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We use a smooth particle hydrodynamics method to simulate
colliding rocky and icy bodies from centimeter scale to hundreds
of kilometers in diameter in an effort to define self-consistently
the threshold for catastrophic disruption. Unlike previous efforts,
this analysis incorporates the combined effects of material strength
(using a brittle fragmentation model) and self-gravitation, thereby
providing results in the “strength regime” and the “gravity regime,”
and in between. In each case, the structural properties of the largest
remnant are examined.

Our main result is that gravity plays a dominant role in determin-
ing the outcome of collisions even involving relatively small targets.
In the size range considered here, the enhanced role of gravity is not
due to fracture prevention by gravitational compression, but rather
to the difficulty of the fragments to escape their mutual gravitational
attraction. Owing to the low efficiency of momentum transfer in col-
lisions, the velocity of larger fragments tends to be small, and more
energetic collisions are needed to disperse them.

We find that the weakest bodies in the Solar System, as far as im-
pact disruption is concerned, are about 300 m in diameter. Beyond
this size, objects become more difficult to disperse even though they
are still easily shattered. Thus, larger remnants of collisions involv-
ing targets larger than about 1 km in radius should essentially be
self-gravitating aggregates of smaller fragments.  © 1999 Academic Press

Key Words: impact processes; planetesimals; asteroids; comets;
collisional physics.

1. INTRODUCTION

Impacts or collisions can be grouped in three different cat
egories depending on outcome: cratering, shattering, and di
persing. The first category is defined by events leading to th
formation of topographical signatures (craters) accompanied k
ejection of material but without affecting the physical integrity of
the main body. Shattering impacts, on the other hand, are ever
that break the parent body into smaller pieces. Dispersing ever
are those which notonly break the body into pieces, butalso mal
age to impart velocities to those fragments in excess of escay
velocity. Much observational evidence testifies to these mos
energetic events: the dynamical asteroid families for exampl
(such as Koronis), and the iron meteorites which are fragmen
excavated by impact from the cores of differentiated bodies.

It has become customary in the literature to characterize i
pacts in terms of a specific energy threshold (the kinetic energy i
the collision divided by target mass). The threshold for a shat
tering event is defined by, the specific energy required to
break a body into a spectrum of intact fragments, the largest or
having exactly half the mass of the original target. Dispersing
events, on the other hand, are definedjy, the specific energy
required to disperse the targets into a spectrum of individual bt
possibly reaccumulated objects, the largest one having exact
half the mass of the original target. In the strength regime, wher
gravity does not matter (fragments do not reaccumul&g)s
obviously equal toQf. In the gravity regime howeveQy is
always greater tha@Qg, since the target must be fragmented anc
alsodispersedy the event.

Laboratory experiments can be designed to determine th

Solar System evolution hinges on the outcome of collisions. threshold for small targets, i.e., targets in the strength dominate

order for planetary accretion to proceed, for example, collisionsgime (see for example Fujiwaed al. 1989, Davis and Ryan

must result in larger, not smaller pieces. Asteroid dynamica®90, Ryanet al. 1991). By using up to meter-sized targets,
families are in most cases thought to be the outcome of catewusen and Holsapple (1999) were able to confirm previou
trophically disruptive collisions between parent bodies; smalldreoretical prediction of strength weakening with size. Impact
asteroids and interplanetary dust may be the result of collisiomalpressurized targets (Housen 1991) designed to simulate se
cascades; and asteroid and planetary binaries (Ida and Dadgyéyvitating bodies indicate that strength increases again in the
Pluto and Charon, Earth and Moon) may also be an expressi@arger” targets. However, these artificially pressurized target
of impact. are uniformly compressed while in truly self-gravitating bodies
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6 BENZ AND ASPHAUG

the overburden is a function of position. The interpretation of TABLE |
these experiments is therefore not completely straightforward. Material-Dependent Constants
The scales of planetary impacts are far different from what can »
. . . . m Y Emelt
be studied directly in the laboratory, and extrapolations by more (erglco) (e19/a) ©rala) ) m

than a dozen orders of magnitude in mass are required before

reaching a range relevant to asteroids and/or planetesimals. ggait 227 18 35100 3.4 100 4.0 1¢%2 9.

tailed theoretical models of disruptive impacts (Holsapple ang 2.80 168° 1.010° 7.016 1.4 16?° 9.6

Housen 1986, Housen and Holsapple 1990, Holsapple 1994)

try to bridge this gap by establishing relations among nondiZ From calibrating numerical simulations to laboratory experiments (Benz

mensional ratios involving impactor size, impact velocity, targ&f2 ASPhaug 1995).

strength, density, etc. Such relations, deriving from dimensional

analysis, assume uniformity of process, structural continuity,

and other idealizations, and cannot predict detailed outcomegture. Young's modulus can be computed from the knowledge
Recent exponential increases in computational power hawigthe bulk modulus (parametérin Section 2.1) and the shear

enabled numerical simulations to become the method of chol@dulus according t& = 9Au /(3A+ ).

to investigate these issues in greater detail. Laboratory impacEor the lower tensile stresses associated with brittle failure

experiments are used to validate the numerical models on sny¢g# use a fracture model based on the nucleation of incipien

scales before extrapolations to sizes relevant to Solar Systéaws whose number density is given by a Weibull distribution

bodies are undertaken. However, numerical attempts to def@¥eibull 1939, Jaeger and Cook 1969)

mine Q}; have for the moment been limited to idealized geome- m

try (two-dimensional axisymmetry) (Ryan and Melosh 1998) or n(e) = ke™, (1)

restricted to a subset of target sizes (gravity regime) (Melosh a\ﬂﬂeren is the number density of flaws having failure strains

