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ABSTRACT

Context. Planetary embryos can continue to grow by pebble accretion until they become giant planet cores. Simultaneously, these
embryos mutually interact and also migrate due to torques arising from the protoplanetary disk.
Aims. Our aim is to study how pebble accretion alters the orbital evolution of embryos undergoing Type-I migration. In particular, we
try to determine whether or not the embryos establish resonant chains, and if so, whether or not these chains are prone to instabilities.
Further, we investigate the possibility that giant planet cores form through embryo merging which can be more rapid than pebble
accretion alone.
Methods. For the first time, we perform self-consistent global-scale radiative hydrodynamic simulations of a two-fluid protoplanetary
disk consisting of gas and pebbles, the latter being accreted by embedded embryos. Accretion heating, along with other radiative
processes, is accounted for to correctly model the Type-I migration.
Results. We track the evolution of four super-Earth-like embryos, initially located in a region where the disk structure allows for
a convergent migration. Generally, embryo merging is facilitated by rapidly increasing embryo masses and breaks the otherwise
oligarchic growth. Moreover, we find that the orbital eccentricity of each embryo is considerably excited ('0.03) due to the presence
of an asymmetric under-dense lobe of gas – a so-called “hot trail” – produced by accretion heating of the embryo’s vicinity. Eccentric
orbits lead the embryos to frequent close encounters and make resonant locking more difficult.
Conclusions. Embryo merging typically produces one massive core (&10 ME) in our simulations, orbiting near 10 AU. Pebble ac-
cretion is naturally accompanied by the occurrence of eccentric orbits which should be considered in future efforts to explain the
structure of exoplanetary systems.

Key words. hydrodynamics – planets and satellites: formation – planet-disk interactions – protoplanetary disks –
planets and satellites: gaseous planets

1. Introduction

Interactions of gas and solids in protoplanetary disks are the
basis for subsequent growth of all kinds of planets, whether
they finally become terrestrial, super-Earths, ice giants or gas gi-
ants. These interactions have to be computed with an appropriate
feedback, as there are a number of relatively complicated but in-
evitable phenomena. Setting the classical in-spiralling of solids
due to gas drag aside, there are processes like streaming insta-
bility and local collapse (Johansen et al. 2007), pebble accretion
assisted by aerodynamic drag (Lambrechts & Johansen 2012;
Morbidelli & Nesvorný 2012), accretion heating of planetary
embryos and surrounding gas (Benítez-Llambay et al. 2015), or
embryo-disk interactions in general (e.g. Kley et al. 2009). Suf-
ficiently complex hydrodynamic models with radiative trans-
fer (RHD) are usually needed for realistic treatment of these
processes.

? The code is publicly available at
http://sirrah.troja.mff.cuni.cz/~chrenko/, and also at the
CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5)
or via
http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/606/A114

The radiative properties of the protoplanetary disk are mostly
determined by the opacity κ. As a flux-mean (Rosseland)
value, κ is mostly caused by icy, silicate or carbonaceous dust
grains (Mathis et al. 1977; Bell & Lin 1994) that have differ-
ent wavelength-dependent optical constants (Jäger et al. 2003).
The size-frequency distribution of dust grains is often assumed
to be shallow, with a cumulative slope q = −2.5 (Mathis et al.
1977; Birnstiel et al. 2012). Any sudden transition in the com-
position of the dust component (e.g. grain evaporation or “rain
out”) affects local heating and cooling properties of the gas
disk. Consequently, variations of the scale height H(r) might
occur, and moreover, the pressure gradient might exhibit a re-
versal, ∇P > 0, which leads to accumulation of solids (and even
planetary embryos). Typical transitions are located, for exam-
ple, at the inner rim of the disk due to UV photoionisation and
corotation with stellar magnetic field, at the evaporation line of
silicates (Flock et al. 2016), and at the snowline corresponding
to water evaporation (Morbidelli et al. 2015). Important heating
sources are provided by viscous dissipation, especially in the in-
ner disk, and stellar irradiation of the inclined/flared disk atmo-
sphere (Bitsch et al. 2014).
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While small (µm-sized) grains usually influence overall op-
tical properties, large (mm-sized) dust particles or (cm-sized)
pebbles – if already present – dominate the mass distribution.
According to recent developments in the theory of planet for-
mation, pebbles can be efficiently accreted by larger seed
masses, for example planetesimals or embryos, with high
enough accretion rate to finally produce giant planet cores
(Lambrechts & Johansen 2012, 2014) with masses &10 ME,
well within the protoplanetary disk lifetime, which is typically
'10 Myr (Fedele et al. 2010). Global-scale N-body simulations
demonstrated that the giant planets of the Solar System can
be reproduced by pebble accretion (Levison et al. 2015), pro-
vided that dynamical stirring of orbital inclinations breaks the
oligarchic growth of the seed masses (Kretke & Levison 2014).

A downside of the aforementioned global-scale simulations
with pebble accretion is that they do not model the interactions
between the protoplanets and the surrounding gaseous disk in
a self-consistent way because no hydrodynamics is employed.
However, during the evolutionary phase when multiple low-mass
embryos are present, it is inevitable that these embryos inter-
act gravitationally with the disk and undergo Type-I migration,
when no gap is opened. There are many purely hydrodynamical
effects contributing to the resulting torque acting on the planets:
Spiral arms (launched at the Lindblad resonances and indepen-
dent of viscosity ν), the corotation torque from the asymmet-
ric gas structures formed in the corotation regions of embryos
(Masset 2002) and additional forcing produced by asymmetries
related to radiative effects operating in the vicinity of the em-
bryos, for example the cold finger (Lega et al. 2014) or the heat-
ing torque (Benítez-Llambay et al. 2015).

The embryos – albeit having generally different migration
rates – can accumulate near some of the pressure gradient re-
versals, mutually interact, and get locked in a resonant configu-
ration and create a “convoy” (Pierens et al. 2013). Such a con-
figuration naturally prevents any merging. It is possible that the
stability of the resonant chain can be reduced by larger numbers
of embryos present in the system (Pierens et al. 2013), when the
disk is massive and exhibits large accretion rates, (10−7 M� yr−1

according to Zhang et al. 2014), or when some of the embryos
enter a fast migration regime due to strong corotation torque
when the initially librating gaseous material is contracted into
the tadpole region (Pierens 2015). According to current under-
standing, it is unclear how pebble accretion and accretion heat-
ing affect the convergent migration and resonant chain stabil-
ity and we address these particular issues in this paper. We aim
to determine whether the migrating embryos merge or remain
in the chain while they continue to grow. The resonant chain
(in)stability is important also with respect to the observed ex-
oplanetary systems because these are often non-resonant (e.g.
Winn & Fabrycky 2015).

The embryo growth and/or merging closely precede an evo-
lutionary epoch which provides important observational evi-
dence of the planet-forming processes. Once a giant planet core
is formed it can clear a gap in the disk along its orbit and its fur-
ther migration is driven by the viscous evolution of the disk (the
Type-II migration, e.g. Lin & Papaloizou 1986; Crida & Bitsch
2017). Such a gap may become observable and the disk is then
classified as pre-transitional (according to Espaillat et al. 2010,
2014).

To summarise, the protoplanetary system within the scope
of this paper is assumed to consist of a gas disk with opacities
dominated by fully coupled dust, a pebble disk (strongly but not
fully coupled) and already formed low-mass embryos (∼1 ME)
that continue to grow by pebble accretion. Our hydrodynamic

simulations aim to investigate if different migration rates, evolv-
ing embryo masses, accretion heating and mutual perturbations
between embryos can break the resonant chains and create a
giant-planet core capable of opening a gap.

Our paper is organised as follows. In Sect. 2 we summarise
all the equations and approximations of our two-dimensional
(2D) RHD model. We also describe relevant initial and boundary
conditions. Technical details of the model and useful explanatory
derivations are given in Appendices A–C. A validation of our
model is given later in Appendix D. In Sect. 3 we present results
of our global-scale simulations focused on the migration of sev-
eral pebble-accreting and heated embryos. Section 4 describes
how the accretion heating affects the orbital eccentricities and
disk torques acting on the embryos. We discuss possible future
model improvements and also possibilities of relating our results
with observations in Sect. 5. Section 6 is devoted to conclusions.

2. Protoplanetary system modelling

The model we present is based on the publicly available 2D
hydrodynamic code fargo (Masset 2000; Baruteau & Masset
2008) which we extensively modified in order to follow the
evolution and mutual interactions between three components
of protoplanetary systems: a differentially rotating disk of the
nebular gas, a partially coupled disk of pebbles, and several
embedded planetary embryos. The fargo code is designed as
an Eulerian solver on a polar staggered mesh. The numeri-
cal scheme relies on the operator-splitting technique according
to Stone & Norman (1992), with a modified transport sub-step
which utilises van Leer’s second-order upwind interpolation
(van Leer 1977) for radial advection and the fargo algorithm
(Masset 2000) in the azimuthal direction. Let us briefly sum-
marise new physical modules that were implemented in our
modified version of the code.

Considering the gaseous disk, we relax the isothermal ap-
proximation and account for the evolution of temperature within
the disk. The extended set of hydrodynamic equations thus con-
tains the energy equation with multiple relevant source terms; in
particular: compressional heating, viscous heating, stellar irradi-
ation, vertical escape of radiation, radiative diffusion in the mid-
plane and radiative feedback to accretion heating of embryos.

Regarding the pebble disk, we assume it consists of mm- to
cm-sized pebbles (Lambrechts & Johansen 2012). Pebbles orbit-
ing within the nebular gas are subject to the aerodynamic drag
which changes their angular momentum. The characteristic time
scale of the angular momentum change is usually described by
the stopping time ts (Adachi et al. 1976; Weidenschilling 1977).
Its dimensionless form, the Stokes number, is defined as τ ≡
ΩKts, where ΩK denotes the Keplerian angular frequency. The
Stokes number is an important quantity encapsulating the parti-
cle size and coupling to the nebular gas. In this study, we follow
Lambrechts & Johansen (2014) and consider particles smaller
than the mean free path in the nebular gas, typically with τ . 0.1.
The friction then arises due to anisotropic collisions between in-
dividual gas molecules and pebbles and the drag operates in the
Epstein regime. Due to parametrisation by τ, we practically ne-
glect drag regimes relative to the local Reynolds number. Be-
cause of their aerodynamic properties, pebbles are strongly cou-
pled with the gas flow and thus we study their evolution using a
two-fluid model in which the pebble disk is modelled as another
Eulerian fluid which is, unlike the gas, pressureless and inviscid
(e.g. Youdin & Goodman 2005).

The embedded embryos are evolved in three dimensions
(3D) using a high-accuracy integration technique, accounting for
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close encounters, possible collisions, and merging. An artificial
vertical force acting on the embryos is applied to damp their in-
clinations as predicted for 3D disks (Tanaka & Ward 2004). The
embryos are allowed to grow by drag-assisted pebble accretion,
capturing pebbles from the circumplanetary flow. We also con-
sider that the embryos can be heated by this vigorous material
deposition and consequently radiate the excessive energy into
the surrounding gas.

The mutual interactions accounted for in the model are as
follows. Both the gas and pebbles evolve in the gravitational po-
tential of the protostar and embryos. The potential is computed
by an averaging procedure in a direction perpendicular to the
midplane to avoid unrealistic potential smoothing and spread-
ing (Müller et al. 2012). All the embryos participate in mutual
N-body interactions and they also feel the gravitational pull of
the gas disk, but the gravity of the pebble disk is ignored due to
its relatively low mass. The gas disk and pebbles are only cou-
pled through the linear drag term and no self-gravity is taken into
account. The detailed aspects of the model implementation into
fargo are elaborated in the following individual subsections.

2.1. Two-fluid model of the gas-pebble disk

In our hydrodynamic model, we study the evolution of the gas
surface density Σ, the vertically averaged gas flow velocity u =
(vr, vθ), the specific internal energy of the gas E, the surface den-
sity of the pebble disk Σp and its velocity field V = (Vr,Vθ).
The fundamental fluid equations to be solved can be written by
means of the vertically integrated quantities as follows:

∂Σ

∂t
+ ∇ · (Σu) = 0, (1)

∂u

∂t
+ u · ∇u = −

1
Σ
∇P +

1
Σ
∇ · T −

∫
ρ∇φdz

Σ
+

Σp

Σ

ΩK

τ
(V − u) , (2)

∂E
∂t

+ ∇ · (Eu) = −P∇ · u + Qvisc + Qirr + Qacc − Qrad, (3)

∂Σp

∂t
+ ∇ ·

(
ΣpV

)
= −

(
∂Σp

∂t

)
acc
, (4)

∂V
∂t

+ V · ∇V = −

∫
ρp∇φdz

Σp
−

ΩK

τ
(V − u) . (5)

Here P denotes the vertically integrated pressure, T is the vis-
cous stress tensor (e.g. Masset 2002), φ is the gravitational po-
tential arising from the protostar and planetary embryos, ρ and
ρp are the volume densities of the gas and pebbles, respectively.
The individual source terms on the right-hand side of the en-
ergy equation represent the compressional heating, the viscous
heating Qvisc, the stellar irradiation Qirr, the radiative diffusion
Qrad and the heating Qacc arising from pebble accretion which is
symbolically considered in the pebble mass continuity equation
as the −

(
∂Σp/∂t

)
acc

term. We emphasise that the gradient and
divergence operators are always 2D in our model.

The following ideal gas equation of state is introduced as the
thermodynamic closing relation

P = Σ
RT
µ

= (γ − 1) E, (6)

with R being the universal gas constant, µ = 2.4 g mol−1 being
the mean molecular weight and γ = 1.4 denoting the adiabatic
index (specific heat ratio).

Before proceeding to the description of all the individual
source terms, let us highlight that we assume a simple vertical
stratification of the disk in order to approximate certain effects
that are expected to operate in realistic 3D disks. The gas volume
density ρ (r, θ, z) follows a Gaussian form

ρ (r, θ, z) =
Σ(r, θ)
√

2πH(r, θ)
exp

(
−

z2

2H(r, θ)2

)
, (7)

where H = cs,iso/ΩK = cs/(
√
γΩK) is the local pressure scale

height and cs =
√
γP/Σ is the adiabatic sound speed which

differs from the isothermal sound speed cs,iso by a factor
√
γ.

