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Abstract. A family of symplectic integrators adapted for the integration of perturbed Hamiltonian
systems of the form H = A 4 ¢B was given in (McLachlan, 1995). We give here a constructive proof that
for all integer p, such integrator exists, with only positive steps, and with a remainder of order 0(7'1’5—1—7'252)7
where T is the stepsize of the integrator. Moreover, we compute the analytical expressions of the leading
terms of the remainders at all orders. We show also that for a large class of systems, a corrector step can
be performed such that the remainder becomes O(7Fe + 7'452). The performances of these integrators are
compared for the simple pendulum and the planetary 3-Body problem of Sun-Jupiter-Saturn.
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1. Introduction

Symplectic integrators, due to their good stability properties are now currently used for
long time integrations of the Solar System, starting with the work of Wisdom and Hol-
man (1991). Despite some improvement resulting from a good choice of initial conditions
(Saha and Tremaine, 1992) or the addition of a corrector to the output of the numerical
integration (Wisdom et al., 1996), it is surprising that the integration method which is
currently used in most computations (see Duncan et al., 1998) is the celebrated "leapfrog’
method of order 2 (Ruth, 1983). A reason for this choice is probably due to the fact that
the methods of higher order which have been found by Forest and Ruth (1990) or Yoshida
(1990) do not present very good stability properties for large stepsize, due to the presence
of negative steps.

In the present work, we consider perturbed Hamiltonians on the form H = A+4<B were
both A and B are integrable. For such Hamiltonians, (McLachan, 1995) proposed a family
of of symplectic integrators with positive steps, but the generality of his demonstration,
made on a simple example is not obvious. In the present work, we use a constructive
approach to demonstrate the existence at all orders of this family of symplectic integrators.
Moreover, our explicit derivation allows us to compute the first terms of the remainders at
all orders and to derive, for a large class of systems, a new set of symplectic integrators with
a corrector step which improves even more the precision of the integrators (sections 9-10).
These two families improve the precision of the integration by several orders of magnitude
with respect to the commonly used leapfrog method, and present good stability properties
at large stepsizes.
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2. Lie formalism

According to Yoshida, (1990), the search of symplectic integrators using Lie formalism
was introduced by Neri (1988). Since then, it was largely developed by Yoshida (1990),
Suzuki (1991, 1992), Koseleff (1993, 1996), and Mclachlan (1995, 1998). Let H (p,q) be
an Hamiltonian defined on R” x T", where (p, q) are the actions and angle-like variables.
Hamilton equations are
dp;  OH  dq; OH (1)
dt — dq; ' dt  Jp;

and the Poisson bracket of f, g is defined on R™ x T" by

B of dg  df 9g
{f7g}_z]:3—p]3—q]_8—q]8—p] (2)

If we denote z = (p, ¢), we obtain

Z—f:{H,x}:LHJU. (3)

where Ly is the differential operator defined by L, f = {x, f}. The solution z(t) of (3)
with 2(0) = z¢ is obtained formally as

t?’L
w(t) =Y Lfzo= ety (4)
n>0

A symplectic scheme for integrating (3) from ¢ to t + 7 consists of approximating in a
symplectic way the operator e”"#_ Indeed, as H = A+4<B, the Campbell-Baker-Hausdorff
(CBH) theorem ensures that

o7l — olagrlen 4 o(t) . (5)
The operator Sy = e™F4e7l¢B thus provides the simplest symplectic scheme for such Hamil-
tonians. This can be generalized with a combination of several steps involving successively
A and £B in order to obtain integrators of higher orders. A general integrator with n steps

will be

Sn:eclTLAeleLEB“‘echLAednTLEB (6)

where the constants (c¢;, d;) will be chosen in order to improve the order of the integra-
tor. Such integrators are very easy to implement on a computer, as they consist in the
sequence of operators (6), where e”"4 and e?" <5 are exact integrations over ¢ and dr
of the integrable Hamiltonians A and B. Using CBH theorem, and the linearity of the Lie
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derivative, we are ensured of the existence of a formal series

K =ky1A+cki 2B + teky1{A, B}
+12cks 1{A, {A, B}} + %%k 2{{A, B}, B}
+7%ks 1{A {A, {A, B}}} + 7% kao{ A, {{A, B}, B}}
+7°e%ka 3{{{A, B}, B}, B} + O(r")

(7)

where the coefficients k; ; are polynomials of total degree i in the variables (¢,,,d,,), with
rational coefficients, such that

Sn(T) — eclTLAeleLEB .. ,echLAednTLaB — eTLI( (8)

It should be noted that in order to define these expressions in an unambigous way, one
needs to decompose the Poisson brackets involving A and B over a basis of canonical
elements of the free Lie algebra L£(A, B) generated by A and B and the Poisson bracket
{, }. Following Koseleff (1993), this is done here by using the Lyndon basis. The scheme
Sy, (7) integrates in an exact manner the formal Hamiltonian K. A symplectic integrator
for H = A+ ¢B will be obtained at order pif K = A+ B+ O(7P). In the most general
way, this will be achieved by solving the algebraic equations
k1,1:1§ k1,2=1§
ki;j=0  for (1 <p). (9)

In particular, we have k11 =c1+co+ ¢, =1, kio=di+dy+---d, =1, for p> 1.