Ryan 1997, Love and Ahrens 1996) and low resolution (LO\fgwerthane. The Weibull parameters andk are material con-

anld ?hhrens 1996). th particle hvdrod ics (SP nts which can be determined from laboratory experiment
n this paper, we use a smooth particle hydrodynamics ( mparing failure stress to strain rate, although data are scarc

method to simulate coII|d|ng_ basalt an_d Icy bOd'eS_ from CeNbeble | gives the numerical values of these material-depender
meter-scale to hundreds of kilometers in diameter, in an effort

defineselfconsistentlyhe threshold for catastrophic disruptionare a previously determined (Benz and Asphaug 1995) bes
Unlike previous efforts, this analysis incorporates the combin tch to the laboratory impact experiments of Nakamura an
effects of material strength (using a brittle fragmentation mod jiwara (1991): parameters for ice are derived by fitting a line
and self-gravitation, thereby providing results in the “strengtlla the measuren,1ent5 of rate-dependent fracture stress publish
regime” and the “gravity regime” and in between. We begi

. . . . Lange and Ahrens (1983).
with a short presentation of the physical model (Section 2) fol- Once flaws are activated, fractures grow at constant velocity
lowed by a discussion of various numerical issues pertaining& '

) . ) Bout half the sound speed. The extent to which fracture affect
our Stugly (Section 3). The resul_ts obtalne_d from_ 480 d'ﬁere{He local properties of Ewatter is described by a scalar state var
simulations are presented and discussed in Section 4. able calleddamage The possible values fdb range between
0 (undamaged) to 1 (totally damaged). The ability to sustair

2. PHYSICAL MODEL shear or tension by individual particles is reduced linearly with
D and vanishes foD = 1. Because damage accrues according
Our approach of dynamical fracture modeling has been de-the entire stress history of a parcel of matter, only Lagrangiar
scribed in detail elsewhere (Benz and Asphaug 1994, 1995) awdutions to the hydrodynamics equations are applicable.
will only be summarized here. Our model of dynamic fragmentation explicity reproduces
The equations describing an elastic solid are the usual cahne growth of cracks in a brittle elastic solid by rupturing bonds
servation equations (mass, momentum, and energy) in whid forming new free surfaces. Cracks grow when local failure
the stress tensor has a nondiagonal part, the so-called deviatstrigins are exceeded, and stresses are relieved across the cr
stress tensor. With the assumption that the stress deviator rateasndaries. The release of stress along fracture walls increas
proportional to the strain rate, i.e., Hooke’s law, and a suitabdiéfferential stress at the crack tips, driving cracks forward in the
equation of state (see Section 2.1), it is possible to numericathanner of an actual brittle solid. Tensile and shear stresses a
solve this set of coupled differential equations. Plasticity is intransupported across disconnected regions, leading to reduc
duced by suitably modifying the stresses beyond the elastic liriterage strength and sound speed (i.e., damage) in the boc
using a von Mises yielding relation. Not counting the equatidBy producing actual cracks and fragments, our method at suffi
of state, this approach requires three material-dependent coiently high resolution automatically takes into account friction
stantsju, the shear modulu¥;, elastic limit, ancEmer, the melt  between fragments and bulking, effects which are included a
energy used to decrease the elastic limit with increasing tempeseipes in statistical damage models.

Our fit to stress-strain rate data published in Lange and Ahrens (1983).
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TABLE 11
Tillotson Eos Parameters
00 A B EO Eiv ECV
(g/cc) (erg/cc) (erg/cc) (erg/g) (erg/g) (erg/g) a b o B
Basalt 2.7 26719 2.67 161 4.87 162 472180 1.82 141 0.5 1.50 5.0 50
Ice 0.917 9.47 18 9.47 18° 1.00 161 7.7318 3.04 149 0.3 0.1 10.0 59

2 Tillotson parameters as published for lunar gabbroic anorthosite (O’Keefe and Ahrens 1982a), substituting the basalt reference density dnidi©akk mo
reported by Nakamura and Fujiwara (1991), from whose work our basalt fracture coefficients (Table 1) are derived.

b Tillotson parameters as expressed for water ice (O’Keefe and Ahrens 1982b), again substituting the ice reference density and bulk moduldsbgs ref
Lange and Ahrens (1983), from whose work our ice fracture coefficients are derived.

2.1. Equation of State meterA. Because the Tillotson parametis not known for the
srpecific target material, we make use of the fact hat A for

We used the so-called Tillotson equation of state (Tillotso . . . .
most geologic materials. This is probably a good assumption fc

1962) Wh.'Ch was §peC|f|c§1IIy derived for high-velocity '.mpaCE)asalt but may underestimate the second-order pressure ter
computations. This equation has the advantage of being cam:

. . . - |n‘ice, making it more “rock-like.” We summarize in Table Il the
putationally expedient while sophisticated enough to allow i S L .
S : . . I lllotson parameters used in this paper. This situation is notidea
application over a wide regime of physical conditions. . : ; .
i However, given the rudimentary understanding of asteroidal an
For compressed regions and for cold expanded states where " .
. . L cometary compositions (they are surely neither pure basalt n
the energy densityK) is less than the energy of incipient vapor- : o ) .
o : pure water ice!), we feel that there is little to be gained until com:
ization (Ej,) the Tillotson eos has the form . . L .
prehensive experimental work, combining dynamic strength an
equation of state, can be performed on more representative ce

didate materials at the appropriate temperature.
pE+ Au+Bu? (2 pprop P

"= o e |

wheren = p/po andp =n —1, such thap is the compressed |, tis section we discuss various issues related to the nume

density andp is the ZEro-pressure density. Har,d?, A, B, and ical methods used to either simulate the impacts or analyze tt
Ep are referred to as the material-dependent Tillotson parames \its of the simulations

ters.
For expanded states, when the internal eneEgyi greater 3.1 |mpact Simulations

than the energy of complete vaporizatidhf), the pressure has . ) ) )
the form Fracture depends on the entire stress history of a given pie

of material. A Lagrangian approach, in which the frame of ref-
erence is attached to the material, is therefore the natural fram
+ Aﬂeﬂ(Po/Pl):| e«(o/p=17 — work for solving the equations briefly described in Section 2.