The normalisation constant Σ/(
√

2πH) actually represents the
gas volume density ρ0 in the midplane. In principle, Eq. (7)
holds only for vertically isothermal disks, which is an assump-
tion we do not impose when discussing the energy source terms
in Sect. 2.2. But because recent 3D simulations demonstrated
that the optically thick parts of protoplanetary disks have a flat
vertical temperature distribution (Flock et al. 2013), we decided
to use Eq. (7) as a viable first approximation of the vertical strat-
ification.

2.2. Energy source terms

Let us first describe how the radiation transport is treated in our
model. The corresponding term Qrad is given by the vertically
integrated divergence of the 3D radiative flux F3D:

Qrad =

∞∫
−∞

∇3D · F3Ddz '

H∫
−H

∂Fz

∂z
dz + 2H∇ · F

≡ Qvert + 2H∇ · F, (8)

where we assumed that the vertical outward radiation is liberated
at H which is expected to be much smaller than the radial ex-
tent of the disk. The amount of energy transported by radiation
is therefore dominant in the vertical direction (D’Angelo et al.
2003). We estimate these radiative losses caused by the vertical
escape of radiation from both sides of the disk as

Qvert ' 2σRT 4
eff =

2σRT 4

τeff

, (9)

where σR is the Stefan-Boltzmann constant, T stands for the
midplane temperature and τeff is the effective optical depth.
Hubeny (1990) generalized the gray model of stellar atmo-
spheres in LTE for the case of accretion disks and found

τeff =
3
8
τopt +

1
2

+
1

4τopt
, (10)

where we implicitly assumed that the disk is stellar irra-
diated (otherwise 1/2 term should be replaced with

√
3/4;

D’Angelo & Marzari 2012) and that the mean Rosseland opacity
and the Planck opacity are identical which is a viable approxi-
mation as discussed, for example, by Bitsch et al. (2013). The
relation (10) is highly convenient in the case of a protoplane-
tary disk because it can characterise both optically thin and thick
environment.
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The optical depth τopt is measured from the midplane to the
disk surface and we estimate it as

τopt =

∞∫
0

κ(r, θ, z)ρ(r, θ, z)dz ' cκκ(r, θ)

∞∫
0

ρ(r, θ, z)dz

= cκ
κ(r, θ)Σ(r, θ)

2
, (11)

where cκ = 0.6 is a correction factor that accounts for the opacity
drop in the layers above the midplane (we refer to Müller & Kley
2012 for a similar approach). This parametric factor in fact sets
the local efficiency of vertical cooling and can be tuned so that
the resulting disk structure resembles the one obtained in 3D
models.

We adopt the power-law mean Rosseland opacity κ = κ0ρ
aT b

with the coefficients a and b derived by Lin & Papaloizou (1985)
and further refined by Bell & Lin (1994) for various temper-
ature intervals and corresponding opacity regimes. The transi-
tions between individual opacity regimes are smoothed out as in
(Lin & Papaloizou 1985; we also refer to Keith & Wardle 2014).

Coming back to the midplane radiative flux (see
Eq. (8)), we use the flux-limited diffusion approximation
(Levermore & Pomraning 1981; Klahr & Kley 2006) to express

F = −λlim
16σR

ρ0κ
T 3∇T · (12)

In this approximation, scattering effects are neglected and λlim
denotes the flux limiter, which is calculated according to Kley
(1989). The radiative transport is treated by means of the one-
temperature approach (Kley et al. 2009). This means that the in-
ternal energy of the gas is presumed to be dominated by the ther-
mal energy whereas the radiative energy is relatively small. The
radiation field is thermalised to the same temperature T as the
gas.

The stellar irradiation is governed by Qirr term which is com-
plementary to Qvert and reads

Qirr =
2σRT 4

irr

τeff

· (13)

The irradiation temperature Tirr can be obtained from the
projection of the stellar radiation flux onto the disk surface
(Chiang & Goldreich 1997; Menou & Goodman 2004; Pierens
2015)

T 4
irr = (1 − A)

(R?

r

)2

T 4
? sinα. (14)

Here A = 0.5 is the disk albedo, assumed to be a mean value
implicitly averaged over the stellar flux, and T? = 4370 K is
the effective temperature of the protostar with the stellar radius
R? = 1.5 R�. Together with the stellar mass M? = 1.0 M�, the
given parameters represent a protostar similar to T Tauri type
(Paxton et al. 2015). Finally, α is the grazing angle at which
the starlight strikes the disk. The grazing angle can be approx-
imated by reconstructing the disk surface from the local pres-
sure scale height H. Adopting the geometric formulation of
Baillié & Charnoz (2014), we use

α = arctan
(

dH
dr

)
− arctan

(
H − 0.4R?

r

)
· (15)

If α < 0, the corresponding surface facet is not oriented towards
the incident irradiating flux thus we set Qirr = 0 in this case.

Unlike in an isothermal model, the aspect ratio h(r) = H(r)/r
is not time independent but it evolves instead. Therefore the
disk can flare in its outer parts where the stellar irradiation
dominates the energy budget (D’Alessio et al. 1998; Dullemond
2002; Bitsch et al. 2013).

The viscous dissipation heating Qvisc is calculated according
to Mihalas & Weibel Mihalas (1984)

Qvisc =
1

2νΣ

(
τ2

rr + 2τ2
rθ + τ2

θθ

)
+

2νΣ
9

(∇ · u)2 . (16)

Here ν = 5 × 1014 cm2 s−1 is the kinematic viscosity and τi j
corresponds to the individual components of the viscous stress
tensor T. We emphasise that the viscosity is fixed and not solved
explicitly in the model.

The accretion heating term Qacc is non-zero only in the near-
est vicinity of embedded planetary embryos and it depends on
their accretion rate. The luminosity of an accreting embryo with
the mass Mem and the radius Rem is given by

L =
GMem

Rem

dMem

dt
· (17)

The resulting heating of the surrounding gas is provided by plac-
ing an inner heat source into the grid cell which contains the
respective embryo. The specific power of this source reads

Qacc =
L
S
, (18)

where S is the cell area. In this work, we assume that the mass
growth of embryos is driven solely by pebble accretion. The ac-
cretion rate dMem/dt is computed self-consistently as described
in Sect. 2.5. We emphasise that the accretion heating term Qacc
is not always switched on in our simulations and we remind the
reader in such cases.

The numerical solution of the energy equation (Eq. (3)) is
described in Appendix A.

2.3. Initial state of the gas disk

The thermal equilibrium of any gaseous disk studied in our
model is achieved by a rather complicated interplay between
the heating and cooling sources introduced above. Therefore it
would be difficult to search for an analytic formula describing
the initial state of an isolated disk in equilibrium. In order to ini-
tialise the hydrodynamic fields over the computational domain,
we use either simple power-law functions or equilibrium solu-
tions known from less sophisticated models. The resulting gas
disk, which lacks the pebble component and embedded objects
at this point, is then numerically relaxed towards its stationary
state. This serves as a preparation stage for the following com-
plete simulations.

The non-relaxed hydrodynamic profiles are assumed to be
symmetric in θ. The surface density is described by the power-
law profile Σ = 750 (r/(1 AU))−0.5 g cm−2. We start with an ini-
tially non-flaring disk, having the aspect ratio h = H/r = 0.05.
In accordance with this setup, we can subsequently initialise cs,
P and T . We verified that the choice of initially non-flaring disk
does not prevent flaring during the relaxation. The radial veloc-
ity vr is initially set to zero, while vθ is set by imposing the equi-
librium between the central gravity, pressure gradient, and cen-
trifugal acceleration. The disk is fully extended in azimuth and
radially bordered by the inner boundary rmin = 2.8 AU and the
outer boundary rmax = 14 AU. The polar computational domain
is divided into 1536 azimuthal sectors and 1024 evenly spaced
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radial rings. The grid sampling should be sufficient to reasonably
resolve the corotation region of low-mass embryos and properly
reproduce the related torques (e.g. Lega et al. 2014).

2.4. Initial state of the pebble disk

We use the hydrodynamic polar grid to insert a sea of pebbles
within the gaseous disk which has already been relaxed towards
its equilibrium state in the absence of planetary embryos. Using
solely the hydrodynamic quantities together with several param-
eters introduced in this section, we initialise Σp, Vr and Vθ over
the computational domain and evolve the fluid of pebbles over
the course of the simulation.

The aerodynamic properties of pebbles which interact with
the gas in the Epstein regime are characterised by the Stokes
number

τ =
ρbRp

ρ0cs
ΩK, (19)

where ρb = 1 g cm−3 is the pebble bulk density, Rp is the peb-
ble size and ρ0 is the midplane volume density of the nebular
gas. Then the initial velocity field can be described by an ana-
lytic estimate for a pebble drifting in a steady-state gaseous disk
while neglecting the presence of any massive perturbers besides
the protostar (e.g. Nakagawa et al. 1986; Guillot et al. 2014, and
also Appendix B)

Vr = −
2τ

1 + τ2

(
ηvK −

1
2τ
vr

)
, (20)

Vθ = vK −
1

1 + τ2

(
ηvK −

τ

2
vr

)
, (21)

where vK is the local Keplerian velocity and η measures how
much the gas departs from local Keplerian rotation

vθ = (1 − η)vK. (22)

In simple stationary disks, η is a monotonic function reflecting
the sub-Keplerian rotation of the pressure-supported nebular gas.
In realistic disks, however, the situation is more complicated;
the η profile is affected, for example, by the pressure dips and
bumps, which can occur at the opacity transitions (Bitsch et al.
2014), and also by viscous shear.

As mentioned above, we aim to describe the pebble disk by
a single fluid while in reality, protoplanetary systems are cer-
tainly populated by pebbles of various sizes. Despite our sim-
plification, we would like the material delivery towards the ac-
creting embryos to be realistic. It is thus important to discuss
the choice of the particle size and Stokes number. As argued by
Birnstiel et al. (2012), most of the pebble mass is concentrated
towards the upper end of the size spectrum and, at the same time,
the largest pebbles are the fastest drifters. At a given radial dis-
tance, it is reasonable to assume that the pebble size distribution
has a steep upper cutoff and all the particles larger than this cutoff
are swiftly removed by the drift, while particles smaller than this
cutoff do not significantly contribute to the total mass of solids.
In this work we presume that such a dominant size is also the
best choice for characterising the pebble disk by a single fluid so
that its resulting hydrodynamic behaviour is the most similar to
a real pebble disk, which is a mixture of many particle species.
In other words, the dominant pebble size can be viewed as an
effective workaround to avoid using a numerically demanding
multi-fluid model and obtain a reasonably evolving disk of solids

at the same time. We highlight that Rp is always understood as
the dominant drift-limited size in what follows and that we also
neglect other size-limiting processes such as fragmentation.

The Stokes number τd of the dominant pebble size can be
found by balancing the characteristic time scale for the particle
growth tgrow = Rp/Ṙp and the time scale of the particle removal
by the drift tdrift = r/Vr. Following Garaud (2007) and staying
within the limits of the Epstein regime, the growth time scale is

tgrow =
4

√
3εp

(
Σp/Σ

)
ΩK

, (23)

and depends only on the local solid-to-gas ratio, orbital fre-
quency and the pebble coagulation efficiency, assumed εp = 0.5.
Because τ < 1, we approximate Vr ≈ −2τηrΩK and, by equating
the characteristic time scales, we write

τd =

√
3

8
εp

η

Σp

Σ
. (24)

Up to this point, the pebble surface density Σp was uncon-
strained. When studying pebble accretion, it is useful to keep
track of the total radial mass flux ṀF of solids through the sys-
tem. In the following, we set the initial ṀF = 2 × 10−4 ME yr−1

(Lambrechts & Johansen 2014) as an input parameter and as-
suming an equilibrium situation, we impose the following conti-
nuity requirement (Lambrechts & Johansen 2014)

Σp =
ṀF

2πrVr
· (25)

Plugging Eq. (25) in (24) and using the approximate expression
for Vr again, one finds

τd =
1
rη

√ √
3εpṀF

32πΩKΣ
· (26)

The corresponding dominant particle size can be easily obtained
when using the inverse of Eq. (19). In the last expression, τd
depends only on two model parameters (εp and ṀF) and the hy-
drodynamic state of the gaseous background. Therefore it is a
convenient starting point for the pebble disk initialisation.

To summarise the initial conditions, we first use the com-
bination of Eqs. (19) and (26) to find Rp(r). Because the re-
laxed gaseous disk is very close to axial symmetry (within dis-
cretisation errors and numerical artefacts) when we incorporate
the pebble disk, it is reasonable to consider that the pebble size
changes only radially. We further assume that once the planetary
embryos are present, they do not cause global-scale changes of η,
thus the initial Rp(r) profile is kept fixed during our simulations.
Subsequently, we calculate the initial (Vr,Vθ) field (Eqs. (20)
and (21)) which sets Σp from the mass flux conservation law
(25). We emphasise that unlike Rp(r), the Stokes number τ(r, θ) is
considered a cell-dependent quantity during the simulations and
it is recalculated each time step to obtain proper aerodynamics
for a given particle size moving in the evolving gaseous back-
ground. This is to account for situations when pebbles suddenly
enter gas clumps or underdense regions.

2.5. Pebble accretion

Pebble accretion enters our model through Eq. (4) in which
it acts like a mass sink. At the same time, the mass removed
from the pebble component is accreted by the growing embryos.
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According to Lambrechts & Johansen (2012), two fundamental
regimes of pebble accretion have to be considered, namely the
Bondi1 and the Hill regimes, while the transition between the
two occurs when the pebble accretion Bondi radius RB becomes
comparable to the Hill sphere radius RH of the accreting body.
The former radius corresponds to the distance whereby a peb-
ble with impact parameter b ≤ RB will suffer a ≥1 rad deflec-
tion, while the latter radius defines the region in which the grav-
itational pull of the accreting body dominates over the primary
field. The defining equations are

RB =
GMem

v2
rel

, (27)

and

RH =

GMem

3Ω2
K

1/3

, (28)

where vrel denotes the relative velocity between the pebble and
the accreting body with mass Mem.

