
FARGO THORIN 1.0 User Guide

Ondřej Chrenko

Charles University in Prague, Institute of Astronomy

July 6, 2017

Contents

1 Introduction 3
1.1 What is FARGO THORIN? . 3
1.2 Where to start & what to know . 3
1.3 Implemented physics . 4
1.4 Technical features . 5

2 Input and output 7
2.1 How to start a simulation . 7
2.2 Input files . 7
2.3 Command line switches . 8
2.4 Simulation setup . 8
2.5 Output files . 15
2.6 Restart . 16

1

Preface

Thank you for your interest in using fargo thorin. The following sections will introduce
the program, its features and they will also provide some hints on how to use the code for
scientific simulations of protoplanetary systems.

fargo thorin is a free program and still under development. I would be very grateful
for any feedback from the users. Do not hesitate to contact me if you have a question
regarding the code, or a suggestion for an improvement, if you encounter a bug, or if you
would like to contribute to the upcoming versions. I would also be pleased to participate
in research collaborations related to applications of fargo thorin in planetary sciences.

Ondřej Chrenko
chrenko@sirrah.troja.mff.cuni.cz

http://sirrah.troja.mff.cuni.cz/~chrenko/

Copyright © 2017

2

mailto:chrenko@sirrah.troja.mff.cuni.cz
http://sirrah.troja.mff.cuni.cz/~chrenko/

Chapter 1

Introduction

1.1 What is FARGO THORIN?

fargo thorin – or thorin for short – stands for fargo with two-fluid hydrodynamics,
the rebound integrator interface and non-isothermal gas physics. The code was introduced
in Chrenko et al. (2017) (‘Eccentricity excitation and merging of planetary embryos heated
by pebble accretion’) and its primary purpose is to study protplanetary systems, specifically
mutual interactions between a gaseous disk, a disk of small solid particles (pebbles) and
embedded protoplanets.

thorin is built on top of the 2D fargo hydrocode (Masset 2000), several algorithms
are adopted from the fargo-adsg version (Baruteau & Masset 2008) and the code is
interfaced with the rebound integrator package (Rein & Liu 2012).

1.2 Where to start & what to know

The program is distributed as an archive containing the following:

• /in_relax – directory containing the setup files of the first example simulation.

• /in_wplanet – directory containing the setup files of the second example simulation.

• /src_main – directory containing the source files of the thorin code.

• /src_reb – directory containing the source files of the rebound integrator package
to be linked to thorin as a shared library.

• GNUGPL3 – a copy of the GNU General Public License, 3rd version.

• LICENSE – license of the distribution.

• README – readme file of the distribution (explains the basic compilation and how to
run the examples).

3

1.3. IMPLEMENTED PHYSICS CHAPTER 1. INTRODUCTION

• UserGuide.pdf – this file.

• refman.pdf – developer’s guide generated by doxygen.

Before reading any further and before using the code, please read the license agreement.
After that, it might be a good idea to check the readme file. It will guide you quickly
through the program compilation and it will help you run your first example simulation
using thorin. You can return to this manual afterwards to learn more about how to setup
your own simulation.

This guide assumes the user to have at least the basic knowledge and experience with
the standard 2D fargo hydrocode. You may benefit from reading through the homepage of
the fargo project (http://fargo.in2p3.fr/-Legacy-archive-) because many features
of thorin are quite similar.

Although thorin is interfaced with the rebound integrator package, there is no need
for you to know rebound, the interface will do the hard work for you. However, the
rebound package is quite extended and only a handful of its possibilities is actually used
in thorin. In case you would like to explore the various aspects of rebound, see the
website of the project (http://rebound.readthedocs.io/en/latest/).

For those who would like to modify thorin, this guide will probably be too brief. You
may find the developer’s guide to be a helpful source of information, although it is merely
an overview of the source code. The guide is generated by doxygen, it is distributed with
this archive and it is also available online
(access it from http://sirrah.troja.mff.cuni.cz/~chrenko) in a more compact form.
In the end, you will need to browse through the source code itself. I tried to label all the
important differences and additions with respect to fargo with a standard C-like comment
/* */ containing ‘#THORIN’. In case you are familiar with the fargo code, these labels
might help you find out what is new. The labels are not used in source files (*.c) which
are brand new in thorin. These are especially the files EnergySources.c, Pebbles.c and
ReboundInterface.c You will also notice that files named Force.c and Pframeforce.c

were almost completely rewritten.

