellar atmospheres
the full radiative transfer problem, as known from the theory of the structure of stellar
atmospheres, must be solved in combination with the hydrodynamic equations. This is
another active area of research, and the subject of a major monograph (Mihalas & Mihalas
1984). In stellar interiors the diffusion approximation is adequate, and the radiative flux is
given by

F = − 4π

3κρ
∇B = − 4ac̃T 3

3κρ
∇T , (3.22)
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where B = (ac̃/4π)T 4 is the integrated Planck function, κ is the opacity, c̃ is the speed of
light and a is the radiation density constant; this provides a relation between the state of
the gas and the radiative flux, which is analogous to a simple conduction equation.

When the mean free path of a photon is very large, one can neglect the contribution
from absorption to the heating of the gas. Then we have that

div F = 4πρκaB , (3.23)

where κa is the opacity arising from absorption; this is the so-called Newton’s law of cooling.
Finally, one can generalize the Eddington approximation, which may be known from the
theory of static stellar atmospheres, to the three-dimensional case (see Unno & Spiegel
1966), to obtain

div F = −4πρκa(J −B) , (3.24)

F = − 4π

3(κa + κs)ρ
∇J , (3.25)

where κs is the scattering opacity and J is the mean intensity. As shown by Unno &
Spiegel the Eddington approximation tends to the diffusion approximation when κaρ→∞.
Furthermore, it has the correct limit in the optically thin case.

Here I have implicitly assumed that the scattering and absorption coefficients are inde-
pendent of the frequency of radiation. In the diffusion approximation, the generalization
to frequency-dependence leads to the introduction of the Rosseland mean opacity. In the
optically thin case, one must in general take into account the details of the distribution of
intensity with frequency; thus, in equations (3.23) – (3.25) the absorption and scattering co-
efficients must be thought of as suitable averages, whereas F and J are frequency-integrated
quantities.

3.1.4 The adiabatic approximation

For the purpose of calculating stellar oscillation frequencies, the complications of the energy
equation can be avoided to a high degree of precision, by neglecting the heating term in
the energy equation. To see that this is justified, consider the energy equation on the form,
using equation (3.22)

dT

dt
− Γ2 − 1

Γ2

T

p

dp

dt
=

1

cp

[
ε+

1

ρ
div

(
4ac̃T 3

3κρ
∇T

)]
. (3.26)

Here the term in the temperature gradient can be estimated as

1

ρcp
div

(
4ac̃T 3

3κρ
∇T

)
∼ 4ac̃T 4

3κρ2cpL2
=

T

τF
, (3.27)

where L is a characteristic length scale, and τF is a characteristic time scale for radiation,

τF =
3κρ2cpL2

4ac̃T 3
' 1012κρ

2L2

T 3
, in cgs units . (3.28)

Typical values for the entire Sun are κ = 1, ρ = 1, T = 106, L = 1010, and hence τF ∼ 107

years. This corresponds to the Kelvin-Helmholtz time for the star. For the solar convection
zone the corresponding values are κ = 100, ρ = 10−5, T = 104, L = 109, and hence
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τF ∼ 103 years. In the outer parts of the star the term in ε vanishes, whereas in the
core it corresponds to a characteristic time τε ∼ cpT/ε which is again of the order of the
Kelvin-Helmholtz time. T/τF or T/τε must be compared with the time derivative of T in
equation (3.26), which can be estimated as T/(period of oscillation). Typical periods are
of the order of minutes to hours, and hence the heating term in equation (3.26) is generally
very small compared with the time-derivative terms. Near the surface, on the other hand,
the density, and hence the radiative time scale, is low, and the full energy equation must
be taken into account.

Where the heating can be neglected, the motion occurs adiabatically. Then p and ρ are
related by

dp

dt
=

Γ1p

ρ

dρ

dt
. (3.29)

This equation, together with the continuity equation (3.5), the equations of motion (3.9)
and Poisson’s equation (3.11), form the complete set of equations for adiabatic motion.
Most of our subsequent work is based on these equations.

3.2 Equilibrium states and perturbation analysis

A general hydrodynamical description of a star, using the equations presented in the preced-
ing section, is far too complex to handle, even numerically on the largest existing computers.
To put this in perspective, it may be mentioned that Å. Nordlund and R. Stein (e.g. Nord-
lund & Stein 1989; Stein, Nordlund & Kuhn 1989), by stretching the capabilities of existing
computers to the limits, have been able to follow numerically the development of a very
small region near the solar surface for a few hours. Even though this is a tremendous
achievement, which will be of great value to our understanding of solar convection and
solar oscillations, it clearly demonstrates the impracticality of a direct numerical solution
for, say, general oscillations involving the entire Sun. Furthermore, even to the extent that
such a solution were possible, the results would in general be so complicated that a simpli-
fied analysis is needed to understand them. Fortunately, in the case of stellar oscillations,
considerable simplifications are possible. The observed solar oscillations have very small
amplitudes compared with the characteristic scales of the Sun, and so it can be treated
as a small perturbation around a static equilibrium state. Even in “classical” pulsating
stars, where the surface amplitudes are large, most of the energy in the motion is in regions
where the amplitudes are relatively small; thus many of the properties of these oscillations,
including their periods, can be understood in terms of small-perturbation theory. In this
section I discuss the general equations for such small perturbations.

3.2.1 The equilibrium structure

The equilibrium structure is assumed to be static, so that all time derivatives can be ne-
glected. In addition, I assume that there are no velocities. Then the continuity equation,
(3.5), is trivially satisfied. The equations of motion (3.9) reduce to the equation of hydro-
static support,

∇ p0 = ρ0g0 = −ρ0∇Φ0 , (3.30)

where I have denoted equilibrium quantities with the subscript “0”. Poisson’s equation
(3.11) is unchanged,

∇2Φ0 = 4πGρ0 . (3.31)
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Finally the energy equation (3.21) is

0 =
dq

dt
= ε0 −

1

ρ0
div F0 . (3.32)

It might be noted that one often considers equilibrium structures that change on long
time scales. Here hydrostatic equilibrium is enforced (departures from hydrostatic equi-
librium result in motion on essentially the free-fall time scale for the star, of the order of
hours). However, it is not assumed that there is no heating, so that the general energy
equation (3.21) is used. Such a star is said to be in hydrostatic, but not in thermal, equilib-
rium. Typical examples are stars where nuclear burning does not supply the main source
of energy, as during the pre-main-sequence contraction, or after hydrogen exhaustion in
the core. Even during normal main sequence evolution the heating term provides a small
contribution to the energy, which is normally taken into account in calculations of stellar
evolution. However, we need not consider this further here.

For the present purpose the most important example of equilibrium is clearly a spher-
ically symmetric state, where the structure depends only on the distance r to the centre.
Here g0 = −g0ar, where ar is a unit vector directed radially outward, and equation (3.30)
becomes

dp0

dr
= −g0ρ0 . (3.33)

Also, Poisson’s equation may be integrated once, to yield

g0 =
G

r2

∫ r

0
4πρ0r

′2 dr′ =
Gm0

r2
, (3.34)

where m0(r) is the mass in the sphere interior to r. The flux is directed radially outward,
F = Fr,0ar, so that the energy equation gives

ρ0ε0 =
1

r2

d

dr

(
r2 Fr,0

)
=

1

4πr2

dL0

dr
,

where L0 = 4πr2 Fr,0 is the total flow of energy through the sphere with radius r; hence

dL0

dr
= 4πr2ρ0ε0 . (3.35)

Finally the diffusion expression (3.22) for the flux may be written

dT0

dr
= − 3κ0ρ0

16πr2ac̃T 3
0

L0 . (3.36)

Equations (3.33) – (3.36) are clearly the familiar equations for stellar structure.

3.2.2 Perturbation analysis

We consider small perturbations around the equilibrium state. Thus, e.g., the pressure is
written as

p(r, t) = p0(r) + p′(r, t) , (3.37)

where p′ is a small perturbation; this is the so-called Eulerian perturbation, i.e., the per-
turbation at a given point. The equations are then linearized in the perturbations, by
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expanding them in the perturbations retaining only terms that do not contain products of
the perturbations.

Just as in the general case it is convenient to use also a description involving a refer-
ence frame following the motion; the perturbation in this frame is called the Lagrangian
perturbation. If an element of gas is moved from r0 to r0 + δδδr due to the perturbation, the
Lagrangian perturbation to pressure may be calculated as

δp(r) = p(r0 + δδδr)− p0(r0) = p(r0) + δδδr · ∇p0 − p0(r0)

= p′(r0) + δδδr · ∇p0 . (3.38)

Equation (3.38) is of course completely equivalent to the relation (3.2) between the local
and the material time derivative. Note also that the velocity is given by the time derivative
of the displacement δδδr,

v =
∂δδδr

∂t
. (3.39)

Equations for the perturbations are obtained by inserting expressions like (3.37) in the
full equations, subtracting equilibrium equations and neglecting quantities of order higher
than one in p′, ρ′, v, etc. For the continuity equation the result is

∂ρ′

∂t
+ div (ρ0v) = 0 , (3.40)

or, by using equation (3.39) and integrating with respect to time

ρ′ + div (ρ0δδδr) = 0 . (3.41)

Note that this equation may also, by using the analogue to equation (3.38), be written as

δρ+ ρ0div (δδδr) = 0 , (3.42)

which corresponds to equation (3.6).
The equations of motion become

ρ0
∂2δδδr

∂t2
= ρ0

∂v

∂t
= −∇p′ + ρ0g

′ + ρ′g0 , (3.43)

where, obviously, g′ = −∇Φ′. Also, the perturbation Φ′ in the gravitational potential
satisfies the perturbed Poisson’s equation

∇2Φ′ = 4πGρ′ , (3.44)

with the solution, equivalent to equation (3.12)

Φ′ = −G
∫

V

ρ′(r′, t)
|r− r′| dV . (3.45)

The energy equation requires a little thought. We need to calculate, e.g.,

dp

dt
=
∂p

∂t
+ v · ∇p =

∂p′

∂t
+ v · ∇p0 =

∂p′

∂t
+
∂δδδr

∂t
· ∇p0 =

∂

∂t
(δp) , (3.46)
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to first order in the perturbations. Note that to this order there is no difference between
the local and the material time derivative of the perturbations. Thus we have for the energy
equation, from e.g. equation (3.15),

∂δq

∂t
=

1

ρ0(Γ3,0 − 1)

(
∂δp

∂t
− Γ1,0p0

ρ0

∂δρ

∂t

)
. (3.47)

This equation is most simply expressed in Lagrangian perturbations, but it may be trans-
formed into Eulerian perturbations by using equation (3.38). From equation (3.21) the
perturbation to the heating rate is given by

ρ0
∂δq

∂t
= δ(ρε− div F) = (ρε− div F)′ , (3.48)

if equation (3.32) is used. Finally it is straightforward to obtain the perturbation to the
radiative flux, in the diffusion approximation, from equation (3.22).

For adiabatic motion we neglect the heating term and obtain

∂δp

∂t
− Γ1,0p0

ρ0

∂δρ

∂t
= 0 ,

or, by integrating over time

δp =
Γ1,0p0

ρ0
δρ , (3.49)

or, on Eulerian form

p′ + δδδr · ∇p0 =
Γ1,0p0

ρ0
(ρ′ + δδδr · ∇ρ0) . (3.50)

3.3 Simple waves

It is instructive to consider simple examples of wave motion. This provides an introduction
to the techniques needed to handle the perturbations. In addition, general stellar oscillations
can in many cases be approximated by simple waves, which therefore give physical insight
into the behaviour of the oscillations.

3.3.1 Acoustic waves

As the simplest possible equilibrium situation, we may consider the spatially homogeneous
case. Here all derivatives of equilibrium quantities vanish. According to equation (3.30)
gravity must then be negligible. Such a situation clearly cannot be realized exactly. How-
ever, if the equilibrium structure varies slowly compared with the oscillations, this may
be a reasonable approximation. I also neglect the perturbation to the gravitational poten-
tial; for rapidly varying perturbations regions with positive and negative ρ′ nearly cancel
in equation (3.45), and hence Φ′ is small. Finally, I assume the adiabatic approximation
(3.49).

The equations of motion (3.43) give

ρ0
∂2δδδr

∂t2
= −∇p′ ,
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or, by taking the divergence

ρ0
∂2

∂t2
(div δδδr) = −∇2p′ .

However, div δδδr can be eliminated by using the continuity equation (3.41), and p′ can be
expressed in terms of ρ′ from the adiabatic relation. The result is

∂2ρ′

∂t2
=

Γ1,0p0

ρ0
∇2ρ′ = c2

0∇2ρ′ , (3.51)

where

c2
0 ≡

Γ1,0p0

ρ0
(3.52)

has the dimension of a squared velocity. This equation has the form of the wave equation.
Thus it has solutions in the form of plane waves

ρ′ = a exp[i(k · r− ω t)] . (3.53)

(As discussed in more detail in Chapter 4 it is convenient to write the solution in complex
form; the physically realistic solution is obtained by taking the real part of the complex
solution.) By substituting equation (3.53) into (3.51) we obtain

−ω2ρ′ = c2
0 div (ikρ′) = −c2

0|k|2ρ′ . (3.54)

Thus this is a solution, provided ω satisfies the dispersion relation

ω2 = c2
0 |k|2 . (3.55)

The waves are plane sound waves, and equation (3.55) is the dispersion relation for such
waves. The adiabatic sound speed c0 is the speed of propagation of the waves. I note that
when the ideal gas law, equation (3.19), is satisfied, the sound speed is given by

c2
0 =

Γ1,0kBT0

µmu
. (3.56)

Thus c0 is essentially determined by T0/µ.
With a suitable choice of phases the real solution can be written as

ρ′ = a cos(k · r− ωt) , (3.57)

p′ = c2
0a cos(k · r− ωt) , (3.58)

δδδr =
c2

0

ρ0ω2
a cos(k · r− ωt+

π

2
) k . (3.59)

Thus the displacement δδδr, and hence the velocity v, is in the direction of the wave vector k.

3.3.2 Internal gravity waves

As a slightly more complicated case, we consider a layer of gas stratified under gravity. Thus
here there is a pressure gradient, determined by equation (3.33). However, I assume that
the equilibrium quantities vary so slowly that their gradients can be neglected compared
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with gradients of perturbations. Also, as before, I neglect the perturbation to the gravita-
tional potential. Clearly one solution must be the adiabatic sound waves considered above.
However, here we seek other solutions in the form of waves with much lower frequencies.

It is possible to derive an approximate wave equation under these circumstances (cf.
Section 7.5). However, to simplify the analysis I assume a solution in the form of a plane
wave from the outset. Thus I take all perturbation variables to vary as

exp[i(k · r− ωt)] . (3.60)

Because of the presence of gravity there is a preferred direction in the problem. I choose a
vertical coordinate r directed upward, so that g0 = −g0ar, and

∇p0 =
dp0

dr
ar , ∇ρ0 =

dρ0

dr
ar . (3.61)

Also, I separate the displacement δδδr and the wave vector k into radial and horizontal
components,

δδδr = ξrar + ξξξh , (3.62)

k = krar + kh . (3.63)

The radial and horizontal components of the equations (3.43) are

−ρ0ω
2ξr = −ikrp′ − ρ′g0 , (3.64)

−ρ0ω
2ξξξh = −ikhp

′ , (3.65)

and the continuity equation, (3.41), can be written

ρ′ + ρ0ikrξr + ρ0ikh · ξξξh = 0 . (3.66)

From equations (3.65) and (3.66) we find the pressure perturbation

p′ =
ω2

k2
h

(ρ′ + ikrρ0ξr) . (3.67)

This may be used in equation (3.64), to obtain

−ρ0ω
2ξr = −i kr

k2
h

ω2ρ′ + ω2ρ0
k2
r

k2
h

ξr − ρ′g0 . (3.68)

For very small frequency the first term in ρ′ can be neglected compared with the second,
yielding

ρ0ω
2

(
1 +

k2
r

k2
h

)
ξr = ρ′g0 . (3.69)

Notice that this equation has a fairly simple physical meaning. Buoyancy acting on the den-
sity perturbation provides a vertical force ρ′g0 per unit volume that drives the motion. The
left-hand side gives the vertical acceleration times the mass ρ0 per unit volume; however,
it is modified by the term in the wave numbers. This arises from the pressure perturba-
tion; in order to move vertically, a blob of gas must displace matter horizontally, and this
increases its effective inertia. This effect is stronger the longer the horizontal wavelength of
the perturbation, and hence the smaller its horizontal wave number.
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The adiabatic relation (3.50) gives

ρ′ = c−2
0 p′ + ρ0δδδr ·

(
1

p0Γ1,0
∇p0 −

1

ρ0
∇ρ0

)
. (3.70)

However, we may estimate the importance of the term in p′ by noting that, according to
equation (3.67),

c−2
0 p′

ρ′
' ω2

c2
0k

2
h

. (3.71)

Here the denominator on the right-hand side is the sound-wave frequency corresponding
to the horizontal wave number kh (cf. eq. 3.55); since we are specifically interested in
oscillations with frequencies far smaller than the frequencies of sound waves, this term can
be neglected. Physically, the neglect of the pressure perturbation essentially corresponds to
assuming that the perturbation is always in hydrostatic equilibrium; this might be compared
with the conventional discussion of convective stability in terms of displaced blobs of fluid,
where pressure balance is also assumed. Inserting the expression for ρ′ resulting from
equation (3.70), when p′ is neglected, in equation (3.69) finally yields

ω2

(
1 +

k2
r

k2
h

)
ξr = N2ξr , (3.72)

where

N2 = g0

(
1

Γ1,0

d ln p0

dr
− d ln ρ0

dr

)
(3.73)

is the square of the buoyancy or Brunt-Väisälä frequency N .
The physical significance of N follows from the ‘blob’ argument for convective stability

(e.g. Christensen-Dalsgaard 1993a; see also Cox 1980, Section 17.2): if a fluid element
is displaced upwards adiabatically, its behaviour depends on whether the density of the
element is higher or smaller than its new surroundings. When N 2 > 0 the element is
heavier than the displaced fluid, and buoyancy forces it back towards the original position;
thus in this case the element executes an oscillation around the equilibrium position. On
the other hand, if N2 < 0 the element is lighter than the displaced fluid and buoyancy
acts to enhance the motion, forcing the element away from equilibrium; this corresponds
to convective instability.

From equation (3.72) we obtain the dispersion relation

ω2 =
N2

1 + k2
r/k

2
h

. (3.74)

When N2 > 0 the motion is oscillatory. Then N is the frequency in the limit of infinite
kh, i.e., for infinitely small horizontal wavelength. This corresponds to oscillations of fluid
elements in the form of slender “needles”. For greater horizontal wavelength the horizontal
motion increases the inertia, as discussed above, and hence decreases the frequency. These
waves are known as internal gravity waves (not to be confused with the gravitational waves
in general relativity).

The condition that N 2 > 0 can also be written as

d ln ρ0

d ln p0
>

1

Γ1,0
; (3.75)
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when it is not satisfied, ω is imaginary, and the motion grows exponentially with time. This
is the linear case of convective instability. In general the motion grows until it breaks down
into turbulence due to nonlinear effects. Thus gravity waves cannot propagate in convective
regions. I return to this when discussing the asymptotic theory of stellar oscillations.

The condition (3.75) is the proper criterion for convective stability; it is normally known
as the Ledoux condition. The more usual condition, in terms of p and T , viz

d lnT0

d ln ρ0
< ∇ad =

Γ2,0 − 1

Γ2,0
, (3.76)

can be obtained from equation (3.74) by using thermodynamic identities, when the chemi-
cal composition is homogeneous. Equation (3.76) is known as the Schwarzschild criterion.
When there are gradients in the chemical composition, the two conditions are not equiva-
lent. Nonetheless, the Schwarzschild criterion is most often used in calculations of stellar
evolution, due to computational convenience.

3.3.3 Surface gravity waves

In addition to the internal gravity waves described above, there is a distinct, and more
familiar, type of gravity waves, known, e.g. from the Bay of Aarhus. These are waves at a
discontinuity in density.

We consider a liquid at constant density ρ0, with a free surface. Thus the pressure on
the surface is assumed to be constant. The layer is infinitely deep. I assume that the liquid
is incompressible, so that ρ0 is constant and the density perturbation ρ′ = 0. From the
equation of continuity we therefore get

div v = 0 . (3.77)

Gravity g is assumed to be uniform, and directed vertically downwards. Since the density
perturbation is zero, so is the perturbation to the gravitational potential.

In the interior of the liquid the equations of motion reduce to

ρ0
∂v

∂t
= −∇p′ . (3.78)

The divergence of this equation gives

∇2p′ = 0 . (3.79)

We introduce a horizontal coordinate x, and a vertical coordinate z increasing downward,
with z = 0 at the free surface. We now seek a solution in the form of a wave propagating
along the surface, in the x-direction. Here p′ has the form

p′(x, z, t) = f(z) cos(khx− ωt) , (3.80)

where f is a function yet to be determined. By substituting equation (3.80) into equation
(3.79) we obtain

d2f

dz2
= k2

hf ,

or
f(z) = a exp(−khz) + b exp(khz) . (3.81)
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As the layer is assumed to be infinitely deep, b must be zero.
We must now consider the boundary condition at the free surface. Here the pressure

is constant, and therefore the Lagrangian pressure perturbation vanishes (the pressure is
constant on the perturbed surface), i.e.,

0 = δp = p′ + δδδr · ∇p0 = p′ + ξzρ0g0 at z = 0 , (3.82)

where ξz is the z-component of the displacement. This is obtained from the vertical com-
ponent of equation (3.78), for the solution in equation (3.81) with b = 0, as

ξz = − kh

ρ0ω2
p′ . (3.83)

Thus equation (3.82) reduces to

0 =

(
1− g0kh

ω2

)
p′ ,

and hence the dispersion relation for the surface waves is

ω2 = g0kh . (3.84)

The frequencies of the surface gravity waves depend only on their wavelength and on
gravity, but not on the internal structure of the layer, in particular the density. In this they
resemble a pendulum, whose frequency is also independent of its constitution. Indeed, the
frequency of a wave with wave number kh, and wavelength λ, is the same as the frequency
of a mathematical pendulum with length

L =
1

kh
=

λ

2π
. (3.85)



Chapter 4

Equations of linear stellar
oscillations

In the present chapter the equations governing small oscillations around a spherical equi-
librium state are derived. The general equations were presented in Section 3.2. However,
here we make explicit use of the spherical symmetry. These equations describe the general,
so-called nonradial oscillations, where spherical symmetry of the perturbations is not as-
sumed. The more familiar case of radial, or spherically symmetric, oscillations, is contained
as a special case.

4.1 Mathematical preliminaries

It is convenient to write the solution to the perturbation equations on complex form, with
the physically realistic solution being obtained as the real part of the complex solution. To
see that this is possible, notice that the general equations can be written as

A
∂y

∂t
= B(y) , (4.1)

where the vector y consists of the perturbation variables (δδδr, p′, ρ′, · · ·), A is a matrix with
real coefficients, and B is a linear matrix operator involving spatial gradients, etc., with
real coefficients. Neither A nor B depend on time. If y is a complex solution to equation
(4.1) then the complex conjugate y∗ is also a solution, since

A
∂y∗

∂t
=

(
A
∂y

∂t

)∗
= [B(y)]∗ = B(y∗) , (4.2)

and hence, as the system is linear and homogeneous, the real part <(y) = 1/2(y + y∗) is a
solution.

Because of the independence of time of the coefficients in equation (4.1), solutions can
be found of the form

y(r, t) = ŷ(r) exp(− i ω t) . (4.3)

This is a solution if the amplitude function ŷ satisfies the eigenvalue equation

−iωA · ŷ = B(ŷ) . (4.4)

57
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Equations of this form were also considered in Section 3.3 for simple waves. Note that in
equations (4.3) and (4.4) the frequency ω must in general be assumed to be complex.

Figure 4.1: The spherical polar coordinate system.

Equation (4.3) is an example of the separability of the solution to a system of linear
partial differential equations, when the equations do not depend of one of the coordinates.
As the equilibrium state is spherically symmetric, we may expect a similar separability in
spatial coordinates. Specifically I use spherical polar coordinates (r, θ, φ) (cf. Figure 4.1),
where r is the distance to the centre, θ is colatitude (i.e., the angle from the polar axis),
and φ is longitude. Here the equilibrium is independent of θ and φ, and the solution must
be separable. However, the form of the separated solution depends on the physical nature
of the problem, and so must be discussed in the context of the reduction of the equations.
This is done in the next section.

Here I present some relations in spherical polar coordinates that will be needed in the
following [see also Appendix 2 of Batchelor (1967)]. Let ar, aθ and aφ be unit vectors in
the r, θ and φ directions, let V be a general scalar field, and let

F = Frar + Fθaθ + Fφaφ (4.5)
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be a vector field. Then the gradient of V is

∇V =
∂V

∂r
ar +

1

r

∂V

∂θ
aθ +

1

r sin θ

∂V

∂φ
aφ , (4.6)

the divergence of F is

div F =
1

r2

∂

∂r
(r2Fr) +

1

r sin θ

∂

∂θ
(sin θFθ) +

1

r sin θ

∂Fφ
∂φ

, (4.7)

and consequently the Laplacian of V is

∇2V = div (∇V ) (4.8)

=
1

r2

∂

∂r

(
r2∂V

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂V

∂θ

)
+

1

r2 sin2 θ

∂2V

∂φ2
.

Finally, we need the directional derivatives, in the direction, say, of the vector

n = nrar + nθaθ + nφaφ. (4.9)

The directional derivative n · ∇V of a scalar is obtained, as would be naively expected, as
the scalar product of n with the gradient in equation (4.6). However, in the directional
derivatives n · ∇F of a vector field, the change in the unit vectors ar, aθ and aφ must be
taken into account. The result is

n · ∇F =

(
n · ∇Fr −

nθFθ
r
− nφFφ

r

)
ar

+

(
n · ∇Fθ −

nφFφ
r

cot θ +
nθFr
r

)
aθ

+

(
n · ∇Fφ +

nφFr
r

+
nφFθ
r

cot θ

)
aφ , (4.10)

where the directional derivatives of Fr, Fθ and Fφ are the same as for a scalar field.
As the radial direction has a special status, it is convenient to introduce the horizontal

(or, properly speaking, tangential) component of the vector F:

Fh = Fθaθ + Fφaφ , (4.11)

and similarly the horizontal components of the gradient, divergence and Laplacian as

∇hV =
1

r

∂V

∂θ
aθ +

1

r sin θ

∂V

∂φ
aφ , (4.12)

∇h · F =
1

r sin θ

∂

∂θ
(sin θFθ) +

1

r sin θ

∂Fφ
∂φ

, (4.13)

and

∇2
hV =

1

r2 sin θ

∂

∂θ
(sin θ

∂V

∂θ
) +

1

r2 sin2 θ

∂2V

∂φ2
. (4.14)
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4.2 The Oscillation Equations

4.2.1 Separation of variables

The displacement δδδr is separated into radial and horizontal components as

δδδr = ξrar + ξξξh . (4.15)

The horizontal component of the equations of motion, (3.43), is

ρ0
∂2ξξξh

∂t2
= −∇hp

′ − ρ0∇hΦ′ . (4.16)

As the horizontal gradient of equilibrium quantities is zero, the horizontal divergence of
equation (4.16) gives

ρ0
∂2

∂t2
∇h · ξξξh = −∇2

hp
′ − ρ0∇2

hΦ′ . (4.17)

The equation of continuity, (3.41), can be written as

ρ′ = − 1

r2

∂

∂r
(ρ0r

2ξr)− ρ0∇h · ξξξh . (4.18)

This can be used to eliminate ∇h · ξξξh from equation (4.17), which becomes

− ∂2

∂t2

[
ρ′ +

1

r2

∂

∂r
(r2ρ0ξr)

]
= −∇2

hp
′ − ρ0∇2

hΦ′ . (4.19)

The radial component of equation (3.43) is

ρ0
∂2ξr
∂t2

= −∂p
′

∂r
− ρ′g0 − ρ0

∂Φ′

∂r
. (4.20)

Finally, Poisson’s equation (3.44) may be written as

1

r2

∂

∂r

(
r2∂Φ′

∂r

)
+∇2

hΦ′ = 4πGρ′ . (4.21)

It should be noticed that in equations (4.19) – (4.21) derivatives with respect to the
angular variables θ and φ only appear in the combination ∇2

h.
We now have to consider the energy equation (3.47), together with equation (3.48) for

the heat gain. The result clearly depends on the form assumed for the flux F. However, if
the flux can be expressed in terms of a gradient of a scalar, as in the diffusion approximation
[equation (3.22)], the energy equation also only contains derivatives with respect to θ and
φ in ∇2

h.

Exercise 4.1:

Show this.

We may now address the separation of the angular variables. The object is to factor
out the variation of the perturbations with θ and φ as a function f(θ, φ). From the form
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of the equations this is clearly possible, if f is an eigenfunction of the horizontal Laplace
operator,

∇2
hf = − 1

r2
Λf , (4.22)

where Λ is a constant. That 1/r2 has to appear is obvious from equation (4.14); the choice
of sign is motivated later. Writing it out in full, equation (4.22) becomes

1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

sin2 θ

∂2f

∂φ2
= −Λ f . (4.23)

As the coefficients in this equation are independent of φ, the solution can be further
separated, as

f(θ, φ) = f1(θ)f2(φ) . (4.24)

It follows from equation (4.23) that f2 satisfies an equation of the form

d2f2

dφ2
= αf2 , (4.25)

where α is another constant; this has the solution f2 = exp(±α1/2φ). However, the solution
has to be continuous and hence periodic, i.e., f2(0) = f2(2π). Consequently we must
demand that α1/2 = im, where m is an integer.

When used in equation (4.23), this gives the following differential equation for f1:

d

dx

[
(1− x2)

df1

dx

]
+

(
Λ− m2

1− x2

)
f1 = 0 , (4.26)

where x = cos θ. It can be shown that this equation has a regular solution only when

Λ = l(l + 1) , (4.27)

where l is a non-negative integer and

|m| ≤ l . (4.28)

The regular solution is
f1(θ) = Pml (cos θ) , (4.29)

where Pml is the Legendre function. By including an appropriate scaling factor we may
finally write

f(θ, φ) = (−1)mclmP
m
l (cos θ) exp(imφ) ≡ Y m

l (θ, φ) , (4.30)

where Y m
l is a spherical harmonic; here clm is a normalization constant given by equation

(2.2), such that the integral of |Y m
l |2 over the unit sphere is 1. Y m

l is characterized by its
degree l and its azimuthal order m; the properties of spherical harmonics were discussed in
more detail in Section 2.1 (see also Appendix A). From equations (4.22) and (4.27) we also
have that

∇2
hf = − l(l + 1)

r2
f . (4.31)

The dependent variables in equations (4.19) – (4.21) can now be written as

ξr(r, θ, φ, t) =
√

4π ξ̃r(r)Y
m
l (θ, φ) exp(−iωt) , (4.32)
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p′(r, θ, φ, t) =
√

4π p̃′(r)Y m
l (θ, φ) exp(−iωt) , (4.33)

etc. Also it follows from equation (3.38) that if the Eulerian perturbations are on the
form given in these equations, so are the Lagrangian perturbations. Then the equations
contain Y m

l (θ, φ) exp(−iωt) as a common factor. After dividing by it, the following ordinary
differential equations for the amplitude functions ξ̃r, p̃

′, · · ·, result:

ω2
[
ρ̃′ +

1

r2

d

dr
(r2ρ0ξ̃r)

]
=
l(l + 1)

r2
(p̃′ + ρ0Φ̃′) , (4.34)

−ω2ρ0ξ̃r = − dp̃′

dr
− ρ̃′g0 − ρ0

dΦ̃′

dr
, (4.35)

1

r2

d

dr

(
r2 dΦ̃′

dr

)
− l(l + 1)

r2
Φ̃′ = 4πGρ̃′ , (4.36)

together with the energy equation

(
δp̃− Γ1,0p0

ρ0
δρ̃

)
= ρ0(Γ3,0 − 1)δq̃ . (4.37)

It should be noted that equations (4.34) – (4.37) do not depend on the azimuthal order
m. This is a consequence of the assumed spherical symmetry of the equilibrium state,
which demands that the results should be independent of the choice of polar axis for the
coordinate system. Changing the polar axis would change the spherical harmonics, in such
a way that a new spherical harmonic, with given l and m, would be a linear combination
over m of the old spherical harmonics with the given value of l (Edmonds 1960). As this
change of axis can have no effect on the dynamics of the oscillations, the equations must
be independent of m, as found here.

From equation (4.16) the horizontal component of the displacement is given by

ξξξh =
√

4π ξ̃h(r)

(
∂Y m

l

∂θ
aθ +

1

sin θ

∂Y m
l

∂φ
aφ

)
exp(−iωt) , (4.38)

where

ξ̃h(r) =
1

rω2
(

1

ρ0
p̃′ + Φ̃′) . (4.39)

Thus the (physical) displacement vector can be written as

δδδr =
√

4π<
{[
ξ̃r(r)Y

m
l (θ, φ)ar (4.40)

+ξ̃h(r)

(
∂Y m

l

∂θ
aθ +

1

sin θ

∂Y m
l

∂φ
aφ

)]
exp(−iωt)

}
.

As noted in Section 4.1 the frequency ω is in general complex. That this is so may be seen
from the energy equation (4.37), if the expression (3.48) for the heating rate perturbation is
used. Assuming the time dependence given in equations (4.33) for the perturbed quantities,
equation (3.48) can be written as

δq =
i

ρ0ω
δ(ρε− div F) . (4.41)
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Here the perturbations on the right-hand side can be expressed in terms of the perturbations
in, say, density and temperature. For instance, since ε is a function ε(ρ, T ) of density and
temperature, we obtain

δ(ρε) = ρε

{[
1 +

(
∂ ln ε

∂ ln ρ

)

T

]
δρ

ρ
+

(
∂ ln ε

∂ lnT

)

ρ

δT

T

}
. (4.42)

The expression for δ(div F) depends on the treatment of the energy transport, discussed
in Section 3.1.3. Often the diffusion approximation is adequate; then δ(div F) may be
obtained in a fashion similar to the derivation of equation (4.42) by perturbing equation
(3.22), although with considerable effort. Note that this gives rise to a term in the second
derivative of δT with respect to r; the same is true if the Eddington approximation [equation
(3.24)] is used, whereas the use of Newton’s law of cooling [equation (3.23)] gives a direct
relation between the heat loss and the local thermodynamic variables, and hence does
not increase the order of the equations. However, regardless of the approximation used,
substitution of the relevant relations into the energy equation, written in terms of ρ and T ,
results in an equation which, because of the factor i/ω in the expression for δq, has complex
coefficients. Hence the oscillation equations cannot in general have a real solution.

The complex frequency can be expressed as ω = ωr + iη, where ωr and η are real;
consequently the dependence of the perturbations on φ and t is of the form

cos(mφ− ωrt+ δ0)eηt , (4.43)

where δ0 is the initial phase. For m 6= 0 this describes a wave traveling around the equator
with angular phase speed ωr/m, whereas for m = 0 the perturbation is a standing wave.
The period of the perturbation is Π = 2π/ωr. Its amplitude grows or decays exponentially
with time, depending on whether the growth rate η is positive or negative.

Neglecting η, we may obtain the mean square components of the displacement, when
averaged over a spherical surface and time, from equation (4.40). For the radial component
the result is

δr2
rms = 〈|δr · ar|2〉 (4.44)

=
1

Π

∫ Π

0
dt

1

4π

∮ {
<
[
ξ̃r(r)Y

m
l (θ, φ) exp(−iωt)

]}2
dΩ

=
1

2
|ξ̃r(r)|2 ,

where Ω is solid angle. Similarly, the mean square length of the horizontal component of
δδδr is

δh2
rms = 〈|ξξξh|2〉 = 1/2 l(l + 1)|ξ̃h(r)|2 , (4.45)

where ξ̃h is the amplitude function introduced in equation (4.39).

Exercise 4.2:

Verify equations (4.44) and (4.45). Note that the latter is a little tricky: this requires
integration by parts and use of the fact that Pm

l satisfies equation (4.23).
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The kinetic energy of pulsation is

Ekin =
1

2

∫

V
|v|2ρ0dV . (4.46)

As in equations (4.44) and (4.45) it follows from equation (4.40) that the time-averaged
energy is 1/4ω2E , where

E = 4π

∫ R

0
[|ξ̃r(r)|2 + l(l + 1)|ξ̃h(r)|2] ρ0r

2dr . (4.47)

For m 6= 0 Ekin is independent of t, in accordance with the running-wave nature of the
oscillation in this case, whereas for m = 0 we have Ekin = 1

2ω
2E cos2(ωt − δ0). It is

convenient to introduce the dimensionless measure E of E , by

E =
4π
∫ R

0 [|ξ̃r(r)|2 + l(l + 1)|ξ̃h(r)|2]ρ0r
2dr

M [|ξ̃r(R)|2 + l(l + 1)|ξ̃h(R)|2]
=
Mmode

M
, (4.48)

where M is the total mass of the star, and Mmode is the so-called modal mass; thus E
provides a measure of the normalized inertia of the mode. These quantities are defined
such that the time-averaged kinetic energy in the oscillation is

1/2MmodeV
2

rms = 1/2EMV 2
rms , (4.49)

where V 2
rms is the mean, over the stellar surface and time, of the squared total velocity of

the mode.
From equation (4.31) it follows that for any perturbation quantity ψ ′,

∇2
hψ
′ = − l(l + 1)

r2
ψ′ . (4.50)

Thus if the oscillations are regarded locally as plane waves, as in equation (3.53), we may
make the identification

l(l + 1)

r2
= k2

h , (4.51)

where kh is the length of the horizontal component of the wave vector, as in equation (3.63);
note in particular that kh depends on r.

For completeness, I note that the modes discussed so far (which are the only modes
considered in the following), are known as spheroidal modes. In addition there is a second
class of modes, the toroidal modes, which are briefly discussed in Cox (1980), Section 17.3.
In a spherically symmetric (and hence nonrotating) star, they have zero frequency and
correspond to infinitely slow, purely horizontal motion. In a rotating star they give rise to
oscillations whose frequencies are of the order of the rotation frequency.

4.2.2 Radial oscillations

For radial oscillations, with l = 0, the perturbation in the gravitational field may be elim-
inated analytically. From Poisson’s equation in the form (4.36) we have, by using the
equation of continuity (4.18) with zero horizontal part, that

1

r2

d

dr

(
r2 dΦ̃′

dr

)
= −4πG

r2

d

dr
(r2ρ0ξ̃r) , (4.52)
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or, as the gravitational force must be finite at r = 0,

dΦ̃′

dr
= −4πGρ0ξ̃r . (4.53)

Furthermore, the term containing Φ̃′ drops out in equation (4.34).
With these eliminations, the oscillation equations can be reduced to a relatively simple

form. We write the energy equation (4.37) as

ρ̃′ =
ρ0

Γ1,0p0
p̃′ + ρ0ξ̃r

(
1

Γ1,0p0

dp0

dr
− 1

ρ0

dρ0

dr

)
− ρ2

0

Γ1,0p0
(Γ3,0 − 1)δq̃ . (4.54)

Then equation (4.34) may be written as

dξ̃r
dr

= −2

r
ξ̃r −

1

Γ1,0p0

dp0

dr
ξ̃r −

1

Γ1,0p0
p̃′ +

ρ0

Γ1,0p0
(Γ3,0 − 1)δq̃ , (4.55)

or, introducing ζ ≡ ξ̃r/r,

p̃′ = −Γ1,0p0r

(
dζ

dr
+

3

r
ζ +

1

Γ1,0p0

dp0

dr
ζ

)
+ ρ0(Γ3,0 − 1)δq̃ . (4.56)

By substituting equations (4.53), (4.54) and (4.56) into equation (4.35) we obtain, after a
little manipulation,

1

r3

d

dr

(
r4Γ1,0p0

dζ

dr

)
+

d

dr
[(3Γ1,0 − 4)p0]ζ + ρ0ω

2rζ =
d

dr
[ρ0(Γ3,0 − 1)δq̃] . (4.57)

Exercise 4.3:

Fill in the missing steps in the derivation of equation (4.57).

It is important to note that the apparent simplicity of equation (4.57) hides a great deal
of complexity in the heating term on the right-hand side. Nevertheless, this equation is
convenient for discussions of the properties of radial oscillations. In these notes, however, I
shall mostly consider the general equations for nonradial oscillations, where l can take any
value.

4.3 Linear, adiabatic oscillations

To simplify the notation, from now on I drop the tilde on the amplitude functions, and the
“0” on equilibrium quantities. This should not cause any confusion.
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4.3.1 Equations

For adiabatic oscillations, δq = 0 and equation (4.37) can be written

ρ′ =
ρ

Γ1p
p′ + ρξr

(
1

Γ1p

dp

dr
− 1

ρ

dρ

dr

)
. (4.58)

This may be used to eliminate ρ′ from equations (4.34) – (4.36). From equation (4.34) we
obtain

dξr
dr

= −
(

2

r
+

1

Γ1p

dp

dr

)
ξr +

1

ρ

[
l(l + 1)

ω2r2
− 1

c2

]
p′ +

l(l + 1)

ω2r2
Φ′ , (4.59)

where we used that c2 = Γ1p/ρ is the square of the adiabatic sound speed [cf. equation
(3.52)]. It is convenient to introduce the characteristic acoustic frequency Sl by

S2
l =

l(l + 1)c2

r2
= k2

hc
2 . (4.60)

Then equation (4.59) can be written as

dξr
dr

= −
(

2

r
+

1

Γ1p

dp

dr

)
ξr +

1

ρc2

(
S2
l

ω2
− 1

)
p′ +

l(l + 1)

ω2r2
Φ′ . (4.61)

Equation (4.35) gives

dp′

dr
= ρ(ω2 −N2)ξr +

1

Γ1p

dp

dr
p′ − ρdΦ′

dr
, (4.62)

where, as in equation (3.73), N is the buoyancy frequency, given by

N2 = g

(
1

Γ1p

dp

dr
− 1

ρ

dρ

dr

)
. (4.63)

Finally, equation (4.36) becomes

1

r2

d

dr

(
r2 dΦ′

dr

)
= 4πG

(
p′

c2
+
ρξr
g
N2
)

+
l(l + 1)

r2
Φ′ . (4.64)

Equations (4.61), (4.62) and (4.64) constitute a fourth-order system of ordinary differ-
ential equations for the four dependent variables ξr, p

′, Φ′ and dΦ′/dr. Thus it is a complete
set of differential equations.

For radial oscillations equations (4.61) and (4.62), after elimination of the terms in Φ′ by
means of equation (4.53), reduce to a second-order system in ξr and p′; an alternative for-
mulation of this set of equations is obtained from equation (4.57), by setting the right-hand
side to zero. The reduction to second order is a useful simplification from a computational
point of view, and it may be exploited in asymptotic analyses. However, here I shall always
treat radial oscillations in the same way as the nonradial case.

It should be noticed that all coefficients in equations (4.61), (4.62) and (4.64) are real.
Also, as discussed below, the same is true of the boundary conditions. Since the frequency
only appears in the form ω2, we may expect that the solution is such that ω2 is real, in
which case the eigenfunctions may also be chosen to be real. This may be proved to be
true in general. Thus the frequency is either purely real, in which case the motion is an
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undamped oscillator, or purely imaginary, so that the motion grows or decays exponentially.
From a physical point of view this results from the adiabatic approximation, which ensures
that energy cannot be fed into the motion, except from the gravitational field; thus the
only possible type of instability is a dynamical instability. I shall almost always consider
the oscillatory case, with ω2 > 0; note, however, that the convective instability discussed
briefly in Section 3.3.2 is an example of a dynamical instability.

4.3.2 Boundary conditions

To supplement the four equations in the general case, we need four boundary conditions.
These are discussed in considerable detail in Unno et al. (1989), Section 18.1, and in Cox
(1980), Section 17.6. Here I give only a brief summary.

The centre, r = 0 is a regular singular point of the equations. Thus, as is usual in the
theory of differential equations, the equations admit both regular and singular solutions at
this point. Two of the conditions serve to select the regular solutions. By expanding the
equations, it may be shown that near r = 0, ξr behaves like rl−1, whereas p′ and Φ′ behave
as rl. In the special case of radial oscillations, however, the coefficient to the leading-order
term in ξr vanishes, and ξr goes as r. Indeed it is obvious from geometrical considerations
that for spherically symmetric oscillations, the displacement must vanish at the centre.
From the expansions, two relations between the solution near r = 0 may be obtained. In
particular, it may be shown that for l > 0,

ξr ' lξh , for r → 0 . (4.65)

In the radial case, one of the conditions was implicitly used to obtain equation (4.53),
and only one central condition remains.

One surface condition is obtained by demanding continuity of Φ′ and its derivative at
the surface radius r = R. Outside the star the density perturbation vanishes, and Poisson’s
equation may be solved analytically. The solution vanishing at infinity is

Φ′ = Ar−l−1 , (4.66)

where A is a constant. Consequently Φ′ must satisfy

dΦ′

dr
+
l + 1

r
Φ′ = 0 at r = R . (4.67)

The second condition depends on the treatment of the stellar atmosphere, and may
consequently be quite complicated. These complications are discussed further in Chapter 5.
For the moment, I note that if the star is assigned a definite boundary at r = R, it is
physically reasonable to assume that the boundary is free, so that no forces act on it. In
this way the star can be considered as an isolated system. This is equivalent to requiring
the pressure to be constant at the perturbed surface. Thus as the second surface boundary
condition I take that the Lagrangian pressure perturbation vanish, i.e.,

δp = p′ + ξr
dp

dr
= 0 at r = R . (4.68)

As shown later, a more detailed analysis of the atmospheric behaviour of the oscillations
gives a very similar result, except at high frequencies.
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From equation (4.68) one can estimate the ratio between the radial and horizontal com-
ponents of the displacement on the surface. The amplitude of the horizontal displacement
is given by equation (4.39). In most cases, however, the perturbation in the gravitational
potential is small. Thus we have approximately, from equation (4.68), that

ξh(R)

ξr(R)
=

gs

Rω2
≡ σ−2 , (4.69)

where gs is the surface gravity, and σ is a dimensionless frequency, defined by

σ2 =
R3

GM
ω2 . (4.70)

Thus the surface value of ξh/ξr, to this approximation, depends only on frequency. The
ratio of the rms horizontal to vertical displacement [cf. equations (4.44) and (4.45)] is

δhrms

δrrms
=

√
l(l + 1)

σ2
at r = R . (4.71)

For the important case of the solar five-minute oscillations, σ2 ∼ 1000, and so the motion
is predominantly vertical, except at large l.



Chapter 5

Properties of solar and stellar
oscillations.

It is straightforward to solve numerically the equations and boundary conditions derived in
the previous chapter. Reference may be made to Chapter 6 or, for example, to Unno et al.
(1989) Section 18.2. However, some care is required to achieve the accuracy needed in the
interpretation of the observed frequencies. The numerical techniques are discussed in some
detail in Chapter 6.

The equations and boundary conditions have non-trivial solutions only for specific values
of the frequency ω, which is therefore an eigenvalue of the problem. Each eigenfrequency
corresponds to a mode of oscillation; from the computation one obtains also the eigen-
function, i.e., the variation of the perturbations ξr, p

′, etc. with r. As the equations are
homogeneous, the solution is determined only to within a constant factor. Thus the equa-
tions do not determine the amplitude of the motion. This is fixed by non-linear effects, or
by a possible external forcing that may be responsible for the oscillations. However, the
eigenfunctions resulting from the calculation give the distribution of the amplitude with
position in the star; thus they may be used, e.g., to relate the observable surface amplitude
to the amplitude in the interior, or to the total energy in the oscillation.

This chapter first considers the general dependence of oscillation frequencies on the
properties of stars, including their mass and radius. Then the properties of stellar oscilla-
tions are discussed in terms of a highly simplified, largely physical, asymptotic description,
valid in the limit where the radial order of the mode (which is roughly given by the number
of nodes in the eigenfunction in the radial direction) is large. The asymptotic description
is made mathematically more rigorous and extended in Chapter 7; however, the results
obtained here are at least qualitatively valid. Furthermore numerical examples, based on
results of oscillation calculations, are given for a model of the present Sun, for models
representing δ Scuti stars and for models of η Bootis. They are to a large extent repre-
sentative for other stars as well. Further results for other types of stars were given by,
for example, Unno et al. (1989). Section 5.4 discusses the behaviour of adiabatic oscil-
lations in an isothermal atmosphere, which is often an adequate approximation to real
stellar atmospheres. Finally, Section 5.5 presents some general properties of the solutions
to the oscillation equations, including an analysis of the effects on the frequencies of a small
perturbation to the equilibrium model or the physics of the oscillations.

69
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5.1 The dependence of the frequencies on the equilibrium
structure

5.1.1 What do frequencies of adiabatic oscillations depend on?

The coefficients in the adiabatic oscillation equations (4.61), (4.62) and (4.64) obviously
depend on the structure of the equilibrium model. Indeed, this is the whole basis for using
observed frequencies to probe the structure of, say, the Sun. A closer inspection reveals
that the coefficients are determined solely by the set of equilibrium variables

ρ, p, Γ1, g , (5.1)

as functions of r. However, the equilibrium model satisfies the stellar structure equations
(3.33) and (3.34); in addition it may be assumed to have a given mass and radius, which
at least in the case of the Sun are known with high precision.

If ρ(r) is given, g(r) is determined by equation (3.34); and, given g, the equation (3.33) of
hydrostatic support may be integrated from the surface to provide p(r) (the surface pressure
is known from theoretical or empirical atmospheric models). Thus of the set (5.1) only the
two functions ρ(r) and Γ1(r) are independent, and the adiabatic oscillation frequencies are
determined solely by these two functions. Conversely, if no other constraints are imposed,
the observed frequencies give direct information only about ρ and Γ1.

One might imagine that Γ1 could be determined from the equation of state if p and ρ
were known. However, to determine the thermodynamic state the chemical composition
must be known, and this cannot be assumed, in particular as it varies through the star. In
addition, the equation of state under stellar conditions is not known with sufficient accuracy.
On the other hand Γ1 cannot be completely unconstrained, as it must be close to 5/3 in
the interior of the star where the gas is almost fully ionized.

