
2.3 A mathematical formulation of the Yarkovsky/YORP effect

The goal of this section is to present, at first, a very simple analytical solution of the 1-dimensional heat diffusion
equation, which allows us to quantitatively estimate the Yarkovsky acceleration. This solution, thougth being
simple and clear, holds basic properties of the Yarkovsky effect, such as its dependence on material, the rotational
or orbital frequency; we also discuss the dependence on size and obliquity. We follow the analysis by Bertotti,
Farinella & Vokrouhlický (2003) here. There is a description of the spherically symmetric solution by Vokrouhlický
(1998), Vokrouhlický & Farinella (1999) and Vokrouhlický (1999) in the second part, supplemented by notes on its
implementation in the swift rmvsy numerical integrator package, which we usually use for numerical simulations
involving the Yarkovsky effect.

How do we calculate the Yarkovsky/YORP effect? In order to estimate the recoil force and momen-
tum acting on an asteroid, which emits thermal radiation, we need to know, at first, the temperature
distribution on its surface. A rough estimate of the mean equilibrium temperature Teq can be obtained
easily, if we assume the asteroid is in the thermal equilibrium:

πR2(1 −A)
L⊙

4πr2
= 4πR2ǫσT 4

eq , (1)

where A denotes the Bond albedo, L⊙
.
= 3.83×1026 W the solar radiation power, r the distance from the

Sun, ǫ the infrared emissivity, σ the Stefan-Boltzmann constant (the radiusR is not important). If we drop
the number 4 from Eq. (1), we get the ‘noon’ subsolar temperature T⋆ =

√
2Teq. For (2953) Vysheslavia

(with r ≃ a = 2.83 AU and A ≃ 0.2; discussed in Sec. 4) we have Teq
.
= 160 K and T⋆

.
= 220 K.

Of course, a more realistic situation is more complicated — in order to find the temperature T (r, t),
as a function of the position r and time t, we have to solve a heat diffusion equation in the volume of the
body:

∇ · (K∇T ) = ρC
∂T

∂t
, (2)

with a boundary condition on the surface:

(

K
∂T

∂r

)

surface

+ ǫσT 4 = (1 −A)E(t) · n⊥(r) , (3)

where K denotes the thermal conductivity, ρ the density, C the specific thermal capacity and E(t) the
time dependent radiation flux (with respect to the local normal; E(t) differs from 0 only when the scalar
product E · n is positive).

2.3.1 A 1-dimensional toy model.

To keep things as clear as possible, let us consider a 1-dimensional example: an half-space x ≥ 0 of a
homogeneous material irradiated by a periodic flux E(t) = E0 + E1 ei2πft, i.e., ‘something like’ alternating
day and night. (Only the real part Re{E} = E0 + E1 cos 2πft is relevant.) We can imagine, this is a
single thin ‘column’ of a big asteroid, with the surface element irradiated by the Sun, which changes its
position on the sky. (The frequency f can characterise either the diurnal or the seasonal motion.) The
heat diffusion equation (2) and the boundary condition (3) then read:

χ
∂2T

∂x2
=
∂T

∂t
, (4)

−K∂T

∂x
+ ǫσT 4 = (1 −A)E(t) , (5)

where χ = K
ρC is the thermal diffusivity of the material. In general, we want to find the temperature

T (x, t) as a function of the depth and time.
Because E(t) is a harmonic function, we ‘guess’ the response of T , in steady state, will be analogous.

Thus, we try to find a particular solution of the form T (x, t) = T0 + T1(x) ei2πft. (T1(x) might be
a complex function, which would mean a phase shift of the temperature with respect to the incident
radiation.) The Eq. (4) then reduces to an ordinary differential equation for T1(x):

d2T1

dx2
(x) =

i2πf

χ
T1(x) , (6)
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Table 5: Typical assumed values of the material thermal parameters we use for modelling of the Yarkovsky/YORP
effect. ̺bulk denotes the bulk density, ̺surf the surface density, K the thermal conductivity, C the specific thermal
capacity, and A the albedo.

material ̺bulk ̺surf K C A

kg · m−3 kg · m−3 W · m−1 · K−1 J · kg−1 · K−1

bare basalt 3500 0.5–2.5 680 0.1–0.16
regolith covered 3500 1500 0.001–0.01 680
metal 8000 ∼ 40 500 0.09–0.11
C-type 1000 0.1–1 1500 0.03–0.08

which non-divergent solution we find easily:

T1(x) = T1(0) e−
√

i2πf/χ x = T1(0) e−(1+i)
√

πf/χ x . (7)

We see the changes of the temperature decrease with depth as e−
x

δ and the penetration depth of the
thermal wave is of the order δ =

√

χ/(πf). (And, moreover, there is some phase shift too.)
We still do not know the surface temperature T (0, t). Here, we exploit the boundary condition (Eq. 5),

where we substitute the already known derivative ∂T
∂x (x, t) = −(1 + i)

√

πf/χT1(x) ei2πft, so

K(1 + i)
√

πf/χT1(0) ei2πft + ǫσ(T0 + T1(0) ei2πft)4 = (1 −A)(E0 + E1 ei2πft) . (8)

The calculation of the fourth power, and especially the solution, would be ‘distressful’. Nevertheless, we
suppose T1(0) ≪ T0 (i.e., the changes of the temperature are small with repsect to the mean temperature)
and linearize Eq. (8) as (T0 + T1)

4 = T0 + 4T 3
0 T1 + O(T 2

1 ) . We subtract the terms with T0 and E0 (they
correspond exactly to the equilibrium temperature in Eq. (1)) and we are left with a linear equation for
T1(0):

(1 + i)
√

πfKCρT1(0) + 4ǫσT 3
eq T1(0) = (1 −A)E1 .

The surface temperature is expressed as:

T (0, t) = Teq +
(1 −A)E1 ei2πft

(1 + i)
√
πfKCρ+ 4ǫσT 4

eq

.

The denominator is a complex number (it means a phase shift); after an algebra we see that:

T (0, t) = Teq +
(1 −A)E1

4ǫσT 3
eq

1

1 + 2Θ + 2Θ2
ei(2πft+φth) , (9)

where the thermal parameter Θ and phase lag φth are:

Θ =

√
πfKCρ

4πǫσT 3
eq

, tanφth = − Θ

1 + Θ
. (10)

For sake of completeness we can write the temperature at a depth (however, it is not crucial for us,
because the dynamical action is driven by T (0, t) only):

T (x, t) = Teq +
(1 − A)E1

4ǫσT 3
eq

1

1 + 2Θ + 2Θ2
ei(2πft+φth−

√
πf/χ x) e−

√
πf/χ x . (11)

There are two visualisations of this steady-state solution (Eq. 11) of the 1-dimensional heat diffusion
equation (Eq. 4) in Figures 25 and 26. Thermal properties of materials, from which asteroids probably
consist, are listed in Table 5. The summary of the thermal lag φth values (Eq. 10) and the temperature
amplitude values T1(0) (Eq. 9) for typical diurnal and seasonal frequencies is provided in Table 6. The
ratio T1(0)/Teq, which is of the order ≃0.1 in some cases, tells us, that we are just approaching the limits
of the linear theory and the temperature in a full non-linear theory might differ, probably by ≃10 % · T1.

Knowing the surface temperature T (on an object of any shape), we calculate the elementary radiation
force due to the emission of photons, carrying the momentum away from the single surface element dS,
as:

dFY = −2

3

ǫσT 4

c
dSn⊥ . (12)
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Figure 25: A 3-D plot of the depth x vs. time t vs. temperature T as resulted from the 1-dimensional toy model
(Eq. 11). The material properties correspond to a basaltic rock (see Table 5), with the thermal conductivity
K = 1W/m/K. The flux amplitude E1 is one half of the equilibrium flux E0 at 2.5 AU from the Sun; the
frequency of the flux E(t) corresponds to the orbital period of P = 4y. The flux is plotted as a thin line in the
(t, T ) plane and it is scaled the same as the amplitude of the surface temperature T1(0). The thermal lag between
the incident flux E(t) and the surface temperature T (0, t) is then clearly visible (φth

.
= −4◦).