3. Symmetric integrators

We will now restrict ourselves to symmetric integrators, that is integrators .S, () such that

Sn(r)™t =S, (—7). We will have
—TLg(r) = —TLir (10)

thus K(—7) = K(7), and the formal Hamiltonian K () is even. As we distinguish A and
eB, we will have several classes SABA; and SBAB; of symmetric symplectic operators
defined by their prototypes

SABA,, : eC1Tlaghimlen | qdnTlepgent1mhagdntlen || od1Thepgc17la
SABA2n+1 . eclTLAeleLEB .. ,ecn+17—LAedn+17—LaBecn+lTLA .. ‘eleLEBeclTLA
SB.ABQn_l : eleLEBeC2TLAed2TLEB .. .ednTLaBeCn+1TLAednTLaB .. _eC2TLAed17'LEB (11)

SBAan . eleLEBeCQTLA .. ,ecn-l-lTLAedn+17—LaBecn+l7—LA .. -eC2TLAeleLEB
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The index of the integrator is the total number of evaluations of A and B which are
necessary for each step. With these notations, the classical leapfrog integrator can be
considered as SBAB; = e3':Be7laesl:s ¢ SBAB; or as SABA; = ezlaelenezla ¢
SABA;. In both cases, the integrator is of order 2 and the formal Hamiltonian is K =
A + B + O(7%). The fourth order solution found by Forest and Ruth (1990) or in an
other way by Yoshida (1990) is either of the form SABAs or SBAB3 that is, for SBAB3

SFRA; = e@17lep o2t lagdatlhepocatlagdamlepac2mliagdimlep (12)
with
C3 + 202 =1
dy+dy=1/2 (13)

1/12=1/2¢4+1/2c3+ ey dy — c3dy = 0;

~1/24+1/4ey— cady + c2d] =0
This system has a single real solution with approximate values dy =~ 0.6756, c3 ~ 1.3512,
dy = —0.1756, ¢3 &= —1.7024. The problem with this integrator is that due to the presence
of negative time steps, the absolute value of the time steps remains high, and for large
stepsizes, at an equivalent cost, the leapfrog integrators become more effective. In fact,
Suzuki (1991) has demonstrated that it is not possible to obtain integrators of order
p > 2 with only positive steps. The problem of the negative stepsize can nevertheless be
overcome.

4. Integrators for perturbed Hamiltonian

In the previous sections, we have not yet taken into account the existence of the small
parameter . Indeed, the terms of second order of K (7) are 72cks 1{A,{A, B}} and
72%k3 9{{A, B}, B} which are respectively of order 7% and 72c%. One can thus try to
cancel only the largest term, that is k3, = 0. This can be done using

SABA2 :eclTLAed1TLEBeCQTLAeleLEBeclTLA (14)

or
SBABQ . eleLEBeCQTLAedQTLEBeclTLAeleLEB‘ (15)

With the type SABA;, one obtains dy = %, c3 =1—2¢; and

1 1 1
I(SABAQ =A+eB —|—T2€(E — 501 + 503){147 {A7 B}}
(16)

P2 1a) A, B, BY 4 0(r)

As we search for only positive stepsize, we find a unique solution for cancelling the term
in e72, that is

1 1 1 1
—; a==-(1-—7%); di=—; 17
vttt Ty o

Cy) =
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with these coefficients, we obtain Ksapa, = A+cB+ 0(7'45 + 7'252). In a similar way, we
obtain the solution for SBAB;

(18)

and as previously Kspap, = A+ B + O(r%e + r2¢%). Quite surprisingly, this latest
integrator which is in most cases much more precise than the leapfrog integrator (SBAB)
at the same cost (see section 8), does not seem to have been used so far.

5. Higher orders

It becomes then tempting to iterate this process at higher order. We will not try to remove
the term of order 7222, which is not the most important for large stepsize when ¢ is small.
We will search for solutions S,, of the form SABA, or SBAB, for which the associated

Hamiltonian Kg, verifies
Ks, = A+eB+O0(r*e + 7% (19)

For this, we need to cancel at all order p < 2n the coefficient £, of the single term of
order 7P¢ in the Lyndon decomposition of Kg,

ek, {A,{A,{A,.. {A,B}}}..} (20)

We thus need to compute the part of Kg, which is of degree < 1 in B. We will use some
results on calculus on free Lie algebra for which the reader should refer to (Bourbaki,
1972). We will call £L(U, V) the free Lie algebra generated by U and V', endowed with its
canonical associative structure. We will also use the symbol = for the equality in L(U, V)
modulo terms of degree > 2 in V. We have the two lemmas (Bourbaki, 1972)

LEMMA 1.

VeV =y (21)
where the exponential of X is formally defined as exp(X) = :i% X"/n!, and where the
adjoint operator ad is defined as ad(X).Y = [X,Y].

LEMMA 2.
oo (L (22)
e =e’ +e 2l (D) .

