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ABSTRACT
We model a long-term evolution of the Hilda collisional family located in the 3/2
mean-motion resonance with Jupiter. It might be driven by planetary migration and
later on by the Yarkovsky/YORP effect. Assuming that: (i) impact disruption was
isotropic, and (ii) albedo distribution of small asteroids is the same as for large ones,
we need at least a slight perturbation by planetary migration to explain the current
large spread of the family in eccentricity. Hilda is thus the first family in the Main
Belt, which may serve as a direct test of planetary migration. We tested a number
of scenarios for the evolution of planetary orbits. We select those which perturb the
Hilda family sufficiently (by secondary resonances) and, on the other hand, do not
destroy the Hilda family completely. There is a preference for fast migration time
scales ≃ 0.3Myr to 30Myr at most and an indication, that Jupiter and Saturn were
not in a compact configuration (PJ/PS > 2.09) at the time when the Hilda family had
been created.

We also estimate collisional activity in the J3/2 region. Our results indicate that
disruption frequencies are very low and one can expect an existence of at most one
family with a 200 km parent body. More frequent collisions may be expected during
planetary migration period, which is in agreement with the dynamical results.

Key words: celestial mechanics – minor planets, asteroids – methods: N -body sim-
ulations.

1 INTRODUCTION

There are many independent lines of evidence, that orbits
of planets in the Solar System were not the same all the
time, but that they have changed substantially over mil-
lennia. The arguments are based on the observed high ec-
centricities and inclinations of giant planets (Tsiganis et al.
2005), the amplitudes of secular oscillations (Brasser et al.
2010), orbital distribution of Jupiters Trojans (Morbidelli
et al. 2005), Main-Belt asteroids (Minton & Malhotra 2009,
Morbidelli et al. 2010) Kuiper belt objects (Malhotra et al.
1995) or the existence of irregular moons (Nesvorný et al.
2007).

Asteroids are definitely an important source of informa-
tion about the evolution of the planetary system. Some of
the resonant groups, i.e., located in the major mean-motion
resonances with Jupiter, might have been also influenced by
planetary migration, because their current distribution does
not correspond to the current extent of stable orbits (Roig
& Ferraz-Mello 1999).

In this work we focus on asteroid families in resonances.

⋆ E-mail: mira@sirrah.troja.mff.cuni.cz

We exploit our ability to model long-term evolution of aster-
oid families, which is usually dominated by the Yarkovsky
drift in semimajor axis (Bottke et al. 2001), often coupled to
the YORP effect affecting spin rate and obliquity (Vokrouh-
lický et al. 2006b). Chaotic diffusion in eccentricity and
sometimes interactions with weak mean-motion or secular
resonances (Vokrouhlický et al. 2006a) also play important
roles. In case of asteroids inside strong mean-motion res-
onances, one has to account for the ”resonant” Yarkovsky

effect , which causes a systematic drift in eccentricity (Brož
& Vokrouhlický 2008).

A Hilda collisional family — a part of the so called Hilda
group in the 3/2 mean motion resonance with Jupiter — was
already briefly discussed by Brož & Vokrouhlický (2008).
The modelling presented in that paper was not very suc-
cesful, thought, since the resulting age of the family seemed
to be a bit too large (exceeding 4 Gyr). Today, we think
we missed an important mechanism in our model, namely
perturbations arising from migration of planets. Indeed, the
age & 4Gyr suggests, the planetary migration might have
played a direct role during the early evolution of the Hilda
family. In this paper we thoroughly test this hypothesis.

The paper is organised as follows: at first, we study
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the observed properties of the J3/2 resonance population
in Section 2. Our dynamical model of the Hilda family is
described in Section 3. The results of our simulations are
presented in Section 4 and 5 and finally, Section 6 is devoted
to conclusions.

2 CURRENT ASTEROID POPULATION IN
THE J3/2 RESONANCE

Our identification procedure of the J3/2 resonant popula-
tion was described in the previous paper Brož and Vokrouh-
lický (2008). Using the AstOrb catalogue of orbits (version
JD = 2455000.5, Jun 18th 2009) we identified 1534 bodies
with librating critical argument

σ =
p + q

q
λ′ −

p

q
λ−̟ , (1)

where p = 2, q = 1, λ′ is the mean longitude of Jupiter, λ
the mean longitude of the asteroid. and ̟ the longitude of
perihelion of the asteroid.

In order to study detailed distribution of bodies librat-
ing inside the resonance we have to use pseudo-proper res-
onant elements defined as approximate surfaces of sections
(Roig et al. 2002)

|σ| < 5◦ ,
∆σ

∆t
> 0 , |̟ −̟′| < 5◦ . (2)

These conditions correspond to a maximum of semimajor
axis a over several oscillations and a minimum of eccentric-
ity e or inclination I. We are forced to apply a digital filter
to σ(t) prior to using Eq. (2), namely filter A from Quinn,
Tremain & Duncan (1991), with sampling 1 yr and decima-
tion factor of 10, to suppress fast ≃ 80 yr oscillations, which
would otherwise disturb slower ≃ 280 yr oscillations associ-
ated with resonant librations. Finally, we apply an averaging
over 1 Myr running window.

The overall dynamical structure of the J3/2 resonance
is determined by secular resonances ν5, ν6 at high eccentric-
ities ep & 0.3 and secondary resonances at lower values of
ep . 0.13 (according to Morbidelli & Moons 1993, Ferraz-
Mello et al. 1998, Roig & Ferraz-Mello 1999). They desta-
bilise orbits at the borders of a stable island. The orbits
inside the island exhibit very low chaotic diffusion rates,
so bodies can remain there for 4Gyr (without any non-
gravitational perturbation).