Figure 26: An estimate of the temperature T (colour coded) in the depth x (vertical coordinate) — some sort
of “an asteroid cross-section” — for a regolith-like material with the thermal conductivity K = 0.01 W/m/K
(see Table 5). The situation depicted here corresponds to the 1-D toy model (Eq. 11), with the flux E(t) period
P = 1/f = 6 hours, i.e., a typical diurnal motion, and the particular time t = 1.5 h. The dotted line denotes
the depth 3δ, where δ =

p

χ/(πf) is the characteristic penetration depth of the thermal wave. There is a colour
coded flux E(1.5 h), scaled similarly as T , in the upper right square.
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Table 6: The penetration depth of the thermal wave δ (Eq. 7), the thermal parameter Θ (Eq. 10), the thermal
lag φth (Eq. 10) and the amplitude of the surface temperature T1(0) (Eq. 9) as resulted from the 1-dimensional
toy model. The flux amplitude E1 is one half of the equilibrium flux E0 at 2.5 AU from the Sun (Teq

.
= 170 K).

The values were calculated for two types of material (taken from Table 5) and two different periods P = 1/f of
the flux E(t) — a typical diurnal (6 hours) and a seasonal (4 years).

material P δ Θ φth T1(0)
m deg K

basalt 6 h 0.05 6 −40 1
4 y 4 0.08 −4 82

regolith 6 h 0.008 0.4 −15 47
4 y 0.6 0.005 −0.3 94

The factor 2
3 conforms to the Lambert law of scatterring; n⊥ denotes the external normal unit vector.

The Yarkovsky acceleration of a homogeneous body with the total massm is then given by the integration
over the whole surface:

aY = −2

3

ǫσ

mc

∫

S

dS n⊥T
4 ≃ −8

3

ǫσ

mc
T 3

eq

∫

S

dS n⊥T1 , (13)

where we can use the linearization of T 4 again.
Similarly, we express the total YORP torque (affecting the spin of the body):

TY =

∫

S

r× dFY = −2

3

ǫσ

c

∫

S

r × n⊥dS T 4 . (14)

The major orbital perturbation caused by aY is the semimajor axis drift. The first Gauss equation
reads:

da

dt
=

2T
n

+ O(e) , (15)

where T denotes the transversal component of aY. As we can see from Eq. (13), the resulting total
transverse acceleration T (hence, the semimajor axis drift rate da/dt) is: i) proportional to the deviations

of temperature from the equilibrium, ii) the sine of the thermal lag angle sinφth (see Figure 27), and
iii) inversely proportional to the size (because FY ∝ surface area S and aY = F

m).1

The YORP torque TY changes the angular momentum L of the body: dL
dt = TY . In case the body

rotates around the shortest axis of the inertia tensor, then L = Cωe, where C denotes the moment of
inertia (assumed constant), ω the angular velocity and e the unit vector along the spin axis. The rate of
change of L is usually expressed in three angular variables:

dω

dt
=

T · e
C

, (16)

dγ

dt
=

T · e⊥1

Cω
, e⊥1 =

(N · e) e− N

sin γ
, (17)

dψ

dt
=

T · e⊥2

Cω
, e⊥2 =

e× N

sin γ
, (18)

where γ is the obliquity, ψ the longitude, T the total torque (aside the YORP one, there are usually
gravitational torques and inertial terms due to the motion of the reference frame), the unitvector N is
perpendicular to the orbital plane. dω

dt scales as 1
R2 (because TY ∝ R3 and C ∝ R5).2

1A typical magnitude of the radiation force per 1m2 could be dFY
.
= 2

3
0.9·5.67·10−8

·1604
·1

3·108 N
.
= 10−7 N. For a typical

1-km asteroid, we have roughly (see the parameters for the regolith material and the diurnal frequency in Table 6): aY
.
=

8
3

0.9·5.67·10−8
·1603

(4/3)·3.14·10003
·3500·3·108

4·3.14·10002 ·47m·s−2 .
= 10−13 m·s−2 (compare it to the gravitational acceleration aG =

GM⊙

r2

.
=

10−3 m·s−2); the transverse component T
.
= 10−13·sin 15◦ m·s−2 .

= 10−14 m·s−2, the mean motion n =
q

GM⊙

a3

.
= 0.004 rad

day

and the resulting semimajor axis drift rate da
dt

.
= 2·10−14

·(864002/150·109)
0.004

· 365.25 · 106 AU
My

.
= 10−4 AU

My
. These order-of-

magnitude estimates are consistent with a more complex 3-D modelling (see Section 2.3.2, Figure 29).
2A crude estimate of the YORP torque acting on a 1-km asteroid with an irregular shape might be TY = |

R

S
r×dFY|

.
=

1000 · 10−7 · 10−2 · 4 · 3.14 · 10002 N ·m
.
= 101 N ·m. (Here, we naively assumed that 1% of the whole surface area radiates in
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Figure 27: The time lag between the absorption of the solar radiation and the thermal emission arising on
a rotating spherical body. The incident solar flux F (t) is maximum at the subsolar point, but the maximum
emission takes place somewhat later due to the rotation. Therefore, the radiation force has a non-zero tranversal
component, which is proportional to the sine of the thermal lag angle sin φth (measured between the yellow and
red semicircles on the sphere).