1.3 Implemented physics

Let us summarize the new physical modules of thorin. Please note that a detailed
description of the implemented physics is provided in Chrenko et al. (2017).

• Non-isothermal gas disk with implicit solution of the energy equation. The im-
plemented energy source terms are: Compressional heating, viscous heating, stellar
irradiation, vertical escape of radiation, radiative diffusion in the midplane and ra-
diative feedback to accretion heating of embryos.

• Planets evolved in 3D, with close encounters allowed. The orbital evolution due to
mutual planetary interactions is calculated using a high-accuracy integration tech-
nique with adaptive time step sub-division and detection of collisions. Collisions

4

http://fargo.in2p3.fr/-Legacy-archive-
http://rebound.readthedocs.io/en/latest/
http://sirrah.troja.mff.cuni.cz/~chrenko

1.4. TECHNICAL FEATURES CHAPTER 1. INTRODUCTION

are resolved as planetary mergers. Inclination damping is provided by an artificial
vertical force.

• Refined treatment of the planet-disk gravitational interaction. Vertical
averaging of the gravitational potential leads to relatively precise migration rates
and the potential smoothing length is reduced from fractions of the local pressure
scale height to fractions of the Hill sphere radius, making the potential well deeper
than in the standard fargo simulations. This is especially suitable for low-mass
planets with their Hill sphere being smaller than the pressure scale height.

• Pebble disk represented by a single Eulerian, pressureless and inviscid fluid. The
pebble dynamics is affected by the Epstein gas drag and optionally by the diffusive
effects. We also implemented the drag back-reaction term into the Navier-Stokes
equation for the gas. Pebbles, if incorporated into simulations, are automatically
being accreted by planets. Their Stokes numbers, necessary to properly impose the
drag force and calculate the accretion rates, are inferred from a steady-state model
of a pebble disk in the coagulation-drift equilibrium, like in Lambrechts & Johansen
(2014). At each radius, such a disk is dominated by a single pebble size, allowing
to reasonably represent the pebble disk by a single fluid. Numerical solution of
the pebble fluid motion equation follows a semi-implicit numerical scheme and the
transport step utilises the fargo algorithm.

1.4 Technical features

Like fargo, thorin is entirely written in C. It also supports multithreading on shared-
memory systems using OpenMP and moreover, it supports parallelism on distributed-
memory systems using MPI. The MPI implementation follows the radial domain splitting
of the original fargo code.

It is possible to compile thorin in four different ways to build a sequential, multi-
threaded, MPI-parallel or combined (MPI with OpenMP) executable. A possible way of
producing these builds is given by the shell scripts placed in /src_main. These are named
make.sh, make_omp.sh, make_para.sh and make_para_omp.sh, respectively. For most of
our numerically demanding simulations, running the code with MPI proved itself to be the
best option.

Regarding the OpenMP implementation, we hard-coded into thorin a couple of omp
functions which affect how the computation is performed. First, an automatic shutout
of dynamic thread management is triggered. Second, the number of threads is set fixed
to the total number of available cores detected on the machine. This behaviour can be
sometimes undesirable when one wants to use a specific number of cores. To switch it off,
open /src_main/main.c, find the first conditional block #ifdef OPENMP ... #endif

and comment it out. After that, you can recompile and specify the number of threads by
setting the environment variable OMP NUM THREADS.

5

1.4. TECHNICAL FEATURES CHAPTER 1. INTRODUCTION

If you use OpenMP on a machine with hyper-threading support, you might experience
very small (or none) acceleration. In such a case, try setting the environment variables
OMP PROC BIND = true and/or OMP PLACES = cores and/or OMP DYNAMIC = false.