Next we apply a hierarchical clustering method (Zap-
palá et al. 1994) to detect significant clusters. We use a stan-
dard metric in the proper element space (ap, ep, sin Ip)

δv = na

s

5

4

„

δap

ap

«2

+ 2(δe2
p) + 2(δ sin Ip)2 . (3)

In the following, we do not discuss the known Schubart
family, which was sufficiently analysed elsewhere (Brož and
Vokrouhlický 2008), but we focus on the family associated
with (153) Hilda. A suitable cut–off velocity for the Hilda
family seems to be vcutoff = 150m/s, because the number
of members does not change substantially around this value
(see Figure 1). The number of members at this cut–off is 360.

The resulting plots (ap, H), (ep, H) and (Ip, H) of the
Hilda family show very interesting features (see Figure 2).
The distribution of semimajor axis and inclination seems
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Figure 1. The number N of the Hilda family members versus

the selected cut–off velocity vcutoff .

rather even and almost independent of absolute magni-
tude H, but eccentricities of small asteroids (i.e., with
high H) are clearly concentrated at the outskirts of the fam-
ily and depleted in the centre.

We consider these ‘ears’ in the (ep, H) plane to be a
strong indication of the ongoing Yarkovsky/YORP evolu-
tion, because they are very similar to those observed among
several the Main-Belt families in the (ap, H) plane and suc-
cessfully modelled by Vokrouhlický et al. (2006b). The differ-
ence between these two cases stems from the fact, that Main-
Belt families are non-resonant and the Yarkovsky/YORP
effect thus perturbs semimajor axis, while in our reso-
nant case, the same perturbation results rather in system-
atic changes of eccentricity. A detailed modelling of the e-
distribution is postponed to Section 4.2.

Geometric albedo is a poorly known quantity. There
are only six measured values for the Hilda family mem-
bers: 0.064, 0.046, 0.038, 0.089, 0.044, 0.051. These were
calculated from diameters included in the AstOrb cata-
logue, according to the relation of Bowell et al. (1989)
log pV = 6.259 − 2 log D − 0.4H, and compared to values
in the PDS database (Davis & Neese 2002). Given the low
number of values and a possibility of selection effects we
prefer to assume the family members have a mean value
pV = 0.044, which corresponds to the whole J3/2 popula-
tion. The size of the parent body can be then estimated to
DPB = (200 ± 20) km. A test with different albedo values
will be described in Section 4.4.

Size-frequency distributions N(>D) vs D of both fam-
ilies in the J3/2 resonance are steeper than that of back-
ground, but shallower than for usual Main-Belt families
(Figure 3). This might be a common feature also in the
Trojan region, e.g., the Eurybates family exhibits a similar
slope with γ = (2.5± 0.1).

Interestingly, the part of the J3/2 population with low
inclinations (Ip 6 2.5◦) has a significantly steeper size-
frequency distribution too. Possibly, it may be a remnant of
an old, totally dispersed family which is not recognisable by
the HCM method today? If true, it may be a basis of a new
family-identification method suitable for dispersed families.
One has to subtract families identified by the HCM first and
then check SFD’s in different parts of the proper-element
space. Another possibility to explain this difference in SFD’s
are different source populations, from which the J3/2 pop-
ulation was originally captured. E.g., lower-inclination bod-
ies may originate from the Main Belt and larger-inclination
from transneptunian region.
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Figure 2. The Hilda family displayed in resonant semimajor axis ap (left), eccentricity ep (middle) and inclination sin Ip (right) versus

absolute magnitude H. The ‘ears’ in (ep, H), i.e., the concentration of small asteroids at the outskirts of the family and their depletion
in the centre, are very prominent here. The family has 360 members at vcutoff = 150 m/s.
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Figure 3. Cumulative size distributions of the J3/2 population
(without families), of the Hilda family and a I 6 2.5◦ part of the
J3/2 population. The polynomial fits of the form N(>D) = CDγ

are plotted as thin lines, together with the respective values of

the γ exponent.

Finally, we have to mention the surroundings of the
Hilda family. The family seems to be separated from the
background at the (ap, Ip) plot (Figure 4). There is a very
low number of background bodies even thought orbits should
be stable everywhere. We confirm this statement by a di-
rect numerical integration of test particles initially spaced
evenly in the osculating element space (a ∈ (3.91, 4.01) AU,
e ∈ (0.2, 0.3), I ∈ (4.5◦, 13.5◦)). Even after 4Gyr of evolu-
tion the particles located in the surroundings of the Hilda
family remain stable. We think this indicates the Hilda fam-
ily was created by a disruption of a solitary body in the J3/2
resonance.

3 DESCRIPTION OF THE HILDA FAMILY
MODEL

To understand long-term evolution of the Hilda family, we
construct a detailed model, extending efforts in Brož and
Vokrouhlický (2008), which includes the following processes:
(i) impact disruption, (ii) planetary migration, (iii) the
Yarkovsky effect, (iv) the YORP effect, (v) collisions and
spin-axis reorientations. We describe the individuals parts
of the model in the forthcoming subsections.

3.1 Impact disruption

We use a very simple model of an isotropic disruption from
the work of Farinella et al. (1994). The distribution of ve-
locities ”at infinity” follows the function

dN(v) = Cv(v2 + v2
esc)

−(α+1)/2 , (4)

with the exponent α being a free parameter, C a normali-
sation constant and vesc the escape velocity from the parent
body, which is determined by its size RPB and mean den-
sity ρPB as vesc =

p

(8/3)πGρPB RPB . The distribution is
usually cut at a selected maximum allowed velocity vmax

to prevent outliers. The actual initial velocities of individ-
ual bodies are generated by a straightforward Monte–Carlo
code and their orientations in space are assigned randomly.