The next result is a generalisation of a classical expansion at degree 1in V of the Campbell-
Baker-Hausdorff formula.
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PROPOSITION 1. Lety € R. Then there exists W € L(U,V) such that

eV ell=NU — W (23)
with
W= 4 ad(U7)e”*4U) (24)
= 1) _
that is N
_ ~ By(v)
W=U+) o ad(U)PV (25)
p=0 )
and where B, (x) are the Bernoulli polynomial defined as
ol _ 1 :Z;)Bn(ac)a (26)

Indeed, the existence of W € L(U, V) satisfying the above relation is given by the CBH
theorem, on the other hand, we have

eV ell=mU = U 4 oU o(v=DUy/o(1-7U (27)
and from lemma 1, this is also equal to
eV 4 eV (= Dad@)y, (28)

As for V =0, we have W = U, we can set W = U + Wy, where W is of degree 1 in V,

and from lemma 2

Wy (L 29
e’ =e’ +e ad(0) 1 (29)
thus (1= 1)ad (D)
ad(U)e'"~ e
L= 1 — o—ad(U) 4 (30)

which ends the proof. For v = 1, we recover the CBH results. This result is then easily
generalized to the case of multiple products.

PROPOSITION 2. Letey,...ch,dy,...,d, €R, such that ., ¢; = 1. Then there exists
W e L(U,V) such that

ecerdlveQUedQV . ‘eCnUeng — eW (31)
with o)
n ad(U)e"*
WEU—I_dee(ad()UTV (32)

k=1



High order symplectic integrators 7

that is

+ oo n
W=U+ Z:O (; dj, Bpg’“)) ad(U)?V (33)

with vy = ¢ + ...+ k.

This is staightforward as soon as we remark that

n
eUediVeeralighaV - genlgdnV — g AWV Vell=mU 4 U (34)
k=1

Remark : As Bo(z) =1, if > ;_, di, = 1, we have

W= U+V++f ( Y dj, Bp;?’“)) ad(U)PV . (35)
k=1 ’

p=1

6. Computation of the coeffcients

Proposition 2 , applied with U = 7L 4 and V = tel g, gives directly the algebraic equations
which could then be solved for obtaining integrators of arbitrary order for perturbed
systems. The problem is thus reduced to the search for coeffcients v, dy such that

S e glnt) = 1+ o(t") (36)
k=1

for N as high as possible with

g(w, t) = (37)

That is, with Y ,_, ¢ = 1, we will have to solve an algebraic system of equations of the

form
> diBo(y) =) di =1
k=1 k=1

D diBy(yx) =0 for0<p< N .
k=1

It should be noted that all the integrators SABA, and SBAB, can be written on the
general form (31) by taking d,, = 0 or ¢4 = 0 in (31). Moreover, if we search for symmetric
integrators, all the relations in (38) will be automatically fullfilled for odd values of p.

(38)
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In this case, we just have to consider even values of p, for which we give the Bernoulli
polynomials up to p = 10.

B0($)Il

1
Bg(x)ZE—w—l—xz

1
B4(x)——%—|—x2—2$3—|—x4

1 2?2 hat 39
=gty i )

1 222 41425
Bg(w):—% ; —7;6 ; — 427 + 28

2 1 8

Bio(2) %—%+5$4—7$6+%—5$9—|—$10

For example, the first integrators SABA, = e“1UeVe2UedtVeartll will be obtained by
solving the set of equations
201 + Co =1
2dy =1 (40)
diBa(v1) + diBa(y2) =0

with v1 = ¢1,72 = ¢1 + ¢2, thus 2 = 1 — 1. As g(1 — x,t) = g(x, —t), we have for all p
By(1 =) = (=1)"By(z) (41)

and the previous system reduces to

dy=1/2 co=1-2¢ Ba(c1) =0 (42)
and we recover the previous results. For SABA; = eaUed1Ve2UgdeVe2UgdiVeerU e have
1+ ¢y =1/2

dy + 2d4 =1 (43)

dy1 By (1) 4 deBa(y2) + diBz(7ys) =
d1Ba(y1) 4+ deBa(y2) + d1Ba(7ys) =

with 1 = ¢4, 2 = ¢4 + ¢ = 1/2, and v3 = ¢; + o + ¢ = 1 — ¢;. We have thus
By(v2) = —1/12, B4(vy2) = 7/240, Ba(v3) = Ba(c1), Ba(y3) = Ba(cq). We are thus left with

0
0

Cy) = 1/2 — C1

dy=1-2d;

dlBQ(Cl) - (1 - 2d1)/24 =0
d1B4(Cl) + 7(1 - 2d1)/480 =0

(44)

The resolution of this system is made easily and provide a single solution for which all the
coefficients ¢;, d; are positive
_5—15 V15

5 4
="y 7 2T 7o di = —; d2=§ (45)
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This can be continued at all orders, but algebraic equations becomes more complicated
as the order increases. The symplectic integrators up to order 10 are listed in Table 1.