We emphasize that the OpenMP implementation contains one major drawback – in the
source file /src_main/Pframeforce.c, we had to use the atomic omp pragmas at four
lines of the code. These pragmas reduce the efficiency of the OpenMP implementation and
we plan to redesign the algorithm in future so they can be removed.

Combination of MPI with OpenMP is possible, but not thoroughly tested. Please note
that each node will try to perform the steps indicated above for its own OpenMP sub-
calculation (i.e. it will disable dynamic thread management and set the number or threads
to the number of cores).

6

Chapter 2

Input and output

2.1 How to start a simulation

To start a simulation run, you can proceed exactly as in FARGO, be executing:
(MPI only →) mpiexec MPISET (← MPI only) ./thorin –SWITCH PARAM

where you have to replace ‘MPISET’ with valid settings of the mpiexec command, ‘SWITCH’
should be replaced with command line switches (or can be omitted together with –) and
‘PARAM’ should contain the path to an input parametric file.

See also the readme file for a few examples of how to start thorin.

2.2 Input files

Via the command above, you provide an input parametric file to be read by thorin.
The parametric file controls the entire simulation settings. It must be formatted as in
standard fargo: Lines starting with a hash will be omitted; give one parameter per line
by writing its full name (not case sensitive), followed by an appropriate value to be assigned,
(optionally) followed by a comment.

Some of the parameter names are the same as in fargo but there is also a set of
new parameters. They are all introduced later in Sect. 2.4. The allowed parameter values
depend on the parameter type which can be integer, real or string. Some string parameters
act like booleans (you set YES or NO), or contain the algorithm name (e.g. the Transport
parameter can have value FARGO) or contain a path to a file (e.g. the PlanetConfig

parameter). The allowed values of parameters will be also clarified in Sect. 2.4.
Along with the parametric file, you must provide a configuration file of the planetary

system, accessible by the path from the PlanetConfig parameter. The algorithm always
assumes there is at least one planet in the calculation thus you must also give at least one
entry in the planet configuration file. In case you do not want the disk to be perturbed by
the planet significantly, you can assign some tiny mass to the planet.

The planet configuration file may contain comments formated as lines starting with
a hash. Entry for a planet should be given on one line, starting with the planet’s name

7

2.3. COMMAND LINE SWITCHES CHAPTER 2. INPUT AND OUTPUT

(e.g. ‘Jupiter’), followed by the planet mass in Solar masses, followed by a set of six initial
Keplerian orbital elements: The semimajor axis in AU, eccentricity ranging from 0 to < 1,
inclination, longitude of ascending node, longitude of pericenter, and true anomaly, all
angles being given in degrees.

There are a few optional input files related to the InitializeFromFile parameter, as
will be explained in Sect. 2.4.

2.3 Command line switches

All the command line switches in thorin were inherited from fargo but only a handful
of them was actually used and tested. These include

• –m switch which tells the code to merge the outputs produced by different CPUs in
an MPI run.

• –s number switch which tells the code to restart from outputs numbered with number.

• –t switch which tells the code to provide some CPU consumption information. We
find this useful only for a sequential build.

• –v switch which outputs some information about the simulation settings. But we
emphasize here that part of the information in not valid as the corresponding output
was not adjusted to modifications in thorin. We plan to improve this in future
versions.

Any other command line switches from fargo were not tested in thorin and although
some of them might still work, we advise to use them carefully.

2.4 Simulation setup

Standard parameters. The following parameters have the same effect as in the stan-
dard fargo code:

DT, Sigma0, Ninterm, Ntot, OutputDir, Transport (we always set this to FARGO),
PlanetConfig (please note that the configuration file itself should have a different structure
compared to standard fargo), MassTaper, RadialSpacing (we only tested ARITHMETIC)
, Nrad, Nsec, Rmin, Rmax, Viscosity, AlphaViscosity, SigmaSlope, OmegaFrame,

Disk (we always set this to YES) ,Frame, WriteDensity, WriteVelocity.

Modified standard parameters. The following parameters are inherited from the stan-
dard fargo code but allow for a new option or have a different effect:

• InnerBoundary has a new option named DAMPING, following the condition from de
Val-Borro et al. (2006). See Sect. 2.7 in Chrenko et al. (2017) for a description.