Here, we assume the velocity of fragments is indepen-
dent on their size, which seems reasonable with respect to
the observed even distribution of the Hilda family in the
(ap, H) and (Ip, H) planes (Figure 2). We perform also tests
with non-isotropic distributions in Section 4.5.

We are also free to select initial osculating eccentric-
ity ei of the parent body, initial inclination ii, as well as
true anomaly fimp and argument of perihelion ωimp at the
time of impact disruption. All of these parameters determine
the initial shape of the synthetic ”Hilda” family just after
the disruption of the parent body.1 Initial semimajor axis ai

is not free, instead it is calculated from the initial semimajor
axis of Jupiter aJi and the Kepler law, since the parent body
have to be confined in the J3/2 resonance.

3.2 Planetary migration

At later stages the planetary migration was most probably
caused by a presence of a massive planetesimal disc. A self-
consistent model for planetary migration thus would require
a full N-body simulation with not only planet ↔ planetes-
imals interactions but also with planetesimals ↔ planetesi-
mals interactions. This kind of model is however extraordi-

1 In order to start the simulation at a required fimp and ωimp we
perform a short integration of the parent body together with plan-

ets using a Bulirsch–Stöer integrator (SWIFT–BS). We monitor
true anomaly and argument of perihelion until secular perturba-
tions impel f

.
= fimp and ω

.
= ωimp.
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Figure 4. Left panel: the J3/2 region displayed at (ap, Ip) plot. The close surroundings of the Hilda family, where only a low number

of bodies is present, is highlighted by grey rectangles. The dashed line indicates the inclination I = 2.5◦, which was discussed with
respect to the size-frequency distributions. A very prominent Schubart cluster (studied by Brož and Vokrouhlický 2008) is visible
around sin Ip

.
= 0.05. Right panel: test particles initially spaced evenly in the proper element space (a ∈ (3.91, 4.01) AU, e ∈ (0.2, 0.3),

I ∈ (4.5◦, 13.5◦)) after 4Gyr of evolution. This test serves as a confirmation of orbital stability in the surroundings of the Hilda family.

narily CPU consuming and impractical. Usually, it is pos-
sible to drop mutual planetesimal interactions completely,
which have a minor effect only, and continue with a simpler
N-body model.

Another possibility is to drop even the planet ← plan-
etesimals interactions and use a so called analytic migration

model, with an artificial energy dissipation applied to plan-
ets. This is the only viable possibility in our case, because
we need to test not only a large number of various migra-
tion scenarios but also various initial configurations of the
synthetic ”Hilda” family. Moreover, we are not interested in
the evolution of the planetesimal disc and thus we need not
to calculate the orbital evolution of planetesimals at all.

For this purpose we use a modified version of the
symplectic SWIFT-RMVS3 integrator (Levison & Duncan
1994). We account for gravitational perturbations of the Sun
and four giant planets and include the following energy dis-
sipation term applied in every time step

vx := vx

»

1 +
1

v

∆t

τmig
∆v exp

„

−
t− t0
τmig

«–

, (5)

where vx (or equivalently vy, vz) denotes a velocity com-
ponent of a given planet, v the absolute value of velocity,
∆t the time step, τmig the selected migration time scale,
∆v =

p

GM/ai −
p

GM/af the required total change of
velocity (i.e., the difference of mean velocities between the
initial and the final orbit), t the time and t0 some reference
time.2 If there are no other perturbations than (5) present,
apart from the gravity of the Sun, the semimajor axis of
the planet changes smoothly (exponentially) from the initial
value ai to the final af . We use time step ∆t = 36.525 days
and the total time span of the integration is usually equal
to 3τmig when planetary orbits practically stop to migrate.

It is also necessary to use an eccentricity damping for-
mula, which simulates the effects of dynamical friction (Mor-
bidelli et al. 2010). This enables us to model high eccen-
tricities of planets, acquired during their resonant encoun-

2 It is of course possible to select different values of τmig, ∆v or t0
for every planet and also to change these values in course of the
simulation, in order to resemble a quite complicated migration
scenarios.

ters, and their decrease to relatively low final values. The
amount of eccentricity damping is characterised by a pa-
rameter edamp.

A ’softening’ parameter dsoft may by used to prevent
close encounters between planets. It is a distance, which is
artificially added to the mutual distance of planets and this
way effectively weakens the gravitational perturbation.

Because inclinations of planets are not that important
with respect to perturbation of minor bodies (the structure
of resonances is mainly determined by planetary eccentrici-
ties), we usually start with current values of I’s.

We try to adjust initial parameters in such a way to
end up at currently observed orbits, but we cannot guaran-
tee this to happen, because we cannot account for mutual
gravitational interactions and resonances in advance and we
have to check final orbits at the end of integration.

Those simulations, which exhibit large discrepancy be-
tween final simulated orbits and the observed ones, are
dropped. This discrepancy is measured similarly to the HCM
metric (3) as a sum of δv’s for all planets, computed for the
final simulated orbit and the currently observed one

∆vplanets =
4

X

1

δvi . (6)

This way we join differences in orbital elements a, e, I into
a single quantity (which has a unit of velocity). The result-
ing ∆vplanets 6 2000 m/s is considered a good fit (refer to
Figure 5).

We admit analytic migration is only a crude approxima-
tion of the real evolution, but we can use it as a first check,
which kinds of migration are allowed and which are not with
respect to the existence of the Hilda family. Note that very
short migration time scale, like τmig ≃ 3Myr, means almost
a ‘jump’ in a. On contrary, τmig ≃ 300Myr may correspond
to a very slow, smooth late phase of migration.