7. McLachlan solution

While we were writing a first version of this work, we realized that McLachlan (1995)
had already found all the previous integrators. The paper of McLachlan is obviously
not well-known to astronomers, otherwise they would have used at least the integrators
SABA,, SBABy, SABA; and SBAB3 which have very good properties'. McLachlan just
makes the computations on a very simple one degree of freedom example of the form
H(p,q) = p— F(q) for which the integration of the equations reduces to a simple integral
p(t) = fg F'(q)dq while the symplectic scheme is of the form of a sum p(t) =, d; F'(v;).
This reduces the search of these symplectic integrators to the search of weights and nodes
in an integral formula. He then claims that this is representative of the most general case.
Although this may be true, the argument is not as straightforward as the constructive
method which is presented here. On the other hand, the argument of McLachlan can be
adapted here to complete the present proof and to provide the expression for the coefficients
of these symplectic integrators at any order. Indeed, if we observe that

1 _ 1 1
¢ :/ e"da | (46)
0

t

and that (e’ — 1)/t = O(1), the problem of finding dj, v verifying (36) is equivalent to the
search of weights dj and nodes 7 such that

n 1
Z d e’ = / e"'de + o(t™) (47)
k=1 0

The solution of this problem is known classically as the Gauss integration formula. The
values of v are given by v, = (1 4 21)/2 where 2 are the roots of the degree n Legendre
polynomial P,(z). The associated weights dj are all positive and are given by

1

d = (15)
(1= a}) (P(21))’
More precisely, if we consider an integrator of type
SABA, : e1UehVerUgda V- qenlUodnV gon g1 U , (49)

without any assumption of symmetry, we will have, in the above formula d,, 41 = 0, thus,
fork =1,...,n, the coefficients v = (1+xzx)/2 where z}, are the roots of P, (). All zj are
! The first integrators of the family (SABA;, SBAB;, SABA; and SBABs) have been also recently

reported by Chambers and Murison (2000). The integrator SB.AB; is mentioned in the book of E. Forest
(1998).
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in the interval [—1,1]. We will thus have ~; € [0, 1]. If we put the v, in ascending order,
the values of the coefficients ¢ = vr41 — 71 are all positive and ¢,+1 = 1 — ~,,. Moreover,
the roots of the Legendre polynomial are symmetric with respect to zero. The 7y are thus
symmetric with respect to 1/2 and so will be the ¢ and di. The symplectic integrator is
thus symmetric, and this hypothesis was not necessary. This is not the case for Lie algebra
symbolic computation, where the assumption that the integrator is symmetric decreases
in a large amount the number of the variables. For an integrator of type

SBAB, : etVe2UehV | oonUgdnVgentiUgdniV (50)
we need to set v; = ¢; = 0 in formula (47), which means that in the integration formula,
one node is fixed to an extremity of the interval [0, 1]. On the other hand, we have v,,41 =
Z?:-"ll ¢; = 1. The problem is thus to find nodes and weights for a Gauss formula with
fixed nodes at the boundary of the interval of integration. The solution is given by the
Gauss-Lobatto formulas (Abramovitz and Stegund, 1965). For k = 2,...,n, we have y;, =
(14 zx)/2 where 2, are the n — 1 roots of P/ (z), and

L 1
n(n+ 1)’ kT n(n + 1)(P,(x1))?

As previously, the integrators are symmetrical. These relations thus allow us to obtain
in a straightforward manner symplectic integrators for perturbed systems at any order
without the need to solve algebraic equations which are difficult to handle at large orders.
Moreover, it provides a demonstration that this solutions exists at any order, with positive
coefficients ¢, dy,.

dy =dpy1 = i for k=2,....n. (51)

8. Numerical examples

In this section, we will test the efficiency of the family of integrators SABA, and SBAB,
on a simple pendulum example and on a planetary problem. For the simple pendulum

I
H:E—I—ecosq (52)

we apply directly the previous computations with A = p?/2 and ¢B = ccosq. For each
value of the stepsize T, we have measured the maximum difference between the energy at
the origin and the computed energy along the trajectories, over a time T = 25000. This
comparison is performed for ¢ = 0.1 and ¢ = 0.001 (Fig. 1). For SABA, or SBAB,, the
logarithm of differences are plotted versus log(7'), where 7/ = 7/n. In such a way, as n
is the number of evaluations of exp(ctL4) and exp(drLg) for the given integrator, the
integrators are compared at constant cost. As expected, for sufficiently small stepsize, the
residuals behave as 72¢? for n > 2, and as 7%¢ for the leapfrog integrator (n = 1). Tt is
also clear that for small stepsize, nothing is really gained by increasing the order of the
integrator (n), beyond n = 2.
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For large stepsize, this is not true, as the term 77%2¢ or 7"*3¢ (see next section) is
still dominant, and we observe an increase of the slope with the order of the integrator,
until unstabilities appear, probably due to the divergence of the remainders (it should be
reminded that if a stepsize of 1 is used for SABA;, a stepsize of n is used for SABA,).
In most cases, n = 3 or n = 4 seems to be the best choices.