There are two important aspects we could not account for in the 1-D model above: i) the finite size of
the body, and ii) the dependence on the obliquity. If the size is of the order δ or smaller, the conduction
of heat across the body effectively equilibrates the surface temperature and thus spherically symmetric
bodies are not accelerated any more.

The obliquity γ (i.e., the angle between the rotational axis and the normal to the orbital plane) is
also an important parameter. Let us imagine a sphere orbiting the Sun (Figure 28) and distinguish three
special cases:

1. The prograde diurnal rotation (γ = 0◦) and the inevitable thermal lag give rise to a non-zero
transverse component TY of the Yarkovsky acceleration, which causes the body to spiral away from
the Sun (semimajor axis steadily increases, in agreenment with the Gauss equation da

dt

.
= 2T

n ).

2. On the contrary, the retrograde rotation (γ = 180◦) forces the semimajor axis to decrease.

3. The spin axis tilted in the orbital plane (γ = 90◦) means, there are large seasonal temperature
variations and the corresponding thermal lag (calculated for the orbital frequency) leads to a steady
decrease of semimajor axis (regardless on the sense of the diurnal rotation).

Both the dependence on size and obliquity arise naturally in 3-dimensional models (see Section 2.3.2).

2.3.2 A spherically symmetric linear model.

An analytical solution of the heat diffusion equation with a linearized boundary condition is also pos-
sible for a sphere and an appropriate solar flux E(t) (Vokrouhlický (1998), Vokrouhlický & Farinella
(1999), Vokrouhlický (1999)). Hereinafter, we use scaled quantities (denoted by dashes): r′ = r/ls,

one direction tangent to the surface.) The moment of inertia is approximately C = 8
15

πR5ρ
.
= 5 · 1018 kg · m2. Therefore,

dω
dt

.
= 101

5·1018

rad
s2

= 2·10−18 rad
s2

. What is the timescale for a complete spin-down? If we start with ω0 = 3·10−4 rad
s

.
= 5 rev

day
,

then τω
.
= 3·10−4

2·10−18
s = 1.5 · 1014 s

.
= 107 y. (The timescale for a spin-up is of the same order, because the upper limit is

ωcrit
.
= 11 rev

day
; if the rotation is faster, gravitationally bound bodies likely disintegrate.) Similarly, dγ

dt

.
= 101

5·1018
·3·10−4

rad
s

.
=

10−14 rad
s

and a π
2

change of the tilt can be expected after τγ
.
= 1.57

10−14
s

.
= 107 y.
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Figure 28: Diurnal and seasonal variants of the Yarkovsky effect and the dependence on the obliquity γ. The
gray arrows denote the recoil force acting on the body. (a) The diurnal Yarkovsky effect, when the body rotates
around the spin axis perpendicular to the orbital plane. In this case of prograde rotation, the force causes an
increase of the semimajor axis a. Generally, the change ∆a ∝ cos γ. (b) The seasonal Yarkovsky effect, with
the spin axis in the orbital plane. The heating of the hemispheres, mainly at points A and C, and the delayed
emission of thermal radiation, mainly at points B and D, produce a recoil force, which magnitude changes along
the orbit, but which transverse component is always opposite to the velocity, thus causing a steady decrease of
the semimajor axis (∆a ∝ − sin2 γ).

ls =
√

K/ρCωrev, ∆T ′ = ∆T/T⋆, ǫσT
4
⋆ = αE⋆, α = (1 − A), ∆E ′ = ∆E/E⋆, ∆E = E − E⋆/4, ζ = eiλ,

λ = ωrev(t− t0). The flux can be written easily in terms of spherical harmonics:

∆E ′ =
∑

n≥1

n
∑

k=−n

ank(ζ)Ynk(θ, φ) . (19)

We need three dipole terms only (to express the flux differs from zero on the illuminated hemisphere
only):

a10(ζ) =

√

π

3
cos θ0 , a1±1(ζ) = ∓

√

π

6
sin θ0 e

∓iφ0 , (20)

where (θ0, φ0) are the coordinates of the Sun, which in turn change periodically with time, according to
cos θ0 = − sinγ sinλ = i

