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We use a smooth particle hydrodynamics method to simulate
colliding rocky and icy bodies from centimeter scale to hundreds
of kilometers in diameter in an effort to define self-consistently
the threshold for catastrophic disruption. Unlike previous efforts,
this analysis incorporates the combined effects of material strength
(using a brittle fragmentation model) and self-gravitation, thereby
providing results in the “strength regime” and the “gravity regime,”
and in between. In each case, the structural properties of the largest
remnant are examined.

Our main result is that gravity plays a dominant role in determin-
ing the outcome of collisions even involving relatively small targets.
In the size range considered here, the enhanced role of gravity is not
due to fracture prevention by gravitational compression, but rather
to the difficulty of the fragments to escape their mutual gravitational
attraction. Owing to the low efficiency of momentum transfer in col-
lisions, the velocity of larger fragments tends to be small, and more
energetic collisions are needed to disperse them.

We find that the weakest bodies in the Solar System, as far as im-
pact disruption is concerned, are about 300 m in diameter. Beyond
this size, objects become more difficult to disperse even though they
are still easily shattered. Thus, larger remnants of collisions involv-
ing targets larger than about 1 km in radius should essentially be
self-gravitating aggregates of smaller fragments. c© 1999 Academic Press

Key Words: impact processes; planetesimals; asteroids; comets;
collisional physics.

1. INTRODUCTION

Impacts or collisions can be grouped in three different cat-
egories depending on outcome: cratering, shattering, and dis-
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Solar System evolution hinges on the outcome of collisions
order for planetary accretion to proceed, for example, collisio
must result in larger, not smaller pieces. Asteroid dynami
families are in most cases thought to be the outcome of ca
trophically disruptive collisions between parent bodies; sma
asteroids and interplanetary dust may be the result of collisio
cascades; and asteroid and planetary binaries (Ida and Da
Pluto and Charon, Earth and Moon) may also be an expres
of impact.
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persing. The first category is defined by events leading to
formation of topographical signatures (craters) accompanied
ejection of material but without affecting the physical integrity o
the main body. Shattering impacts, on the other hand, are ev
that break the parent body into smaller pieces. Dispersing eve
are those which not only break the body into pieces, but also m
age to impart velocities to those fragments in excess of esc
velocity. Much observational evidence testifies to these m
energetic events: the dynamical asteroid families for exam
(such as Koronis), and the iron meteorites which are fragme
excavated by impact from the cores of differentiated bodies.

It has become customary in the literature to characterize
pacts in terms of a specific energy threshold (the kinetic energ
the collision divided by target mass). The threshold for a sh
tering event is defined byQ∗S, the specific energy required to
break a body into a spectrum of intact fragments, the largest
having exactly half the mass of the original target. Dispersi
events, on the other hand, are defined byQ∗D, the specific energy
required to disperse the targets into a spectrum of individual
possibly reaccumulated objects, the largest one having exa
half the mass of the original target. In the strength regime, wh
gravity does not matter (fragments do not reaccumulate),Q∗S is
obviously equal toQ∗D. In the gravity regime however,Q∗D is
always greater thanQ∗S, since the target must be fragmented an
alsodispersedby the event.

Laboratory experiments can be designed to determine
threshold for small targets, i.e., targets in the strength domina
regime (see for example Fujiwaraet al. 1989, Davis and Ryan
1990, Ryanet al. 1991). By using up to meter-sized target
Housen and Holsapple (1999) were able to confirm previo
theoretical prediction of strength weakening with size. Impa
in pressurized targets (Housen 1991) designed to simulate s
gravitating bodies indicate that strength increases again in th
“larger” targets. However, these artificially pressurized targ
are uniformly compressed while in truly self-gravitating bodie
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6 BENZ AND

the overburden is a function of position. The interpretation
these experiments is therefore not completely straightforwa