3. NUMERICAL ISSUES

boE
(E/ (Eonz) + 1) Eulerian codes to date cannot accurately follow stress histor
) and the development of cracks. Conventional Lagrangian code

however, are unable to handle large material deformations, :
wherea and g are constants that control the convergence rati@ngling and deformation of the grid severely affect the accurac
of the equation to the perfect gas law. For intermediate statederivatives.
pressure is simply interpolated linearly between both expandedmooth particle hydrodynamics (see reviews by Benz 199(
and compressed states. Monaghan 1992) does not suffer from this problem. We havi

Tillotson parameters for a variety of geologic materials haweveloped a three-dimensional SPH code capable of simulatir

been compiled by Melosh (1989). However, the most funddynamical fracture of brittle material (Benz and Asphaug 1994
mental coefficients (especially density and bulk modulus) fa995). Our SPH code being an explicit code, the size of the tim
candidate materials are typically different from those reporteatep is limited by the Courant condition. In practice, this mean:
for specimens used in laboratory impact fragmentation expettiat the time step cannot exceed a fraction of the time neede
ments, from which our Weibull coefficients (Table I) are derivedhy an elastic wave to cross a resolution element. If this elemel
We therefore make the following alteration to the equations &f of sizeh, numerical stability requires thakt < h/c, where
state, in an effort to best characterize the material in the fragis the wave speed. With 42,000 particless of orderR/35
mentation experiments: We substitute the measured densityvidrereR is the target radius. As an estimate for wave speed w
the published Tillotson reference density of the most similéakec = ./A/p whereA is the bulk modulus. Taking the values
material, and the measured bulk modulus for the Tillotson pam@apropriate for basalt, we get=3.2 km/s which leads to an

_—
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upper bound for the time step given By < 9 x 10~8R, where For fracture to proceed, stresses must first overcome the loc
dt is in seconds an® in centimeters. gravitational overburden. To include what amounts to an effec.
Gravitational clumping of fragments and the formation of rufive gravitational strengtheningithout having to solve the full
ble piles on the other hand takes place on a dynamical timesdafsson equation during the simulations, we use the techniqu
given byt = /37/16Gp. For basalt, we obtain a value for the(Asphaug and Melosh 1993) of adding to the local stress ten
clumping timescale of = 1.8 x 10°s. The number of time stepssor (determined from solving the elasto-dynamical equations) ai
required to follow a collision up to the time where gravitationapotropic lithostatically equilibrated stres3 (r ) = Z Gp?(R? —
reaccumulation occurs is therefdde> v /dt =2 x 10t°/R. For r?)). The sum, the “total fracture stress,” is converted into a
targets of radius 100 m, this requires a number of time stey&ibull strain for use in Eq. (1) by dividing the largest tensile
greater than 19 which is currently prohibitive. principal stress by the modified Young’s modulus, as pioneere
While these two vaslty different timescales prevent us froly Meloshet al. (1992). Note that the difference between the
simulating the entire process directly, they also mean that sdick fracture stress and the total fracture stress is negligible fo
gravitation is entirely decoupled from the impact phase for ifiargets smaller than a few 10’s of kilometers radius, and that fo
termediate targets (see Asphaug 1997). Clumping can thereflawger targets, strengthening toward the interior may be due a
be studied independently as part of the postprocessing analysigh to thermodynamical processes (annealing) as to gravit
of the impact simulations proper (see Section 3.3). This has aRgy se.
the additional advantage of not having to solve Poisson’s equa-
tion (self-gravity) during the impact phase. We therefore use3a3- Fragment Search
faster linked list in rank space algorithm to find the neighbor ag outlined above, late-time gravitational evolution can for
particles rather than a hierarchical tree. While the dynamiqglermediate size targets be decoupled from the impact physic
effects of self-gravity are not included in the simulations, these|f Thus, we perform the characterization of the collisional
fracture shleldmg effect due to compression is included in thgicome as a postprocessing step. Our approach to find the fin
code (see Section 3.2). _ _ _ collisional outcome proceeds in two steps. First, and regardles
The code’s behavior in the elastic regime was extensivelyia get size, we begin by searching for intact (undamaged) frag
tested against simple analytical solutions, while the fractufgans i e., fragments that are held together by material streng
modeling was tested by simulating laboratory impact expetijone. Our method makes no assumptions regarding their nun
ments (Nakamura and Fujiwara 1991, Ahrens and Rubin 1993} qeometry, or location, as they are a natural outcome of th
leading to core-type and radial fragmentation and extensive spalctyre trajectories resulting from a given simulation. Contrary
lation. The code was able to reproduce the laboratory expg§-siatistical fragment approaches, our fragments are explicitl
iments to a level of detailed accuracy never achieved befoggyfined by the network of cracks resulting from the impact. We
including shape, ejection speed and rotation of fragments, trajgge 5 friends-of-friends algorithm to identify individual mono-
tories of far-field fracture, and post-fragmentation sound speglic fragments defined as contiguous regions of particles helc
relationships. together by strength and surrounded by strengthless or empty r
gions. At the end of this procedure, we obtain for each fragmen
its mass, position, velocity, angular momentum, and momen
of inertia. This is the “shattering” spectrum of fragment sizes
We use the explicit flaw assignment procedure describeddiscussed in the Introduction.
Benz and Asphaug (1995) using the material-dependent WeibulAs soon as the target size exceeds 50-100 m, searching fi
parameters listed in Table I. Our explicit flaw method improvéatact fragments is no longer sufficient, as some of them may b
upon the mixed explicit-implicit method of Benz and Asphaugble to reaccumulate due to gravity, leading to remnants incor
(1994). These methods are wholly independent of numerigairating multiple fragments. We search for these gravitationally
resolution (in terms of the assigned flaw statistics) and leadtiound aggregates by applying a well-known iterative procedure
rate- and size-dependent fracture thresholds. adapted from the techniques used in simulations of galaxy for
Each particle is assigned a number of discrete fracture thresiation. The procedure starts by computing the binding energ
olds distributed at random from the underlying Weibull distribuef all particles and/or fragments with respect to the largest frag
tion (Eqg. 1). When local stresses exceed such a threshold, danent, or if too small, the particle closest to the potential mini-
ageD is allowed to grow until the local stresses decrease agamyum. This serves as the seed for nucleating the total bound mas
or until D reaches its maximum authorized value. This maxidnbound particles are discarded, and the center of mass positic
mum authorized value for partidlés givenbyD! .. = Nl /N!__ . and velocity of the aggregate is computed. The binding energ
whereN! is the currently active number of flaws ait,,, the of all the remaining fragments and particles with respect to this
number of fracture thresholds assigned to particl€his par- new position and velocity is again computed. Unbound particles
ticular algorithm of damage accrual and authorization ensur@® again discarded and the procedure is iterated until no pa
that flaw distribution and activation are not linked to numericdicles are discarded. Typically, convergence is achieved after
resolution. few iterations £5-10) with only very few particles being lost