Resonant elements of the J3/2 bodies are calculated on-
line, for the actual configuration of planets. This enables us
to identify dynamical processes, which perturb the synthetic
”Hilda” family.
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Figure 5. The sum ∆vplanets of velocity differences between

osculating orbits of planets at JD = 2455000.5 and the orbits
evolved over next 10Myr. We can see the secular oscillations alone
may cause a difference of ∆v 6 1500 m/s.

3.3 Yarkovsky effect in a resonance

The implementation of the Yarkovsky thermal effect in the
SWIFT integrator was described in detail in Brož (2006).
Only minor modifications of the code were necessary to in-
corporate spin rate evolution, which is driven by the YORP
effect (see Section 3.4).

The thermal parameter we use are reasonable estimates
for C/X-type bodies: ρsurf = ρbulk = 1300 kg/m3 for the
surface and bulk densities, K = 0.01 W/m/K for the surface
thermal conductivity, C = 680 J/kg for the heat capacity,
A = 0.02 for the Bond albedo and ǫIR = 0.95 for the thermal
emissivity parameter.

We can use exactly the same code for non-resonant and
resonant bodies, because the usual drift in semimajor axis
and the resonant drift in eccentricity are related ”automati-
cally” due to the gravitational part of the integrator. In Fig-
ure 6 we can see a comparison between the expected drift ∆a
in semimajor axis and the resulting drift ∆e in eccentricity,
computed for the Hilda family (see an explanation in Ap-
pendix A of Brož and Vokrouhlický 2008). The relation can
be approximated as linear, where the departures from lin-
earity are caused mainly by interactions of drifting orbits
with embedded weak secular or secondary resonances.

Note that according to a standard solar model the
young Sun was faint (Güdel 2007), i.e., its luminosity 4 Gyr
ago was 75% of the current L⊙. We can then expect a lower
insolation and consequently weaker thermal effects acting on
asteroids. For the age estimates of the Hilda family it means
at most 13 % larger value.

3.4 YORP effect

The implementation of the YORP thermal effect follows
Vokrouhlický et al. (2006). We assume the following rela-
tions for the rate of angular velocity and obliquity

dω

dt
= f(ǫ) , (7)

dǫ

dt
=

g(ǫ)

ω
, (8)

where f - and g-functions are given by Čapek & Vokrouhlický
(2004) for a set of 200 Gaussian spheres with radius R0 =
1 km, bulk density ρ0 = 2500 kg/m3, located on a circular
orbit with semimajor axis a0 = 2.5 AU. The shapes of the
Hilda family members are not known, so we assign artificial
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Figure 6. Almost linear relation between the expected drift ∆a
in semimajor axis and the simulated drift ∆e in eccentricity, com-
puted for 360 members of the Hilda family located inside the J3/2

resonance.

Gaussian spheres randomly to individual asteroids. We only
have to scale the f - and g-functions by a factor

cYORP

„

a

a0

«−2 „

R

R0

«−2 „

ρbulk

ρ0

«−1

, (9)

where a, R, ρbulk are semimajor axis, radius and density of
the simulated body, cYORP is a free scaling parameter, which
can account for an additional uncertainty of the YORP
model, Because the values of f ’s and g’s were computed
for only a limited set of obliquities (∆ǫ = 30◦) we use in-
terpolation by Hermite polynomials (Hill 1982) to obtain a
smooth analytical function.

If the angular velocity approaches a critical value

ωcrit =

r

8

3
πGρbulk , (10)

we assume a mass shedding event, so we keep the orientation
of the spin axis and the sense of rotation, but we reset the
orbital period P = 2π/ω to a random value from the interval
(2.5, 9) hours. We also change the assigned Gaussian sphere
to a different one, since any change of shape my result in a
different YORP effect.

The differential equations (7), (8) are integrated numer-
ically by a simple Euler integrator. The usual time step is
∆t = 1000 yr. Such a detailed model for the YORP-driven
evolution of spin axes and a symplectic N-body integrator is
a unique combination. An example of the results computed
by the spin integrator for the Hilda family is displayed in
Figure 7. The typical time scale of the spin axis evolution is
τYORP ≃ 500Myr. After ≃ 3 times τYORP most bodies have
spin axes perpendicular to their orbits, what maximises the
Yarkovsky drift rate of eccentricity.

3.5 Collisions and spin-axis reorientations

In principle, collisions may directly affect the size distribu-
tion of the synthetic ”Hilda” family in course of the simula-
tion, but we neglect this effect because most of the asteroids
are large enough to remain essentially intact.

However, we include spin axis reorientations caused by
collisions. We use an estimate of the time scale by Farinella
et al. (1998)

c© 2010 RAS, MNRAS 000, 1–13
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Figure 7. An example of the YORP-driven evolution of obliq-
uities (namely a z-component of the spin axis unit vector, top
panel) and angular velocities ω (bottom panel) for the members

of the synthetic ”Hilda” family. At the beginning, all values of ω
were selected positive and spin axes were distributed isotropically.
The evolution may force ω to become negative, which simply cor-

responds to an opposite orientation of the spin axis. The scaling
parameter was selected cYORP = 0.33 in this run.

τreor = B

„

ω

ω0

«β1
„

D

D0

«β2

, (11)

where B = 84.5 kyr, β1 = 5/6, β2 = 4/3, D0 = 2m and ω0

corresponds to period P = 5 hours. These values are charac-
teristic for the Main Belt and we use them as an upper limit
for the J3/2 region. Even so, the time scale is τreor ≃ 3 Gyr
for smallest observable (D ≃ 5 km) bodies and reorienta-
tions are thus of minor importance only. Note the probabil-
ity of the reorientation is enhanced when the YORP effect
drives the angular velocity ω close to zero.