The scales of planetary impacts are far different from what
be studied directly in the laboratory, and extrapolations by m
than a dozen orders of magnitude in mass are required b
reaching a range relevant to asteroids and/or planetesimals
tailed theoretical models of disruptive impacts (Holsapple
Housen 1986, Housen and Holsapple 1990, Holsapple 1
try to bridge this gap by establishing relations among no
mensional ratios involving impactor size, impact velocity, tar
strength, density, etc. Such relations, deriving from dimensi
analysis, assume uniformity of process, structural contin
and other idealizations, and cannot predict detailed outcom

Recent exponential increases in computational power
enabled numerical simulations to become the method of ch
to investigate these issues in greater detail. Laboratory im
experiments are used to validate the numerical models on s
scales before extrapolations to sizes relevant to Solar Sy
bodies are undertaken. However, numerical attempts to d
mineQ∗D have for the moment been limited to idealized geom
try (two-dimensional axisymmetry) (Ryan and Melosh 1998
restricted to a subset of target sizes (gravity regime) (Melosh
Ryan 1997, Love and Ahrens 1996) and low resolution (L
and Ahrens 1996).

In this paper, we use a smooth particle hydrodynamics (S
method to simulate colliding basalt and icy bodies from ce
meter-scale to hundreds of kilometers in diameter, in an effo
defineself-consistentlythe threshold for catastrophic disruptio
Unlike previous efforts, this analysis incorporates the comb
effects of material strength (using a brittle fragmentation mo
and self-gravitation, thereby providing results in the “stren
regime” and the “gravity regime” and in between. We be
with a short presentation of the physical model (Section 2)
lowed by a discussion of various numerical issues pertainin
our study (Section 3). The results obtained from 480 diffe
simulations are presented and discussed in Section 4.

2. PHYSICAL MODEL

Our approach of dynamical fracture modeling has been
scribed in detail elsewhere (Benz and Asphaug 1994, 1995
will only be summarized here.

The equations describing an elastic solid are the usual
servation equations (mass, momentum, and energy) in w
the stress tensor has a nondiagonal part, the so-called devi
stress tensor. With the assumption that the stress deviator r
proportional to the strain rate, i.e., Hooke’s law, and a suita
equation of state (see Section 2.1), it is possible to numeri
solve this set of coupled differential equations. Plasticity is in
duced by suitably modifying the stresses beyond the elastic
using a von Mises yielding relation. Not counting the equa
of state, this approach requires three material-dependent

stants:µ, the shear modulus;Y, elastic limit, andEmelt, the melt
energy used to decrease the elastic limit with increasing tem
ASPHAUG
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TABLE I
Material-Dependent Constants

µ Y Emelt k
(erg/cc) (erg/g) (erg/g) (cm−3) m

Basalt 2.27 1011 3.5 1010 3.4 1010 4.0 1029 a 9.0a

Ice 2.80 1010 1.0 1010 7.0 109 1.4 1032 b 9.6b

a From calibrating numerical simulations to laboratory experiments (Be
and Asphaug 1995).

b Our fit to stress-strain rate data published in Lange and Ahrens (1983).

ature. Young’s modulus can be computed from the knowled
of the bulk modulus (parameterA in Section 2.1) and the shea
modulus according toE= 9Aµ/(3A+µ).

For the lower tensile stresses associated with brittle failu
we use a fracture model based on the nucleation of incipi
flaws whose number density is given by a Weibull distributio
(Weibull 1939, Jaeger and Cook 1969)

n(ε) = kεm, (1)

wheren is the number density of flaws having failure strain
lower thanε. The Weibull parametersm andk are material con-
stants which can be determined from laboratory experime
comparing failure stress to strain rate, although data are sca
Table I gives the numerical values of these material-depend
constants used in this study. The Weibull parameters for ba
are a previously determined (Benz and Asphaug 1995) b
match to the laboratory impact experiments of Nakamura a
Fujiwara (1991); parameters for ice are derived by fitting a lin
to the measurements of rate-dependent fracture stress publi
in Lange and Ahrens (1983).