2 sin γ(ζ− ζ−1), sin θ0 e
±iφ0 = −(sin2 γ

2 ζ
∓(m+1) +cos2 γ

2 ζ
∓(m−1)), where γ is the

obliquity.
The heat diffusion equation and the boundary condition (Eqs. 2 and 3) in spherical coordinates (and

after the linearization) now read:

iζ
∂

∂ζ
∆T ′(r′; θ, φ; ζ) =

1

r′2

{

∂

∂r′

(

r′2
∂

∂r′

)

+
1

sin θ

[

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin θ

∂2

∂φ2

]}

∆T ′(r′; θ, φ; ζ) , (21)

√
2∆T ′ + Θ

(

∂∆T ′

∂r′

)

R′

= ∆E ′ . (22)

It is convenient to look for a solution T ′, which has a the same structure as the source flux (Eq. 19):

∆T ′(r′; θ, φ; ζ) =
∑

n≥1

n
∑

k=−n

t′nk(r′; ζ)Ynk(θ, φ) . (23)

The properties of the Eqs. (21) and (22) (namely the orthogonality of the Ynk functions) lead to a complete
separation of radial, angular and time variables and even individual Fourier modes. Vokrouhlický (1999)
found the solution for the three necessary dipole coefficients t′10(R

′; ζ) and t′1±1(R
′; ζ). (We do not write

them explicitly here, but see Sec. 2.3.3.)
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Figure 29: The sum of absolute values |da/dt| of the diurnal and the seasonal semimajor axis drift rates vs.
size, calculated for spherical bodies with a moderate value of obliquity γ = 135◦ and consisting of two materials
from Table 5: bare basalt and regolith covered, i.e., with high and low thermal conductivity. (Of course, for
particular values of γ the diurnal or the seasonal Yarkovsky effect may vanish; they can even cancel each other,
when the diurnal rate is positive and the seasonal negative.) Nevertheless, the sum plotted here shows clearly an
approximate maximum total drift (per 1My) one can expect. The mean collisional lifetime is roughly 50My for
a 10-m stony meteoroid and 500 My for a 1-km asteroid (Farinella et al. (1998), Bottke et al. (2005b)). Note, that
we do not expect very small regolith-covered bodies to exist, thus the drift rates larger than 10−2 AU/My are not
realistic. The drift rate caused by the Poynting-Robertson drag is also plotted; it prevails for sizes smaller than
. 10 cm.

The Yarkovsky acceleration is given by the integration over the surface of the sphere:

f(ζ) = −2
√

2

3π
αΦ

∫

dΩ ∆T ′(R′; θ, φ; ζ)n , (24)

where Φ = (E⋆πR
2/mc). We obtain the following expressions for the components (fX , fY , fZ):

fX(ζ) + ifY (ζ) = − 8

3
√

3π
αΦ t′1−1(R

′; ζ) , (25)

fZ(ζ) = −4

3

√

2

3π
αΦ t′10(R

′; ζ) . (26)

The equatoreal components (in the XY plane) are called diurnal (because it depends mainly on the
rotational frequency), while the along-axis component is called seasonal (because of the orbital frequency).
Note, there is zero YORP torque (Eq. 14) within spherical models.

In order to find secular effects of the Yarkovsky acceleration on the semimajor axis, we have to
transform it to the heliocentric reference frame, substitute to the Gauss equation da/dt = 2T /ωrev and
average over one orbit. The results for the diurnal and seasonal components are of the form:

(

da

dt

)

d

≃ −8α

9

Φ

ωrev

ER′
m

sin δR′
m

1 + χ
cos γ , (27)

(

da

dt

)

s

=
4α

9

Φ

ωrev

ER′ sin δR′

1 + χ
sin2 γ . (28)

The dependence of da/dt on the obliquity (discussed already within the 1-D toy model in Section 2.3.1)
is recalled here. An example, how the semimajor axis drift rates depend on size is depicted in Figure 29.

2.3.3 The implementation in the swift rmvsy package

Most of the simulations of the long-term orbital evolution presented in Sections 2.3.4 to 7 exploit the spher-
ical linear model of the Yarkovsky acceleration (Sec. 2.3.2). In our previous work (Brož, 1999) we modified
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