12 4 12 -
-14 | © 1 -1} d -
_16 | | | | _16 | | | |

2 15 -1 -05 0 05 2 15 -1 -05 0 05

Figure 1. Fig.1-6. Logarithm of relative energy error plotted versus log(7'), where 7’ = 7/n, 7 the stepsize,
and n is the index of the method (and the curve) for the various symplectic integrators of the family SABA,,
and SBAB,,. Fig. 1. Simple pendulum with e = 0.1 (a-b) and e = 0.001 (c-d).
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2L SABA ]

14 | @ -4 -4} ®) A

16 1 1 1 1 16 1 1 1 1
-2 -15 -1 -05 0 05 -2 -15 -1 -05 0 05

Figure 2. Relative energy error versus stepsize for the Sun-Jupiter-Saturn problem in Jacobi coordinates

for the family of integrators SABA,, and SBAB,,.

In the case of the planetary N-Body problem, the situation is more complicated. The
Hamiltonian is split in an integrable Keplerian part, A, and a perturbation, B, correspond-
ing to the mutual gravitational interaction of the planets. The Keplerian part is integrated
in elliptical coordinates, while the perturbation (which is essentially a sum of inverses of
the mutual distances of the planets) is integrated in rectangular cartesian coordinates
(Wisdom and Holman, 1991).

There are several possible choice of coordinates for this decomposition. The initial
choice of Wisdom and Holman, (1991), was to use Jacobi coordinates. In this case, B is
integrable, as it depends only on the positions ¢. In Poincaré heliocentric coordinates (see
Laskar, 1990, Laskar and Robutel, 1995), the expressions are simpler, but the perturbation
B needs to be split in two terms B = By (p)+ Bz(q) which depends only on the momentum
p, or on the positions ¢. As the methods which are presented here depend only on the linear
part (in Lp) of the integrator, they can be adapted in a straightforward manner to this
case, by substituting in their expresions exp Lp, exp Lp, or exp Lp, exp Lp, to exp Lp. In
doing so one needs to be sure that the final symplectic scheme is still symmetric, which will
ensure that no term of order 2 will appear in the decomposition of the corresponding formal
Hamiltonian K in equation (7). The use of these coordinates for symplectic integrators
was first proposed by Koseleff (1993, 1996) and Touma and Wisdom (1994).

In the present case, we will use Jacobi coordinates, as this choice will be motivated by
the next sections which require that B depends only on ¢. In Jacobi coordinates, we did the
computation for the Sun-Jupiter-Saturn system over 25000 years (Fig. 2), and obtained
very similar results as for the simple pendulum with ¢ = 0.001. This is understandable
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as this is of the order of the ratio of perturbation due to the mutual interaction of the
planets over the potential of the Sun. It can be clearly seen that for all n > 2, these
integrators outperformed by several orders of magnitude the precision of the leapfrog
integrator, except for very large stepsizes. The best choices being again n =3 or n = 4. In
all figures, it is very obvious that the 7222 term is the main limiting factor. We will now
make an explicit computation of this term and present a strategy to get rid of it.

9. Computation of the remainders

We compute here the remainders of the symplectic integrators SABA, and SBAB,. By
switching the roles of U and V' in (31), we obtain easily

PROPOSITION 3. Let cy,...cp,dy,...,dy € R, such that Y7 c; =37 d; = 1. Then
there exists W € L(U, V) such that
ecerdlveQUedQV . ‘eCnUeng — eW (53)

with

~ S By (k)

W=U+V 43 (Y =2 ) ad(U)? v

p!
p=1 \k=1

(54)
+ oo n

B, (05—
#5300

p=1 \k=1 p-

with 8 = 0,0, = d1+...+dg, and where = is the equivalence modulo terms of degree > 2
inU and V in L(U, V).

If we apply this result to compute the largest term in the remainder of the previous
symplectic integrators, we obtain for each integrator

W=A4+B+ (zn: Cr %) {{A, B}, B}r?:*

k=1 (55)

L B
+ (Z dy, p]();yk)) LipBrzpe 4+ O(r1e? 4 7212
k=1

We can be more specific for the two classes of integrators SABA, and SBAB,, by taking
into account the fact that these integrators are reversible. In this case, each integrator of
the classes SABAs,, SABAz 41, SBABy,, SBAByq1, with Y07 ¢, = >0 d; = 1, is
the time-7 evolution of the flow of the Hamiltonian W, with the following remainders :
~ SABAjy,: we have 2n + 1 steps with dg,4+1 =0 and, for p=0,...,n

{ Cntl4+p = Cntl—p 3 Tnt+p = 1- Tnt+1—p 3 (56)
dptp = dny1-p ; Ontp =1 = 0n—p ;
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which gives, after reduction of the symmetries, and d, = 1/2 — §,_1, ¢pp1 = 1 — 27,

Cp,

W=A+eB+ ( LBy (1/2) + zn:csz(ék_l)) {{A, B}, B}r?c*

’ k=1 (57)

n 12042
+ (Q;dkB2n+2(7k)) mBT%Hg FO(r1e? 4 r2ntig)
=1

— SABAg,+1: We have 2n + 2 steps, with do,p0 = 0, dyyy = 1= 20,, ¢pp1 = 1/2 — 4y,
and, forp=10,...,n

Cntl4+p = Cn42—p 3 Tnt+14p = 1- Tn+1—p 3 (58)
dptitp = dny1-p ; Ondp = 1= Ony1-p ;
which gives, after reduction of the symmetries

n+1

W =A+cB+ (Z ckBQ((sk_l)) {{A, B}, B}r%?

k=1
n L2An+4 (59)
+ | dypy1 Banya(1/2) + 2 Z di Banya (k)

— A ___printie
!
P (2n 4+ 4)!