Once flaws are activated, fractures grow at constant veloc
about half the sound speed. The extent to which fracture affe
the local properties of matter is described by a scalar state v
able calleddamage. The possible values forD range between
0 (undamaged) to 1 (totally damaged). The ability to susta
shear or tension by individual particles is reduced linearly wi
D and vanishes forD= 1. Because damage accrues accordi
to the entire stress history of a parcel of matter, only Lagrang
solutions to the hydrodynamics equations are applicable.

Our model of dynamic fragmentation explicity reproduce
the growth of cracks in a brittle elastic solid by rupturing bond
and forming new free surfaces. Cracks grow when local failu
strains are exceeded, and stresses are relieved across the
boundaries. The release of stress along fracture walls increa
differential stress at the crack tips, driving cracks forward in th
manner of an actual brittle solid. Tensile and shear stresses
unsupported across disconnected regions, leading to redu
average strength and sound speed (i.e., damage) in the b
By producing actual cracks and fragments, our method at su
ciently high resolution automatically takes into account frictio
per-
between fragments and bulking, effects which are included as
recipes in statistical damage models.
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TABLE II
Tillotson Eos Parameters

ρ0 A B E0 Eiv Ecv

(g/cc) (erg/cc) (erg/cc) (erg/g) (erg/g) (erg/g) a b α β

Basalt 2.7 2.67 1011 2.67 1011 4.87 1012 4.72 1010 1.82 1011 0.5 1.50 5.0 5.0a

Ice 0.917 9.47 1010 9.47 1010 1.00 1011 7.73 109 3.04 1010 0.3 0.1 10.0 5.0b

a Tillotson parameters as published for lunar gabbroic anorthosite (O’Keefe and Ahrens 1982a), substituting the basalt reference density and bulk mdulus as
reported by Nakamura and Fujiwara (1991), from whose work our basalt fracture coefficients (Table I) are derived.

b
 Tillotson parameters as expressed for water ice (O’Keefe and Ahrens 1982b), again substituting the ice reference density and bulk modulus as reported by
r
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2.1. Equation of State

We used the so-called Tillotson equation of state (Tillots
1962) which was specifically derived for high-velocity impa
computations. This equation has the advantage of being c
putationally expedient while sophisticated enough to allow
application over a wide regime of physical conditions.

For compressed regions and for cold expanded states w
the energy density (E) is less than the energy of incipient vapo
ization (Eiv ) the Tillotson eos has the form

P =
[

a+ b(
E
/(

E0η2
)+ 1

)]ρE + Aµ+ Bµ2, (2)

whereη= ρ/ρ0 andµ= η− 1, such thatρ is the compressed
density andρ0 is the zero-pressure density. Herea, b, A, B, and
E0 are referred to as the material-dependent Tillotson para
ters.

For expanded states, when the internal energy (E) is greater
than the energy of complete vaporization (Ecv), the pressure ha
the form

P = aρE+
[

bρE(
E
/(

E0η2
)+ 1

) + Aµe−β(ρ0/ρ−1)

]
e−α(ρ0/ρ−1)2,

(3)

whereα andβ are constants that control the convergence r
of the equation to the perfect gas law. For intermediate sta
pressure is simply interpolated linearly between both expan
and compressed states.

Tillotson parameters for a variety of geologic materials ha
been compiled by Melosh (1989). However, the most fun
mental coefficients (especially density and bulk modulus)
candidate materials are typically different from those repor
for specimens used in laboratory impact fragmentation exp
ments, from which our Weibull coefficients (Table I) are derive
We therefore make the following alteration to the equations
state, in an effort to best characterize the material in the f
mentation experiments: We substitute the measured densit

the published Tillotson reference density of the most simi
material, and the measured bulk modulus for the Tillotson pa
e derived.
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meterA. Because the Tillotson parameterB is not known for the
specific target material, we make use of the fact thatB' A for
most geologic materials. This is probably a good assumption
basalt but may underestimate the second-order pressure t
in ice, making it more “rock-like.” We summarize in Table II th
Tillotson parameters used in this paper. This situation is not id
However, given the rudimentary understanding of asteroidal
cometary compositions (they are surely neither pure basalt
pure water ice!), we feel that there is little to be gained until co
prehensive experimental work, combining dynamic strength
equation of state, can be performed on more representative
didate materials at the appropriate temperature.

