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placements, and to investigations of the character-
istic behaviour of spectrum lines, as all such data
will have a part in solving one of the most absorb-
ing questions in cosmic physics.

Evershed adduces his observations upon the
spectrum of Venus as evidence of an ‘“earth-
effect ” driving the gases from the earth-facing
hemisphere of the sun, and he would by this hypo-
thetical action explain the observed displacements
of the solar lines, and thus negative the deduction
from the Einstein theory. Two series of Venus
observations have been made by Dr. S. B. Nichol-
son and myself. The details will appear in a
forthcoming Contribution from the Mount
Wilson Observatory. Our observations indicate
that the displacements of the Venus lines to the
violet relative to skylight are due to non-uniform
illumination of the slit when the guiding is done
upon the visual image, the effect increasing with
the refraction and becoming more evident the
smaller the image. The explanation is based upon
the observation that spectrograms taken at low
altitudes give larger displacements to the violet
than those taken on the same night at higher alti-
tudes, and that the displacements correlate with
the cotangent of the altitude and the reciprocal
of the diameter of the planet at the time of
observation.

In respect to the observations at Mount Wilson

on the lines of the cyanogen band at A3883, I have
as yet found no grounds for considering them seri-
ously in error. The explanation of the results
adverse to the theory based upon dissymmetry
appears inadequate (Observatory, p. 260, July,
1920), and the assumption that the adverse results
are due to superposed metallic lines seems to be
negatived by the observations of Adams, Grebe,
Bachem, and myself that for these lines there is
no displacement between the centre and limb of
the sun. Metallic lines as a class shift to the red
in passing from the centre to the limb. If, then,
metallic lines are superposed on these band lines
in such a way as to mask the gravitational dis-
placement to the red when observed at the centre
of the sun, this should be revealed by a shift
to the red at the limb.

The lines of the cyanogen bands are under in-
vestigation in the observatory laboratory both as
reversed in the furnace and as produced in the arc
under varying pressure. The measures show no
evidence of a displacement to the red under de-
creased pressure as indicated by Perot’s observa-
tions.

The present programme at Mount Wilson aims
at an accumulation of varied and extensive data
that will furnish a suitable basis from which to
approach the general question of the behaviour of
Fraunhofer lines relative to terrestrial sources.

Non-Euclidean Geometries.
By Pror. G. B. MatHEws, F.R.S,

THE ordinary theory of analytical geometry
may be extended by analogy. as follows:
Let x4, x5, . . . %, be independent variables, each
ranging over the complete real (or ordinary com-
plex)continuum. Any particular set (xq, X9, . . « %a),
in that order, is said to be a point, the co-ordinates
of which are these x;; and the aggregate of these
points is said to form a point-space of n dimen-
sions (P,). Taking r<n, a set of » equations
¢$1=0, ¢p=0, . .. ¢,=o0, connecting the co-ordin-
ates, will in general define a space P,_, contained
in P,. Theorems about loci, contact, envelopes,
and the principle of duality all hold good for this
enlarged domain, and we also have a system of
projective geometry analogous to the ordinary one.

Physicists are predominantly interested in
metrical geometry. The ordinary metrical formulae
for a P; may be extended by analogy to a P,;
there is no logical difficulty, but there is, of course,
the psychological fact that our experience (so far)
does not enable us to “visualise” a set of rect-
angular axes for a P, if n>>3; not, at least, in
any way obviously analogous to the cases n=2, 3.

In ordinary geometry, for a P; we have the
formula

ds?=dx,? + dx,?+ dx,?

for the linear element called the distance between
two points (x), (x+dx). Riemann asked himself
the question whether, for every P,, this was neces-
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sarily a typical formula for ds, on the assumption
that solid bodies can be moved about in space
without distortion of any kind. His result is that
we may take as the typical form, referred to ortho-
gonal axes,

ds?=3dx% /N2,

N=1+}a3x?

and a is an arbitrary constant, called the curva-
ture of the P, in question. This curvature is an
intrinsic property of the P,, and should not be
considered as a warp or strain of any kind. When
a=o0, we have the Euclidean case. As an illustra-
tion of the theory that can be actually realised,
take the sphere x%2+9%2+22=+2 in the ordinary
Euclidean P;. By putting

where

D =u2+ 92 4 422,
Dx, Dy, Da=gr%u, gr2v, (u?+ 22— 47%r,

the equation x2+y2+22=+2 becomes an identity,

and we may regard the surface of the sphere as a

P, with (u, v) as co-ordinates. The reader will
easily verify that

I

ds?=(du?+ dv?) +{1+4—;2

so we have a case of Riemann’s formula with

a=7r-2  We cannot find a similar formula for

the surface of an ellipsoid, because a lamina that

“fits” a certain part of the ellipsoid cannot be

(u2+ v9)2;
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freely moved about so as to remain in contact with
the surface.