—|—O(T4€2 + 72”+65)

— SBAB;,: This case is easily obtained by setting ¢; = 0 in SABA3, 1. We obtain for the
new Hamiltonian

n+1

W =A+eB+ (Z ckBQ((sk_l)) {{A, B}, B}r?%?

k=2
) s (60

+ (dn+1 Bnya(1/2) 42 di Banya () mBTzn-l'Qg

k=1
+0(11e? 4 72 He)
— SBABg,41: This case is easily obtained by setting ¢y = 0 in SABAg, 2.

n+1
W =A+eB+ (0”52320/2) + cszwk_l)) {{A, B}, B}r%?
k=2

(61)

ntl 244
+ (2 Z dy B2r44 (’Yk)) mBTQn-Hg L O(rie? 4 rinsy)
k=1 .



High order symplectic integrators 15

10. Correctors

The integrators SABA, and SBAB, have very good properties for small values of the
parameter €. Their numerical properties were studied in section 8. We have seen that the
main limiting factor is the term in {{A, B}, B}, which order is 72¢%. It would be of course
very nice to get rid also of this term, but the result of Suzuki (1991) tells us that it is
not possible to get rid simultaneously of the two terms {{A, B}, B} and {A, {A, B}} with
integrators having only positive values for the ¢;, d; constants. It is not forbidden to have
negative values for some of the constants, but as > ¢; = > d; = 1, having only positive
constants ensures that the values of the constants becomes smaller as the order of the
integrator increases. This prevents explosion of the coeflicients of the remainders which
are polynomial in the ¢;, d;.

In order to get rid of the {{A, B}, B} term, one can use an alternate strategy, which
is possible when A is quadratic in the actions p, and B depends only on the positions ¢
(this is in particular the case for the pendulum Hamiltonian, or for the N-Body problem
when expressed in Jacobi coordinates). In this case, {{A, B}, B} depends only on ¢ and
is thus integrable. It is then possible to compute it, and to add an additional step to the
integrator S of the form

So = e~ T 514,818 S~ ¢ S L{{4,5} 5} (62)

where ¢ is the coefficient of {{A, B}, B} in W (Eq. 57-61). The new corrected integrator
Sc is still symmetric, and thus additional terms will appear only at order 7. The values of
the coeflicients ¢ used in the correctors up to order 10 are listed in Table I1. For some of the
lowest orders, algebraic formulas can be given, but they become very rapidly cumbersome,
and a better accuracy will be obtained by using the decimal value which is given here with
40 digits. The plots of the residuals for these new integrators are presented in the case of
the pendulum with ¢ = 0.1 and ¢ = 0.001 (Fig.3-4), and the Sun-Jupiter-Saturn problem
in Jacobi coordinates (Fig. 5). As we attain now the limitation due to round-off errors,
computations were performed also in quadruple precision. It is clear that now the slope of

the residuals corresponds to the 7* terms and that we got rid of the 7222 term?.

11. Composition of integrators

The corrector method of section 10 provide a family of integrators SABAc,, SBAB¢, of
order 4 in 7 and higher order in & with remainders O(r%?) +O(r*¢) with k = n+2 for n
even, and £ = n+ 3 for n odd. These integrators have very good numerical properties, but

2 Correctors of the form e“Se™ ¢ were also introduced in (Wisdom et al., 1996). In this case, the
composition rules allow to compute the corrector step only when an output is needed, but the stability of
such a procedure, especially when the solution is chaotic is not clear. In (Wisdom et al., 1996), the proposed
corrector is in general not integrable and constructed to remove the e7™ terms, while in the present case,
the e7™ terms are already removed by the construction of the symplectic integrators SABA,,, SBAB,, and
the corrector step is an integrable additional step which is used to remove the remaining 72 term.
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Figure 3. Relative energy error versus stepsize for the simple pendulum with ¢ = 0.1 for SABA, and
SBAB,, with correctors.

it is still possible to improve them by using the composition method of Yoshida (1990).
Indeed, if §(7) is an integrator of order 2k, then it is possible to find ¢ such that

S(7)8(er)S(1) (63)

is an integrator of order 2k + 2. Indeed, the symmetry of the integrator ensures that there
are no terms in 72**' in the remainders, and a straightforward computation gives the

condition of cancellation of the terms in 72*
Ay =9 (64)
1
that is ¢ = —22k+1, It should be noted that as ¢ is close to —1, the cost of this composition

scheme, which we will denote 82, is roughly 3 times more expensive than the initial
integrator §. Practically, we do one step forward, one step backward, and then one step
forward again. Nevertheless, if one generalises this sheme to a composition $?™ defined as

S¥ (1) = 8™(1)S(eT)S™(7) (65)

the condition (64) gives ¢ = —(Qm)ﬁ. Usually cis still not very large, and the additionnal
backward step becomes negligeable for large values of m. Unfortunately, as one would
expect, when m increases, the size of the remainders also increases and when we analyse
the precision versus cost, it appears that we gain only for small values of m (Fig. 6). These
integrators are still interesting, especially when one searches for high accuracy, which
means small step size.
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Figure 4. Relative energy error versus stepsize for the simple pendulum with e = 0.001 for SABA,, and
SBAB,, with correctors in double (a-b) and quadruple (c-d) precision.