3. NUMERICAL ISSUES

In this section we discuss various issues related to the num
ical methods used to either simulate the impacts or analyze
results of the simulations.

3.1. Impact Simulations

Fracture depends on the entire stress history of a given p
of material. A Lagrangian approach, in which the frame of r
erence is attached to the material, is therefore the natural fra
work for solving the equations briefly described in Section
Eulerian codes to date cannot accurately follow stress his
and the development of cracks. Conventional Lagrangian co
however, are unable to handle large material deformations
tangling and deformation of the grid severely affect the accur
of derivatives.

Smooth particle hydrodynamics (see reviews by Benz 19
Monaghan 1992) does not suffer from this problem. We h
developed a three-dimensional SPH code capable of simula
dynamical fracture of brittle material (Benz and Asphaug 19
1995). Our SPH code being an explicit code, the size of the t
step is limited by the Courant condition. In practice, this mea
that the time step cannot exceed a fraction of the time nee
by an elastic wave to cross a resolution element. If this elem
is of sizeh, numerical stability requires thatdt< h/c, where
c is the wave speed. With 42,000 particles,h is of orderR/35
whereR is the target radius. As an estimate for wave speed√
lar
ra-
takec= A/ρ whereA is the bulk modulus. Taking the values
appropriate for basalt, we getc= 3.2 km/s which leads to an
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upper bound for the time step given bydt< 9× 10−8R, where
dt is in seconds andR in centimeters.

Gravitational clumping of fragments and the formation of ru
ble piles on the other hand takes place on a dynamical times
given byτ =√3π/16Gρ. For basalt, we obtain a value for th
clumping timescale ofτ = 1.8× 103 s. The number of time step
required to follow a collision up to the time where gravitation
reaccumulation occurs is thereforeN>τ/dt= 2× 1010/R. For
targets of radius 100 m, this requires a number of time s
greater than 106, which is currently prohibitive.

While these two vaslty different timescales prevent us fr
simulating the entire process directly, they also mean that s
gravitation is entirely decoupled from the impact phase for
termediate targets (see Asphaug 1997). Clumping can there
be studied independently as part of the postprocessing ana
of the impact simulations proper (see Section 3.3). This has
the additional advantage of not having to solve Poisson’s eq
tion (self-gravity) during the impact phase. We therefore us
faster linked list in rank space algorithm to find the neighb
particles rather than a hierarchical tree. While the dynam
effects of self-gravity are not included in the simulations,
fracture shielding effect due to compression is included in
code (see Section 3.2).

The code’s behavior in the elastic regime was extensiv
tested against simple analytical solutions, while the fract
modeling was tested by simulating laboratory impact exp
ments (Nakamura and Fujiwara 1991, Ahrens and Rubin 19
leading to core-type and radial fragmentation and extensive s
lation. The code was able to reproduce the laboratory ex
iments to a level of detailed accuracy never achieved bef
including shape, ejection speed and rotation of fragments, tra
tories of far-field fracture, and post-fragmentation sound sp
relationships.

3.2. Flaw Assignments

We use the explicit flaw assignment procedure describe
Benz and Asphaug (1995) using the material-dependent We
parameters listed in Table I. Our explicit flaw method improv
upon the mixed explicit-implicit method of Benz and Aspha
(1994). These methods are wholly independent of numer
resolution (in terms of the assigned flaw statistics) and lea
rate- and size-dependent fracture thresholds.