As a summary of Section 3 we present a list of free and
fixed (assumed) parameters of our model in Tables 1 and 2.
The problem is we cannot tune all 24 parameters together,
since the 24-dimensional space is enormous. We thus first
select a reasonable set of impact parameters 15.–24., keep
them fixed, and experiment with migration parameters 1.–
14. We test roughly 103 migration scenarios. Then, in the
second step, we vary impact parameters, for a single (suc-
cessful) migration scenario, and check the sensitivity of re-
sults.

4 RESULTS

We discuss our results on the evolution of the synthetic
”Hilda” family separately: (i) for the planetary migration,
(ii) for the Yarkovsky/YORP evolution. Later on in Sec-
tion 4.3 we match both results together.

Table 1. Free parameters of our Hilda family model.

no. parameter description

1. aJi initial semimajor axis of Jupiter

2. aSi Saturn
3. aUi Uranus
4. aNi Neptune
5. eJi initial eccentricity of Jupiter

6. eSi Saturn
7. eUi Uranus
8. eNi Neptune
9. τmig migration time scale

10. edampJ eccentricity damping for Jupiter
11. edampS Saturn
12. edampU Uranus

13. edampN Neptune
14. dsoft ‘softening’ parameter
15. ei initial eccentricity of the parent body
16. ii initial inclination

17. fimp true anomaly at the impact disruption
18. ωimp argument of perihelion
19. α slope of the velocity distribution

20. vmax maximum velocity of fragments
21. RPB radius of parent body
22. ρPB bulk density
23. pV geometric albedo of fragments

24. cYORP efficiency of the YORP effect

Table 2. Fixed (assumed) parameters of the Hilda family model.

There is also a number of less important parameters, like the
thermal ones (ρsurf , K, C, A, ǫIR) or collisional (B).

no. parameter description

25. aJf final semimajor axis of Jupiter
26. aSf Saturn
27. aUf Uranus
28. aNf Neptune

29. ai initial semimajor axis of the parent body
30. N(<H) (observed) absolute magnitude distribution

4.1 Results on planetary migration

In the first test we compute an evolution of the syn-
thetic ”Hilda” family during planetary migration phase
for the following parameter space (these are not intervals
but lists of values): aJi = (5.2806 and 5.2027) AU, aSi =
(8.6250, 8.8250, 9.3000) AU, aUi = (18.4479, 12.3170) AU,
aNi = (28.0691, 17.9882) AU, eJi = (0.065, 0.045), eSi =
(0.08, 0.05), eUi = (0.06, 0.04), eNi = (0.02, 0.01), τmig =
(0.3, 3, 30, 300)Myr, edampJ = 1 · 10−11, edampS = 1 · 10−11,
edampU = 0, edampN = 2 · 10−11, dsoft = 0.0 AU. Im-
pact parameters were fixed except fimp: ei = 0.13851525,
ii = 7.825811◦, fimp = (0◦, 180◦), ωimp = 30◦, α = 3.25,
vmax = 300 m/s, RPB = 93.5 km, ρPB = 1300 kg/m3.

The synthetic ”Hilda” family has 360 bodies in case of
short simulations (τmig = 0.3 or 3Myr). In case of longer
simulations we create 60 bodies only (not 360 as the ob-
served Hilda family). Their absolute magnitudes (sizes) were
selected randomly from 360 observed values. It is a minimum
number of bodies necessary to compare the distributions of
eccentricities. We performed tests with larger numbers and
the differences do not seem significant. Even thought the pa-

c© 2010 RAS, MNRAS 000, 1–13



Hilda collisional family 7

rameter space is rather limited, the number of simulations
is 3072 and given the integration time span required (3τmig)
it is a computationally demanding task.

A comparison with current planetary orbits shows we
have to exclude approximately one half of migration scenar-
ios which do not correspond to the current Solar System.
One of the reasons for unsuccessful scenarios is that a com-
pact configuration of planets is inherently unstable. If the
migration time scale is too large or the eccentricity damp-
ing too low, it may result in a violent instability, close en-
counters between planets and eventually an unrealistic final
configuration.

Major perturbations acting on the synthetic ”Hilda”
family can be seen in Figure 8. The family usually experi-
ences a steady drift in semimajor axis, because it is coupled
to Jupiter, and several ‘kicks’ in pseudo-proper eccentricity.
Inclinations of bodies are not perturbed.

We identified the perturbations as secondary resonances
between the libration frequency fJ3/2 of an asteroid cap-
tured in the J3/2 resonance and the frequency f1J−2S of the
critical argument of Jupiter–Saturn 1:2 resonance (see Ko-
rtenkamp et al. 2004 or Morbidelli et al. 2005 for case of
Trojans)

nfJ3/2 = f1J−2S , (12)

where n is a small integer number, n = 2, 3 or 4 in our
case.3 We can see the evolution of resonant semimajor axes
and the corresponding dominant frequencies, computed by
means of periodogram, in Figure 9.

Because the resonances are localised — they act only
at particular values of semimajor axes of planets — it is
not necessary to have a dense grid in aJi, aSi parameters.
Essentially, there are only three situations, when the Hilda
family is strongly perturbed, otherwise the spread in e does
not change much in course of time.

A very simple test, which allows us to quickly select
allowed migration scenarios, is the number of remaining
”Hilda” family members. We may assume the depletion by
dynamical effect was probably low (say 50% at most), oth-
erwise we would obtain much larger large parent body than
D ≃ 200 km, which has much lower probability of a colli-
sional disruption. Numbers of remaining bodies Nleft versus
initial conditions for planets is displayed in Figure 10.

