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Surface pressure evolution at gridpoint 0°E, 52°N for forecast
started from uninitialised (full) and initialised (dashed)
analysis for 12 GMT 6 September 1982.
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2. INITIALISATION OF A SIMPLE SHALLOW WATER MODEL

In this Section the bi-periodic shallow water model on an f-plane is used in
order to introduce the concepts of non-linear normal mode initialisation.
This type of model allows a straightforward analytical treatment and is at the

same time still relevant for more complex models.

The model equations are:

du 3¢’

du du .
ot fov *ax T T Yax e + Fx B Nu (2.1)
v 9o oV OV . . _ g
R R  H TVl i @2.2)
3¢’ - Ju V., _ _ Jdu v, _ 9" _ 99" _ _ '
29 L G T G ey T Ve T Ty T2 e (2.3)

These equations describe the motions of an incompressible fiuid with a free
surface. They can be derived from the primitive equations by assuming that
the density p depends only upon the vertical coordinate and tﬂat the initial
wind is constant with height. ¢, the geopotential of the free surface, has
been split into a constant part 3 and a deviation ¢'. Thg vglocity components
in the x ana y directions are u and v, and fo is the (constant) Coriolis
parameter. Frictional effects are given by Fx and Fy, and Q is a heating
term. The non;linear terms on the right hand side of (2.1), (2.2) and (2.3)

have been combined and are represented by Nu, Nv and N .

¢

2.1 DERIVATION OF THE NORMAL MODES
Normal modes are the free motions of a system which is capable of vibréting.
A typical example is a guitar string; once it has been excited it starts to

vibrate in a way characteristic of that particular string. These vibrations



are called "own" or "eigen" vibrations, or in mathematical terms "normal

modes".

In the following‘Section the normal modes of (2.1) - (2.3) are derived and

discussed.

As a bi-periodic domain has been assumed, one may use double Fourier series to

expand the dependent variable u, v, ¢' and (symbolically) the non-linear terms

N.
_ n —
2 2 Y
u M M ux’x‘x il ;rmx+ En)
v iv x y
= n e
¢| PE-M mZ—M 5 ¢m (2-4)
N - i
N
e n-—

M is the maximum zonal and meridional number of waves, with Lx and Lythe zonal
and meridional extent of the domain. The factor i = v=1 in front of the

. o m . .
Fourier coefficient v results in a phase shift of a quarter of a wavelength;

also the factor v 6 in front ¢: is required later on for consistency of

dimensions. Both factors simplify the subsequent analyses.

Inserting (2.4) into (2.1) - (2.3) yields

. m m - m m
e 4 foivn - ik //¢ ¢n + Nun (2.5)
3 .. m _ _e I _ /= m m . i
% v, < foun . il ¢ ?n + an (2.6)
a_. - m _ _ - m _ _'2 m ) R L
t LA 4>n = ¢ 1kun éi lvn + b€ - (2.7)

| ‘"\N "

B \ fN .



Here, k=2nm/Lx and 1=21tn/Ly are the zonal and meridional wavenumbers. Now

) m
define a vector X as
-1

=]
g B

(2.8)

<

_x:=

o
== 1=

Multiplying (2.6) by -i and dividing (2.7) by v ; gives a system of equations

which may be written in matrix form as

2 R T (2.9)
- -

where N is the vector of the non-linear terms

N m
m bt
N = -len (2.10) .
S
(¢) N
¢ ¢n

In the following, the reference to the zonal and meridional components m and n
will be dropped. However, one has to keep in mind that there are different

matrices and vectors for every m and n. The matrix é'is given by:

—
0 £ x 7%
.  J //——
- (2.11)
fo (o} il ¢

L v/%_ -il /? 0 B

It is now possible to find the normal modes (eigens

>
I

olutions of the 1ineérised

version (Nm = 0) of (2.9)
q‘l



First one has to find to the eigenvalues of A.

As é is a Hermitian matrix

(rows identical to complex conjugate columns) only real eigenvalues are

expected Aj. They can easily be computed.

A1 =0

1+

o (K‘Y’euvﬁvct>

= +7£2 4+ 3 (k2+422)1172 =
A, 3 (£2 + ¢ (x%+29)]

A,,3 are the well known frequencies for inertia-gravity waves;

frequency of the Rossby waves which is stationary in this case because

(2.12)

(2.13)

Al is the

a constant fo has been assumed. The modulus of the phase velocity for the

4 L ‘Clwrﬁz A
. . " . . b . :
inertia gravity waves is given by e o o
£2 1/2 :
le] = — = [} 2] . k2‘14)
VxZ+ 472 kot 2

The phase velocity for inertia-gravity waves depends upon the wavenumbers k

and 1 (i.e. the waves are dispersive). Thus the waves can distribute an

initially locally confined quantity over a larger area.