8

2.4. SIMULATION SETUP CHAPTER 2. INPUT AND OUTPUT

We emphasize that only RIGID and DAMPING boundaries were thoroughly tested in
simulations. The DAMPING condition has two sub-options controlled by the DampTo-

wards parameter.

• ThicknessSmoothing controls the smoothing length in a new gravitational potential
which was implemented according to Klahr & Kley (2006), see also Eq. (37) in
Chrenko et al. (2017). We emphasize this is the only type of smoothing allowed in
thorin.

• RocheSmoothing parameter cannot be used in thorin. Although the parameter was
retained for possible future extensions, it has no effect in the current version of the
code.

• AspectRatio is important only for the initialisation phase. During the calcula-
tion, the aspect ratio evolves due to non-isothermal effects and it is calculated self-
consistently from the local sound speed and Keplerian frequency (see Sect. 2.1 in
Chrenko et al. 2017).

• IndirectTerm has the same purpose to prevent undesired accelerations of a frame
centered to the primary, but the term is computed in a slightly different way. This
is because thorin uses modified approach for planet-disk interactions which are
treated by means of a vertically-averaged gravitational potential (Müller et al. 2012).
We always set the IndirectTerm parameter to YES.

• ExcludeHill has the same purpose to exclude part of the gas in planet’s Hill sphere
from the torque computation, but the procedure follows the prescription from Crida
et al. (2008) (see their Eq. 5).

• FlaringIndex affects only the initialisation phase. The disk should become self-
consistently flared during the calculations if heating/cooling processes are accounted
for.

• Eccentricity is a deprecated switch. Planetary eccentricities are now explicitly
given for each planet in the planet configuration file (specified by the PlanetConfig
parameter).

(Possibly) incompatible standard parameters. The following parameters are inher-
ited from the standard fargo code but they were not tested in thorin. Using these
parameters may lead to an unexpected behaviour and code failures:

LabelAdvection, ReleaseRadius, ReleaseDate, OuterSourceMass, ImposeDisk-

Drift, CavityRadius, CavityRatio, CavityWidth, TransitionRadius, Transition-

Ratio, TransitionWidth, LambdaDoubling.

9

2.4. SIMULATION SETUP CHAPTER 2. INPUT AND OUTPUT

Heating/cooling parameters. The following list summarizes and describes the model
parameters associated with the energy equation:

• EnergyEquation; the default value is NO. This parameter will start the non-isothermal
calculations. Please note that certain parts of the code were not adjusted for the
isothermal approximation thus we advise to keep EnergyEquation set to YES all the
time. Use a different version of fargo for isothermal calculations.

• WriteTemperature; the default value is NO. The code will output temperature fields
when set to YES and also if EnergyEquation is set to YES. The corresponding output
name is gastemper*.dat.

• WriteEnergy, WriteDivV, WriteQplus, WriteQbalance; the default value is NO. By
setting to YES you enable the output of the gas specific internal energy, velocity di-
vergence, viscous heating term, and (viscous heating - vertical cooling) balance term,
respectively. The corresponding output names are gasenergy*.dat, gasdivv*.dat,
gasqplus*.dat and gasqbalance*.dat.

• AdiabInd; the default value is 1.4. Sets the value of the adiabatic index (the specific
heat ratio) of the gas.

• CoolingTime; the default value is −1.0. When this parameter is set to ≤ 0.0, the en-
ergy equation will be solved implicitly (using SOR) and will automatically include the
compressional heating term, the viscous heating term, the vertical cooling term and
the midplane radiative diffusion. Remaining terms (stellar irradiation and accretion
heating) are also included if specified by their own switches. When the parameter is
set to > 0.0, it represents the characteristic cooling time which counterbalances the
viscous heating and compressional heating term. No other energy source terms are
accounted for in such a setup and the equation is solved using a simple numerical
scheme.

• StellarIrradiation; the default value is NO. Set to YES in order to include the
stellar irradiation heating term.