Low number of remaining bodies Nleft means either the
family had to be formed later (when the resonant pertur-
bations are low) or this migration scenario is not allowed.
The same applies to the dispersion of e-distribution: if it is
too large compared to the observed Hilda family, the syn-
thetic ”Hilda” had to be formed earlier or the scenario is
not allowed. Our results indicate that:

(i) a faster migration time scale τmig ≃ 0.3 Myr to 30 Myr
is preferred over slower time scales;

(ii) Jupiter and Saturn were not in the most compact
configuration (aJi = 5.2806 AU, aSi = 8.6250 AU) at the
time when the ”Hilda” family was created;

(iii) initial configuration of Uranus and Neptune is not

3 We also looked for secondary resonances connected with 3:7, 4:9
and 2:5 Jupiter–Saturn resonances, but there are no significant
perturbations visible.
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frequency of Jupiter–Saturn 1:2 mean motion critical argument
is also calculated. Captures in the secondary resonances of type

nfJ3/2 = f1J−2S are clearly visible.

very important, as these planets do not produce direct per-
turbations on asteroids located in the J3/2 resonance.

We failed to reproduce scenarios when Uranus and Neptune
are in a compact configuration and migrate slowly (τmig =
30 or 300 Myr). Nevertheless, there are few successful runs,
where Uranus and Neptune encounter each other and end
up close to their current orbits.
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Figure 10. Number of remaining bodies Nleft from synthetic ”Hilda” family versus initial conditions for planets (aJi, aSi, aUi, aNi)
and time scale of migration τmig. The ranges of remaining free parameters are mentioned in the text. We only plot successful migration
scenarios with ∆vplanets 6 2000. The best runs, for which we also obtain a reasonable fit of the observed Hilda family, are indicated by
red crosses. They are defined by conditions Nleft > 180 or 30 (i.e., 50 % of the initial number of bodies) and median Kolmogorov–Smirnov
distance DKS 6 0.2 (these are determined after the subsequent Yarkovsky/YORP evolution, see Section 4.3).
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4.2 Results on Yarkovsky/YORP evolution

We start a simulation with an impact disruption of the par-
ent body, described by parameters 15.–23., and create 360
fragments. Subsequent evolution of the synthetic ”Hilda”
family due to the Yarkovsky/YORP effect is computed for
up to 6 Gyr. Planets remain on their current orbits all the
time, there is no migration in this test. A typical outcome
of the simulation is displayed in Figure 11.

Due to the extremely long integration time span and
large number of bodies we were able to compute only four
simulations with the following values of true anomaly and
YORP efficiency:

(i) fimp = 0◦, cYORP = 0;
(ii) fimp = 180◦, cYORP = 0;
(iii) fimp = 0◦, cYORP = 1;
(iv) fimp = 0◦, cYORP = 0.33.

The remaining parameters were fixed: ei = 0.13851525, ii =
7.825811◦, ωimp = 30◦, α = 3.25, vmax = 300m/s, RPB =
93.5 km, ρPB = 1300 kg/m3, pV = 0.044.

We are mainly concerned with the distribution of eccen-
tricities ep, because the observed family has an extremely
large spread of ep’s, while the synthetic family is very
compact. For this purpose we constructed a Kolmogorov–
Smirnov test (Press et al. 1999) of the cumulative distribu-
tions N(>e)

DKS = max
0<e<1

|N(>e)syn −N(>e)obs| , (13)

which provides a measure of difference between the synthetic
”Hilda” family, at a given time, and the observed Hilda fam-
ily (see Figure 12 for an example). The results of the KS tests
are summarised in Figure 13 (first four panels).

We also construct a modification of the KS test, which
aligns the medians of the N(>e) distributions prior to the
calculation of the KS statistics. Our motivation is that it is
possible to start the simulation with a lower or higher value
of the initial eccentricity ei and this way shift the whole
synthetic family. We verified this statement by numerical
tests. By doing this ‘trick’ we overcome the need to run
simulations with different ei’s.

The results of ‘median KS’ tests are presented in Fig-
ure 14. Moreover, we use a slightly different definition of the
observed Hilda family to test the robustness of the results
(vcutoff = 150 m/s is the same, but the family is selected
from an older version of the catalogue, so it contains 233
bodies only). Nevertheless, the tests stay compatible with
the previous version.4

There is an easy possibility to asses the sensitivity of
results with respect to the vmax parameter too, without the
need to compute the simulation again. We simply select bod-
ies fulfilling the condition v < v′

max, with v′
max = 200, 100 or

50 m/s, and recompute only the KS statistics for this subset.
The results are plotted in Figures 13 and 14 as thin lines.
We can state values lower than vmax ≃ 100m/s are surely
excluded.

4 The differences at late times stem from the fact that the evolved

synthetic family is sometimes depleted of bodies at its border and
due to the shift of medians it may become more compatible with
the observed Hilda family.
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thetic ”Hilda” family after 4Gyr of evolution and its comparison

with the observed Hilda family. Lines indicate a total change of
eccentricities over 4 Gyr.

As a preliminary conclusion we may say that all sim-
ulations point to a large age of the Hilda family. The e-
distributions are most compatible with the observed family
for ages t = (4.0 ± 1.0) Gyr, which suggests the Hilda fam-
ily indeed experienced the planetary migration period. The
large uncertainty stems from the fact that the runs including
the YORP effect (cYORP > 0.33) tend to produce ages at a
lower limit of the interval while the YORP-less runs (with
cYORP = 0) tend to the upper limit.