! Now the eigenvectors (normal modes) of A are derived by solving
Av. = Av, j=1,2,3 (2.15)
= 33 _
for the eigenvectors Xj (these are column matrices).
Using A, one may find the corresponding eigenvector v, (now denoted by R),
N = -
Ax=ix -11v ¢/t
/ R . r& o
Ao, e
bl veldey

R = kv/};/fo
1

This is the so called Rossby mode. It is immediately evident that it

(2.16)

establishes, at least in this model, a geostrophic coupling between the

geopotential (here arbitrarily scaled to 1) and the wind components.



For the two gravity modes (3=2,3) the eigenvectors may be written as
if 1 #ck
o
= -fok ol (2.17)

J/€:k2+12)

The upper sign in front of © gives the eastward travelling gravity mode and
the lower sign the westward one: As for the Rossby mode, the gravity modes
are also characterised by a specific scale dependent coupling petween the mass

and wind fields.

Problem 1

Make a schematic sketch of
(i) a Rossby mode for m=n=1

(ii) a gravity mode for m=O. n=1

2.2 PROJECTION ON TO NORMAL MODES

An important property of normal modes is their orthogonalityi it can also be
showﬁ that they form a complete set. Therefore any vector X may be expanded
in terms of 2 series of normal modes in the same way ag a field can be
gxpanded as a Fourier series. ForI this purpose 2 modal matrix E ig defined,

which has the 3 eigenvectors as its cqlumns

(—11/-'43— if 1 - ok i€ 1 + ok B

___._.——-—_—_._-————-

~12(kz+lz) 12(k2+lz)

£ x +iol £ x - iol )
E = -15 x’/ % o o (2.18)
/2(x211%) J2(x2+12)
/5 (k2412 /3 (x2a?)

£
| ° y2(x2+1%) Zwmn |



In (2.18) the modes have been normalised to length unity. To project an
arbitrary vector X onto the normal modes, one writes

X = Ey (2.19)
X is the known vector to be protected and y holds its normal mode components.
To get y, mulfiply (2.19) from the left by E‘i. This yields

y =E'x (2.20)

As E is orthogonal, 5'1 can simply be computed by making a conjugate

transposition. The component form of (2.20) may then be written as

1 _ — -
yg == ML/ Ju+x/ Bv+E gl (2.21)
1 e
Yop = —————= [-(if 1 + ok)u = (£ k + icl)v +/ B(x2+12)¢) (2.22)
012(k2+l )

S T— [-(1f_1 - ok)u - (£ k - iol)v +/ $(x%412)¢)  (2.23)

Yy
oW 0’2 (k2+17)

For given values of u, v and ¢ (for example analysed values) (2.21) - (2.23)
shows how these fields project onto Rossby (2.21) and gravity modes
(2.22,2.23). If the mass and wind fields are in geostrophic balance, they do

not excite gravity waves, i.e. y =y = 0 . On the other hand, a

GE GW

geopotential amplitude ¢ alone (without wind amplitudes, u,v) projects onto
both Rossby and gravity modes. All the projections are scale dependent; for
instance small scale wind fields project more on Rossby modes than large scale
ones. In the atmosphere, gravity mode amplitudes are usually much smaller

than Rossby mode amplitudes.

Problem 2
(i) Show that the normal modes are othogonal.
(ii) Show that geostrophic winds do not project on gravity

modes for this model.



(iii) Derive mass and wind fields which do not project on

Rossby waves.

2.3 MODEL EQUATIONS IN NORMAL MODE FORM

Inserting (2.19) (and a corresponding transformation for the vector of non-

linear terms N) into (2.9) yields:

3 .
3; -E_l = léEJ + gg (2-24)

g is the vector of normal mode amplitudes of N.

Multiplication of (2.24) by E'l from the left results in:
3y .

3t

(2.25)

A to a diagonal matrix D which holds

the eigenvalues Aj as .its diagonal elements aQS\fijit:ntries elsewhere.
Therefore, a decoupled system is obtained which can written in component

form.

The similarity transform 5'1 AE reduc

dyR
—_— = i\ + o
at 1MYg 7 9g (2.26)
dy
GE
— = + .
at 1A Yep ¥ Yk (2.27)
dy
GW ,
at irYeou ¥ Yow (2.28)

These are the model equations in normal mode form. They form a set of
decoupled, ordinary differential equations equivalent to the original system
of coupled partial differential equations (2.1 to 2.3). Neglecting the non-=

linear terms, (2.26) - (2.28) can be integrated to give

YR(t) = yR(t=o) ' B (2.29)
_ _ iot
YGE(t) = yGE(t—o)e ' (2.30)



Y _(t) = y_ (t=o)e *9F . (2.31)

(2.29) = (2.31) are the analytical solutions of the linearised version of the
W t” f)xgh),t’z’.d/’ Al as A~
set of Equations (2.1)-(2.3). Once an analysis has provided the initial
values of u, v and ¢, (2.21) = (2.23) can se used to get yR(t=o), yGE(t=o) and
yGw(t=o) and ;hen.(2.29) - (2.31) used to compute the value of the normal mode
coefficients at a subsequent time t. Using (2-19), (2.8) and the inverse of
(2.4) then allows the computation of the mass and wind fields in physical
space. From (2.29) it can be seen that the Rossby mode coefficient Yr remains
constant in time. Howeyer the gravity mode coefficients will oscillate with

their (high) frequency 0 unless their initial amplitudes yGE(t=o) and yGw(t=o)

are zero.