To a fair degree of approximation the chemical composition can be specified by a sin-
gle parameter, such as the abundance Y by mass of helium. In this approximation just
three quantities should suffice to specify fully the thermodynamic state. In principle these
three quantities could be ρ, p and Γ1 which, as argued above, should be obtainable from
the oscillation observations. If the equation of state were known one should be able to
determine any other thermodynamic variable, including Y , from these observed quantities.
Outside the ionization zones, being very nearly constant, Γ1 gives a poor determination of
the thermodynamic state; however, it varies sufficiently in the ionization zones to allow a
determination of Y , provided that the properties of the equation of state are known with
sufficient accuracy. Indeed, procedures for such a determination of the helium abundance
of the Sun have been proposed (e.g. Däppen & Gough 1984, 1986; Kosovichev et al. 1992).
As discussed in Section 7.7.3 an apparently quite efficient technique can be obtained on the
basis of the asymptotic behaviour of the oscillations in the helium ionization zone.

The preceding discussion was made in terms of the pair (ρ,Γ1). However, any other
independent pair of model variables, related directly to ρ and Γ1, may be used instead.
As will be discussed extensively below, observed oscillations have in many cases (including
the Sun) essentially the nature of standing acoustic waves. Their frequencies are largely
determined by the behaviour of sound speed c, and hence it would be natural to use c
as one of the variables, combined with, e.g., ρ or Γ1. Also, it is evident that analysis of
such oscillations may be used to determine properties of the sound speed; as discussed in
Section 7.7.2 below, the observations for the Sun are sufficiently rich that the observed
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frequencies may be inverted to obtain an estimate of the sound speed in most of the Sun. It
follows from equation (3.56) that this provides a measure of T/µ. However, it is important
to note that measurements of adiabatic oscillation frequencies do not by themselves allow
a determination of the temperature in a star. Only if the mean molecular weight can be
otherwise constrained (e.g. by demanding that its variation in the stellar interior results
from normal stellar evolution) is it possible to estimate the stellar interior temperature.
This limitation is of obvious importance for the use of observed solar oscillation frequencies
to throw a light on the apparent deficit of observed solar neutrinos (e.g. Christensen-
Dalsgaard 1991a).

5.1.2 The dependence of oscillation frequencies on the physics of the
stellar interiors

As discussed in texts on stellar evolution (e.g. Christensen-Dalsgaard 1993a; Kippenhahn &
Weigert 1990) the computation of stellar models depends on assumptions about the physical
properties of matter in the stars, in particular the equation of state, the opacity and the
rates of nuclear reactions; these aspects of the calculation might be called the microphysics.
Furthermore, the computations involve a number of simplifying assumptions, often covering
much complex physics which might be called the macrophysics:

• The treatment of convection is generally approximated through a parametrization
of the properties of the uppermost layers of the convection zone. A typical (and
commonly used) example is mixing-length theory which depends on the mixing-
length parameter αc; the value of αc fixes the value s of the specific entropy in
the bulk of the convection zone, where the temperature stratification is essentially
adiabatic and where s is therefore nearly constant.

• The dynamical effects of convection (the so-called turbulent pressure) is ignored.

• It is assumed that there is no mixing outside convectively unstable regions; also
element settling and diffusion are usually ignored.

• Effects of magnetic fields are ignored.

Similarly, the calculations of oscillation frequencies are often done in the adiabatic ap-
proximation. Even when nonadiabatic effects are taken into account, their treatment is
uncertain, since there is no definite theory for the perturbation to the convective flux, in-
duced by the oscillations. Also, the perturbations to the turbulent pressure are usually
neglected.

The goals of the analysis of observed frequencies are evidently to test both the micro-
physics and the simplifying assumptions. This must be done in such a way that the results
are not compromised by the uncertainties mentioned above. A further complication is that
a given region of the model in general is affected by several aspects of the microphysics,
e.g. both the opacity and the equation of state; under these circumstances it may evidently
be difficult or impossible to isolate the cause of discrepancies between observations and
models.

In the analysis of solar data a very considerable simplification results from the presence
of the convection zone, despite the uncertainties in the detailed description of convection.
The reason is that, regardless of these uncertainties, there is no doubt that convection in
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almost the entire convection zone is a very efficient means of energy transport, requiring
only a minute superadiabatic gradient. Thus to a very good approximation the relation
between pressure and density is determined by

d ln ρ

d ln p
' 1

Γ1
, (5.2)

such that, as mentioned above, the specific entropy s is virtually constant; also, since
radiation plays no role for the energy transport, the structure is independent of opacity.
The value of s is determined by the structure of the thin region just beneath the surface
where the gradient is significantly superadiabatic. It follows that the structure of the bulk
of the convection zone is determined just by the value of s, by the composition (which,
because of the very efficient mixing can be assumed to be uniform), and by the equation
of state. Consequently modes of oscillation that are sensitive just to the structure of the
convection zone are ideally suited to test the properties of the equation of state and to
determine the solar composition (see also Christensen-Dalsgaard & Däppen 1992). It will
be shown in Section 5.2.3 that solar five-minute oscillations of degree higher than about 40
have this property.

It should also be noted that much of the uncertain macrophysics is concentrated very
near the surface. This is true of the dynamical effects of convection, since convective
velocities are likely to be very small elsewhere, of the details of convective energy transport,
and of the effects of the visible magnetic field. Apart from convective overshoot and a
hypothetical strong internal magnetic field, the remaining difficulties listed are concerned
with the composition profile in the radiative interior of the model. Although the list of
problems is not exhaustive, this argument gives some support to the simplified view of
solar structure shown in Figure 5.1.

5.1.3 The scaling with mass and radius

It is evident that the oscillation frequencies depend on the total mass and radius of the
star. Indeed, it was noted in Chapter 1 that the dynamical time scale tdyn can be regarded
as a characteristic period of radial oscillation. It is interesting that a similar estimate can
be obtained by regarding the oscillations as standing acoustic waves. Here we expect that
the period is approximately given by the sound travel time across the star, i.e.,

Π ∼ R

c̄
, (5.3)

where c̄ is a suitable average of the sound speed. Approximating the density by the mean
density and using the equation of hydrostatic support we furthermore have the estimates

ρ ∼ M

R3
, p ∼ GM2

R4
(5.4)

(e.g. Christensen-Dalsgaard 1993a). Using these to estimate c̄ in equation (5.3) yields

Π ∼
(
R3

GM

)1/2

= tdyn , (5.5)

where I neglected Γ1.
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Figure 5.1: Schematic representation of solar structure. The thin hashed area
near the surface indicates the region where the physics is uncertain, because
of effects of convection, nonadiabaticity, etc. At the base of the convection
zone, convective overshoot and diffusion introduce additional uncertainty. The
structure of the adiabatic part of the convection zone is determined by the
equation of state (EOS), and the constant values of specific entropy s, and
composition (given by the abundances X and Z of hydrogen and heavy ele-
ments). Beneath the convection zone the structure also depends on opacity κ
and the energy generation rate ε.

This scaling can be brought on a firmer footing. Motivated by the estimates in equation
(5.4) I express p and ρ in terms of

p̂ =
R4

GM2
p , ρ̂ =

R3

M
ρ . (5.6)

Also, I measure distance to the centre in terms of x = r/R, and the mass inside r in terms
of q = m/M . Then gravity, sound speed, characteristic acoustic frequency Sl and buoyancy
frequency N may be written as

g =
GM

R2
ĝ , c=

(
GM

R

)1/2

ĉ ,

Sl =

(
GM

R3

)1/2

Ŝl , N =

(
GM

R3

)1/2

N̂ , (5.7)

where

ĝ =
q

x2
, ĉ2 =

Γ1p̂

ρ̂
, Ŝ2

l =
l(l + 1)ĉ2

x2
,
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N̂2 = ĝ

(
1

Γ1p̂

dp̂

dx
− 1

ρ̂

dρ̂

dx

)
. (5.8)

Finally, I introduce scaled perturbations ξ̂r, p̂
′ and Φ̂′ by

ξr = Rξ̂r , p′ =
GM2

R4
p̂′ , Φ′ =

GM

R
Φ̂′ . (5.9)

Then the adiabatic oscillation equations (4.61), (4.62) and (4.64), written in terms of ξ̂r, p̂
′

and Φ̂′ as functions of x, can be expressed solely in terms of p̂, ρ̂, Γ1, ĝ, ĉ, Ŝl and N̂ , if ω
is replaced by the dimensionless frequency σ, defined by

σ2 =
R3

GM
ω2 . (5.10)

This evidently corresponds to measuring the period in units of the dynamical time scale.

Exercise 5.1:

Verify the scalings given in equations (5.7) and (5.8) and write down the oscillation
equations in the indicated (so-called dimensionless) form.

For models that constitute a so-called homologous series (e.g. Kippenhahn & Weigert
1990), the functions q(x), p̂(x) and ρ̂(x) are uniquely determined. Thus the dimensionless
frequencies σ or, equivalently, the pulsation constants Q defined in equation (2.20), are the
same for all models in such a series: in this case the periods scale precisely as tdyn. A
particular example is the case of polytropic models: for each polytropic index there is a
unique set of dimensionless adiabatic oscillation frequencies σ. For more realistic stellar
models the scalings are not exactly satisfied and hence σ (or Q) shows some dependence on
stellar parameters; however, it is still often the case that the scaling with t−1

dyn dominates
the variation of the oscillation frequencies. Examples of this are shown below.

5.2 The physical nature of the modes of oscillation

The general oscillation equations appear quite complicated. In particular, analytical solu-
tions can only be obtained in certain, very restricted cases (cf. Cox 1980, Section 17.7).
While such results offer some insight into the behaviour of the modes, a more fruitful ap-
proach is in general to approximate the equations to a point where they can be discussed
analytically. This is facilitated by the fact that the observed modes of solar oscillations
in the five-minute region generally are of high radial order; the same applies to solar-like
oscillations in other stars and to the comparatively long-period oscillations seen in white
dwarfs. Thus asymptotic theory is often applicable to an, actually surprisingly high, degree
of accuracy.

5.2.1 The Cowling approximation

The general equations are of fourth order. This is a difficulty in asymptotic studies which
generally deal with second-order systems. Fortunately the perturbation to the gravitational
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potential can often be neglected. To see this we may consider the integral solution in
equation (3.45) to Poisson’s equation. This can be written in separated form as

Φ′(r) = − 4πG

2l + 1

[
1

rl+1

∫ r

0
ρ′(r′)r′l+2 dr′ + rl

∫ R

r

ρ′(r′)
r′l−1

dr′
]

; (5.11)

this is most easily seen by verifying that this solution satisfies the separated Poisson’s
equation (4.36). From equation (5.11) it follows that |Φ′| is small compared with ρ′ under
the following two circumstances:

i) When l is large.

ii) When the radial order |n| is large.

In the former case (r′/r)l+2 (which appears in the first integral) is small when r′ < r,
and (r/r′)l−1 (which appears in the second integral) is small when r′ > r; in addition Φ′

is reduced by the factor (2l + 1)−1. In the second case Φ′ contains integrals over rapidly
varying functions of r and is therefore reduced relative to the size of the integrand.

Under these circumstances it appears reasonable to neglect Φ′. This approximation was
first studied carefully by Cowling (1941), and is therefore known as the Cowling approxima-
tion. It reduces the order of the system of equations to two, with a corresponding reduction
in the number of boundary conditions.

It must be pointed out that the neglect of Φ′ is not quite as obvious as may seem
from this discussion. In fact its mathematical justification has not been fully analyzed.
As discussed in Section 5.3.1 the properties of the so-called f mode, with no radial zeros,
with l = 1 are drastically different in the Cowling approximation and for the full equations.
Nonetheless, for high-order or high-degree modes the validity of the approximation has been
confirmed computationally (e.g. Robe 1968; Christensen-Dalsgaard 1991a).

5.2.2 Trapping of the modes

The equations in the Cowling approximation can be written as

dξr
dr

= −
(

2

r
− 1

Γ1
H−1
p

)
ξr +

1

ρc2

(
S2
l

ω2
− 1

)
p′ , (5.12)

dp′

dr
= ρ(ω2 −N2)ξr −

1

Γ1
H−1
p p′ , (5.13)

where

H−1
p = −d ln p

dr
; (5.14)

hence Hp is the pressure scale height, i.e., the distance, roughly, over which the pressure
changes by a factor e. For oscillations of high radial order, the eigenfunctions vary much
more rapidly than the equilibrium quantities; thus, e.g., the left hand side of equation
(5.12) is much larger than the first term on the right hand side which contains derivatives
of equilibrium quantities. As a first, very rough approximation, I simply neglect these
terms, reducing the equations to

dξr
dr

=
1

ρc2

(
S2
l

ω2
− 1

)
p′ , (5.15)

dp′

dr
= ρ(ω2 −N2)ξr . (5.16)
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These two equations can be combined into a single second-order differential equation for
ξr; neglecting again derivatives of equilibrium quantities, the result is

d2ξr
dr2

=
ω2

c2

(
1− N2

ω2

)(
S2
l

ω2
− 1

)
ξr . (5.17)

Figure 5.2: Buoyancy frequency N [cf. equation (4.63); continuous line] and
characteristic acoustic frequency Sl [cf. equation (4.60); dashed lines, labelled
by the values of l], shown in terms of the corresponding cyclic frequencies,
against fractional radius r/R for a model of the present Sun. The heavy
horizontal lines indicate the trapping regions for a g mode with frequency
ν = 100µHz, and for a p mode with degree 20 and ν = 2000µHz.

This equation represents the crudest possible approximation to the equations of non-
radial oscillations. In fact the assumptions going into the derivations are questionable. In
particular, the pressure scale height becomes small near the stellar surface (notice that
Hp = p/(ρg) is proportional to temperature), and so derivatives of pressure and density
cannot be neglected. I return to this question in Chapter 7. Similarly, the term in 2/r
neglected in equation (5.12) is large very near the centre. Nevertheless, the equation is
adequate to describe the overall properties of the modes of oscillation, and in fact gives a
reasonably accurate determination of their frequencies.

From equation (5.17) it is evident that the characteristic frequencies Sl and N , defined
in equations (4.60) and (4.63), play a very important role in determining the behaviour
of the oscillations. They are illustrated in Figure 5.2 for a “standard” solar model. Sl
tends to infinity as r tends to zero and decreases monotonically towards the surface, due
to the decrease in c and the increase in r. As discussed in Section 3.3, N 2 is negative in
convection zones (although generally of small absolute value), and positive in convectively
stable regions. All normal solar models have a convection zone in the outer about 30 per
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Figure 5.3: (a) Hydrogen content X against mass fraction m/M for three
models in a 2.2M� evolution sequence. The solid line is for age 0, the dotted
line for age 0.47 Gyr and the dashed line for age 0.71 Gyr. Only the inner
40 per cent of the models is shown. (b) Scaled buoyancy frequency, expressed
in terms of cyclic frequency, against m/M for the same three models. In the
scaling factor, R and R0 are the radii of the actual and the zero-age main
sequence model, respectively. For the model of age 0.71 Gyr, the maximum
value of (R/R0)3/2N/2π is 2400µHz. (c) Scaled buoyancy frequency N (heavy
lines) and characteristic acoustic frequency Sl for l = 2 (thin lines), for the
same three models, plotted against fractional radius r/R.

cent of the radius, whereas the entire interior is stable. The sharp maximum in N very
near the centre is associated with the increase towards the centre in the helium abundance
in the region where nuclear burning has taken place. Here, effectively, lighter material is
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on top of heavier material, which adds to the convective stability and hence increases N .
This is most easily seen by using the ideal gas law for a fully ionized gas, equation (3.19)
which is approximately valid in the interior of the stars, to rewrite N 2 as

N2 ' g2ρ

p
(∇ad −∇+∇µ) , (5.18)

where, following the usual convention,

∇ =
d lnT

d ln p
, ∇ad =

(
∂ lnT

∂ ln p

)

ad

, ∇µ =
d lnµ

d ln p
. (5.19)

In the region of nuclear burning, µ increases with increasing depth and hence increasing
pressure, and therefore the term in ∇µ makes a positive contribution to N 2.

The behaviour of N is rather more extreme in stars with convective cores; this is il-
lustrated in Figure 5.3 for the case of a 2.2M� evolution sequence. The convective core
is fully mixed and here, therefore, the composition is uniform, with ∇µ = 0. However, in
stars of this and higher masses the convective core generally shrinks during the evolution,
leaving behind a steep gradient in the hydrogen abundance X, as shown in Figure 5.3a.
This causes a sharp peak in ∇µ and hence in N . When plotted as a function of mass
fraction m/M , as in panel (b) of Figure 5.3, the location of this peak is essentially fixed
although its width increases with the shrinking of the core1. However, as illustrated in
Figure 5.3c, the location shifts towards smaller radius: this is a consequence of the increase
with evolution of the central density and hence the decrease in the radial extent of a region
of given mass. This also causes an increase gravity g in this region and hence in N , visible
in the figure. In accordance with equation (5.7), the characteristic frequencies have been
scaled by R3/2 in Figure 5.3: it is evident that Sl, and N in the outer parts of the model,
are then largely independent of evolution. Thus the stellar envelope essentially changes
homologously, while this is far from the case for the core; it follows that stellar oscillations
sensitive to the structure of the core might be expected to show considerable variation with
evolution of the dimensionless frequency σ introduced in equation (5.10). This is confirmed
by the numerical results shown in Section 5.3.2.

To analyze the behaviour of the oscillations I write equation (5.17) as

d2ξr
dr2

= −K(r)ξr , (5.20)

where

K(r) =
ω2

c2

(
N2

ω2
− 1

)(
S2
l

ω2
− 1

)
. (5.21)

The local behaviour of ξr depends on the sign of K. Where K is positive, ξr is locally an
oscillating function of r, and where K(r) is negative the solution is locally an exponentially
increasing or decreasing function of r. Indeed, as will be shown in more detail in Chapter 7,
in the former case the solution may be written approximately as

ξr ∼ cos

(∫
K1/2dr + φ

)
, K > 0 , (5.22)

1The erratic variation in N in the chemically inhomogeneous region is caused by small fluctuations,
introduced by numerical errors, in X(m).
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(φ being a phase determined by the boundary conditions) while in the latter case

ξr ∼ exp

(
±
∫
|K|1/2dr

)
, K < 0 . (5.23)

Thus according to this description the solution oscillates when

o1) |ω| > |N | and |ω| > Sl , (5.24)

or
o2) |ω| < |N | and |ω| < Sl , (5.25)

and it is exponential when
e1) |N | < |ω| < Sl , (5.26)

or
e2) Sl < |ω| < |N | . (5.27)

These possibilities are discussed graphically in Unno et al. (1989), Section 16.
For a given mode of oscillation there may be several regions where the solution oscillates,

according to criterion o1) or o2), with intervening regions where it is exponential. However,
in general one of these oscillating regions is dominant, with the solution decaying exponen-
tially away from it. The solution is then said to be trapped in this region; its frequency is
predominantly determined by the structure of the model in the region of trapping. The
boundaries of the trapping region are generally at points where K(r) = 0; such points are
known as turning points. From equation (5.22) it follows that within the trapping region
the mode oscillates the more rapidly as a function of r, the higher the value of K. Thus,
if the order of the mode is roughly characterized by the number of zeros in ξr

2 the order
generally increases with increasing K.

From the behaviour of Sl andN shown in Figure 5.2, and the conditions for an oscillating
solution, we may expect two classes of modes:

i) Modes with high frequencies satisfying o1), labelled p modes.

ii) Modes with low frequencies satisfying o2), labelled g modes.

These are discussed separately below.
Typical trapping regions, for a p and a g mode in a model of the present Sun, are shown

in Figure 5.2. I note also that in evolved stars with convective cores the large values of
N at the edge of the core may lead to the condition o2) being satisfied even at quite high
frequency. Thus here one might expect that the distinction in frequency between p and g
modes becomes less clear. Some consequences of that are illustrated in Section 5.3.2.

5.2.3 p modes

These are trapped between an inner turning point r = rt and the surface; the trapping at
the surface is in fact not contained in the analysis presented so far, but will be discussed in
Section 5.4 and in Chapter 7. The inner turning point is located where Sl(rt) = ω, or

c2(rt)

r2
t

=
ω2

l(l + 1)
. (5.28)

2The concept of order is defined more precisely in Section5.3.1.
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This condition determines rt as a function of l and ω.
For p modes, in particular the observed solar modes in the five-minute region, we typi-

cally have that ω � N . Then K can be approximated by

K(r) ' 1

c2
(ω2 − S2

l ) . (5.29)

In this approximation, therefore, the dynamics of the p modes is solely determined by the
variation of the sound speed with r. These modes are standing acoustic waves, with the
restoring force being dominated by pressure, and this motivates denoting them p modes.
Indeed, equation (5.29) determining the radial behaviour of the modes can be obtained
very simply from the dispersion relation (3.55) for a plane sound wave. I write the squared
length |k|2 of the wave vector as the sum of a radial and a horizontal component, i.e.,

|k|2 = k2
r + k2

h . (5.30)

Here kh is determined from l by equation (4.51); thus equation (3.55) becomes

ω2

c2
= k2

r +
l(l + 1)

r2
, (5.31)

or

k2
r =

1

c2
(ω2 − S2

l ) . (5.32)

Here, by equation (5.20), k2
r must be identified with K, and equation (5.32) is therefore

identical to equation (5.29).
The sequence of approximations used to derive equation (5.29) corresponds closely to

the approximations made in the analysis of simple sound waves. Thus it is not surprising
that the same dispersion relation is recovered. Nevertheless, it is gratifying to see that the
full oscillation equations reduce to the correct behaviour in this limit.

The interior reflection of the p modes can be understood very simply in terms of ray
theory. A mode can be regarded as a superposition of propagating sound waves. Two
such waves are illustrated in Figure 5.4 (additional examples are shown on the cover). As
they propagate into the star, the deeper parts of the wave fronts experience a higher sound
speed and therefore travel faster. Consequently, the direction of propagation is bent away
from the radial direction. This is completely analogous to the refraction experienced by
light rays when traveling into a medium with a higher speed of light; mathematically it
is expressed by the decrease in the radial component of the wave vector with increasing
sound speed shown in equation (5.32). At the reflection point the wave travels horizontally;
the condition (5.28) then follows directly from the dispersion relation for sound waves. A
complete analysis of p modes in terms of ray theory has been given by Gough (1984, 1986a).

The dependence of the turning point position rt on mode degree and frequency is of great
importance for the interpretation of the observations of the solar 5-minute oscillations. It is
illustrated in Figure 5.5, for a normal model of the present Sun. Curves are shown for three
different frequencies, spanning the range of the observations. For small l, rt is very close
to the centre, whereas for higher degrees the turning point moves closer to the surface. In
particular, I note that for l >∼ 40 the modes are essentially trapped in the convection zone,
which has a depth of about 0.28R. As discussed in Section 5.1.2, such modes are very well
suited for investigations of the properties of the equation of state of stellar matter.

From equation (5.29) it follows that K increases with the frequency. This increases the
number of zeros in the eigenfunction, i.e., the mode order. This means, equivalently, that
the frequency increases with mode order.
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Figure 5.4: Propagation of acoustic waves, corresponding to modes with l =
30, ν = 3 mHz (deeply penetrating rays) and l = 100, ν = 3 mHz (shallowly
penetrating rays). The lines orthogonal to the former path of propagation
illustrate the wave fronts.

5.2.4 g modes

Here the turning point positions are determined by the condition N = ω. As seen in Figure
5.2, at low frequencies (where claims have in the past been made for the detection of modes
in the Sun; cf. Section 2.3) this gives rise to one turning point very near the centre of the
Sun, and a second just below the base of the convection zone. At higher frequencies the
upper turning point is deeper in the model, and for frequencies close to the maximum in N ,
the modes are trapped in the deep interior. However, to this approximation the position of
the turning points is independent of l.

For high-order g modes typically ω2 � S2
l , and we may approximate K by

K(r) ' 1

ω2
(N2 − ω2)

l(l + 1)

r2
; (5.33)

thus in this case the dynamics is dominated by the variation of the buoyancy frequency N
with r. Gravity, acting on the density perturbation, provides the dominant restoring force,
and this is the reason that the modes are called g modes. The modes are trapped gravity
waves. In fact, by arguments similar to those used above for the p modes, one obtains
from the dispersion relation (3.74) for gravity waves that the radial component of the wave
number is given by

k2
r =

l(l + 1)

r2

(
N2

ω2
− 1

)
; (5.34)

this is in accordance with the relation for K given in equation (5.33).
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Figure 5.5: The location rt (a) of the inner turning point, and the depth of
penetration R−rt (b), in units of the solar radius R, for p modes in a standard
solar model. The results are shown as functions of degree l, for three typical
frequencies.

From equation (5.33) it follows that K increases with decreasing ω. Thus the order of
the mode increases with decreasing ω, or, equivalently, ω decreases with increasing order.
It may also be noticed that the frequencies of g modes cannot exceed the maximum Nmax

in the buoyancy frequency in the stellar interior. As shown below (cf. Fig. 5.6) one does
indeed find an upper limit on numerically computed g-mode frequencies. The approach to
this limit as l gets large was analyzed by Christensen-Dalsgaard (1980).
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5.3 Some numerical results

To get a feeling for the basic properties of the oscillations, it is useful to consider results
of calculations of eigenfrequencies and eigenfunctions. The results presented in this section
are largely based on models computed with the code described by Christensen-Dalsgaard
(1982). This is similar to other calculations making the traditional assumptions of stellar
evolution theory (leading to what is often somewhat misleadingly termed “standard models”
in the solar case): the physics of the model (equation of state, energy reactions and opacity)
are treated in reasonable, although not full, detail, convection is handled with mixing length
theory, and it is assumed that convectively stable regions of the model are not mixed
during the evolution. Needless to say the predicted flux of neutrinos for the solar model is
substantially higher than the observed value.

5.3.1 Results for the present Sun

For the model of the present Sun, the hydrogen abundance and mixing length were adjusted
to obtain a model with the observed solar luminosity and radius at solar age. Figures 5.6
and 5.7 show computed eigenfrequencies for this model, as functions of the degree l. It is
convenient to regard l as a continuously varying, real parameter; this is mathematically
completely permissible in the separated oscillation equations, although clearly only integral
l have physical meaning. Consequently, the curves are shown as continuous, which helps
in identifying the modes. The curves are labelled by the radial order which is essentially
given by the number of zeros in the radial direction in the eigenfunctions.

It is evident that there are two distinct, but slightly overlapping, groups of modes,
with very different behaviour of the frequency as a function of l. The upper set of modes
corresponds to the p modes discussed in Section 5.2.3, whose dominant restoring force is
pressure. The radial order has been indicated on some of the curves; it is evident that
the frequencies of these modes increase with order, as mentioned in Section 5.2.3. The
modes labelled with order 0, although similar in behaviour to the p modes, are in fact
physically distinct; for l greater than about 20 their frequencies are approximately given
by the expression (3.84) for a surface gravity wave. They are known as f modes. Finally,
the lower group of modes corresponds to the g modes, discussed in Section 5.2.4, where
the dominant restoring force is buoyancy. For these modes the frequencies decrease with
increasing number of nodes (cf. Section 5.2.4). It is evident that buoyancy demands
variation over horizontal surfaces; thus there are no g modes for spherically symmetrical
oscillations, i.e., for l = 0. Only the g modes of order less than 50 have been shown; in
fact, the g-mode spectrum extends to zero frequency at all degrees, although the modes
obviously become increasingly crowded with increasing degree. On the other hand the gap
between the g and the f modes is real.

It might be noticed that there are apparent crossings of the frequencies, as functions of l,
between the f mode and some of the g modes. A closer examination shows that instead the
modes make so-called avoided crossings where they approach very closely without actually
crossing. This phenomenon is well-known from atomic physics; a very clear discussion of
the behaviour in the vicinity of an avoided crossing was given by von Neuman & Wigner
(1929). Indeed, there is a deep mathematical similarity between the equations of nonra-
dial oscillations and the Schrödinger equation (see Christensen-Dalsgaard 1980, 1981; also,
Section 5.5 below).
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Figure 5.6: Cyclic frequencies ν = ω/2π, as functions of degree l, computed
for a normal solar model. Selected values of the radial order n have been
indicated.

The precise classification of the modes, i.e., the assignment of radial orders to them,
presents some interesting and so far unsolved problems. It appears that at each l it is
possible to assign to each mode an integral order n, which ranges from minus to plus
infinity, such that, at least for reasonably simple stellar models3 |n| gives the number of

3The definition of a ‘simple’ model in this context is not straightforward; examples might be zero-age
main sequence models or, e.g., polytropes of index between 1.5 and 3.
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Figure 5.7: Cyclic frequencies ν = ω/2π, as functions of degree l, computed
for a normal solar model. Selected values of the radial order n have been
indicated.

zeros in ξr; the possible zero at r = 0 is only counted in the radial case, where l = 0.
As hinted above, this is arranged such that in simple models n > 0 for p modes, n = 0
for the f mode and n < 0 for g modes. Also, with the single exception of the dipolar f
mode discussed below, the frequency is an increasing function of n; this rule is evidently
consistent with the fact, mentioned above, that the frequency increases with the number
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of radial nodes for p modes and decreases with the number of radial nodes for g modes. It
is conventional to denote p, f and g modes of a given degree l0 as pn(l = l0), f(l = l0) and
g|n|(l = l0).

Eckart (1960) proposed a general, and mathematically precise, scheme for the classifi-
cation of waves in a stratified medium. It was applied by Scuflaire (1974) and Osaki (1975)
to the definition of the radial order n for a nonradially pulsating star, on the basis of the
behaviour with varying r of the point (ξr(r), p

′(r)) in the so-called phase diagram. Specif-
ically, the order is determined by counting the zeros of ξr, assigning a positive value for
zeros where the p′ axis is crossed in the counter-clockwise direction in the phase diagram,
and negative values when the crossing is in the clockwise direction; the former case applies
where the mode behaves as a p mode and the latter to g-mode behaviour. It may be shown
(Gabriel & Scuflaire 1979; Christensen-Dalsgaard 1980) that in the Cowling approximation
this definition has the desirable property of being invariant under a continuous modification
of the equilibrium model or a continuous change of l. Also, for simple models or in the limit
of high-order modes this definition reduces to the simple counting of radial nodes in the
eigenfunction, described above. The Eckart scheme is not generally applicable, however,
when solutions of the full equations are considered. One finds, for example, that in models
of the present Sun application of this classification procedure to the lowest-order p modes
with l = 1, computed from the full equations, results in a misidentification of the modes
with n = 1 and 2; for more evolved models the problem extends to modes of higher order.
Guenther (1991) considered an evolution sequence of 1M� models extending to the base
of the giant branch. In the final model he found it difficult to determine the order of a
number of l = 1 modes; from his plots of the eigenfunctions it is evident that the origin
of the problem is the presence in the solution of a significant slowly varying trend which
shifts the radial displacement sufficiently to eliminate several nodes. Problems were also
encountered by Lee (1985) for l = 1 modes in evolved models of δ Scuti stars, and by
Christensen-Dalsgaard & Mullan (1994) for polytropic models of index exceeding 3.3. It
is interesting that these difficulties appear to be restricted to l = 1, at least for realistic
stellar models.

The problem of mode classification may appear somewhat academic, of little interest in
analysis of observed frequencies. In fact, it is a severe nuisance when computing modes for
a given model, making it very difficult to ensure that all modes have been computed, or
to relate the modes to those of another, slightly different model. Thus there is still a need
for a reliable classification scheme, valid for a wide range of models. More details on these
problems were given by Christensen-Dalsgaard (1991a).

There are a few special cases. For l = 0 only modes with n > 0 are found; this is in
accordance with the fact, mentioned above, that buoyancy can only act in the presence of
horizontal variation. Also, for l = 1 the mode with n = 0 is peculiar in that its frequency
is zero; indeed a mode with l = 1 and no zero in the radial direction may seem somewhat
unphysical, as it displaces the centre of mass of the star. However, the mode corresponds
to an infinitely slow, uniform motion of the entire star, without deformation; this must be
a solution to the original equations which, if written as an oscillation, has zero frequency
(see also Christensen-Dalsgaard 1976).
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Figure 5.8: Scaled radial displacement eigenfunctions for selected p modes
in a normal solar model, with a) l = 0, n = 23, ν = 3310µHz; b) l = 20,
n = 17, ν = 3375µHz; c) l = 60, n = 10, ν = 3234µHz. The arrows mark the
asymptotic location of the turning points rt [cf. equation (5.28)].

Exercise 5.2:

Verify this statement.

It is interesting that this f mode with l = 1 behaves very differently in the Cowling
approximation and for the full set of equations. In the Cowling approximation there is a
mode with l = 1 having no nodes in the radial displacement, intermediate in frequency
between the p and the g modes, which must be identified with the f mode. From a physical
point of view it can be thought of roughly as an oscillation of the whole star in the grav-
itational potential defined by the equilibrium model. The connection between this mode
and the zero-frequency mode for the full problem can be investigated by making a contin-
uous transition from the Cowling approximation to the full set of equations; this can be
accomplished formally by introducing a factor λ on the right-hand side of equation (4.21),
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such that λ = 0 corresponds to the Cowling approximation and λ = 1 to the full equations
(Christensen-Dalsgaard 1978; Christensen-Dalsgaard & Gough 2001). When λ is increased
from 0 to 1, the transition from the l = 1 f mode in the Cowling approximation to the
zero-frequency “mode” in the full case takes place through a sequence of avoided crossings
with the g modes, where the frequencies approach very closely without actually crossing.
A similar transition occurs for solutions of the full equations, between the f mode with
l = 2 and the zero-frequency mode with l = 1, as l is decreased continuously from 2 to 1
(Aizenman, Smeyers & Weigert 1977; Christensen-Dalsgaard 1978; Christensen-Dalsgaard
& Gough 2001).

Figure 5.9: Scaled radial displacement eigenfunctions of p modes with l = 1,
plotted against fractional radius r/R in the outermost parts of a normal solar
model. The cases shown are: ν = 1612µHz ( ); ν = 2293µHz
( ); ν = 3650µHz ( ).

Figures 5.8 and 5.9 illustrate typical eigenfunctions for p modes. According to equation
(4.47) the quantity plotted, viz. r ρ1/2ξr, is related to the contribution to the energy density
from the radial component of velocity. For the p modes this shows that the energy, at least
at low degrees, is distributed throughout most of the star. In particular, the radial modes
penetrate essentially to the centre. At higher degree the modes are trapped in the outer
part of the model. This is in accordance with the predictions of Section 5.2.3; indeed, the
arrows for the modes with l = 20 and 60 show the locations of the turning points predicted
by equation (5.28). Intuitively, one might expect the sensitivity of the frequency of a mode
to the structure of the star to be given roughly by the energy density; thus the frequencies
of low-degree p modes should give averages of stellar structure over the entire star. In
contrast to the energy, the displacement is strongly peaked towards the surface; this is
obvious from Figure 5.8 if it is recalled that the density decreases by about 9 orders of
magnitude from the centre to the surface of the Sun. With increasing degree the p modes
become confined closer and closer to the surface; however, the behaviour near the surface,
at a given frequency, changes little with l.
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Figure 5.10: Eigenfunctions for selected g modes in a normal solar model.
Panels a) to c) show scaled radial displacement eigenfunctions with a) l = 1,
n = −5, ν = 110µHz; b) l = 2, n = −10, ν = 103µHz; c) l = 4, n = −19,
ν = 100µHz. In panel d) the solid and dashed curves show unscaled radial
(ξr) and horizontal displacement (Lξh) eigenfunctions, for the l = 2, n = −10
mode. For clarity, the curve for ξr has been truncated: the maximum value is
about 2.7 times higher than the largest value shown. The vertical dotted line
marks the base of the convective envelope.

Figure 5.9 shows the eigenfunctions in the outer few per cent of the radius of a solar
model, for modes of degree l = 1 with different frequencies. It is evident that the mode
energy decreases in the atmosphere; this can be understood from the discussion in Sec-
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tion 5.4, which shows that for an isothermal atmosphere the energy decreases exponentially
with height for frequencies below the so-called acoustical cut-off frequency which in the solar
case corresponds to a cyclic frequency of about 5000µHz. However, it should be noticed
that at frequencies below about 2000µHz even the photospheric amplitude is substantially
smaller than the amplitudes at greater depth. This is related to the reflection of the modes
near the surface which is not contained in the simplified discussion in Section 5.2.3; an
asymptotic description that includes the surface reflection will be given in Section 7.5.

Figure 5.10 shows eigenfunctions for g modes. These have their largest amplitudes the
deep interior of the Sun, with maximum energy very near the centre. At a given frequency
the number of radial zeros increases rapidly with l; on the other hand there is little change
in the overall distribution of the energy. That the modes extend over essentially the same
region of the star is consistent with the fact, mentioned in Section 5.2.4, that for these
modes the locations of the turning points depend on frequency but not on degree. It should
be noticed in panel (d) that the surface displacement amplitudes for low degree (in this
case l = 2) remain comparable with the amplitude in much of the interior. Thus, even
though the modes are formally evanescent in the convection zone, they retain a potentially
observable surface response, providing of course that they are excited in a given star.

We may also consider global properties of the eigenfunctions. Of considerable interest
is the inertia parameter E defined in equation (4.48). It is shown for p modes and low-
degree g modes in Figure 5.11, as a function of the cyclic frequency ν = ω/2π. Each curve
corresponds to a given value of l, with the points for the individual modes being connected
by continuous lines. This format for displaying results on the oscillations clearly makes little
physical sense, in that non-integer mode orders do not have any meaning; nevertheless it
provides a convenient illustration of the dependence of oscillation quantities on frequency
and degree. The p-mode results in panel (a) show an obvious marked decrease of the
inertia, at fixed surface amplitude, with increasing frequency, as well as a weaker but still
substantial decrease with increasing degree. The dependence on degree is a direct result of
the variation of the depth of penetration: with increasing degree the lower turning point
moves closer to the surface and hence the oscillation involves a smaller part of the star, thus
decreasing the inertia. Similarly, the increase with decreasing frequency can be understood
from the reflection properties near the surface and is consistent with the eigenfunctions
shown in Figure 5.9: since the inertia measure in equation (4.48) is normalized with the
surface displacement, the decrease in the value of the eigenfunction at the surface, relative
to the interior, leads to an increase in E at low frequency.

The results for low-degree modes, in panel (b) show that at the lowest degrees there is
essentially a continuous transition between the p and the g modes, the inertia continuing
to rise rapidly with decreasing frequency. At slightly higher degree (l = 3 − 5) there is
a beginning tendency towards stronger g-mode trapping as the frequency approaches the
maximum in N in the deep interior of the model. This trend is strongly accentuated at
higher degree, as shown in Figure 5.12. Here the variation is extremely strong, with very
large values being reached for high frequencies or high degrees. For such modes a surface
amplitude large enough to be observed would correspond to totally unrealistic amplitudes
in the interior. This is emphasized also by Figure 5.13 which shows the ratio between the
maximum interior, and the surface, radial displacement. The reason for this is the trapping
of the modes at high degrees and frequencies near the maximum in the buoyancy frequency
N . It is particularly pronounced for modes whose frequencies exceed the secondary maxi-
mum in N at 400 µHz. The very low values of E found at selected frequencies for higher
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Figure 5.11: The dimensionless inertia E [cf. equation (4.48)] for computed
modes of oscillation in a normal solar model, plotted against frequency ν for
fixed values of the degree l. The inertia has been normalized by the norm of the
total displacement at the photospheric level. (a) results for p modes; selected
values of l have been indicated. (b) results for low-degree g and p modes, using
the following line styles: l = 0 (solid), l = 1 (dotted), l = 2 (short-dashed),
l = 3 (dot-dashed), l = 4 (triple-dot-dashed), and l = 5 (long-dashed).
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Figure 5.12: The dimensionless inertia E [cf. equation (4.48)] for computed f
and g modes of oscillation in a normal solar model, plotted against frequency
ν for fixed values of the degree l. For clarity, modes of degree 5, 10, 15, 20,
25 and 30 have been shown with dotted lines; in addition, selected values of l
are indicated in the figure.

values of l occur where the g modes pass through avoided crossings and take on the char-
acter of surface gravity waves; this happens when their frequencies are near the extensions
of the f-mode frequencies shown in Figure 5.6. It is interesting that this phenomenon can
be traced in inertia to a degree as low as 3. However, in general it is evident that the pos-
sibilities for observing g modes, regardless of the excitation mechanisms, must be limited
to fairly low values of the degree.

From the preceding discussion, there is obviously a high degree of regularity in the
computational results. Also, it is clear that at least some of these properties can be un-
derstood in simple terms by considering the asymptotic behaviour of the oscillations; this
understanding is of great assistance in the interpretation of the observed modes. This is
emphasized by more detailed study of the asymptotic behaviour of the oscillations, which
forms an important part of the remainder of these notes.
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Figure 5.13: The ratio |ξr,max/ξr(R)| between the maximum and the surface
value of the radial component of the displacement for computed f and g modes
of oscillation in a normal solar model, plotted against frequency ν for fixed
values of the degree l. For clarity, modes of degree 5, 10, 15, 20, 25 and 30 have
been shown with dotted lines; in addition, selected values of l are indicated in
the figure.

5.3.2 Results for the models with convective cores

To illustrate the effect of a convective core, particularly the maximum in the buoyancy
frequency at the edge of the core, Figure 5.14 shows the behaviour of the oscillation fre-
quencies, as functions of stellar age, for a 2.2M� evolution sequence. These models may
represent δ Scuti stars; characteristic frequencies at a few ages in the sequence were illus-
trated in Figure 5.3. As in that figure I have applied the scaling according to t−1

dyn. As a
result, the frequencies of largely acoustic modes, including the radial modes, change very
little with age. It should be noticed also that except at low order, the acoustic modes ex-
hibit a distinct pattern, with a close pairing of the radial and l = 2 modes. Such a pattern
of closely-spaced peaks is familiar in solar data (cf. Fig. 2.14) and may also have been
observed in other cases (e.g. Michel et al. 1992; see also Fig. 2.23). It will be discussed in
more detail, in the light of the asymptotic behaviour of the frequencies, in Section 7.3.

The most striking feature of the computed frequencies, however, is the interaction for
l = 1 and 2 between the p modes and the g modes. At zero age, there is a clear distinction
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Figure 5.14: Scaled oscillation frequencies, as functions of age, in a 2.2M�
evolution sequence. Modes of the same radial order have been connected. The
solid lines are for radial modes, of degree l = 0, the dotted lines are for l = 1
and the dashed lines for l = 2.

between the p modes, with frequencies exceeding that of the lowest radial mode, and the
g modes with frequencies below 200µHz. However, with increasing age the scaled g-mode
frequencies increase; this is a consequence of the increase in the scaled buoyancy frequency
with age (cf. Figure 5.3c) which effectively acts to “pull up” the frequencies of the g modes.
As was first found by Osaki (1975), this leads to an interaction between the p and g modes
which takes place through a sequence of avoided crossings, similar to those encountered in
Figure 5.6. At the avoided crossing the two modes exchange nature, while still maintaining
the original labelling. Thus, for example, the n = 1 mode for l = 2, which at age zero is a
purely acoustic mode of frequency 310µHz takes on the nature of a g mode trapped just
outside the convective core at the age 0.32 Gyr and again at the age 0.4 Gyr changes back
to being predominantly an acoustic mode.

This behaviour is further emphasized by considering the eigenfunctions of these modes;
examples of eigenfunctions near the p1 − p2(l = 2) avoided crossing at age 0.4 Gyr are
shown in Figure 5.15. Before the avoided crossing, the p1 mode has a substantial amplitude
near the edge of the convective core, and hence to a large extent behaves like a g mode,
whereas the p2 mode is predominantly a p mode, with largest amplitude in the outer parts.
At the point of closest approach of the frequencies, at an age of 0.39 Gyr, both modes
have a mixed character, with substantial amplitudes in the deep interior and near the
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Figure 5.15: Scaled eigenfunctions for the p1(l = 2) mode (continuous line)
and the p2(l = 2) mode (dashed line) in the vicinity of the avoided crossing
near age 0.4 Gyr, (R/R0)3/2ν = 400µHz in Figure 5.14. (a) Age 0.36 Gyr.
(b) Age 0.39 Gyr. (c) Age 0.44 Gyr.

surface, whereas after the avoided crossing the p2 mode looks like a g mode, whereas the
p1 mode largely behaves like a p mode. It should be noted that this behaviour introduces a
potential difference between the mathematical classification of the modes and their physical
nature: modes with order n > 0, which in simple models would be p modes, may take on
the character of g modes. Also, it is evident that the presence of the g-like modes in
the p-mode spectrum, particularly at late evolutionary stages, complicates the analysis of
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observed frequencies. Dziembowski & Królikowska (1990) pointed out that mode selection
might be affected by the larger energy of the modes that behave like g modes, thereby
restricting the choice of modes in the identification. However, such arguments depend on
the mechanisms responsible for exciting the modes and limiting their amplitudes, which
are so far incompletely understood. It should also be noted that if g-mode like pulsations
could in fact be identified, their frequencies would give strong constraints on conditions
in the region just outside the stellar core. In fact, Dziembowski & Pamyatnykh (1991)
pointed out that measurement of g-mode frequencies might provide a measure of the extent
of convective overshoot from the core.

Figure 5.16: Evolutionary tracks in the HR diagram, for models with Z = 0.03,
X = 0.7 and a mixing-length parameter calibrated to obtain the proper solar
radius. Models are shown with masses of 1.6M�, 1.63M� and 1.66M�. The
thin and bold error boxes indicate the observed location of η Bootis, before and
after the Hipparcos observations, respectively. The filled circle shows the model
identified by Christensen-Dalsgaard et al. (1995a) from fits to the observed
large frequency separation ∆ν. (Adapted from Christensen-Dalsgaard et al.
1995a).

5.3.3 Results for the subgiant η Bootis

With the continuing contraction of the core after exhaustion of central hydrogen, the buoy-
ancy frequency in the deep stellar interior is increased even further. This brings the frequen-
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cies where g-mode-like behaviour can be expected into the frequency range of high-order
p modes, which may potentially be excited stochastically by near-surface convection, as
seems to be the case in the Sun. An interesting case is the star η Bootis where, as discussed
in Section 2.4.1, solar-like oscillations may have been detected by Kjeldsen et al. (1995);
however, a similar behaviour may have been observed recently in a few other subgiants,
including β Hydri. Thus it is of interest to consider the properties of η Bootis in some
detail.

The interpretation of the observed frequencies was considered by Christensen-Dalsgaard,
Bedding & Kjeldsen (1995a). The star is sufficiently close that its distance is known with
reasonable precision; at the time of the analysis, before the publication of the distance
determinations from ESA’s Hipparcos satellite, its luminosity had in this way been deter-
mined as L = (9.5 ± 0.7)L�. Also, spectroscopy shows that the effective temperature is
Teff = (6050± 60) K and that the heavy-element abundance is somewhat higher than solar.
Figure 5.16 shows the observed location of the star in a Hertzsprung-Russell diagram, to-
gether with evolutionary tracks for Z = 0.03 and three masses. These identify the star as
being in fact past the phase of central hydrogen burning, and with a mass of about 1.6M�.

Calculation of adiabatic frequencies showed that it is possible to find models in the error
box with a ∆ν which is consistent with the observed value. This provides an excellent test
of the consistency of the frequency observations with the more classical stellar data: ∆ν is
essentially proportional to the the characteristic dynamical frequency ωdyn ≡ (GM/R3)1/2

and hence is predominantly determined by the stellar radius; thus it is largely fixed by
the location of the star in the HR diagram. The value ∆ν = 40.3µHz inferred from the
observations let Christensen-Dalsgaard et al. (1995a) to identify the star with the 1.6M�
model shown with a filled circle in Figure 5.16, just within the pre-Hipparcos error box. It
is gratifying that the subsequently announced Hipparcos results led to L = (9.0 ± 0.2)L�
and hence the smaller error box, also shown in the figure, which was entirely consistent
with this inference (Bedding, Kjeldsen & Christensen-Dalsgaard 1998).

To assist the understanding of the behaviour of the oscillations in η Bootis, Figure 5.17
shows the buoyancy frequency and characteristic acoustic frequencies in a model of η Bootis,
in units of ωdyn, and compare them with the buoyancy frequency in the present Sun (cf.
Figure 5.2). The dominant difference between the two models is the very large peak in
N̂ near the centre of the η Bootis model. This is caused by two effects: during main-
sequence evolution the retreating convective core during the phase of central hydrogen
burning has left behind a steep gradient in the hydrogen abundance (see also Figure 5.3
and the discussion in Section 5.3.2) leading to a highly stable stratification and hence
contributing to a large value of N (e.g. Dziembowski & Pamyatnykh 1991); in addition, the
increasing central condensation as the core contracts after hydrogen exhaustion drives up
the gravitational acceleration in the core, further increasing N . As a result, the maximum
value of N exceeds the acoustical cut-off frequency in the stellar atmosphere. Thus all
trapped acoustic modes may in principle be affected by the buoyancy frequency, taking
on g-mode character in the core. In particular, at the frequencies characteristic for the
observations of η Bootis, indicated by the horizontal line in Figure 5.17, the modes have
extended p-mode regions in the outer parts of the star and a small g-mode region near the
centre. The separation between these two regions is quite small for l = 1, leading to a
substantial coupling between the two types of behaviour; with increasing l, the separation
increases rapidly and the coupling becomes small.