We have to admit it is possible to obtain a good fit of
the observed e-distribution even without planetary migra-
tion if we include the YORP effect with cYORP = 0.33 (see
Figure 12). Nevertheless, the age corresponding to the best
fit (t ≃ 3.8 to 4.0 Gyr) leads us to a conclusion the Hilda
family was likely created during late phases of planetary mi-
gration which are dated by the Late Heavy Bombardment
to tLHB ≃ 3.85 Gyr (Gomes et al. 2005).

4.3 Matching results together

Even thought we do not perform a joint integration which in-
cludes both the planetary migration and Yarkovsky/YORP
effect, we try to match the previous results from Sec-
tions 4.1 and 4.2 together. We do it using a straightforward
Monte–Carlo approach: (i) we take the pseudo-proper ec-
centricities emig of bodies at the end of planetary migration
from Section 4.1; (ii) we compute total Yarkovsky/YORP
drifts ∆eYE in eccentricity from Section 4.2; (iii) we assign
every body a drift randomly (efinal = emig +∆eYE) and this
way we construct an evolved synthetic family.5 Finally, we
compare the synthetic family to the observed Hilda family
by computing a Kolmogorov-Smirnov test for N(>efinal) and
N(>e)obs distributions.

To avoid problems with low number of bodies (60 in case

5 Note gravitational perturbation, caused by planetary migra-

tion, is independent of size (mass), so a large body may be easily
found at the outskirts of the family. This is another reason for
the random assignment of Yarkovsky/YORP drifts.
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(a) Yarkovsky effect only, fimp = 0◦ (b) fimp = 180◦
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(c) YE with YORP effect, cYORP = 1 (d) YORP, cYORP = 0.33
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(e) high albedo (f) asymmetric velocity field
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Figure 13. Kolmogorov-Smirnov tests of the synthetic ”Hilda” family: (a) no migration, only initial disruption (at anomaly fimp = 0◦,
̟imp = 30◦) and subsequent Yarkovsky evolution; (b) the case with fimp = 180◦; (c) including the YORP effect; (d) YORP with
efficiency factor cYORP = 0.33; (e) high albedo values (i.e., small bodies); (f) strongly asymmetric velocity field.

of planetary migration), we perform the above assignment
100 times, always with a different random seed. We then
take a median of the 100 KS statistics as a result for one
particular run. We do not plot the median DKS vs initial
conditions separately, we instead refer back to Figure 10,
where red crosses indicate successful runs with DKS 6 0.2.

We confirm the conclusions from Section 4.1 — those
migration scenarios which preserve most of number of family
members (i.e., high Nleft) are the same, for which we can find
a good fit of eccentricity distribution (low DKS).

Another important test was devoted to the impact
parameters, which were varied in a relatively large steps:
ei = (0.11851525, 0.14851525, ), ii = (6.825811◦, 8.825811◦),
fimp = (45◦, 90◦, 135◦), ωimp = (60◦, 90◦), α = (2.25, 4.25),
vmax = (200, 400) m/s, RPB = (83.5, 103.5) km, ρPB =

(1000, 2000) kg/m3. The migration parameters were fixed
this time (they correspond to one successful migration
scenario): aJi = 5.2806 AU, aSi = 8.8250 AU, aUi =
18.4479 AU, aNi = 28.0691 AU, eJi = 0.065, eSi = 0.08,
eUi = 0.06, eNi = 0.02, τmig = 3 Myr, edampJ = 1 · 10−11,
edampS = 1 · 10−11, edampU = 0, edampN = 2 · 10−11,
dsoft = 0.0 AU.

The resulting Kolmogorov–Smirnov distances DKS are
displayed in Figure 15. We see no strong preference for any of
the impact parameters, thought we may improve or worsen a
given fit by changing them (DKS differs by 0.1 at most). Note
that the selection of impact parameters is rather extreme, we
do not expect they may ever be out of these bounds. Hence,
our conclusion is the impact parameters are less important
then the parameters related to migration.
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(Figure 2). There is no perturbation by planetary migration in
this particular case.

4.4 Alternative hypothesis: high albedos of small
asteroids

We have to admit there might be another explanations for
the observed large eccentricity dispersion of the Hilda family.
We thus discuss two alternative scenarios without planetary
migration: (i) high albedos of small asteroids (i.e., larger
Yarkovsky/YORP drift); (ii) strongly asymmetric velocity
field after impact (like that of the Veritas family).

(b) Yarkovsky effect only, fimp = 180◦
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Figure 14. A different Kolmogorov-Smirnov test of the Hilda
family with aligned medians of e: the case with Yarkovsky ef-

fect and fimp = 180◦ for direct comparison with panel (b) in
Figure 13.

Albedo is the most important unknown parameter,
which can affect results on the Yarkovsky/YORP evolu-
tion. Fernández et al. (2009) measured albedos of small
Trojan asteroids and found a systematically larger values
that for large Trojans. If we assume the J3/2 asteroids be-
have similarly to Trojans, we may try a simulation with an
rather high value of geometric albedo pV = 0.089 (com-
pared to previous pV = 0.044). Moreover, we decrease den-
sity ρbulk = 1200 kg/m3, increase maximum velocity of frag-
ments vmax = 500 m/s and select true anomaly fimp = 90◦

to maximise the spread of ep’s.
The KS test is included in Figure 13, panel (e). The

most probable age seems to be (2.3 ± 0.5) Gyr only in this
case. Let us conclude that a high albedo explanation is the-
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and argument of pericentre ω). The anisotropy parameter, i.e.,
the ratio of velocity dispersions in R, T and W directions:
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than 4. We use Gauss equations to compute velocity components
vR, vT , vR from orbital elements a, e, I. The effect of chaotic
diffusion acting on eccentricity e in resonances was compensated
by shifting the respective asteroids in eccentricity ‘backwards’.

oretically possible, but not very probable, because any col-
lisional family should likely have the same albedo for large
and small members, since they originate from the same par-
ent body.