3.2. Flaw Assignments
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after the first 2-3 steps. Finally, we check that particle/fragme Strength regime:
members of this gravitationally bound aggregate are also clc o

spatially, using again a friends-of-friends algorithm. Mass, pc  1ndividual fragments
sition, velocity, angular momentum, and moment of inertia al
also determined for this gravitationally bound aggregate, whic
can be made of a collection of smaller fragments and/or indivii
ual particles. Because of the limited number of particles use
we limit our search to the single largest aggregate and do r
attempt to search for smaller ones.

The algorithm has been tested extensively in both the streng
and gravity dominated regime by comparing end results
simulations with predictions made at early times by the cluste
finding algorithm. To overcome the time step problem in th
gravity-dominated regime, purely hydrodynamical simulation
were used to allow the code to compute to sufficiently lat
times.

For each simulation, we therefore identify and characterize Rubble aggregate
largest object present at the end of the collision. This object m
either be an intact fragment (in the strength-dominated regirr
or a gravitationally bound aggregate of fragments (gravity-dor
inated regime). In the latter case, we also search for the larg
intact fragment belonging to the aggregate (see Fig. 1), e.g.,"
largest component of the resulting “rubble pile.” :

largest
remnant

Gravitational regime:

largest intact
fragment

3.4. Initial Conditions

We have considered eight different target radii, 3 cm, 3 n S N . g’@
300 m, 1 km, 3 km, 10 km, 30 km, and 100 km, and two dif<) =~
ferent material types, basalt and ice. For each target we h
computed impacts for five angles of incidence measured frc..:
the surface normal:"030°, 450’ 60°, and 75 For ea_Ch material FIG. 1. In the strength-dominated regime, the largest remnant is a singls
we have considered two impact velocities: for icy targets O;Ract fragment while in the gravity-dominated regime the largest remnant is-
and 3 km/s, and for basalt targets 3 and 5 km/s. In each cageyitationally bound aggregate of fragments of various sizes.
Qp was computed from a parabolic fit to three different simula-
tions in which only the impactor mass was modified. The entire
study therefore represents a total of 480 different simulatiosgnificant changes occurred in the extent of damage endured |
which were automatically handled by special “driver” softwardhe target and in the velocity of the ejected particles.
As each simulation can take up to a few days of high perfor-
mance workstation time, this represents a significant body of
computational effort.

Because of the statlsncal nature of this stuc_zly, we had to |II‘I}‘|_'.[1. Catastrophic Disruption Threshold
ourselves to a relatively small number of particles. In all cases,
we used 42,000 particles to model the target. This number wag-or a given impact geometry, velocity and target (parent body
found in convergence-test comparisons between numerical simaterial, Qy, is determined by interpolation between three dif-
ulations and laboratory impact experiments (Benz and Asphafegent simulations spanning a range of incident kinetic energ
1994, 1995) to be sufficient to determine reliably the characterfger unit target mas<J) chosen to yield largest remnant masses
tics (size, velocity, and rotation) of the largest fragment. Thus (fmax= Mir/Mpp) generally in the range 0.3-0.7. In the ex-
all what follows, we shall concentrate only on the characteristipsession aboveM;, represents the mass of the largest rem-
of the largest fragment. nant (including gravitational reaccumulation if applicable) and