• EffectiveTemperature; the default value is 5656.0. Determines the effective tem-
perature of the central protostar in Kelvins. Only affects the calculations with Stel-

larIrradiation set to YES.

• StellarRadius; the default value is 3.0. Determines the radius of the protostar.
Only affects the calculations with StellarIrradiation set to YES.

• DiscAlbedo; the default value is 0.5. Determines the albedo of the disk with respect
to stellar irradiation. Only affects the calculations with StellarIrradiation set to
YES.

10

2.4. SIMULATION SETUP CHAPTER 2. INPUT AND OUTPUT

• OpacityDrop; the default value is 0.6. Determines the fractional drop of the opacity
in the direction perpendicular to midplane. Set to 1.0 to neglect the opacity changes.
The value 0.6 was found to produce good agreement of the disk structure with 3D
models.

• ParametricOpacity; the default value is 0.0. When the value is ≤ 0.0, the mean
Rosseland opacity of the gas is calculated according to Bell & Lin (1994). When the
value is > 0.0, it is used as a constant uniform opacity throughout the simulation.

Gas disk initialisation from prescribed files. With thorin, it is possible to initialise
the gas disk from prescribed ascii files. This is a useful feature which allows e.g. to start the
simulation from a previously relaxed equilibrium state. In order to use this initialization:

• Set the InitializeFromFile parameter to YES;

• Specify the DensInfile, VradInfile, VthetaInfile and TemperInfile parameters.
The parameters must contain valid paths to the ascii files containing the desired
values of the gas surface density, radial velocity, azimuthal velocity and temperature,
respectively. Each file must be a 1-column list of real numbers sorted in the same
order as in a fargo 1D hydrodynamic array (i.e. the values should be listed ring
by ring, from the inner one to the outer one). Ascii files like this can be created
by translating the binary outputs of hydrodynamic arrays one record after another.
Such a procedure is part of the second example simulation (see the readme file).

Damping boundary condition settings. When InnerBoundary is set to DAMPING, it
is possible to specify the following:

• DampTowards; the default value is ZEROVRAD. When the parameter is set to ZEROVRAD,
the wave-killing boundary condition acts only to damp the radial gas velocity to zero.
Other hydrodynamic quantities obey the closed boundary condition. The parameter
can be optionally set to INIT. If so, the wave-killing boundary condition still damps
the radial gas velocity to vanish and the remaining hydrodynamic quantities are
damped towards their initial values. This is useful when the initial state corresponds
to a disk relaxed by the heating/cooling processes.

• DampingRminFrac; the default value is 1.25. The inner wave-killing zone stretches
from Rmin to Rmin * DampingRminFrac.

• DampingRmaxFrac; the default value is 0.84. The outer wave-killing zone stretches
from (Rmax * DampingRmaxFrac) to Rmax.

• DampingPeriodFrac; the default vale is 1.0. The damping time scale is equal to
(TK* DampingPeriodFrac) where TK is the shortest Keplerian orbital period in the
respective wave-killing zone.

11

2.4. SIMULATION SETUP CHAPTER 2. INPUT AND OUTPUT

Parameters of the REBOUND integrator interface. thorin automatically solves
the N -body interaction among the massive bodies using the ias15 integrator (Rein &
Spiegel 2015) from the rebound package (Rein & Liu 2012). The following list provides
parameters related to the orbital evolution of planets:

• NoutElements; the default value is 1. The parameter is an analogue of Ninterm but
affects the output sampling of the file with orbital elements named nbody.orbits.

dat. The time interval between two successive outputs of orbital elements is (NoutE-
lements * DT).

• PlanetaryDensity; the default value is 1.0. Defines the bulk density of planets
which is used to derive their radius from the planetary mass. Only important when
searching for collisions among the planets.

• ResolveCollisions; the default value is NO. When set to YES, the rebound package
will start to detect collisions between planets. Each collision will result in a merger.

• TargetNpl; the default value is −1. When set to a positive integer or zero, the code
will terminate once the number of planets equals TargetNpl.

• IAS15Precission; the default value is 10−9. Defines the desired precision of the
ias15 integration algorithm.