The effects of this structure on the oscillations are illustrated in Figure 5.18. The
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Figure 5.17: Dimensionless buoyancy frequency N̂ ≡ (GM/R3)−1/2N plotted
against fractional radius r/R for a model of the present Sun (dashed line) and
a model of η Bootis (solid line). The dot-dashed lines show the dimensionless
characteristic acoustic frequency Ŝl = (GM/R3)−1/2Sl, where Sl = cL/r, for
l = 1 and 2 in η Bootis. The heavy horizontal line indicates the location of a
mode in η Bootis of frequency 850µHz, typical of the observed frequencies.

frequencies of the radial modes, shown by dashed lines in panel (a), decrease approximately
with ωdyn as a result of the increasing stellar radius. The same general trend is shared by the
l = 1 modes when they behave like p modes. However, as in the case shown in Figure 5.14
there are additional g-mode branches, with frequencies increasing with age as the maximum
value of N increases; as before these interact with the p-mode branches through sequences
of avoided crossings. The effect on the mode inertia E normalized at the photospheric
amplitude, defined in equation (4.48), is shown in panel (b); for clarity two modes with
l = 1 have been indicated in both panels by triangles and diamonds, respectively, at the
points corresponding to the models in the evolution sequence. Where the l = 1 modes
behave as p modes, their inertia is very close to that of a radial mode of similar frequency.
However, the g-mode behaviour corresponds to an increase in the amplitude in the interior
and hence in E. At the avoided crossing there is an interchange of character between the
two interacting modes. (It should be noted that the density of models in the sequence is
insufficient to resolve fully the variations with age in E, leading to the somewhat irregular
behaviour in panel (b); however, the overall variation is clearly visible.)
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Figure 5.18: (a) Evolution of adiabatic frequencies for model of mass 1.60M�.
The lower abscissa shows the effective temperature Teff , the upper abscissa
the age of the model in Gyr. The dashed lines correspond to modes of degree
l = 0, and the solid lines to l = 1. The vertical solid line indicates the location
of the model whose frequencies are illustrated in Figure 5.20. (Adapted from
Christensen-Dalsgaard et al. 1995a). (b) The change with age in the normal-
ized mode inertia (cf. eq. 4.48). The solid lines show modes with l = 1, each
model being indicated by triangles or diamonds as in panel (a), whereas the
dashed line shows the radial mode with approximately the same frequency.
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Figure 5.19: Eigenfunctions of selected modes in the model indicated by a
vertical line in Figure 5.18. In panel (a) the amplitudes of the vertical dis-
placement are shown for the l = 1 mode indicated by triangles (solid line)
and the neighbouring radial mode (dashed line). Panels (b) and (c) are for
the l = 1 mode marked by diamonds: the solid and dot-dashed lines show the
amplitudes of the vertical and horizontal displacement, respectively.
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The properties of the oscillations are further illustrated by the eigenfunctions shown in
Figure 5.19, for the two modes with l = 1 undergoing avoided crossing at the vertical line in
Figure 5.18 as well as for the neighbouring radial mode. The displacement amplitudes have
been weighted by ρ1/2r, so that they directly shows the contribution at a given radius to
the mode inertia Enl (cf. eq. 4.48). The l = 1 mode in panel (a) is evidently very nearly a
pure acoustic mode, with an vertical displacement behaving almost as for the radial mode,
apart from the phase shift associated with the difference in frequency. In contrast, the
second l = 1 mode has very substantial displacement amplitudes in the core, leading to
the comparatively large normalized inertia shown in Figure 5.18; this is particularly visible
in the enlarged view in Figure 5.19(c). It should be noted, however, that the separation
between the g-mode and p-mode propagation regions is quite small in this case (see also
Figure 5.17), leading to substantial coupling between the two regions and causing the large
minimum separation in the avoided crossing and a maximum normalized inertia which is
still relatively small, despite the g-mode like behaviour in the core. In contrast, for modes
with l ≥ 2 the separation between the propagation regions is larger and the coupling is
much weaker; as a result, a frequency plot corresponding to Figure 5.18(a) shows two sets
of frequencies apparently crossing with no avoidance, and the maximum inertia for, for
example, l = 2 in the frequency region illustrated is around 3× 10−7.

The normalized inertia may provide a rough estimate of the likely surface amplitude of
the modes, at least if the modes are excited stochastically by convection (e.g. Houdek et
al. 1999; see also Section 10.6): in that case the mode energy is likely to be independent of
degree, at fixed frequency. It follows from equation (4.49) that kinetic energy of a mode can
be expressed as 1/2A2MEnl, where A is the surface amplitude. Assuming that the energy
is independent of degree, the amplitude Anl of a mode of degree l, order n and normalized
inertia Enl satisfies

Anl
A0(νnl)

'
[

Enl

E0(νnl)

]−1/2

, (5.35)

where A0(ν) and E0(ν) are obtained by interpolating to frequency ν in the results for
radial modes. In particular, the modes with strong g-mode character in Figure 5.18 would
be expected to have roughly half the surface amplitude of the pure acoustic modes.

The fine structure in the observed and computed frequency spectra can conveniently be
compared in an echelle diagram, introduced for solar observations in Section 2.3 (cf. Figure
2.15). The result for the observed and the model frequencies is shown in Figure 5.20.
The open symbols are for a 1.6M� model that was chosen to have ∆ν ' 40.3µHz; the

reference frequency was ν
(mod)
0 = 856µHz. The sizes of the symbols have been scaled by

the amplitude ratio Anl/A0 determined by equation (5.35). The model results for l = 0,
2 and 3 clearly reflect the behavior predicted by equation (2.32). In particular, the points
for l = 0 and 2 run parallel, with a small separation δν0 ' 3.3µHz resulting from the last
term in that equation. For l = 1, equation (2.32) predicts an almost vertical series of points
separated by roughly ∆ν/2 from those for l = 0. The model frequencies deviate from this.
Comparison with Figure 5.18(a) (where the location of this model is marked by a vertical
solid line) indicates that this behavior is associated with the avoided crossings, which change
the frequency separation and therefore shift the frequencies relative to the location expected
from p-mode asymptotics. As discussed above, even l = 1 modes behaving partly like g
modes still have sufficiently small normalized inertia Enl that their estimated amplitudes
are close to those of the pure p modes. (The figure shows a single exception: a mode at
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Figure 5.20: Echelle diagram with a frequency separation of ∆ν = 40.3µHz.
The open symbols show computed frequencies for a model with M = 1.60M�
and Z = 0.03; here the reference frequency was ν

(mod)
0 = 856µHz. Circles

are used for modes with l = 0, triangles for l = 1, squares for l = 2 and
diamonds for l = 3. The size of the symbols indicates the expected relative
amplitude of the modes (see text); symbols that would otherwise be too small
have been replaced by crosses. The filled circles show observed frequencies
from Kjeldsen et al. (1995), plotted with the same ∆ν but with a reference

frequency of ν
(obs)
0 = 846µHz.

730µHz shifted almost to the l = 0 line, with somewhat reduced amplitude.) In contrast,
since the g modes of degree 2 and 3 are trapped quite efficiently in the deep interior, their
estimated amplitudes are so small as to make the points virtually invisible in Figure 5.20.

The filled circles in Figure 5.20 show the frequencies observed by Kjeldsen et al. (1995),

again plotted with ∆ν = 40.3µHz, but with the reference frequency ν
(obs)
0 = 846µHz.

We can immediately identify modes with degrees l = 0 and 2, and the small frequency
separation found by Kjeldsen et al. (δν0 = (3.1 ± 0.3)µHz) is in excellent agreement with
the model value. The remaining six observed frequencies coincide quite well with l = 1
modes in the model and display an irregularity similar to the model frequencies (although
differing in detail). This might indicate that the observations of η Bootis show evidence for
avoided crossings involving g modes. Note, however, that some of the observed frequencies
may arise from modes with l = 3.
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The interpretation of the observations must clearly be regarded as preliminary, given the
uncertainty in extracting individual frequencies in a single-site power spectrum complicated
by side lobes. In particular, the indications in the echelle diagram of effects of g-mode
trapping is clearly extremely tentative. On the other hand, the close agreement between
the observed and computed value of the l = 0− 2 frequency separation is suggestive. The
difference of 10µHz in the reference frequency ν0 required to obtain agreement between the
location of the modes in Figure 5.20 is clearly a concern; however, it should be noted that
such differences may be induced by errors that are likely present as a result of the simplified
treatment of the near-surface layers in the modelling of the star and its oscillations (cf.
Section 5.1.2). In fact, is of a similar magnitude to the differences observed in comparisons
of solar observed and computed frequencies and attributed to errors in the treatment of the
superficial layers (see Figure 5.25). Similar effects might be expected for η Bootis (see also
Christensen-Dalsgaard et al. 1995b).

5.4 Oscillations in stellar atmospheres

In the preceding section I neglected terms of the order of the inverse scale heights in equi-
librium quantities. As pointed out, this is invalid near the stellar surface, where the scale
heights become small compared with the wavelength of the oscillations. In the present sec-
tion I discuss these effects in the particularly simple case of an isothermal atmosphere. This
has the significant advantage of allowing an analytical solution of the oscillation equations.
Furthermore, it is a reasonable approximation to a realistic stellar atmosphere where the
temperature variation is substantially slower than the variations in pressure and density.
In particular, in the solar case the temperature has a minimum at an optical depth of
about 10−4, corresponding to an altitude of about 500 km above the visible surface. An
early treatment of this problem was given by Biermann (1947); for a somewhat more recent
review, see Schatzman & Souffrin (1967). The extension of the results obtained here to a
more general model is discussed in Chapter 7.

I neglect effects of ionization and treat the gas in the atmosphere as ideal, so that the
equation of state is given by equation (3.19), where the mean molecular weight µ is taken
to be constant. Then equation (3.33) of hydrostatic support gives

dp

dr
= −gρ = − p

Hp
, (5.36)

where the pressure and density scale heights Hp and H (which are evidently the same in
this case) are given by

Hp = H =
kBT

gµmu
. (5.37)

As the extent of the atmosphere of at least main-sequence stars is much smaller than the
stellar radius, g can be taken to be constant. Then H is constant, and the solution to
equation (5.36) is

p = ps exp

(
− h
H

)
. (5.38)

Thus, from equation (3.19),

ρ = ρs exp

(
− h
H

)
. (5.39)
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Here I have introduced the altitude h = r − R, where R is the photospheric radius (corre-
sponding to the visible surface of the star, e.g. defined as the point where the temperature
equals the effective temperature), and ps and ρs are the values of p and ρ at h = 0.

We now consider the oscillations. As argued in Section 3.1.4, the motion becomes
strongly nonadiabatic in the stellar atmosphere. Nonetheless, for simplicity, I shall here
use the adiabatic approximation in the atmosphere. This preserves the most important
features of the atmospheric behaviour of the oscillations, at least qualitatively. The study
of atmospheric waves and oscillations, with full consideration of effects of radiative transfer,
is a very complex and still incompletely developed area (e.g. Christensen-Dalsgaard &
Frandsen 1983b). It might be noticed that the waves are in fact approximately adiabatic
in the upper part of the atmosphere. Here the diffusion approximation (upon which the
argument in Section 3.1.4 was based) is totally inadequate, as the gas is optically thin;
indeed the density is so low that the gas radiates, and hence loses energy, very inefficiently,
and the motion is nearly adiabatic.

I use the Cowling approximation, equations (5.12) and (5.13). Due to the small extent of
the atmosphere I neglect the term in 2/r (this is consistent with assuming g to be constant,
and corresponds to regarding the atmosphere as plane-parallel). Then the equations may
be written as

dξr
dh

=
1

Γ1H
ξr −

1

Γ1ps

(
1− k2

hc
2
s

ω2

)
exp

(
h

H

)
p′ , (5.40)

and
dp′

dh
= −ρs exp(− h

H
)(N2

s − ω2)ξr −
1

Γ1H
p′ . (5.41)

Here the squared sound speed

c2
s =

Γ1ps

ρs
(5.42)

and the squared buoyancy frequency

N2
s =

g

H

(
1− 1

Γ1

)
(5.43)

are constant. In accordance with the plane-parallel approximation I have introduced the
horizontal wave number kh instead of the degree l, using equation (4.51). These equations
may be combined into a single, second-order equation for ξr:

d2ξr
dh2

− 1

H

dξr
dh

+
1

H2

[
1

4

ω2

ω2
a

+
k2

hgH

ω2

(
1− 1

Γ1

)
− k2

hH
2

]
ξr = 0 . (5.44)

Here
ωa =

cs

2H
(5.45)

is a characteristic frequency for the atmosphere. In the solar atmosphereH is approximately
equal to 120 km, and ωa is about 0.03 s−1, corresponding to a cyclic frequency of about
5 mHz, or a period of about 3 min.

Exercise 5.3:

Carry through the derivation of equations (5.44) and (5.45). Furthermore, consider
the dependence on stellar parameters of ωa, measured in units of the characteristic
dynamical frequency (GM/R3)1/2 (cf. equation 5.10).
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Equation (5.44) has constant coefficients, and so the solution can be written down
immediately as

ξr(h) = a+ exp

(
λ+

h

H

)
+ a− exp

(
λ−

h

H

)
, (5.46)

where

λ± =
1

2
± 1

2

{
1− ω2

ω2
a

+ 4k2
hH

2

[
1− 4

ω2
a

ω2

1

Γ1

(
1− 1

Γ1

)]}1/2

. (5.47)

These equations have been the subject of extensive studies in connection with early attempts
to interpret observations of solar 5-minute oscillations of high degree (see e.g. Stein &
Leibacher 1974). From the expression for λ± one may qualitatively expect two regimes:
one where the frequency is relatively large, kh is relatively small and the first two terms
in {· · ·} dominate; the second where the frequency is small, kh is large and the last term
in {· · ·} dominates. These correspond to atmospheric acoustic waves and gravity waves,
respectively. From the point of view of global stellar oscillations interest centres on waves
with a wavelength much larger than the scale height of the atmosphere. Thus I neglect the
last term, reducing equation (5.47) to

λ± =
1

2
± 1

2

(
1− ω2

ω2
a

)1/2

. (5.48)

This is clearly the relation for purely vertical waves.
Equation (5.48) shows the physical meaning of ωa. When ω < ωa, λ± are real, and

the motion behaves exponentially in the atmosphere. When ω > ωa, λ± are complex, and
the motion corresponds to a wave propagating through the atmosphere. Thus ωa is the
minimum frequency of a propagating wave, and is consequently known as the acoustical
cut-off frequency (Lamb 1909). The exponential behaviour in the former case provides
the upper reflection of p modes, which was absent in the simplified asymptotic analysis
of Section 5.3. To study this in more detail, I consider the boundary conditions for an
atmosphere of infinite extent. Here the energy density in the motion must be bounded as
h tends to infinity. The energy density is proportional to ρξ2

r , which for the two solutions
behaves as

ρξ2
r ∼ exp(− h

H
) exp(2λ±

h

H
) = exp


±

(
1− ω2

ω2
a

)1/2
h

H


 . (5.49)

Therefore only the λ− solution is acceptable, and here the energy density decreases expo-
nentially. This gives rise to the atmospheric reflection. Thus only modes with frequencies
below ωa are trapped in the stellar interior. At higher frequencies the waves propagate
through the atmosphere; oscillations at such frequencies would therefore rapidly lose en-
ergy (such waves, generated in the convection zone, may contribute to the heating of the
solar chromosphere). In fact, the observed spectrum of oscillations stops at frequencies of
about 5 mHz. It should be noticed that λ− > 0, so that the displacement increases with al-
titude. This increase can in fact be observed by comparing oscillation amplitudes obtained
in spectral lines formed at different levels in the atmosphere.

From this solution we may obtain a more realistic boundary condition, to replace the
condition (4.68) discussed earlier. The condition of adiabaticity (4.58) and the continuity
equation (3.41) give

δp

p
= Γ1

δρ

ρ
= −Γ1div δδδr ' −Γ1

dξr
dh

= −Γ1
λ−
H
ξr , (5.50)
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or

p′ = δp− ξr
dp

dh
=

1

H
p(1− Γ1λ−)ξr , (5.51)

where, for simplicity, I neglected the horizontal part of the divergence of δδδr (this could, quite
simply, be included). This provides a boundary condition that may be used in numerical
computations, in place of equation (4.68). Typically it is applied at a suitable point, such
as the temperature minimum, in the atmosphere of the stellar model.

When ω is small compared with ωa, we can approximate λ− by

λ− '
1

2

[
1−

(
1− 1

2

ω2

ω2
a

)]
=

1

4

ω2

ω2
a

. (5.52)

Then Γ1λ− can be neglected in equation (5.51), compared with 1, and we recover the
boundary condition in equation (4.68). In this limit the displacement is almost constant
throughout the atmosphere. Also, it follows from equation (5.50) that the Lagrangian
perturbations to pressure and density, and consequently also to temperature, are small.
Physically, this means that the atmosphere is just lifted passively up and down by the
oscillation, without changing its structure. Only when the frequency is quite close to the
acoustical cut-off frequency does the oscillation have a dynamical effect on the atmosphere.

In reality the Sun, and likely many other stars, is surrounded by a high-temperature
corona; in the solar case the temperature exceeds 106 K. Here the scale heights are large, and
the acoustical cut-off frequency correspondingly small. A typical temperature of 1.6×106 K,
corresponds to ωa ' 0.001 s−1. This is below the frequencies of the modes observed in the
solar 5-minute region, and these are therefore propagating in the corona. This atmospheric
structure may be approximated by representing it by two isothermal layers, corresponding
to the inner atmosphere and the corona, respectively. In the corona the two solutions
obtained from equation (5.48) are waves propagating outwards into, and inwards from, the
corona. Of these only the former solution is physically realistic (unless one assumes that
there is a source of waves in the outer corona!). It may be written, as a function of altitude
and time, as

δr(h, t) = Aρ−1/2 exp[i(krh− ωt)] , (5.53)

where the radial wave number is

kr = H−1

(
ω2

ω2
a

− 1

)1/2

. (5.54)

This solution may also be used to obtain a boundary condition on numerical solutions of
the oscillation equations in the inner atmosphere, by requiring that the displacement and
the pressure perturbation be continuous at the interface between the atmosphere and the
corona. I shall not write down this condition in detail. Note, however, that as the solution
(5.53) is complex, the relation obtained between ξr and p′ has complex coefficients. Thus
the solution and the eigenfrequency are no longer purely real. Physically, the propagating
wave in the corona carries away energy from the oscillation, which is therefore damped,
even in the adiabatic approximation. This damping gives rise to an imaginary part in the
eigenfrequency, which corresponds to an exponential decay of the solution with time.

To estimate the importance of these effects we return to the solution (5.46), in the inner
atmosphere. Because of the effect of the corona both terms must now be included. By
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matching to equation (5.53) it may be shown that the two terms are roughly of the same
order of magnitude at the interface, where h = hc, say. At the altitude h the ratio between
the terms is therefore, roughly,

∣∣∣∣
a+ exp(λ+h/H)

a− exp(λ−h/H)

∣∣∣∣ ∼
∣∣∣∣
exp[λ+(h− hc)/H]

exp[λ−(h− hc)/H]

∣∣∣∣

= exp


−hc − h

H

(
1− ω2

ω2
a

)1/2

 . (5.55)

The base of the corona is approximately at hc = 2000 km. Thus hc/H ∼ 16, and the ratio
in equation (5.55) is very small in the lower part of the atmosphere, unless ω is close to
ωa. Therefore in general it is an excellent approximation to neglect the term in a+. By
the same argument, perturbations to the structure of the atmosphere, or the physics of the
oscillations, at the temperature minimum, say, or higher, have little effect on the solution in
the deep atmosphere; hence they barely perturb the solution in the interior of the star or the
eigenfrequencies. This is fortunate; for the upper solar atmosphere is highly inhomogeneous,
and contains magnetic fields of strength sufficient to modify the properties of the oscillations.
In addition, the modes may get non-linear at sufficient altitudes, which also affects their
propagation. Even so, the assumption of a pure exponentially decaying solution is probably
adequate in the inner atmosphere. This has been confirmed by numerical calculations.

The large decrease in the oscillation energy from the lower atmosphere to the base of
the corona also limits the importance of the loss of energy in the form of propagating waves
in the corona. Detailed, nonadiabatic calculations generally show that this only makes
a small contribution to the damping of the modes, except at very high frequencies. The
dominant source of damping is heat loss due to the radiative or convective flux in the upper
convection zone and the lower atmosphere.

5.5 The functional analysis of adiabatic oscillations

A great deal of insight into the properties of adiabatic oscillations can be obtained by
regarding the equations as an eigenvalue problem in a Hilbert space (Eisenfeld 1969; Dyson
& Schutz 1979; Christensen-Dalsgaard 1981). Here I consider two different, but very closely
related, formulations: one based on the unseparated oscillation equations, valid for general
perturbations and a second obtained after separation of the oscillation equations in terms
of spherical harmonics.

5.5.1 The oscillation equations as linear eigenvalue problems in a Hilbert
space

To obtain the general form, I go back to the perturbed equations of motion, equation (3.43).
After separation of the time dependence on the form (4.3) this can be written as

ω2δδδr = F(δδδr) , (5.56)

where

F(δδδr) =
1

ρ0
∇p′ − g′ − ρ′

ρ0
g0 . (5.57)
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Here the perturbation quantities denote the amplitudes, after the separation of the time
dependence. As indicated, F is a linear functional of δδδr. To see this, note that from the
continuity equation (3.41) ρ′ is a linear functional of δδδr; so, therefore, is the gravitational
potential perturbation Φ′ as given by equation (3.45). In the adiabatic case p′ is obtained
from ρ′ and δδδr as in equation (3.50); this defines the adiabatic operator Fa. The nonadia-
batic case is more complicated, but here also it is possible to obtain p′ as a linear functional
of δδδr (see Christensen-Dalsgaard 1981).

To cast the problems in terms of functional analysis, I introduce a space H of vector
functions of position in the star, with suitable regularity properties, and define an inner
product on H by

< ξξξ, ηηη >=

∫

V
ρ0ξξξ
∗ · ηηη dV , (5.58)

for ξξξ, ηηη in H; here “*” denotes the complex conjugate. I also introduce the domain D(F) of
the operator F as those vectors in H such that the boundary condition (4.68) is satisfied.
The central result of this section is now that, as shown by Lynden-Bell & Ostriker (1967),
the operator Fa corresponding to equation (5.57) for adiabatic oscillations is symmetric, in
the sense that

< ξξξ,Fa(ηηη) >=< Fa(ξξξ), ηηη > , for ξξξ, ηηη ∈ D(F) . (5.59)

The formulation in terms of the spatially separated variables proceeds in a very similar
manner. The separated oscillation equations (4.20) and (4.19) may be written

1

ρ

dp′

dr
+
ρ′

ρ
g +

dΦ′

dr
= ω2ξr , (5.60)

1

r

(
p′

ρ
+ Φ′

)
= ω2ξh . (5.61)

As before, the quantities on the left-hand side can be obtained in terms of ξr and ξh; in
particular, Φ′ is found from ρ′ from the separated integral solution to Poisson’s equation
given in equation (5.11). I introduce the subspace Hl of the space of pairs of quadratically
integrable functions on the interval [0, R], with vectors

ξ ≡ (ξr, ξh) ∈ Hl . (5.62)

Then equations (5.60) and (5.61) can be written as

Fl(ξ) = ω2ξ , (5.63)

defining the operator Fl corresponding to the separated oscillation equations. Assuming
again the adiabatic relation for p′ one obtains the linear operator Fa,l for adiabatic oscilla-
tions in Hl. The boundary conditions on ξr and ξh can be imposed by restricting the part
of Hl where Fa,l is defined. Thus I define the domain of Fa,l by

D(Fa,l) = {(ξr, ξh)|ξr − lξh → 0 for r → 0 ∧ δp(R) = 0} ; (5.64)

the boundary conditions on Φ′ are satisfied automatically by the integral expression (5.11).
The inner product on Hl is defined by

< ξ, η >l≡ 4π

∫ R

0
[ξ∗r (r)ηr(r) + L2ξ∗h(r)ηh(r)]r2ρdr , (5.65)
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for two vectors ξ = (ξr, ξh) and η = (ηr, ηh) in Hl. Again one may show, using the explicit
expression, that the operator Fa,l is symmetric, i.e.,

< Fa,l(ξ), η >l=< ξ,Fa,l(η) >l for all ξ, η ∈ D(Fa,l) . (5.66)

From equations (5.59) and (5.66) follow immediately a number of useful properties of
Fa and Fa,l. For simplicity I generally present them in terms of Fa; precisely analogous
relations are obviously valid for Fa,l. The simplest result is that the squared eigenfrequencies
are real. This may be demonstrated by introducing the functional Σ on D(F) by

Σ(ξξξ) =
< ξξξ,Fa(ξξξ) >

< ξξξ, ξξξ >
; (5.67)

it follows from equation (5.59) that Σ(ξξξ) is real. If ω2
0 is an eigenvalue of the problem with

eigenvector ξξξ0, i.e.,
Fa(ξξξ0) = ω2

0ξξξ0 , (5.68)

then
Σ(ξξξ0) = ω2

0 , (5.69)

and hence ω2
0 is real. Since the coefficients in equations (4.61), (4.62) and (4.64) are then

real, it follows that we may also choose the eigenfunctions to be real at all r.
As is well known, a second property of a symmetric operator is that eigenvectors corre-

sponding to different eigenvalues are orthogonal. Thus if

Fa(ξξξ1) = ω2
1ξξξ1; Fa(ξξξ2) = ω2

2ξξξ2; ω2
1 6= ω2

2 , (5.70)

then
< ξξξ1, ξξξ2 >= 0 . (5.71)

A very important result concerns the effect of a small perturbation to the oscillation
equations. This perturbation could result from a small change to the equilibrium model,
from the inclusion of nonadiabatic effects (Christensen-Dalsgaard 1981) or, as discussed
in Chapter 8, from the inclusion of the effect of large-scale velocity fields in the model.
I characterize the perturbation by a change δF in the operator defining the oscillation
equations. If δδδr0 and ω0 are solutions to the adiabatic oscillation equations,

ω2
0δδδr0 = Fa(δδδr0) , (5.72)

the change in ω2 caused by the perturbation δF can be obtained from first order pertur-
bation analysis (e.g. Schiff 1949) as

δω2 ' < δδδr0, δF(δδδr0) >

< δδδr0, δδδr0 >
. (5.73)

Thus the frequency change can be computed from the unperturbed eigenvector. Similarly,
if δFl is a perturbation to the operator Fl defining the separated oscillation equations, and
ω2

0, ξ0 is a solution to the unperturbed problem,

Fa,l(ξ0) = ω2
0ξ0 , (5.74)
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then the frequency change can be obtained from

δω2 ' < ξ0, δFl(ξ0) >l
< ξ0, ξ0 >l

. (5.75)

Some further consequences of this relation are discussed in Section 5.5.3.

Exercise 5.4:

To prove equation (5.73), let F = Fa + δF , ω2 = ω2
0 + δω2, and δδδr = δδδr0 + δ(δδδr),

such that F(δδδr) = ω2δδδr. Neglect quadratic terms in the perturbations, and use the
symmetry of Fa (equation 5.59) to eliminate the terms in the perturbation δ(δδδr) to the
eigenfunction.

5.5.2 The variational principle

From the symmetry of the operator of adiabatic oscillations it follows that ω2 satisfies a
variational principle (cf. Chandrasekhar 1964). Indeed, it is easy to show from equation
(5.59) that if δξξξ ∈ H is a small change to the eigenvector, then

Σ(ξξξ0 + δξξξ) = ω2
0 +O(‖δξξξ‖2) , (5.76)

where ‖ · · · ‖ is the norm corresponding to < · · · , · · · >. Thus Σ is stationary at the
eigenfrequencies. From a physical point of view this reflects Hamilton’s principle for the
system consisting of the pulsating star. It is conservative, because of the assumption of
adiabaticity, and isolated because of the boundary condition (4.68).

It is evident that the variational property, and equivalently the symmetry of the oper-
ators F and Fl, are not valid for nonadiabatic oscillations, where energy is not conserved.
Also it depends on the choice of boundary conditions that isolate the system, such as the
vanishing of the Lagrangian pressure perturbation. If a different condition is used, such as
the match to a solution in an isothermal atmosphere discussed in Section 5.4, the varia-
tional property is no longer guaranteed. However, regardless of the boundary condition it
is possible to write down expressions analogous to equation (5.69), but possibly containing
surface terms; if the effects of the surface properties on the oscillations are small, these
expressions may be expected to be approximately variational. In fact it follows from the
equations of linear adiabatic oscillations that for any radius r∗

ω2
∫ r∗

0
ρ
(
ξ2
r + L2ξ2

h

)
r2dr =

∫ r∗

0

(
Γ1pD

2
1 + 2

dp

dr
ξrD1 +

1

ρ

dρ

dr

dp

dr
ξ2
r

)
r2dr

− 8πG

2l + 1

∫ r∗

0
r−(l−1)D2(r)

∫ r

0
r′l+2

D2(r′)dr′dr + p′(r∗)ξr(r∗)r∗
2 (5.77)

+
4πG

2l + 1

{
2ρ(r∗)ξr(r∗)r∗

−(l−1)
∫ r∗

0
D2(r)rl+2 dr − [ρ(r∗)ξr(r∗)]

2 r∗3
}

;

here

D1 =
1

r2

d

dr
(r2ξr)−

l(l + 1)

r
ξh,

D2 =
1

r2

d

dr
(r2ρξr)−

l(l + 1)

r
ρξh (5.78)
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are the amplitudes of div(δδδr) and div(ρδδδr) respectively. For radial oscillations equation
(5.77) may be considerably simplified, to give

ω2
∫ r∗

0
ξ2
rρr

2dr =

∫ r∗

0

{
Γ1p r

4
[

d

dr

(
ξr
r

)]2

− rξ2
r

d

dr
[(3Γ1 − 4)p]

}
dr

+r∗ [3Γ1p(r
∗)ξr(r∗) + r∗δp(r∗)] ξr(r∗) . (5.79)

These equations are valid at any r∗. If the surface radius is chosen for r∗, and the surface
terms are neglected, they reduce to the expression defined symbolically in equation (5.69).
In fact, the surface terms are in general relatively small, and even the complete expressions
are approximately variational. As discussed by Christensen-Dalsgaard, Gough & Morgan
(1979) and J. Christensen-Dalsgaard (1982), they may be utilized in the computation of
accurate oscillation frequencies (see also Section 6.6).

5.5.3 Effects on frequencies of a change in the model

As an example of the use of equation (5.75), I discuss in more detail the interpretation of
changes in the frequencies caused by changes in the equilibrium model. Consider a mode
(n, l), with eigenvector ξnl = (ξr,nl, ξh,nl) ∈ Hl; without loss of generality I may assume that
ξr,nl(r) and ξh,nl(r) are real. The relative frequency change caused by the perturbation δFl
is then, according to equation (5.75)

δωnl
ωnl

=
1

2

δω2
nl

ω2
nl

=
< ξnl, δFl(ξnl) >l
2ω2

nl < ξnl, ξnl >l
. (5.80)

Here the denominator is proportional ω2
nlEnl, where Enl was defined in equation (4.48).

Also, I represent δFl on component form as

δFl(ξnl) = (φr[ξnl], φh[ξnl]) , (5.81)

where φr[ξnl](r) and φh[ξnl](r) are functions of r. Then we can write equation (5.80) as

Enl
δωnl
ωnl

= Inl , (5.82)

where

Inl =
2π
∫ R

0

[
ξr,nl(r)φr[ξnl](r) + L2ξh,nl(r)φh[ξnl](r)

]
ρr2dr

Mω2
nl[ξ

2
r (R) + l(l + 1)ξ2

h(R)]
. (5.83)

Thus Inl gives the integrated effect of the perturbation, normalized to the total surface
displacement.

Equations (5.82) and (5.83) provide a linear relation between the change in the model
and the change in the frequency. These expressions are somewhat formal. However, it
follows from the discussion in Section 5.1 that the changes in the coefficients of the oscillation
equations, and hence the changes φr[ξnl](r) and φh[ξnl](r) in the components of δFl, can be
expressed in terms of changes in two suitably chosen model variables, for example density
and sound speed. For simplicity, I assume that the change in the model occurs without a
change in its radius (this would in general be the case for models of the Sun, where the
radius is known with high accuracy) and let δrρ and δrc

2 denote the changes, between the
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Figure 5.21: Kernels for an l = 0, n = 21 mode (with frequency ν = 3.04 mHz)
of a model of the present Sun. Panels (a) and (b) show RKnl

c2,ρ and RKnl
ρ,c2 .

The Knl
c2,ρ is positive everywhere, while the kernel Knl

ρ,c2 takes on both positive

and negative values. Panels (c) and (d) similarly show the kernels RKnl
ρ,Y and

RKnl
Y,ρ for the same mode; the insert in panel (d) shows the detailed behaviour

of RKnl
Y,ρ in the hydrogen and helium ionization zones.
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equilibrium models, in ρ and c2 at fixed r4. Then, after some manipulation, equation (5.82)
can be written as

δωnl
ωnl

=

∫ R

0

[
Knl
c2,ρ(r)

δrc
2

c2
(r) +Knl

ρ,c2(r)
δrρ

ρ
(r)

]
dr (5.84)

(e.g. Gough & Thompson 1991), where the kernels Knl
c2,ρ and Knl

ρ,c2 are computed from the
eigenfunctions. Examples of such kernels are shown in Figure 5.21.

As discussed in Section 5.1.1, other pairs of “mechanical” variables may be used instead
of (c2, ρ); the transformation between these pairs can be accomplished by means of the equa-
tion of hydrostatic support and mass, expressed in terms of the model changes, and suitable
integrations by part. If it is also assumed that the equation of state is known, further trans-
formation is possible. An important example is provided by the relation c2 = Γ1p/ρ, where
Γ1 can be obtained as a function Γ1(p, ρ, Y, Z) of pressure, density and chemical composi-
tion as specified by the abundances Y and Z by mass of helium and heavy elements. This
yields5

δrc
2

c2
=

[(
∂ ln Γ1

∂ ln p

)

ρ,Y,Z

+ 1

]
δrp

p
+

[(
∂ ln Γ1

∂ ln ρ

)

p,Y,Z

− 1

]
δrρ

ρ

+

(
∂ ln Γ1

∂Y

)

p,ρ,Z
δrY +

(
∂ ln Γ1

∂Z

)

p,ρ,Y
δrZ . (5.85)

By substituting this into equation (5.84), and eliminating δrp by means of the perturbed
equation of hydrostatic support, δωnl/ωnl can be expressed in terms of δrρ/ρ, δrY and δrZ.
Since the surface heavy-element abundance may be obtained from spectroscopic observa-
tions it is reasonable to assume Z to be known; neglecting therefore the term in δrZ, we
finally obtain

δωnl
ωnl

=

∫ R

0

[
Knl
ρ,Y (r)

δrρ

ρ
(r) +Knl

Y,ρ(r)δrY (r)

]
dr . (5.86)

Examples of these kernels are shown in Figure 5.21, panels (c) and (d). In particular,
it should be noticed that Knl

Y,ρ is significantly different from zero only in the hydrogen
and helium ionization zones. As discussed in Section 9.2 this substantially facilitates the
determination of δrρ/ρ through inverse analysis.

5.5.4 Effects of near-surface changes

I now assume that δFl in equation (5.81) is localized near the stellar surface, in the sense
that

φr[ξ](r) ' 0 , φh[ξ](r) ' 0 for R− r > ε , (5.87)

for some small ε. For modes extending substantially more deeply than the region of the
perturbation, i.e., with R− rt � ε, the eigenfunctions are nearly independent of l at fixed
frequency in that region (see also Figure 5.8 and the associated discussion). Hence Inl

4These model changes should not be confused with the Lagrangian perturbations associated with the
oscillations, introduced in Chapters 3 and 4.

5As noted by Basu & Christensen-Dalsgaard (1997) one may in addition include a contribution from
the intrinsic difference (δΓ1)int between the model and the true Γ1, at fixed thermodynamic conditions
and composition.



114 CHAPTER 5. PROPERTIES OF SOLAR AND STELLAR OSCILLATIONS.

depends little on l at fixed ω. To get a more convenient representation of this property, I
introduce

Qnl =
Enl

E0(ωnl)
, (5.88)

where El(ω) is obtained by interpolating to ω in Enl at fixed l. Then

Qnlδωnl (5.89)

is independent of l, at fixed ω, for modes such that R − rt � ε. Conversely, if Qnlδωnl is
independent of l at fixed ω for a given set of modes, then δFl is probably largely localized
outside r = max(rt) over the set of modes considered.

Figure 5.22: The inertia ratio Qnl, defined in equation (5.88), against fre-
quency ν, for f and p modes in a normal solar model. Each curve corresponds
to a given degree l, selected values of which are indicated.

Qnl has been plotted in Figure 5.22, for selected values of l. Its variation with l is largely
determined by the change in the penetration depth. Modes with higher degree penetrate
less deeply and hence have a smaller inertia at given surface displacement. As a consequence
of this their frequencies are more susceptible to changes in the model.

An important example concerns the uncertainties in the physics of the model and the
oscillations in the near-surface region, discussed in Section 5.1.2 and indicated schematically
in Figure 5.1. These are confined to a very thin region, and hence, according to the
discussion following equation (5.89), we may expect that their effects on the frequencies,
when scaled with Qnl, are largely independent of degree at a given frequency. As discussed
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below, and in more detail in Sections 7.7 and 9.2, this can be used to eliminate the effects
of the uncertainties in the analysis of observed frequencies.

Figure 5.23: Relative sound-speed difference δrc/c between a model with mod-
ified surface opacity and a normal model, in the sense (modified model) –
(normal model).

To illustrate this behaviour, we may analyze model changes localized very near the
solar surface. Specifically, I consider a solar model where the opacity has been artificially
increased by a factor of 2 at temperatures below about 105 K; this is compared with a normal
model of the present Sun. In both models the mixing-length parameter and composition
have been adjusted so as to obtain a model with solar radius and luminosity; the effect of
this is that the interior of the model is virtually the same. The opacity has no effect in
the bulk of the convection zone where energy transport is totally dominated by convection;
hence the change in the model is largely confined to the atmosphere and the uppermost
parts of the convection zone. Figure 5.23 shows the sound-speed difference δrc

2 between
the modified and the normal model.

The unscaled differences between frequencies of the two models are shown in Figure
5.24a. It is evident that the differences show a very systematic increase in magnitude
with increasing degree. As shown by Figure 5.24b this is entirely suppressed by scaling
the differences by Qnl. Indeed, the differences now seem to decrease with increasing l.
This is predominantly due to the fact that at the largest values of l the modes can no
longer be assumed to be independent, near the surface, of degree at fixed frequency (for
an asymptotic description of this behaviour, see for example Gough & Vorontsov 1995). A
small additional contribution comes from the fact that the modes only penetrate partly, to
a degree-dependent extent, into the region where the sound speed has been modified.

It might also be noted that the frequency differences are very small at low frequency.
This is related to the fact that low-frequency modes have very small amplitudes in the
surface region (cf. Figure 5.9). However, a proper understanding of this feature requires a
more careful analysis (see Christensen-Dalsgaard & Thompson 1997).
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Figure 5.24: Frequency differences between a model with modified surface
opacity and a normal model, in the sense (modified model) – (normal model).
Panel (a) shows the raw differences. In panel (b) the differences have
been scaled by Qnl, in accordance with equation (5.89). Points correspond-
ing to a given degree have been connected, according to the following line
styles: l = 0, 1, 2, 3, 4, 5, 10, 20, 30 (solid); l = 40, 50, 70, 100 (short-dashed);
l = 150, 200, 300, 400 (long-dashed); l = 600, 700, 800, 900, 1000, 1100 (dot-
dashed).

A rather similar behaviour is obtained for the observed frequencies, as shown in Figure
5.25. The unscaled differences (panel a) show a strong dependence on l, which is largely
(but not completely) suppressed by scaling. This strongly suggests that most of the errors
in the model are located very near the surface. I note that this is precisely the region where,
according to the arguments in Section 5.1.2, many of the uncertainties in the physics of the
model and the oscillations are located. Thus it is not surprising that we obtain an effect
on the frequencies of this nature. As discussed in Section 9.2 it is possible to suppress the
effect, precisely because of its systematic dependence on frequency. However, I note also in
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Figure 5.25: Frequency differences between observed data and frequencies of a
solar model, in the sense (observations) – (model). The observed frequencies
were obtained from the MDI experiment on the SOHO spacecraft (Rhodes et
al. 1997, 1998), whereas the model frequencies are for Model S of Christensen-
Dalsgaard et al. (1996). Crosses indicate modes with l ≤ 200, diamonds are
modes with 200 < l ≤ 500 and triangles are modes with 500 < l. Panel (a)
shows the raw differences. In panel (b) the differences have been scaled by Qnl,
in accordance with equation (5.89). Here ridges corresponding to low radial
orders n are evident; the lowest values have been indicated in the figure.

Figure 5.25b that there is a significant dependence of the differences on degree; this must
be associated with errors in the model in deeper layers. I return to the origin of these
differences in Section 7.7.2.

For the highest-degree modes the figure shows a clear ‘pealing-off’ into ridges for each
value of the radial order n. Here the upper turning point is so close to the surface that
the assumptions of nearly vertical propagation, and degree-independent eigenfunctions,
break down. A similar behaviour was noted in Figure 5.24 for differences between model
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frequencies. Also, I note that the f modes (with n = 0) represent a special case. As
discussed in Section 7.5.1, these essentially have the character of surface gravity waves, with
frequencies given approximately by equation (3.84); in particular, computed frequencies of
normal solar models are essentially independent of the details of the structure of the model
(see also Gough 1993; Chitre, Christensen-Dalsgaard & Thompson 1998). Thus the error in
the f-mode frequencies evident in Figure 5.25b must arise from effects other than differences
between the hydrostatic structure of the Sun and the model. A likely cause are dynamical
interactions between the modes and the turbulent motion in the solar convection zone
(Murawski, Duvall & Kosovichev 1998; Mȩdrek, Murawski & Roberts, 1999). However, the
details of such mechanisms, and in particular their effects on the p-mode frequencies, are
still rather uncertain.

The probable presence of near-surface errors in the model must be taken into account
when relating differences between observed and computed frequencies to the corresponding
differences between the structure of the star and the model. Specifically, consider the
determination of corrections δrc

2 and δrρ to a stellar model, from the differences δωnl =

ω
(obs)
nl −ωnl between observed frequencies ω

(obs)
nl and model frequencies ωnl: here we expect

differences between the star and the model both in the internal structure, characterized by
(c2, ρ), and in the near-surface layers. In addition, the observed frequencies are unavoidably
affected by errors. From the analysis above we therefore expect that equation (5.84) must
be replaced by

δωnl
ωnl

=

∫ R

0

[
Knl
c2,ρ(r)

δrc
2

c2
(r) +Knl

ρ,c2(r)
δrρ

ρ
(r)

]
dr

+Q−1
nl G(ωnl) + εnl , (5.90)

where the function G(ω) accounts for the effect of the near-surface uncertainties, and εnl are
the relative observational errors in the frequencies. The term in G must then be determined
as part of the analysis of the frequency differences, or suppressed by means of suitable
filtering of the data. As discussed above, for high-degree modes the scaled frequency effects
of the near-surface problems can no longer be regarded as purely a function of frequency; a
representation which takes this into account has been developed by Di Mauro et al. (2002).



Chapter 6

Numerical techniques

The differential equations (4.61), (4.62) and (4.64), in combination with boundary con-
ditions such as equations (4.65) – (4.68), constitute a two point boundary value problem.
Non-trivial solutions to the problem can be obtained only at selected values of the frequency
ω, which is therefore an eigenvalue of the problem. Problems of this nature are extremely
common in theoretical physics, and hence there exists a variety of techniques for solving
them. Nevertheless, the computation of solar adiabatic oscillations possesses special fea-
tures, which merit discussion. In particular, we typically need to determine a large number
of frequencies very accurately, to match the volume and precision of the observed data.

Specific numerical techniques are discussed in considerable detail by, for example, Unno
et al. (1989) and Cox (1980). Here I concentrate more on general properties of the solution
method. The choice of techniques and examples is unavoidably biased by my personal
experience, but should at least give an impression of what can be achieved, and how to
achieve it.

I note that a self-contained package for computing stellar adiabatic oscillations, with
documentation and further notes on the numerical techniques, is available on the WWW
at http://astro.phys.au.dk/∼jcd/adipack.n/.

6.1 Difference equations

The numerical problem can be formulated generally as that of solving

dyi
dx

=
I∑

j=1

aij(x)yj(x) , for i = 1, . . . , I , (6.1)

with suitable boundary conditions at x = x1 and x2, say. Here the order I of the system
is four for the full nonradial case, and two for radial oscillations or nonradial oscillations in
the Cowling approximation.

To handle these equations numerically, I introduce a mesh x1 = x(1) < x(2) < . . . <
x(Nme) = x2 in x, where Nme is the total number of mesh points. Similarly I introduce

y
(n)
i ≡ yi(x

(n)), and a
(n)
ij ≡ aij(x

(n)). A commonly used, very simple representation of the
differential equations is in terms of second-order centred differences, where the differential
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equations are replaced by the difference equations

y
(n+1)
i − y(n)

i

x(n+1) − x(n)
=

1

2

I∑

j=1

[
a

(n)
ij y

(n)
j + a

(n+1)
ij y

(n+1)
j

]
, i = 1, . . . , I . (6.2)

These equations allow the solution at x = x(n+1) to be determined from the solution at
x = x(n).

More elaborate and accurate difference schemes (e.g. Press et al. 1986; Cash & Moore
1980), can be set up which allow the rapid variation in high-order eigenfunctions to be
represented with adequate accuracy on a relatively modest number of meshpoints. Alter-
natively one may approximate the differential equations on each mesh interval (x(n), x(n+1))
by a set of equations with constant coefficients, given by

dη
(n)
i

dx
=

I∑

j=1

a
(n)
ij η

(n)
j (x), for i = 1, . . . , I , (6.3)

where a
(n)
ij ≡ 1

2(a
(n)
ij + a

(n+1)
ij ) (Gabriel & Noels 1976). These equations may be solved

analytically on the mesh intervals, and the complete solution is obtained by continuous
matching at the mesh points. This technique clearly permits the computation of modes
of arbitrarily high order. I have considered its use only for systems of order two, i.e., for
radial oscillations or non-radial oscillations in the Cowling approximation.

6.2 Shooting techniques

Perhaps the conceptually simplest technique for handling a boundary value problem is the
shooting technique. For simplicity, I consider first the case of a second-order system, such
as results from making the Cowling approximation. Then there is one boundary condition,
namely equation (4.65), at the centre, and one condition, equation (4.68), at the surface. For
any value of ω the equations may be integrated numerically, imposing the central boundary
condition on ξr and ξh, and the quantity

∆(ω) ≡
(
p′ +

dp

dr
ξr

)∣∣∣∣
r=R

(6.4)

may be evaluated. The eigenfrequencies are obviously the zeros of ∆(ω). A convenient
method of locating them is to evaluate ∆(ω) at a sequence of points ω1, ω2, . . .; once an
interval has been found where ∆ changes sign the zero can be found, for instance, by
applying the secant method. An attractive feature of the method is precisely this ability
to search automatically for all modes in a given frequency range, particularly when it is
combined with a method for determining the order of a given mode, so that a check can be
made that no modes have been skipped.

A slight elaboration of this basic technique is required to make it computationally
efficient. Due to the rapid decrease of temperature near the solar surface, the equations
are almost singular there. Far from the eigenfrequencies the solution therefore generally
increases rapidly towards the surface; this translates into a dramatic variation of ∆ with ω,
which complicates the determination of the zeros. To avoid this problem, one may compute

solutions (ξ
(i)
r , ξ

(i)
h ) and (ξ

(s)
r , ξ

(s)
h ) satisfying the inner and the surface boundary conditions,
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respectively. A continuous match of the interior and exterior solutions requires the existence
of non-zero constants C(i) and C(s) such that

C(i)ξ
(i)
r (rf) = C(s)ξ

(s)
r (rf)

C(i)ξ
(i)
h (rf) = C(s)ξ

(s)
h (rf) ,

(6.5)

where rf is an appropriately chosen fitting point. This set of equations has a solution only
if the determinant

∆f(ω) = ξ(i)
r (rf)ξ

(s)
h (rf)− ξ(i)

h (rf)ξ
(s)
r (rf) (6.6)

vanishes. Hence the eigenfrequencies are determined as the zeros of ∆f , as before.
The choice of fitting point should be guided by the expected behaviour of the eigenfunc-

tion, in such a way that the integration of the differential equations proceeds in a stable
fashion. Thus, for instance, when solving for a strongly trapped g mode of high degree,
rf should be near the maximum in the buoyancy frequency where the mode is trapped; in
this way the integration from both the centre and the surface is in the direction where the
solution increases. Similarly, when integrating for a p mode of high degree, rf should be in
the oscillatory region near the surface.

The solution of the full fourth-order problem proceeds in a very similar fashion. Here
there are two linearly independent solutions that satisfy the boundary conditions at the
centre, and two linearly independent solutions that satisfy the conditions at the surface.
The condition that these two sets of solutions match continuously at a point rf leads to a
set of equations whose solution requires the vanishing of a 4× 4 determinant. It should be
noted, however, that problems arise when the effect of the perturbation in the gravitational
potential is small. In this case, although the two separate solutions from e.g. the centre are
formally linearly independent, they are in practice very close to being linearly dependent,
and the zeros of ∆f are therefore ill-determined. This is no major concern in practice, since
under these circumstances the Cowling approximation is in general adequate. However,
as discussed below the problem may be avoided through the use of some variant of the
relaxation technique.

6.3 Relaxation techniques

The relaxation technique considers the set of difference equations, such as equations (6.2),
together with the homogeneous boundary conditions and a normalization condition, as a

set of equations for the unknown quantities {y(n)
i ; i = 1, . . . , I; n = 1, . . . , Nme;ω}. Due

to the appearance of the eigenfrequency, the equations are non-linear in the unknowns.
They are solved by linearizing around an assumed initial trial solution, and the solution
is obtained by iteration. This technique is equivalent to what is commonly known as the
Henyey technique in computations of stellar evolution (Henyey, Forbes & Gould 1964; see
also Baker, Moore & Spiegel 1971; Kippenhahn & Weigert 1990).

A disadvantage of this technique is that it requires a reasonably accurate trial solution,
both for the eigenfrequency and the eigenfunction, if the iteration is to converge to the
desired mode. Also it is not immediately possible to search a given part of the spectrum.
These problems may be avoided by dropping one of the boundary conditions, and regarding
ω as given (e.g. Castor 1971; Osaki & Hansen 1973). The difference equations are then

a linear set of equations for the {y(n)
i } which may be solved directly. Given the solution,

the remaining boundary condition, now regarded as a function of ω, is solved to obtain the
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eigenfrequencies. Thus in this form the relaxation technique retains the advantages of the
shooting method, in that a region of the spectrum can be scanned. Once a sufficiently close
approximation to the solution has been found, the rate of convergence can be increased by
switching to simultaneous iteration for the eigenfrequency and eigenfunction.

As for the shooting technique, the straight determination of the eigenfrequency through
root-seeking on one of the boundary conditions is rather ill-behaved. This problem may be
avoided by imposing all boundary conditions, but permitting for general ω a discontinuity
in one component of the eigenfunction at a suitable interior fitting point rf . The eigenfre-
quencies are then determined by requiring that the discontinuity vanish. I have found that
this technique allows stable solution of the full set of equations for all relevant degrees and
frequencies.

6.4 Formulation as a matrix eigenvalue problem

As discussed in Section 5.5 the equations of adiabatic oscillation, written as in equations
(5.60) and (5.61), constitute a linear eigenvalue problem in function space. If the operator
on the right hand side is discretized, the result is a linear discrete eigenvalue problem.
By solving this, one obtains (approximations to) the eigenvalues and eigenfunctions of the
continuous problem.