The projectile was modeled using 800 particles for the 3 amd,,, the mass of the parent body (or target). A parabolic fit
5 km/s impacts and 7000 for 0.5 km/s impacts since in this calskax=a Q>+ bQ + c) to these results is computed a@¢ de-
the impactor was much larger. (In fact, in the case of 100-ktarmined by solving forfma( Q) =0.5. The results of these
large icy targets and large incidence angles the required poalculations are shown in Figs. 2-5 for the various velocities
jectile for a given value oQ was sometimes bigger than theand material type. In these figures, each dot represents the val
target!) The simulations were carried out in time until no furthesf Qf determined from the parabolic fit. The dots corresponding

4. RESULTS
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FIG. 2. Catastrophic disruption thresholds for a basalt target and 3 km/s £ 4. catastrophic disruption thresholds as described in the legend tc
impact velocity. Each set of connected dots represent one projectile anglq;gi 2, but for an icy target and 3 km/s impact velocity.
incidence starting with O(bottom curve), 30, 45°, 60°, and 75 (top curve).

to the same angle of incidence of the projectile are connectside for small targets while it increases with size for larger tar-

by a solid line. gets. These two behaviors correspond to collisions occurring il
We recover in these figures the well-known functional depea-strength or gravity-dominated regime. The transition betweel

dency of Qf with target size, namely thaD}; decreases with the two regimes occurs in the range 106&rR < 1 km for both
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FIG. 3. Catastrophic disruption thresholds as described in the legend toFIG. 5. Catastrophic disruption thresholds as described in the legend tc
Fig. 2, but for a basalt target and 5 km/s impact velocity. Fig. 2, but for an icy target and 0.5 km/s impact velocity.
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ice and basalt. We note that for a given target 9iZgjs a strong
function of the projectile’s angle of incidence. DifferenceQif
between a head-on and a”iBpact reach about a factor 10.

The increase 0@} in the gravitational regime is due to two
factors. The most important is the fact that even though bod
ies exceeding 1 km in radius are almost entirely shattered (s¢
Section 4.3) in aQf collision, the pieces do not all disperse
because their relative velocities are smaller than the escape Vg
locity of the aggregate. Hence, for catastrophically disrupted an’y
dispersed bodies larger thari km, all the largest remnants are &

found to be gravitationally bound aggregates of smaller fragc tor F

ments. The second effect is due to gravitational shielding of th
central region of the target (see Section 3.2) but as we shall see
Section 4.3 this affects only the largest targets in our mass rang
In many studies, one is not interested in the outcome of a pa
ticular collision but rather in the collisional evolution of an entire
population. For these statistical studies, we can compute an €
fective threshold which is independent of angle of incidence
namelyQy, () averaged over all possible impact geometries bu
at fixed relative velocity. For an isotropic distribution of incom-
ing projectiles (at infinity), Shoemaker (1962) showed that the

108

108

11

108 ..