12. Miscellanous remarks
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Figure 5. Relative energy error versus stepsize for the Sun-Jupiter-Saturn problem in Jacobi coordinates

for SABA,, and SBAB, with correctors in double (a-b) and quadruple (c-d) precision.

12.1. INTEGRALS

The following result is obtained immediately:

PROPOSITION 4. Let H = A+ B. If F is an integral of H and F commutes with A
({A,F} =0), then F is a true integral of the symplectic integration of H by any of the
integrators constructed above.
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SABAC2,

©

-16 1 1 1 1 .16 1 1 1 1
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Figure 6. Relative energy error versus stepsize for the simple pendulum with ¢ = 0.001 for the composition
of SABA, and SBAB, for n = 2 (a), n = 3 (b), n = 4 (c¢), and n = 5 (d). The index of the curve

corresponds to the number of iterates 2m in the composition method (Eq.65).

Indeed, as {A, F} = 0, and {H, F} = 0, we have {B, F'} = 0, and thus F' commutes
with any element of the free Lie algebra £(A, B). Thus, if the integrator S(7) is defined
by S(r) = e™'w where W € L(A, B), we have {W,F} = 0. In particular, in Jacobi
or heliocentric coordinates, the angular momentum depends only on the action variables
and thus commutes with the Hamiltonian of the Keplerian unperturbed problem. The
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angular momentum is thus an exact integral of the symplectic integration of the N-body
problem. In constrast, the initial Hamiltonian is only an approximate integral (at order
O(772%) +O(1%¢)). This feature can be used to check for the accumulation of errors in the
integration.

12.2. NoN HAMILTONIAN SYSTEMS

In fact, the present results apply to general first order differential equations, and not only
for Hamiltonian systems. Indeed, the only properties which are used are formal properties
of the Lie algebra of the Lie derivatives along the vector fields defined by A and B. If a
differential system of order 1 can be written on the form

X =(Li+Lp)X (66)

where L4 and Lpg are differential operators, for which the two systems X = L4X and
X = LgX are integrable, then the symplectic integrators defined above will apply in the
same way. Even more, if I is an integral of the system (66) such that L4 F = 0 and
Lp F =0, then F is also an integral for the symplectic integrator.

12.3. H=A+ By + By

It happens very often that the perturbation is not integrable, but can be splitted in two
parts B = By + Bz which are integrable separately (this is the case in Poincaré heliocentric
coordinates). As was already stated, the integrators SABA, and SBAB, can be used
provided some small modifications, but it will not be possible to use the correctors as
defined in section 10.

13. Conclusions

We have presented here a new and constructive proof for the existence at all orders of
the families of symplectic integrators SABA, and SBAB,, which were first described
by McLachlan (1995). We have also obtained the expressions of the leading terms of the
remainders for all n. These integrators are particularly adapted to perturbed Hamiltonian
systems of the form H = A+eB, where A and B are integrable separately, and in particular
for planetary N-body problems.

Moreover, when A is quadratic in the actions p and B depends only on the positions ¢,
the new family of integrators SAB A, and SBAB¢, given in section 10 provide integration
scheme which is of order 4 in 7, and has a remainder of the order of O(7%c? 4 77¢), where
p=mn+2or p=mn+ 3. For practical use, it seems that the integrators forn =3 or n = 4
are the most efficients. Although they require additional computations for the corrector,
the corrected integrators SABAc, and SBAB, will beat the simple integrators SABA,
and SBAB,, in many occasions, but unless one searches for very high accuracy with small
stepsize, composition as described in section 11 is usually not very useful.
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All the integrators which are presented here have only positive stepsize, except for the
corrector. It should still be investigated whether some integrators of order 4 with negative
stepsize could be useful.
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Table I. Coefficients of the integrators SABA, and SBAB, up to n = 10.

SABA,
C1 1/2 | dl 1

SABA,
¢ 1/2 —+/3/6 dy 1/2
C2 \/5/3

SABA,
e 1/2 — /15 /10 dy 5/18
e V15 /10 ds 4/9

SABA,
e 1/2 — /525 + 704/30 /70 dy 1/4 — /30 /72
ca (\/525 + 7030 — /525 — 70\/30) /70 ds 1/4 +/30 /72
cs /525 — 704/30 /35

SABA;
e 1/2 — (V490 4 424/105 + /490 — 424/105) /84 | dy (322 — 13+/70) /1800
e 490 — 42+/105 /42 ds (322 4 134/70)/1800
cs (/490 + 424/105 — \/490 — 424/105) /84 ds 64/225

SABAg
e 0.033765242808423986093849222753002695 | d;  0.085662246189585172520148071086366447
co  0.135630063868443757075450079737044631 | dy  0.180380786524069303784916756918858056
cs  0.211295100191533802515448936669596706 | ds  0.233956967286345523694935171994775497
ca  0.238619186083196908630501721680711935