In the Bondi regime, if RB . RH, the only pebbles that ex-
perience a significant deflection arrive through a small fraction
of the Hill sphere thus they enter the encounter region with the
relative velocity which is set by the local headwind experienced
by the embryo, therefore vrel ' vhead.

On the other hand, if RB & RH, the relative encounter veloc-
ity for most of the pebbles is dominated by the Keplerian shear
which becomes more important than headwind on orbital sep-
arations comparable to RH. In such a case, the Hill regime is
triggered. It is obvious that the equality of RB and RH is reached
for a specific value of Mem called the transition mass

Mt =

√
1
3
v3

head

GΩK
· (29)

Super-Earth-like embryos which we investigate in this paper
usually grow in the Hill regime.

Lambrechts & Johansen (2012) also found that there is a
well-defined maximum distance at which the pebbles must ap-
proach the embryo in order to be accreted. This effective accre-
tion radius for both regimes is given by

Reff =


RB

√
τ

tBΩK
, Bondi regime (Mem < Mt)

min
[
RH

(
τ

0.1

)1/3
,RH

]
, Hill regime (Mem ≥ Mt)

(30)

where tB = RB/vrel is the crossing time of the Bondi radius.
Because our simulations cover a relatively large portion of

the protoplanetary disk, the grid resolution near embryos is not
detailed enough to capture the final stage of the in-spiraling mo-
tion of pebbles. Thus the fluid model does not allow for fully
self-consistent pebble accretion calculation because we are not
able to resolve the flow of pebbles falling on the embryo’s sur-
face. We instead rely on the knowledge of the effective accretion
radius Reff and we employ a recipe which is somewhat similar
to the usual gas accretion treatment in 2D hydrodynamic models
(Kley 1999).

First, we identify all the grid cells which have a midplane
distance from the embryo smaller than Reff . Second, we compute
the following mass-related quantities:

1 In the original work of Lambrechts & Johansen (2012), the Bondi
regime is referred to as the drift regime.

– The expected embryo mass increase ∆Mexpec: here we use
the analytic accretion rates derived from detailed pebble ac-
cretion models (Lambrechts & Johansen 2012). Following
Morbidelli et al. (2015), we set

vrel =

{
vhead, Bondi regime (Mem < Mt)
vshear, Hill regime (Mem ≥ Mt) ,

(31)

where vshear is the relative velocity due to Keplerian shear at
the orbital separation Reff , and

∆Mexpec =


2ReffvrelΣ̄p × ∆t,

(
H̄p < Reff

)
πR2

effvrel
Σ̄p
√

2πH̄p
× ∆t,

(
H̄p ≥ Reff

)
,

(32)

where the overbar indicates the mean value taken over the
respective cells and ∆t is the time step. Because vrel is cal-
culated self-consistently, the pebble accretion rate is approx-
imately corrected for eccentric orbits (vrel increases with the
eccentricity, Mt increases as well and the embryo can experi-
ence a transition to the Bondi accretion regime which is less
effective).

– The total available mass ∆Mavail: assuming that pebbles have
non-zero scale height Hp and that their vertical z-distribution
is Gaussian (like for the gas; cf. Eq. (7)), we calculate ∆Mavail
by numerically integrating the pebble fluid mass inside the
overlap between the vertically spread disk of pebbles and the
accretion sphere of radius Reff , located around the embryo
which can generally be shifted in z direction. The purpose of
∆Mavail is mainly to account for 3D effects, for example in-
clined orbits, which can lead the accreting bodies away from
their feeding zones.
The pebble disk scale height is (Youdin & Lithwick 2007)

Hp ' H

√
αp

τ
, (33)

where αp = 1 × 10−4 parametrises the turbulent stirring of
the solids in the protoplanetary disk.

Finally, the mass transfered on the embryo in one time step is

∆Mem = min(∆Mexpec,∆Mavail). (34)

The pebble surface density in the cells below Reff is reduced
accordingly. This instantaneous accretion rate ∆Mem/∆t is also
used to calculate the accretion heating Qacc (Eq. (18)). The
change in Σp due to accretion can propagate to radial distances
interior to the embryo, thus affecting the pebble mass flux.

2.6. Numerical solution of the pebble fluid motion equation

After the accretion step, the hydrodynamic quantities describing
the pebble disk are evolved as follows. First, the Stokes number
τ(r, θ) is recalculated for each cell from Eq. (19) using the known
dominant pebble size Rd and the quantities ρ0 and cs reflecting
the state of the gaseous background. Second, the velocity field
Vr, Vθ is updated under the action of the source terms standing
on the right-hand side of the pebble fluid motion Eq. (5). Third,
all the quantities are advected using the same transport fargo
algorithm as for the gas.

Regarding the source step, it is necessary to take into con-
sideration that pebbles are usually well coupled to the gas and
they have stopping times ts much smaller than the typical time
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step ∆t adopted for the explicit update of the gas dynamics. Ap-
plying the same explicit integration for the pebble fluid might
require significant limitations of ∆t. In order to avoid this, we
adopt a semi-implicit solution as in (Rosotti et al. 2016; we refer
to Appendix C for a brief overview of this method), also includ-
ing a particle diffusion term related to turbulent mixing. This is
accounted for by adding the diffusive velocity (Clarke & Pringle
1988),

VD = −
ν

Sc
Σ

Σp
∇

Σp

Σ
, (35)

to the pebble fluid velocity. The Schmidt number Sc = 1 is con-
sidered, representing the ratio of the gas diffusivity to the pebble
diffusivity (e.g. Cuzzi et al. 1993; Youdin & Lithwick 2007).

2.7. Boundary conditions

The radial boundaries rmin and rmax are closed for all hydrody-
namic quantities. In addition, we set wave-killing zones in the
annuli adjacent to the inner and outer boundary. These zones
cover the intervals of r ∈ [rmin, 1.2rmin] and r ∈ [0.9rmax, rmax].
Inside these zones, the following equation is solved each
time the boundary condition is applied (Kley & Dirksen 2006;
de Val-Borro et al. 2006)

dq
dt

= −
q − q0

tdamp
f (r) , (36)

where q represents any hydrodynamic quantity and q0 is its ref-
erence value that is about to be reached by the damping. The
characteristic time scale is tdamp = 0.1Torb (Müller & Kley 2013)
with Torb being the Keplerian orbital period at the corresponding
(inner or outer) boundary. By f (r) we denote a dimensionless
ramp function which decreases from 1 at the boundary to 0 at
the end of the wave-killing zone (de Val-Borro et al. 2006).

The choice of q0 for the gas disk is the following: The ra-
dial velocity vr is damped to zero at the boundaries. The remain-
ing hydrodynamic quantities characterising the gas (Σ, E, vθ) are
damped towards the values they attain at the end of the relax-
ation stage. Owing to these conditions, any spiral wake that is
invoked by an embedded planet cannot reflect at the boundary.

The boundary conditions for pebbles are also imposed within
the wave-killing zones by damping Σp, Vr and Vθ towards the ini-
tial steady-state solutions. Owing to these conditions, the outer
wave-killing zone behaves like a pebble reservoir and the pebble
disk does not decay in time due to its inward drift.

2.8. Embryo-disk interaction

In 2D simulations, a standard procedure when simulating the
planet-disk gravitational interactions is to replace the real plane-
tary potential with a Plummer-type smoothed potential of a point
mass (Morbidelli et al. 2008) φem = −GMem/

√
s2 + z2

em + ε2,
where s =

√
(x − xem)2 + (y − yem)2 is the midplane separa-

tion between a cell center and an embryo with 3D coordinates
(xem, yem, zem) and ε is the smoothing length, typically taken as
a fraction of the pressure scale height Hem at the embryo’s orbit.
The reason for the smoothing is twofold. First, it is to keep the
otherwise diverging potential regular for the gas parcels located
close to the planet and second, it is to mimic the interaction with
columns of gas instead of razor-thin midplane distribution.

However, we decided not to use the ε-smoothed potential in
our case because of the following inconveniences. As the em-
bryo masses are typically Mem ≈ 1 ME, one can expect that the

Hill sphere of the embryo will be smaller than the vertical extent
of the disk most of the time. This means that the ε-smoothing
based on the thickness would cause a significant underestimation
of the embryo’s gravitational influence already outside the Hill
sphere (Kley et al. 2009). This could have at least two negative
impacts on the reliability of our model: the torques arising from
the regions close to the planet would be poorly reproduced and
too many pebbles might be able to cross the Hill sphere without
being accreted as they would drift in a shallower potential well.

To avoid these difficulties, we follow Klahr & Kley (2006)
and use the following deeper potential

φem =


−

GMem

d
, (d > rsm)

−
GMem

d

( d
rsm

)4

− 2
(

d
rsm

)3

+ 2
d

rsm

 , (d ≤ rsm)
(37)

where rsm = 0.5RH is the actually used (sufficiently small)
smoothing length. For the purpose of the embryo-disk interac-
tion modelling, we assume that the gas is stratified symmetri-
cally above and beneath the midplane, according to the distribu-
tion function (7). Hereinafter, d is the 3D separation between a
point in the space (located above or below a cell center) and the
embryo.

Because the gas cells in our model are 2D, we employ
a method to vertically average the 3D potential given by
Eq. (37) in the calculations. Adopting the approach outlined by
(Müller et al. 2012; we also refer to their Appendix A), the ac-
celeration of 2D gas cells in the gravitational field of the embryo
can be obtained by calculating the specific density of the force
projected on the midplane

Fem(s) = −

∫
ρ
∂φem

∂s
dz, (38)

where φem follows from Eq. (37) and ρ(r, θ, z) from Eq. (7). As
demonstrated in Müller et al. (2012), replacing the integral with
a coarse sum over at least ten vertical grid points per side of the
disk leads to an accurate yet numerically feasible reproduction
of the realistic 3D interaction.

Equation (7) in principle neglects the influence of embryos
on the vertical gas distribution in their vicinity. Although this ef-
fect can (and should) be easily incorporated in fully isothermal
models (as in Müller et al. 2012), it is not straightforward in our
non-isothermal disk because we only use an approximate treat-
ment of the vertical radiation transport, the model is convection-
free, and so on. Nevertheless, we found, by means of numeri-
cal experiments, that even the simple ρ(z) dependence leads to
results which agree with some of the advanced 3D simulations
very well (Appendix D). This justification is possible due to the
local nature of the pressure scale height H in our model and also
owing to the mass range of embryos which we study; they are not
massive enough to perturb the disk scale height significantly, nor
do they form circumplanetary disks. Absence of large gaseous
structures gravitationally bound to the embryos is also a motiva-
tion for including all parts of the Hill sphere in the disk-embryo
torque computation.

In general, the orbits of embryos can become inclined or ec-
centric during mutual close encounters, it is thus necessary to en-
sure the inclination damping and the circularisation of the orbit
as it would operate in 3D disks. Unfortunately, our 2D disk can-
not support vertical waves and moreover, Eq. (7) always leads
to a symmetric density distribution with respect to the midplane
which is certainly not true if inclined perturbers are present. An
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artificial vertical force is thus imposed on the embryos in order
to damp their orbital inclinations in a fashion similar to realistic
3D disks (Tanaka & Ward 2004):

Fz = β
MemΣΩK

c4
s

(
2Ac

zv
em
z + As

zzemΩK

)
, (39)

where vem
z is the vertical component of the planet’s velocity,

Ac
z = −1.088 and As

z = −0.871 are the coefficients given by
Tanaka & Ward (2004). The parameter β is problem-dependent
and has to be tuned so that the eccentricity damping, provided
naturally by the potential (Eq. (37)), and the inclination damp-
ing operate both on comparable time scales.

Finally, let us point out that the stellar potential is also mod-
elled in terms of the acceleration obtained by the vertical averag-
ing procedure. The evolution of pebbles in the gravitational field
follows the same recipe as for the gas (cf. Eqs. (37) and (38)) but
their scale height Hp is of course different (Eq. (33)).

2.9. Embryo-embryo interaction

The mutual gravitational interaction among the massive bod-
ies is solved using the ias15 integrator (Rein & Spiegel 2015)
from the rebound package (Rein & Liu 2012) which we in-
terfaced with fargo. The integration follows a 15th order
non-symplectic Runge-Kutta scheme improved with the Gauss-
Radau quadrature (we refer also to Everhart 1985). There are
several fundamental reasons for choosing this integrator over
more common symplectic integrators:

– The time step ∆t in fargo is controlled by the hydrodynamic
Courant-Friedrichs-Lewy (CFL) condition and the original
code adopts the same time step to ensure that the planets
and gas evolve synchronously. Some symplectic integration
schemes can produce numerical errors if the time step is not
fixed.

– The N-body integrator must be capable of dealing with close
encounters which are expected to occur in our simulations.
ias15 is convenient for this purpose because of its high-
order accuracy and adaptive time-step subdivision.

– Although ias15 is not symplectic in nature, it is reported
to preserve the energy error within the double floating-point
machine precision (Rein & Spiegel 2015). Moreover, the en-
ergy error behaves like a random walk which we think is the
best option for the rather short time spans (compared to long-
term integrations in celestial mechanics) that our simulations
cover.

Additionally, the rebound package contains several routines to
detect and resolve collisions. In our runs, we use the direct colli-
sion search and the embryos are allowed to merge whenever they
collide. Merging is treated in the most simple way, in which the
mass and momentum are conserved but the released energy and
possible mass loss are neglected. The embryo radii, which are
used to detect collisions, are inferred from the embryo masses,
assuming the spherical shape and the uniform material density
3 g cm−3.

2.10. Code performance

The performance of our new RHD code of course depends on
the given machine architecture and the simulations usually re-
quire parallel computation in order to be efficient. Following
the original fargo code, our version supports distributed mem-
ory parallelism using MPI-based domain decomposition, shared

Table 1. A summary of the hydrodynamic model parameters introduced
in Sect. 2.