A method of this nature (but generalized to the non-adiabatic case) was used by Keeley
(1977) for radial oscillations. Knölker & Stix (1983) used it for adiabatic non-radial oscil-
lations in the Cowling approximation. In these cases, the operator describing the left hand
side of the oscillation equations is a pure differential operator; hence its discrete representa-
tion only couples the solution at a few neighbouring meshpoints and results in an eigenvalue
problem where the matrix is banded, with only a few off-diagonal elements. Consequently,
efficient techniques exist for the determination of the eigenvalues. In contrast, in the full
non-radial problem the terms in Φ′ couple all parts of the model [see also equation (5.11)];
then the corresponding matrix is full, although for large l it is diagonally dominated, due
to the factors (r′/r)l+1 and (r/r′)l occurring respectively in the first and second term on
the right hand side of equation (5.11). In this case it is not evident that sufficiently fast
algorithms exist for the determination of the matrix eigenvalues to make the technique
competitive with the shooting or relaxation techniques. No attempt has apparently been
made to apply it to this problem.

The matrix eigenvalue problem can also be derived directly from the variational principle
as expressed in equation (5.77), by means of the so-called Rayleigh-Ritz method (e.g. Strang
& Fix 1973). To do so the eigenfunction is expanded on a set of suitable basis functions,
and the expansion coefficients are determined by imposing the condition that the expression
(5.77) be stationary. Although this method has proven useful in atomic physics (e.g. B. L.
Christensen-Dalsgaard 1982), the effects of the gravitational potential once again lead to a
full matrix in the resulting eigenvalue problem.

I finally note that Pesnell (1990) has developed an efficient algorithm, based on the
method of Castor (1971), for computing nonradial oscillations both in the adiabatic and
the nonadiabatic case. This involves formulating the oscillation equations as a generalized
linear algebraic eigenvalue problem; in contrast to the techniques discussed above, Poisson’s
equation is left on differential form, and hence the resulting matrices are sparse. Cox et al.
(1989) applied this method to the computation of solar oscillations.
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6.5 Richardson extrapolation

The difference scheme (6.2), which is used by at least some versions of the shooting, relax-
ation and matrix eigenvalue techniques, is of second order. Consequently the truncation
errors in the eigenfrequency and eigenfunction scale as N−2

me . If ω(1
2Nme) and ω(Nme) are

the eigenfrequencies obtained from solutions with 1
2Nme and Nme meshpoints, the leading

order error term therefore cancels in

ω(Ri) ≡ 1/3[4ω(Nme)− ω(1/2Nme)] . (6.7)

The evaluation of ω(Ri), known as Richardson extrapolation, was used by Shibahashi &
Osaki (1981) to compute frequencies of solar oscillation. This provides an estimate of the
eigenfrequency that is substantially more accurate than ω(Nme), although of course at some
added computational expense.

6.6 Variational frequencies

The variational property discussed in Section 5.5.2 can be used to obtain an estimate of the
oscillation frequency which is at least formally more accurate than the frequency obtained
as an eigenvalue of the solution of the oscillation equations (Christensen-Dalsgaard, Gough
& Morgan 1979; J. Christensen-Dalsgaard 1982). It follows from equation (5.76) that if the
computed eigenfunction is substituted into the functional Σ(ξ), the result agrees with the
squared eigenfrequency to within an error that is quadratic in the error in the eigenfunction.
If the latter error goes as N−2

me , the error in Σ(ξ) would be expected to vary as N−4
me ; this

assumes that the evaluation of Σ(ξ), for given ξ, is sufficiently accurate.
For realistic solar models the complete expressions (5.77) or (5.79) must be used, in-

cluding the surface terms. However, since these terms are in general relatively small, the
variational property is still approximately satisfied. Hence the expressions may be used
to provide estimates of the frequency which are less sensitive to numerical error than the
eigenfrequency. On the other hand, it should be noted that the variational property, and
the analysis leading to equations (5.77) and (5.79), assume that the solar model satisfies
the equations of hydrostatic equilibrium and the mass equation exactly. When the model is
itself the result of a numerical solution of the equations of stellar structure this is evidently
not the case; then, even if they were to be evaluated with infinitely high precision for the
given model, the variational frequency and the eigenfrequency would not agree. The dis-
crepancy provides an estimate of the effect on the frequencies of the inconsistencies in the
model. Examples of this were discussed by Christensen-Dalsgaard & Berthomieu (1991).

6.7 The determination of the mesh

Computational efficiency demands that the distribution of mesh points be chosen appro-
priately. It is immediately obvious from the eigenfunctions (cf. Figures 5.8 and 5.10 that
a mesh uniform in r is far from optimal; also the distribution of points should clearly be
different for p and for g modes.

Procedures exist that determine the optimal mesh as part of the numerical solution of a
set of differential equations (Gough, Spiegel & Toomre 1975). In the present case, however,
the requirements on the mesh are essentially driven by the behaviour of the modes of high
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radial order, whose eigenfunctions are given, with considerable precision, by the asymptotic
expression (5.22). Thus to have a roughly constant number of meshpoints between the nodes
in the eigenfunction, the mesh should be approximately uniformly spaced in terms of the
integral in this equation.

To define a flexible method for setting up the mesh I have adopted a simplified version
of the procedure developed by Gough et al. (1975). Thus I introduce a variable z, with a
range from 0 to 1, such that the mesh is uniform in z, and determined by

dz

dr
= λH(r) ; (6.8)

here λ is a normalization constant, relating the ranges of z and r, and the function H
determines the properties of the mesh. Given H, z is obtained as

z(r) = λ

∫ r

0
H(r′)dr′ , (6.9)

with

λ =

(∫ R

0
H(r)dr

)−1

. (6.10)

The mesh {r(n), n = 1, . . . , Nme} is finally determined by solving the equations

z(r(n)) =
n− 1

Nme − 1
, (6.11)

by interpolating in the computed z(r).
The choice of the function H must be guided by the asymptotic behaviour of the modes,

as described by the function K in equation (5.22). Specifically, I have used

H(r)2 = R−2 + c1

ω2
g

c2
+ c2

|N |2
ω2

gr
2

+ c3

(
d ln p

dr

)2

, (6.12)

where ω2
g ≡ GM/R3 = t−2

dyn is a characteristic squared frequency. Here the term in c1

results from noting that in the limit of an extreme p mode K ∝ c−2 [cf. equation (5.29)],
whereas the term in c2 similarly corresponds to the extreme g-mode case, where K ∝ N 2/r2

[cf. equation (5.33)]. The term in c3 provides extra meshpoints near the surface, where
the reflection of the p modes takes place. Finally the constant term ensures a reasonable
resolution of regions where the other terms are small.

Table 6.1

c1 c2 c3

p-mode mesh 10. 0.01 0.015
g-mode mesh 0.025 0.1 0.0001

Table 6.1: Parameters in equation (6.12) for determination of meshes suitable
for computing p and g modes in a model of the present Sun.
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The parameters in this expression can be determined by testing the numerical accuracy
of the computed frequencies (e.g. Christensen-Dalsgaard & Berthomieu 1991). For nor-
mal solar models reasonable choices, based on a fairly extensive (but far from exhaustive)
set of calculations, are given in Table 6.1. In the p-mode case the mesh is predominantly
determined by the variation of sound speed, with the term in N giving a significant contri-
bution near the centre and the term in d ln p/dr contributing very near the surface. The
g-mode mesh is dominated by the term in N in most of the radiative interior, whereas in
the convection zone, where |N | is generally small, the constant term dominates; the term
in d ln p/dr is again important in the surface layers.
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Chapter 7

Asymptotic theory of stellar
oscillations

In Chapter 5 I discussed in a qualitative way how different modes of oscillation are trapped
in different regions of the Sun. However, the simplified analysis presented there can, with
a little additional effort, be made more precise and does in fact provide quite accurate
quantitative information about the oscillations.

The second-order differential equation (5.17) derived in the previous chapter cannot be
used to discuss the eigenfunctions. Thus in Section 7.1 I derive a more accurate second-
order differential equation for ξr. In Section 7.2 the asymptotic solution of such equations
by means of the JWKB method is briefly discussed, with little emphasis on mathematical
rigour; the results are used to obtain asymptotic expressions for the eigenfrequencies and
eigenfunctions. They are used in Sections 7.3 and 7.4 to discuss p and g modes. This
approximation, however, is invalid near the surface, and furthermore suffers from critical
points in the stellar interior where it formally breaks down. In Section 7.5 I discuss an
asymptotic formulation derived by D. O. Gough (cf. Deubner & Gough 1984) that does
not suffer from these problems; in particular, it incorporates the atmospheric behaviour of
the oscillations analyzed in Section 5.4. On the other hand, it uses a dependent variable
with a less obvious physical meaning. This method gives a unified asymptotic treatment of
the oscillations throughout the Sun, although still under certain simplifying assumptions.
A similar, but even more complete, treatment was developed by Gough (1993), although
this appears so far not to have been substantially applied to numerical calculations.

One of the most important results of the asymptotic analysis is the so-called Duvall
relation, which was first discovered by Duvall (1982) from analysis of observed frequencies
of solar oscillation. A rough justification for the relation is given in Section 7.3, and a more
rigorous derivation is presented in Section 7.5. It is shown that frequencies of p modes
approximately satisfy

∫ R

rt

(
1− L2c2

ω2r2

)1/2
dr

c
=

[n+ α(ω)]π

ω
. (7.1)

This is evidently a very special dependence of the frequencies on n and l. As discussed in
Section 7.7, this relation gives considerable insight into the dependence of the frequencies
on the sound speed, and it provides the basis for approximate, but quite accurate, methods
for inferring the solar internal sound speed on the basis of observed frequencies.
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7.1 A second-order differential equation for ξr

To obtain this equation I go back to the two equations (5.12) and (5.13) in the Cowling
approximation. By differentiating equation (5.12) and eliminating dp′/dr using equation
(5.13) we obtain

d2ξr
dr2

= −
(

2

r
− 1

Γ1
H−1
p

)
dξr
dr
−
[
− 2

r2
− d

dr

(
1

Γ1
H−1
p

)]
ξr

+
1

ρc2

(
S2
l

ω2
− 1

){
ρ(ω2 −N2)ξr −

1

Γ1
H−1
p p′

+

[
d

dr
ln

∣∣∣∣∣
1

ρc2

(
S2
l

ω2
− 1

)∣∣∣∣∣

]
p′
}
. (7.2)

Here p′ may be expressed in terms of ξr and its derivative by means of equation (5.12). The
result is

d2ξr
dr2

= −
(

2

r
− 1

Γ1
H−1
p

)
dξr
dr

+

[
− 1

Γ1
H−1
p +

d

dr
ln

∣∣∣∣∣
1

ρc2

(
S2
l

ω2
− 1

)∣∣∣∣∣

]
dξr
dr

+[−K(r) + h̃(r)]ξr , (7.3)

where K is still given by equation (5.21). All other terms in ξr are lumped together in h̃;
these contain derivatives of equilibrium quantities, and so may be assumed to be negligible
compared with K (except, as usual, near the surface). Equation (7.3) may also be written
as

d2ξr
dr2
− d ln f

dr

dξr
dr

+ [K(r)− h̃(r)]ξr = 0 , (7.4)

where

f(r) =
1

ρr2c2

∣∣∣∣∣
S2
l

ω2
− 1

∣∣∣∣∣ . (7.5)

It should be noticed that the principal difference between equation (7.4) and equation
(5.20) derived previously is the presence of a term in dξr/dr. This occurs because I have now
not neglected the term in ξr on the right-hand side of equation (5.12), and the corresponding
term in p′ in equation (5.13). These terms cannot be neglected if ξr is rapidly varying, as
assumed.

It is convenient to work with an equation without a first derivative, on the form of
equation (5.20). I introduce ξ̂r by

ξr(r) = f(r)1/2ξ̂r(r) ; (7.6)

ξ̂r satisfies
d2ξ̂r
dr2

+ [K(r)− h(r)]ξ̂r = 0 , (7.7)

where

h(r) = h̃(r)− 1

2

d2 ln f

dr2
+

1

4

(
d ln f

dr

)2

. (7.8)



7.2. THE JWKB ANALYSIS 129

Here h, like h̃, is generally small compared with K. When it is neglected asymptotically,
equation (7.7) is identical to equation (5.20), apart from the change of the dependent
variable. In particular, the trapping properties of the modes, as inferred from this analysis,
are the same as obtained previously.

It is obvious that the derivation of equation (7.7) fails near points where ω2 = S2
l , and

where consequently f has a singular logarithmic derivative. These are the turning points
of p modes. This problem can be avoided by deriving instead a second-order differential
equation for p′ (see Unno et al. 1989, Chapter 16); but, hardly surprisingly, this equation
has problems at the turning points for the g modes. It is possible to develop a coherent
asymptotic theory by suitably combined use of these two equations; a more convenient
approach, however, is to use a second-order equation that is valid throughout the model.
I return to this in Section 7.5, but base the initial asymptotic analysis on the somewhat
simpler equation (7.7).

7.2 The JWKB analysis

To analyze equation (7.7) asymptotically I use the JWKB method (for Jeffreys, Wentzel,
Kramers and Brillouin; in fact the method seems to have been first used by Liouville). It is
widely used in quantum mechanics (see e.g. Schiff 1949, Section 34), and is also described
in Unno et al. (1989), Chapter 16. It is possible to provide a firm mathematical foundation
for the method; knowing that this is so, it is enough here to sketch how it works, without
worrying too much about its convergence properties.

The assumption is that the solution varies rapidly compared with equilibrium quantities,
i.e., compared with K(r). Thus I write it as

ξ̂r(r) = a(r) exp[iΨ(r)] , (7.9)

where Ψ is rapidly varying, so that the local radial wave number

kr =
dΨ

dr
(7.10)

is large; a(r) is a slowly varying amplitude function. Formally, it is always possible to write
the solution in this form. If equation (7.9) is substituted into equation (7.7), neglecting h,
one obtains

(
d2a

dr2
+ 2ikr

da

dr
+ ia

dkr
dr
− k2

ra

)
exp(iΨ) = −K(r)a(r) exp(iΨ) . (7.11)

On the left-hand side the dominant term is the one containing k2
r ; to ensure that this term

cancels with the right-hand side, kr must be chosen as

kr(r) = K(r)1/2 . (7.12)

The next-order terms are those in kr which must cancel. Thus

1

a

da

dr
= −1

2

1

kr

dkr
dr

, (7.13)

or, apart from a constant factor,

a(r) = |kr|−1/2 = |K(r)|−1/4 . (7.14)
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This leaves in equation (7.11) only a term in the second derivative of a. The asymptotic
approximation consists of neglecting this term, which by the assumption is small compared
with k2

ra. Then the approximate solution is completely specified by equations (7.12) and
(7.14). Since the solution may be chosen to be real, it can be written as

ξ̂r(r) = A |K(r)|−1/4 cos

(∫ r

r0
K(r′)1/2dr′ + φ

)
, for K(r) > 0 , (7.15)

or

ξ̂r(r) = |K(r)|−1/4
[
A+ exp

(∫ r

r0
|K(r′)|1/2dr′

)
+A− exp

(
−
∫ r

r0
|K(r′)|1/2dr′

)]

for K(r) < 0 , (7.16)

for some suitable r0. Here A and φ, or A+ and A−, are real constants which must be
determined from the boundary conditions.

Notice that this solution has the property of being locally exponential where K < 0.
Thus it is in accordance with the discussion in Section 5.2. On the other hand, it breaks
down at the zeros of K; formally this may be seen from the fact that there a, as obtained
in equation (7.12), is singular, and its second derivative cannot be neglected in equation
(7.11). Thus we need to make a special analysis of the points where K = 0. In particular,
this is required to connect the solution in the exponential and oscillatory regions, and hence
apply the boundary conditions.

I consider a turning point r1 such that K(r) < 0 for r < r1 and K(r) > 0 for r > r1. If
r1 is a simple zero for K, close to r1 we have approximately that

K(r) ' K1(r − r1) , (7.17)

where K1 > 0 is a constant. I introduce the new independent variable x by

x = K
1/3
1 (r − r1) ; (7.18)

then the equation for ξ̂r can be approximated by

d2ξ̂r
dx2

= −xξ̂r , (7.19)

with the solution
ξ̂r(r) = C1Ai (−x) + C2Bi (−x) , (7.20)

where C1 and C2 are constants, and Ai and Bi are the Airy functions (e.g. Abramowitz &
Stegun 1964).

To be definite, I consider a solution that is trapped in the oscillatory region outside r1,
and hence we need to choose the constants C1 and C2 such as to select the solution that
decreases exponentially as r decreases beneath r1. When x < 0, and |x| is large, Ai (−x)
and Bi (−x) have the following asymptotic behaviour:

Ai (−x) ' 1

2
√
π
|x|−1/4 exp

(
−2

3
|x|3/2

)
,

Bi (−x) ' 1√
π
|x|−1/4 exp

(
2

3
|x|3/2

)
. (7.21)
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Thus we must require that C2 = 0, and the solution satisfying the boundary condition for
r < r1 is therefore

ξ̂r(r) = C1Ai (−x) . (7.22)

We can use this solution to determine the phase φ in equation (7.15). For large positive
x the asymptotic expansion of Ai (−x) is

Ai (−x) ' 1√
π
|x|−1/4 cos

(
2

3
x3/2 − π

4

)
. (7.23)

This must agree with what is obtained from equation (7.15), assuming that there is a region
where both this equation and the approximation in equation (7.23) are valid. From the
expansion of K in equation (7.17) we obtain

Ψ =

∫ r

r1
K(r′)1/2dr′ + φ =

2

3
x3/2 + φ , (7.24)

so that equation (7.15) gives

ξ̂r ' AK−1/6
1 x−1/4 cos

(
2

3
x3/2 + φ

)
. (7.25)

This agrees with equation (7.23) if

φ = −π
4
. (7.26)

Sufficiently far from the turning point r1 the JWKB solution satisfying the boundary con-
ditions at r = r1 is thus

ξ̂r(r) = A1|K(r)|−1/4 cos

(∫ r

r1
K(r′)1/2dr′ − π

4

)
. (7.27)

Similarly, if there is an outer turning point at r = r2, so that K(r) > 0 for r < r2 and
K(r) < 0 for r > r2, one finds that the asymptotic solution that is exponentially decaying
for r > r2 is

ξ̂r(r) = A2|K(r)|−1/4 cos

(∫ r2

r
K(r′)1/2dr′ − π

4

)
. (7.28)

Exercise 7.1:

Verify this.

To obtain the full solution we must match the two separate solutions smoothly at a
suitable point between r1 and r2, r = rf , say. I define

Ψ1 ≡ Ψ1(rf) =

∫ rf

r1
K(r)1/2dr − π

4
,

Ψ2 ≡ Ψ2(rf) =

∫ r2

rf

K(r)1/2dr − π

4
. (7.29)
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Then the conditions that both ξ̂r and its first derivative be continuous at r = rf give

A1K(rf)
−1/4 cos Ψ1 = A2K(rf)

−1/4 cos Ψ2 ,

−A1K(rf)
−1/4 sin Ψ1 = A2K(rf)

−1/4 sin Ψ2 . (7.30)

Notice that in the derivative I have neglected terms coming from the differentiation of K;
these are small compared with the term included. These linear equations for A1, A2 only
have a non-trivial solution if their determinant vanishes. This leads to

sin Ψ1 cos Ψ2 + cos Ψ1 sin Ψ2 = sin(Ψ1 + Ψ2) = 0 , (7.31)

or
Ψ1 + Ψ2 = (n− 1)π , (7.32)

where n is an integer. Thus
∫ r2

r1
K(r)1/2dr = (n− 1

2
)π, n = 1, 2, . . . . (7.33)

Here K depends on the frequency ω; thus equation (7.33) implicitly determines the fre-
quencies of the modes trapped between r1 and r2. In addition, we find that A1 = A2.

We can also find the asymptotic behaviour of the eigenfunctions. From the definition
of ξ̂r, equations (7.5) and (7.6), it follows from equation (7.27) that for r1 < r < r2

ξr(r) = Ãρ−1/2r−1c−1

∣∣∣∣∣
S2
l

ω2
− 1

∣∣∣∣∣

1/2

|K(r)|−1/4 cos

(∫ r

r1
K(r′)1/2dr′ − π

4

)

= Aρ−1/2r−1c−1/2

∣∣∣∣∣
S2
l /ω

2 − 1

N2/ω2 − 1

∣∣∣∣∣

1/4

cos

(∫ r

r1
K(r′)1/2dr′ − π

4

)
, (7.34)

where A = Ã ω−1/2. This expression is clearly valid only at some distance from the turning
points, where the asymptotic approximation (7.23) can be used. Thus the apparently
singular behaviour in | · · · | causes no problems.

Notice that in equation (7.34) c−1/2 (which is proportional to T−1/4) and | · · · |1/4 vary
relatively little through the region where the modes are trapped. Thus the variation of ξr
through the Sun is dominated by ρ−1/2r−1. This is the reason why I plotted the eigenfunc-
tion in terms of ρ1/2rξr(r) in Figures 5.8 and 5.10.

We can also find the solution in the exponential regions, by using the asymptotic expan-
sion for Ai in equation (7.21). The results are, for the solution corresponding to equation
(7.34) in the trapping region

ξr(r) '
1

2
Aρ−1/2r−1c−1/2

∣∣∣∣∣
S2
l /ω

2 − 1

N2/ω2 − 1

∣∣∣∣∣

1/4

exp

(
−
∫ r1

r

∣∣K(r′)
∣∣1/2 dr′

)

for r < r1 , (7.35)

and

ξr(r) '
1

2
Aρ−1/2r−1c−1/2

∣∣∣∣∣
S2
l /ω

2 − 1

N2/ω2 − 1

∣∣∣∣∣

1/4

exp

(
−
∫ r

r2

∣∣K(r′)
∣∣1/2 dr′

)

for r > r2 . (7.36)
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7.3 Asymptotic theory for p modes

For high frequencies we may, as in Section 5.2, approximate K by

K(r) ' 1

c2
(ω2 − S2

l ) . (7.37)

As discussed previously the theory, as formulated so far, does not provide reflection at the
surface. Mathematically, this is expressed by the lack of a turning point near the surface.
Also, the formulation fails near the point where ω = Sl where the neglected term h(r)
in (7.8) is singular. Thus equation (7.33) for the eigenfrequencies cannot immediately be
used. It is shown in Section 7.5 below that a proper treatment of the surface and the lower
turning point leads to an asymptotic behaviour similar to that discussed above; however,
the effective phase shift in the equation corresponding to (7.33) is different. Thus the
frequencies for the p modes approximately satisfy

∫ R

rt
(ω2 − S2

l )1/2 dr

c
= (n+ α)π , (7.38)

where α is a new phase constant, which contains the contribution 1/4 from the inner
turning point, and an, as yet unidentified, contribution from the outer turning point. It is
convenient to write this equation as

∫ R

rt

(
1− L2

ω2

c2

r2

)1/2
dr

c
=

(n+ α)π

ω
, (7.39)

where L2 = l(l+1). Notice that the left-hand side of this equation is a function of w = ω/L
[it follows from equation (5.28) that rt is determined by ω/L]; thus equation (7.39) can be
written as

π(n+ α)

ω
= F

(
ω

L

)
, (7.40)

where

F (w) =

∫ R

rt

(
1− c2

r2w2

)1/2
dr

c
. (7.41)

The observed and computed frequencies in fact satisfy relations like equation (7.40) quite
closely; this was first noticed by Duvall (1982) for the observed frequencies. An example is
illustrated in Figure 7.1.

When the function F (w) is known from observations, equation (7.41) can be inverted
to determine c(r). I return to this in Section 7.7.

It is instructive to consider a special case of this equation, which is furthermore a reason-
able approximation to the Sun. The solar convection zone is approximately adiabatically
stratified, so that

d ln p

dr
= Γ1

d ln ρ

dr
; (7.42)

here I assume Γ1 to be constant (this is evidently not true in the ionization zones of H
and He, but they only occupy the outer few per cent of the Sun). We may also assume
that g is constant. Finally I take as boundary conditions on the equilibrium structure that
p = ρ = 0 at r = R. With these assumptions the sound speed is given by

c2 =
g

µp
(R− r) , (7.43)
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Figure 7.1: Observed frequencies of solar oscillation, plotted according to equa-
tion (7.40). The constant value of α, 1.45, was determined such as to minimize
the spread in the relation (7.40). (Adapted from Christensen-Dalsgaard et al.
1985.)

where µp = 1/(Γ1− 1) is an effective polytropic index of the region considered. I also treat
the layer as plane parallel, so that r can be replaced by R in the integral in equation (7.41).
Then the integral may easily be evaluated, to yield

F (w) =
π

2
w
µpR

g
. (7.44)

Exercise 7.2:

Derive equations (7.43) and (7.44).

Thus the dispersion relation (7.40) gives

ω2 =
2

µp

g

R
(n+ α)L . (7.45)
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In particular, ω is proportional to L1/2. This property is approximately satisfied by the
computed (and observed) frequencies at high degree (cf. Figure 5.6). Indeed, equation
(7.45) might be expected to be approximately valid for modes whose degree is so high that
they are entirely trapped within the convection zone.

For modes of low degree, rt is very close to the centre (see Figure 5.5). In equation
(7.39), therefore, the second term in the bracket on the left-hand side is much smaller than
unity over most of the range of integration. To exploit this, I consider the difference

I =

∫ R

0

dr

c
−
∫ R

rt

(
1− c2

w2r2

)1/2
dr

c

=

∫ rt

0

dr

c
+

∫ R

rt


1−

(
1− c2

w2r2

)1/2

 dr

c

≡ I1 + I2 , (7.46)

where w = ω/L. Notice that c is almost constant near the centre (it may be shown that
the first derivative of c is zero at r = 0). Thus I take c to be constant in the first integral,
and obtain

I1 =
rt

c(0)
' L

ω
=

1

w
, (7.47)

by using equation (5.28). In the second integral the integrand is only substantially different
from zero for r close to rt, which was assumed to be small. Thus here I also approximate c
by its value at r = 0. Furthermore, the upper limit of integration may be replaced by ∞.
Then we obtain

I2 =
1

w

∫ 1

0

[
1−

(
1− u2

)1/2
]

du

u2
=

1

w

(
π

2
− 1

)
. (7.48)

Thus, finally,

I =
1

w

π

2
, (7.49)

and equation (7.39) may be approximated by

∫ R

0

dr

c
− L

ω

π

2
=

(n+ α)π

ω
, (7.50)

or

ω =
(n+ L/2 + α)π

∫ R

0

dr

c

. (7.51)

The derivation of equation (7.51) clearly lacks rigour. However, it may be shown from
a more careful asymptotic analysis of the central region (e.g. Vandakurov 1967; Tassoul
1980) that the result is correct to leading order, except that L should be replaced by l+1/2.
Equation (7.51) may also be written as

νnl =
ωnl
2π
' (n+

l

2
+

1

4
+ α)∆ν , (7.52)

where

∆ν =

[
2

∫ R

0

dr

c

]−1

(7.53)
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is the inverse of twice the sound travel time between the centre and the surface. This
equation predicts a uniform spacing ∆ν in n of the frequencies of low-degree modes. Also,
modes with the same value of n+ l/2 should be almost degenerate,

νnl ' νn−1 l+2 . (7.54)

This frequency pattern has been observed for the solar five-minute modes of low degree
(cf. Chapter 2), and may be used in the search for stellar oscillations of solar type. In
fact, as shown in Figure 5.14 it is visible even down to very low radial order for computed
frequencies of models near the zero-age main sequence.

The deviations from the simple relation (7.52) have considerable diagnostic potential.
The expansion of equation (7.39), leading to equation (7.51), can be extended to take into
account the variation of c in the core (Gough 1986a); alternatively it is possible to take the
JWKB analysis of the oscillation equations to higher order (Tassoul 1980). The result may
be written as

νnl ' (n+
l

2
+

1

4
+ α)∆ν − (AL2 − δ)∆ν2

νnl
, (7.55)

where

A =
1

4π2∆ν

[
c(R)

R
−
∫ R

0

dc

dr

dr

r

]
. (7.56)

Hence

δνnl ≡ νnl − νn−1 l+2 ' −(4l + 6)
∆ν

4π2νnl

∫ R

0

dc

dr

dr

r
, (7.57)

where I neglected the term in the surface sound speed c(R). It is often convenient to rep-
resent observed or computed frequencies in terms of a limited set of parameters associated
with the asymptotic description of the modes. This may be accomplished by fitting the
asymptotic expression to the frequencies. By carrying out a polynomial fit in the quan-
tity x − x0, where x = n + l/2 and x0 is a suitable reference value (Scherrer et al. 1983,
Christensen-Dalsgaard 1988b) one obtains the average over n of δνnl as

〈δνnl〉n ' (4l + 6)D0 , (7.58)

where

D0 ' −
1

4π2x0

∫ R

0

dc

dr

dr

r
. (7.59)

Thus δνnl is predominantly determined by conditions in the stellar core. Physically, this may
be understood from the fact that only near the centre is kh comparable with kr. Elsewhere
the wave vector is almost vertical, and the dynamics of the oscillations is largely independent
of their horizontal structure, i.e., of l; therefore at given frequency the contributions of these
layers to the frequency are nearly the same, and hence almost cancel in the difference in
equation (7.57).

It should be noted that the accuracy of expressions (7.58) and (7.59) is questionable;
they appear to agree fortuitously with frequencies computed for models of the present
Sun, whereas they are less successful for models of different ages or masses (Christensen-
Dalsgaard 1991a). However, the form of the dependence of 〈δνnl〉n on l shown in equation
(7.58), as well as the argument that this quantity is most sensitive to conditions in stellar
cores, probably have a broader range of validity. As a star evolves, the hydrogen abundance
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in the core decreases and hence the mean molecular weight increases. For an approximately
ideal gas, the sound speed may be obtained from

c2 ' kBT

µmu
; (7.60)

since the central temperature varies little during hydrogen burning, due to the strong
temperature sensitivity of the nuclear reaction rates, the main effect on the sound speed in
the core comes from the change in the mean molecular weight µ. Consequently c decreases
as the star evolves, the decrease being most rapid at the centre where hydrogen burning is
fastest. As a result, c develops a local minimum at the centre, and dc/dr is positive in the
core. This region gives a negative contribution to D0 (cf. eq. 7.57), of increasing magnitude
with increasing age, and hence D0 decreases with increasing age (see also Christensen-
Dalsgaard 1991a). Hence D0, which can in principle be observed, is a measure of the
evolutionary state of the star. On the other hand, the overall frequency separation ∆ν,
defined in equation (7.53), approximately scales as the inverse of the dynamical time scale
which, for main-sequence stars, is largely determined by the mass.

These considerations motivate presenting the average frequency separations in a
(∆ν0, D0) diagram, as illustrated in Figure 7.2; this is analogous to the ordinary
Hertzsprung-Russell diagram. As shown in panel (b) (note the different scales) most of
the variation in ∆ν0 is in fact related to tdyn, such that ∆ν0 scales as M1/2/R3/2. It is
evident from Figure 7.2 that on the assumption that the other parameters of the star (such
as composition) are known, a measurement of ∆ν and D0 may allow determination of the
mass and evolutionary state of the star (Christensen-Dalsgaard 1984b; Ulrich 1986, 1988;
Christensen-Dalsgaard 1988b). On the other hand, Gough (1987) analyzed the sensitiv-
ity of this result to the other stellar parameters, and found that the uncertainty in the
knowledge of the heavy element abundance, in particular, had a severe effect on the de-
termination of the mass and age. As an example of such sensitivity, Figure 7.2(c) shows
the consequences of an increase of the hydrogen abundance by 0.03. A careful analysis
of the information content in measured frequency separations, when combined with more
traditional measurements of stellar properties, was given by Brown et al. (1994).

The eigenfunctions of p modes can be found from equation (7.34). It is convenient to
use equation (7.38) to get

∫ r

rt
K(r′)1/2dr′ = −

∫ R

r
K(r′)1/2dr′ + (n+ α)π , (7.61)

so that we obtain

ξr(r) ' (7.62)

Aρ−1/2c−1/2r−1

∣∣∣∣∣1−
S2
l

ω2

∣∣∣∣∣

1/4

cos


ω
∫ R

r

(
1− S2

l

ω2

)1/2
dr′

c
− (−1/4 + α)π


 ,

where I have again neglected N 2/ω2. However, the derivation neglects the fact that the
present simple asymptotic description breaks down near the lower turning point. As shown
in Section 7.5, a more appropriate treatment gives essentially the same result, except that
the term −1/4 in equation (7.62) must be replaced by 1/4. Also, to simplify this expression
further I note that S2

l decreases quite rapidly with increasing r. Near r = rt, ω
2 and S2

l are
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Figure 7.2: Evolution tracks ( ) and curves of constant central hy-
drogen abundance ( ) in (∆ν0, D0) diagrams. Here ∆ν0 is the aver-
age separation between modes of the same degree and adjacent radial order,
and D0 is related to the small separation between νnl and νn−1 l+2 (cf. eq.
7.58). The stellar masses, in solar units, and the values of the central hydro-
gen abundance, are indicated. In panel (b), the frequency separations have
been scaled by (ρ)−1/2 (ρ ∝ M/R3 being the mean density), to take out the
variation with t−1

dyn. Panel (c) shows the effect of increasing the hydrogen
abundance by 0.03 (heavy lines), relative to the case presented in panel (a)
(shown here with thin lines). (From Christensen-Dalsgaard 1993b.)
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comparable, but at some distance from the turning point we can assume that S2
l /ω

2 � 1.
Here, therefore

ξr(r) ' Aρ−1/2c−1/2r−1 cos

[
ω

∫ R

r

dr′

c
− (1/4 + α)π

]
. (7.63)

To this approximation the eigenfunction is independent of l. Oscillations with the same
frequency but different l therefore have approximately the same eigenfunctions near the
surface, if they are normalized to the same surface value. This was also seen in Figure
5.8. This property is important for the interpretation of the observed frequencies. It may
be understood physically in the following way: near the surface the vertical wavelength is
much shorter than the horizontal wavelength (i.e., kr � kh); the tangential component of
the displacement therefore has essentially no influence on the dynamics of the oscillation,
which is consequently independent of l.

Figure 7.3: Scaled eigenfunction for radial p mode of order n = 23 and fre-
quency ν = 3310µHz in a normal solar model (the same mode as was shown
in Figure 5.8a). According to the asymptotic equation (7.63) the quantity
plotted should oscillate between fixed limits in the region where the mode is
trapped.

From equation (7.63) one should expect that c1/2ρ1/2r ξr(r) behaves like a cosine func-
tion with a non-uniform argument. This is confirmed to high accuracy by Figure 7.3. Thus
equation (7.63) in fact gives a reasonable description of the eigenfunctions of high-order p
modes in the region where they are trapped.
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7.4 Asymptotic theory for g modes

For these in general ω2 � S2
l , and I approximate K by

K(r) ' l(l + 1)

r2

(
N2

ω2
− 1

)
. (7.64)

Typically a mode is trapped between two zeros r1 and r2 of K, and equation (7.33) is
immediately valid. Thus the frequencies are determined by

∫ r2

r1
L

(
N2

ω2
− 1

)1/2
dr

r
= (n− 1/2)π , (7.65)

or
∫ r2

r1

(
N2

ω2
− 1

)1/2
dr

r
=

(n− 1/2)π

L
. (7.66)

Here the left-hand side is solely a function of ω, so that equation (7.66) can be written, in
analogy with equation (7.40), as

n− 1/2

L
= G(ω) , (7.67)

where

G(ω) =
1

π

∫ r2

r1

(
N2

ω2
− 1

)1/2
dr

r
. (7.68)

I have here implicitly assumed that N has a single maximum, so that there is a single,
well-defined trapping region at each frequency. In many stellar models, including some
models of the Sun, there may be several maxima in N , and this may give rise to, at
least mathematically, interesting phenomena. Roughly speaking, to each maximum there
corresponds asymptotically a separate spectrum of g modes; where modes corresponding
to different regions happen to have nearly the same frequencies, the modes may interact in
“avoided crossings” (e.g. Christensen-Dalsgaard, Dziembowski & Gough 1980).

In the model illustrated in Figure 5.2 N has a weak secondary maximum near r/R =
0.35, and at a frequency of about 410µHz; this is in fact faintly reflected in the behaviour
of the frequencies shown in Figure 5.6, where there is an accumulation of modes at this
frequency, for l > 15. I neglect this local maximum and assume that N has a single
maximum, Nmax, in the interior of the Sun; from equation (7.68) it then follows that

G(ω)→ 0 for ω → Nmax . (7.69)

Consequently
ω → Nmax for L→∞ . (7.70)

This behaviour is clearly visible in Figures 5.6 and 5.7.
For high-order, low-degree g modes ω is much smaller than N over most of the interval

[r1, r2]. This suggests that a similar approximation to the one leading to equation (7.51)
should be possible. In fact, the integral may be expanded near the centre, in much the same
way as the integral in equation (7.39), by using the fact that N ∼ r near r = 0. However,
the expansion near the upper turning point can apparently not be done in a similarly
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simple fashion, and in any case the result does not quite have the correct dependence on
l. A proper asymptotic analysis (Tassoul 1980) shows that the frequencies of low-degree,
high-order g modes are given by

ω =

L

∫ r2

r1
N

dr

r

π(n+ l/2 + αg)
, (7.71)

where αg is a phase constant. Thus in this case the periods are asymptotically equally
spaced in the order of the mode. The spacing decreases with increasing l, as is also obvious
from Figure 5.6.

The analysis was carried to the next asymptotic order by Tassoul (1980). Ellis (1988),
Provost & Berthomieu (1986) and Gabriel (1986) compared the resulting expressions with
numerically computed frequencies for polytropic or solar models.

In the trapping region the eigenfunction is given by equation (7.34). We may assume
that ω2 � S2

l , and so obtain

ξr(r) ' Aρ−1/2r−1c−1/2
(
Sl
ω

)1/2
∣∣∣∣∣
N2

ω2
− 1

∣∣∣∣∣

−1/4

cos


L

∫ r

r1

(
N2

ω2
− 1

)1/2
dr′

r′
− π

4




= A

(
L

ω

)1/2

ρ−1/2r−3/2

∣∣∣∣∣
N2

ω2
− 1

∣∣∣∣∣

−1/4

cos


L

∫ r

r1

(
N2

ω2
− 1

)1/2
dr′

r′
− π

4


 . (7.72)

Except close to the turning points r1, r2 we may assume that N 2/ω2 � 1 (note, from Figure
5.2, that N increases very rapidly from 0 at the centre and at the base of the convection
zone). Here, therefore,

ξr(r) ' AL1/2ρ−1/2r−3/2N−1/2 cos


L

∫ r

r1

(
N2

ω2
− 1

)1/2
dr′

r′
− π

4


 . (7.73)

Hence we expect that ρ1/2r3/2N1/2ξr behaves like a distorted cosine function. This is
confirmed by Figure 7.4. Thus equation (7.73), as the corresponding equation for the p
modes, gives a fairly accurate description of the eigenfunction in the trapping region.

Outside the trapping region the eigenfunction locally decays exponentially; this is also
described by saying that the mode is evanescent. In particular, g modes are always evanes-
cent in convection zones. From Figure 5.2 it follows that in the solar case this evanescent
region is essentially restricted to the convection zone for ν < 200µHz. At higher frequencies
the evanescent region extends more deeply, and for frequencies near the maximum in N
the mode is oscillatory only in a narrow region around x = 0.1. Thus one would expect
such modes to be very efficiently trapped. To study the trapping I use the asymptotic
expression (7.36). In the convection zone we can assume that N = 0; and for low-frequency
(and high-degree) modes I neglect ω2/S2

l compared with 1. Then K ' −L2/r2, and the
variation in ξr through the convection zone may be approximated by

ξr(r) '
1

2

(
L

ω

)1/2

ρ−1/2r−3/2 exp

(
−L

∫ r

r2

dr′

r′

)

=
1

2

(
L

ω

)1/2

r2
Lρ−1/2r−(3/2+L) . (7.74)
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Figure 7.4: Scaled eigenfunction for high-order g mode of degree 2, radial
order n = −10 and frequency ν = 104µHz in a normal solar model (the same
mode as was shown in Figure 5.10b). According to the asymptotic equation
(7.73) the quantity plotted should oscillate between fixed limits in the region
where the mode is trapped.

Thus the density decrease with increasing radius causes an increase in the amplitude, but
this is compensated for by the power law decrease represented by r−L (note that this is
the global manifestation of the locally exponential behaviour in the evanescent region). To
get an idea about the relative importance of these two effects I note that the radius rb at
the base of the solar convection zone is about 0.7 R, whereas the ratio between the surface
density and the density at the base of the convection zone is about 10−6. Thus we obtain

ξr(rb)/ξr(R) ∼ 10−3(0.7)−(3/2+L) ∼ 10−2.8+0.15L . (7.75)

This approximation, however, assumed the validity of the asymptotic expression (7.36)
right up to the surface. This is not true, as the assumptions underlying the analysis break
down close to the surface where the pressure scale height becomes small. It appears that
these effects dominate unless l is quite large. An attempt at analyzing this, based on the
more complete asymptotic theory to be described in the following section, is provided in
Section 7.6.2.

This analysis roughly describes the trapping of low-frequency modes. At higher fre-
quencies the deepening of the evanescent region must also be taken into account, and the
asymptotic analysis becomes rather complicated. Reference may be made, however, to the
numerical results presented in Figures 5.12 and 5.13. At low frequencies the increase in the
interior amplitude with degree, at fixed frequency, is roughly in accordance with the asymp-
totic discussion given above. The steep increase with increasing frequency at ν > 400µHz
is related to the faint local maximum in N at that frequency, which was discussed above
(cf. Figure 5.2); modes with higher frequency suddenly get trapped much deeper in the
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Sun, and their maximum amplitudes consequently rise very rapidly. For comparison one
might note that a mode with a velocity amplitude of 1 m sec−1 and a period of 1 hour has
a relative surface displacement amplitude of about 10−6. Thus modes with an amplitude
ratio of more than 106 are not likely to be seen. Clearly there is little hope of observing g
modes of degree greater than 20.

A more careful analysis than presented here would probably allow an understanding of
many of the features shown in Figures 5.12 and 5.13. This would be interesting but has, as
far as I know, not been undertaken so far.

7.5 A general asymptotic expression

An approximate asymptotic description of the oscillations has been derived by Gough (see
Deubner & Gough 1984), on the basis of earlier work by Lamb (1932). This does not
assume that the pressure and density scale heights are much larger than the wavelength;
but it assumes that the oscillations vary much more rapidly than r and g, so that the
problem is locally one of oscillations of a plane-parallel layer under constant gravity. Also,
as usual, the perturbation in the gravitational potential is neglected. Then the governing
equations are equations (5.12) and (5.13), but without the term in 2/r in the former. When
manipulating the equations, I neglect derivatives of r and g, but keep derivatives of the
thermodynamic quantities. I note that Gough (1993) generalized this treatment to include
also sphericity and varying gravity, although at the expense of obtaining considerably more
complicated expressions.

7.5.1 Derivation of the asymptotic expression

The trick of the analysis is to write the equations in terms of

χ = div δδδr . (7.76)

By using the equation of continuity and the condition of adiabaticity we may also write χ
as

χ = − 1

Γ1

(
p′

p
− ρg

p
ξr

)
. (7.77)

The oscillation equations can be written as

dξr
dr

= χ+
1

ρ

k2
h

ω2
p′ , (7.78)

and
dp′

dr
= ρ

(
ω2 + g

d ln ρ

dr

)
ξr + gρχ . (7.79)

In keeping with the plane-parallel approximation I have expressed l by kh, given by equation
(4.51), and I assume kh to be constant.

By multiplying equation (7.77) by Γ1p and differentiating we obtain, on using equations
(7.78) and (7.79)

dΓ1

dr
pχ− Γ1gρχ+ Γ1p

dχ

dr
= −ρω2ξr +

gk2
h

ω2
p′ . (7.80)
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This equation, together with equation (7.77), can be used to express ξr in terms of χ and
its first derivative. The result is

ρ

(
g − ω4

gk2
h

)
ξr = Γ1

[
pχ+

ω2

gk2
h

(
p

dχ

dr
− gρχ+ p

d ln Γ1

dr
χ

)]
. (7.81)

Finally, by differentiating equation (7.80) and using equations (7.78), (7.79) and (7.81)
to eliminate ξr, p

′ and their derivatives, we obtain the following second-order differential
equation for χ:

d2χ

dr2
+

(
2

c2

dc2

dr
+

1

ρ

dρ

dr

)
dχ

dr
(7.82)

+

[
1

Γ1

d2Γ1

dr2
− 2

Γ1

dΓ1

dr

gρ

p
+ k2

h

(
N2

ω2
− 1

)
− 1

ρ

dρ

dr

1

Γ1

dΓ1

dr
+
ρω2

Γ1p

]
χ = 0 .

Here I have introduced the adiabatic sound speed c from equation (3.52) and the buoyancy
frequency N from equation (3.73).

The differential equation for χ contains no interior singular points. However, it is clear
from equation (7.81) that the case where the coefficient of ξr vanishes is in some sense
singular. This occurs when

ω2 = gkh . (7.83)

It is easy to show that then the solution for χ to equation (7.81) grows exponentially towards
the interior; as this is clearly unacceptable, χ must be zero. Then equation (7.77) gives

p′ = gρξr , (7.84)

and equation (7.78) has the solution

ξr = a exp(khr) , (7.85)

where a is an arbitrary constant. It is easy to show that the resulting p′ satisfies equation
(7.79). Thus this is one possible solution to the plane-parallel oscillation equations. It
should be noticed that equation (7.83) agrees with equation (3.84) for the frequency of a
surface gravity wave. Thus the mode we have found must be identified with a surface gravity
wave; and we have shown that its frequency is independent of the structure of the model
below the surface, if sphericity is neglected. This result was first obtained by Gough. It is
obvious from Figure 5.6 that the mode can be followed to degrees well below 10, although
here the correction to the frequency given by equation (7.83) becomes significant.

To analyze equation (7.82) it is convenient to eliminate the term in dχ/dr. Thus I
introduce X by

X = c2ρ1/2χ . (7.86)

After considerable manipulation one then finds that X satisfies the differential equation

d2X

dr2
+

[
k2

h

(
N2

ω2
− 1

)
+
ω2

c2
− 1

2

d

dr
(H−1)− 1

4
H−2

]
X = 0 , (7.87)

where I have introduced the density scale height H by

H−1 = −d ln ρ

dr
. (7.88)
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Finally, I define a characteristic frequency ωc by

ω2
c =

c2

4H2

(
1− 2

dH

dr

)
, (7.89)

and use equation (4.60) for the acoustic frequency Sl, to obtain

d2X

dr2
+

1

c2

[
S2
l

(
N2

ω2
− 1

)
+ ω2 − ω2

c

]
X = 0 . (7.90)

This is the final second-order differential equation. Considering that the only approxima-
tions made in deriving it are the constancy of g and the neglect of the derivatives of r, it is
remarkably simple.

Figure 7.5: The acoustical cut-off frequency ωc defined in equation (7.89)
(solid line), and the approximation ωa appropriate to an isothermal region [cf.
equation (5.45); dashed line] in the outermost parts of a normal model of the
present Sun.

It might be noticed that equation (7.90) can also be derived from a careful analysis of
the propagation of waves in stellar interiors. This has been carried out by Gough (1986a).

Notice that if H is constant (as was assumed in Section 5.4), equation (7.89) for ωc

reduces to the frequency ωa defined in equation (5.45). Thus ωc, as introduced here, gen-
eralizes the acoustical cut-off frequency defined for the isothermal atmosphere. Figure 7.5
shows ωc and ωa in the outer parts of a normal solar model; they are in fact quite similar,
except in a thin region very near the top of the convection zone, where the rapid variation
in the superadiabatic gradient causes large excursions in ωc.

Near the surface S2
l is small, and the coefficient of X in equation (7.90) is dominated

by the last two terms; hence X is exponential when ω2 < ω2
c . This provides the trapping
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of the modes at the surface. In the interior ω2
c (which roughly varies as g2/T ) is generally

small, below about 600µHz in models of the present Sun.
We may write equation (7.90) as

d2X

dr2
+K(r)X = 0 , (7.91)

where

K(r) =
ω2

c2

[
1− ω2

c

ω2
− S2

l

ω2

(
1− N2

ω2

)]

≡ ω2

c2

(
1−

ω2
l,+

ω2

)(
1−

ω2
l,−
ω2

)
, (7.92)

defining the characteristic frequencies ωl,+ and ωl,−. They are plotted in Figure 7.6, in
a model of the present Sun. Equation (7.92) shows that the trapping of the modes is
determined by the value of the frequency, relative to behaviour of ωl,+ and ωl,−. In the
interior of the Sun, particularly for large l,

ωl,+ ' Sl ; ωl,− ' N . (7.93)

Thus here we recover the conditions for trapping discussed in Section5.2.2. This was indeed
to be expected, as the assumptions entering the present formulation provide a natural
transition from the previously discussed simplified asymptotic treatment to the atmospheric
behaviour of the oscillations. On the other hand, near the surface where Sl/ω � 1

ωl,+ ' ωc , (7.94)

while ωl,− is small. Thus the trapping near the surface is controlled by the behaviour of ωl,+.
As shown in Figure 7.6 trapping extends in frequency up to about 5.3 mHz, although the
spike in ωl,+ just beneath the photosphere provides some partial reflection at even higher
frequency. Also, modes with frequency ν >∼ 2 mHz propagate essentially to the photosphere,
while modes of lower frequency are reflected at some depth in the convection zone. This
behaviour is visible in the eigenfunctions shown in Figure 5.9; also it is largely responsible
for the transition of the mode energy normalized with the surface displacement, shown in
Figure 5.11, from steep decrease to near constancy with increasing frequency.

7.5.2 The Duvall law for p-mode frequencies

We may apply the JWKB analysis discussed in Section 7.2 to equation (7.90). Thus the
asymptotic expression (7.33) for the frequency gives

ω

∫ r2

r1

[
1− ω2

c

ω2
− S2

l

ω2

(
1− N2

ω2

)]1/2
dr

c
' π(n− 1/2) , (7.95)

where r1 and r2 are adjacent zeros of K such that K > 0 between them.
This expression is now also formally valid for p modes. Given the rapid variation of ωl,+

near the surface its practical validity might be questioned. Christensen-Dalsgaard (1984c)
evaluated the left-hand side of equation (7.95), substituting computed eigenfrequencies
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Figure 7.6: Characteristic frequencies ωl,+/(2π) (continuous curves) and
ωl,−/(2π) (dashed curves) for a model of the present Sun (cf. eq. 7.92). The
curves are labelled with the degree l. The right-hand panel shows the outer-
most parts of the model on an expanded horizontal scale. The figure may be
compared with the simple characteristic frequencies plotted in Figure 5.2.

for ω, and found that the deviations from the asymptotic relation were relatively modest;
however, substantially better agreement is obtained if ωc is replaced by the simple expression
for an isothermal atmosphere, given in equation (5.45).