4.5 Alternative hypothesis: strongly asymmetric
velocity field

Another possibility is that the original velocity was highly
anisotropic. A well known example from the Main Belt is the
Veritas family. Let us assume the anisotropy is of the order
of Veritas, i.e., approximately 4 times larger in one direction
(see Figure 16). Note that the Veritas is a young family and
can be modelled precisely enough to compensate for chaotic
diffusion in resonances (Nesvorný et al. 2003, Tsiganis et
al. 2007). This family is characteristic by a large spread in
inclinations, which corresponds to large W -components of
velocities. In case of the Hilda family we multiply by 4 the
R-components of initial velocities to maximise the dispersion
of eccentricities at most favourable geometry of disruption
(fimp

.
= 0).

The fit in Figure 13, panel (f) is seemingly better at the
beginning of the simulation, but bodies on unstable orbits
are quickly eliminated and the fit gets much worse at t ≃
500 Myr. We can see the synthetic ”Hilda” family is similar
to the observed Hilda family quite early (at t ≃ 2.5 Gyr),
however the best fit is at later times (t ≃ 3.5 Gyr), so there
is no significant benefit compared to isotropic cases.

The conclusion is asymmetric velocity field is not a
likely explanation of the ep dispersion. Note that majority of
Main-Belt families can be also modelled assuming isotropic
initial velocity fields.

5 COLLISIONAL PROBABILITIES AMONG
THE J3/2 POPULATION

Let us estimate a collisional activity in the J3/2 region
by means of a simple stationary model, namely the likeli-

hood of a Hilda-family-forming event. In our case, the tar-
get (parent body) diameter Dtarget = 200 km, mean im-
pact velocity Vimp = 4.78 km/s (Dahlgren 1998), strength
Q⋆

D = 4 · 105 J/kg (it scales as D2 in gravity regime) and
thus the necessary impactor size (Bottke et al. 2005)

ddisrupt =
`

2Q⋆
D/V 2

imp

´1/3
Dtarget ≃ 65 km . (14)

Number of >65 km projectiles is dominated by Main-Belt
bodies: nproject = 160, according to (Bottke et al. 2006),
and we have only one 200 km target in the J3/2 region, so
ntarget = 1. An intrinsic collisional probability for Hilda vs
Main Belt collisions Pi = 6.2 × 10−19 km−2 yr−1 (Dahlgren
1998) and corresponding frequency of disruptions is

fdisrupt = Pi
D2

target

4
nprojectntarget ≃ 10−12 yr−1 . (15)

Over the age of the Solar System TSS ≃ 4Gyr (after
LHB), we have a very low number of such events nevents =
TSSfdisrupt ≃ 0.004.

Our preliminary conclusion, based on current collisional
rates, is thus it is very unlikely to have a large number of
Hilda-size families in the J3/2 region. Even the existence of
a single family with a 200 km parent body seems improb-
able, but given the fact Hilda family is dynamically very
old (6 4 Gyr), it may indicate that collisional activity was
substantially higher in the past, e.g., during the Late Heavy
Bombardment.

We can think of two projectile populations: (i) transient
decaying planetesimal disk; (ii) D-type asteroids captured in
the J3/2. Models like that of Levison et al. (2009) suggest the
decay time scale of the planetesimal disk is of the order 10 to
100 Myr and the flux of impactors might have been 100 times
larger than today. Higher mean collisional velocities, due to
projectiles on high-e and high-i orbits, are also favourable.
If we assume these reasonable numbers: Vimp = 20 km/s,
ddisrupt = 25 km, nproject = 160000 and the time span of the
LHB TLHB = 200 Myr, we end up with the number of events
nevents = 0.2, which is closer to one.

Regarding the captured D-type asteroids, they were
probably not so numerous (nproject was lower), but they
might have had larger Pi and substantially longer TLHB.
Again, the number of event may be closer to one.

6 CONCLUSIONS

The Hilda family proved to be one of the oldest families
in the Main Asteroid Belt. Since it is embedded inside the
3/2 mean-motion resonance with Jupiter, its orbital evolu-
tion is coupled to this giant planet. In case the Hilda family
was created during planetary migration, which seems to us
likely, the major perturbations of the family were due to
secondary resonances between librations and the Jupiter–
Saturn 1:2 critical argument. A gentle ‘kick’ of eccentrici-
ties is necessary and then a subsequent evolution due to the
Yarkovsky/YORP effect to bring the family to the currently
observed state.

Note there are two competing effects: during a period
of fast migration the probability of a collisional disruption
of parent body is significantly enhanced, but on the other
hand, strong perturbations present in a compact planetary
configuration usually destroy the synthetic ”Hilda” family.

c© 2010 RAS, MNRAS 000, 1–13
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Emerging signs, that orbital evolution of planets was
rather violent and close encounters between planets were
probably present (Nesvorný et al. 2007, Brasser et al. 2010),
might be consistent with our model of the Hilda family, since
we see a preference of fast migration time scales. We post-
pone a study of more complicated migration scenarios, like
that of ‘jumping Jupiter’ (Morbidelli et al. 2010), to future
work.

Regarding future improvements of our model, knowl-
edge of geometric albedos for a large number of small aster-
oids may significantly help and decrease uncertainties. The
WISE infrared mission seems to be capable to obtain this
data in near future.
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Roig F., Nesvorný D., Ferraz-Mello S., 2002, MNRAS, 335,
417
Quinn T.R., Tremaine S., Duncan M., 1991, AJ, 101, 2287
Tsiganis K., Gomes R., Morbidelli A., Levison H.F., 2005,
Nature, 435, 459
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