Parameter Notation Value/reference

Gas surface density Σ 750
(

r
1 AU

)−0.5
g cm−2

Kinematic viscosity ν 5 × 1014 cm2 s−1

Non-relaxed aspect ratio h H/r = 0.05
Adiabatic index γ 1.4

Mean molecular weight µ 2.4 g mol−1

Mean Rosseland opacity κ Bell & Lin (1994)
Vertical opacity drop cκ 0.6
Stellar temperature T? 4370 K

Stellar radius R? 1.5 R�
Disk albedo A 0.5

Radial grid resolution Nr 1024
Azimuthal grid resolution Nθ 1536

Inner radial boundary rmin 2.8 AU
Outer radial boundary rmax 14 AU
Pebble radial mass flux ṀF 2 × 10−4 ME yr−1

Pebble turbulent stirring αp 1 × 10−4

Schmidt number Sc 1.0
Coagulation efficiency εp 0.5

Pebble bulk density ρb 1 g cm−3

memory parallelism using OpenMP, or a combination of both.
The simulations in this paper were performed on clusters of In-
tel Xeon E5-2650 CPUs (v2 and v4; with comparable core per-
formance '33 according to the SPECfp2006 benchmark) using
MPI exclusively. To provide a typical computation time required
for our simulations, here we present values measured for a test
simulation with the full two-fluid disk, four embedded embryos
and all implemented radiative processes. The simulation spanned
50 kyr of evolution and required '5.4 d on 32 cores and '3 d on
96 cores.

3. Protoplanetary system simulations

3.1. Equilibrium disk structure

In this section, we discuss global characteristics of the proto-
planetary disk in thermal equilibrium, before we actually start
simulations with embedded embryos. All the important hydrody-
namic model parameters were introduced one by one throughout
Sect. 2 and we summarise all of them in Table 1 for the reader’s
convenience.

Figure 1 (top panel) shows the aspect ratio h(r) = H(r)/r
and the temperature radial profile T (r) of the modelled disk. We
notice that h first increases with the radius, reaches a maximum
at r ' 4 AU, drops again when moving to r > 4 AU and has
another turn-over point at r ' 7 AU. The temperature T on the
other hand steadily decreases outwards as a sequence of power-
law functions with slopes that change at radii corresponding to
the inflection points in h.

We can follow the reasoning of Bitsch et al. (2013) to explain
the changes in h as well as in T . Looking at the opacity pro-
file κ(r) (bottom of Fig. 1), we notice that it has a maximum at
r ' 4 AU. This is related to the temperature rise up to T ≈ 170 K
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Fig. 1. Top: radial profile of the aspect ratio h = H/r (black curve, left
vertical axis) and midplane temperature T (red dashed curve, right ver-
tical axis) in our disk model. Bottom: radial profile of the opacity κ. The
plots show the state reached after a relaxation, with all the heating and
cooling terms in balance. This is considered an equilibrium state prior
to the follow-up simulations with embedded embryos. Vertical dotted
lines indicate important changes in the disk structure, namely the snow-
line close to r ' 4 AU and the transition to the flared stellar-irradiated
outer region near r ' 7 AU.

at which ice grains sublimate (Bell & Lin 1994), a snowline is
formed and silicate grains become the main source of the opac-
ity. The opacity maximum at r ' 4 AU prolongs the radiative
cooling time scale and viscous friction deposits more heat in the
midplane and creates a thermal pressure gradient which puffs up
the disk. Therefore the maximum of h corresponds to the maxi-
mum of κ.

The transition of h at r ' 7 AU cannot be explained in the
same way because κ is steadily decreasing in this region (there is
no change of the opacity regime), albeit with a shallower slope.
The transition is rather caused by the change of the dominant
heating source. Unlike at r < 7 AU, where the viscous shear is
the main source of heating, the stellar irradiation becomes more
efficient and prevails at r > 7 AU. This is possible because both Σ
and κ are decreasing in the outer disk and so is the vertical optical
depth τopt. Therefore starlight can penetrate deeper into the disk,
counteract the radiative cooling and slow down the temperature
decrease in the outer disk which becomes flared.

3.2. Dominant pebble properties

The described transitions in the gas disk are of a great impor-
tance for the remaining components of the system – both pebbles
and embryos. Let us turn our attention to pebbles first. Figure 2
shows the radial profile of the gas rotation parameter η (Eq. (22)).
The profile implies that the rotation curve of the gas changes
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Fig. 2. Radial profile of the η parameter (black curve, left vertical axis)
which expresses the difference between the sub-Keplerian gas veloc-
ity and the Keplerian velocity, vθ = (1 − η)vK. Initial radial profile of
the dominant Stokes number τd (blue dashed curve, right vertical axis)
which characterises aerodynamic properties of pebbles prevalent in the
size-frequency distribution of solid particles.

at the 4 and 7 AU transitions. For example, there is a rotation
slowdown in the inner part of the disk due to stronger pressure
support and viscous friction.

The rotation velocity of the gas is directly related to the head-
wind felt by drifting pebbles. Because the radial pebble mass
flux through the disk is assumed to be at a steady state, the radial
distribution of the dominant Stokes number τd (Eq. (26)) must
adapt to the η profile in order to maintain the flux, as shown by
the blue dashed curve in Fig. 2. We recall that in our model, the
initial τd(r) profile sets the dominant pebble sizes Rp(r) through-
out the system for the rest of the simulation. Going from large r
inwards, Rp first grows from 7.5 to 9 cm, when crossing r ' 7 AU
the sizes begin to decrease down to 5 cm and finally they increase
at r < 4 AU up to 8 cm.

However, the described variations of particle sizes and
Stokes numbers are rather small, within a factor ∼2 in the region
of interest. This is expected because the rotation curve transitions
are smooth and the initial state of the pebble disk (Sect. 2.4) is
based on the Lambrechts & Johansen (2014) model which pre-
dicts the properties of the drifting pebbles to depend weakly on
η in smooth disks.

3.3. Migration map

Let us also discuss the influence of the gas disk structure on
the orbital evolution of embedded planetary embryos. In par-
ticular, we can estimate the expected direction and rate of the
Type-I migration of an embryo, depending on its mass and
location in the disk. As in for example Kretke & Lin (2012)
or Bitsch et al. (2013), we apply the analytical formulae from
Paardekooper et al. (2011) on the azimuthally averaged pro-
files of the equilibrium disk and compute the torque acting
on embryos. We do not list individual steps of the torque cal-
culation here, as there are many, but note that the model of
Paardekooper et al. (2011) is 2D and gives a prediction for low-
mass planets on fixed circular orbits, while accounting for both
Lindblad and corotation torques in the non-linear regime, sat-
urated and unsaturated limits. The heating torque is not con-
sidered in their model. Moreover, they used the ε-smoothed
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Fig. 3. Migration map based on the equilibrium state of the protoplane-
tary disk. The colour code shows the normalised value of the total torque
γΓtot/Γ0 acting on an embryo with the mass Mem (vertical axis) placed
on a circular orbit at the radial distance r (horizontal axis) in the disk.
Calculated according to Paardekooper et al. (2011), using the constant
kinematic viscosity ν = 5 × 1014 cm2 s−1 and the potential smoothing
parameter ε = 0.4Hem.

Plummer-type potential for planet-disk interactions and thus
their torque formulae are parametric in the smoothing length ε.

The resulting migration map, calculated for rather small ε =
0.4Hem, is shown in Fig. 3. The total torque Γtot felt by embryos
of various masses Mem is normalised as γΓtot/Γ0, where

Γ0 =

(
q

hem

)2

Σemr4
emΩ2

em, (40)

q = Mem/M? is the embryo-to-protostar mass ratio and all of
the remaining quantities are calculated at the respective orbital
radius rem. It is important to emphasise that Fig. 3 is only an
auxiliary diagram which does not exactly represent the torque
felt by embryos in our simulations (we refer to Appendix D for
a comparison of torques with Paardekooper et al. 2011). Despite
this, it is a useful tool for getting a general picture of the expected
migration rates in different regions of the disk before actually
performing self-consistent simulations.

We notice there are two borderlines between positive and
negative torques in the disk. The first is located at the snow-
line (r ' 4 AU) and the second is located at (roughly) r ' 7 AU,
that is, the transition between the viscously heated and stellar-
irradiated region. The outer borderline represents a zero-torque
radius where an accumulation (convergent migration) of em-
bryos is expected to occur because positive torques Γtot drive the
embryos outwards while negative torques inwards.

In the positive torque region, the negative Lindblad torque
is suppressed by the corotation torque. The corotation torque
generally arises as the gas parcels performing U-turns exchange
angular momentum with the embryo and it is known to be
determined by the vortensity distribution which can be mod-
ified by advection along the streamlines, or additional vortic-
ity can be produced by the temperature and entropy gradients
(Baruteau & Masset 2008; Paardekooper & Papaloizou 2008).
The latter is responsible for the strong positive torque between
the snowline and the stellar-irradiated region because a suitable
(negative) entropy gradient is present due to the aspect ratio
decrease.

The positive torque region should exist only for masses
1.5 ME . Mem . 15 ME for which the thermodynamic condi-
tions in the surrounding disk can sustain the corotation torque.
The corotation torque can be prevented from saturation when the
viscous and heat diffusion time scales are shorter than the whole
libration time scale (which decreases with increasing embryo
mass) but longer than the single U-turn time scale (e.g. Pierens
2015).

3.4. Case I – migration of non-accreting embryos in the gas
disk only

Hereinafter we present and compare three different simulation
cases which start from the equilibrium disk and are numerically
evolved for time spans covering tspan ≈ 50 kyr. In all these simu-
lations, we placed four embryos with equal mass Mem = 3 ME on
initially circular orbits with semimajor axes equal to a1 = 5 AU,
a2 = 6.7 AU, a3 = 8.4 AU and a4 = 10.1 AU; the embryos be-
ing numbered inside out. The initial inclinations were randomly
chosen as small non-zero values (.0.1◦). The mass of the em-
bryos is always introduced into the system gradually in order to
avoid shocks. The same holds for the cases in which the embryos
act as the heat sources – the released heat is gradually amplified
from zero towards the self-consistently calculated value during
several initial orbits.

The simulation cases differ in the following manner. In
Case I, we completely neglect the pebble disk, thus the embryos
interact only with the gaseous disk and among themselves. Their
masses remain fixed and they do not release any heat into their
vicinity. In Case II, the pebble disk is included and the embryos
are allowed to accrete from it, but the corresponding accretion
heating is still switched off. Therefore the heating torque can-
not operate. Finally, Case III is the same as Case II except the
accretion heating is switched on. Case I represents a relatively
standard scenario (comparable e.g. with Pierens 2015) in which
one can study interactions of multiple embryos with the non-
isothermal radiative disk. We already made some predictions of
the embryo migration rates for this case in Sect. 3.3.

Figure 4 (top panel) shows the temporal evolution of the os-
culating semimajor axis a, periastron distance qp = a(1 − e)
and apoastron distance Qa = a(1 + e) of embryos. At the be-
ginning, embryos 1 and 2 (purple and blue curves, respectively)
migrate outwards while embryos 3 and 4 (orange and red curves)
migrate inwards, in accordance with the preliminary migration
map (Fig. 3). After '8 kyr of convergent migration towards the
zero-torque radius, the outermost three embryos become locked
in mutual mean-motion resonances which start to excite their
orbital eccentricities. The innermost embryo catches up with
the resonant chain at '17 kyr and shortly after its eccentricity
excitation it undergoes a close encounter with the second embryo
during which they switch positions in the disk. As embryo 1 is
scattered outwards, it interacts with embryo 3 in a series of close
encounters which, due to damping effects of the surrounding
disk, end up in a formation of a coorbital pair (1:1 commensura-
bility). The system remains stable for the rest of the simulation.

3.5. Case II – introducing pebble disk and embryo growth
by pebble accretion

In Case II, the pebble disk is considered and the embryos grow
by pebble accretion. The pebble accretion rate onto individ-
ual embryos, which sets their mass growth and eventually the
amount of heat released to their surroundings (Sect. 3.6), is
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Case II: Embryo mass growth by pebble accretion
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Case III: Embryo mass growth and heating by pebble accretion

1

2

3

4

2+4merger
4.2 + 4.2 ME

(2+4)+3merger
8.7 + 4.3 ME

coorbital
pair

13.8 & 4.3 ME

Fig. 4. Temporal evolution of semimajor axes a(t), periastron distances
qp and apoastron distances Qa of four embryos with the initial mass
3 ME in three distinct simulation cases: Case I neglecting the pebble disk
(top), Case II including the pebble disk but only allowing for the mass
growth of embryos by pebble accretion (middle) and finally Case III,
considering also the effect of accretion heating (bottom). Embryos are
numbered from 1 to 4. Additional arrows and labels indicate mergers or
coorbital pairs detected in the simulations, with corresponding embryo
masses which can grow by pebble accretion (Cases II and III) or merg-
ing. Striking differences are observed in Case III as the migration rates
are modified by the heating torque, orbits become moderately eccen-
tric shortly after the simulation starts and the evolution is more violent
compared to Cases I and II.

shown in Fig. 5 in terms of the filtering factor F, defined as

F ≡
Ṁem

ṀF
· (41)
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Dashed lines: Eq. (33) from Lambrechts & Johansen (2014)
Solid lines: our model

Embryo 1 at 5.0 AU
Embryo 2 at 6.7 AU
Embryo 3 at 8.4 AU

Embryo 4 at 10.1 AU

Fig. 5. Filtering factor F measured for the embryos at the beginning
of Case II (solid curves); also applicable in Case III. As a comparison
(dashed lines), we plot the filtering factors calculated at t = 0 accord-
ing to formula (33) from Lambrechts & Johansen (2014). The analytical
prediction is in good agreement with results of our model.