Equation (7.95) may be used to justify the approximate relation (7.38) for the frequen-
cies of acoustic modes, with α = α(ω) being a function of frequency (see also Deubner
& Gough 1984). Here I present an argument derived by Christensen-Dalsgaard & Pérez
Hernández (1992). Assuming that the term in N 2 can be neglected, I write equation (7.95)
as

π(n− 1/2)

ω
' F

(
ω

L

)
− 1

ω
(I1 + I2 + I3) , (7.96)

where

F (w) =

∫ R

rt

(
1− c2

w2r2

)1/2
dr

c
, (7.97)

and the dimensionless integrals I1 − I3 are defined by

I1 = ω

∫ R

r2

(
1− S2

l

ω2

)1/2
dr

c
, (7.98)

I2 = ω

∫ r2

r1



(

1− S2
l

ω2

)1/2

−
(

1− ω2
c

ω2
− S2

l

ω2

)1/2

 dr

c
, (7.99)
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I3 = ω

∫ r1

rt

(
1− S2

l

ω2

)1/2
dr

c
. (7.100)

I assume that ω2
c > 0 in the vicinity of the lower turning point, so that rt < r1 [where rt is

given by equation (5.28)]; also I have assumed that R > r2 for all modes of interest.
To show that equation (7.39) is approximately valid, with α being a function of ω, we

must show that I1 + I2 + I3 is predominantly a function of frequency. In so doing I make
the assumptions:

• S2
l /ω

2 � 1 at the upper turning point.

• ω2
c/ω

2 � 1 at the lower turning point.

Near the upper turning point we may then neglect the term in S2
l /ω

2, and hence the position
of the turning point is approximately given by r2 ' Rt, where Rt is defined by ω = ωc(Rt).
Thus r2 is a function of frequency alone; the same is therefore obviously true for I1. I3 is
small; in fact, by expanding S2

l in the vicinity of rt, neglecting the variation in ωc and c, it
is straightforward to show that

I3 '
1

3

(
ωc,t

ω

)3

ω
Hc,t

ct
∼
(
ωc,t

ω

)2

, (7.101)

where ωc,t, ct and Hc,t are the values of ωc, c and the sound-speed scale height at rt. Thus,
although I3 depends on rt and hence on ω/L, the term is O((ωc/ω)2) and hence negligible.

This leaves I2 to be dealt with. To investigate its dependence on l and ω I rewrite it as

I2 =
1

ω

∫ r2

r1

ω2
c(

1− S2
l

ω2

)1/2

+

(
1− ω2

c

ω2
− S2

l

ω2

)1/2

dr

c
. (7.102)

Since ω2
c/c decreases quite rapidly with increasing depth (cf. Figure 7.5), this integral is

dominated by the region near the upper turning point r2. It is true that the integrand is
nearly singular, with an integrable singularity, at r = r1; but the contribution from that
is essentially O(ω2

c,t/ω
2) and is therefore small. Near r2, S2

l /ω
2 is negligible; thus we can

approximate I2 as

I2 '
1

ω

∫ r2

r1

ω2
c

1 +

(
1− ω2

c

ω2

)1/2

dr

c
, (7.103)

which is obviously a function of frequency alone.
It follows that equation (7.96) may finally be written as

∫ R

rt

(
1− L2c2

ω2r2

)1/2
dr

c
=

[n+ α(ω)]π

ω
, (7.104)

with

α ' α(ω) =
1

π
(I1 + I2)− 1/2 . (7.105)
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This argument is evidently valid in general for stellar models where ω2
c/c decreases suffi-

ciently rapidly with increasing depth.
It is instructive to consider the analysis for the special case where the outer layers of the

star can be approximated by an adiabatically stratified, plane-parallel layer; also I neglect
the variation of Γ1. Then we obtain equation (7.43) for c, and furthermore

ω2
c =

gµp

4(R− r)

(
1 +

2

µp

)
, (7.106)

where µp = 1/(Γ1 − 1) is the effective polytropic index of the layer. Finally N is zero.
From equation (7.106) ωc is small except near the surface, and so it is reasonable to neglect
it in most of the region where the p mode is trapped (notice, however, that this becomes
questionable for high l, where the trapping region is confined very close to the surface).
To approximate equation (7.95) I use a trick similar to that employed to derive equation
(7.51). Thus I write equation (7.95) as

π(n− 1/2)

ω
=

∫ R

r1

(
1− S2

l

ω2

)1/2
dr

c
−
∫ R

r2

(
1− S2

l

ω2

)1/2
dr

c

−
∫ r2

r1



(

1− S2
l

ω2

)1/2

−
(

1− ω2
c

ω2
− S2

l

ω2

)1/2

 dr

c
. (7.107)

Here, approximately, r2 is given by ωc(r2) = ω, and is therefore close to the surface.
Furthermore, the dominant contribution to the third integral in question (7.107) comes
from the region near r2. In the last two integrals I therefore use the approximations (7.43)
and (7.106) for c and ωc; furthermore I neglect the variation of r in Sl. These integrals may
then, with a little effort, be evaluated analytically. The result is

π(n− 1
2)

ω
=

∫ R

r1

(
1− S2

l

ω2

)1/2
dr

c
− 1

2
[µp(µp + 2)]1/2

π

ω
. (7.108)

This may also be written as equation (7.39), with

α = 1/2[µp(µp + 2)]1/2 − 1/2 . (7.109)

Thus in this case α is a constant which is related to the effective polytropic index of the
surface layers.

Exercise 7.3:

Derive equation (7.108).

If the entire layer is polytropic, with equation (7.39) and (7.106) everywhere valid, equa-
tion (7.90) may be solved analytically (e.g. Christensen-Dalsgaard 1980). The condition
that the solution decreases exponentially at great depths determines the eigenfrequencies
as

ω2 =
2

µp

(
n+

µp

2

)
L
g

R
. (7.110)
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This is in accordance with equation (7.45) obtained asymptotically, but with a different α,

α =
µp

2
. (7.111)

It is easy to show that the difference between this exact α and the asymptotic approximation
in equation (7.109) is small; it tends to zero for large µp.

A minor point in these relations concerns the definition of L (which also enters into
Sl = cL/r). In the analysis I have so far taken L =

√
l(l + 1). In fact, it may be shown

from a more careful analysis of the asymptotic behaviour of the oscillation equations near
the centre that a more appropriate choice would have been L0 = l + 1/2 (note, however,
that L = L0 + O(l−1) and that even for l = 1 they are very similar). In the rest of this
chapter I shall replace L by L0 and, for convenience, suppress the subscript ‘0’. [Note that
this was also used in the formulation of equation (7.52).]

7.6 Asymptotic properties of eigenfunctions

An initial discussion of p- and g-mode eigenfunctions was presented above, based on the
simplified asymptotic description (cf. eqs 7.63 and 7.73). It was noted that the presence of
singularities in the asymptotic equations caused problems in these approximations, partic-
ularly for the phase of the p-mode eigenfunction. Such problems are avoided in the formu-
lation developed in Section 7.5. That formulation, on the other hand, was derived under
the assumption that derivatives of r and g could be neglected. Thus, as is indeed found
from numerical applications, a straightforward derivation of eigenfunctions from asymptotic
analysis of (7.90) leads to amplitude functions deviating from the correct variation by low
powers of r or g.

As already mentioned, a more complete asymptotic description which does not suffer
from this approximation was developed by Gough (1993). In a formal sense it is quite similar
to the formulation presented here, although with considerably more complicated expressions
for the characteristic frequencies and eigenfunction scalings. It is likely that an asymptotic
analysis based on these equations would yield the correct behaviour; however, such an
analysis has apparently not been published, and will not be attempted here. Instead I shall
apply a pragmatic, although certainly not rigorous, approach. The analysis in Sections 7.3
and 7.4 is correct, to leading order, away from the singular points. Consequently, we can
expect that the variation of the amplitude functions in equations (7.63) and (7.73) are
correct in these regions. I shall assume that this is the case and obtain the relevant powers
of r and/or g in the analysis of equation (7.90) such that the final p- and g-mode expressions
have the correct behaviour [the dependence with c and ρ is included fully in the derivation
of equation (7.90) and is therefore correctly included]. What is gained by using equation
(7.90) is therefore principally the correct treatment of the phases at the turning points.

7.6.1 Asymptotic properties of the p-mode eigenfunctions

I neglect the term in N2 in equation (7.90), and assume that there is a region outside rt

where ω2
c can be neglected. In that region, except near rt, JWKB analysis of equation

(7.90) leads to the following approximate solution for X:

X(r) ' AXc1/2r−1

(
1− L2c2

ω2r2

)−1/4

cos


ω
∫ r

rt

(
1− L2c2

ω2r′2

)1/2
dr′

c
− π

4


 , (7.112)
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where the constant AX is determined by the boundary conditions; the factor r−1 does not
follow from the analysis but was, as discussed above, introduced to obtain the correct final
amplitude function. An expression for ξr can be derived from the general equation (7.81).
I neglect the derivative of Γ1 and write the equation as

ρg

(
1− ω4

ω4
f

)
ξr ' Γ1p

[
χ+

ω2

gk2
h

(
dχ

dr
− Γ1g

c2
χ

)]
, (7.113)

where ω2
f = gkh is the squared f-mode frequency. For high-order p modes we can assume

that ω � ωf . On the right-hand side we need to estimate the term in dχ/dr, compared with
the terms in χ. To do so, when differentiating here and in the following I assume that the
eigenfunction varies on a scale short compared with scale heights of equilibrium quantities
and only differentiate through the argument of cos in equation (7.112). It follows that
the amplitude of dχ/dr is, to leading order, ω/c times the amplitude of χ. Consequently,
the magnitudes of the coefficients to χ in the three terms in the square bracket on the
right-hand side of equation (7.113) are

1 ,
ω3

gck2
h

,
ω2

k2
h

Γ1

c2
. (7.114)

To estimate the magnitude of the second component I write it as

ω2

c2k2
h

ωc

g
=
ω2

S2
l

ωc

g
. (7.115)

In the first factor ω > Sl in regions of p-mode trapping. The second factor may be
estimated from equation (5.18), neglecting ∇µ, by writing it as

N2 ' Γ1g
2

c2
(∇ad −∇) ; (7.116)

thus ωc/g ∼ (∇ad −∇)1/2ω/N � 1 for typical p modes, at least in radiative regions where
∇ad − ∇ is of order unity. (Near the surface, in convective regions where this estimate is
not valid, it is typically the case that ω2 � S2

l .) It follows that the second component
in the set (7.114) is typically much greater than unity. The ratio between the second and
third components is

Γ1g

ωc
' Γ

1/2
2 N

(∇ad −∇)1/2ω
, (7.117)

which is again typically much smaller than unity.
Using these estimates, it follows from equations (7.113) and (7.112) that

ξr ' −
c2

ω2

dχ

dr
' −ρ−1/2ω−2 dX

dr
(7.118)

' −AXω−1(ρc)−1/2r−1

(
1− L2c2

ω2r2

)1/4

cos


ω
∫ r

rt

(
1− L2c2

ω2r′2

)1/2
dr′

c
+
π

4


 .

By using equation (7.104) this equation may be written as

ξr(r) ' (7.119)

A (ρc)−1/2r−1

(
1− L2c2

ω2r2

)1/4

cos


ω
∫ R

r

(
1− L2c2

ω2r′2

)1/2
dr′

c
− (α+ 1/4)π


 ,
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where A is a new constant; this corresponds to equation (7.63).
To find the horizontal displacement I note that in equation (5.12) the first term on the

right-hand side can be neglected compared with the left-hand side, so that

dξr
dr
' 1

ρc2

(
S2
l

ω2
− 1

)
p′ ' −rω

2

c2

(
1− S2

l

ω2

)
ξh , (7.120)

using equation (4.39). Thus

ξh(r) ' − c2

rω2

(
1− S2

l

ω2

)−1
dξr
dr
' (7.121)

−Aρ−1/2c1/2r−2ω−1

(
1− L2c2

ω2r2

)−1/4

sin


ω
∫ R

r

(
1− L2c2

ω2r′2

)1/2
dr′

c
− (α+ 1/4)π


 .

It may be noted that the ratio between the amplitudes of the root-mean-square lengths of
the horizontal and vertical components of the displacement is

∣∣∣∣
Lξh

ξr

∣∣∣∣ ∼
Lc

rω

(
1− L2c2

ω2r2

)−1/2

=
Sl
ω

(
1− S2

l

ω2

)−1/2

(7.122)

(cf. eq. 4.45); thus well above the lower turning point, where ω � Sl, the oscillation is
predominantly vertical.

From these expressions, we can finally find the asymptotic form of the energy integral
E (cf. eq. 4.47), replacing sin2 and cos2 by the average value 1/2:

E ' 2πA2
∫ R

rt


c−1

(
1− L2c2

ω2r2

)1/2

+
L2c

ω2r2

(
1− L2c2

ω2r2

)−1/2

 dr

' 2πA2
∫ R

rt

(
1− L2c2

ω2r2

)−1/2
dr

c
. (7.123)

7.6.2 Asymptotic properties of the g-mode eigenfunctions

We consider the region where a g mode is trapped, and assume that ω2 � S2
l , N

2. Then

K ' k2
h

(
N2

ω2
− 1

)
. (7.124)

In the corresponding JWKB expression for the eigenfunction, comparison with equation
(7.72) will show that the extra factor gr−3/2 must be included. Thus we obtain

X(r) ' Agr−3/2

(
N2

ω2
− 1

)−1/4

cos



∫ r

r1
kh

(
N2

ω2
− 1

)1/2

dr′ − π

4


 , (7.125)

where k
−1/2
h was assumed to be constant and was absorbed in the amplitude A. To deter-

mine ξr we use again equation (7.113). On the left-hand side we can assume that ω � ωf .
On the right-hand side, according to equation (7.125) the amplitude of dχ/dr is now, to
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leading order, khN/ω times the amplitude of χ. Thus the magnitudes of the three terms
on the right-hand side of equation (7.113) scale as

1 ,
ωN

gkh
,

ω2Γ1

k2
hc

2
. (7.126)

Here, using equation (7.116), the second component is

ωN

gkh
' ω

ckh
(∇ad −∇)1/2 ' ω

Sl
(∇ad −∇)1/2 � 1 , (7.127)

and the third component is
ω2Γ1

k2
hc

2
= Γ1

ω2

S2
l

� 1 . (7.128)

Thus the dominant term is the first. The result finally is

ξr '
c2

g
χ = ρ−1/2g−1X (7.129)

' Aρ−1/2r−3/2

(
N2

ω2
− 1

)−1/4

cos



∫ r

r1

L

r

(
N2

ω2
− 1

)1/2

dr′ − π

4


 .

To find the horizontal displacement we again use equation (7.120), now approximated
by

dξr
dr
' L2

r
ξh . (7.130)

Thus we obtain

ξh '
r

L2

dξr
dr

(7.131)

' −Aρ−1/2L−1r−3/2

(
N2

ω2
− 1

)1/4

sin



∫ r

r1

L

r

(
N2

ω2
− 1

)1/2

dr′ − π

4


 .

Here the ratio between the amplitudes of the root-mean-square lengths of the horizontal
and vertical components of the displacement is therefore

∣∣∣∣
Lξh

ξr

∣∣∣∣ ∼
(
N2

ω2
− 1

)1/2

, (7.132)

demonstrating that the oscillation is predominantly in the horizontal direction.
We may attempt to use equation (7.90) to describe the properties of g modes in an

outer convection zone, e.g. in the solar case, to correct for the approximations discussed in
connection with equation (7.75). We assume that N 2 ' 0 and ω2 � ω2

c , so that equation
(7.90) is approximated by

d2X

dr2
=

(
L2

r2
+
ω2

c

c2

)
X =

[
L2

r2
+

1

4H2

(
1− 2

dH

dr

)]
X = 0 , (7.133)

using equation (7.89). Compared with the equation leading to equation (7.74), this differs
by the inclusion of the term in ω2

c ; since the density scale height H is much smaller than
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the stellar radius near the surface, there this term dominates over L2/r2, unless L is very
large.

It is possible to carry the analysis somewhat further if we approximate the convection
zone by a plane-parallel adiabatically stratified layer, and neglect the variation in Γ1; this
approximation was also used in Sections 7.3 and 7.5.2 to analyze various aspects of the
Duvall law. Then ρ = ρ0z

µp , where z = R− r is the depth and, as before, µp = 1/(Γ1 − 1)
is the effective polytropic index. Also, we have equations (7.43) and (7.106) for c and ωc;
we write the relevant equations as

c2 =
g

µp
z , ω2

c =
gµp

4z

(
1 +

2

µp

)
, H−1 =

µp

z
. (7.134)

It follows that equation (7.133) can be written as

d2X

dz2
−
[
L2

R2
+

1

4z2
µp(µp + 2)

]
X = 0 , (7.135)

where, in accordance with the assumption of a plane-parallel layer, I replaced r by R in the
first term. A solution can be found to this equation in terms of modified Bessell functions.
However, here I assume that L is not very large, so that the term in z−2 dominates. Then
the regular solution to equation (7.135) is

X ' X0z
1+µp/2 , (7.136)

where X0 is a constant. It follows from equation (7.86) that χ ' χ0 is approximately
constant. To determine ξr we use again equation (7.113), with ω � ωf . Obviously the term
in dχ/dr can be neglected; however, since formally c2 → 0 at the surface both terms in χ
must be included. The result is that

ξr '
1

g

(
c2 − Γ1r

2ω2

L2

)
χ0 . (7.137)

Neglecting c2 at the surface, this shows that χ0 is related to ξr(R) by

χ0 ' −
L2g

Γ1R2ω2
ξr(R) . (7.138)

Also, it follows that equation (7.75) is replaced by

ξr(rb)/ξr(R) ' − r
2
b

R2

L2c(rb)2

ω2R2

[
1

Γ1
− ω2

Sl(rb)2

]
= − r

4
b

R4

Sl(rb)2

ω2

[
1

Γ1
− ω2

Sl(rb)2

]
, (7.139)

where I neglected the variation in mass, and typically ω2/Sl(rb)2 � 1. I have found that
numerical results, for modes of degree l ≤ 5, in a model of the present Sun are in reasonable
agreement with this relation.

To estimate the horizontal component of the displacement I again use equation (5.12)
where, however, the term in ξr can no longer be neglected. Since we consider an adia-
batically stratified convection zone, Γ−1H−1

p = H−1, and hence equation (5.12) can be
approximated by

dξr
dr
−H−1ξr =

rω2

c2

(
S2
l

ω2
− 1

)
ξh . (7.140)
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When differentiating ξr, as given by equation (7.137), we neglect derivatives of g and r;
using also equations (7.134) we obtain

dξr
dr
−H−1ξr = −

(
1 +

1

µp
− Γ1r

2ω2µp

L2gz

)
χ0 = −Γ1

(
1− ω2

S2
l

)
χ0 ; (7.141)

Thus equation (7.140) gives, using also equation (7.138), that

ξh ' −
Γ1c

2

rS2
l

χ0 '
g

rω2
ξr(R) ' σ−2ξ(R) (7.142)

is approximately constant in the convection zone. It should also be noticed that this result,
reassuringly, is consistent with the surface condition given in equation (4.69).

It would be interesting to match this behaviour in the convection zone to the region of
trapping in the interior, to obtain the asymptotic behaviour of the mode energy. However,
I have so far not been able to carry this analysis through to a result which resembles the
numerical behaviour.

7.7 Analysis of the Duvall law

It was shown in Section 7.5.2, on the basis of the asymptotic theory of p modes, that
such modes satisfy the Duvall law: we can find a function α(ω) of frequency such that
the quantity [n + α(ω)]/ω depends principally on frequency ω and degree l only in the
combination w ≡ ω/L, i.e.,

(n+ α)π

ω
= F

(
ω

L

)
. (7.143)

Here the function F (ω/L) is related to the adiabatic sound speed c(r) by

F (w) =

∫ lnR

ln rt(w)

(
1− a2

w2

)1/2

a−1d ln r , (7.144)

where a = c/r. Also, the function α(ω) is primarily determined by conditions near the
stellar surface. As illustrated in Figure 7.1 the observed frequencies of solar oscillation
satisfy a relation of the form given in equation (7.143) quite accurately. This suggests
that these relations are useful tools for analysing solar oscillation frequencies. It should be
noted, however, that they are only approximately valid. In fact, a much more precise fit
to the observed frequencies can be obtained by including additional terms (e.g. Gough &
Vorontsov 1995) which take into account the effect of the perturbation in the gravitational
potential (significant at low degree) and the dependence of the modes on degree near the
upper turning point (important at high degree).

In this section I illustrate some properties of the Duvall law by applying it to frequen-
cies computed for solar models, as well as to observed frequencies. The results are based
on computations by Christensen-Dalsgaard, Proffitt & Thompson (1993) who considered
both normal solar models and models which included effects of diffusion and gravitational
settling of helium; recent opacity tables (Iglesias, Rogers & Wilson 1992) and a reasonable
approximation to the equation of state were used. Thus the results illustrate both how
well modern solar models fit the observed frequencies and the sensitivity of such analyses
to relatively subtle features of the model calculations, such as gravitational settling.
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7.7.1 The differential form of the Duvall law

A very powerful relation can be obtained by considering the effect on equation (7.104) of
small changes to the equilibrium structure. I consider two cases (two solar models or a solar
model and the Sun) with the same surface radius, labelled with the superscripts (1) and
(2), and introduce the differences δωnl = ω

(2)
nl − ω

(1)
nl , δrc(r) = c(2)(r)− c(1)(r) and δα(ω) =

α(2)(ω)− α(1)(ω). By substituting c(2)(r) = c(1)(r) + δrc(r) and α(2)(ω) = α(1)(ω) + δα(ω)
into equation (7.104), retaining only terms linear in δrc, δα and δω, one obtains

Snl
δωnl
ωnl

'
∫ R

rt

(
1− c2L2

ω2
nlr

2

)−1/2
δrc

c

dr

c
+ π

δα(ωnl)

ωnl
, (7.145)

where

Snl =

∫ R

rt

(
1− L2c2

r2ω2
nl

)−1/2
dr

c
− πdα

dω
, (7.146)

and I have suppressed the superscript (1). This relation was first obtained by Christensen-
Dalsgaard, Gough & Pérez Hernández (1988).

Exercise 7.4:

Derive equation (7.145). If initially you obtain a different result, you may be in good
company: so did the referee of Christensen-Dalsgaard et al. (1988).

Equation (7.145) may be written as

Snl
δωnl
ωnl

' H1

(
ωnl
L

)
+H2(ωnl) , (7.147)

where

H1(w) =

∫ R

rt

(
1− c2

r2w2

)−1/2
δrc

c

dr

c
, (7.148)

and
H2(ω) =

π

ω
δα(ω) . (7.149)

Some properties of this equation were discussed by Christensen-Dalsgaard, Gough & Pérez
Hernández (1988) and by Christensen-Dalsgaard et al. (1989). As pointed out in the latter
paper, H1(ω/L) and H2(ω) can be obtained separately, to within a constant, by means of a
double-spline fit of the expression (7.147) to p-mode frequency differences. The dependence
of H1 on ω/L is determined by the sound-speed difference throughout the star, whereas
H2(ω) depends on differences in the upper layers of the models.

There is a close analogy between equation (7.147) and the ‘exact’ equation (5.90). From
equations (7.123) and (7.146) it follows that Snl, apart from the term in the derivative of
α, is proportional to the energy integral E . Thus one finds that the scaling Qnl in equation
(5.90) is essentially asymptotically equal to Snl/S0, where S0 = limw→0 S(w) (Christensen-
Dalsgaard 1991b); one may show that S0 = τ0 where

τ0 =

∫ R

0

dr

c
(7.150)
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Figure 7.7: The solid lines show the inertia ratio Qnl, defined in equation
(5.88), against ν/(l+ 1/2) in a normal solar model, each curve corresponding
to a given degree l. The upper abscissa shows the turning-point radius rt,
related to ν/(l+1/2) through equation (5.28). The heavy dashed curve shows
the asymptotic scaling S̃nl/τ0, where S̃nl is defined as in equation (7.146) but
neglecting the term in dα/dω.

is the acoustical radius of the star. The close correspondence between Qnl and Snl/τ0 is
illustrated in Figure 7.7. Furthermore, the term G(ω) in equation (5.90) to some extent
corresponds to the term H2(ω) in equation (7.147), in that both terms contain contri-
butions from the uncertain regions very near the stellar surface. However, as discussed
in Section 7.7.3 below H2 may also be used to gain information about somewhat deeper
regions.

Since c/r decreases quite rapidly with increasing r, (Lc/rω)2 � 1 except near the
turning point rt; hence as a rough approximation 1 − L2c2/r2ω2 may be replaced by 1 in
the integrals in equations (7.145) and (7.146). If furthermore the terms in δα and dα/dω
can be neglected, the result is the very simple relation between the changes in sound speed
and frequency:

δω

ω
'

∫ R

rt

δrc

c

dr

c∫ R

rt

dr

c

. (7.151)

This shows that the change in sound speed in a region of the Sun affects the frequency
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with a weight determined by the time spent by the mode, regarded as a superposition of
traveling waves, in that region. Thus changes near the surface, where the sound speed is
low, have relatively large effects on the frequencies. Although this expression is only a rough
approximation, it is a useful guide in attempts to interpret frequency differences between
models, or between observed and computed frequencies.

Figure 7.8: Fractional difference in sound speed between a model of the present
Sun with diffusion and a normal model, without diffusion. From Christensen-
Dalsgaard, Proffitt & Thompson (1993).

To illustrate the behaviour of the separation in equation (7.147) I consider differences
between two models of Christensen-Dalsgaard et al. (1993): a model with diffusion and
settling and a normal solar model. Figure 7.8 shows the sound-speed difference between
these models. It is dominated by the fact that the convection zone is slightly deeper in the
model with diffusion: since the temperature and sound-speed gradients are steeper in the
convection zone than in the radiative region below, there is a region where the sound speed
increases more rapidly with depth in the diffusive model, and this leads to the behaviour
seen in the figure. Furthermore, due to settling of helium out of the convection zone the
hydrogen abundance Xe in the convective envelope is higher by about 0.03 in the diffusive
model, compared with the normal model. This causes differences in Γ1, and hence in the
sound speed, in the ionization zones of hydrogen and helium.

Figure 7.9a shows scaled frequency differences, at selected values of l, between these two
models, plotted against ν/L (with L = l + 1/2; see above). I have normalized the scaling
by S0, such that it tends to unity at low degree; hence the scaled frequency differences
correspond in magnitude to the differences for low-degree modes. The upper abscissa shows
the location of the lower turning point, which is related to ω/L through equation (5.28). The
general behaviour of the frequency differences reflects the asymptotic expression (7.147).
The dependence of Sδν/ν on ν/L can be understood from the sound-speed difference shown
in Figure 7.8: for ν/L <∼ 100µHz the modes are entirely trapped in the convection zone,
and the frequency difference is dominated by the term H2(ν) arising from differences near
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Figure 7.9: Scaled frequency differences corresponding to the model differences
shown in Figure 7.8, plotted against ν/(l + 1/2). The upper abscissa shows
the location of the lower turning point, which is related to ν/(l+1/2) through
equation (5.28). In panels (a) and (b) points corresponding to fixed l have been
connected. (a) Original scaled frequency differences. (b) Scaled differences,
after subtraction of the function H2(ω) obtained from the spline fit. (c) The
fitted function H1(ω/L).
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the surface, particularly the difference in Xe. In contrast, modes with ν/L > 100µHz sense
the substantial positive δrc just beneath the convection zone, and hence display a positive
frequency difference; the transition occurs quite abruptly as the modes begin to penetrate
beyond the convection zone.

This qualitative description suggests that the frequency differences may be analyzed in
detail in terms of equation (7.147). To do so, I have determined the functions H1 and H2

by means of the spline fit of Christensen-Dalsgaard et al. (1989), where details about the
fitting method may be found. Briefly, the procedure is to approximate H1(ω/L) and H2(ω)
by splines, the coefficients of which are determined through a least-squares fit to the scaled
frequency differences. The knots of the splines in w ≡ ω/L are distributed uniformly in
logw over the range considered, whereas the knots for the ω-splines are uniform in ω. I
used 28 knots in w and 20 knots in ω. [As a technical point, I note that in the separation
in equation (7.147) H1 and H2 are evidently each only determined up to a constant term;
hence in the following, when comparing H2 for different cases, we are permitted to shift H2

by a constant.]
Figure 7.9b shows the result of subtracting the function H2(ω) so obtained from the

scaled frequency differences. It is evident that what remains is in fact very nearly a function
of ω/L alone, directly reflecting the behaviour of δrc/c, as discussed above. The function
H1(w) obtained from the fit is shown in Figure 7.9c. Similarly, Figure 7.10a shows the
residual scaled frequency differences after subtraction of the term in H1(ω/L); these are
clearly predominantly functions of frequency, although with some scatter. The fitted func-
tion H2(ω) is shown in Figure 7.10b.

The same analysis can obviously be applied to differences between observed frequencies
and those of suitable reference models. To illustrate the power of helioseismic analysis to
investigate even quite subtle features in the Sun, I consider two such reference models:
one which does not include effects of settling and diffusion, and a second where settling
and diffusion of helium and heavy elements are taken into account. Further details of
the models were given by Christensen-Dalsgaard (1996b). The computed frequencies are
compared with a set of observed data, combining modes with l ≤ 3 from the BiSON network
(Elsworth et al. 1994) with data for l ≥ 4 from Libbrecht, Woodard & Kaufman (1990).

Figure 7.11a shows scaled differences between the observations and the model without
diffusion and settling. It is evident already from this raw difference plot that in this case
the term in H2 plays an important rôle. That should not be a surprise: as mentioned
in Section 5.1.2 there are substantial uncertainties in the treatment of the near-surface
layers and these are expected to produce effects that, when scaled, are mainly functions
of frequency (see also Section 5.5.3). However, there is also evidence for a contribution
from H1. This becomes clear if the spline fit is carried out and the contribution from H2

is subtracted from the scaled differences. The result is shown in Figure 7.11b, while the
fitted H1 is shown in Figure 7.11c. There is again a sharp step corresponding in position to
rt ' 0.7R, i.e., the base of the convection zone. As discussed in connection with the model
comparison this may be taken as evidence that the convection zone in the Sun is somewhat
deeper than in the model.

Corresponding results for the model including settling and diffusion are shown in Figure
7.12. In the original scaled differences shown in panel (a) it is difficult to discern any trend
beyond the very obvious effect of the near-surface errors. Nonetheless, after carrying out
the spline fit the residuals in panel (b) show a very definite dependence on ν/L, indicating
remaining problems in the interior of the model. This is also clear from panel (c), which
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Figure 7.10: The frequency-dependent part of the scaled frequency differences
corresponding to the model differences shown in Figure 7.8. (a) Scaled differ-
ences after subtraction of the function H1(ω/L) resulting from the spline fit.
(b) The fitted function H2(ω).

shows the fitted function H1; here there is evidently a step at a turning-point location
corresponding approximately to the base of the convection zone. Nevertheless, it is evident
even from this simple analysis that the inclusion of diffusion and settling very substantially
improves the agreement between the model and the Sun.

It is evident that there is considerably more scatter in Figure 7.11b than in the corre-
sponding Figure 7.9b. This is due to observational errors, both random and systematic.
In particular, it may be noticed that there is an apparent break at around ν/L ' 15µHz.
In fact, the observed frequencies were obtained from two separate sets of observations, the
merge taking place at l = 400; it has later been found that there were slight systematic
errors in the high-degree set. This difficulty is clearly reflected in the fitted H1(ω/L) in
Figure 7.11c. Furthermore, there appear to be problems at low degree, corresponding to
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Figure 7.11: Scaled frequency differences between observed frequencies (see
text) and a solar model neglecting settling and diffusion, in the sense (obser-
vations) – (model), plotted against ν/(l+ 1/2). The upper abscissa shows the
location of the lower turning point, which is related to ν/(l + 1/2) through
equation (5.28). In panels (a) and (b) points corresponding to fixed l have
been connected. (a) Original asymptotically scaled frequency differences. (b)
Scaled differences, after subtraction of the function H2(ω) obtained from the
spline fit. (c) The fitted function H1(ω/L).
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Figure 7.12: Scaled frequency differences between observed frequencies (see
text) and a solar model including settling and diffusion, in the sense (obser-
vations) – (model), plotted against ν/(l + 1/2). See caption to Figure 7.11.

the highest values of ν/L.
The residual after subtraction of the fitted H1 from the scaled differences, and the fitted

H2, are shown in Figure 7.13. In panel (a) are shown the residuals for the model neglecting
diffusion and settling. As before, these are indeed predominantly a function of frequency.
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Figure 7.13: The frequency-dependent part of the scaled frequency differences
between observations and models. (a) Scaled differences, shown in Figure
7.11a, after subtraction of the function H1(ω/L) resulting from the spline fit.
(b) The solid line shows the fitted function H2(ω) for this data set, while
the dashed line shows the corresponding fitted function obtained from the
differences in Figure 7.12a.

They are dominated by a slowly varying trend which, as argued in Section 7.7.3 below
reflects errors in the near-surface region of the model. However, there is also a weak but
clearly noticeable oscillatory signal. As discussed in Section 7.7.3 this probably reflects a
difference between the Sun and the model in the hydrogen abundance in the convective
envelope. This oscillatory behaviour is also very evident in the fitted H2(ω), shown as a
solid line in panel (b). In contrast, H2(ω) for the model with settling and diffusion, shown
as a dashed line, gives very little evidence for such oscillations, indicating that the envelope
hydrogen abundance for this model is quite similar to that of the Sun.
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7.7.2 Inversion of the Duvall law

The function F (w) in equation (7.143) can be determined from the observations (cf. Figure
7.1). Given F , equation (7.144) is an integral equation of the Abel type, and can be inverted
analytically to obtain the sound speed implicitly, thus:

r = R exp

[
− 2

π

∫ a

as

(
w−2 − a−2

)−1/2 dF

dw
dw

]
(7.152)

(Gough 1984). This relation was used by Christensen-Dalsgaard et al. (1985) to infer the
sound speed in the solar interior. The properties of this inversion technique were discussed
in considerable detail by Gough (1986b).

Exercise 7.5:

Confirm that equation (7.152) is a solution to equation (7.144). This is most simply
done by substituting equation (7.144) into equation (7.152).

The asymptotic description leading to equation (7.152) clearly suffers from systematic
errors. It has been found, for example, that for the most deeply penetrating modes of low
degree the perturbation to the gravitational potential has a substantial effect on the func-
tions F (ω/L) obtained by fitting the relation (7.143) to computed or observed frequencies;
this may cause problems for the inversion in the solar core. Also, for modes trapped near the
surface the behaviour near the upper turning point depends on the degree; this introduces
what is effectively an l-dependent term in α. It is possible to generalize equation (7.143) to
take such effects into account and hence obtain a substantially more precise inversion (e.g.
Vorontsov & Shibahashi 1991).

Alternatively, it appears that the systematic errors cancel to some extent when differ-
ences are taken between inversions of different sets of frequencies. Christensen-Dalsgaard
et al. (1985) made use of this by considering differences between inversions done for the
solar data and for frequencies for a reference model. A more systematic approach follows
from the separation of scaled frequency differences in equation (7.147). Here the function
H1(ω/L) is related to the sound-speed difference between the models, or between the Sun
and the model, through equation (7.148). As shown by Christensen-Dalsgaard, Gough &
Thompson (1989), given a determination of H1, that equation is an integral equation for
δrc/c, with the solution

δrc

c
= −2a

π

d

d ln r

∫ a

as

(a2 − w2)−1/2H1(w)dw , (7.153)

where as = a(R). [It should be noticed that the right-hand side of equation (7.148) is
the same functional of w as that which arises in the asymptotic expression for the linear
frequency splitting due to latitudinally-independent rotation at a rate Ω(r), with δrc/c
instead of Ω (Gough 1984). Thus it can be inverted in the same way.]

Christensen-Dalsgaard et al. (1989) carried out a careful test of the differential method,
as applied to several different pairs of models. Also, Christensen-Dalsgaard, Gough &
Thompson (1988) used the method to invert differences between observed frequencies and
frequencies computed for a solar model. Here I illustrate its properties by applying it to the
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Figure 7.14: The solid line shows the difference in squared sound speed δrc
2/c2

inferred by applying equation (7.153) to the function H1(ω/L) shown in Fig-
ure 7.9c. For comparison, the dashed line shows the true difference between
the two models. Adapted from Christensen-Dalsgaard, Proffitt & Thompson
(1993).

model pair shown in Figure 7.8 and to differences between solar and computed frequencies
such as those shown in Figures 7.11 and 7.12.

Figure 7.14 shows the δrc
2/c2 inferred from the scaled frequency differences in Figure

7.9 between the diffusive and the normal solar model, by applying equation (7.153) to the
fitted function H1(ω/L) shown in Figure 7.9c. For comparison, the figure also shows the
true sound-speed difference, previously plotted in Figure 7.8. It is evident that the inversion
reproduces the main features of the true δrc

2/c2 with considerable precision. One noticeable
difference is that the transition at the base of the convection zone is less sharp: as discussed
in Section 9.1 it is a general property of inverse analyses that they smooth the properties of
the true structure. However, otherwise the inferred and the true δrc

2/c2 are quite close over
the entire range, 0.2R < r < 0.95R, where the solution is plotted. At smaller and larger
radii the systematic errors associated with the asymptotic representation increasingly affect
the results; hence here the solution has not been obtained.

From the frequency differences illustrated in Figures 7.11 and 7.12 we may now infer
the error in the sound speed in the solar models. Figure 7.15 shows the results of evaluating
δrc/c by applying equation (7.153) to the H1(ω/L) shown in Figures 7.11c and 7.12c. The
sound-speed differences are small, corresponding to errors in T/µ in the models of generally
less than 2 per cent. Nonetheless, the differences are clearly highly systematic. It is inter-
esting that the relatively subtle, and often neglected, effect of gravitational settling leads
to a substantial improvement in the agreement between the model and the observations,
largely by increasing the depth of the convection zone in the model. This is a striking
illustration of the power of helioseismology to probe the details of the solar interior. How-
ever, it should also be pointed out that modest modifications in the opacity, well within the
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Figure 7.15: The dotted line shows the difference in squared sound speed
δrc

2/c2 between the Sun and a solar model without diffusion and settling,
inferred by applying equation (7.153) to the functionH1(ω/L) shown in Figure
7.11c, corresponding to differences between observed and model frequencies.
The solid line shows the corresponding δrc

2/c2 between the Sun and a model
including diffusion and gravitational settling, obtained fromH1(ω/L) in Figure
7.12c.

precision of current opacity tables, might introduce changes in the sound speed of similar
magnitude. The separation of opacity uncertainties from effects of diffusion and settling
is a major challenge, which will undoubtedly require better physical understanding of the
processes involved.

The cause of the dominant difference between the Sun and the nondiffusive model is
probably that the depth of the convection zone in the model is too small. In fact, the
model with diffusion has a slightly deeper convection zone. From a more careful analysis
of such results of inversions it is possible to obtain an estimate of the convection-zone
depth db which is largely independent of other uncertainties in the model. In this way
Christensen-Dalsgaard, Gough & Thompson (1991) found that db = (0.713± 0.003)R.

It should finally be mentioned that several other techniques have been developed to in-
vert the Duvall law (7.143) (Brodsky & Vorontsov 1987, 1988a; Shibahashi 1988; Shibahashi
& Sekii 1989). Gough & Thompson (1991) have made a comparison of these different tech-
niques. The results suggest that, at least for the cases considered, the differential technique
described here is superior. Nonasymptotic inversion of similar data sets will be discussed
in Section 9.2.

7.7.3 The phase-function difference H2(ω)

The function H2(ω) is predominantly determined by the region near the stellar surface.
Christensen-Dalsgaard & Pérez Hernández (1992) analyzed the relation of H2(ω) to the
differences in sound speed and Γ1 in the outer parts of the Sun: differences localized very
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near the surface give rise to a component ofH2 that varies slowly with ω, whereas differences
at somewhat greater depth introduce an oscillatory variation with ω in H2, the “frequency”
of which increases with the depth of the difference. This is in fact a general property of
frequency differences caused by sharply localized modifications to stellar structure (e.g.
Thompson 1988; Vorontsov 1988; Gough 1990), and reflects the variation with frequency
in the phase of the eigenfunction at the location of the modification. At the surface the
behaviour of the eigenfunction changes slowly with frequency, whereas at greater depth
a change in frequency causes the eigenfunction to “sweep through” the point where the
model was changed, causing a rapid variation in the frequency change. In the case of the
variation of H2 with ω, Christensen-Dalsgaard & Pérez Hernández (1991) found several
cases where the relatively sharp change in Γ1 in the second helium ionization zone caused
an oscillatory behaviour of H2(ω). Similar variations in the basic phase function α(ω) were
analyzed, for example, by Brodsky & Vorontsov (1988b, 1989) and Baturin & Mironova
(1990). Vorontsov, Baturin & Pamyatnykh (1992) showed how the phase could be separated
in a quantitative fashion into components varying slowly and rapidly with frequency. This
type of analysis provides a powerful diagnostic of the properties of the ionization zones of
hydrogen and helium, of great interest both for the analysis of the equation of state and
for attempts to determine the helium abundance of the solar convection zone.

It is very convenient to express H2(ω) in terms of differences between two models, or
the Sun and a model, in a form analogous to equation (5.90). Christensen-Dalsgaard &
Pérez Hernández (1992) showed that α(ω), and hence H2(ω), can be determined directly
from the model structure, without computing full modes of oscillation. In this way they
were able to find kernels relating H2 to the model changes. The kernels turn out to be
particularly simple if the model changes are expressed in terms of c and the (isothermal)
acoustical cut-off frequency

ωa =
c

2Hp
=

Γ1g

2c
(7.154)

(cf. eq. 5.45). Thus I express H2 as

H2(ω) =

∫ R

r0

[
Kc(r;ω)

δrc

c
+Kωa(r;ω)

δrωa

ωa

]
dr + G2(ω) , (7.155)

where r0 is a point suitably deep in the convection zone. Here, as in equation (5.90), the
term G2(ω) contains the contributions from the differences (or errors) in the physics of the
oscillations: as argued in Section 5.5.3 such errors are likely to be confined very close to
the stellar surface and hence probably depend on frequency alone, when properly scaled.

The kernel Kc varies slowly with position and frequency, and hence give little interesting
contribution toH2. On the other hand, the kernels Kωa have a very distinct behaviour. This
is illustrated in Figure 7.16, both as a function of r (at fixed frequency) and as a function
of frequency (at fixed r). The r-dependence is qualitatively similar to the behaviour of the
scaled eigenfunctions shown in Figure 5.8: the kernels oscillate within an envelope which
varies as c(r)−1. The frequency dependence clearly illustrates the behaviour discussed
above in a qualitative manner: at the surface the kernels vary slowly with frequency (the
erratic variations at the lowest frequencies are due to numerical errors), and the variation
with frequency becomes increasingly rapid with increasing depth. In fact, as shown by
Christensen-Dalsgaard & Pérez Hernández (1992) the kernels may be approximated by

Kωa(r;ω) ' − 1

c(r)
cos[2ω(τ(r)− τ ′)] , (7.156)
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Figure 7.16: The kernels Kωa(r;ω) relating changes in ωa to H2(ω) (cf. eq.
7.155). The left-hand column shows the kernels as functions of r at the fre-
quencies indicated, whereas the right-hand column shows the kernels against
frequency, at the radii indicated.

where

τ(r) =

∫ R

r

dr

c
(7.157)

is the acoustical depth, i.e., the sound travel time between the point considered and the
surface; also, τ ′ is roughly a constant. It is evident that according to equation (7.156) Kωa
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is an oscillatory function of ω, oscillating increasingly rapidly with increasing τ and hence
increasing depth.

Figure 7.17: The adiabatic exponent Γ1 in a normal solar model (solid curve)
and in a model with helium diffusion and settling (dashed curve).

Figure 7.18: Fractional differences between a model of the present Sun with dif-
fusion and a normal model, without diffusion. The solid curve shows δrc

2/c2,
the dashed curve δrΓ1/Γ1 and the dot-dashed curve δrωa/ωa (cf. eq. 7.154).

According to equation (7.155) the variation of Kωa with ω at a certain r corresponds
to the H2(ω) arising from a localized change in ωa at that position. Hence a sharp feature
in δrωa at some point r = r∗ will give rise to an oscillatory contribution to H2(ω) with a
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‘frequency’ which, from equation (7.156), is approximately 2τ(r∗). Such contributions are
in fact clearly visible both in Figure 7.10b, corresponding to the difference between two
models differing in the envelope helium abundance, and in Figure 7.13b for the differences
between the Sun and a model. The ‘frequency’ of the variation corresponds to a depth of
roughly 0.02R, i.e., the region of the second ionization of helium.

To understand the origin of this feature I first consider the behaviour of Γ1. In regions
of no or full ionization it is very close to 5/3. However, ionization causes a decrease of Γ1

below this value; as illustrated in Figure 7.17, there is a major dip in Γ1 in the overlapping
regions of hydrogen and first helium ionization and a smaller, secondary dip in the region of
second helium ionization. It is evident that the depth of the second dip must depend on the
helium abundance. The effect is clearly visible by comparing the solid curve in Figure 7.17,
for the normal nondiffusive model with an envelope helium abundance Ye = 0.28, with the
dashed curve for the model with diffusion and settling, where Ye has been reduced to 0.25.
These effects are also evident in the differences between the two models, shown in Figure
7.18 (the sound-speed difference was also shown in Figure 7.8, but for the whole model).
In particular, there is a fairly sharp feature in δrωa at r ' 0.985R, which is responsible for
the oscillatory contribution to H2(ω) noted in Figure 7.10b.

These results suggest that H2 may provide useful information about the properties of
the upper parts of the convection zone, including the solar envelope helium abundance
which is otherwise quite uncertain. In fact, it was noted in Section 5.1.2 that the structure
of the adiabatic part of the convection zone is determined by the composition, in particular
the value of Ye, as well as the specific entropy s which is essentially constant; in addition,
the equation of state must be known. Indeed, the H2(ω) which results from the differences
between the observed and the computed frequencies (cf. Figure 7.13b) shows oscillations
which are superficially quite similar to those resulting from the difference in Ye, although
overlayed by a substantial slowly varying trend. As shown by Figure 7.16, this slowly
varying component approximately corresponds to the contributions that may arise from
differences in the outermost parts of the model. More generally, the uncertain physics in
the layers immediately below the photosphere and in the solar atmosphere may be expected
to give rise to a similar behaviour, as indicated by the function G2(ω) in equation (7.155).
This complicates the interpretation of the H2(ω) determined from the observed frequencies.
It was shown by Pérez Hernández & Christensen-Dalsgaard (1994a) that the slowly varying
part of H2 can be suppressed in a consistent way through filtering. Furthermore, Pérez
Hernández & Christensen-Dalsgaard (1994b) made a fit of the resulting filtered H2 to
models differing in Ye and s, as well as the surface properties; in this way they inferred that
Ye = 0.243 ± 0.002. It might be noted that this is quite close to the value obtained in the
model with helium settling and diffusion.

The results of such fits, or more generally of any attempt to measure Ye from analysis
of solar oscillation frequencies, depend critically on the equation of state. Indeed, all such
methods utilize the variation of Γ1 in the ionization zones; this variation evidently depends
on the details of the ionization processes and hence on the thermodynamic properties of the
plasma. In fact, Pérez Hernández & Christensen-Dalsgaard (1994b) found that the quality
of the fit depended quite sensitively on the assumed equation of state, giving strong prefer-
ence for one formulation over another, even though both were comparatively sophisticated.
This indicates that it may be possible to get some separate information about the compo-
sition and the thermodynamic properties of matter in the solar convection zone. However,
it is evident that one might conceive of errors in the equation of state with an effect similar
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to that corresponding to a change in the helium abundance. Such effects evidently cannot
be separated on the basis of an analysis of the oscillation frequencies.

I finally note that the function α(ω) also enters into the asymptotic behaviour of low-
degree modes (cf. eq. 7.55); this is visible in the curvature, essentially similar for the different
degrees, in the echelle diagram of low-degree solar observations in Figure 2.15. This sug-
gests that it may be possible to obtain information about the near-surface regions, similar
to what can be determined from H2(ω), by analyzing observations of stellar oscillations
where only modes of degree less than three are generally visible. Brodsky & Vorontsov
(1988a) presented a method to determine a function closely related to α(ω) on the basis
of low-degree data alone. This was applied to models of main-sequence stars by Pérez
Hernández & Christensen-Dalsgaard (1993), who found a characteristic dependence on the
stellar parameters. Further analyses of the effects on the frequencies or frequency separa-
tions of the detailed properties of the helium ionization zones were carried out by Monteiro
& Thompson (1998) and Miglio et al. (2003). A demonstration of the practical utility of
this type of analysis, given realistic observational errors and other uncertainties, requires
more extensive investigations, however.



Chapter 8

Rotation and stellar oscillations

I have so far assumed that there are no velocity fields in the equilibrium model. This is
manifestly false for an object like the Sun which is rotating; in particular, the observed
surface rotation depends on latitude, thus implying the presence of velocity fields. In
addition, other large-scale velocity fields, such as those caused by convection, could have
an effect on the modes. Hence we must investigate such effects. Apart from their intrinsic
interest, the principal purpose of such studies is obviously to be able to probe the velocity
fields from the observed properties of the oscillations.

It is straightforward to see, from a purely geometrical argument, that rotation might
affect the observed frequencies. Assume the angular velocity Ω to be uniform, and consider
an oscillation with a frequency ω0, independent of m, in the frame rotating with the star.
I introduce a coordinate system in this frame, with coordinates (r′, θ′, φ′) which are related
to the coordinates (r, θ, φ) in an inertial frame through

(r′, θ′, φ′) = (r, θ, φ− Ωt) . (8.1)

It follows from equation (4.40) that, in the rotating frame, the perturbations depend on
φ′ and t as cos(mφ′ − ω0t); hence, the dependence in the inertial frame is cos(mφ− ωmt),
where

ωm = ω0 +mΩ . (8.2)

Thus an observer in the inertial frame finds that the frequency is split uniformly according
to m.

This description is obviously incomplete. Even in the case of uniform rotation, the effects
of the Coriolis force must be taken into account in the rotating frame, causing a contribution
to the frequency splitting (Cowling and Newing 1949; Ledoux 1949). Furthermore, in
general the angular velocity is a function Ω(r, θ) of position. Nevertheless, as shown below,
the effect of the Coriolis force is often small and equation (8.2) is approximately correct if
Ω is replaced by a suitable average of the position-dependent angular velocity.