ALLL AL S R

basalt

—e— v=3 km/s
~~~~~ o v=5 km/s

10! 102 103 104
target radius (cm)

108

108

107

probability distribution for impacting with an angle betweaen
anda + do is given by

P(a)da = 2sin@)cosp)de O< o < /2 (4)

regardless of a planet's mass. Using this probability distributi
we define a mean catastrophic disruption thresiq@idoy

_ /2
Q’B:/O 2Q5 () sin(x) cosgr) da. (5)

FIG.6. Mean catastrophic disruption thresh@g for a random distribu-
tion of impact parameters (see text for details) in the case of basalt targets.

be related to the fact that for equal mass targets, ice materi
is lifted from an initially higher potential (less negative po-
tential energy) corresponding to the larger equal-mass targ
on, . . .

diameter. Alternatively, because the shock imparts differen
velocities to fragments according to different material character
istics (the velocity field determines the subsequent gravitation:
reaccumulation), equation of state distinctions sensitive to bot

material type and impact speed may be the culprit.

This integration is carried out numerically with a simple trape-

zoidal method and using th@}, () determined from the simu-

lations. The results are displayed in Fig. 6 for basalt targets
in Fig. 7 for icy targets.

In order to compare with disruption thresholds published ir
the literature and to allow these results to be used by others, v

fitted (by eye) an analytical curve @} of the functional form
= Rob \* Reo )
@ = Qo(l em) Bo lcm)’ ©)

where Ry, is the radius of the parent body (or target)the
density of the parent body (in g/&nandQ, B, a, b constants

§ ice 1
ar —e— v=3 km/s {d_:

oo y=0.5 km/s

109 =

Qp (erg/g)

to be determined. This functional form is often encountered ir
scaling law approaches with the two terms representing the tw
distinct physical regimes dominating the dynamics: (1) materia
strength (first term on the right, with< 0) and (2) self-gravity
(second term on the right, with> 0). The values obtained for
the coefficients are listed in Table 11l and the fits are represente
as lines in Figs. 6 and 7.

Note that the slopes in the gravity regims &re somewhat

108

ATTT AT

TTT AT

1

10!

102

108

target radius (em)

104

108

108

107

different between basalt and ice, and even for ice the two slopeg|c. 7. Mean catastrophic disruption threshal, for a random distribu-
corresponding to the two velocities differ slightly. This couldion of impact parameters (see text for details) in the case of icy targets.
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TABLE Il or because vaporization at high impact speed may contribute t
Fit Constants for Qp, fragmentation, which is not the case for the subsonic (500 m/s

collisions.
Material laznrga;;t) (Srg/g) (erch?vQ2) a b Now we compare our z_iveraged_di_spersion threshold witt
other published values in Fig. 8. In this figure, we reproduced the
Basalt 5 9.016 0.5 _0.36 136 disruptionthresholds obtained from either scaling laws or nu-
Basalt 3 3510 0.3 —-0.38 1.36 merical simulations in the strength- or gravitational-dominated
Ice 3 1616 12 -0.39 1.26 regime. For small targets, our estimate of the threshold agree
Ice 0.5 7.010 21 —0.45 119 well with the determination of Holsapple (1994). The largest

differences occur for large targets for which we predict that they
are significantly stronger (more difficult to disrupt and disperse)
Also note that in the gravity regime, faster impacts are lefisan previously estimated. This does not arise due to a signifi
disruptive than slower impacts of the same energy, for both roc&nt change of slope (notice our slope is close to that predicte
and ice. This is due to the greater efficiency of momentum cooy Holsapple 1994 or Melosh and Ryan 1997) but because th
pling for slower impacts. The governing factor for gravity regim&urnover from strength- to gravity-dominated targets occurs a
disruption is not shattering, but motion toward gravitational sepmaller sizes.
aration. For basalt, this trend continues into the strength regimeWWe also display in Fig. 8 the recent determinationQf
although that is coincidental, since the strength regime depetysDurdaet al. (1998). Their curve is determined by requiring
on entirely different aspects of collisional physics (flaw actthat numerical models of the collisional evolution of the main-
vation). For ice, the opposite is true: slower impacts (of tHeelt asteroids fit the observed size distribution of these objects
same energy) result in less disruption. Evidently ice is easigterestingly, they obtain that objects of order 100—200 m in
to fracture at high strain rates than at low strain rates, relatide&meter are the weakest objects, a conclusion confirmed by ol
to basalt. This is either because it has more flaws availableséthulations. However, besides the agreement on the size of tr
low activation energies (consistent with its Weibull distributionjveakest objects, our results (as well as all other determination

T LB R ALLY T T T TTTTT LI LR | T T T 11171 3

T

108

T LI TTTTY]

Ll

108

T T T
Sl

1 L lIlIllI

Il Illlll[

108

L 1 II[IJII

10‘ L L 'i‘ll 1 ||1I 1 L1 11 l“'[l L 11 rl.; |||I I"l L1 11 lI 1 L1 1 111l
102 103 104 108 108 107
target radius (cm)

FIG. 8. Comparison between the mean catastrophic disruption thre@@l(hasalt targetsy =3 km/s) determined in this work (heavy line) and other
determinations in the literature.
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of Qp) differ from the results of Durdat al. by an order of 1
magnitude or more. The origin of this discrepancy is not clea
On one hand, we note that the values@j determined by
Durdaet al. are not obtained from a simple fit to observed size:_z 0.6
but assume an underlying collisional model which might not bi™;
predicting accurately collisional outcomes. On the other han® 4
it may also be possible that asteroidal material has mechanic 2 [
properties very different than those of the material tested in tt 3

T T T T T T T T T T T T T

a) ice, 0.5km/s

0.8

ol by b Lven By

laboratory. 0 =
As already noticed by many (most recently by Ryan ant

Melosh 1998), the efficiency at which the kinetic energy is 1 .
transmitted from the impactor to individual fragments is ex- C ]
tremely low. Since the largest remnants in collisions involving 08 E
targets larger than 1 km are gravitationally bound rubble pile_# 0.6 |- ]
(see Section 4.3) their mass is determined ultimately by the v oa b E
locity distribution imparted to the fragments during the impact s ]
A fragment will remain bound if its velocity remains below the 02 - E
escape velocity of the aggregate of all slow moving fragment: ¢ , 2

This explains why targets as small as 1 km radius are alrea .
significantly strengthened by gravity against dispersal. v/

FOI‘. a glve_n mate”_al pre’ the r?'dlus of t_helNeakeSt ObJeCtFIG. 9. Mass of largest remnant (in terms of original target mass) as ¢
Rueakis obtained by finding the radius for whidhQp/dR=0.  function of impact energy per gram of target material normalize@gpfor
From Eqg. (6) the value of the radius of the weakest object iy targets and collisions occurring at (a) 0.5 and (b) 3 km/s. Different symbol:

given by correspond to different target sizes.
—Bpb & depends upon the incident kinetic energy per gram of targe