We plot its temporal dependence with respect to a fixed value of
the radial pebble mass flux, ṀF = 2 × 10−4 ME. We compare the
filtering factor measured at the beginning of Case II with the an-
alytical formula from Lambrechts & Johansen (2014) which we
applied on the equilibrium disk model. At t = 0, F is in an excel-
lent agreement with the analytical prediction and at later times,
the differences are not larger than 3%. Temporal oscillations of F
are due to the nature of the accretion algorithm implementation.
The expected embryo mass change ∆Mexpec (Eq. (32)) depends
on the instantaneous Σ̄p within the accretion radius. The amount
of removed pebbles per ∆t is not precisely balanced by the in-
flow of new pebbles so the removal and inflow adapt to each
other. If, for example, density waves are propagating near an
accreting embryo, they can temporarily increase the concentra-
tion of pebbles (Σ̄p) and we observe an increase of F. Such
variations cannot be reproduced by the Lambrechts & Johansen
(2014) model because it is not hydrodynamic. We verified that
the filtering factors measured in Case II are in agreement with
those obtained later in Case III. Finally, we notice that the out-
ermost embryo is the fastest grower which is because F ∼ 1/η
(Lambrechts & Johansen 2014) and η is smaller in the outer part
of the disk (Fig. 2). However, the differences in F between in-
dividual embryos are rather marginal and the mass growth by
pebble accretion initially proceeds in the oligarchic fashion, as
expected (Morbidelli & Nesvorný 2012).

The orbital evolution of embryos in Case II is shown in the
middle panel of Fig. 4. At first, the embryos evolve similarly
to Case I, but the interaction among embryos 1 and 2 results
in a merger at t ' 16.5 kyr. The resulting mass of the merger
is 6.6 ME. As the system adapts to the loss of one of its mem-
bers and to the suddenly increased mass of the merger, em-
bryo 3 is pushed slightly outwards and encounters embryo 4.
One of these events scatters embryo 3 inwards where it even-
tually collides with the previous merger. The collision takes
place at t ' 22.7 kyr and merges masses 3.7 ME (embryo 3) and
7 ME (previous merger). The remaining embryos are stabilised at
somewhat distant orbits in comparison with Case I. The embryo
masses at the end of the simulation are 12.6 ME (the inner one)
and 4.9 ME (the outer one). The outer embryo 4 gained 1.9 ME
by pebble accretion during the simulation time span.
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Let us emphasise that as the mergers naturally occur in the
system of pebble-accreting embryos, they immediately break the
oligarchic growth of the embryos by pebble accretion; instead
of multiple similar-sized embryos, a dominant massive core is
formed within the system. In the light of this statement, mod-
els that estimate the final planetary masses by tracking a single
pebble-accreting protoplanet (e.g. Bitsch et al. 2015) probably
underestimate how massive the planets can actually become, at
least near the zero-torque radii.

Because of possible strong sensitivity to the initial con-
ditions, the significance of the differences that we identified
between Cases I and II is debatable. To partially answer this
question, we ran two more simulations for each case. In the first
additional set we increased the initial inclinations to about '1◦
and in the second additional set we started from a more closely-
packed system of embryos with orbital separations equal to 4.5
mutual Hill radius RmH = 0.5(a + a′)[(q + q′)/3]1/3. In these
additional simulations, Case I always resulted in one merger be-
fore the system became stabilised, whereas in Case II, we al-
ways detected two mergers. The larger number of mergers in
Case II occurs because the resonant chains are destabilised more
often. The destabilisation is provided by the mass growth which
changes the strength of the resonant forcing and the streamline
topology near the embryos, thus modifying the acting torques. At
the same time, more massive embryos have a larger encounter
cross-section. Yet our simulation statistics are too poor to esti-
mate corresponding probabilities or merging in Cases I and II.

3.6. Case III – introducing heating by pebble accretion

We now discuss Case III, presented in the bottom panel of Fig. 4.
The system evolves differently after the beginning of the simu-
lation compared to the previous cases. First of all, the dispersion
of both qp and Qa with respect to a is much larger in the pres-
ence of accretion heating. In other words, the orbits of embryos
are more eccentric. We find e ' 0.02 for the innermost embryo 1
and e ' 0.04 for the outermost embryo 4 after 5 kyr of evolu-
tion, while the corresponding values in Case II were e ' 0.004
and e ' 0.01, respectively. Moreover, the increased eccentric-
ity is not produced by the resonant forcing; it is observable al-
ready before the embryos form a closely-packed configuration.
Looking at the beginning of the simulation, we see a brief period
during which both the semimajor axis and orbital eccentricity
swiftly increase, especially for the three outer embryos. It seems
that this period of evolution must represent a transitional state
of the system during which the hydrodynamic background ad-
justs to the presence of the new heat source and the orbits react
accordingly. The ability of the gas disk to circularise the orbits
is clearly reduced in this case which is a new and unexpected
phenomenon, explored in detail in Sect. 4.

Modified disk torques. Another surprising feature is that the
inner embryos 1 and 2 are able to maintain outward migra-
tion despite having moderate eccentricity. We recall that the
eccentricity growth leads to shrinking of the horseshoe re-
gion, and the corotation torque Γc in its unsaturated non-
linear limit depends on the half-width of the horseshoe re-
gion xhs (Paardekooper & Papaloizou 2009) as Γc ∼ x4

hs
(Fendyke & Nelson 2014). The positive contribution of Γc in the
region of outward migration is thus expected to vanish with in-
creasing eccentricity (Bitsch & Kley 2010). Yet, we observe that
the migration of the inner embryos 1 and 2 is still directed out-
wards with a rate similar to Cases I and II and the torques even

allow the embryos to penetrate into the outer disk. As for the
outer embryos 3 and 4, their migration first proceeds inwards
(except for a short initial phase) but with significantly reduced
migration rate.

It is worth noting that the zero-torque radius is somewhat
ignored by embryos in Case III. As a result, we do not see the
embryos to become closely-packed around '7.5 AU like in the
previous cases. Instead, embryo 2 swiftly penetrates into the
outer disk and interacts with embryo 3, and shortly after that
with embryo 4. Meanwhile, embryo 1 reaches the expected lo-
cation of the zero-torque radius and stays there for a while, being
stopped by interactions with embryo 3. But ultimately, it contin-
ues outwards, migrating along with embryo 3 almost as a pair.

Examining the excited orbital eccentricities properly, we no-
tice that e ' h. Therefore one can expect significant modi-
fications of the Lindblad torque (Papaloizou & Larwood 2000;
Cresswell & Nelson 2006) as the eccentric embryos exhibit ra-
dial excursions in the disk and variations of the orbital veloc-
ity, thus periodically exciting density waves propagating inwards
and outwards during the orbit. In such a case, the Lindblad
torque, which is usually negative, can become reduced, or even
reversed. Regarding the heating torque, its contribution is posi-
tive. But we emphasise that because of the increased eccentric-
ity and due to narrowing of the horseshoe region, we can expect
the heating torque to operate in a mode that was not described
by Benítez-Llambay et al. (2015) who studied the heating torque
for planets on fixed circular orbits. Here we summarise that the
migration rate in Case III is driven by the modified Lindblad and
heating torques acting on eccentric orbits. Detailed investigation
of the torques accompanying the accretion heating is provided in
Sect. 4.4.

Merging and resonant chain instabilities. Once the embryos
become closely packed, they interact violently because their ec-
centric orbits drive one another into frequent close encounters.
At t ' 12 kyr, embryos 2 and 3 become temporarily locked
in a coorbital resonance which is disrupted by convergent mi-
gration towards the outer embryo 4. The three outer embryos
then strongly interact and swap positions several times before
there is a first merger of two 4.2 ME embryos (blue and red) at
'31 kyr. Three-body interactions of the remaining embryos pro-
duce another merger at '37.7 kyr when 8.7 ME embryo (blue)
and 4.3 ME embryo (orange) collide. The system is stabilised by
formation of a coorbital pair, having final masses of 13.8 ME and
4.3 ME.

Although the system evolves into a 1:1 orbital resonance at
the end, it is not capable of establishing a global resonant chain
during its evolution, apart from temporal resonant captures. This
is different with respect to Cases I and II where the system be-
comes resonant once the embryos become closely packed and
stays that way except for occasional instabilities during en-
counters, orbital swapping, and embryo merging. The decreased
probability of resonant capture is again caused by excited eccen-
tricities, as discussed, for example, by Batygin (2015).

Regarding the possibility of mergers, their number is the
same as in Case II but they occur later during the evolution.
This is slightly surprising because we already argued that close
encounters are more frequent, and therefore a natural question
arises – why do mergers not appear sooner? To provide a basic
statistical check, as in Cases I and II, we performed two addi-
tional simulations, the first with initially smaller orbital sepa-
rations (4.5 RmH) and the second with slightly larger inclinations
('1◦). The first simulation produced only one merger, the second
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produced none. At the same time, we confirmed the strong ec-
centricity increase unrelated to mutual close encounters which
became frequent as a consequence of the eccentricity growth.

The reduced merging efficiency compared to Case II is prob-
ably another consequence of larger eccentricities which lead to
larger relative velocities during encounters and subsequently,
merging is more difficult. Regarding the second additional sim-
ulation with zero mergers, we find that orbital inclinations are
not reduced enough before the close encounters start to occur.
Due to larger encounter velocities, vertical stirring is observed,
maintaining the inclinations above zero. Such an inclined orbital
configuration is not suitable for merging.

We remark that the influence of the accretion heating on the
system’s evolution and stability may be even more evident if
higher numbers of embryos are considered, which is what we
intend to study in the future (as proposed in Sect. 5).

In both Cases II and III, we see that mergers produce em-
bryos massive enough to potentially become giant planet cores.
However, this subsequent evolution is not covered in our sim-
ulations as the gravitational attraction and subsequent collapse
of a massive gaseous envelope is a delicate and not well un-
derstood process which is beyond the scope of this paper (e.g.
Ayliffe & Bate 2009; Machida et al. 2010).

Gas and pebble surface density. To begin the investigation
of the unexpected eccentricity growth related to accretion heat-
ing, we first compare snapshots of the gas and pebble surface
density in Cases II and III. Figure 6 shows Σ and Σp in Case II,
after 4.7 kyr of evolution. The gas disk exhibits typical features
– embryos launch spiral arms and produce minor density vari-
ations in their horseshoe regions. The pebble disk is affected
by the ongoing pebble accretion. Accreting embryos carve par-
tial gaps in the pebble component along their orbits. The gap
has two parts; one of them is trailing and the other one is lead-
ing the orbital motion of an embryo (which is oriented counter-
clockwise in all plots). The formation of these two parts can be
explained simply by the trajectories of pebbles with respect to
the embryo (Morbidelli & Nesvorný 2012) – those drifting from
outside meet the embryo head-on, and those which have drifted
across the embryo’s orbit catch up with it from behind. After a
portion of the pebble flux is filtered out by the embryo, there is a
paucity of pebbles behind it, slightly outside the embryo’s orbit,
and another cavity is formed in the direction of orbital motion,
slightly inside the embryo’s orbit.

Figure 7 shows Σ and Σp in Case III, again in simulation time
4.7 kyr. We see that the shape of spiral arms is somewhat mod-
ified, which is to be expected as the embryos already orbit with
considerable eccentricities (Cresswell et al. 2007; Bitsch & Kley
2010). The gaps in the pebble disk are slightly skewed and
widened because the eccentric embryos perform radial excur-
sions while carving the gaps. But looking at Σ, there is a strange
feature; underdense structures trailing the embryos, starting at
their locations and stretching slightly to r > rem. An explanation
of these underdensities, as well as investigation of the eccentric-
ity growth, is given in the following section.

4. The “hot-trail” effect – the orbital eccentricity
excitation due to accretion heating

In order to understand the process leading to the eccentricity ex-
citation and also to the formation of underdense structures in
the gas distribution adjacent to the embryos, we must first check
whether we can recover these phenomena in simulations with a

Fig. 6. A closeup of the gas surface density Σ (top) and pebble surface
density Σp (bottom) after ' 5 kyr of evolution in the simulation with
pebble accretion but without accretion heating, i.e. Case II. The gaps
in the pebble disk are opened by accreting planetary embryos. A fourth
embryo is also present in the system but it is located outside the range.

single embryo. This should verify whether the disk↔embryo in-
teraction alone is sufficient to raise the eccentricity, without the
help of any additional perturbers.

Starting again with the equilibrium fiducial disk, we placed a
single 3 ME embryo on an orbit with semimajor axis a = 6.5 AU.
The orbit was initially circular in one case, and e0 = 0.05 was
assigned to the embryo in another case. Both the circular and the
eccentric orbits were evolved for several hundred years; (i) in
the gas disk only with fixed embryo mass, and (ii) with pebble
accretion and respective heating considered. The embryo was
allowed to fully interact with the disk, that is, the orbit was not
held fixed.

Let us first examine the eccentricity evolution in these four
simulation setups, as shown in Fig. 8. In simulations with fixed
embryo mass, the initially circular orbit oscillates around small
eccentricity values and the initially eccentric orbit is being
damped and almost circularised (e = 0.003). On the other hand,
e in simulations with accretion heating converges to moderate
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Fig. 7. Same as Fig. 6 but for the simulation with accretion heating
(Case III). Two embryos are located at x = 5.55, y = 4.65 AU and
x = 4.35, y = 7.17 AU; two other embryos are located outside the range.
The Σ distribution shows that there are trails of underdense gas stretch-
ing outwards from the embryos, trailing their orbital motion. The shape
of cavities in the pebble component is affected by the eccentric orbits
of embryos. Unlike in Fig. 6, the concentration peak at the embryos’
location is somewhat blurred in both gas and pebbles.

non-zero value (e = 0.03), even for the initially circular orbit.
Therefore the eccentricity excitation and reduced eccentricity
damping that we identified in Sect. 3.6 are indeed reproduced.