To arrive at an expression valid for any rotation law it is convenient to consider first
the even more general case of an arbitrary stationary velocity field in the star.

173
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8.1 The effect of large-scale velocities on the oscillation fre-
quencies

We need to reconsider the derivation of the perturbation equations, including the effects of
a velocity field. I shall assume that the equilibrium structure is stationary, so that all local
time derivatives vanish. Even with this assumption the determination of the equilibrium
structure is a non-trivial problem, due to the distortion caused by the velocity fields (e.g.
due to centrifugal effects in a rotating star). However, here I assume that the velocity v0 in
the equilibrium state is sufficiently slow that terms quadratic in v0 can be neglected. The
equation of continuity (3.6) gives, because of the assumed stationarity

div (ρ0v0) = 0 . (8.3)

Also, because of the neglect of terms of order |v|2, the equations of motion (3.9) reduce to

0 = −∇p0 + ρ0g0 . (8.4)

As usual I have replaced the body force per unit mass f by the gravitational acceleration
g. Thus equation (3.30) of hydrostatic support is unchanged. In the solar case, the ratio
between the neglected centrifugal force and surface gravity is of order 2× 10−5 and so the
error in equation (8.4) is in fact small.

The perturbation analysis also requires some care. It was treated in considerable detail
by Lynden-Bell & Ostriker (1967), and is discussed in Cox (1980), Chapter 5. Here I just
present a few of the main features.

The velocity at a given point in space can be written as

v = v0 + v′ , (8.5)

where v′ is the Eulerian velocity perturbation. The displacement δδδr must be determined
relative to the moving equilibrium fluid; it is related to the velocity perturbation by

dδδδr

dt
= δδδv = v′ + (δδδr · ∇)v0 . (8.6)

Here δδδv is the Lagrangian velocity perturbation and, as in Section 3.1, d/dt is the material
time derivative,

dδδδr

dt
=
∂δδδr

∂t
+ (v0 · ∇)δδδr ; (8.7)

in contrast to the zero-velocity case, the local and the material time derivatives of pertur-
bations are now different.

The perturbed continuity equation may be written as

0 =
∂ρ′

∂t
+ div (ρ′v0 + ρ0v

′) (8.8)

=
∂

∂t
[ρ′ + div (ρ0δδδr)] + div {ρ′v0 + ρ0[(v0 · ∇)δδδr− (δδδr · ∇)v0]} ,

on using equations (8.6) and (8.7). After some manipulation, using equation (8.3), this may
be reduced to

∂A

∂t
+ div (Av0) = 0 , (8.9)
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where
A = ρ′ + div (ρ0δδδr) . (8.10)

This may also, by using again equation (8.3), be written as

ρ0
d

dt

(
A

ρ0

)
= 0 , (8.11)

from which we conclude that A = 0, i.e., that equation (3.41) is valid in this case also.
To obtain the perturbed momentum equation I use equation (3.8); from the fact that

Lagrangian perturbation and material time derivative commute,

d

dt
(δψ) = δ

(
dψ

dt

)
(8.12)

for any quantity ψ, we then obtain

ρ0
dδδδv

dt
= δ(−∇p+ ρg) = −∇p′ + ρ0g

′ + ρ′g0 , (8.13)

by using equation (8.4). Alternatively this may be written, from equation (8.6), as

ρ0
d2δδδr

dt2
= −∇p′ + ρ0g

′ + ρ′g0 , (8.14)

or, by using equation (8.7) and neglecting the term quadratic in v0,

ρ0
∂2δδδr

∂t2
+ 2ρ0(v0 · ∇)

(
∂δδδr

∂t

)
= −∇p′ + ρ0g

′ + ρ′g0 , (8.15)

which replaces equation (3.43). Finally, from the commutativity in equation (8.12), one
finds that the perturbed energy equation (3.46) is still valid. Thus to this level of accuracy,
the only change in the perturbation equations is the inclusion of the term in the first time
derivative of δδδr in equation (8.15)

As the equilibrium structure is independent of time, we may still separate the time de-
pendence as exp(−iωt). Using, for simplicity, the same symbols for the amplitude functions
in this separation, we obtain from the equations of motion

−ω2ρ0δδδr− 2iωρ0(v0 · ∇)δδδr = −∇ p′ + ρ0g
′ + ρ′g0 . (8.16)

Here the term in v0 is a small perturbation. Thus we can investigate its effect by means of
perturbation analysis, as discussed in Section 5.5. Following equations (5.56) and (5.57) I
write equation (8.16) as

ω2δδδr = F(δδδr) + δF(δδδr) , (8.17)

where
δF(δδδr) = −2iω(v0 · ∇)δδδr . (8.18)

It now follows from equation (5.73) and the definition of the inner product that the change
in ω caused by the velocity field is, to first order,

δω = −i
∫
V ρ0δδδr

∗ · (v0 · ∇)δδδr dV∫
V ρ0|δδδr|2 dV

. (8.19)
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8.2 The effect of pure rotation

Now v0 is taken to correspond to a pure rotation, with angular velocity Ω = Ω(r, θ) that
may depend on r and θ. I assume that the entire star is rotating around a common axis
and choose this as the axis of the spherical polar coordinate system. Then

v0 = Ωr sin θ aφ = ΩΩΩ× r , (8.20)

where I have introduced the rotation vector

ΩΩΩ = Ω(cos θ ar − sin θ aθ) . (8.21)

We must now evaluate equation (8.19) for a normal mode of oscillation, and hence we have
to consider the derivative in the direction of v0. From equation (4.30) the perturbations
depend on φ as exp(imφ); thus for a scalar quantity a

(v0 · ∇)a = Ωr sin θ
1

r sin θ

∂a

∂φ
= imΩ a . (8.22)

For a vector F I use equation (4.10), and note that the directional derivatives of the coor-
dinates of F can be found by using equation (8.22). The result is

(v0 · ∇)F = imΩF + Ω[−Fφ sin θ ar − Fφ cos θ aθ + (Fr sin θ + Fθ cos θ) aφ] . (8.23)

This can also be written as

(v0 · ∇)F = imΩF + ΩΩΩ× F . (8.24)

Thus equation (8.16) becomes

−ω2ρ0δδδr + 2mωΩρ0δδδr− 2iωρ0ΩΩΩ× δδδr = −∇p′ + ρ0g
′ + ρ′g0 . (8.25)

In the case of a uniform rotation rate Ω this equation may be obtained much more simply.
Here we may transform to a coordinate system rotating with the star, with coordinates
(r′, θ′, φ′) = (r, θ, φ − Ωt). In this system the dependence of the perturbations on φ′ and t
is as

cos(mφ′ +mΩt− ωt) = cos(mφ′ − ω′t) , (8.26)

where ω′ ≡ ω −mΩ (see also the simple analysis in the introduction to this chapter). To
write down the equations of motion in the rotating system I note that here there is no term
in the equilibrium velocity; however, we must add the term −2ρ0ΩΩΩ× δδδv from the Coriolis
force on the right-hand side. Using that to the required order of precision the velocity
perturbation is δδδv = −iωδδδr, the result is

−ω′2ρ0δδδr = −∇p′ + ρ0g
′ + ρ′g0 + 2iωρ0ΩΩΩ× δδδr . (8.27)

But this agrees with equation (8.25), if a term in Ω2 is neglected.
In the general case of non-uniform rotation it might be argued that this relation would

hold locally at any given point in the fluid, thus resulting again in equation (8.25). However,
it is not clear (to me, at least) whether this is a consistent derivation of that relation, or
whether it results from fortuitous cancellation of terms coming from the variation of Ω. In
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any case it allows a simple interpretation of the two terms in Ω in equation (8.25): the
first term comes from the coordinate rotation, or equivalently from the advection of the
rotating star relative to an observer in an inertial frame, and the second term comes from
the Coriolis force.

We must now calculate the integral. By substituting δδδr, given by the complex form of
equation (4.40), for F in equation (8.23) we obtain

(v0 · ∇)δδδr = imΩ δδδr (8.28)

+
√

4πΩ

[
−ξh

∂Y m
l

∂φ
ar − ξh

cos θ

sin θ

∂Y m
l

∂φ
aθ +

(
ξr sin θ Y m

l + ξh cos θ
∂Y m

l

∂θ

)
aφ

]
.

Thus

R̃ ≡
∫

V
ρ0δδδr

∗ · (v0 · ∇)δδδr dV (8.29)

= im

∫

V
ρ0Ω|δδδr|2 dV + 4π

∫

V
ρ0Ω

[
−ξr∗(Y m

l )∗ξh
∂Y m

l

∂φ
− |ξh|2

(
∂Y m

l

∂θ

)∗ ∂Y m
l

∂φ

cos θ

sin θ

+ξ∗hξr

(
∂Y m

l

∂φ

)∗
Y m
l + |ξh|2

(
∂Y m

l

∂φ

)∗ ∂Y m
l

∂θ

cos θ

sin θ

]
dV .

Here Y m
l is always multiplied by its complex conjugate, so that the φ-dependence cancels.

Hence the integration over φ is trivial. It should be noticed also that all terms in the second
integral in equation (8.29) contain the φ-derivative of Y m

l or its complex conjugate, which
is proportional to im. Thus R̃ contains im as a factor, and can be written, using equation
(4.30), as

R̃ = im 8π2c2
lmRnlm , (8.30)

where

Rnlm =

∫ π

0
sin θdθ

∫ R

0

{
|ξr(r)|2Pml (cos θ)2 (8.31)

+|ξh(r)|2
[(

dPml
dθ

)2

+
m2

sin2 θ
Pml (cos θ)2

]

−Pml (cos θ)2 [ξr
∗(r)ξh(r) + ξr(r)ξ

∗
h(r)]

−2Pml (cos θ)
dPml
dθ

cos θ

sin θ
|ξh(r)|2

}
Ω(r, θ)ρ0(r)r2dr .

Similarly, the denominator in equation (8.19) can be written as

Ĩ ≡
∫

V
ρ0|δδδr|2dV = 8π2c2

lmInlm , (8.32)

where

Inlm =

∫ π

0
sin θdθ

∫ R

0

{
|ξr(r)|2Pml (cos θ)2 (8.33)

+|ξh(r)|2
[(

dPml
dθ

)2

+
m2

sin2 θ
Pml (cos θ)2

]}
ρ0(r)r2dr

=
2

2l + 1

(l + |m|)!
(l − |m|)!

∫ R

0

[
|ξr|2 + l(l + 1)|ξh|2

]
ρ0(r)r2dr
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[compare with equation (4.47)]. From equations (8.19), (8.30) and (8.32) we finally obtain
the rotational splitting, i.e., the perturbation in the frequencies caused by rotation, as

δωnlm = m
Rnlm
Inlm

. (8.34)

This may obviously be written on the form

δωnlm = m

∫ R

0

∫ π

0
Knlm(r, θ)Ω(r, θ)rdrdθ , (8.35)

where the kernel Knlm is defined by equations (8.31) and (8.33).
From equations (8.31) and (8.33), as well as the symmetry property of the Legendre

function with respect to m (eq. A.8), it follows that Rnlm/Inlm is an even function of m
and hence that δωnlm is an odd function of m,

δωnl−m = −δωnlm . (8.36)

Also, since Pml (x) is either symmetrical or antisymmetrical around x = 0, the factor mul-
tiplying Ω(r, θ) in equation (8.31) is symmetrical around the equator, θ = π/2; thus

Knlm(r, π − θ) = Knlm(r, θ) . (8.37)

This has the important consequence that the rotational frequency splitting is sensitive only
to the part of Ω that is symmetrical around the equator.

Exercise 8.1:

Confirm the symmetry properties in equations (8.36) and (8.37).

The rotational splitting for a uniformly rotating star was first obtained by Cowling &
Newing (1949) and Ledoux (1949). The general case, as presented here, was considered by
Hansen, Cox & van Horn (1977) and Gough (1981).

8.3 Splitting for spherically symmetric rotation

To proceed we must make an explicit assumption about the variation of Ω with θ. For
simplicity I shall assume first that Ω is independent of θ. In fact, as mentioned earlier,
the solar surface rotation depends on θ; however, the assumption of θ-independent rotation
can be regarded as the first term in an expansion of Ω, say, in terms of powers of cos θ. In
this case the integrals over θ in equation (8.31) only involve Legendre functions and may
be evaluated analytically. Two of the terms require a little care. One contains

∫ π

0
Pml (cos θ)

dPml
dθ

cos θ

sin θ
sin θdθ = −

∫ 1

−1
Pml (x)

dPml
dx

xdx

= − 1

2
xPml (x)2

∣∣∣∣
1

−1
+

1

2

∫ 1

−1
Pml (x)2dx , (8.38)
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and here the integrated term vanishes, as Pml (x) is either symmetrical or anti-symmetrical
in x = cos θ. The other non-trivial integral, which was already encountered in the evaluation
of Inlm, is

∫ π

0

[(
dPml
dθ

)2

+
m2

sin2 θ
Pml (cos θ)2

]
sin θdθ (8.39)

= −
∫ π

0
Pml (cos θ)

[
d

dθ

(
sin θ

dPml
dθ

)
− m2

sin θ
Pml (cos θ)

]
dθ

= L2
∫ 1

−1
Pml (x)2dx ,

by using that Pml satisfies equation (4.26). As usual, I have introduced L2 ≡ l(l + 1). For
adiabatic oscillations we can take ξr and ξh to be real. Thus, from equation (8.31), (8.33)
and (8.34), we finally obtain for the rotational splitting

δωnlm = m

∫ R
0 Ω(r)

(
ξr

2 + L2ξ2
h − 2ξrξh − ξ2

h

)
r2ρdr

∫ R
0

(
ξr

2 + L2ξ2
h

)
r2ρdr

, (8.40)

where I have dropped the subscript “0” on ρ. It should be noticed that the integrands in
equation (8.40) are given solely in terms of ξr, ξh and l, and therefore are independent of m.
Hence in the case of spherically symmetric rotation the rotational splitting is proportional
to m.

It is convenient to write equation (8.40) as

δωnlm = mβnl

∫ R

0
Knl(r)Ω(r)dr , (8.41)

where

Knl =

(
ξr

2 + L2ξ2
h − 2ξrξh − ξ2

h

)
r2ρ

∫ R
0

(
ξr

2 + L2ξ2
h − 2ξrξh − ξ2

h

)
r2ρdr

, (8.42)

and

βnl =

∫ R
0

(
ξr

2 + L2ξ2
h − 2ξrξh − ξ2

h

)
r2ρdr

∫ R
0

(
ξr

2 + L2ξ2
h

)
r2ρdr

. (8.43)

By using this definition we ensure that the rotational kernel Knl is unimodular, i.e.,

∫ R

0
Knl(r)dr = 1 . (8.44)

Hence for uniform rotation, where Ω = Ωs is constant,

δωnlm = mβnlΩs . (8.45)

In this case the effect of rotation is completely given by the constant βnl. For high-order
or high-degree p modes the terms in ξr

2 and L2ξ2
h dominate; as shown in Figure 8.1, βnl

is then close to one. Thus the rotational splitting between adjacent m-values is given
approximately by the rotation rate. Physically, the neglected terms in equation (8.43) arise
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Figure 8.1: Coefficients βnl for acoustic modes in a normal solar model. Points
corresponding to fixed l have been connected, according to the following line
styles: l = 1: ; l = 2: ; l = 3: ; l = 4:

; l = 5: ; l = 10, 15, . . . , 50: (with βnl
increasing with l).

from the Coriolis force; thus rotational splitting for p modes is dominated by advection.
For high-order g modes, on the other hand, we can neglect the terms containing ξr, so that

βnl ' 1− 1

L2
. (8.46)

In particular, the splitting of high-order g modes of degree 1 is only half the rotation rate.
Returning to the case where Ω depends on r, it should be noted that the integral in

equation (8.41) provides a weighted average of Ω(r). For high-order p modes we can use
the asymptotic behaviour of the eigenfunctions to obtain

δωnlm ' m

∫ R

rt

(
1− L2c2

r2ω2
nl

)−1/2

Ω(r)
dr

c

∫ R

rt

(
1− L2c2

r2ω2
nl

)−1/2
dr

c

' m

∫ R

rt
Ω(r)

dr

c∫ R

rt

dr

c

, (8.47)

where in the last equality I crudely approximated (1 − L2c2/r2ω2) by 1. Note that the
last equality corresponds to neglecting the terms in ξh in equation (8.42) and using that,
according to equation (7.34), ξr ∼ (ρc)−1/2r−1 outside the turning point; in this approxi-
mation we obtain the intuitively appealing result that the rotational splitting is an average
of the rotation rate, weighted by the sound travel time in the radial direction. The first,
more accurate expression can also be obtained from ray theory (Gough 1984). In fact, it
is straightforward to show that the weight given to Ω(r) is simply the sound-travel time,
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corresponding to the radial distance dr, along a ray; this evidently becomes infinite at the
lower turning point. It should be noted that the first part of equation (8.47) may also be
written as

Snlδωnlm ' m
∫ R

rt

(
1− c2L2

ω2
nlr

2

)−1/2

Ω(r)
dr

c
, (8.48)

in complete analogy with equation (7.145) for the frequency change resulting from a change
in the sound speed; here I neglected the term πdα/dω in equation (7.146) which in general
is small.

Figure 8.2: Kernels Knl for the frequency splitting caused by spherically sym-
metric rotation (cf. eq. 8.42). In a) is plotted RKnl(r) for a mode with l = 1,
n = 22 and ν = 3239µHz. The maximum value of RKnl(r) is 62. In b) is
shown the same mode, on an expanded vertical scale, ( ) together
with the modes l = 20, n = 17, ν = 3375µHz ( ), and l = 60,
n = 10, ν = 3234µHz ( ). Notice that the kernels almost vanish in-
side the turning-point radius rt, and that there is an accumulation just outside
the turning point.

Figure 8.2 shows a few kernels for the case of spherically symmetric rotation, for high-
order p modes. The strong increase towards the solar surface, which is also implicit in
equation (8.47), is evident. Also, the kernels clearly get very small beneath the turning
point, but are locally enhanced just above it. This effect arises from the term in ξh in
equation (8.42); physically it corresponds to the fact that the waves travel approximately
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horizontally in this region, and hence spend a relatively long time there, as also indicated
by the integrable singularity at r = rt in equation (8.47).

Figure 8.3: Contour plots of rotational kernels Knlm in a solar quadrant.
The modes all have frequencies near 2 mHz; the following pairs of (l,m) are
included: a) (5, 2); b) (20, 8); c) (20, 17); and d) (20, 20). The dotted circles
mark the locations of the lower radial turning point rt and the dotted lines
show the latitudinal turning points, at co-latitude Θ, defined by sin Θ = m/L.

8.4 General rotation laws

In the general case, where Ω depends on both r and θ, the rotational splitting may be com-
puted from equations (8.31), (8.33) and (8.34), by evaluating the two-dimensional integral
in equation (8.31). This integral is in general m-dependent, and so the splitting is no longer
a linear function of m. Selected examples of the resulting kernels Knlm(r, θ) (cf. eq. 8.35)
are illustrated in Figure 8.3.

To illustrate the properties of the splitting, it is instructive to rewrite equation (8.31)
for Rnlm, using integration by parts:

Rnlm =

∫ π

0
dθ

∫ R

0
Pml (cos θ)2

{[
ξr

2 + (L2 − 1)ξ2
h − 2ξrξh

]
sin θΩ(r, θ)

+ξ2
h

(
3

2
cos θ

∂Ω

∂θ
+

1

2
sin θ

∂2Ω

∂θ2

)}
r2ρdr (8.49)

(Cuypers 1980). I consider again the case of high-order p modes; here the terms in ξr
2 and

L2ξ2
h dominate, and consequently

δωnlm ' m
∫ π

0 sin θ [Pml (cos θ)]2
∫ R

0 Ω(r, θ)[ξr(r)
2 + L2ξh(r)2]r2ρdrdθ

∫ π
0 sin θ

[
Pml (cos θ)

]2
dθ
∫ R

0 [ξr(r)2 + L2ξh(r)2]r2ρdr
. (8.50)

Hence, the splitting is simply an average of the angular velocity Ω(r, θ), weighted by
r2ρ[ξr(r)

2 + L2ξh(r)2]Pml (cos θ)2. Approximating the eigenfunction as in the derivation
of equation (8.47) and using, furthermore, an asymptotic approximation to Pm

l , this may
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be written as

δωnlm ' (8.51)

m

∫ cos Θ

− cos Θ

(
cos2 Θ− cos2 θ

)−1/2
∫ R

rt

(
1− L2c2

r2ω2

)−1/2

Ω(r, θ)
dr

c
d(cos θ)

1

π

∫ R

rt

(
1− L2c2

r2ω2

)−1/2
dr

c

,

where Θ = sin−1(m/L) (Gough and Thompson 1990, 1991; Gough 1991). The asymptotic
approximation to Pml shows that a given spherical harmonic is confined essentially to the
latitude band between ±Θ; within this region Pml oscillates as a function of θ, whereas at
higher latitudes it decreases exponentially. The variation of the extent of the Pm

l with m/L
allows resolution of the latitudinal variation of the angular velocity, in much the same way
as the variation of the depth of penetration with ω/L allows resolution of the variation with
radius. In particular, with increasing l the sectoral modes (with l = |m|) get increasingly
confined towards the equator (see also Figure 2.1). Thus, the rotational splitting of sectoral
modes provides a measure of the solar equatorial angular velocity.

Exercise 8.2:

Confirm the statements about the oscillatory properties of the spherical harmonics, by
analyzing equation (4.26) satisfied by the Legendre function.

To study the splitting without making the asymptotic approximation, it is convenient
to consider a parameterized representation of Ω(r, θ). To illustrate the principle, we may
consider an expansion on the form

Ω(r, θ) =
smax∑

s=0

Ωs(r) cos2s θ . (8.52)

Then the integrals over θ can be evaluated analytically, in much the same way as the
derivation of equation (8.40), and the rotational splitting becomes (see also Cuypers 1980)

δωnlm = m
smax∑

s=0

∫ R

0
Knlms(r)Ωs(r)dr . (8.53)

Here

Knlms(r) = ρr2I−1
nl

{[
(ξr − ξh)2 + (L2 − 2s2 − 3s− 2)ξ2

h

]
Qlms

+s(2s− 1)ξ2
hQlms−1

}
, (8.54)

where

Inl =

∫ R

0
ρr2

(
ξr

2 + L2ξ2
h

)
dr , (8.55)

and

Qlms =
2l + 1

2

(l − |m|)!
(l + |m|)!

∫ 1

−1
x2s[Pml (x)]2dx . (8.56)
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For spherically symmetric rotation, Ωs = 0 for s > 0. Since Qlm0 = 1, the kernel Knlm0(r) =
βnlKnl(r) is independent of m, and the splitting is uniform in m. Thus we recover the results
of Section 8.3.

The factor Qlms is a polynomial in m2 of degree s; thus, in accordance with equation
(8.36), δωnlm is a polynomial of odd powers of m. Up to s = 2 explicit expressions for the
Qlms are

Qlm1 =
2L2 − 2m2 − 1

4L2 − 3
, (8.57)

and
Qlm2 = Rml+1

(
Rml+2 +Rml+1 +Rml

)
+Rml

(
Rml+1 +Rml +Rml−1

)
, (8.58)

where

Rml =
l2 −m2

4l2 − 1
. (8.59)

Hence equation (8.53) leads to an expansion of the rotational splitting in odd powers of m,
with expansion coefficients that are related to the expansion functions Ωs(r). As discussed
by Brown et al. (1989), this forms the basis for an inversion to determine the Ωs, and hence
to estimate the rotation rate as a function of r and θ.

The choice of expansion

Ω(r, θ) =
smax∑

s=0

Ωs(r)ψ2s(cos θ) , (8.60)

for Ω(r, θ), and of the expansion for δωnlm, are clearly not unique. In particular, it was
pointed out by Ritzwoller & Lavely (1991) that a more suitable expansion of the rotational
splitting could be obtained in terms of Clebsch-Gordon coefficients. This is equivalent to
the odd terms in the expansion (2.43) of the m-dependence of the frequencies in terms of

the polynomials P(l)
j (m). Choosing also expansion functions for the rotation rate Ω(r, θ) as

ψ2s(cos θ) = (sin θ)−1/2P 1
2s+1(cos θ) (8.61)

(e.g. Ritzwoller & Lavely 1991; Pijpers 1997), the relations decouple such that each ex-
pansion coefficient for the splitting is related to a single expansion function for the angular
velocity:

2πa2s+1(n, l) =

∫ R

0
Ks
nls(r)Ωs(r)dr (8.62)

(see also Schou et al. 1998). This forms a convenient basis for the so-called 1.5-dimensional
inversions for Ω(r, θ) (cf. Section 9.1.2).

It should be noted that, in general, averaging or expansion of the observed frequencies
may involve loss of information; for the purpose of inversion it is, in principle, preferable
to work directly in terms of the observed frequencies. In fact, as mentioned in Chapter 9 a
direct inversion of the frequency splittings δωnlm for individual m, in terms of a discretized
representation of Ω(r, θ) on a grid in r and θ, is now computationally feasible (see also Schou,
Christensen-Dalsgaard & Thompson 1994). On the other hand, by suitably combining the
frequencies before inversion, the computational effort required may be greatly reduced.
Furthermore, it is often the case that the quality of the observations does not allow a
complete determination of the individual frequencies; in that case inversion has to be based
on expansions such as the one given in equation (2.43).



Chapter 9

Helioseismic inversion

The expression (8.41) for the splitting caused by spherically symmetric rotation is a par-
ticularly simple example of the relation between the observable properties of the oscillation
frequencies, and the properties of the solar interior which we wish to determine. The deter-
mination of Ω(r) from the δωnlm constitutes the simplest example of an inverse problem.
In particular, there is a linear relation between the observables and the property of the
solar interior. In contrast, the oscillation frequencies depend in a non-linear fashion on the
structure of the Sun, as specified by for example ρ(r) and c(r) (cf. Section 5.1). However,
by assuming that the real solar structure can be obtained from the structure of a given
reference model by applying small corrections, the differences in frequency between the
observations and the reference model can be obtained from a linear perturbation analysis
of the oscillation equations, resulting, once more, in a linear relation between the frequency
differences and the corrections to the model; this was discussed in some detail in Sec-
tion 5.5.3 (see eq. 5.84). Thus the linear inverse problem forms the basis for much of the
inverse theory for solar oscillations.

Inverse problems have a vast literature, covering their application in, for example, geo-
physics and radiation theory (e.g. Parker 1977; Craig & Brown 1986; Deepak 1977; Taran-
tola 1987). The application to the solar inverse problem was discussed by Gough (1985),
and Christensen-Dalsgaard, Schou & Thompson (1990) made a systematic comparison of
different inversion techniques, as applied to the problem of spherically symmetric rotation.
The following discussion is to a large extent based on their results.

9.1 Inversion of the rotational splitting

Given the simplicity of the rotational-splitting inverse problem, it serves as a very useful
prototype of more general inversions. Furthermore, a determination of the solar internal
rotation is of great intrinsic interest. For these reasons, in this section I consider rotational
inversion in some detail.

185
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9.1.1 One-dimensional rotational inversion

I first consider the inversion for a spherically symmetric rotation rate Ω(r). Thus the data
are

∆i =

∫ R

0
Ki(r)Ω(r)dr + εi , i = 1, . . . ,M , (9.1)

where, for notational simplicity, I represent the pair (n, l) by the single index i; M is
the number of modes in the data set considered. ∆i is the scaled rotational splitting
m−1β−1

nl δωnlm, the kernels Ki having been normalized as in equation (8.44), and εi is the
observational error in ∆i. The goal of the inversion is to determine an approximation Ω̄(r0)
to the true angular velocity, as a function of position r0 in the Sun; obviously this is only
possible for those parts of the Sun about which the oscillations provide data. In most cases
considered so far, the inversion is carried out through linear operations on the data. Hence
Ω̄ is linearly related to the data: for each r0 there exists a set of inversion coefficients ci(r0)
such that

Ω̄(r0) =
∑

i

ci(r0)∆i . (9.2)

It follows from equation (9.1) that this may be written as

Ω̄(r0) =

∫ R

0
K(r0, r)Ω(r)dr , (9.3)

where the averaging kernel K(r0, r) is given by

K(r0, r) =
∑

i

ci(r0)Ki(r) . (9.4)

The inversion coefficients and averaging kernels clearly depend on the choice of inversion
method, and of possible parameters that enter into the method; indeed, the inversion
may be thought of as a way to determine coefficients and averaging kernels such as to
obtain as much information about the angular velocity as possible. As discussed below, the
determination of the coefficients must take into account the estimated errors in the data.
On the other hand, once the method and parameters have been chosen, the coefficients and
averaging kernels are independent of the data values. Hence they can be used to make a
data-independent comparison of different inversion methods; this was the approach taken
by Christensen-Dalsgaard et al. (1990).

The averaging kernels provide an indication of the resolution of the inversion; it is clearly
desirable to achieve averaging kernels that are sharply peaked around r = r0, and with small
amplitude far away from that point. As a quantitative measure of resolution it is common
to use a width of K(r0, r) obtained as the distance between the quartile points, defined
such that one quarter of the area of K(r0, r), regarded as function of r, lies below the lower,
and one quarter of the area above the upper, quartile point. The inversion coefficients give
information about the propagation of errors from the data to the solution Ω̄(r0). If the
standard error on ∆i is σ(∆i), the standard error in the result of the inversion is given by

σ[Ω̄(r0)]2 =
∑

i

ci(r0)2σ(∆i)
2 . (9.5)

(The generalization to a non-diagonal covariance matrix is fairly obvious.) In particular, if
(somewhat unrealistically) σ(∆i) = σ is assumed to be the same for all the observed modes

σ[Ω̄(r0)] = Λ(r0)σ , (9.6)
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where I introduced the error magnification

Λ(r0) =

[∑

i

ci(r0)2

]1/2

. (9.7)

The optimization of the inversion techniques is often based on a trade-off between width of
the averaging kernels and error or error magnification magnification (cf. Figure 9.2 below).

A procedure which is based explicitly on the determination of the inversion coefficients
is the technique of optimally localized averages, developed by Backus and Gilbert (1970);
this has been used extensively for helioseismic inversion. The goal is to choose the co-
efficients ci(r0) such as to make K(r0, r) approximate as far as possible a delta function
δ(r − r0) centred on r0; then Ω̄(r0) provides an approximation to Ω(r0). This is achieved
by determining the coefficients c(r0) such as to minimize

∫ R

0
(r − r0)2K(r0, r)

2dr + µ
∑

ij

Eijcicj , (9.8)

subject to the constraint ∫ R

0
K(r0, r)dr = 1 ; (9.9)

here Eij is the covariance matrix of the data. This is equivalent to solving the set of linear
equations ∑

j

Wijcj = b , (9.10)

and ∑

j

cj = 1 , (9.11)

where b is a Lagrange multiplier. Here

Wij = Sij + µEij , (9.12)

where

Sij =

∫ R

0
(r − r0)2Ki(r)Kj(r)dr . (9.13)

Furthermore, µ is a parameter which, as discussed below, must be adjusted to optimize the
result.

The effect of the minimization is most easily understood for µ = 0. Minimizing equation
(9.8) subject to equation (9.9) ensures that K(r0, r) is large close to r0, where the weight
function (r− r0)2 is small, and small elsewhere. This is precisely the required “delta-ness”
of the combined kernel. However, with no further constraints, the optimization of the
combined kernel may result in numerically large coefficients of opposite sign. Hence, the
variance in Ω̄, which can be estimated as

σ2(Ω̄) =
∑

ij

Eijcicj , (9.14)

would be large. The effect of the second term in equation (9.8), when µ > 0, is to restrict
σ2(Ω̄). The size of µ determines the relative importance of the localization and the size of
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the variance in the result. Hence, µ must be determined to ensure a trade-off between the
localization and the error, measured by the width of K(r0, r) and Λ(r0), respectively; µ is
generally known as the trade-off parameter.

The principal difficulty of this method is computational expense: at each target radius
r0 it involves the solution of a set of linear equations whose order is the number of data
points. Jeffrey (1988) proposed an alternative version where the coefficients were deter-
mined by minimizing the difference between K(r0, r) and the delta function δ(r− r0). This
is computationally more efficient, in that only one matrix inversion is required, but results
in averaging kernels with somewhat undesirable properties.

More recently Pijpers & Thompson (1992, 1994) have developed this method further,
by matching K(r0, r) instead to a prescribed target function T (r0, r) which more closely
matches the behaviour that can be achieved with the given mode set. They dubbed this
the SOLA technique (for Subtractive Optimally Localized Averaging), to distinguish it from
the MOLA technique (for Multiplicative Optimally Localized Averaging) discussed above.
Specifically, the coefficients ci(r0) are determined by minimizing

∫ R

0
[K(r0, r)− T (r0, r)]

2 dr + µ
∑

ij

Eijcicj , (9.15)

where again µ is a tradeoff parameter. In addition, the width of T (r0, r) functions as a
parameter, in most cases depending on r0, of the method. As before, the inclusion of the
last term in equation (9.15) serves to limit the error in the solution. The minimization
leads to the following system of linear equations for the ci(r0):

∑

j

(Kij + µEij)cj(r0) = Ti(r0) ; (9.16)

here

Kij =

∫ R

0
Ki(r)Kj(r)dr , (9.17)

and

Ti(r0) =

∫ R

0
T (r0, r)Ki(r)dr . (9.18)

In equation (9.16) the coefficient matrix on the left-hand side is independent of r0. Thus
it can be inverted or, more efficiently, suitably factored, once and for all; after this the
determination of the coefficients at each target point r0 is virtually free. Compared with
the MOLA technique the computational effort is therefore reduced by roughly a factor
given by the number of target locations. An additional advantage of the technique is the
ability to choose the target function such as to tailor the averaging kernels to have specific
properties. In addition to the usual trade-off parameter µ controlling the weight given to
the errors, the method obviously depends on parameters controlling the properties of the
target functions T (r0, r). These are often taken to be of gaussian shape; it was argued by
Thompson (1993) that the radial resolution, for inversion of acoustic modes, is proportional
to the sound speed c, and hence the width of T (r0, r) is generally taken to be proportional
to c(r0), the constant of proportionality serving as a parameter characterizing the targets.

A second commonly used technique is the regularized least-squares, or Tikhonov,
method (see, for example, Craig and Brown 1986). Here the solution Ω̄(r) is parameterized,
often as a piecewise constant function on a grid r0 < r1 < . . . < rN , with Ω̄(r) = Ωj on the
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interval [rj−1, rj ]; the parameters Ωj are determined through a least-squares fit to the data.
In general, this least-squares procedure needs to be regularized to obtain a smooth solution.
This is achieved by including in the minimization a term which restricts the square of Ω̄,
or the square of its first or second derivative. Thus, for example one may minimize

∑

i

[∫ R

0
Ki(r)Ω̄(r)dr −∆i

]2

+ µ2
∫ R

0

(
d2Ω̄

dr2

)2

dr , (9.19)

where in the last term a suitable discretized approximation to d2Ω̄/dr2, in terms of the Ωj ,
is used. The minimization of equation (9.19) clearly leads to a set of linear equations for Ω̄j ,
defining the solution; however, it is still the case that the procedure can be formulated as in
equation (9.2) and hence leads to the determination of inversion coefficients and averaging
kernels. By restricting the second derivative the last term in equation (9.19) suppresses
rapid oscillations in the solution, and hence ensures that it is smooth; the weight µ2 given
to this term serves as a trade-off parameter, determining the balance between resolution
and error for this method.

The asymptotic expression (8.48) for the frequency splitting provides the basis for a final
example of an inversion method in widespread use. The right-hand side of that equation is
a function H(ω/L) which is in principle determined by the observed splittings after scaling
with S. Given H(w), the angular velocity can be obtained from

Ω(r) = −2a

π

d

d ln r

∫ a

as
(a2 − w2)−1/2H(w)dw , (9.20)

where a = c/r and as = a(R). This is entirely equivalent to equation (7.153) determining
the sound-speed difference from the function H1(ω/L) fitted to the scaled frequency differ-
ences. In practice, since the asymptotic expressions are not exact, the scaled splittings are
not precisely functions of ω/L. Hence, an approximation to H(ω/L) is obtained by making
a least-squares fit to S∆ωnl of a function of that form, for example by representing it as a
spline over a suitably chosen set of knots. The number of knots determines the resolution
achieved in representing H(w) and hence in the inferred solution Ω̄(r); therefore, in this
case the number of knots serves as trade-off parameter. Again, the processes of carrying
out the spline fit to the scaled data and evaluating the integral in equation (9.20) are linear,
and hence the method allows the evaluation of inversion coefficients and averaging kernels
(see Christensen-Dalsgaard et al. 1990 for details).

An illustration of the use of these methods is provided by the results obtained by Chri-
stensen-Dalsgaard et al. (1990). They considered a set consisting of about 830 modes at
selected degrees between 1 and 200, and frequencies between 2000 and 4000µHz; for sim-
plicity, the standard errors were assumed to be the same for all modes. Figure 9.1 shows
examples of averaging kernels K(r0, r) for the MOLA, regularized least-squares and asymp-
totic methods. The trade-off parameters were chosen such that the error magnification at
r0 = 0.5R was close to 1 in all three cases. It should be realized that the kernels entering
into the combination are of the form shown in Figure 8.2. Thus, a very large degree of
cancellation has been achieved of the dominant contribution from near the surface. Never-
theless, it is obvious that the averaging kernels are only approximate realizations of delta
functions; structure on a scale smaller than roughly 0.05R is not resolved.

This limitation is inherent in any inversion method. Indeed, it is evident that from a
finite set of data one can never completely resolve the function Ω(r). To obtain a definite
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Figure 9.1: Averaging kernels K(r0, r) at selected radii (r0/R = 0.1, 0.2,
. . . , 1.0) for inversion by means of the MOLA technique (panel a), the
Tikhonov inversion with second-derivative smoothing (panel b) and asymp-
totic inversion (panel c). The parameters in each inversion method have been
chosen to obtain approximately the same error magnification for r0 = 0.5R.
In each case, the kernel at r0 = 0.5R is shown as a bolder curve. From
Christensen-Dalsgaard et al. (1990).

solution additional constraints must be invoked. The constraints used here essentially
demand that the solution be smooth. This is ensured in the method of optimally localized
kernels by representing the solution by smooth averaging kernels whose shape is determined
by the minimization in equation (9.8). For the Tikhonov method smoothness is explicitly
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Figure 9.2: The trade-off between error magnification Λ(r0) (cf. eq. 9.7) and
width (defined as distance between quartile points), for inversion at r0 = 0.5R.
Results are shown for the MOLA technique ( ), Tikhonov inversion (�) and
asymptotic inversion (4), in each case varying the relevant trade-off parameter
over a wide range. From Christensen-Dalsgaard et al. (1990).

demanded by constraining the second derivative of the solution, whereas in the case of the
asymptotic technique the constraints lie partly in using the asymptotic description, which
in itself assumes that the solution varies on a scale larger than the wavelength of the modes,
partly in the spline fit to the scaled data.

All methods contain trade-off parameters which determine the relative weight given to
the demands of resolution on the one hand, and smoothness or minimizing errors on the
other. To illustrate this balance, it is common to consider trade-off diagrams, where a
measure of error is plotted against a measure of the width of the averaging kernels. An
example is shown in Figure 9.2. The similarity, in terms of such global measures, between
the three conceptually rather different methods is quite striking.

It is also of interest to consider in detail the way in which the different methods utilize
the data, as expressed in terms of the inversion coefficients. In the case of the asymptotic
technique it may be shown that these depend on ω/L alone; hence for the purpose of com-
parison it is sensible to plot the coefficients as a function of ω/L in all cases. In Figure 9.3
the coefficients for the optimally localized averages and the Tikhonov inversions are com-
pared with those obtained with the asymptotic technique, for r0 = 0.5R. It is evident that
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Figure 9.3: Inversion coefficients ci(r0) for the inversions illustrated in Fig-
ure 9.1, at r0 = 0.5R; they have been plotted against ν/(l+1/2) which, accord-
ing to equation (5.28), measures the depth of penetration of the modes. The
continuous line in both panels shows coefficients for the asymptotic method
which are functions of ν/(l + 1/2). Panel (a) gives the coefficients obtained
with the MOLA technique, whereas panel (b) shows coefficients for Tikhonov
inversion. From Christensen-Dalsgaard et al. (1990).

the overall behaviour of the coefficients is quite similar in all three cases; in particular, the
modes dominating the inversion are those whose turning point rt is in the vicinity of the
target radius r0. At a more subtle level, there are significant differences. In particular,
unlike the Tikhonov case, inversion by optimally localized averages makes substantial use
of modes of high degree. It may be shown that these are used essentially only to improve
the averaging kernels near the surface; in fact, as can be seen in Figure 9.1 the K(r0, r)
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for Tikhonov inversion have quite substantial amplitude at very short wavelength near the
surface, whereas such structure is entirely suppressed by the minimization in equation (9.8)
for the optimally localized averages. Christensen-Dalsgaard, Hansen & Thompson (1993)
found that considerable insight into such details of the behaviour of the inversion methods
can be obtained by analyzing the Tikhonov case by means of the so-called Generalized Sin-
gular Value Decomposition; this provides a natural basis for expressing the inverse problem
which can then be used to study the properties of other inversion methods.

Graphs such as Figure 9.2 are very useful for the choice of the trade-off parameter; how-
ever, it is evident that this choice depends critically on the particular application, including
the errors in the data. The question of how to fix the trade-off parameter, or indeed even
how to choose the inversion method, has given rise to a great deal of debate, occasionally
of an almost philosophical (or, dare one say, religious) nature. It has been suggested that
inversion methods should be chosen which aim at fitting the data; this makes the method
of optimally localized averages, whose goal is instead to design the averaging kernels, less
attractive. Also, a great deal of emphasis has been placed on techniques for objectively
determining the trade-off parameters, based on the errors in the data and possibly the
properties of the solution. In contrast, the approach taken in helioseismology has to a large
extent been pragmatic: in fact, it can be argued that since no method, or choice of trade-off,
can provide the exact solution given the necessarily incomplete data, the most important
aspect of the inversion is to be able to interpret the result and its significance. In this
respect, the averaging kernels which graphically illustrate the resolution, and the inversion
coefficients which allow evaluation of effects of errors in the data, are clearly very useful.
By choosing different inversion methods, and different values of the trade-off parameters,
considering in each case the properties of the resulting inversion, one can hope to obtain
a more complete impression of the underlying solution. In this process prior knowledge,
or prejudices, about the solution clearly play a significant role; these should ideally be
formulated in a well-defined statistical sense, but probably often are not.

9.1.2 Two-dimensional rotational inversion

So far, I have considered inversion for a function that depends on r alone. It is evidently
desirable, however, to carry out inversion for more general properties which are functions
both of r and θ. Here I concentrate on the case of determining the angular velocity Ω(r, θ); it
should be noticed, however, that another interesting inverse problem concerns the departure
of the structure from spherical symmetry caused, for example, by a latitude dependence of
the energy transport in the convection zone.

As is evident from Chapter 8, the latitude dependence of rotation is reflected in the
dependence of the frequencies on azimuthal order m. Thus in general individual frequencies
ωnlm have to be analyzed. This greatly increases the amount of data to be considered,
compared with the simple case discussed in Section 9.1.1, and computational efficiency
becomes a crucial consideration. However, it is still generally the case that the inferred
angular velocity Ω̄(r0, θ0) at some location (r0, θ0) is linearly related to the data; as discussed
by Schou et al. (1992) this allows the introduction of inversion coefficients and generalized
averaging kernels K(r0, θ0, r, θ) defined such that Ω̄(r0, θ0) is related to the true angular
velocity Ω(r, θ) through

Ω̄(r0, θ0) =

∫ π

0

∫ R

0
K(r0, θ0, r, θ)Ω(r, θ) rdrdθ . (9.21)
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The form of the inverse problem evidently depends on the representation of the data.
The general problem has the form

ωnlm − ωnl0 = δωnlm = m

∫ R

0

∫ π

0
Knlm(r, θ)Ω(r, θ)rdrdθ (9.22)

(cf. eq. 8.35). However, it is often the case that the data do not allow determination of
individual frequencies ωnlm. In that case, it is customary to make fits of the general form
shown in equation (2.35), i.e.,

ωnlm = ωnl0 + 2π
jmax∑

j=1

aj(n, l)P(l)
j (m) , (9.23)

where P(l)
j is a polynomial of degree j. Since the fitting procedure is in general linear, the

a coefficients aj(n, l) are linearly related to the frequency splittings,

2πaj(n, l) =
∑

m

γj(l,m)(ωnlm − ωnl0) , (9.24)

for some coefficients γj(l,m). It immediately follows from equations (8.35) and (8.36) that
rotation gives rise to odd a coefficients, related to Ω(r, θ) by

2πa2j+1(n, l) =

∫ R

0

∫ π

0
K

(a)
nlj(r, θ)Ω(r, θ)rdrdθ , (9.25)

where the kernels K
(a)
nlj can be determined in a straightforward manner from the kernels

Knlm(r, θ).
As discussed in Section 8.4 it may also be convenient to expand the dependence of

Ω(r, θ) on θ on the form

Ω(r, θ) =
smax∑

s=0

Ωs(r)ψ
(1)
2s (cos θ) , (9.26)

where ψ
(1)
2s (x) is a polynomial in x2 of degree s. [Note that, as discussed at the end

of Section 8.2, the rotational splitting is sensitive only to the component of Ω that is
symmetrical around the equator; thus only even powers of cos θ enter into the expansion
(9.26).] Based on the expansions given in equations (9.23) and (9.26), the inverse problem
can be formulated as the determination of the expansion functions Ωs(r) through a series
of one-dimensional inversions of the a coefficients aj(n, l) (see, for example, Korzennik et
al. 1988; Brown et al. 1989; Thompson 1990). Such procedures are often called 1.5-

dimensional (or 1.5D) inversions. By chosing the polynomials P (l)
j as defined after equation

(2.35) (Ritzwoller & Lavely 1991; Schou, Christensen-Dalsgaard & Thompson 1994) and
the corresponding expansion of Ω (cf. eq. 8.61), the relations between the a coefficients
and the expansion functions of Ω simplify to

2πa2s+1(n, l) =

∫ R

0
Ks
nls(r)Ωs(r)dr , (9.27)

so that the separate 1-dimensional inversions can be carried out independently.
The 1.5-dimensional techniques very considerably reduce the computational efforts re-

quired for the inversion. However, the expansion of Ω evidently imposes a rather special
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structure on the solution, unless a large number of terms is included. An alternative is to
perform direct two-dimensional inversions, based either on equations (9.22) or equations
(9.25). Even given the large amount of data (as many as 200 000 individual frequen-
cies ωnlm, or of order 50 000 a coefficients aj(n, l)), this can be handled by means of a
straightforward regularized least-squares technique (e.g. Sekii 1991; Schou 1991; Schou,
Christensen-Dalsgaard & Thompson 1992, 1994). Here the inferred Ω̄(r, θ) is represented
on a suitable grid (rp, θq) in r and θ, p = 1, . . . , nr, q = 1, . . . , nθ, by expansion coefficients
Ωpq. These expansion coefficients can be determined through a regularized least-squares
fitting technique, analogous to the one described in equation (9.19). Assuming that split-
tings δωnlm for individual models are available, related to Ω(r, θ) by equation (9.22), the
solution is determined by minimizing

∑

nlm

(∫
r,θKnlmΩ̄rdrdθ − δωnlm

σnlm

)2

(9.28)

+µr

∫

r,θ
fr(r, θ)

(
∂2Ω̄

∂r2

)2

dθdr + µθ

∫

r,θ
fθ(r, θ)

(
∂2Ω̄

∂θ2

)2

dθdr ;

here σnlm is the standard deviation for the observed splitting δωnlm. The last two terms
serve to regularize the solution, as before, and depend on the weight functions fr and fθ
and the trade-off parameters µr and µθ. Instead of δωnlm, expansion coefficients a2j+1 with
the corresponding kernels may evidently also be used. As in the 1-dimensional case, the
trade-off parameters must be determined such as to ensure a balance between resolution
and error. However, here one must also balance the resolution in the radial and latitude
directions (e.g. Schou et al. 1994).

To illustrate the resolution properties of the inversions we may consider the averaging
kernels which, as discussed above, can be defined both for inversions assuming an expansion
of Ω in powers of cos θ and for the full 2-dimensional techniques. Examples of such kernels
are shown in Figure 9.4, both for an inversion using expansions of the splittings and Ω and
for a full, two-dimensional inversion. In the former case, only a1, a3 and a5 were included
and the latitude information is consequently relatively limited; hence the kernels have a
substantial extent in latitude. A particularly striking feature is the fact that the attempt
to determine the angular velocity close to the pole results in what contains aspects of
extrapolation from lower latitudes: indeed, it is obvious that the rotation of the region very
near the pole has little effect on the frequency splittings and hence cannot be determined
from the inversion. The inversion based on individual splittings provides substantially
better resolution in latitude, as might have been anticipated. Within the convection zone
it is possible to determine the rotation over a region extending only a few per cent of the
solar radius in both radial and latitude directions, for realistic sets of observed frequency
splittings.

The MOLA and SOLA techniques, discussed in Section 9.1.1, may obviously also be
generalized to the two-dimensional case, in principle. They offer considerable advantages in
terms of the ability to control the resolution, and possibly other properties of the averaging
kernels. However, a naive implementation would involve a prohibitive computational effort,
since this requires inversion of matrices whose order is given by the number of data values.
Fortunately, by utilizing the special properties of the kernels, very substantial improvements
of computational efficiency can be achieved. One class of techniques, the so-called IR1⊗ IR1
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Figure 9.4: Contour plots of two-dimensional averaging kernels
R−2K(r0, θ0, r, θ) [cf. equation (9.21)]. Results are shown at a target
radii near r0 = 0.8R and three different target co-latitudes, as indicated.
The plots are in the (r, θ) plane, with the polar axis towards the top of the
page. Positive contours are indicated by solid lines, negative contours by
dashed lines; ∆ is the value of the separation between contour levels. The
cross shows the target location (r0, θ0). The top row shows kernels for an
inversion based on just a1, a3 and a5 and using a corresponding expansion
of Ω. The bottom row shows results for a full two-dimensional regularized
least-squares inversion, for a mode set aiming at representing the results of
1 year’s observations with high spatial resolution. Adapted from Schou et al.
(1994).

methods, uses explicitly the fact that the kernels can be written as

Knlm(r, θ) = F1nl(r)G1 lm(θ) + F2nl(r)G2 lm(θ) (9.29)

[cf. equations (8.31), (8.34) and (8.35)], where the first term generally dominates; a similar
expression applies in the case of kernels for a coefficients (e.g. Pijpers 1997). It was
pointed out by Sekii (1993) and Pijpers & Thompson (1996) that as a result the inversion
can essentially be separated into distinct, and computationally more manageable, inversions
in r and θ.