• IAS15MinDT; the default value is 0.0. Restricts the minimum allowed sub-step value
resulting from the ias15 adaptive time step subdivision.

Disk-planet interactions. These are several switches controlling the disk-planet inter-
actions:

• WriteTorqueFiles; the default value is YES. In the default settings, the code writes
the values of the disk torques acting on each of the planets into the files named
tqwk*.dat. This output can be disabled by setting WriteTorqueFiles to NO.

• HillCut; the default value is 0.8. The parameter sets the steepness of the tapering
function which excludes part of the Hill-sphere gas from the torque computation. It
corresponds to the dimensionless parameter p from Eq. (5) in Crida et al. (2008).
The parameter only affects the simulation if ExcludeHill is set to YES.

• VerticalDamping; the default value is 0.1. The parameter scales the inclination
damping prescription from Tanaka & Ward (2004). It corresponds to the dimen-
sionless parameter β from Eq. (39) in Chrenko et al. (2017). The parameter is
problem-dependent and it should be tuned so that the eccentricity and inclination
damping of planetary orbits operate on comparable time scales.

• PlanetsFeelDisk; the default value is NO. The parameter determines whether the
planets migrate due to disk torques (when set to YES) or not (when set toNO).

12

2.4. SIMULATION SETUP CHAPTER 2. INPUT AND OUTPUT

• AccretionRate; the default value is 0.0. When set to positive value, the planets will
accrete gas according to the original accretion algorithm of fargo. We emphasize
that the gas accretion algorithm was not adjusted to account for 3D orbits and it
also does not cause accretion heating. We advise the users not to use it at this point.

Pebble disk parameters. In order to initialise the two-fluid calculations, in which the
second fluid represents the disk of pebbles, you must first ensure that the gas disk is in a
thermally relaxed equilibrium state. This is because the initial model of the pebble disk
assumes a steady-state situation and it may lead to unrealistic results otherwise.

A typical procedure is to start with a preparatory simulation with the gas disk only
and once the disk is relaxed, it is possible to use it as a starting point for a full simulation
with the pebble disk. A simple way of doing this is with the option InitializeFromFile

set to YES, provided that the DensInfile, VradInfile, VthetaInfile and TemperInfile

parameters refer to the ascii files taken from the end of the preparatory simulation. The
pebble disk is included into the simulation by

• setting PebbleAccretion to YES (the default setting is NO).

When the pebble disk is incorporated, all planets automatically start to accrete from it
(but accretion heating is switch-dependent; see below).

When PebbleAccretion is set to YES, the code will automatically output several binary
files, formatted as the standard fargo polar grid arrays. There will be files written at
each output, representing the pebble component surface density, the radial velocity and
the azimuthal velocity. These are named gaspebbledens*.dat, gaspebblevrad*.dat and
gaspebblevtheta*.dat, respectively. There will also be two files written only once, at the
beginning of the simulation, representing the dominant pebble sizes and corresponding
Stokes numbers. These are named gaspebblesize0.dat and gaspebblestokes0.dat.

The initial state of the pebble disk is described in Sect. 2.4 in Chrenko et al. (2017)
and depends on the following parameters:

• PebbleFlux; the default value is 2× 10−4. The parameter defines the radial pebble
mass flux in the initial steady-state and it is given in Earth masses per year (ME yr

−1).

• PebbleAlpha; the default value is 1×10−4. This is a parametrisation of the turbulent
stirring of solid particles and it is usually understood as an analogue to the Shakura-
Sunyaev α of the gas disk. In our model, this parameter affects the scale height of
the pebble disk.

• PebbleCoagulation; the default value is 0.5. The parameter determines the coagu-
lation efficiency of solids and affects the dominant size and Stokes number.

• PebbleBulkDens; the default value is 1.0. It represents the material density of peb-
bles, necessary to calculate the Stokes number in the Epstein gas drag regime.

13

2.4. SIMULATION SETUP CHAPTER 2. INPUT AND OUTPUT

• SchmidtNumber; the default value is 1.0. Only affects the simulations with Parti-

cleDiffusion set to YES (see below). It represents the ratio of the gas diffusivity to
the pebble diffusivity.