The simulation with e0 = 0 and heating by pebble accretion
is the most interesting one because it proves that the embryo can
gain and sustain eccentricity solely due to forces arising from
the disk. We therefore discuss this simulation in detail for the
remainder of this section. Looking at the red curve in Fig. 8, it
is obvious that there are several distinct stages during which the
eccentricity excitation rate changes. We pick three characteristic
times t ' 180, 360, and 1130 yr at which we investigate the disk-
embryo interaction during one orbital period. We refer to these
three evolutionary stages as the onset, growth, and saturation
phase for brevity.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

 0  200  400  600  800  1000  1200

e
c
c
e

n
tr

ic
it
y
 e

time t [yr]

e0 = 0.0, no heating
e0 = 0.05, no heating

e0 = 0.0, heating by pebble accretion
e0 = 0.05, heating by pebble accretion

Fig. 8. Temporal evolution of the osculating eccentricity e(t) for a single
3 ME embryo in four distinct simulation setups. In the first two setups
we neglect pebble accretion and the initial eccentricity is e0 = 0 (blue
curve) and e0 = 0.05 (purple curve). In the other two setups, we consider
pebble accretion and heating, the initial eccentricity being again e0 = 0
(red curve) and e0 = 0.05 (orange curve). Accretion heating reduces the
eccentricity damping efficiency for the eccentric orbit and excites the
eccentricity of the circular orbit.

In order to identify contributions from the disk responsible
for de/dt variations, we employ the Gauss perturbation equation
for the eccentricity

de
dt

=

√
1 − e2

na
[R sin f + T (cos f + cos E)], (42)

where n denotes the embryo’s mean motion, R and T are the
radial and tangential components of the perturbing acceleration
arising from the disk, f is the true anomaly and E is the eccen-
tric anomaly, for which one can write cos E = (e + cos f )/(1 +
e cos f ). Assuming that the variation of orbital elements during
one orbital period is negligible, we can limit ourselves to an anal-
ysis of the Gauss factors inside the square brackets in Eq. (42).
We shall denote Gr ≡ R sin f and Gθ ≡ T (cos f + cos E).

4.1. Radial perturbation

Figure 9 (top panel) shows the values of Gr acting on the embryo
as it travels along its orbit during the onset, growth, and satura-
tion phases. Because R itself is always negative and almost iden-
tical in all the individual phases, Gr also does not change signifi-
cantly. It is a f -periodic function and we find it to be typically an
order of magnitude stronger than Gθ. Thus from the dynamical
point of view, it is responsible for fast variations of the orbital
eccentricity which occur on the orbital time scale. The varying
e(t) function corresponding to the onset phase is overplotted in
Fig. 9 (dashed curve). As the embryo moves from the perias-
tron towards the apoastron, Gr < 0 implies de/dt < 0 which
decreases e, and vice versa. Because of Gr symmetry, the re-
spective changes of the eccentricity average out and do not lead
to secular variations.

The existence of non-zero radial acceleration R is due to
the gas surface density profile of the surrounding disk which
is in general an outward-decreasing power-law function. Con-
sequently, within an arbitrary radius around the embryo, one can
expect overabundance of gas inwards from the orbit, while the
mass of the gas outwards is smaller.
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Fig. 9. Measures of the gravitational acceleration from the disk acting
on the embryo, evolving from initially circular orbit in the presence of
pebble accretion and the heating torque (i.e. red curve in Fig. 8). The
values are recorded during one orbital period (represented by the true
anomaly f ), at around t ' 180, 360 and 1130 yr of the simulation, that
is, during the onset, growth, and saturation phase of the eccentricity
excitation. Top: evolution of the Gauss factor Gr ≡ R sin f (left vertical
axis) and the osculating eccentricity e, which was recorded during the
onset phase (right vertical axis). Middle: evolution of the Gauss factor
Gθ ≡ T (cos f + cos E). The function (cos f + cos E) for e = 0.005
scaled to the axis range is also given for reference (grey dashed curve).
Bottom: the azimuthal acceleration T from the disk.

4.2. Azimuthal perturbation

As argued above, Gr is related to the orbital frequency in
the e-oscillations and cannot cause the runaway growth of the

eccentricity. Consequently, Gθ must be responsible for the secu-
lar changes and we plot it in the middle panel of Fig. 9. In order
to guide the eye, we overplot the (cos f + cos E) function for
e = 0.005, scaled down to the figure range; it represents a de-
pendence which Gθ would follow if T was a constant positive
acceleration. Examining the Gθ profile measured in our simula-
tion, we notice there are some asymmetries during the orbital
period which can accumulate in time and cause e to grow.

During the onset phase, Gθ is maximum when the embryo
is at periastron and shortly afterwards. Then it decreases to zero
as f → 90◦, stays at low positive values through the apoastron
passage and at f ' 290◦ it finally starts to increase back to the
maximum value. Gθ averaged over one orbital period is positive
which implies de/dt > 0, in agreement with the onset of the
eccentricity excitation in Fig. 8.

The azimuthal acceleration T related to Gθ is plotted in the
bottom panel of Fig. 9. We see that the embryo undergoes strong
positive acceleration in the direction of its orbital motion around
the periastron, with the peak slightly shifted to f ' 30◦. From
f ' 110◦ to f ' 290◦, T has a flat profile and is negative. In
terms of the expected gas distribution, there must be an accumu-
lation of mass in front of the embryo around the periastron. For
the rest of the orbit, this accumulation should become weaker
and from f ' 110◦ to f ' 290◦, an excess of gas behind the
embryo’s orbital motion is expected.

In the growth phase, the azimuthal acceleration T remains
positive for the entire orbit, having a similar orbital evolution as
in the onset phase, with an enhanced peak near the periastron,
followed by decrease and plateau towards the apoastron. Con-
sequently, Gθ has an increased amplitude but it also becomes
negative from f = 90◦ to 270◦. Despite that, the averaged Gθ is
again positive and so is de/dt. The shape of T ( f ) tells us that we
can expect the gas distribution around the embryo to be denser
ahead of the embryo for the entire orbit.

During the saturation phase, the azimuthal acceleration T
has a somewhat complex dependence on f . Its overall amplitude
is smaller compared to the previous phases by an order of mag-
nitude. The acceleration T remains positive from periastron to
apoastron and it is negative through the remaining half of the
orbit, apart from a short interval at around f ' 275◦. Look-
ing at the respective Gθ dependence, its shape is quite similar
to a π-periodic function in f , oscillating around zero, having two
maxima between the periastron and f = 90◦ and between the
apoastron and f = 270◦ and vice versa.

4.3. Hydrodynamic explanation of the eccentricity excitation

In the following, we explain the eccentricity excitation from the
hydrodynamic point of view. For this purpose, we present a se-
ries of figures capturing the gas density Σ and temperature T
distribution in the embryo’s vicinity, corresponding to the onset
phase (Fig. 10) and the saturation phase (Fig. 11).

Let us first recall the advection-diffusion problem which
causes the standard mode of the heating torque on fixed circular
orbits according to Benítez-Llambay et al. (2015). The embryo
heats the gas near its position and the gas becomes overheated
and therefore underdense2, in order to maintain the pressure bal-
ance with the surroundings. The heated gas is being advected
by the nearby flows and in the meantime, its internal energy
changes by the radiative diffusion. For a circular orbit of the
embryo, the gas from the outer part of the disk approaches the

2 We remind the reader that our model can only produce an underden-
sity in terms of the surface density Σ.
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Fig. 10. Evolution of the gas surface density Σ (left column) and temperature T (right column) during one orbital period, recorded within the onset
phase of the eccentricity growth. Individual snapshots are labelled with the respective simulation time t, embryo’s true anomaly f and azimuthal
acceleration imposed by the disk, labelled here aazim. The figures are transformed to the corotating frame centered on the embryo. The Hill sphere
and embryo’s osculating orbit are plotted and we also indicate general directions of the gas flow with respect to the embryo by arrows. The
orbital direction of the embryo is directed counterclockwise and the protostar is located at (x = 0, y = 0). The top row depicts the situation in the
periastron, while the third row corresponds to the apoastron. The second row is recorded approximately halfway from periastron to apoastron, and
vice versa for the bottom row.
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Fig. 11. Same as Fig. 10 but the hydrodynamic quantities are recorded within the saturation phase of the eccentricity excitation.

embryo head-on, is heated, and forms an underdense lobe be-
hind the embryo. The gas from the inner disk, which is moving
faster than the embryo, approaches from behind, forming an un-
derdense lobe in front of the embryo. Because the gas velocity

is sub-Keplerian, the corotation between the embryo and the gas
is shifted slightly inwards, and therefore there is a prevalence of
gas approaching as the headwind, and the underdense lobe be-
hind the embryo is dominant.

A114, page 17 of 25

http://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201731033&pdf_id=11


A&A 606, A114 (2017)

For an embryo that is allowed to move freely in the disk,
we already saw that the orbit is never perfectly circular. It
periodically gains a small eccentricity (∼10−3) due to the Gr
forcing (Fig. 9). Thus the embryo makes small radial excursions
in the disk (see the changing range of the x-axis in Fig. 10) as
it performs a small epicyclic motion. The heat source located at
the embryo’s position trails this epicyclic motion. In the temper-
ature map, the epicyclic motion manifests itself as a “hot trail”,
attached to the temperature maximum, which wobbles around
between the individual snapshots. We thus name this new phe-
nomenon the hot-trail effect.

Looking at the Σ profiles in Fig. 10, we see that in the pe-
riastron, there are again two underdense lobes, similar to the
circular case. The deep lobe attached behind the embryo rep-
resents the dominant paucity of material. The less pronounced
and more stretched lobe in front of the embryo is rather a left-
over of the dominant lobe which was displaced by the epicyclic
motion during the previous orbit. This is proved by the sequence
of Σ profiles; as the embryo travels towards the apoastron, its ra-
dial distance increases, thus the dominant lobe is left at r < rem
and subsequently moves ahead of the embryo due to the trans-
port by the interior flows, which move faster than the embryo.
In the meantime, the less dominant leftover lobe is being lost by
the Keplerian shear and diffusive effects.

Near the apoastron, the embryo has the lowest orbital veloc-
ity. If we, for example, consider the eccentricity e = 0.003 (typi-
cal value due to the Gr forcing), the orbital velocity in the apoas-
tron with respect to the Keplerian velocity is vapo = (1−0.003)vK.
At the corresponding orbital distance r ' 6.5 AU, the gas orbital
velocity is vθ = (1 − 0.0026)vK (cf. Fig. 2). The headwind there-
fore significantly vanishes and no additional lobe can be formed
behind the embryo. The embryo is left with the lobe formed at
the periastron which has already been transported by the flows
interior to the orbit.

The position of the dominant underdense lobe is the key fac-
tor determining the resulting azimuthal acceleration T acting on
the embryo. In the periastron, there is a paucity of mass behind
the planet, so the acceleration is in the orbital direction. In the
apoastron, the lobe is located ahead of the embryo, but it is also
radially displaced (r < rem) with respect to the embryo. As a
consequence, T is negative but its magnitude is much smaller
compared to that at periastron, where the underdense lobe is ad-
jacent to the embryo. This asymmetry between the periastron
and apoastron causes the eccentricity excitation.

During the growth phase (not shown in figures), the situa-
tion is similar to the onset phase. But as e continuously grows,
the lobe at the periastron becomes prolonged because the rel-
ative velocity of the embryo with respect to the gas increases.
As a consequence, the azimuthal acceleration T measured in the
periastron of the growth phase is larger compared to the onset
phase. The relative velocities become large enough for the em-
bryo to start feeling tailwind near the apoastron, which delivers
heat to the lobe positioned ahead of the embryo at that time. But
because the gas is sub-Keplerian, the relative velocity is always
larger in the periastron than in the apoastron thus the positive
eccentricity pumping during the periastron passage still prevails
and the runaway eccentricity growth continues.

The eccentricity cannot grow indefinitely, however, but its
excitation saturates at a certain level. The hydrodynamic state at
the saturation phase is given in Fig. 11 where we see that the hot
trail spans a larger portion of the embryo’s surroundings because
the radial excursion (the epicycle) of the embryo has already in-
creased significantly. As a consequence, the underdense struc-
tures are more distant from the embryo and the Hill sphere can

refill with gas which is yet-to-be heated and which blurs asym-
metries in the embryo’s vicinity, responsible for the eccentric-
ity excitation. At the same time, the underdense structures are
strongly affected by the Keplerian shear because their radial ex-
tension is considerable.

At the saturation phase, the eccentricity growth stops right
before exceeding the local value of the aspect ratio h ' 0.036.
For e & h, the relative motions could lead to the reversal of nor-
mally negative Lindblad torque (Papaloizou & Larwood 2000).
Cresswell & Nelson (2006) found that the Lindblad torque tran-
sition for e & h is accompanied by very efficient eccentricity
damping leading to a strong energy loss which can outweigh the
angular momentum gain. This efficient damping is finally able
to prevent the hot trail from exciting the eccentricity even more.
But for lower e, the hot-trail effect dominates – otherwise the
eccentricity would not grow in the first place.

4.4. Torque distribution

The periodic changes of Σ and of the related T are also reflected
in the variations of the torque Γtot felt by the embryo during its
orbit. Figure 12 shows the normalised radial torque distribution
Γ(r)/Γ0 which relates to the total torque Γtot as

Γtot =

rmax∫
rmin

Γ(r)dr. (43)

Figure 12 generally demonstrates which parts of the disk are re-
sponsible for positive and negative torques and how the mag-
nitude of these torques changes with radial separation from the
embryo.

During the onset phase (Fig. 12, top panel), the shape of
Γ(r)/Γ0 is similar to the calculations of (Benítez-Llambay et al.
2015; cf. their Fig. 1). In the periastron, it exhibits a negative
peak at r < rem that is smaller than a positive peak at r > rem.
As the embryo travels along its orbit, the difference compared
to Benítez-Llambay et al. (2015) is in the position of the profile
with respect to the embryo (indicated with arrows) and in the
asymmetry between the positive and negative peak. The asym-
metry is pronounced in the periastron and disappears in the
apoastron, in accordance with our previous findings.

During the saturation phase (Fig. 12, bottom panel), Γ(r)/Γ0
becomes wavy and complex. It corresponds to the hot trail
strongly distorted by the Keplerian shear, which is produced by a
large epicycle. Compared to the onset phase, the torque contribu-
tion arising from the density waves is modified. Let us focus on
the situation in periastron first. Looking at Fig. 11, we notice that
the gas surface density exhibits a pronounced inner density wave.
The underdense structure related to the hot-trail effect is located
at r > rem thus the dominant contribution to Γ(r) at r < rem must
be related to the inner density wave.