Larsen & Hansen (1997) showed that the linear equations [equations (9.16) – (9.18)]
arising in the SOLA technique can be solved efficiently by using explicitly the discretized
representation of the kernels. By using also the structure given by equation (9.29), Larsen
(1997) has developed an iterative technique which allows two-dimensional SOLA inversion
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to be carried out with fairly modest means (see also Larsen et al. 1998). These efficient
techniques have been applied to the very extensive and accurate data obtained with the
GONG and SOHO projects.

Further details on the implementation of rotational inversion, and tests of the various
techniques, were provided by Schou et al. (1998).

9.2 Inversion for solar structure

In its most general form, the dependence of the oscillation frequencies on solar structure
may be expressed as

ωnl = Fnl[ρ(r), c2(r), . . .] , (9.30)

where, as indicated, other properties beyond the “mechanical” structure as characterized
by ρ and c2 may affect the frequencies. This equation is often approximated by the corre-
sponding equation for the adiabatic frequencies, i.e.,

ωad
nl = Fad

nl [ρ(r), c(r)] , (9.31)

where the functional Fad
nl is determined through the solution of the equations of adiabatic

oscillation. The inverse problem for solar structure then consists of inferring properties of
the structure by “solving” equation (9.30) or (9.31), given a set of observed frequencies

{ω(obs)
nl }.
A difficulty in this process is that the frequencies depend on solar structure in a compli-

cated, nonlinear way. As is common for nonlinear equations, the analysis proceeds through
linearisation around an initial reference model. Let (ρ0(r), c0(r)) correspond to the reference

model, which has adiabatic oscillation frequencies ω
(0)
nl . We seek to determine corrections

δrρ(r) = ρ(r) − ρ0(r) and δrc
2(r) = c2(r) − c2

0(r) to match the differences ω
(obs)
nl − ω(0)

nl

between the observed frequencies and those of the reference model. As discussed in Sec-
tions 5.5.3 and 5.5.4, linearization of equation (9.30), assuming δrρ and δrc

2 to be small,
leads to

δωnl
ωnl

=

∫ R

0

[
Knl
c2,ρ(r)

δrc
2

c2
(r) +Knl

ρ,c2(r)
δrρ

ρ
(r)

]
dr

+Q−1
nl G(ωnl) + εnl , (9.32)

where the kernels Knl
c2,ρ and Knl

ρ,c2 are determined from the eigenfunctions in the reference
model (see also Section 5.5.3). In equation (9.32) I included a contribution from the un-
certainties in the near-surface region, expressed by the term in G; this may be assumed to
contain the difference between the “true” function Fnl in equation (9.30) and the adiabatic
approximation Fad

nl in equation (9.31). Furthermore, I explicitly included the observational
errors εnl. An additional constraint on δrρ is that the mass of the Sun and the reference
model be the same, i.e.,

4π

∫ R

0

δrρ(r)

ρ(r)
ρ(r)r2dr = 0 . (9.33)

In this way the original nonlinear inverse problem is reduced to a linear problem, which
may be analyzed by means of techniques similar to those discussed in Section 9.1.1.

Unlike the rotational case, the linearized inverse problem given by equation (9.32)
involves three unknown functions: δrρ(r), δrc

2(r) and G(ω). These may, after suitable
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parametrization, be determined through least-squares fitting with appropriate regulariza-
tion (e.g. Dziembowski, Pamyatnykh, & Sienkiewicz 1990). Alternatively, some form of
optimally localized averages may be used, by forming a linear combination of equations
(9.32),

∑

i

ci(r0)
δωi
ωi

=
∑

i

ci(r0)

∫ R

0
Ki
c2,ρ(r)

δrc
2

c2
(r)dr (9.34)

+
∑

i

ci(r0)

∫ R

0
Ki
ρ,c2(r)

δrρ

ρ
(r)dr

+
∑

i

ci(r0)Q−1
i G(ωi) +

∑

i

ci(r0)εi ,

where, as in Section 9.1.1, i labels the modes. If the goal is to determine the correction to
c2(r0), the coefficients ci(r0) must be chosen such that the first term on the right-hand side
of equation (9.34) provides an average of δrc

2/c2 localized near r = r0, while minimizing
the effect of the remaining terms.

A natural generalization of the SOLA technique is to obtain the coefficients ci(r0)
through minimization of

∫ R

0

[
Kc2,ρ(r0, r)− T (r0, r)

]2
dr + β

∫ R

0
Cρ,c2(r0, r)

2dr + µ
∑

ij

Eijci(r0)cj(r0) , (9.35)

where
Kc2,ρ(r0, r) =

∑

i

ci(r0)Ki
c2,ρ(r) (9.36)

is the averaging kernel; the cross term

Cρ,c2(r0, r) =
∑

i

ci(r0)Ki
ρ,c2(r) (9.37)

measures the influence of the contribution from δrρ on the inferred δrc
2, and Eij is the

covariance matrix, as before. The constraint (9.33) is incorporated by adding a fictitious
data point, with zero data and zero error, and with zero sound-speed kernel and a density
kernel given by ρr2. The term in G(ω), where G is assumed to be a slowly varying function
of frequency, may be suppressed by restricting the combinations of the data to those that
are insensitive to a contribution of this form (Däppen et al. 1991; Kosovichev et al. 1992).
Specifically, the coefficients may be constrained to satisfy

∑

i

ci(r0)Q−1
i ψλ(ωi) = 0 , λ = 0, . . . ,Λ , (9.38)

for a suitably chosen set of functions ψλ. It was shown by Basu et al. (1996a) that an
equivalent, but potentially more flexible, suppression of the near-surface terms may be
based on the filtering technique considered by Pérez Hernández & Christensen-Dalsgaard
(1994a).

The SOLA inversion is characterized by the trade-off parameters β and µ controlling
the influence of the cross term and the errors, respectively, by the parameters determining
the target function T (r0, r) and by the number Λ of terms included in the suppression
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of the surface effects. The considerations involved in the choice of these parameters were
discussed by Rabello-Soares, Basu & Christensen-Dalsgaard (1999a).

The form of the surface term in equation (9.32) assumed that the local properties of
the eigenfunctions in the near-surface region are independent of degree; this is what led to
the function G being just dependent on frequency. From an asymptotic point of view this
corresponds to assuming that the rays characterizing the modes are nearly vertical in this
region. For modes of high degree this approximation no longer holds. Brodsky & Vorontsov
(1993) showed how the asymptotic relation (7.1) should be modified in this case, by intro-
ducing l-dependent terms in the phase function α. The introduction of the corresponding
terms in structure inversion by means of the SOLA or MOLA techniques, generalizing the
constraints in equations (9.38), was discussed by Di Mauro et al. (2002); they also ap-
plied the techniques to preliminary observed frequencies of high-degree modes, obtained by
Rhodes et al. (1998) from analysis of observations from the SOI/MDI instrument on the
SOHO spacecraft.

Although the inversion has been discussed in terms of the pair (c2, ρ), other sets of varia-
bles characterizing the equilibrium structure of the Sun may be used (see also Section 5.1.1).
In particular, as discussed in Section 5.5.3, the frequency changes can be expressed in terms
of changes δrρ and δrY in density and helium abundance, if the equation of state (and the
heavy-element abundance) are assumed to be known. Another equivalent, and commonly
used, pair is (u, Y ), where u = p/ρ is the squared isothermal sound speed. From the point of
view of inversion, these pairs have the substantial advantage that the kernels corresponding
to δrY are relatively small and essentially confined to the ionization zones of hydrogen and
helium. Thus in the minimization corresponding to equation (9.35), it is comparatively
easy to suppress the cross term Cρ,Y (r0, r). Furthermore, inversion can be carried out to
determine the difference δrY between the solar and model helium abundance (e.g. Koso-
vichev et al. 1992). It should be noted, however, that differences between the solar and
model equations of state may introduce systematic errors in the results of such inversions.
Basu & Christensen-Dalsgaard (1997) showed how the differences in equation of state might
be taken explicitly into account in the inversion, albeit at the expense of an increase in the
error in the solution; they also pointed out that the inversion might be carried out to de-
termine the intrinsic difference in Γ1 between the solar and model equations of state, i.e.,
the difference at fixed p, ρ and composition.

I finally note that asymptotic inversion techniques to determine the solar internal sound
speed were discussed in Section 7.7.2; in particular, it is possible to estimate the sound speed
directly from the data, without the use of linearization. Such techniques were originally
developed in geophysics (see Brodsky & Levshin 1979); their application to the helioseismic
problem was first considered by Gough (1984). In these techniques, the uncertainties asso-
ciated with the near-surface region are contained in the function α(ω) or, for the differential
technique, in the function H2(ω) (cf. Section 7.7.3).

9.3 Some results of helioseismic inversion

To illustrate the power of current helioseismic analysis, it is instructive to present a few
selected results of the application of helioseismic inversion; results of the use of the differ-
ential asymptotic technique were already shown in Figure 7.13. I first consider inversion
to determine solar structure. As discussed in Section 5.1, this is carried out to determine
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Figure 9.5: Corrections to a reference solar model, obtained by inverting dif-
ferences between the observed frequencies and the frequencies of the model.
Panel a) shows corrections to the squared sound speed c2, and panel b) shows
corrections to ρ. The vertical bars indicate the errors in the results, based on
the errors in the observed frequencies, whereas the horizontal bars provide a
measure of the resolution in the inversion (from Basu et al. 1996b).

corrections to an assumed initial reference model. An example is provided by the results
of Basu et al. (1996b), based on observations by the LOWL instrument, developed at the
High Altitude Observatory (Tomczyk et al. 1995). The inversions were carried out in terms
of corrections δrc

2 and δrρ. In the former case the variable pair (c2, ρ) was used, while the
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Figure 9.6: Inferred rotation rate Ω/2π (panel a) and the associated error
(panel b) in a quadrant of the Sun, obtained by means of SOLA inversion of
144 days of MDI data. The equator is at the horizontal axis and the pole is at
the vertical axis, both axes being labelled by fractional radius. Some contours
are labelled in nHz, and, for clarity, selected contours are shown as bold. The
dashed circle is at the base of the convection zone and the tick marks at the
edge of the outer circle are at latitudes 15◦, 30◦, 45◦, 60◦, and 75◦. The shaded
area indicates the region in the Sun where no reliable inference can be made
with the present data. (Adapted from Schou et al., 1998.)

density inversion used the pair (ρ, Y ); as discussed in Section 5.5.3 it is therefore sensitive
to possible errors in the equation of state. As reference was used a model typical of re-
cent normal solar models, computed with little a priori attempt to match the observations.
The model included settling of helium and heavy elements, and used equation of state and
opacity tables from Livermore. The inversion for the corrections was performed by means
of the SOLA method discussed in Section 9.2. The results are shown in Figure 9.5; there
are evidently systematic differences between the Sun and the model but these are generally
fairly small. It is probable that the sharp bump in δrc

2/c2 at r/R ' 0.65 is a result of weak
mixing just beneath the convection zone, which partly offsets the sharp gradient in the
hydrogen abundance established by helium settling in this region. Similarly, the negative
δrc

2/c2 at the edge of the core could result from partial mixing of the central region. One
cannot exclude, however, that errors in the opacity may play a significant role. Nonethe-
less, it is remarkable that models computed without direct reference to the observations,
but based solely on our knowledge of the physics of the solar interior, are so successful in
reproducing the structure as inferred from the helioseismic analysis.

To illustrate the determination of the solar internal angular velocity, I present results
obtained by Schou et al. (1998) from analysis of early data from the MDI instrument on
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Figure 9.7: Averaging kernels for the SOLA inversion shown in Figure 9.6,
targeted at the following radii and latitudes in the Sun: 0.55R, 60◦; 0.7, 0◦;
0.7, 60◦; 0.95R, 60◦. The corresponding locations are indicated with crosses.
(Adapted from Schou et al. 1998.)

the SOHO spacecraft. The inversion was carried out as a fully two-dimensional SOLA
inversion of a coefficients, extending to a35, to determine Ω̄(r0, θ0). The resulting Ω̄ and
the estimated errors are presented in Figure 9.6, as contour plots. Strikingly, the error in
a substantial part of the Sun is less than 2 nHz. To illustrate the resolution, Figure 9.7
shows selected averaging kernels. Further details of the solution are visible in Figure 9.8,
which shows cuts at fixed latitudes, as functions of distance to the centre; here, in addition
to the SOLA results, solutions obtained from a two-dimensional regularized least-squares
inversion have been included.

There is a striking change in the behaviour of rotation near the base of the convection
zone, at a depth of about 28 per cent of the solar radius (as inferred helioseismically; e.g.
Christensen-Dalsgaard, Gough & Thompson 1991); this is marked by the heavy dashed
circle in Figure 9.6 and the heavy dashed line in Figure 9.8. Within the convection zone the
variation with latitude in the rotation rate is quite similar to the behaviour observed directly
on the surface; in particular, the values at the outermost points in the solution are essentially
in agreement with the surface values. (It should be noted that the inversion does not impose
continuity with the surface angular velocity.) Near the base of the convection zone there is
a transition such that the angular velocity in the radiative interior is roughly independent
of latitude, at a value intermediate between the surface equatorial and polar values, but
substantially closer to the former. This transition region is known as the tachocline (Spiegel
& Zahn 1992) and likely plays an important role in the generation of the solar magnetic
field and the origin of the solar magnetic cycle. The apparent width of the tachocline
in Figure 9.8 in part reflects the finite resolution of the inversion, as determined by the
radial extent of the averaging kernels. This must be taken into account in estimating the
true width of the tachocline. Charbonneau et al. (1999) applied several analysis techniques
to LOWL data; they obtained a tachocline width, defined in terms of a representation of
the transition by an error function, of (0.039 ± 0.013)R and an equatorial central radius
rc = (0.693± 0.002)R, essentially placing the transition beneath the convection zone.

Although the overall features of rotation, as presented above, have been found using
several different data sets and analysis methods, it should be mentioned that there are
problems at the level of finer details, particularly at higher latitudes. These have become
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Figure 9.8: Inferred rotation rate Ω/2π as a function of radius at the latitudes
indicated, obtained from inversion of 144 days of MDI data. The circles with
1-σ error bars show results of a SOLA inversion, while the dashed lines with
1-σ error band were obtained with regularized least-squares inversion. The
heavy vertical dashed line marks the base of the convection zone. (Adapted
from Schou et al., 1998.)

apparent in comparisons between results based on data from the GONG and SOI/MDI
projects, in both cases analyzed with the procedures used by both projects (e.g. Schou et
al., 2002). Also, as illustrated by the comparison of the SOLA and least-squares results in
Figure 9.8, different inversion methods may give different results at high latitude. Clearly,
the underlying causes for these various differences, and how to correct for them, need to be
identified.

The data used in the inversions presented in Figures 9.6 and 9.8 did not permit inference
of the rotation rate very near the centre. However, analysis of low-degree splittings from
the BiSON network provided a tantalizing hint that the core rotation might be below the
general rotation rate of the radiative interior (Elsworth et al. 1995). Chaplin et al. (1999)
carried out a more detailed analysis of a combination of LOWL and BiSON frequencies,
using a version of the MOLA technique especially designed to localize the averaging kernels
to the solar core. The results are shown in Figure 9.9. They are consistent with constant
rotation of the radiative interior, although with a possible suggestion of a down-turn in the
core; analysis of the averaging kernels showed that constraining the measure of rotation
to the inner 20 % of the solar radius was only possible at the expense of very substantial



204 CHAPTER 9. HELIOSEISMIC INVERSION

Figure 9.9: The inferred rotation as a function of fractional radius inside
the Sun at three solar latitudes: the equator, 30◦ and 60◦; the vertical axis
shows the rotation frequency in nHz. The vertical error bars indicate the
statistical uncertainty on the rotation rate (±1 standard deviation), whereas
the horizontal bars provide a measure of the radial resolution of the inversion.
Note that the result becomes much more uncertain in the deep interior, where
furthermore the different latitudes cannot be separated. The observations
used to infer the rotation were from the LOWL instrument and the BiSON
network. (From Chaplin et al. 1999.)

errors in the inferred rotation rate.
A more detailed discussion of recent results of helioseismology, with extensive references,

was presented by Christensen-Dalsgaard (2002).



Chapter 10

Excitation and damping of the
oscillations

So far I have almost exclusively considered adiabatic oscillations, and therefore have been
unable to investigate the stability or instability of the modes. Such questions are of obvious
interest, however. Here I consider some simple aspects of mode excitation, including prop-
erties of the nonadiabatic problem. A major goal is to get a feel for the conditions under
which a mode may be self-excited, i.e., with a positive growth rate. Also, in cases where all
modes are damped, they may still be driven to observable amplitudes by stochastic forcing
from near-surface convection; this seems, for example, to be the case for solar oscillations.

10.1 A perturbation expression for the damping rate

In the present section I derive an expression which allows an estimate of the growth or
damping rate on the basis of the adiabatic eigenfunction. The procedure is to use the per-
turbation expression in equation (5.73) which was derived from the oscillation equations
written as a linear eigenvalue problem in equation (5.56). Now, however, I take the per-
turbation δF to be the departure from adiabatic oscillations in the momentum equation.
From the perturbed energy equation, equations (3.47) and (3.48) it follows that

p′

p
= Γ1

ρ′

ρ
+ ξr

(
d ln p

dr
− Γ1

d ln ρ

dr

)
+
i

ω

Γ3 − 1

p
(ρε− div F)′

=
p′ad

p
+
i

ω

Γ3 − 1

p
(ρε− div F)′ , (10.1)

where I dropped the subscript “0” on equilibrium quantities, and assumed a time depen-
dence as exp(−iωt). Here

p′ad = pΓ1
ρ′

ρ
+ ξrp

(
d ln p

dr
− Γ1

d ln ρ

dr

)
(10.2)

is the pressure perturbation corresponding to adiabatic oscillations. It follows that the per-
turbed momentum equation (3.43) can be written, after separation of the time dependence,
as

−ρω2δδδr = −∇p′ad + ρg′ + ρ′g − i

ω
∇[(Γ3 − 1)(ρε− div F)′] . (10.3)

205
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This is of the form considered in equation (5.56):

ω2δδδr = Fad(δδδr) + δF(δδδr) , (10.4)

with

Fad(δδδr) =
1

ρ
∇p′ad − g′ − ρ′

ρ
g , (10.5)

and

δF(δδδr) =
i

ωρ
∇[(Γ3 − 1)(ρε− div F)′] . (10.6)

As argued in Section 5.5, Fad is in fact a linear operator on δδδr. It may be shown that the
same is true for δF .

Exercise 10.1:

Show that δF may be obtained as a linear operator on δδδr, assuming the diffusion ap-
proximation, equation (3.22). Note that since δF is assumed to be a small perturbation,
it may be derived assuming that δρ, δp and δT are related adiabatically.

The effects on the frequency of departures from adiabaticity can now immediately be
obtained from the perturbation expression (5.73) as

δω2 =
i

ω

∫

V
δδδr∗ · ∇[(Γ3 − 1)(ρε− div F)′]dV

∫
V ρ|δδδr|2dV

. (10.7)

The integral in the numerator can be rewritten as

∫

V
div [δδδr∗(Γ3 − 1)(ρε− div F)′]dV −

∫

V
div (δδδr∗)(Γ3 − 1)(ρε− div F)′dV ; (10.8)

the first integral can be transformed, by using Gauss’s theorem (3.3), into an integral
over the stellar surface which can be neglected, whereas in the second integral we use the
continuity equation (3.42). The result is, finally, that the frequency change caused by
non-adiabaticity is

δω =
i

2ω2

∫

V

δρ∗

ρ
(Γ3 − 1)(ρε− div F)′dV
∫
V ρ|δδδr|2dV

. (10.9)

This is the desired expression. It should be noted that this expression is valid also in the
full nonadiabatic case, if the nonadiabatic eigenfunctions are used.

10.1.1 The quasi-adiabatic approximation

To evaluate the integral in the numerator in equation (10.9) we need an expression for
(ρε − div F)′. Using that ε = ε(ρ, T ) (I neglect a possible Eulerian perturbation in the
composition) it is easy to see that

(ρε)′ = ρε

[
εT
T ′

T
+ (ερ + 1)

ρ′

ρ

]
, (10.10)
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where

εT =

(
∂ ln ε

∂ lnT

)

ρ
, ερ =

(
∂ ln ε

∂ ln ρ

)

T

. (10.11)

Similarly, the perturbation in the flux can be evaluated from the diffusion approximation,

equation (3.22), and in particular assuming that there are no other contributions (such as
convection) to the heat transport. The result is

F′ =
[
(3− κT )

T ′

T
− (1 + κρ)

ρ′

ρ

]
Frar −

4ac̃T 3

3κρ
∇T ′ , (10.12)

where

κT =

(
∂ lnκ

∂ lnT

)

ρ
, κρ =

(
∂ lnκ

∂ ln ρ

)

T

, (10.13)

and Fr is the equilibrium radiative flux (which is of course in the radial direction). The
underlying assumption in the perturbation treatment leading to equation (5.73) and hence
(10.9) is that δF should be evaluated for the adiabatic eigenfunction. Regardless of the
assumption of adiabaticity we may obtain ρ′ from the equation of continuity as

δρ

ρ
= −div (δδδr), ρ′ = δρ− ξr

dρ

dr
. (10.14)

From adiabaticity it follows that the temperature perturbation can be computed from

δT

T
= (Γ3 − 1)

δρ

ρ
, T ′ = δT − ξr

dT

dr
. (10.15)

Hence, given δδδr, ρ′ and T ′ can be computed, and then (ρε − div F)′ can be obtained
from equations (10.10) and (10.12). Since this approximation to the damping rate can be
obtained from the adiabatic eigenfunction, it is known as the quasi-adiabatic approximation.
As the adiabatic eigenfunctions may be chosen to be real, the integrals in equation (10.9)
are real, and hence δω is purely imaginary. Thus it represents a pure damping or excitation,
with no effect on the (real) oscillation frequency.

It should be noted that the approximation is not without problems. The perturbation
approach is based on the assumption that the perturbation is small. This is true in most
of the star, but not very near the surface where nonadiabatic effects become strong. Here
nonadiabaticity has a substantial effect on the eigenfunction, and hence an evaluation of the
integral in equation (10.9) based on the adiabatic eigenfunctions is questionable. Nonethe-
less, we may hope that the quasi-adiabatic approximation at least gives an indication of
the stability properties of the mode. A separate problem, which would equally affect a full
nonadiabatic treatment, is the neglect of convective contributions to the heat flux. This
introduces a major uncertainty in the calculation of the stability of modes in cool stars with
extensive outer convection zones. Indeed, it was shown by Baker & Gough (1979) that the
transition to stability at the cool side of the Cepheid instability strip most likely is the result
of the increased importance of convection. Houdek (2000) made a more detailed analysis,
based on a sophisticated mixing-length model of the interaction between convection and
pulsations, and similarly showed that convection caused the return to stability at the cool
side of the instability region for δ Scuti variables.
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10.1.2 A simple example: perturbations in the energy generation rate

To illustrate some simple properties of equation (10.9) I consider the case where the nona-
diabaticity is dominated by the energy generation. Here it is convenient to work purely in
terms of Lagrangian perturbations, by noting that

(ρε− div F)′ = δ(ρε− div F) , (10.16)

since the equilibrium model is assumed to be in thermal equilibrium. Also, it is obvious
that δ(ρε) can be obtained from an expression analogous to equation (10.10). Neglecting
the term in F and using equation (10.15) we find

δω =
i

2ω2

∫

V

∣∣∣∣
δρ

ρ

∣∣∣∣
2

(Γ3 − 1)[ερ + 1 + (Γ3 − 1)εT ]ρεdV
∫
V ρ|δδδr|2dV

. (10.17)

Since εT and ερ are positive, and Γ3 ' 5/3, it is obvious that the integrals in equation
(10.17) are positive. With the assumed time dependence as exp(−iωt) this corresponds to
a growth in the oscillation amplitude, i.e., to instability of the mode.

The physical nature of this instability is very simple and closely related to the operation
of a normal heat energy: at compression the gas is hotter than normal and this, together
with the increased density, causes an increase in the release of energy; this increases the
tendency of the gas to expand back towards equilibrium; at expansion the gas is cooler and
less dense and hence the energy production is low; this similarly increases the tendency
of collapse towards the equilibrium; both effects increase the oscillation amplitude. This
mechanism is closely analogous to the operation of a normal car engine where energy is also
released (through the ignition of the air–fuel mixture) at the point of maximum compression.

For acoustic modes, which have large amplitudes in the outer part of the star, the
damping and excitation are normally dominated by the effects of the flux. This is more
complicated and will be discussed in Section 10.2. However, the destabilization through
nuclear reactions may play an important role for g modes in several cases; this includes the
Sun which becomes unstable towards a few low-order g modes in relatively early phases of
its evolution (see, for example, Christensen-Dalsgaard, Dilke & Gough 1974).

10.1.3 Radiative damping of acoustic modes

I now consider the effects on high-order or high-degree acoustic modes and hence neglect
the effect of nuclear reactions. As in Problem 2.2(vi) (cf. Appendix C) I assume that the
flux perturbation is dominated by the term in ∇T ′ in equation (10.12), to obtain

(div F)′ =
4ac̃T 4

3κρ
|k|2T

′

T
= ω2 4ac̃T 4

3κρc2

T ′

T
, (10.18)

where in the last equality I used the dispersion relation for plane sound waves. Here T ′/T
can be obtained from the adiabatic relation (10.15) where, in accordance with the treatment
of plane sound waves, I neglect derivatives of equilibrium quantities. Hence

T ′

T
=
δT

T
= (Γ3 − 1)

δρ

ρ
; (10.19)
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As a result equation (10.9) for the damping rate becomes

δω = − i
2

∫

V
(Γ3 − 1)2

∣∣∣∣
δρ

ρ

∣∣∣∣
2 4ac̃T 4

3κρc2
dV

∫
V ρ|δδδr|2dV

. (10.20)

It is evident from equation (10.20) that δω is negative, i.e., the mode is damped. This
is again obvious from physical considerations: the effect of the term in the temperature
gradient is to increase the heat flux from regions that are compressed and heated, and to
decrease it from regions that are expanded; hence effectively there is heat loss at compression
and heat gain at expansion, and this works to dampen the oscillation. It should be pointed
out here that the opacity fluctuations, acting through the first term in equation (10.12),
may counteract that: if opacity is increased at compression the flux of radiation going
out through the star is preferentially absorbed at compression, hence heating the gas and
contributing to the excitation of the oscillation. This mechanism, the so-called Eddington
valve, is responsible for the pulsations of the stars in the instability strip.

To compare with the asymptotic expression derived below it is instructive to write
equation (10.20) in terms of δδδr; from the continuity equation we have, still assuming a
plane sound wave and using the dispersion relation, that

∣∣∣∣
δρ

ρ

∣∣∣∣ = |div δδδr| = |k||δδδr| = ω

c
|δδδr| . (10.21)

Hence we obtain

δω

ω
= − iω

2

∫

V

(γ − 1)2

γ2

4ac̃T 4

3κp2
|δδδr|2ρdV

∫
V ρ|δδδr|2dV

, (10.22)

by using c2 = γp/ρ; for simplicity I assume that Γ3 = Γ1 = γ.
It is of some interest to consider also the damping from the asymptotic point of view. I

start from the modified dispersion relation derived in Problem 2.2

ω2 = c2|k|2φF , (10.23)

where

φF =

1 +
i

ωγτF

1 +
i

ωτF

, τF =
3κρp

4ac̃(γ − 1)T 4|k|2 =
3κγp2

4ac̃(γ − 1)T 4ω2
. (10.24)

If nonadiabatic effects are weak, i.e., ωτF � 1, we can write equation (10.23) as

ω2 = c2|k|2 − c2|k|2(1− φF) ' c2|k|2 − iωad
γ − 1

γτF
, (10.25)

where ωad is the frequency in the adiabatic case. Equation (10.25) is a perturbed version of
the sound-wave dispersion relation, of the form considered in Appendix B. Hence the effect
of the damping on the frequencies can be obtained from equations (B.6) and (B.7) as

S
δω

ω
' − i

2ω

∫ R

rt

(
1− L2c2

ω2r2

)−1/2
γ − 1

γτF

dr

c
, (10.26)
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where

S =

∫ R

rt

(
1− L2c2

ω2r2

)−1/2
dr

c
− πdα

dω
. (10.27)

By substituting the expression for τF we finally obtain

S
δω

ω
' − iω

2

∫ R

rt

(γ − 1)2

γ2

4ac̃T 4

3κp2

(
1− L2c2

ω2r2

)−1/2
dr

c
. (10.28)

This equation essentially corresponds to equation (10.22) if we note that asymptotically
ρ|δδδr|2dV can be identified with c−1(1− L2c2/ω2r2)−1/2dr, to within a constant factor.

10.2 The condition for instability

The arguments presented in this section were originally derived by J. P. Cox. They provide
insight into the reason why unstable stars tend to be found in well-defined regions of the
HR diagram, particularly the Cepheid instability strip, and are presented here essentially
in the form given by Cox (1967, 1974).

Expressing the frequency in terms of real and imaginary parts as ω = ωr + iη, equation
(10.9) can be written approximately as

η ' Cr

2ω2
r I

, (10.29)

where

Cr = Re

[∫

V

δρ∗

ρ
(Γ3 − 1)(ρε− div F)′dV

]
, (10.30)

and

I =

∫

V
ρ|δδδr|2dV . (10.31)

Clearly the question of stability or instability depends on the sign of Cr: if Cr > 0 the mode
is unstable, whereas if Cr < 0 the mode is stable.

I consider just the outer parts of the star, where the nuclear energy generation can be
neglected. The analysis is restricted to radial oscillations; however, as we know that the
behaviour of the modes is largely independent of degree near the surface the results are
likely to be at least qualitatively valid for nonradial oscillations as well. Also, I neglect
convection. Finally I assume that the oscillations are either quasi-adiabatic or strongly
nonadiabatic. In the former region all perturbation quantities can be taken to be real; the
strongly nonadiabatic situation is discussed below. Then we can approximate Cr by

Cr ' −L
∫

M

δρ

ρ
(Γ3 − 1)

d

dm

(
δL

L

)
dm . (10.32)

I now assume that δρ > 0 everywhere in the region of interest. This would in general hold
for the fundamental mode. However, even for higher-order modes the dominant excitation
and damping generally take place so close to the surface that δρ has constant sign in this
region. It now follows from equation (10.32) that the contribution of a given layer to the
damping or excitation depends on the rate of change of δL: if δL increases towards the
surface, the layer gives a negative contribution to Cr and hence contributes to the damping,



10.2. THE CONDITION FOR INSTABILITY 211

whereas if δL decreases towards the surface, the layer contributes to the excitation. This is
entirely consistent with the simple heat-engine argument given in Section 10.1.2, if we notice
that we are considering the situation at positive δρ, i.e., at compression: if δL increases
outwards, more energy leaves the layer at the top than flows in at the bottom; hence there
is a net energy loss from the layer at compression, which acts to damp the motion. The
reverse is true, of course, if δL decreases towards the surface: then energy is dammed up
at compression, and the motion is excited. Clearly, the behaviour of the mode depends on
the global effect as determined by the integral in equation (10.32).

We now need to consider the behaviour of the luminosity perturbation in more detail.
It is given by an expression corresponding to equation (10.12) for the perturbation in the
flux. The radiative luminosity may be expressed as

L = −4ac̃

3κ
16π2r4T 4 d lnT

dm
; (10.33)

hence, expressing the equation in terms of the Lagrangian luminosity perturbation,

δL

L
= 4

δr

r
+ (4− κT )

δT

T
− κρ

δρ

ρ
−
(

d lnT

dm

)−1 d

dm

(
δT

T

)
. (10.34)

For low-order modes one can probably neglect the term in the d(δT/T )/dm, as well as a
term in the displacement. Thus we obtain

δL

L
' (4− κT )

δT

T
− κρ

δρ

ρ
. (10.35)

In the region where the oscillations are nearly adiabatic, δT/T ' (Γ3 − 1)δρ/ρ, and hence

δL

L
'
(
δL

L

)

a
= [(4− κT )(Γ3 − 1)− κρ]

δρ

ρ
. (10.36)

In most of the star, κρ is close to unity, κT is negative (as, for example, for Kramers
opacity) and Γ3 ' 5/3. Also, δρ/ρ generally increases outwards. Hence it follows from
equation (10.36) that in most cases δL increases towards the surface, so that the tendency
is towards stability. This is quite reassuring: after all most stars do not show obvious
variability, suggesting that special circumstances are required to excite modes to large
amplitudes.

In fact, it is clear that there are two circumstances that may give rise to a decrease
in (δL)a: a strong decrease in Γ3 or a strong increase in κT . Both effects are likely to
occur in ionization zones of abundant elements. As an example, Figure 10.1 shows Γ3 −
1 in the ionization zone of He in a stellar envelope model (see also Figure 7.15 for the
qualitatively very similar behaviour of Γ1 in the Sun). This occurs because the degree of
ionization increases at compression, absorbing the energy that would otherwise have gone
towards increasing the temperature and hence reducing the temperature increase. Similarly,
although perhaps less obvious, there is a tendency for ionization zones to be associated with
‘bumps’ in κT : it should be noted that since what matters in equations (10.32) and (10.36)
is effectively the second derivative of opacity even quite minor features in the opacity can
lead to substantial contributions to the excitation, provided that they are confined to a
narrow temperature interval. These two mechanisms are generally known as the γ- and
κ-mechanisms for mode excitation.
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Figure 10.1: Γ3 − 1 against temperature in the region of He+ ionization in an
equilibrium model of a stellar envelope.

The description given so far suffers from two problems. First, it is clearly only the lower
part of the Γ3-decrease that will contribute to driving; the upper part similarly contributes
to damping, and since δρ/ρ is assumed to increase outwards the damping part is likely to
dominate. A similar remark can be made about effects of opacity bumps. Secondly, the
argument depends on the quasi-adiabatic approximation, in that the adiabatic relation was
used to derive equation (10.35) for δL. The great beauty of Cox’s analysis is that it is
precisely the transition to nonadiabaticity which is decisive for the occurrence of instability
of a star.

To make plausible the transition from adiabaticity to nonadiabaticity I use an argument
very similar to the one presented in Section 3.1.4. I write the perturbed energy equation,
neglecting the term in ε, as

d

dt

(
δT

T

)
− (Γ3 − 1)

d

dt

(
δρ

ρ

)
' − L

4πρr2cV T

d

dr

(
δL

L

)
. (10.37)

This can also be written, approximately, as

∆

(
δL

L

)
∼ Ψ

[
δT

T
− (Γ3 − 1)

δρ

ρ

]
, (10.38)

where

Ψ =
〈cV T 〉∆m

ΠL
. (10.39)

Here ∆(δL/L) is the change in δL/L between the surface and the point considered, ∆m is
the mass outside this point, and 〈cV T 〉 is a suitable average over this region; also Π is the
pulsation period. Thus Ψ has a very simple physical meaning: it is the ratio between the
thermal energy stored in the layer outside the point considered and the energy radiated by
the star in a pulsation period.
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Now equation (10.38) can be understood in simple physical terms. Very near the surface
Ψ� 1: the energy content in the stellar matter is so small that it cannot appreciably affect
the luminosity perturbation; thus the luminosity perturbation is frozen in, i.e., constant.
This is clearly the strongly nonadiabatic limit. Conversely, at great depth Ψ � 1: the
energy content is so large that the flow of energy over a pulsation period has no effect on
the energy content; this corresponds to the almost adiabatic case. Thus the transition from
adiabatic to nonadiabatic oscillations occurs in the transition region, where

〈cV T 〉TR(∆m)TR

ΠL
∼ 1 . (10.40)

The question of stability or instability is now decided by the relative location of the
transition region and the relevant ionization zone. It has been shown by Cox that the
Cepheid instability strip is controlled by the ionization of He+; thus in the following I
consider only this zone. Also, to understand the location of the instability strip it is
convenient to think in terms of varying the radius, and hence the effective temperature, at
fixed luminosity.

Figure 10.2: δL/L at instant of minimum stellar radius and hence maximum
compression against depth below the surface (schematic) for a star with R <
Rcrit (see text for explanation of symbols). Only the He+ ionization zone is
shown (after Cox 1967).

Consider first a star of small radius and hence large effective temperature. Here the
He+ ionization zone lies close to the surface, i.e., very likely above the transition region
(cf. Figure 10.2). Below the transition region δL/L follows the adiabatic behaviour and
hence increases outwards; this contributes to the damping. Above the transition region
δL is approximately constant, and there is no contribution to the excitation and damping.
Thus the net effect is that Cr < 0, i.e., the star is stable.

Now increase the radius, and hence reduce Teff , sufficiently that the transition region
coincides with the He+ ionization zone. As illustrated in Figure 10.3, at this critical radius
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Figure 10.3: δL/L at instant of minimum stellar radius and hence maximum
compression against depth below the surface (schematic) for a star with R =
Rcrit (see text for explanation of symbols). Only the He+ ionization zone is
shown (after Cox 1967).

Rcrit the situation changes dramatically. We still get damping in the interior of the star;
however, the lower part of the ionization zone now contributes strongly to the excitation,
and the corresponding damping in the upper part of the ionization zone is absent because
the luminosity perturbation is frozen in here. Thus in this case there is chance for instability.
This is precisely what happens: the point where R = Rcrit corresponds to the location of
the instability strip.

Finally, at even larger radius and lower Teff the entire ionization zone lies in the quasi-
adiabatic region and hence it makes both positive and negative contributions to the excita-
tion. As argued above, the general increase towards the surface of δρ/ρ makes it plausible
that the net effect is damping of the modes. In fact, computations show that it is dif-
ficult to reproduce the lower (so-called red) edge of the instability strip unless effects of
perturbations in the convective flux are taken into account.

This argument may be more quantitative, to determine the approximate location of the
instability strip. In fact, it is not difficult to obtain a relation that determines the slope of
the strip (see Problem 6.2 in Appendix C). It was arguments of this kind which first led
Cox to identify the He+ ionization as being mainly responsible for the Cepheid instability.

The location of the transition region, as given in equation (10.40), depends on the
period of oscillation. I have so far argued for the behaviour of a single mode (although the
changing radius would also tend to increase the period and hence push the transition region
deeper). However, it should be noted that higher-order modes would tend to have transition
regions closer to the surface. It follows that they should become unstable at higher effective
temperatures. This is indeed confirmed by more detailed stability calculations.

The arguments as given here refer specifically to the Cepheid instability strip. However,
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very similar arguments can be applied to other driving mechanisms, at least in fairly hot
stars where convection can be neglected. Thus any suitable feature that may cause a
substantial dip in (δL/L)a might be expected to give rise to an instability region. It has
been found, through improvements in the treatment of iron line contributions, that there is
a bump in the opacities near temperatures of 2× 105 K which can account for the β Cephei
and other B star pulsations in this way (e.g. Moskalik & Dziembowski 1992); before these
improvements the origin of B-star pulsations was a major mystery. A similar mechanism
is responsible for the excitation of g modes in at least some pulsating white dwarfs (e.g.
Winget et al. 1982).

10.3 Stochastic excitation of oscillations

Nonadiabatic calculations taking convection into account generally find that modes in stars
on the cool side of the instability strip are stable. In particular, this is the case for the
modes observed in the Sun (e.g. Balmforth 1992a). Thus the presence of oscillations in the
Sun and other cool stars requires other excitation mechanisms. In these stars the convective
motion near the surface likely reaches speeds close to that of sound. Such turbulent motion
with near-sonic speed is an efficient source of acoustic radiation, and it is likely that this
‘noise’ excites the normal modes of the star, to the observed amplitude.

Figure 10.4: Observed spectrum, from Doppler observations with the BiSON
network, of a single radial mode of solar oscillations. The smooth curve shows
the fitted Lorentzian profile, multiplied by three for clarity. (See Chaplin et
al. 2002.)

Since the excitation is caused by a very large number of convective elements, the driving
is essentially random. The problem of a damped oscillator driven by random forcing was
considered by Batchelor (1956), and the analysis is discussed in Problem 6.1 in Appendix C.
The outcome is that the average power spectrum resulting for a mode of frequency ω0, and
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damping rate η, is approximately

〈P (ω)〉 ' 1

4ω2
0

〈Pf (ω)〉
(ω − ω0)2 + η2

, (10.41)

where 〈Pf (ω)〉 is the average power spectrum of the forcing function. If the forcing spectrum
is a slowly varying functions of frequency, the result is therefore a Lorentzian spectrum,
with a width determined by the linear damping rate of the mode.

If a single realization, rather than the average, of the spectrum is considered, as is
generally the case for observations of stellar oscillations, the result is a random function
with a Lorentzian envelope. An example is shown in Figure 10.4, based on observations of
solar oscillations with the BiSON network. Such Lorentzian profiles are often assumed in
the fits carried out to determine the frequency and other properties of the modes. It should
be noticed, however, that the observed profiles show definite asymmetries and hence cannot
be strictly represented by Lorentzian profiles. This behaviour can be understood from the
detailed properties of the excitation, in particular the fact that the dominant contributions
to the forcing arise from a relatively thin region (e.g., Duvall et al. 1993; Gabriel 1993, 2000;
Roxburgh & Vorontsov 1995; Abrams & Kumar 1996; Nigam & Kosovichev 1998; Rast &
Bogdan 1998; Rosenthal 1998). Neglecting this effect in the fitting causes systematic errors
in the inferred frequencies; however, it appears that these are of a form similar to the effects
of the near-surface errors [i.e., the term Q−1

nl G(ωnl) in equation (9.32)], and hence have no
effect on the results of structure inversion (e.g. Rabello-Soares et al. 1999b; Basu et al.
2000). Observational determination of the asymmetry does, however, provide constraints
on the properties of subsurface convection (Chaplin & Appourchaux 1999; Kumar & Basu
1999; Nigam & Kosovichev 1999).

As a result of the stochastic nature of the excitation, the observed amplitude of a mode
varies over time. The statistical properties of this variation were discussed by Kumar,
Franklin & Goldreich (1988) and Chang & Gough (1998). If the modes are observed over
a time short compared with the damping time, the energy distribution is exponential,

p(E)dE = 〈E〉−1 exp(−E/〈E〉)dE , (10.42)

where 〈E〉 is the average energy, and the energy E is proportional to the squared amplitude.
It is straightforward, and instructive, to simulate such stochastically excited, damped,

oscillations. An example of such a simulation, for a long-period variable, is illustrated in
Figure 10.5. It is evident that the amplitude varies strongly and in an irregular fashion,
and hence at any given time there is a significant probability that any given mode may be
invisible; this must be kept in mind in the interpretation of such pulsating stars. Panel b)
shows the distribution of mode energy, obtained by analyzing the time series in 1-year
segments. Here N is the total number of segments, and n is a scaled binned number of
realizations,

n =
∆n(E)

exp(∆E/2〈E〉)− exp(−∆E/2〈E〉) , (10.43)

where ∆n(E) is the number of realizations in the interval [E −∆E/2, E + ∆E/2]. It may
be shown that n/N behaves like exp(−E/〈E〉) (cf. Chang & Gough 1998); as is clear
from Figure 10.5b the simulated data do indeed have this property. Very interestingly, the
observed distribution of solar oscillation amplitudes satisfies this relation quite closely (e.g.
Chaplin et al. 1997). An example, based on BiSON data, is shown in Figure 10.6.
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Figure 10.5: Artificial time series for an oscillation with a period of 82 days,
a damping time of 60 years and a sampling-time interval of 20 days. The
top panel shows the computed time series which, as indicated, covers about
1600 years. In the bottom panel the points show the binned, normalized
distribution of mode power, in units of the mean power; the line corresponds
to the expected exponential distribution in equation (10.42) (see text). (From
Christensen-Dalsgaard et al. 2001.)

Exercise 10.2:

Verify this property of the distribution, as described by equation (10.43).
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Figure 10.6: Binned, normalized distribution of observed solar mode power, in
units of mean power; this is based on 3368 individual samples, each contain-
ing 14 modes, of BiSON observations. The line corresponds to the expected
exponential distribution in equation (10.42). (See Chaplin et al. 1997.)

The distribution function in equation (10.42) also defines the relation between the av-
erage 〈A〉 and the standard deviation σ(A) of the amplitude:

σ(A) =

(
4

π
− 1

)1/2

〈A〉 ' 0.52〈A〉 . (10.44)

It was noticed by Christensen-Dalsgaard, Kjeldsen & Mattei (2001) that observed ampli-
tudes of semiregular variables on the red-giant branch approximately followed this relation,
suggesting that their variability may have a cause similar to the solar oscillations.

As indicated by equation (10.41) this excitation mechanism results in a definite pre-
diction of the oscillation amplitude, given a model for the power in the stochastic forcing.
This can be evaluated from models of convection, such as the mixing-length description.
A rough estimate was made by Christensen-Dalsgaard & Frandsen (1983a); following Gol-
dreich & Keeley (1977) they assumed equipartition between the energy in a single mode
of oscillation and the energy of a convective eddy with a time scale corresponding to the
period of the mode. The results were analyzed by Kjeldsen & Bedding (1995) who found,
as already discussed in Section 2.4.1, that the amplitudes scaled as L/M (cf. eq. 2.44).
A more careful calculation was carried out by Houdek et al. (1999), who determined the
damping or excitation rates of radial modes, using a nonlocal mixing-length description of
the interaction between convection and pulsation; for the stable modes they estimated the
stochastically excited amplitudes, from the computed damping rates and a mixing-length
calculation of the energy input to the modes from convection. The results are summarized
in Figure 10.7. It should also be noted that computations by Stein & Nordlund (2001)
of the energy input from convection to the oscillations, based on detailed hydrodynamical
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Figure 10.7: Unstable modes and mean velocity amplitudes of stochastically
excited modes, for radial oscillations. Evolution tracks, at the masses indi-
cated, are shown with dotted curves, some models being marked with dia-
monds. Selected models with unstable modes are indicated by the symbols,
as listed in the figure; note that, as argued in Section 10.2, the higher-order
modes tend to be excited in models with higher effective temperature. The
solid and dashed straight lines indicate the instability strips of the n = 1 and
2 modes, respectively. The contours to the right of the instability strip show
computed velocity amplitudes, averaged over frequency; the values of the am-
plitudes, in cm s−1, are given. For the Sun, indicated by �, the predicted
mean amplitude is 20 cm s−1. (From Houdek et al. 1999.)

simulations, have yielded results in general agreement with the observed properties of solar
oscillations.

The stochastic mechanism is expected to result in the excitation of all modes in a broad
range of frequencies, with amplitudes reflecting the presumed slow frequency dependence
of the forcing function. This property is indeed observed in the Sun and in the few cases
where solar-like oscillations have been observed in other stars (see Section 2.4.1). It greatly
simplifies the identification of the modes, compared with oscillations excited through radi-
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ative instability. In the latter case the mechanisms determining the final amplitude, and
hence the selection of modes which reach an observable level, are unknown and apparently
lead to detectability, with current techniques, of only a fairly small subset of the unstable
modes.
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reros, J. M., Lazrek, M., Pallé, P. L., Pétrou, N., Renaud, C. & Régulo, C., 1997.
[Performance and early results from the GOLF instrument flown on the SOHO mis-
sion]. Solar Phys., 175, 207 – 226.

Gabriel, A. H., Grec, G., Charra, J., Robillot, J.-M., Roca Cortés, T., Turck-Chièze, S.,
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J.-P., Pallé, P. L., Pétrou, N., Sanchez, M., Ulrich, R. & van der Raay, H. B., 1995.
[Global oscillations at low frequency from the SOHO mission (GOLF)]. Solar Phys.,
162, 61 – 99.

Gabriel, M., 1986. [Solar g modes: a method to find the depth of the convection zone].
Seismology of the Sun and the distant Stars, p. 177 – 186, ed. Gough, D. O., Reidel,
Dordrecht.

Gabriel, M., 1993. [On the location of the excitation of solar p-modes]. Astron. Astrophys.,
274, 935 – 939.

Gabriel, M., 2000. [Linear interaction between pulsations and convection, scattering and
line profiles of solar p-modes]. Astron. Astrophys., 353, 399 – 408.

Gabriel, M. & Noels, A., 1976. [Stability of a 30M� star towards g+ modes of high spherical
harmonic values]. Astron. Astrophys., 53, 149 – 157.

Gabriel, M. & Scuflaire, R., 1979. [Properties of non-radial stellar oscillations]. Acta
Astron., 29, 135 – 149.

Gilliland, R. L., Brown, T. M., Kjeldsen, H., McCarthy, J. K., Peri, M. L., Belmonte,
J. A., Vidal, I., Cram, L, E., Palmer, J., Frandsen, S., Parthasarathy, M., Petro, L.,
Schneider, H., Stetson, P. B. & Weiss, W. W., 1993. [A search for solar-like oscillations
in the stars of M67 with CCD ensemble photometry on a network of 4 m telescopes].
Astron. J., 106, 2441 – 2476.

Goldreich, P. & Keeley, D. A., 1977. [Solar seismology. II. The stochastic excitation of the
solar p-modes by turbulent convection]. Astrophys. J., 212, 243 – 251.

Gough, D. O., 1981. [A new measure of the solar rotation]. Mon. Not. R. astr. Soc., 196,
731 – 745.

Gough, D. O., 1984. [On the rotation of the Sun]. Phil. Trans. R. Soc. London, Ser. A,
313, 27 – 38.

Gough, D. O., 1985. [Inverting helioseismic data]. Solar Phys., 100, 65 – 99.



REFERENCES 231

Gough, D. O., 1986a. [EBK quantization of stellar waves]. Hydrodynamic and magnetohy-
drodynamic problems in the Sun and stars, ed. Osaki, Y., University of Tokyo Press,
p. 117 – 143.

Gough, D. O., 1986b. [Asymptotic sound-speed inversions]. Seismology of the Sun and the
distant Stars, p. 125 – 140, ed. Gough, D. O., Reidel, Dordrecht.

Gough, D. O., 1987. [Seismological measurement of stellar ages]. Nature, 326, 257 – 259.
Gough, D. O., 1990. [Comments on helioseismic inference]. Progress of seismology of

the sun and stars, Lecture Notes in Physics, vol. 367, 283 – 318, eds Osaki, Y. &
Shibahashi, H., Springer, Berlin.