The interactions between the pebble component and the rest of the system can be tuned
by the following parameters:

• BackReaction; the default value is NO. When it is set to YES, the drag back-reaction
term is included into the Navier-Stokes equation of the gas.

• AccretionalHeating; the default value is NO. When it is set to YES, the energy
deposited by pebbles accreting onto planets is transformed into planetary luminosity
and the planets act like additional heat sources (see Chrenko et al. 2017).

• HeatingDelay; the default value is 100. It specifies the number of time steps DT over
which the planetary luminosity is gradually increased from zero to the non-reduced
value.

• ParticleDiffusion; the default value is NO. When it is set to YES, the diffusive
velocity will be added to the fluid velocity of pebbles, according to Sect. 2.6 in
Chrenko et al. (2017).

Finally, there is an optional output parameter related to pebbles:

• WriteEta; the default value is NO. When it is set to YES, the code will write the gas
rotation parameter η (Eq. 22 in Chrenko et al. 2017) into gaseta*.dat.

Miscellaneous parameters and tools. These are the remaining parameters of thorin:

• ParametricAccretion; the default value is 0.0. The parameter represents a para-
metric doubling time of accreting planets given in kyr. When it is set to a positive
value, the planets will grow according to this doubling time. This type of accretion
can heat the planets if AccretionalHeating is set to YES. This switch is useful e.g.
to study the heating torque induced by a fixed accretion rate.

• TorqueMapInfile; the default value is NO. When it is set to YES, the code will
write a file named torquemap infile*.dat. The file can serve as an input file for
the torquemap code written by Bertram Bitsch that is capable of producing the
migration maps. The torquemap code is not included in thorin.

• GetTorqueForPlanet; the default value is −1. The parameter can be set to a fargo

identification number of a planet (starting with 0). If so, the code will write a file
named gastorque*.dat. The file contains a cell-by-cell data record of the torque
acting on the planet specified by the switch. This can be helpful e.g. to calculate
the radial torque density, or to plot the torque distribution over the individual cells.

14

2.5. OUTPUT FILES CHAPTER 2. INPUT AND OUTPUT

2.5 Output files

The output files are written into an output directory specified by the OutputDir parameter.
The directory is created in case it does not exist.

thorin always outputs standard fargo files named dims.dat, used rad.dat. More-
over, it writes a new ascii file named omegaframe.dat. This file contains two columns,
the first is the output number and the second is the instantaneous angular velocity of the
coordinate frame.

Depending on how the Write* parameters are set, thorin can output the following
files, formatted as standard fargo binary outputs of the polar grid arrays.

• Standard quantities describing the gas disk: gasdens*.dat, gasvrad*.dat, gasvtheta*.
dat.

• New quantities describing the gas disk, already described in the previous section:
gastemper*.dat, gasenergy*.dat, gasdivv*.dat, gasqplus*.dat, gasqbalance*.
dat, gaseta*.dat.

• New quantities describing the pebble disk, already described in the previous section:
gaspebbledens*.dat, gaspebblevrad*.dat, gaspebblevtheta*.dat, gaspebblesize0.
dat, gaspebblestokes0.dat (the later two files are only written once at the simu-
lation beginning).

• New quantity describing the torque from individual cells, acting on the planet spec-
ified by the GetTorqueForPlanet parameter: gastorque*.dat.

In the list above, the asterisks stand for the output numbers.
Hydrodynamic polar grids have the same output as in fargo thus their visualisation

and analysis should be straightforward for former fargo users. For the purpose of unit
conversions, please note that thorin uses 1AU as the length unit, 1 Solar mass as the
mass unit, the gravitational constant is G = 1, as well as the mean molecular weight and
the gas constant.

The rebound interface of thorin will produce the following outputs:

• The whole rebound simulation is written into a binary file with the same sampling
frequency as the hydrodynamic outputs (each Ninterm * DT). The name of the file is
nbody.simulation*.dat. There is no need for you to analyse this file but it serves
as a suitable starting point for restarts.