The contribution from the inner density wave is labelled in
Fig. 12 (bottom panel). Although the inner Lindblad torque is
purely positive for circular orbits, we can see that it has both
positive and negative contributions for the eccentric orbit dur-
ing the saturation phase. In the apoastron, the situation is sim-
ilar (but the outer density wave is more pronounced). This im-
plies that the orbit is indeed close to the state of the Lindblad
torque reversal and proves our aforementioned argument about
what phenomenon finally stops the eccentricity growth.
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Fig. 12. Radial torque density Γ(r) acting on the embryo during the on-
set (top) and saturation (bottom) phases, normalised to Γ0. The individ-
ual curves represent measurements in the periastron (purple), apoastron
(orange) and in-between. The vertical arrows indicate the instantaneous
radial distance of the embryo corresponding to the individual curves.
The horizontal arrows and labels approximately distinguish some of the
important torque contributions discussed in the text. To avoid misin-
terpretation, we remark that the hot-trail torque is acting in the bottom
panel as well but it spans different radial extent for each curve and thus
cannot be marked unambiguously.

5. Future improvements and observational
signatures

Additional free parameters. Regarding the discussion in this
paper, we essentially restricted ourselves to switching pebble ac-
cretion and the accretion heating on and off, in order to under-
stand the basic physics of the hot-trail effect and to simplify the
discussion. It is clear, however, that our problem has a number
of additional free parameters. In particular, the number of em-
bryos (up to 101, for example); initial embryo masses (of the
order of 100 ME); initial spacing of embryos (multiples of RmH);
embryo positions in the disk and with respect to the zero-torque
radius; the radial pebble flux ṀF; gas surface density Σ0 and its
slope; viscosity ν (or α); turbulent stirring of solids αp; or stel-
lar luminosity L?; and so on. Even if we have only two values
per parameter, the resulting number of models is so high that we
are unable to compute a full matrix. Nevertheless, it is certainly
possible to compute differences (derivatives) with respect to the
fiducial model; work postponed to the following paper, in fact.

Possible model improvements. We can outline a number of
opportunities for the hydrodynamic model extensions, for ex-
ample, full 3D treatment, implementation of gas accretion, de-
position of pebbles in various layers of protoatmospheres, gas
self-gravity, stochastic forcing by turbulent flows (Pierens et al.
2013), independently evolved dust component as the main opac-
ity constituent, and so on.

Moreover, as we demonstrated that the hot-trail effect re-
duces the ability of the surrounding disk to damp the orbital
eccentricity, it is also possible that the inclination damping is
somehow modified if a full 3D disk is considered. In our 2D
model, the inclination damping is provided by Eq. (39) which is
not self-consistent but based on a model that neglects the accre-
tion heating (Tanaka & Ward 2004). We also plan to refine this
part of the model in the future.

Observational signatures. From an observational point of
view, the imprints of various migration histories and orbital ex-
citations should be recognisable in the observed exoplanetary
systems, but they can be successfully understood only when the
effects described in this paper are taken into account in future
works dealing with this issue.

There could be observational signatures of, for example,
mergers or multiple embryos on closely-packed orbits in the
datasets of the campaigns involved in the direct protoplanetary
disk imaging (e.g. by ALMA). We have already started to inves-
tigate this possibility and plan to publish the study in a separate
paper.

In our case, most if not all observational circumstances
should be determined by 3D radiative transfer in the dust con-
tinuum. The optical thickness for the typical Bell & Lin (1994)
opacity κ ' 100 cm2 g−1 and the surface density Σ ' 102 g cm−2

is τopt ' κΣ ' 102 � 1. We thus definitely need a good enough
description of the disk atmosphere, far from the midplane.

In order to become observable, it seems that protoplanets
must open considerably large gaps in the gas disk (Rosotti et al.
2016). Partially opened gaps are probably not observable be-
cause these are still optically thick; the density contrast has to
be at least 102. The close encounters between embryos in our
simulations lead to an asymmetry, but are only present for a
short time interval. As argued in Rosotti et al. (2016), the thresh-
old mass for detection is about 12 ME in sub-mm. Moreover, for
VLT/SPHERE or Gemini/GPI instruments, the protostar should
be more massive (M? ' 2 M�) to become at least a Herbig Ae
star, because of current flux limitations.

6. Conclusions

In this paper, we studied the orbital evolution of four 3 ME em-
bryos embedded in a region of a protoplanetary disk where the
convergent migration is expected to occur under the influence
of the standard Type-I torques. In our simulations, however, we
considered that the embryos rapidly accrete mass from the peb-
ble disk (modelled hydrodynamically). Three classes of simula-
tions were performed: Case I as a reference scenario in which
pebble accretion is completely neglected, Case II in which peb-
ble accretion leads to the mass growth of embryos and Case III
in which embryos also become heated by the deposition of peb-
bles. We investigated the impact of the additional processes on
the migration and mutual interactions of the embryos. The sim-
ulations were performed using a new state-of-the-art and rather
self-consistent hydrodynamical model, which we extensively de-
scribed and verified.
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We found that in both Cases I and II, the system evolves
through a sequence of resonant chains, the first of which is usu-
ally established around the zero-torque radius. As the embryos
gain non-zero eccentricity (typically ranging from 0.004 to 0.01)
due to perturbations from the mean-motion resonances, occa-
sional close encounters are possible, leading to mutual scattering
(sometimes accompanied by a swap of orbits) or embryo merg-
ing.

We reported that merging of embryos is more probable in
Case II in which the mass growth by pebble accretion is ac-
counted for. The reason for this is that the resonant chain is desta-
bilised more often as the masses of embryos responsible for the
resonant forcing (e.g. of eccentricities) evolve. Additional forc-
ing is provided as the streamline topology around the embryos
changes with the evolving masses, thus imposing a slightly dif-
ferent disk torque.

In Case III, the positive heating torque changes the expected
migration rates. As a result, the embryos somewhat ignore the
zero-torque radius and are driven into mutual interactions pref-
erentially in the outer part of the disk, rather than being packed
in a resonant chain around the zone of convergence.

Close encounters occur frequently in Case III and cover a
longer period of the evolution. We realised that the encoun-
ters are facilitated by an eccentricity increase (e ' h, typically
ranging from 0.02 to 0.04) prior to resonant perturbations by
means of a new ‘hot-trail’ effect. The effect is due to variable
gravitational acceleration arising from the gas in the vicinity
of each embryo, which is periodically modified by formation
and advection of an overheated and thus underdense lobe trail-
ing the epicyclic motion of the embryo. The effect was inde-
pendently reported by Eklund & Masset (2017; we also refer to
Masset & Velasco Romero 2017) while our research was ongo-
ing (Chrenko & Brož 2016). The hot trail effect reduces the abil-
ity of the surrounding disk to damp the eccentricities and cir-
cularise the orbits. Despite the fact that more encounters pose
more opportunities for merging, we actually found that merging
is less frequent compared to Case II , probably because of larger
encounter velocities on the eccentric orbits.

The eccentricity excitation by the hot-trail effect stalls when
e ' h because the Lindblad torque acting on eccentric orbits
is modified and can actually operate in a mode close to its re-
versal (from negative to positive, Papaloizou & Larwood 2000;
Cresswell et al. 2007; Bitsch & Kley 2010). Because the tran-
sition to the reversed Lindblad torque would require the em-
bryo to cross the orbital resonances at which it excites the
density waves, strong eccentricity damping occurs and the ec-
centricity growth saturates. Nevertheless, the eccentricity does
not decrease and is, in fact, maintained by the hot-trail effect.
We note that many N-body models (e.g. Sándor et al. 2011;
Izidoro et al. 2015; Coleman & Nelson 2016, and many others)
usually employ a strong eccentricity damping prescription (e.g.
Cresswell & Nelson 2006, 2008) derived from hydrodynamic
models which neglect the accretion heating. We suggest that
these analytic damping rates should be carefully refined for fu-
ture applications because they could be inaccurate in cases when
the protoplanets undergo any kind of strong accretion.

Orbital excitation of embryos heated by pebble accretion
prevents formation of a global resonant chain, except for short
transient periods. An interesting overlap of this result can be
found with recent developments in the analytical theory. For ex-
ample, Batygin (2015) used the Hamiltonian formalism to study
the probability of the resonant capture for migrating low-mass
planets and compared his predictions with the occurrence of the
first-order mean-motion resonances in exoplanetary systems. He

found that the probability of the resonant capture is greatly di-
minished (and thus the observed non-resonant systems can be
explained) if a pre-encounter orbital excitation e & 0.02 is con-
sidered. Our model thus provides a natural way of exciting the
eccentricity enough to prevent resonant locking and may have
important implications for explaining the structure of exoplane-
tary systems.

Mergers large enough to possibly become giant planet cores
with masses '13 ME were found in both Cases II and III. We
emphasise that merging caused by fast migration and accretion
in convergence zones breaks the otherwise oligarchic nature of
the embryo growth by pebble accretion.

We conclude that orbital instabilities, eccentricity excita-
tions and (possibly) mergers naturally accompany evolution of
pebble-accreting embryos and may have an important impact on
shaping the final architecture of any planetary system. This is a
major result compared to previous models which neglected self-
consistent hydrodynamics, accretion or heating. But in order to
find general implications, a larger statistical sample of simula-
tions is required because we expect a strong dependence on the
initial conditions (possibly on the initial number and masses of
embryos, their position within the disk, accretion rate related to
the pebble mass flux and heating efficiency influenced by the
opacity).
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Appendix A: Numerical scheme of the energy
equation solver

This appendix summarises our approach to modelling non-
isothermal disks, which undergo heating and cooling, within
the framework of the original 2D fargo code. Here we elab-
orate the numerical update of the internal energy due to the
considered source terms (Sect. 2). Following the formalism of
Stone & Norman (1992), the advection term is treated separately
in the transport step.

Starting with the energy equation (Eq. (3)), our aim is to de-
rive an implicit numerical scheme. The reason for this is to avoid
a possible time-step restriction which could arise in the case of
an explicit solution due to the Courant-Friedrichs-Lewy condi-
tion related to the radiative transport. As discussed in Sect. 2, we
assume that the specific internal energy is entirely thermal thus
we can write E = ΣcVT , where cV is the specific heat at constant
volume. Within the one-temperature approach, the radiation field
with the energy density 4σRT 4/c only contributes to the energy
transport via the radiative diffusion term. In order to obtain the
implicit scheme, we rewrite Eq. (3) for the temperature only and
we drop the advection term, which is treated separately

∂ΣcVT
∂t

= −Σ
R
µ

T∇·u+Qvisc+Qirr+Qacc−Qvert+2H∇·D∇T, (A.1)

where D = 16λσRT 3/ (ρ0κ) is the diffusion coefficient.
For simplicity, let us first discretise the diffusion term and

return to the other source terms later on. Because fargo is
designed as a staggered-mesh code, all scalar quantities are
cell-centred whereas components of vector quantities are face-
centred. In the following, the differential operators are written in
polar coordinates, and integers i and j represent the indices of
radial zones and azimuthal sectors, respectively:

T n+1
i, j − T n

i, j

∆t
=

(
2H
ΣcV

)
i, j

1
rc

i

×

[
1

(∆r)f
i

(
rf

i+1D̄r
i+1, j

Ti+1, j − Ti, j

(∆r)c
i+1

− rf
i D̄r

i, j
Ti, j − Ti−1, j

(∆r)c
i

)
+

1
∆θ

(
D̄θ

i, j+1
Ti, j+1 − Ti, j

rc
i ∆θ

− D̄θ
i, j

Ti, j − Ti, j−1

rc
i ∆θ

) ]
· (A.2)

Here rc
i denotes the radial coordinate of a cell centre, rf

i is the ra-
dius of an inner radial cell interface and ∆θ denotes the angular
width of sectors, which is identical for all cells. The additional
quantities naturally occur because of the staggered-grid formal-
ism:

D̄r
i, j =

1
2

(
Di, j + Di−1, j

)
, (A.3)

D̄θ
i, j =

1
2

(
Di, j + Di, j−1

)
, (A.4)

(∆r)c
i = rc

i − rc
i−1, (A.5)

(∆r)f
i = rf

i+1 − rf
i . (A.6)

Obviously, (∆r)c
i = (∆r)f

i in the case of an equidistant radial
spacing.

The implicit form can now be obtained by putting T n+1
i, j ≡ Ti, j

and by placing all Ti, j-dependent terms on one side of the left-
hand side, while moving the remaining terms to the right-hand
side. Because any non-linear terms in temperature would make
the problem difficult to invert, we shall linearise the equation. To
do so, the diffusion coefficients are evaluated using the hydrody-
namic quantities from the beginning of the sub-step.

Concerning the remaining source terms and their linearity,
Qvisc, Qacc and Qirr terms are temperature independent. The com-
pressional heating term is linear in temperature and thus can be
easily incorporated in the left-hand side. The vertical radiative
cooling term Qvert is proportional to T 4 but it can be linearised,
as, for example, in Commerçon et al. (2011) or Bitsch et al.
(2013). If the temperature changes over ∆t are sufficiently small,
we can rewrite Eq. (9) as

(Qvert)i, j =
2σR

(τeff)i, j
(T n

i, j)
4
(
1 +

T − T n

T n

)4

i, j

≈
2σR

(τeff)i, j

[
4(T n)3T − 3(T n)4

]
i, j
≡ (Q′vertT − Q′′vert)i, j.

(A.7)

After some algebraic rearrangements, we can formally write

Ai, jTi, j + Bi, jTi+1, j + Ci, jTi−1, j + Di, jTi, j+1 + Ei, jTi, j−1 =

T n
i, j + ∆t

(
Qvisc + Qirr + Qacc + Q′′vert

ΣcV

)
i, j
, (A.8)

which is a linear matrix equation. To solve this linear problem,
we use the successive over-relaxation (SOR) method with odd-
even ordering. Our implementation is parallelised by the domain
splitting which is complementary to the radial grid decomposi-
tion of the original fargo code. The optimisation of the over-
relaxation parameter is done similarly to Kley (1989).

Appendix B: Steady-state motion equations
of a pebble

Here we reproduce the derivation of Eqs. (20) and (21) which
are used to initialise the velocity field of the pebble disk. The
approach is well known and closely follows the derivation of
Adachi et al. (1976), with one clarification.