Rueak={ 50, (™) material Q).

Figures 9 and 10 show the dependency of the mass of tt

Table IV gives the values derived fyeax Using the values of largest fragment on the impact energy obtained in ou
the parameters listed in Table Ill. For both materials and impact
speedsRyeak> 100—200 m. 1
These values are smaller than those derived in other studie 3
For example, Holsapple (1994) based on scaling laws gives3k  0-8 [
as the transition point between the two regimes. Melosh an . ;¢ .
Ryan (1997) as well as Love and Ahrens (1996) from numerice<

— T
basalt, 3km/s

o P .1 NPT W (N RSP (PO AT

simulations give numbers in the range 200—400 m. = 04
0.2
4.2. Largest Remnants C
While a collision occurring aQQj leaves by definition the == 0.5 — 1 — 1.5

largestremnant with mass equal to half the target mass, collisiol
occurring with differentQ leave remnants of different masses.
We can therefore use all our simulations (whose intent was 1
bracketQp) to investigate how the mass of the largest remnar

5: 0.
TABLE IV < 0.
Radius of the Weakest Object i
Vimpact Rweak ) J ISR T ST S S ST ST T R R SO TR T
Material (km/s) (m) 0.5 1 1.5 2
Q/Q

Basalt 5 163
Basalt 3 117 FIG. 10. Mass of largest remnant (in terms of original target mass) as
Ice 3 102 a function of impact energy per gram of target material normalizeQydor
Ice 0.5 213 basaltic targets and collisions occurring at (a) 3 and (b) 5 km/s. Different symbol

correspond to different target sizes.
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FIG.11. The mass of the largest intact fragment (normalized to mass of the parent body) when the threshold critical disruptio@Pcfaursgsalt targets.
When gravity goes to zerdi; goes to 0.5 by definition. The results for different angles of incidence are shown by using different symbols.

simulations. To facilitate the interpretation of these results, theExcept for the case discussed above, we find that the rela-
impact kinetic energy per gram of target material has been ntive mass of the largest remnant can be well represented by the
malized toQf for each target size and projectile angle of infollowing expression and that this single expression holds for
cidence. All simulations (120) involving a given material typ¢argets ranging from 3 cm to 100 km and angles of incidence
and impact velocity have been plotted on the same plot. Thetween Oand 75:
different symbols correspond to targets of different sizes.
These figures clearly show that when normalize®@tpthe M < Q )

. ; . ; =-s|l ——-1)+05. (8)
relative mass of the largest remnant is a well-defined, simple Mpb Q*
function of Q and is independent of target size and/or angle of

incidence. The dependence upon these parameters enters onfiyiike lines are drawn on the various figures and their slopes are
Qp! The increased scatter in the points for small mass fragmepdsnarkably similar: for basatt=0.35 forv =5 km/s,s=0.5
is probably due to the inherent numerical difficulties in resolvingy , — 3 km/s: and for ices= 0.6 forv = 3 km/s. The case for
these smaller objects (at fixed resolution). ice atv = 0.5 km/s for some still unknown reason does not yield
This relationship is remarkable since the mass of the largegich a tight relation. We have not attempted a real fit to the data
remnant is not determined by a single process, but by eithg{q only plot the line derived for the= 3 km/s.
material strength or gravity depending on target size! In this
regard it is interesting to note that in the case of Iow-velocitX
collisions on icy targets the correlation is significantly worse,’
especially for large targetf(> 3 km). It is unclear why thisis  We now determine the largesitact (unshattered) fragment,
the case; however, in these cases it is worth pointing out thdf;, in collisions occurring aQ. Here by undamaged we mean
due to the low velocity, the projectile is sometimes as big as tagragment for which material strength still plays an important
target and that the relative velocity is significantly smaller thaole in the cohesive properties of the object even though the frag-
sound speed, indicating that there might be a different disruptiorent may no longer have its original strength. We are looking
regime at low velocity. for the largest boulder in the final rubble pile.

3. Largest Intact Fragments
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FIG. 12. The mass of the largest intact fragment (normalized to mass of the parent body) when the threshold critical disruptio@rtursy targets.
When gravity goes to zerd/l;i; goes to 0.5 by definition. The results for different angles of incidence are shown by using different symbols.

For each target radius and projectile angle of incidence, weFor the largest targets considered in this study we notice
obtain from the three simulations performed a parabolic relatiomarginal trend foiM; to rise again. This effect is due to grav-
Miir = f(Q). We determinéV; by settingM; = f(Qy}), where itational strengthening of the target discussed in Section 3.
Qp has been determined using the parabolic fit described Htowever, we stress that this effect is only of moderate impor
Section 4.1. The values obtained for the mass of these largasice: the main role of gravity in this size range is to allow
intact fragments are displayed in Figs. 12 and 11 for both mater the formation of gravitationally bound rubble piles. Gravi-
rial types and impact velocities. tational strengthening appears also to be strongly dependent

Not surprisingly, for small targetsR'< 100 m) the largest initial impact parameter. For example, in the case of anicy targe
undamaged fragment is equal to half the original target masis100 km radius a grazing impact occurring@t and with an
regardless of impact parameter. This is simply because in iheidence angle af = 75° leaves behind the largest undamaged
strength-dominated regime the mass of the largest intact fréigggment of~0.015 My, while atoe = 0° the same fragment is
ment is equal to half the target mass by definitiorQgf. How- smaller than 0.008/p.
ever, for targets larger than 300 m and regardless of material typ&inal objects in the ranged Ry, < 100 km are found to be es-
and/or impact velocity, the mass of the largest intact fragmesentially gravitationally bound aggregates of smaller fragments
drops rapidly even though the collisions occurre@gt Thisre- Whether observed asteroids and comets in this size range &
flects the fact that collisions involving parent bodies this size aimtieed rubble piles depends upon whether they have suffere
larger take place in the gravity-dominated regime. This regingeQj collision during their history. Further complications ex-
is therefore characterized by the fact that the largest remnéstf for example, Asphaugt al. (1998) have shown that target
is not an intact fragment but a gravitationally bound aggregageometry (shape) and internal structure (prefracture) can si
of fragments. Due to the precipitous nature of these curves faficantly influence collisional outcome. The spherical homoge
target radii larger than a few 100 m, we don’t expect any monpeous intact solids considered here may be idealized. A “conta
lithic object of this size. On the other hand, we expect a widenary” asteroid may for instance suffer catastrophic disruptiol