Gough, D. O., 1993. [Course 7. Linear adiabatic stellar pulsation]. In Astrophysical fluid
dynamics, Les Houches Session XLVII, eds Zahn, J.-P. & Zinn-Justin, J., Elsevier,
Amsterdam, 399 – 560.

Gough, D. O. & Thompson, M. J., 1990. [The effect of rotation and a buried magnetic field
on stellar oscillations]. Mon. Not. R. astr. Soc., 242, 25 – 55.

Gough, D. O. & Thompson, M. J., 1991. [The inversion problem]. In Solar interior and
atmosphere, eds Cox, A. N., Livingston, W. C. & Matthews, M., p. 519 – 561, Space
Science Series, University of Arizona Press.

Gough, D. O. & Toomre, J., 1991. [Seismic observations of the solar interior]. Ann. Rev.
Astron. Astrophys., 29, 627 – 685.

Gough, D. O. & Vorontsov, S. V., 1995. [Seismology of the solar envelope: measuring the
acoustic phase shift generated in the outer layers]. Mon. Not. R. astr. Soc., 273, 573
– 582.

Gough, D. O., Leibacher, J. W., Scherrer, P. H. & Toomre, J., 1996. [Perspectives in
helioseismology]. Science, 272, 1281 – 1283.

Gough, D. O., Spiegel, E. A. & Toomre, J., 1975. [Highly stretched meshes as functionals
of solutions]. Lecture Notes in Physics, 35, 191 – 196, ed. Richtmyer, R. D., Springer,
Heidelberg.

Grec, G., Fossat, E. & Pomerantz, M., 1980. [Solar oscillations: full disk observations from
the geographic South Pole]. Nature, 288, 541 – 544.

Grec, G., Fossat, E. & Pomerantz, M., 1983. [Full-disk observations of solar oscillations
from the geographic South Pole: latest results]. Solar Phys., 82, 55 – 66.

Guenther, D. B., 1991. [The p-mode oscillation spectra of an evolving 1M� sun-like star].
Astrophys. J., 375, 352 – 365.

Guenther, D. B. & Demarque, P., 2000. [α Centauri AB]. Astrophys. J., 531, 503 – 520.
Guenther, D. B., Demarque, P., Buzasi, D., Catanzarite, J., Laher, R., Conrow, T. &

Kreidl, T., 2000. [Evolutionary model and oscillation frequencies for α Ursae Majoris:
a comparison with observations]. Astrophys. J., 530, L45 – L48.

Handler, G., Arentoft, T., Shobbrook, R. R., Wood, M. A., Crause, L. A., Crake, P.,
Podmore, F., Habanyama, A., Oswalt, T., Birch, P. V., Lowe, G., Sterken, C., Meintjes,
P., Brink, J., Claver, C. F., Medupe, R., Guzik, J. A., Beach, T. E., Martinez, P.,
Leibowitz, E. M., Ibbetson, P. A., Smith, T., Ashoka, B. N., Raj, N. E., Kurtz, D.
W., Balona, L. A., O’Donoghue, D., Costa, J. E. S. & Breger, M., 2000. [Delta Scuti
Network observations of XX Pyx: detection of 22 pulsation modes and of short-term
amplitude and frequency variations]. Mon. Not. R. astr. Soc., 318, 511 – 525.

Hansen, C. J., Cox, J. P. & van Horn, H. M., 1977. [The effects of differential rotation on
the splitting of nonradial modes of stellar oscillation]. Astrophys. J., 217, 151 – 159.



232 REFERENCES

Harvey, J. W., Hill, F., Hubbard, R. P., Kennedy, J. R., Leibacher, J. W., Pintar, J. A.,
Gilman, P. A., Noyes, R. W., Title, A. M., Toomre, J., Ulrich, R. K., Bhatnagar, A.,
Kennewell, J. A., Marquette, W., Partrón, J., Saá, O. & Yasukawa, E., 1996. [The
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Appendix A

Useful properties of Legendre
functions

The following expressions are mainly taken from Abramowitz & Stegun (1964) and Whit-
taker & Watson (1927).

Differential equation:

(1− x2)
d2Pml
dx2

− 2x
dPml
dx

+

[
l(l + 1)− m2

1− x2

]
Pml = 0 (A.1)

d

dx

[
(1− x2)

dPml
dx

]
+

[
l(l + 1)− m2

1− x2

]
Pml = 0 (A.2)

Legendre Polynomials: Pl(x) = P 0
l (x). Explicit expressions for the first few cases:

P0(x) = 1

P1(x) = x

P 1
1 (x) = −(1− x2)1/2 (A.3)

P2(x) = 1/2(3x2 − 1)

General expressions, for m > 0:

Pl(x) =
1

2ll!

dl(x2 − 1)l

dxl
(A.4)

Pml (x) = (−1)m(1− x2)m/2
dmPl(x)

dxm
(A.5)

Pmm (x) = (−1)m
(2m)!2−m

m!
(1− x2)m/2 (A.6)

Note that equation (A.4) shows that Pl(x) is a polynomial of degree l. Also, equation (A.6)
shows that

Pmm (cos θ) = (−1)m
(2m)!2−m

m!
sinm θ (A.7)
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Expression for negative azimuthal order:

P−ml (cos θ) =
(l −m)!

(l +m)!
Pml (cos θ) . (A.8)

Recursion relations:

(l −m+ 1)Pml+1(x) = (2l + 1)xPml (x)− (l +m)Pml−1(x) (A.9)

(1− x2)
dPml
dx

= lxPml (x)− (l +m)Pml−1(x) (A.10)

x
dPl
dx
− dPl−1

dx
= lPl(x) (A.11)

Integrals:

∫ 1

−1
Pml (x)Pml′ (x)dx = δll′

(n+m)!

(l + 1/2)(l −m)!
(A.12)

Asymptotic expansion, for m ≥ 0, large l:

Pml (cos θ) =
Γ(l +m+ 1)

Γ(l + 3/2)
(
π

2
sin θ)−1/2 cos

[
(l +

1

2
)θ − π

4
+
mπ

2

]
+O(l−1) (A.13)



Appendix B

Effects of a perturbation on
acoustic-mode frequencies

In several of the Problems we consider the effect on the frequencies of acoustic modes, as
described by the asymptotics leading to the Duvall law, of various modifications (such as
the perturbation in the gravitational potential, changes in the sound speed and rotation).
These results all reflect a more general expression, which is derived here.

I start from the dispersion relation for a plane sound wave, with the addition of some
perturbation δra(r) which, as indicated, is assumed to be a function of r alone:

ω2 = c2|k|2 + δra(r) (B.1)

(cf. eq. 3.55), where for simplicity I dropped “0” on equilibrium quantities. I now use that
|k|2 = k2

r + k2
h, where k2

h is given by equation (4.51). Therefore, kr is given by

kr =

(
ω2

c2
− L2

r2
− 1

c2
δra

)1/2

' ω

c



(

1− L2c2

ω2r2

)1/2

− 1

2ω2

(
1− L2c2

ω2r2

)−1/2

δra


 , (B.2)

where in the last equality I assumed that δra was small. The condition that we have a
standing wave can be expressed as

∫ R

rt
krdr = (n+ α)π , (B.3)

where, as usual, α takes into account the phase change at the surface. By substituting
equation (B.2) we obtain

(n+ α)π

ω
'
∫ R

rt

(
1− L2c2

ω2r2

)1/2
dr

c
− 1

2ω2

∫ R

rt

(
1− L2c2

ω2r2

)−1/2

δra
dr

c
. (B.4)

If we neglect the term in δra we obviously obtain the usual Duvall law, equation (7.1).
Hence equation (B.4) shows the effect of the perturbation on the Duvall law.
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We can now find the effect on the oscillation frequencies of the perturbation. I assume
that the result is to change the frequency from ω to ω+ δω. Also it should be recalled that
α = α(ω) in general depends on ω. By multiplying equation (B.4) by ω and perturbing it
we obtain

π
dα

dω
δω = δω

∫ R

rt

(
1− L2c2

ω2r2

)1/2
dr

c
+ ω

∫ R

rt

(
1− L2c2

ω2r2

)−1/2
L2c2

ω2r2

δω

ω

dr

c

− 1

2ω

∫ R

rt

(
1− L2c2

ω2r2

)−1/2

δra
dr

c
. (B.5)

From this we finally obtain

S
δω

ω
' 1

2ω2

∫ R

rt

(
1− L2c2

ω2r2

)−1/2

δra
dr

c
, (B.6)

where

S =

∫ R

rt

(
1− L2c2

ω2r2

)−1/2
dr

c
− πdα

dω
. (B.7)

This is the desired general expression.
It should be noticed that equation (B.6) has a very simple physical interpretation: Apart

from the (generally small) term in dα/dω in S, the equation shows that the change in ω2

is just a weighted average of δra, with the weight function

W(r) =
1

c

(
1− L2c2

ω2r2

)−1/2

. (B.8)

However, it is easily seen that W(r)dr is just the sound travel time, corresponding to the
radial distance dr, along the ray describing the mode. Hence the weight in the average
simply gives the time that the mode, regarded as a superposition of plane waves, spends in
a given region of the star.

Example I. Effect of a change in sound speed: If the sound speed is changed from c to
c+ δrc, the dispersion relation for sound waves can be written

ω2 = c2|k|2 + 2cδrc|k|2 = c2|k|2 + 2ω2 δrc

c
. (B.9)

Hence here δra = 2ω2δrc/c. Consequently, the frequency change is given by

S
δω

ω
'
∫ R

rt

(
1− L2c2

ω2r2

)−1/2
δrc

c

dr

c
. (B.10)

It should be noted that in general a change to the model would result also in an intrinsic
change δα in α. As a result, the general asymptotic expression for the frequency change
[which can be obtained by including explicitly a term in the change in α when deriving
equation (B.5) from equation (B.4)] is

S
δω

ω
'
∫ R

rt

(
1− L2c2

ω2r2

)−1/2
δrc

c

dr

c
+ π

δα

ω
. (B.11)
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Thus we recover equation (7.145).

Example II. Effect of rotation: As discussed in Chapter 8 the dominant effect of rotation is
purely geometrical. In a system rotating with the star, the dispersion relation is as usual
ω2

0 = c2|k|2; from equation (8.2) the dispersion relation in the inertial system is therefore,
to lowest order in Ω,

ω2 = c2|k|2 + 2mωΩ , (B.12)

where I assume that the rotation rate Ω depends on r alone. Hence here δra(r) = 2mωΩ(r),
and we obtain the perturbation in the frequency caused by rotation as

Sδω ' m
∫ R

rt

(
1− L2c2

ω2r2

)−1/2

Ω(r)
dr

c
. (B.13)
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Appendix C

Problems

The following problems have been used in courses on stellar pulsations in Aarhus. They
originally appeared on the weekly problem sheets (Ugesedler), but are collected here for
convenience and more general use. In a few cases reference is made to programming and
plotting with IDL. Obviously any other convenient graphics package may be used instead.

The problems are collected in sections corresponding approximately to the sections of
the main text, although the numbering has not been maintained.

C.1 Analysis of oscillation data

Problem 1.1:

Discrete Fourier transform. Observationally, the data are typically given at discrete
times tn. Hence the continuous Fourier transform considered in Section 2.2 is not
immediately relevant. Here we consider the simple case where the data are uniformly
spaced in time,

tn = n∆t , n = 0, . . . , N − 1 (C.1)

(this can in fact often be arranged). Then we define the discrete Fourier transform as

v̂(ωj) =
1

N

N−1∑

n=0

v(tn) exp(iωjtn) , (C.2)

given at the discrete frequencies ωj . For the moment we do not specify ωj .

i) Find the discrete transform of the simple harmonic oscillator given in equation
(2.19). Sketch the power |v̂(ωj)|2. Compare with the continuous transform.

A very efficient procedure for computing the discrete transform is the Fast Fourier
Transform (FFT). This requires that the number of data points is a power 2µ of 2, and
provides the transform only at the frequencies

ωj =
2π

N∆t
j =

2π

T
j , j = 0, . . . , N , (C.3)

247



248 APPENDIX C. PROBLEMS

where T = N∆t is the total duration of the observing run. For more details about the
FFT, see also Numerical Recipes (Press et al. 1986).

ii) Sketch the power resulting from a FFT of the time string given by the harmonic
oscillator in equation (2.19); for simplicity take the frequency ω0 of the oscillator
to be 2πj0/(N∆t) for some integer j0. Note that very little of the sinc function
structure in the continuous transform is preserved.

Normally, the number of data points will evidently not be an integral power of 2. In
that case, the data are extended by zeros up to a total number N1 = 2µ > N .

iii) Consider the effect on the FFT of the simple harmonic oscillator of extending the
data by zeros in this way. Show how this can be used to resolve the structure of
the peak of the power spectrum (note that we do not need to take the smallest
possible power of 2).

Note: In manipulating the Fourier transforms, it is useful to recall that

cosx =
1

2
(eix + e−ix) ;

N∑

n=0

xn =
1− xN+1

1− x . (C.4)

Problem 1.2:

Multiperiodic harmonic oscillations. (This requires access to a computer with
graphics facilities. Here reference is made to the graphics and data analysis package
IDL, which is a very convenient tool for this type of exercise).
Consider a time string consisting of a sum of harmonic oscillators,

v(t) =
K∑

k=0

ak cos(ωkt− δk) . (C.5)

Take the amplitudes ak and the phases δk to be uniformly distributed random numbers,
between 0 and 1, and 0 and 2π, respectively. Also choose suitably “random” frequencies
ωk.

i) Plot v(t) for a total time T that is substantially larger than the longest period
2π/ωk, for several different numbers K of individual oscillations. Note how the
appearance of the time string becomes increasingly “chaotic” as K is increased.

ii) Plot the power spectra of the time strings found under i), using IDL’s FFT
routine. Consider the extent to which the individual frequencies can be separated.
How does this depend on the number of modes or the total duration of the time
string?
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A typical observed time string of solar oscillations (corresponding, for example, to ob-
servations made in light integrated over the solar surface) contains of order 50 modes.
Clearly, separating them is no trivial task.

Problem 1.3:

A non-harmonic oscillator. A simple model of a large-amplitude pulsating star (e.g.
a Cepheid) is provided by the following function

v(t) = a0 sin[ωt+ α sin(ωt)] . (C.6)

i) Show that v(t) is periodic, with the period Π = 2π/ω.

ii) Sketch (or get IDL to plot) v(t) for ω = 1, a0 = 1, α = 0.5.

iii) For small α, find a simple expression for v(t) by expanding it in powers of α,
including the term of order α2. (If this is too hard, consider just the term of
order α). Try to guess what the expansion to higher orders in α will look like,
qualitatively.

iv) Use IDL to find the Fourier transform and power spectrum of v(t) for some
typical cases. Compare with the expansion obtained in iii).

Problem 1.4:

A double-mode non-harmonic oscillator. In Problem 1.3 we considered a simple
model of a large-amplitude pulsating star, with the signal v(t) = a0 sin[ωt+ α sin(ωt)];
the effect of the term in α is roughly to give a distortion to the phase which depends
on the instantaneous amplitude of the oscillation. This distortion may result from
non-linear effects near the surface of the star affecting what is essentially a harmonic
oscillation in the stellar interior.
We can generalize this concept to multiperiodic oscillators. For simplicity, we consider

a double-mode star, and assume that the signal can be written as

v(t) = a1 sin[ω1t+ αa1 sin(ω1t) + αa2 sin(ω2t)]

+ a2 sin[ω2t+ βa1 sin(ω1t) + βa2 sin(ω2t)] . (C.7)

i) For small α and β, expand v(t) in terms of harmonic functions. Include enough
terms to get a feel for what the form of a general term might be.
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ii) Use IDL to plot the time series and the power spectrum for typical cases. (It
may be a good idea to use a logarithmic scale for the power, suitably truncated,
to show the presence of weak peaks.) Compare with the expansion in i).

iii) What would happen if the star were pulsating in several modes?

Problem 1.5:

Spatial analysis of oscillation observations. As mentioned briefly in Section 2.1,
the analysis of observations of solar oscillations essentially proceeds by multiplying the
observed Doppler velocity field v(θ, φ, t) by different spherical harmonics Y m0

l0
(θ, φ) and

integrating over the area A of the solar disk that is observed. The result is a function
vl0m0(t) of time that predominantly contains contributions from modes with l = l0,
m = m0. Had the integration been over the entire Sun, the orthogonality of the spher-
ical harmonics would have given complete isolation of these modes. However, since we
can only see part of the Sun other modes leak in and complicate the analysis.

To illustrate these effects, we take out the φ-dependent part of the analysis, by con-
sidering an oscillation of the form

v(t) = V0 cos(mφ− ωt) . (C.8)

This signal is observed over the interval in longitude from φ = −φc to φ = φc (we take
φ = 0 to correspond to the centre of the disk). The analysis results in an average over
the interval:

vm0(t) =
1

2φc

∫ φc

−φc

v(t) cos(m0φ)dφ . (C.9)

i) Write vm0(t) as
vm0(t) = Sm0mV0 cos(ωt) (C.10)

and find an expression for the spatial response function Sm0m. Have we seen
something similar before?

ii) What happens in the limits of very small φc; or φc = π? What does the latter
case correspond to?

iii) Plot Sm0m for some typical cases.

Note that this behaviour is in fact very similar to the behaviour of the corresponding
response functions Sl0m0lm for the real observations. In fact, the calculation carried out
here is essentially the φ-part of the full integral over the observed area on the solar disk.

Problem 1.6:

Spatial response functions. We consider observations of solar oscillations through
an aperture of radius d, in units of the radius of the solar disk, and centred on the disk.



C.2. A LITTLE HYDRODYNAMICS 251

i) Show that the velocity response function, defined in analogy with equation (2.7),
is given by

S
(v)
l (d) =

2
√

2l + 1

d2

∫ 1

x1

Pl(x)x2dx , (C.11)

where x1 =
√

1− d2.

ii) Using the explicit expressions and recursion relations for Pl(x) in Appendix A,

calculate S
(v)
l (d) for d = 1 and d = 0.5, and for as many l-values as you can be

bothered to consider. What is the effect of restricting the aperture?

iii) A more intelligent way to compute the responses can be obtained by deriving
recursion relations for the functions

Pkl (x) =

∫
xk

dPl
dx

dx , Qkl (x) =

∫
xkPl(x)dx , (C.12)

based on the recursion relations for Pl and its derivative, as well as a little
integration by parts. Try to see whether you can find a way of doing that, and
make a more extensive computation for the cases considered in ii). It may help
to look in Christensen-Dalsgaard & Gough (1982).

C.2 A little hydrodynamics

Problem 2.1:

Waves at a density discontinuity. In Section 3.3.3 a relation is derived for gravity
waves on a free surface. It is interesting also to consider gravity waves at an interface
where the density jumps discontinuously. Examples are waves in a glass with oil on
top of water, or waves at the interface between a helium-rich core and a hydrogen-rich
envelope.

• Consider a system consisting of an infinite layer of density ρ1 on top of an infinite
layer of density ρ2, with ρ1 < ρ2. The assumptions are otherwise as in Section 3.3.3.
By requiring that the vertical displacement and the pressure are continuous at the
perturbed interface between the layers, show that the oscillation frequencies are
given by

ω2 =
ρ2 − ρ1

ρ2 + ρ1
g0k . (C.13)

Does this make sense in the limits ρ1 → 0 and ρ1 → ρ2?

Problem 2.2:

Damping of simple sound waves. To illustrate the effects of non-adiabaticity, we
consider the radiative damping of the simple sound waves discussed in Section 3.3.1.
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Except where otherwise noted, the assumptions are the same as in that section.
At low density, we use Newton’s law of cooling, equation (3.23), for the radiative

cooling. Also, we assume the ideal gas law, so that in particular Γ1 = Γ2 = Γ3 = γ =
5/3, and that there is no nuclear energy generation. Finally, we consider a perturbation
in the form of a plane wave, as in equation (3.53).

i) Assume that the opacity κ is constant (i.e., independent of ρ and T ). Show that
the relation between p′ and ρ′, on complex form, can be written

p′

p0
= γN

ρ′

ρ0
, (C.14)

where

γN = γφN , φN =

1 +
3i

4γωτN

1 +
i

ωτN

, (C.15)

and
τN =

p0

4ac̃κ0ρ0(γ − 1)T 4
0

(C.16)

is a characteristic time scale for cooling by Newton’s law.

ii) Show that the dispersion relation for a plane sound wave is

ω2 = c2
0|k|2φN , (C.17)

where c0 = (γp0/ρ0)1/2 is the adiabatic sound speed.

iii) Consider a wave where the wave number k is real. Show that the imaginary part
of ω is negative and that therefore the wave is damped, i.e., that the amplitude
decreases with time. What is the physical explanation for the damping? (You
may assume that the damping is weak, so that Re(ω)� Im(ω).)

iv) As a more realistic case, assume that the opacity depends on ρ and T , such
that κ ∝ ρaT b where a and b are positive (this corresponds to conditions in
stellar atmospheres where the opacity is dominated by H− absorption). Find the
expression for γN in this case, and verify that the wave is damped in this case
also. What is the effect of the opacity variation on the magnitude of the damping
rate?

v) Discuss the behaviour of the dispersion relation in the limits τN →∞ and τN → 0.
Consider also the behaviour corresponding to ρ → 0 at fixed T (corresponding
to conditions high in a stellar atmosphere).

We now consider the limit of high density, where the diffusion approximation, equation
(3.22), can be used for the radiative flux. We still assume that equilibrium quantities
are constant and consider a plane wave.
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vi) Show that the perturbation in the radiative cooling rate is given by

(div F)′ =
4ac̃T 4

0

3κ0ρ0
|k|2T

′

T0
(C.18)

(remember that we assume that ∇T0 = 0).

vii) Hence show that equations (C.14) and (C.17) are still valid, if γN and φN are
replaced by γF and φF, where

γF = γφF , φF =

1 +
i

γωτF

1 +
i

ωτF

, τF =
3κ0ρ0p0

4ac̃(γ − 1)T 4
0 |k|2

. (C.19)

Compare this expression for the time scale τF for radiative diffusion with the
estimate given in Section 3.1.4.

viii) Show that this also results in damping of a sound wave. Discuss the physics of
the damping.

Finally, we consider the effects of nuclear energy generation on the waves. We assume
that the energy generation rate ε ∝ ρT n, and that radiative effects can be neglected.

ix) Show that in this case the relation between p′ and ρ′ can be written

p′

p0
= γε

ρ′

ρ0
, (C.20)

where

γε = γφε , φε =

1− i(n− 1)

nγωτε

1− i

ωτε

, (C.21)

and
τε =

p0

nρ0ε0(γ − 1)
(C.22)

is a characteristic time scale for nuclear heating.

x) Show that this leads to excitation of the sound wave, such that its amplitude
grows with time. Discuss the physics of the excitation.

xi) Discuss qualitatively the case where both nuclear energy generation and radiative
damping, in the diffusion approximation, are taken into account. For which waves
might the overall effect be an excitation?
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Problem 2.3:

Dispersion relation for sound waves in a gravitating fluid. We consider acoustic
waves in a homogeneous system, as in Section 3.3.1, but include the effect of self-gravity
on the wave. Hence in the equation of motion, the term ρ0∇Φ′ should be included on the
right-hand side, but we continue to neglect the equilibrium gravitational acceleration.

i) Show that equation (3.51) should be replaced by

∂2ρ′

∂t2
= c2

0∇2ρ′ + 4πGρ0ρ
′ . (C.23)

ii) We assume a plane-wave solution, on the form given in equation (3.53). Show
that the dispersion relation is

ω2 = c2
0 |k|2 − 4πGρ0 . (C.24)

iii) When the frequency ω obtained from equation (C.24) is imaginary, the pertur-
bation either grows or decays exponentially with time. Show that this occurs
when the wavelength λ of the wave satisfies λ > λcrit and find λcrit. Compare
with equation (10.4) of Lecture Notes on Stellar Structure and Evolution.

C.3 Properties of solar and stellar oscillations

Problem 3.1:

Rays of sound waves. Ray theory is a very powerful tool for understanding the
propagation of waves in a medium where conditions vary slowly. It is entirely analogous
to the study of the propagation of light rays. An important example is its use to describe
the properties of acoustic oscillations in the Sun. We consider an acoustic wave that
propagates in the (x− z) plane where the sound speed c depends on z but not x. The
wave is described by a wave vector k = (kx, kz) and has a given frequency ω; one may
think of it as being excited with a fixed frequency at some point in the region. Clearly, ω
and k satisfy the dispersion relation (3.55). The x−component kx of k is fixed, whereas
the z−component kz depends on z.
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i) Show from equation (3.55) that

kz =

(
ω2

k2
xc

2
− 1

)1/2

kx . (C.25)

The propagation of the ray is parallel to the wave vector. Hence we can describe the
position (x, z) of a point on the ray by the equations

dx

ds
= kx

dz

ds
= kz , (C.26)

where s is a suitably chosen measure of position along the ray. From these equations
we obtain

dx

dz
=
kx
kz

, (C.27)

which determines the shape of the ray.

ii) Let z measure depth beneath some surface, and assume that c(z)2 increases
linearly with z,

c(z)2 = c2
0 +Az , (C.28)

where c0 and A are constants (this corresponds approximately to conditions near
a stellar surface). Try to sketch, qualitatively, the behaviour of the ray.

iii) Find the solution to the equation for the ray.

iv) What happens at a horizontal interface where c jumps from a value c1 to a value
c2? Have you seen anything like that before?

Problem 3.2:

Trapping of g modes. We consider g modes trapped near a maximum in the buoyancy
frequency, corresponding to the steep gradient in composition outside a convective core.
Specifically, we make the following assumptions:

• Sl/ω � 1.

• N2 is only non-zero in a narrow interval [r1, r2]:

N2 =





0 for r < r1

N2
m for r1 ≤ r ≤ r2

0 for r2 < r .
(C.29)
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• The region considered is so thin that we can make the plane-parallel assumption,
replacing l(l + 1)/r2 by k2

h which we take to be constant.

• The oscillations are described by the simplified equations (5.20) and (5.21).

i) Show under these assumptions that ξr approximately satisfies

d2ξr
dr2

= −k2
h

(
N2

ω2
− 1

)
ξr . (C.30)

ii) Show that the solution to equation (C.30), corresponding to modes trapped in
the region considered, have the form

ξr(r) =





A exp[kh(r − r1)] for r < r1

B1 cos[βkh(r − r1)] +B2 sin[βkh(r − r1)] for r1 ≤ r ≤ r2

C exp[−kh(r − r2)] for r2 < r ,
(C.31)

where

β2 =

(
N2

m

ω2
− 1

)
. (C.32)

iii) The solution must satisfy continuity of ξr and dξr/dr. Show that this leads to
the following relation which implicitly determines ω:

tan(β∆) =
2β

β2 − 1
, (C.33)

where ∆ = kh(r2 − r1).

iv) Sketch the left-hand side and the right-hand side of equation (C.33) as a func-
tion of β and argue that the equation has an infinite number of solutions βn,
corresponding to the frequencies ωn, n = 1, 2, . . ..

v) Assume ∆ to be very large. Show that the lowest-order modes satisfy

β∆ ' nπ , (C.34)

and hence

ω2 ' N2
m

1 + (nπ/∆)2
. (C.35)

vi) Sketch (or plot) the solution ξr(r) in this approximation for the first few values
of n.

vii) Does equation (C.35) look familiar? (Hint: Relate r2 − r1 to the vertical wave-
length, and hence the vertical wavenumber kr, of the mode.)

viii) Consider the opposite extreme of very high-order modes. Show that ωn → 0 for
n→∞, and that consequently the frequencies are still given by equation (C.35).
Show also that the periods Πn of pulsation may be approximated by

Πn ' Π0n , Π0 =
2π2

Nm∆
. (C.36)

Thus the periods increase linearly with n.
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ix) Try to solve the dispersion relation (C.33) numerically, to obtain ωn/Nm as a
function of ∆, and make plots of the corresponding eigenfunctions.

Problem 3.3:

A simple example of avoided crossings. Avoided crossings play a major role in
understanding the properties of spectra of stellar oscillations. Here we analyze a very
simple physical system that exhibits this behaviour.
Consider two coupled oscillators, with a time dependence described by y1(t) and y2(t),

and satisfying the differential equations

d2y1

dt2
= −ω1(λ)2y1 + αy2

d2y2

dt2
= −ω2(λ)2y2 + αy1 . (C.37)

Here α is a coupling parameter, which we assume to be constant. In the absence of
coupling (i.e., for α = 0) the oscillators have frequencies ω1 and ω2 which, as indicated,
depend on a parameter λ. We assume that at λ = λ0 the two uncoupled oscillators
cross, i.e., ω1(λ0) = ω2(λ0)

i) Show that the system in equation (C.37) has solutions of the form

{
y1(t)
y2(t)

}
=

{
c1

c2

}
exp(−iωt) , (C.38)

where the frequencies are given by

ω2
± =

1

2
(ω2

1 + ω2
2)± 1

2

[
(ω2

1 − ω2
2)2 + 4α2

]1/2
. (C.39)

ii) Discuss the behaviour of ω±, as functions of λ, far from λ0 (in the sense that
|ω2

1(λ)− ω2
2(λ)| � α) and at λ = λ0.

To analyze the behaviour of the system in more detail and find the coefficients, we
simplify the expressions by assuming that ω2

1 = 1, ω2
2 = λ.

iii) Make a plot of ω±(λ) and show that the two solutions are the two branches of a
hyperbola.

iv) Find the coefficients {c(±)
1 (λ), c

(±)
2 (λ)}, normalized such that (c

(±)
1 )2+(c

(±)
2 )2 = 1.

What is their behaviour far from the avoided crossing? And at the point of closest
approach of the frequencies? Make a plot of the coefficients.
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Problem 3.4:

A perturbation treatment of avoided crossings. As shown by von Neuman &
Wigner (1929) it is possible to describe the behaviour of the eigenfrequencies near an
avoided crossing by a simple extension of the usual first-order perturbation analysis.
This Problem reproduces von Neuman & Wigner’s analysis.
We consider the eigenvalue problem

Fξ = σξ . (C.40)

Here we express the operator F as

F = F0 + λ δF , (C.41)

where λ δF is a small perturbation. (We use the real parameter λ to vary the perturba-
tion; δF is a fixed operator.) We assume that both F0 and δF are symmetric operators.
The eigenvalues and eigenvectors for the unperturbed operator F0 are given by

F0ξ
(0)
i = σ

(0)
i ξ

(0)
i , i = 1, 2, . . . . (C.42)

Here the ξ
(i)
i are taken to be normalized, ‖ξ(i)

i ‖2 = < ξ
(i)
i , ξ

(i)
i > = 1. We assume

that σ
(0)
1 and σ

(0)
2 are very close together and neglect the remaining eigenvalues and

eigenvectors in the following.
We let σ(λ) be the eigenvalue of the perturbed operator, and assume that the corre-

sponding eigenvector ξ(λ) can be expressed as

ξ(λ) = c1(λ)ξ
(0)
1 + c2(λ)ξ

(0)
2 . (C.43)

i) By substituting equation (C.43) into equation (C.40), and taking the scalar prod-

uct of the resulting equation with ξ
(0)
1 and ξ

(0)
2 , show that the eigenvalues are

σ±(λ) =
1

2

[
σ

(0)
1 + σ

(0)
2 + λ(< δF >11 + < δF >22)

]
(C.44)

±1

2

{[
σ

(0)
1 − σ

(0)
2 + λ(< δF >11 − < δF >22)

]2
+ 4λ2| < δF >12 |2

}1/2

,

where
< δF >ij=< ξ

(0)
i , δFξ(0)

j > , i, j = 1, 2 . (C.45)

ii) Sketch the behaviour of the eigenvalues. Show that the minimum separation
between σ+(λ) and σ−(λ) is

∆σmin = ∆σ0
2| < δF >12 |

[(< δF >11 − < δF >22)2 + 4| < δF >12 |2]1/2
, (C.46)



C.4. ASYMPTOTIC THEORY OF STELLAR OSCILLATIONS 259

where ∆σ0 = σ
(0)
2 − σ

(0)
1 , and occurs at

λ = λmin =
∆σ0(< δF >11 − < δF >22)

(< δF >11 − < δF >22)2 + 4| < δF >12 |2
. (C.47)

iii) Compare this solution with the eigenfrequencies obtained in Problem 3.3.

iv) Show that if the coupling term < δF >12 is zero, equation (C.44) reduces to
the usual expression for the change in the eigenvalue induced by a perturbation,
equation (5.73).

v) Discuss the behaviour of the coefficients c
(±)
1,2 (λ) associated with the eigenvalues

σ±(λ) in the limit where |∆σmin/∆σ0| � 1.

Note that if the coupling term < δF >12 vanishes, the avoided crossing is replaced by a
true crossing of the eigenvalues. It may be shown that this is the case for the eigenvalue

problem in equation (5.56) if we consider two eigenfunctions ξξξ
(0)
1 and ξξξ

(0)
2 with different

values of the degree l. This is the reason why the curves for l = 0 and l = 1, for instance,
cross in Figure 5.14.

Problem 3.5:

The perturbation of the stellar surface. The displacement given in equation (4.40)
shows how each part of the star is moved by the oscillation. We take t = 0.

i) Consider the behaviour in the equatorial plane. Sketch or plot the perturbed
surface for (l,m) = (0, 0), (1, 1), (2, 2) using the expressions in the notes on the
Legendre functions. Consider different values of the ratio ξh/ξr.

ii) Repeat i), but in the plane passing through the pole, at φ = 0.

C.4 Asymptotic theory of stellar oscillations

Problem 4.1:

A simple derivation of the Duvall law. Equation (7.39) can be justified rather more
simply than by going through the full JWKB analysis (even though the arguments are
essentially equivalent). We start from the dispersion relation for a plane sound wave,
neglecting self-gravity (equation 3.55):

ω2 = c2
0|k|2 , (C.48)

and write |k|2 = k2
r + k2

h. For a wave corresponding to a mode of oscillation, kh is given
by equation (4.51).
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i) Dropping subscripts “0” on equilibrium quantities, show that

k2
r =

ω2

c2
− L2

r2
, (C.49)

where L2 = l(l + 1).

ii) Argue that the condition for a standing wave (i.e., a mode of oscillation) is
roughly that ∫ R

rt
krdr = nπ . (C.50)

A more careful analysis shows that n in equation (C.49) should be replaced by n + α,
where α takes care of the behaviour near the lower turning point rt and the surface.

iii) Use equation (C.50), modified in this way, and equation (C.49) to derive equation
(7.39).

Problem 4.2:

The effect of the gravitational potential perturbation on p-mode frequencies.
By combining the results of Problems 2.3 and 4.1, we can estimate the error made in
the Cowling approximation.

i) Repeat the analysis in Problem 4.1, but using the dispersion relation (C.24) (cf.
Problem 2.3) for a gravitating fluid, to obtain the following modified form of
equation (7.39):

ω

∫ R

r′t

(
1− L2c2

ω2r2
+

4πGρ

ω2

)1/2
dr

c
' π(n+ α) . (C.51)

ii) The last term in the bracket in equation (C.51) arises from the effect of the
perturbation in the gravitational potential. Since this term is generally small, we
can expand the bracket. Show that the result may be written as

π(n+ α)

ω
'
∫ R

rt

(
1− L2c2

ω2r2

)1/2
dr

c
+

2πG

ω2

∫ R

rt
ρ

(
1− L2c2

ω2r2

)−1/2
dr

c
, (C.52)

with the usual definition of rt.

We note that, as rt is a function of ω/L, equation (C.52) may be written as

π(n+ α)

ω
= F

(
ω

L

)
+

1

ω2
FΦ

(
ω

L

)
, (C.53)
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where the functions F (w) and FΦ(w) are defined by equation (C.52). This is a gener-
alization of equation (7.40).

From equation (C.52) we can derive an approximate expression for the difference
δω(Φ) = ω(F ) − ω(C) between the frequency ω(F ) obtained taking the perturbation in
the gravitational potential into account, and the frequency ω(C) obtained in the Cowling
approximation.

iii) Show by expanding equation (C.52) in δω(Φ), including only the linear term, and
neglecting a small term arising from the frequency-dependence of α, that

δω(Φ) ' − 1

ω

2πG

∫ R

rt
ρ

(
1− L2c2

ω2r2

)−1/2
dr

c

∫ R

rt

(
1− L2c2

ω2r2

)−1/2
dr

c

. (C.54)

Thus the frequency change induced by the gravitational potential perturbation depends
on an average of the density structure of the equilibrium model, over the region where
the mode is trapped.

Problem 4.3:

Effects of a change to the model. We assume that the oscillation frequencies are
given by the Duvall law, equation (7.104), where α = α(ω) is a function of frequency.
Consider the case where the structure of the equilibrium model is changed (keeping the
surface radius R fixed) such that c(r) is replaced by c(r) + δrc(r), and α(ω) is replaced
by α(ω) + δα(ω) (note that δ as used here should not be confused with the use of δ
elsewhere to denote the Lagrangian perturbation). As a result of these changes, the
eigenfrequency ωnl is changed to ωnl + δωnl.

i) Show that δωnl is given by

Snl
δωnl
ωnl

'
∫ R

rt

(
1− L2c2

r2ω2
nl

)−1/2
δrc

c

dr

c
+ π

δα

ωnl
, (C.55)

where

Snl =

∫ R

rt

(
1− L2c2

r2ω2
nl

)−1/2
dr

c
− πdα

dω
. (C.56)

ii) Sketch the behaviour of the weight function

W =
1

c

(
1− L2c2

r2ω2
nl

)−1/2

(C.57)



262 APPENDIX C. PROBLEMS

for a typical increase of the sound speed with depth (you may, for example,
assume that c2 increases roughly linearly with depth). What is the effect of the
singularity at r = rt?

iii) Discuss the physical interpretation of W (try to think in terms of travel time for
sound waves).

iv) Having made it through this derivation, go back and reconsider Problem 4.2 on
the effect of the perturbation in the gravitational potential on the oscillation
frequencies.

Problem 4.4:

The effect of discontinuities on oscillation frequencies. Sharp features in the
stellar model introduce characteristic oscillations in the frequencies as a function of
mode order. An example was encountered in Section 7.7.3 where we discussed the effect
on the phase function H2(ω) of the rapid variation in Γ1 in the second helium ionization
zone. Another important example is the effect of the boundaries of convective regions.
Here we discuss the effects of such features in a very simple way. The analysis is based
on Appendix B of Monteiro, Christensen-Dalsgaard & Thompson (1994). We assume
that the oscillations are described by equation (7.90).

i) At the base of a convective envelope the temperature gradient ∇ ≡ d lnT/d ln p
goes from being adiabatic in the convection zone to being radiative below it.
The transition occurs very abruptly, in such a way that ∇ is continuous but its
gradient d∇/dr is essentially discontinuous (see also Lecture Notes on Stellar
Structure and Evolution, Fig. 6.3a). Argue that as a result ω2

c in equation (7.90)
is discontinuous, whereas the other terms are continuous.

ii) Certain simplified models of convective overshoot predict that ∇ is discontinuous
at the edge of the convective region. Argue that in this case ω2

c has a δ-function
singularity at the convection-zone boundary.

The results of i) and ii) suggests that we consider an equation of the form

d2Y

dx2
+ [ω2 − V 2(x)]Y (x) = 0 , (C.58)

on the interval [0, xt], where the “potential” V (x) has either a discontinuity or a δ-
function behaviour at some location in [0, xt]. The eigenfrequencies ω are determined
by imposing the boundary conditions

Y (0) = Y (xt) = 0 . (C.59)
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iii) As a reference case we consider the potential being constant everywhere, V = Va,
say. Show that the corresponding eigenfrequencies satisfy the following dispersion
relation

ω2
0 − V 2

a =

(
nπ

xt

)2

, (C.60)

n being an integer corresponding to the (number of zeros+ 1) of the eigenfunc-
tion.

iv) To illustrate the effects of a discontinuity we consider the following modified
potential:

V1(x) =

{
Vb for 0 ≤ x < α1xt

Va for α1xt ≤ x < xt .
(C.61)

Show that Y and dY/dx are everywhere continuous. Hence, imposing the same
boundary conditions as before, show that ω satisfies the dispersion relation

tan(Λbα1xt) = −Λb

Λa
tan[Λa(1− α1)xt] , (C.62)

where

Λa =
(
ω2 − V 2

a

)1/2
, Λb =

(
ω2 − V 2

b

)1/2
. (C.63)

v) To study the effect of a δ-function singularity, consider the following modified
potential:

V 2
2 (x) = V 2

a +Aδδ(x− α2xt) . (C.64)

Show that Y (x) is still everywhere continuous, whereas dY/dx satisfies the fol-
lowing jump condition at x = α2xt:

dY

dx

∣∣∣∣
α2xt+

− dY

dx

∣∣∣∣
α2xt−

= AδY (α2xt) . (C.65)

(Hint: integrate the differential equation (C.58) across the x = α2xt.) Hence
derive the following dispersion relation for ω:

tan(Λaα2xt) = − tan[Λa(1− α2)xt]

1−AδΛ−1
a tan[Λa(1− α2)xt]

. (C.66)

We now consider the discontinuity or the singularity as small perturbations on a high-
order mode. Specifically, we assume that ω0 � Va; also, writing ω = ω0 + δω, and
δV 2 = V 2

a − V 2
b , we assume that |δω| � ω0, |δV 2| � V 2

a , and that |Aδ| � Va.

vi) Show, by expanding equation (C.62) in terms of the small quantities, that in the
case of a discontinuity the frequency change has a periodic component which is
approximately given by

δωp1 ∼
δV 2

4xtω2
0

sin(2Λaα1xt) . (C.67)
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vii) Show, by expanding equation (C.66) in terms of the small quantities, that in the
case of a δ-function singularity the frequency change has a periodic component
which is approximately given by

δωp2 ∼
Aδ

2xtω0
cos(2Λaα2xt) . (C.68)

Note that in both cases the analysis predicts a frequency perturbation which oscillates
as a function of the unperturbed frequency ω0. With the assumption that ω0 � Va the
“frequency” of this oscillation is approximately 2ω0αixt; hence it measures the location
of the discontinuity or singularity. The two cases differ in the frequency dependence
of the amplitude of the oscillation (ω−2

0 for a discontinuity, ω−1
0 for a singularity) and

in the phase of the oscillation. This in principle allows a determination of the nature
of the sharp feature. As discussed by Monteiro et al. an analysis of this nature allows
testing for the presence of overshoot below the solar convection zone.

viii) (Optional) Some stars have growing convective cores during parts of the core
hydrogen burning phase. Argue that this leads to a discontinuity in density. Try
to carry out a similar analysis for this case.

C.5 Rotation and stellar oscillations

Problem 5.1:

Asymptotic description of rotational splitting. We can derive the asymptotic
expression for the rotational splitting of p-mode frequencies very simply from the plane-
wave treatment in Section 3.3.1. We neglect the Coriolis force, so that the only change
in the equation of motion is the addition of the term −2mωΩρ0δδδr on the right-hand
side (cf. eq. 8.25). This is treated as a perturbation to the Duvall relation, equation
(7.1), in much the same way as the analysis of the effect of the perturbation in the
gravitational potential in Problem 4.2.

i) Show that the dispersion relation for plane sound waves is changed to

ω2 = c2|k|2 + 2mωΩ . (C.69)

ii) We assume that the rotation rate Ω = Ω(r) is a function of r alone, and that it
is small. Show that the modified Duvall relation can be written

π
n+ α

ω
=

∫ R

rt

(
1− L2c2

ω2r2

)1/2
dr

c
− m

ω

∫ R

rt

(
1− L2c2

ω2r2

)−1/2

Ω(r)
dr

c
. (C.70)
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iii) Hence show that the effect of rotation is to produce a frequency shift δω given
by

S δω ' m
∫ R

rt

(
1− L2c2

r2ω2

)−1/2

Ω(r)
dr

c
, (C.71)

where

S =

∫ R

rt

(
1− L2c2

r2ω2

)−1/2
dr

c
− πdα

dω
. (C.72)

Does this look familiar?

Problem 5.2:

Asymptotic inversion of rotational splitting. Given the result of Problem 5.1, and
the treatment of the asymptotic sound-speed inversion in Section 7.7.2, find a method
for inverting observed rotational splittings to determine the rotation rate Ω(r), assuming
it to be a function of r alone.

C.6 Excitation and damping of stellar oscillations

Problem 6.1:

Stochastic excitation of oscillations. It is generally believed that the observed
modes of solar oscillation are damped. This has been indicated by a number of cal-
culations, although there have been reports to the contrary also. If the modes are in
fact stable, their most likely cause is the turbulent convection near the solar surface. In
the uppermost part of the convection zone the velocity of the convective elements gets
close to the sound speed. Such elements are quite efficient at emitting acoustic noise,
and the noise excites the normal modes of the system. Essentially similar processes are
responsible for the generation of the notes of wind instruments, including an organ.
In this Problem we do not go into the physical details of this excitation process, but

instead concentrate on one aspect: its stochastic nature. The excitation of each mode
is caused by the effect of a very large number of essentially uncorrelated convective el-
ements. Consequently, the effective excitation force is a random function of time. Here
we model the process through the behaviour of a damped harmonic oscillator that is
excited by a random forcing. It may in fact be shown that this is a reasonable model
for the nonlinear interaction between convection and the mode. We do not aim at a
mathematically rigorous treatment of stochastic differential equations, but rather at
getting a feel for the properties of the solution.
As a preparation, we first consider a simple damped oscillator, with no forcing.
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i) Consider an oscillator with amplitude A(t) which satisfies the differential equa-
tion

d2A

dt2
+ 2η

dA

dt
+ ω2

0A = 0 , (C.73)

with initial condition A(0) = A0 and dA/dt = 0 at t = 0. Find the solution for
t > 0 and show that for η > 0 it corresponds to a damped oscillation. You may
assume that |η| � ω0.

ii) Find the Fourier transform of the solution from i), observed from t = 0 to t→∞,
and the corresponding power spectrum [see also equation (2.38)]. This spectrum
is known as a Lorentz profile.

We now consider an oscillator forced by a random function f(t) and hence satisfying
the equation

d2A

dt2
+ 2η

dA

dt
+ ω2

0A = f(t) . (C.74)

This equation is most easily dealt with in terms of its Fourier transform. We introduce
the Fourier transforms Ã(ω) and f̃(ω) by

Ã(ω) =

∫
A(t)eiωtdt , f̃(ω) =

∫
f(t)eiωtdt , (C.75)

where we do not attempt to specify the limits of integration precisely.

iii) Show, by suitable use of integration by parts and neglecting the resulting bound-
ary terms, that Ã satisfies

−ω2Ã− 2iηωÃ+ ω2
0Ã = f̃ . (C.76)

iv) Show from equation (C.76) that the power spectrum of the oscillator is given by

P (ω) = |Ã(ω)|2 =
|f̃(ω)|2

(ω2
0 − ω2)2 + 4η2ω2

. (C.77)

Equation (C.77) describes the solution resulting from a particular realization of the
forcing. It is more interesting to consider an average over several such realizations
(obtained either by repeated observation of the same mode or by averaging data for
several similar modes). Furthermore, since the damping rate is generally very small
compared with the oscillation frequency, we are mainly interested in the behaviour
close to ω = ω0.

v) Show that for |ω − ω0| � ω0 the average power of the oscillation, as a function
of frequency, is given by

〈P (ω)〉 ' 1

4ω2
0

〈Pf (ω)〉
(ω − ω0)2 + η2

, (C.78)

where 〈Pf (ω)〉 is the average power of the forcing function.
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Since 〈Pf (ω)〉 is often a slowly varying function of frequency, the frequency-dependence
of 〈P (ω)〉 is dominated by the denominator in equation (C.78). This behaviour is ex-
actly the same as the profile for the unforced damped oscillator in ii). Hence we obtain
the remarkable result that the spectrum of a stochastically forced damped oscillator
is Lorentzian, with a width determined by the linear damping rate η. Consequently,
under the assumption of stochastic excitation one can make a meaningful comparison
between computed damping rates and observed line widths. In the solar case rather de-
tailed calculations by Balmforth (1992b), including a relatively sophisticated treatment
of convection and radiation, have in fact resulted in good agreement with the obser-
vations. However, a more careful analysis of the statistical properties of the observed
oscillations is required to confirm that this is indeed the correct model for the excitation
of the solar modes. As discussed in Section 10.3, the observed amplitude distribution
is in fact in accord with expectations. Based on such models of excitation, predictions
have been carried out of amplitudes of similar oscillations in other stars, of obvious
significance for attempts to detect such oscillations. In the longer run, we may hope to
be able to probe properties of convection in different stars through observations of their
oscillation amplitudes.
Finally it should be remarked that numerical simulations of such stochastically excited

oscillators are both relatively straightforward and very instructive.

Problem 6.2:

The location of the instability strip in the HR diagram. We have found that
instability requires coincidence of the He+ ionization zone and the transition from adi-
abatic to nonadiabatic oscillations. Here we analyse this condition in more detail.
We consider the outer layers of a star. The mass of the layer is ∆m, and its thickness

is ∆r; we assume that ∆m�M and ∆r � R, where M and R are the mass and radius
of the star. The pressure on the stellar surface is assumed to be zero.

i) Show from the equation of hydrostatic support that the pressure at the base of
the layer is

p1 =
GM∆m

4πR4
, (C.79)

where G is the gravitational constant.

We assume that energy transport is through radiation, and that the opacity is given by
the Kramers expression, which we write on the form

κ = κ̃0pT
−4.5 , (C.80)

where κ̃0 is a constant, and T is temperature.

ii) Show from the equations of hydrostatic support and radiative energy transport
that the temperature T1 at the base of the layer satisfies

p1 ' K
(
M

L

)1/2

T 4.25
1 , (C.81)
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where L is the luminosity of the star and K is a constant.

In equation (10.40), it was argued that the transition from adiabaticity to nonadiabatic-
ity occurs at a depth (∆r)TR such that

〈cV T 〉TR(∆m)TR

LΠ
∼ 1 , (C.82)

where 〈cV T 〉TR is an average of cV T over the region outside the transition point, (∆m)TR

is the mass of that region and Π is the pulsation period. The condition for instability
is that (T1)TR ' Tion, where (T1)TR is the temperature at the transition point and
Tion ' 4× 104 K is the temperature where He+ ionizes.
We write the pulsation period as

Π = Π0
R3/2

M1/2
, (C.83)

where Π0 is a constant, and approximate 〈cV T 〉TR by cV (T1)TR, where cV is assumed
to be constant.

iii) Show, using equations (C.79) and (C.81) – (C.83), that the instability condition
leads to the following relation between L and R:

L ∝ R5/3 . (C.84)

iv) Show that equation (C.84) can be expressed as

L ∝ T−νeff , (C.85)

and find the exponent ν.