• Orbital elements are written into an ascii file named nbody.orbits.dat each (NoutElements
* DT). Line by line, it lists the orbital elements for each planet. Each line start with
the planet identification number that starts from 1 (this differs from fargo itself
which numbers the planets from 0). The ID is followed by the simulation time in
code units, the semimajor axis in AU, the eccentricity and angular elements in radi-
ans (inclination, longitude of ascending node, argument of pericenter, true anomaly).

15

2.6. RESTART CHAPTER 2. INPUT AND OUTPUT

Finally, the instantaneous planet mass and radius are written and also the Cartesian
coordinates (x, y, z) in AU.

• If a planet is discarded from the simulation because it was scattered (or migrated) out
of the hydrodynamic domain, it is recorded in an ascii file named nbody.discard.

dat. Each discard event has four lines. The first line contains the event time in code
units; the second line contains the planet ID, mass and radius; the third line con-
tains the final Cartesian coordinates; and the fourth line contains the final Cartesian
velocities (again in the code units).

• When ResolveCollisions is set to YES and a planetary merger is detected, it is
recorded in an ascii file named nbody.mergers.dat. Each merger event consists of
1 + 3× 3 lines. The first line gives the merger time and planet IDs of both colliding
planets. The first two three-line blocks describe the colliding planets, the third three-
line block describes the resulting merger. Each three-line block contains the planet
ID, mass and radius; the Cartesian coordinates; the Cartesian velocities.

In thorin, the output of total disk torques acting on planets is slightly modified:

• When WriteTorqueFiles is set to YES, several ascii files will be written named
tqwk(i).dat, where (i) stands for the planet ID, but now starting from 0 (this is
to keep consistency with previous outputs of fargo. Each file provides the temporal
evolution of total disk torques acting on the respective planet. Each line of the
output file gives the simulation time, the total specific torque acting on the planet,
the normalised torque acting on the planet, midplane Cartesian coordinates (x, y)
and midplane Cartesian accelerations (ax, ay) acting on the planet due to the disk
gravity.

2.6 Restart

The restart files must be placed (or remain) inside the output directory specified by the
input parametric file. In order to restart a run, you must always provide the files dims.dat,
omegaframe.dat and used rad.dat. To restart the non-isothermal gas disk, you must pro-
vide the files gasdens(N).dat, gasvrad(N).dat, gasvtheta(N).dat, gastemper(N).dat
and nbody.simulation(N).dat. To restart a simulation with the pebble disk included,
you must provide the files gaspebbledens(N).dat, gaspebblevrad(N).dat,
gaspebblevtheta(N).dat and gaspebblesize0.dat.

The restart command is similar to the standard fargo code:
(MPI only →) mpiexec MPISET (← MPI only) ./thorin --s (N) PARAM

where the s switch tells the code to restart from the output number given instead of (N).

16

Bibliography

Baruteau, C. & Masset, F. 2008, ApJ, 672, 1054

Bell, K. R. & Lin, D. N. C. 1994, ApJ, 427, 987

Chrenko, O., Brož, M., & Lambrechts, M. 2017, ArXiv e-prints [[arXiv]1706.06329]

Crida, A., Sándor, Z., & Kley, W. 2008, A&A, 483, 325

de Val-Borro, M., Edgar, R. G., Artymowicz, P., et al. 2006, MNRAS, 370, 529

Klahr, H. & Kley, W. 2006, A&A, 445, 747

Lambrechts, M. & Johansen, A. 2014, A&A, 572, A107

Masset, F. 2000, A&AS, 141, 165

Müller, T. W. A., Kley, W., & Meru, F. 2012, A&A, 541, A123

Rein, H. & Liu, S.-F. 2012, A&A, 537, A128

Rein, H. & Spiegel, D. S. 2015, MNRAS, 446, 1424

Tanaka, H. & Ward, W. R. 2004, ApJ, 602, 388

17

	Introduction
	What is FARGO_THORIN?
	Where to start & what to know
	Implemented physics
	Technical features

	Input and output
	How to start a simulation
	Input files
	Command line switches
	Simulation setup
	Output files
	Restart