variety of internal structures for objects in the range 30-300 wf its impacted lobe, with little or no disruption occurring on
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FIG. 13. Ejection velocities of largest remnant in 5 km/s collisions involving basalt targets. Different symbols correspond to different parent bdaly sizes.
the lower panel, the velocities have been normalized to the parent body’s escape velocity, and only the results for initial bdligs Wikm are shown.

its unimpacted lobe. A target which &ready a rubble pile  In each figure, the upper panel shows the actual ejection ve-
may similarly be more difficult to disperse by impact, due to thiecity. Each different symbol corresponds to a different initial
inefficient coupling of impact energy. target size regardless of angle of incidence. The lower panel
shows the ejection velocity normalized to the target's escape
velocity for initial targets greater that 1 km.

We note that for a given parent body size, larger remnants

For each target size, material type, and impact parameter gse lower ejection velocities regardless of angle of incidence.
determined the ejection velocity of the largest mass remnantiimfact, it is remarkable how little influence the impact parameter
each of the three simulations bracketi®g. We note that this seems to have on the ejection velocity of the largest remnant.
velocity is not related in a straightforward manner to the usuBbr each target size, the ejection velocity of the largest remnant
energy partitioning coefficientixe, namely the fraction of ki- is to a good approximation a simple decreasing linear function
netic energy going into fragment kinetic energy. Given that th its fractional mass (in the domain 0.5\, /My, < 0.8). In
kinetic energy isot distributed uniformly over all fragments, addition, we note that for the largest fragments, i.e., the one for
but rather carried away by a small amount of mass moving vemhich gravity is the dominant cohesion force, we can almost
fast, we believe the coefficierfig to be of little use to addressremove the target size dependence by normalizing the ejection
the dynamics of the largest fragments. We therefore focus ouragiocity by the parent body's escape velocity. In other words,
tention on determining the actual velocity of the largest fragmethte outcome velocity of the largest fragment normalized to ini-
or aggregate in each simulated collision, numerical resolutitial target escape velocity is (within some considerable scatter)
preventing us from studying the smaller ones. independent of target size and impact parameter. The fact that

These ejection velocities as a function of normalized fragmethie velocity of the largest remnant is a relatively constant frac-
mass are displayed in Figs. 13-16 for both material types atich of the target’s escape velocity is probably due to the a priori
collision velocities. Velocity is measured relative to the centeequirement that in the gravitational regime about half of the
of mass of the original target. initial mass must escape.

4.4. Ejection Velocity of Largest Remnants
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In order to gain insight regarding which collisions lead to e —————
the fastest moving largest remnants, we have analyzed how t
ejection velocities depend upon the ratio of impactor to targe
size, R/ Rpp. We stress again that because of numerical res:
lution, we are able to analyze only the largest remnants ar °°f  basalt ot
not the entire ejecta distribution. Thus, it is unrealistic from ou i
data to determine the actual kinetic energy transfer efficienc
fke. | o .

Figures 17 and 18 display the ejection velocity of the larges
remnants as a function d® /Ry, regardless of angle of inci-
dence. The two different symbols correspond in each cases
the two different impact velocities. Apparent from these fig- 10F
ures is the fact that the ejection velocity rises WRH Ry, in a :
monotonic fashion. The “width” of the curve is mainly deter-
mined not by scatter but by the relation between ejection velocit
and remnant mass (see above). Thus, regardless of angle of o8 v .
cidence, collisions will give rise to fast moving remnants if the I ". %
size of the impactor becomes comparable to the size of the part
body. T e e s sy ST EL L

In regard to the collisional origin of asteroid families, we note R /R
that velocities of order 100 m/s are easily obtained for basaltic v

targets provided the impactor size is at least about half the parent|c, 17. Ejection velocities of largest remnant as a function of impactor
body size. radius normalized to target radius in collisions involving basalt targets.
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100 - T T ————T The upshot of this is that any catastrophic collisions leading
[ to disruptionmustoccur at an energy far exceeding the thresh-
o o old for shattering the parent body. These necessarily high stra
‘e °,  ©° o ] rate collisions imply by the nature of the fracturing process tha
° ° many cracks must grow to release the stresses, preventing a
o © ] sizeable fragment from surviving. Thus, catastrophic collision:
o ] of this nature can only result in the formation of gravitationally

o bound aggregates of smaller fragments.

o We shall continue to examine the outcome of these simu
lations for information regarding angular momentum transfe
] during impact, and for anticipated cumulate structures for larg
o o o o e o T fragments from large parent bodies, motivated by the possibilit

. ] of recreating the events which led to the formation of known as
. teroid families (Benz and Michel, in preparation). As available
90 ° e ¢, ] computing power permits, a more detailed parameteric explc
1 ration (varying Weibull coefficients, shape, and internal struc
e ® o °© 3.0 km/s ture) is someday hoped for. As it stands, our chosen materia
g}oo . ..." ¢ ,'.‘ . | . olf|> km/s (basalt and ice) represent broad-based choices, and the fact t
LT o T T e T T T s T 94 s both give similar results implies that catastrophic disruption i
R/R,, perhaps not very material dependent. If that is the case, then tl
simple and robust relations presented here, for the mass of tl
FIG. 18. Ejection velocities of largest remnant as a function of impactdargest remnant in an impact event, and for the ejection velocit
radius normalized to target radius in collisions involving icy targets. of the Iargest remnant, are appropriate for a new generation '
calculations modeling the collisional evolution of a swarm of

small bodies.
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5. CONCLUSIONS

We have presented a self-consistent three-dimensional treat- ACKNOWLEDGMENTS
ment of imp.aCt disruption leading from the laboratory a.nd the'ihis work was supported in part by the Swiss National Science Foundatio
§trength regime, where our SPH code has b_een e)fhaustlv_el_y (a"ﬁd-by NASA Grant NAG5-7245 from the Planetary Geology and Geophysic:
ibrated and tested, all the way out to the gravity regime collisioBg,gram.
responsible for the formation of asteroid families and planetary
accumulation. While some parameters (such as shape and pre-
fragmentation and rotation) have yet to be fully explored (see
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