To avoid misunderstanding, it should be said
that Riemann’s expression for ds? is not the only
one that is taken to be the typical or standard
formula. The important thing is that, given any
formula for ds? in a P,, we can, by direct calcula-
tion, find an expression for the curvature of P, in
the neighbourhood of any assigned point (x). It
is only when this curvature is everywhere the
same that we have a P, for which the axiom of
free mobility is valid. When the curvature varies
from place to place we are not entitled, for in-
stance, to assume that we can carry about an
invariable foot-rule for purposes of physical
measurement.

In the simpler theory of relativity we have a
formula

ds?=dx?+dy*+dz2—c2ds?, ... (1)

where ¢ is a real constant. As it originally pre-
sents itself, x, y, 2 are ordinary rectangular co-
ordinates, t is the time, and ¢ the experimental
velocity of light. By a suitable choice of units we
can make the value of ¢ any finite constant that
we please. Following Minkowski, I shall call
(x, ¥, 3, t) a world-point; the aggregate of these
points may be provisionally called a space-time
world P(x, v, 2, t).

When t=t;, a constant, dt=o0 and (1) reduces
to the ordinary Euclidean formula. We may ex-
press this by saying that the sub-world
P(x, y, 2, t3) is Euclidean. Actual experiments
take time; so we cannot verify this assertion by
observation. If, however, two observers, at dif-
ferent places, make measurements which begin
and end at the same instants, we may expect their
results to be consistent. As Prof. Einstein has
pointed out, the question of simultaneity (and,
indeed, of time itself, as an observed quantity) is
a more difficult one than appears at first sight.

The main difficulty about (1), as it seems to me,
is that the expression on the right is not a definite
form ; hence in the neighbourhood of every ‘““real ”
point (x, y, 2, t) there is a real region for which
ds? is negative. It is possible that the difficulty

of interpretation is more apparent than real, as is
the case in some well-known examples. For in-
stance, a hyperbola may be analytically defined as
an ellipse of semiaxes a, bi, where a, b are real;
and, moreover, v. Staudt’s theory of involution
gives an actual geometrical meaning to the alge-
braic definition.

If, with #= —1, we put ct=ir, the formula (1)
becomes

ds?=dx?+dy?+dz2+ds?, ... (2)

the typical formula for a Euclidean P,. This makes
it very tempting to assume that the successions
of phenomena in our world of experience are, so
to speak, sections of a space-world P(x, y, 3, 7),
obtained by giving 7 purely imaginary values.
This point of view has been taken by Minkowski
and others.

The mathematical theories of abstract geometry
and kinematics are so complete that physicists
have a definite set of hypotheses from which to
choose the one most suited to their purpose; and
besides this they have to frame axioms and defini-
tions about time, energy, etc., with which the pure
mathematician is not concerned.

Whatever may be the ultimate form given to
the theory of relativity, the predictive quality of
its formula gives it a high claim to attention, and
it certainly seems probable that, for the sake of
what Mach calls economy of thought, we may feel
compelled to change our ideas of “actual” space
and time.

In an article like this it is impossible to go into
detail; the following references may be useful to
readers who desire further information :—** The Ele-
ments of Non-Euclidean Geometry,”” by J. L.
Coolidge, is rather condensed, but very conscientious
and trustworthy; one of the best analytical discus-
sions of the metrical theory is in Bianchi’s ‘‘ Lezioni
di Geometria Differenziale,”” chap. xi.; and Lie’s
“Theorie der Transformationsgruppen,” vol. iii.,
chaps. xx.—xxiv., contains a most valuable critique of
Riemann and Helmholtz. The article * Geometry” in
the “Encyclopzedia Britannica’ (last edition) gives an
outline of the theory and numerous references.
Finally, there is an elaborate ‘‘ Bibliography of Non-
Euclidean Geometry ”’ by D. M. J. Somerville (see
NaTture, May 16, 1912, vol. Ixxxix., p. 266).

The General Physical Theory of Relativity.
By J. H.. Jeans, Sec. R.S.

THE relativity theory of gravitation, which is
at present the centre of so much interest,
owes its existence to an earlier physical theory of
relativity which had proved to be in accord with
all the known phenomena of Nature except gravi-
tation. The gravitational theory is only one
branch, although a vigorous and striking branch,
of a firmly established parent tree. The present
article will deal solely with the main trunk and
roots of this tree.

Newton’s laws of motion referred explicitly to
a state of rest, but also showed that the pheno-
mena to be expected from bodies in a state of rest
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were precisely identical with those to be expected
when the same bodies were moving with constant
velocity. Indeed, Newton directed special atten-
tion to this implication of his laws of motion in the
following words :—

CoroLLary V. : The motions of bodies included
in a given space are the same among themselves,
whether that space is at rest, or moves uniformly
forwards in a right line without any circular
motion,

“A clear proof of which we have,” continues
Newton, “from the experiment of a ship, where
all motions happen after the same manner whether

B
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