At this point it is worth recalling that inertia-gravity waves are dispersive.
07 otk i poru<
Suppose that there is a zero wind field and a localised mass field disturbance
at only a single point. This state will excite both types of waves within a
wide spectrum of horizontal scales. Each inertia-gravity wave will travel
away from the disturbance with its own characteristic phase speed thus leading
to a broadening of the shape of the gravity mode part of the initial state.
This will finally result in a state where only the Rossby wave components
rem;in in the region of the initial disturbance. The transition process is

known as geostrophic adjustment.

2.4 LINEAR NORMAL MODE INITIALISATION
Ko vy rageam w;.Léi"z
In order to suppress unwanted

WU ecilawr v RacaZmim mel o rmn”
scillations ip the linear model, it is clear
L v @30 a (2,30)

from (2.30) and (2.31) that one must set;;GE(t=o) and yGw(t=o)‘for the gravity
, {

modes\to zero¢ Using (2.22) and (2.23) one obtains

i




1

[(if 1 - oklu(t=o) = (£ k = iol)v(t=0) +/ d(k2+12)¢(t=0)] = 0
0r2(k 417 (2.32)

1

[(if 1 + ock)u(t=o) = (£ k + jol)vit=o) +/ $(k%412)¢(t=0)] =0
oV2 (k241 2)

(2.33)

There are various ways of satisfying (2.32) and (2.33). Usually one requires
oy g r
e g o d  inean i o e, L e ne— -
L, that the Rossby mode component y is not changed by the initialisation. This

4"\.' [V d")‘\‘lm 0(["“{}\’/"\/"\ r-\m&-s /(\ *’iq 2 '&}u’LV"’ f"ﬂ"‘
can be achieved simply by subtracting the gravity ‘wave components from the

initial field.

1
u = u(t=0)- ———— [(if 1-0k)y .. (t=0)+(if 1+ok)y (t=0)] (2.34)
LI o/ET;zIIZ) o GE o GW
: 1
v = vt=o)- ————— [(-£ k+iol)y . (t=o)-(f k+iol)y (t=0)] (2.35)
LI ofgzizzzjq () GE o GW ’
¢pqp = $(t=o)- el vl lygg(t=o) + Yy (t=0)] (2.36)
o¢2(k2+12)
By modifying the analysed initial state according to (2.34) = (2.36) it is
Lo’ NG Le ik

ensured that the gravity wave amplitudes vanish initially and as a consegquence

of (2.30) and (2.31) - for all tlme if integration is performed with the
gl k&% Tac twbtjv;~x_ JL‘ rwwcd%amo S

linearised version of (2.1)- (2.3).

WA ar 9vopw vi?h,’ Cz ﬂ\““l 3)

It is interesting to look at the relative changes to the mass (A¢LI) and wind

fields (Au,_., Av__) due to linear normal mode initialisation. If for
LI LI ~

convenience the avity mode components Yep and You are treated as identical,
Tow/ﬂ.lov,\”_g

one obtains obd r2 x’m hbuvé‘ c;ﬁw
A¢LI - -i E (k2+12)_ . (2.37)
RO ~

borr -3/ (k12

oY - .

(2.38)
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From (2.37), (2.38) it is seen that the wind field changes decrease with
¢ v-,v‘nL//\L “—
increasing value of the Coriolis parameter. In other words, when approaching
ok bypinr—fi b o SRR
the troplcs, the wind field becomes more dominant. Furthermore, the mass
e ORI R e : :

field changes increase with increasing mean depth ¢ of the fluid. Finally,
the larger the horizontal scale, the more the wind field changes when compared
to the mass field. All these results are consistent with geostrophic

adjustment theory-.

Problem 3
(i) Show that the initialised fields defined by (2.34)-(2.36) yield
| vanishing gravity mode projections. '
(ii) Show that (2.34)-(2.36) do not change the Rossby wave projections.
(iii) Using (2.32) and (2.33) derive egquations which do not change the
mass field. Do these relations change the Rossby mode

projections?

2.5 NON-LINEAR NORMAL MODE INITIALISATION

The relations (2.34)-(2.36) guarantee that, for a linear model, the gravity
modes will vanish initially and stay zero for all time during the integration.
However, when the same initial conditions are used to integrate a non-linear
model, (2.26) = (2.28) show that the non-linear terms g and Uy will give
rise to time tendencies, although Yo and You are initially zero. 1In other
words, the gravity wave modes will not remain zero for a non=linear model.
Therefore, one must use a different initialisation procedure. Machenhauer
(1977) proposed that the initial tendencies should be set to zero. From

(2.26)=(2.28) one then obtains

lagg
YGE o

(2.39)