SABA;
e 0.025446043828620737736905157976074369 | di  0.064742483084434846635305716339541009
co  0.103788363371682042331162455383531428 | dp  0.139852695744638333950733885711889791
cs  0.167843017110998636478620180601913472 | ds  0.190915025252559472475184887744487567
ca 0.202922575688698583453303206038480732 | d4 256/1225

SABAg
e 0.019855071751231884158210565715263505 | dy  0.050614268145188129576265677154981095
co  0.081811689541954746046003466046821277 | dy  0.111190517226687235272177997213120442
cs  0.135567033748648876886907443643292044 | ds  0.156853322938943643668981100993300657
cs  0.171048883710339590439131453414531184 | dy  0.18134189168918099148257522463859781
cs  0.183434642495649804939476142360183981

SABA,
e 0.015919880246186955082211898548163565 | di  0.040637194180787205985946079055261825
ca  0.066064566090495147768073207416968997 | dp  0.090324080347428702029236015621456405
cs  0.111329837313022698495363874364130346 | ds  0.130305348201467731159371434709316425
ca  0.144559004648390734135082012349068788 | ds  0.156173538520001420034315203292221833
cs  0.162126711701904464519269007321668304 | ds 16384/99225

SABA;
¢ 0.013046735741414139961017993957773973 | dy  0.033335672154344068796784404946665896
co  0.054421580914093604672933661830479502 | dy  0.074725674575290296572888169828848666
ca  0.092826899194980052248884661654309736 | ds  0.109543181257991021997767467114081596
ca  0.123007087084888607717530710974544707 | dy  0.134633359654998177545613460784734677
cs  0.142260527573807989957219971018032089 | ds  0.147762112357376435086946497325669165
ce  0.148874338981631210884826001129719985
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Table 1.
SBAB,
C2 1 | dl 1/2
SBAB,
da 1/6
C2 1/2 d2 2/3
SBAB;
cs 1/2 —+/5/10 dy 1/12
ca V5 /5 ds 5/12
SBAB,
da 1/20
o 1/2 —+/3/7/2 do 49/180
ca \V/3/7 /2 ds 16/45
SBABs
cs 1/2 —1/34+6//7/6 dy 1/30
ca (\/3+6/\/_—\/3—6/\/7)/6 do (14 — \/7)/60
ca \/1/3=2/37 ds (14 ++/7)/60
SBABs
da 1/42
o 1/2 — /(15 4+ 24/15)/33 /2 do 31/175 — \/3/5 /20
ca 5/22 — +/5/33/2 ds 31/175 +4/3/5 /20
ca 5/44 — \/5/3/22 da 128/525
SBAB;
ez 0.064129925745196692331277119389668281 | dy 1/56
ca  0.140019983538232156596467514911355124 | d»  0.105352113571753019691496032887878162
ca  0.191200481765331716687926735526300967 | ds  0.170561346241752182382120338553874086
cs  0.209299217902478868768657260345351255 | da  0.206229397329351940783526485701104895
SBABs
da 1/72
ez 0.050121002294269921343827377790831021 | do  0.082747680780402762523169860014604153
ca  0.111285857950361201933229908663497754 | ds  0.137269356250080867640352809289686363
ca  0.157034407842279797367566679191341619 | da  0.173214255486523172557565766069859144
cs  0.181558731913089079355376034354329607 | ds 2048/11025
SBABs
ez 0.040233045916770593085533669588830933 | dy 1/90
ca  0.090380021530476869412913242981253705 | do  0.066652995425535055563113585377696449
ca  0.130424457647530289670965541064286364 | ds  0.112444671031563226059728910865523921
cs  0.156322996072028735517477663386542232 | da  0.146021341839841878937791128687221946
ce  0.165278957666387024626219765958173533 | ds  0.163769880591948728328255263958446572
SBABo
da 1/110
ez 0.032999284795970432833862931950308183 | d»  0.054806136633497432230701724790175355
ca  0.074758978372457357854928159995462766 | ds  0.093584940890152602054070760949717460
ca  0.109624073333469706075726923315353220 | da  0.124024052132014157020042433210936377
cs  0.134738595704632807519526226959347078 | ds  0.143439562389504044339611201665767616
ce  0.147879067793469695715955757779528754 | dg 32768/218295
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Table II. Coefficients for the correctors up to order 10 for SABA, and SBAB,

n CSABA, CSBAB,
1/12 —1/24
(2 —/3)/24 1/72

O oo =~ O Ot = W N

—_
o

(54 — 134/15) /648
0.003396775048208601331532157783492144
0.002270543121419264819434955050039130
0.001624459841624282521452258512463608
0.001219643912760418472579211822331645
0.000949308177745602234792177503535054
0.000759846022860436646358196674176815
0.000621934331486166426497049845358646

(13 — 51/5) /288
(3861 — 7911/21) /64800
0.002381486672953634187470386232181453
0.001681346512091906326563693215296434
0.001251765616039400003072516100251191
0.000968797968073688571654684208462982
0.000772349023999952078227686810260323
0.000630320044163167840798638762665112