Let us study a system consisting of a pebble with negligi-
ble mass which orbits a massive primary M? and experiences
the aerodynamic friction acceleration FD in the gaseous envi-
ronment at the same time. We further assume that the motion is
confined to one plane and no vertical perturbations are present.

The dynamical equation for the pebble takes the form

d2r
dt2 = −

GM?

r3 r + FD. (B.1)

Transforming into polar coordinates, one obtains

∂Vr

∂t
+ Vr

∂Vr

∂r
−

V2
θ

r
= −

GM?

r2 −
FD

vrel
(Vr − vr) , (B.2)

∂Vθ

∂t
+ Vr

∂Vθ

∂r
−

VrVθ

r
= −

FD

vrel
(Vθ − vθ) , (B.3)

where we utilise the fact that the friction force is directed
against the relative velocity vector, having the magnitude
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vrel =
√

(Vr − vr)2 + (Vθ − vθ)2. Unlike Adachi et al. (1976), we
retain the vr component of the flow and allow for the radial trans-
port in the gaseous disk (we also refer to Guillot et al. 2014).

Let us simplify the equations above by assuming a steady-
state situation, ∂t = 0. Furthermore, we only allow the drag
force to cause small perturbations in pebbles’ azimuthal veloc-
ity, compared to the local Keplerian rotation. We thus decompose
Vθ = vK + V ′θ, using

∣∣∣V ′θ∣∣∣ . δ � vK. Similarly, the radial veloc-
ity of the pebble itself is considered to be highly sub-Keplerian
|Vr | . δ � vK. We assume that the spatial derivatives of V ′θ and
Vr are also as small as δ.

In Eq. (B.2), the first and the second term on the left-hand
side can be neglected in our approximation, while the third term
can be rearranged using the Vθ decomposition. Consequently

v2
K + 2vKV ′θ + O

(
δ2

)
= v2

K +
FD

vrel
r (Vr − vr) , (B.4)

which is obviously equivalent to

2ΩKV ′θ =
FD

vrel
(Vr − vr) . (B.5)

Concerning Eq. (B.3), the first term on the left-hand side can
again be discarded but the radial derivative has to be performed,
leading to

Vr
∂vK

∂r
+

VrvK

r
+ O

(
δ2

)
= −

FD

vrel

(
vK + V ′θ − vθ

)
. (B.6)

A useful simplification of the right-hand side can be made using
the η parameter, describing sub-Keplerian rotation of the gas as
vθ = (1 − η) vK, yielding

1
2

ΩKVr = −
FD

vrel

(
V ′θ + ηvK

)
. (B.7)

Recalling the Stokes number definition τ = tsΩK = vrelΩK/FD,
one can rewrite the set of Eqs. (B.5) and (B.7) as

Vr = −
2
τ

(
V ′θ + ηvK

)
, (B.8)

V ′θ =
1
2τ

(Vr − vr) . (B.9)

Final arithmetic rearrangements are required to eliminate V ′θ
from Vr and then plug them both back into the Vθ decomposition.
The resulting set of equations directly describes steady-state ve-
locities of the drifting pebble (Guillot et al. 2014)

Vr = −
2τ

1 + τ2

(
ηvK −

1
2τ
vr

)
, (B.10)

Vθ = vK −
1

1 + τ2

(
ηvK −

τ

2
vr

)
. (B.11)

Appendix C: Semi-implicit source-term update
of the pebble fluid

In order to perform the source step (Stone & Norman 1992) for
the fluid of pebbles and avoid severe time-step limitations due
to small friction time scales, we do not use the explicit integra-
tion scheme for pebbles and use the semi-implicit approach of
Rosotti et al. (2016) instead.

Let us rewrite the fluid motion Eqs. (2) and (5) in a symbolic
notation and without advection, which is solved separately. We
have

∂u

∂t
= ag, (C.1)

∂V
∂t

= ap −
ΩK

τ
(V − u) , (C.2)

where ap is the non-drag acceleration of the pebble fluid and
ag is now understood as the total acceleration acting on the gas
which is calculated explicitly at time t. We note that the drag
back-reaction term is contained in ag and is also evaluated ex-
plicitly. This is justified if the solid-to-gas ratio remains low
(which is what we expect in our simulations). Under these as-
sumptions, an analytical solution for the pebble fluid velocity
update can be found (Rosotti et al. 2016):

Vn+1 = Vn exp
(
−∆t

ΩK

τ

)
+ ag∆t

+

[
un +

(
ap − ag

) τ

ΩK

] [
1 − exp

(
−∆t

ΩK

τ

)]
· (C.3)

The solution conveniently provides a smooth transition between
two limiting cases: when ∆t � τ/ΩK, the solution is equiva-
lent to the explicit integration. If on the other hand ∆t � τ/ΩK,
the solution turns into a form known as the short friction time
approximation (e.g. Johansen & Klahr 2005).

To ensure the numerical stability, a CFL condition, additional
to the one that controls the gas evolution, must be imposed on the
time step ∆t. The condition is given by

∆t = C
∆xr,θ

max (V,V − v)r,θ
, (C.4)

where ∆x is the cell size in the radial (index r) or azimuthal
(index θ) direction and C = 0.5 is the Courant number.

Appendix D: Verification of the code

Embryo-disk interaction in radiative disks. Here we try to re-
produce several recent advanced simulations of the embryo-disk
interactions using our new hydrodynamic code. These test runs
are compared to the original results in order to provide a veri-
fication of our code and some benchmarks. We note that most
of the comparison models are 3D whereas our code is essen-
tially 2D. The results of the verification runs therefore prove that
we are indeed able to capture many aspects of 3D models if the
physics is treated carefully. In the following, the stellar irradi-
ation is always neglected as well as the pebble disk, and the
opacity drop factor cκ = 0.6 is introduced into the simulation
parameters. Comparison figures are always provided in the unit
systems corresponding to the original works.

First, we present a reproduction of an equilibrium gas disk
corresponding to the initial setup of Kley et al. (2009) who per-
formed simulations using the 3D nirvana code. The compari-
son of the radial temperature profile T (r) is given in Fig. D.1.
The surface density profile Σ(r) is also displayed for reference
(without a comparison curve for clarity of the figure). We see
that T (r) is in a good agreement with the 3D model, apart from
variations in the inner disk. These are missing mostly because
our 2D model does not support vertical convection.
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Fig. D.1. Equilibrium gas surface density Σ(r) (black curve, left vertical
axis) and temperature T (r) profile (red curve, right vertical axis) in a
radiative disk according to the setup from Kley et al. (2009), as it was
reproduced by our code. Temperature profile obtained by the original
3D model of Kley et al. (2009) is given by the red dashed curve for
comparison. The obtained disk is indeed in good agreement with the
comparison simulation and serves as the hydrodynamic background for
verification runs of the disk-embryo interaction.

We use exactly this equilibrium disk to compare the embryo-
disk interactions for various masses Mem. Since this work is
focused on low-mass embryos, we perform tests with Mem =
2, 3, 5, 10 and 20 ME. This range of masses was studied by
Lega et al. (2014) who used the 3D fargoca code and conve-
niently, the same equilibrium disk model was used in their work.
The embryo mass Mem = 20 ME was also studied by Kley et al.
(2009). It is customary to exclude part of the gas enclosed by
the Hill sphere from the torque calculation (a so-called Hill cut)
if the planet is massive enough to form a distinct circumplane-
tary disk. However, the determination of the threshold mass is
not straightforward. Thus we always perform the Hill cut for
Mem = 20 ME and for Mem = 10 ME we perform two simula-
tions with and without the Hill cut. For lower masses, no gas is
excluded from calculations.

After placing the embryos on fixed circular orbits with a =
aJup = 5.2 AU, we evolved the system for several tens of or-
bits until the torque converged to a stationary value. In Fig. D.2,
we compare the measured normalised torques with results of
Lega et al. (2014) as well as with the torque-mass dependence
given by the formulae of Paardekooper et al. (2011), applied
to the equilibrium disk. For low-mass embryos, the agreement
seems good enough. The torque in our model is generally be-
tween the prediction of Paardekooper et al. (2011) and the re-
sult of the 3D model from Lega et al. (2014). The torque on the
Mem = 10 ME embryo differs the most; nevertheless the result
is improved when the Hill cut is applied. For the medium-mass
embryo Mem = 20 ME, we see that the value is in agreement
with Lega et al. (2014) which is a desirable result as 3D mod-
els generally lead to torque that is larger than the prediction by
Paardekooper et al. (2011) by a factor of 3 to 4 (Bitsch & Kley
2011) for the medium-mass embryos.

Lega et al. (2014) also discovered the so-called cold finger
structure near low-mass embryos. These overdensity structures
are responsible for a modification of the radial torque density
profile, it is thus worth checking whether or not we can find
these modifications using our code as well. In Fig. D.3, we plot
the normalised radial torque density Γ(r)/Γ0 (Eq. (43)) for 2 ME
and 3 ME embryos, compared to corresponding results from
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Fig. D.2. A comparison of the normalised total torque γΓtot/Γ0 acting on
embryos of various masses Mem, moving on fixed circular orbits in the
disk shown in Fig. D.1. The results achieved with our code are shown by
black circles, or open circles if the Hill cut was applied. Values obtained
by 3D calculations of Lega et al. (2014) are represented by blue squares.
Formula from Paardekooper et al. (2011) applied to the equilibrium disk
profile (with the potential smoothing parameter ε = 0.4) is given by
the red curve. We consider the differences between our model and the
comparison simulations to be acceptable.

Lega et al. (2014). It is obvious that the strong positive and neg-
ative peaks are less pronounced in our case. As the cold finger
is responsible for the enhancement of these peaks, the effect is
not entirely recovered by our code. We conclude that this is due
to the local nature of the cold-finger effect. In our model, the
gas flow around an embryo follows the velocity field affected by
the vertically averaged potential and the resulting compressional
heating is not strong enough for the cold-finger effect to fully
develop. Nevertheless, the overall torque magnitude obtained by
our model is still viable (Fig. D.2) as the asymmetry of the pos-
itive versus negative contributions is preserved to a satisfactory
level.

Finally, we compare the torque for the upper end of the tested
embryo mass spectrum. Figure D.4 shows the radial specific
torque density (not normalised) for Mem = 20 ME compared to
the result of Kley et al. (2009). The agreement is very good in
this case, with slight departures from the 3D model.

The heating torque. In order to assess how the heating torque
is recovered by our code, we repeated the numerical experiment
from Benítez-Llambay et al. (2015). Their setup is different from
the verification runs above; namely the surface density profile is
different and the opacity is assumed constant, κ = 1 cm2 g−1.
Therefore, we prevented any vertical opacity drop (cκ = 1) in
our test. The stellar irradiation and pebble disk are again ex-
cluded. We use grid resolution Nr = 738 and Nθ = 1382, unlike
Benítez-Llambay et al. (2015) who used 512 cells in radius and
1024 cells in azimuth but also included colatitude.

An embryo with Mem = 3 ME is embedded in the disk
at aJup after the relaxation phase and the static torque is mea-
sured. The source of the mass growth and accretion heating
is simply parametrised using the embryo mass doubling time
τ = Mem/Ṁem. We studied cases with fixed embryo mass and
with τ = 30, 55, 92 and 300 kyr. Shorter τ means higher accre-
tion rate and should correspond to stronger heating torque.

The results of our test are shown in Fig. D.5 which
can be directly compared with the original experiment in
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Fig. D.3. Normalised radial torque density Γ(r)/Γ0 acting on 2 ME and
3 ME embryos as obtained by our code (red and blue curve, respec-
tively). Results of the original 3D experiment from Lega et al. (2014)
are given for comparison (orange dashed curve for 2 ME and purple
dashed curve for 3 ME). As the cold finger structure is not entirely re-
produced by our code, the torque density peaks are less pronounced.
However, the overall torque (i.e. the integral of Γ(r) over r) is still in
very good agreement with the 3D model (cf. Fig. D.2).
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Fig. D.4. Radial density of the specific torque Γ(r) acting on a 20 ME
embryo as calculated by our code (black curve). The comparative profile
from the original 3D experiment of Kley et al. (2009) is represented by
the grey dashed line. Again, the agreement is very good.

Benítez-Llambay et al. (2015); cf. their Fig. 2. First, it is
important to notice that the steady-state torque on the em-
bryo in the absence of heating is less negative in our case. This
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Fig. D.5. Total torque Γtot measurement in the experiment according
to Benítez-Llambay et al. (2015), reproduced using our 2D code. The
3 ME embryo is either non-accreting (black curve) or growing with the
doubling time τ (we refer to the legend). The positive heating torque
becomes stronger with high accretion rates corresponding to short dou-
bling times.

essentially corresponds to Fig. D.2, where we found that the
torque acting on the low-mass embryos in our model is always
more positive than in 3D models. Another reason might be re-
lated to the midplane resolution which is slightly better in our
test, thus we cover the embryo’s horseshoe region with more
cells. According to Lega et al. (2014), increasing the resolution
of the horseshoe region makes the torque more positive.

Because the torque in the absence of heating is less negative
compared to Benítez-Llambay et al. (2015), it is easier for even
the low accretion rates and respective luminosities to revert the
migration because the heating torque does not have to compete
with strong negative counteracting torques.

Finally, the torque scaling with increasing accretion rate is
more efficient in our model than in the original 3D model. We no-
tice that the total difference between the torque with τ = 30 kyr
and the torque without accretion is ∆Γ ≈ 0.9 × 1036 g cm2 s−2,
compared to ∆Γ ≈ 0.6 × 1036 g cm2 s−2 found by the 3D mod-
elling. The slight discrepancy is again caused by the vertically
averaged flow field around the planet (as already discussed for
the cold-finger effect) and also due to the simplified treatment
of the radiative diffusion which in our case is acting only in the
midplane and is replaced by an approximation of the radiation
escape in the vertical direction. Yet, we consider the heating
torque to be reproduced accurately enough and we shall strive
in future works to achieve an improved agreement with the 3D
model.
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