Each particle is assigned a number of discrete fracture thr
olds distributed at random from the underlying Weibull distrib
tion (Eq. 1). When local stresses exceed such a threshold,
ageD is allowed to grow until the local stresses decrease ag
or until D reaches its maximum authorized value. This ma
mum authorized value for particlei is given byDi

max= Ni
a/Ni

max,
whereNi

a is the currently active number of flaws andNi
max the

number of fracture thresholds assigned to particlei . This par-
ticular algorithm of damage accrual and authorization ensu

that flaw distribution and activation are not linked to numeric
resolution.
ASPHAUG
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For fracture to proceed, stresses must first overcome the l
gravitational overburden. To include what amounts to an eff
tive gravitational strengtheningwithout having to solve the full
Poisson equation during the simulations, we use the techn
(Asphaug and Melosh 1993) of adding to the local stress t
sor (determined from solving the elasto-dynamical equations
isotropic lithostatically equilibrated stress (Pl (r )= 2π

3 Gρ2(R2−
r 2)). The sum, the “total fracture stress,” is converted into
Weibull strain for use in Eq. (1) by dividing the largest tensi
principal stress by the modified Young’s modulus, as pionee
by Meloshet al. (1992). Note that the difference between th
rock fracture stress and the total fracture stress is negligible
targets smaller than a few 10’s of kilometers radius, and that
larger targets, strengthening toward the interior may be due
much to thermodynamical processes (annealing) as to gra
per se.

3.3. Fragment Search

As outlined above, late-time gravitational evolution can f
intermediate size targets be decoupled from the impact phy
itself. Thus, we perform the characterization of the collision
outcome as a postprocessing step. Our approach to find the
collisional outcome proceeds in two steps. First, and regard
of target size, we begin by searching for intact (undamaged) fr
ments, i.e., fragments that are held together by material stre
alone. Our method makes no assumptions regarding their n
ber, geometry, or location, as they are a natural outcome of
fracture trajectories resulting from a given simulation. Contra
to statistical fragment approaches, our fragments are explic
defined by the network of cracks resulting from the impact. W
use a friends-of-friends algorithm to identify individual mono
lithic fragments defined as contiguous regions of particles h
together by strength and surrounded by strengthless or empt
gions. At the end of this procedure, we obtain for each fragm
its mass, position, velocity, angular momentum, and mom
of inertia. This is the “shattering” spectrum of fragment siz
discussed in the Introduction.

As soon as the target size exceeds 50–100 m, searching
intact fragments is no longer sufficient, as some of them may
able to reaccumulate due to gravity, leading to remnants inc
porating multiple fragments. We search for these gravitationa
bound aggregates by applying a well-known iterative proced
adapted from the techniques used in simulations of galaxy
mation. The procedure starts by computing the binding ene
of all particles and/or fragments with respect to the largest fr
ment, or if too small, the particle closest to the potential mi
mum. This serves as the seed for nucleating the total bound m
Unbound particles are discarded, and the center of mass pos
and velocity of the aggregate is computed. The binding ene
of all the remaining fragments and particles with respect to t
new position and velocity is again computed. Unbound partic
are again discarded and the procedure is iterated until no

alticles are discarded. Typically, convergence is achieved after a
few iterations (≈5–10) with only very few particles being lost
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CATASTROPHIC DISR

after the first 2–3 steps. Finally, we check that particle/fragm
members of this gravitationally bound aggregate are also c
spatially, using again a friends-of-friends algorithm. Mass, p
sition, velocity, angular momentum, and moment of inertia a
also determined for this gravitationally bound aggregate, wh
can be made of a collection of smaller fragments and/or indiv
ual particles. Because of the limited number of particles us
we limit our search to the single largest aggregate and do
attempt to search for smaller ones.

The algorithm has been tested extensively in both the stren
and gravity dominated regime by comparing end results
simulations with predictions made at early times by the clust
finding algorithm. To overcome the time step problem in t
gravity-dominated regime, purely hydrodynamical simulatio
were used to allow the code to compute to sufficiently la
times.

For each simulation, we therefore identify and characterize
largest object present at the end of the collision. This object m
either be an intact fragment (in the strength-dominated regim
or a gravitationally bound aggregate of fragments (gravity-do
inated regime). In the latter case, we also search for the lar
intact fragment belonging to the aggregate (see Fig. 1), e.g.
largest component of the resulting “rubble pile.”

3.4. Initial Conditions

We have considered eight different target radii, 3 cm, 3
300 m, 1 km, 3 km, 10 km, 30 km, and 100 km, and two d
ferent material types, basalt and ice. For each target we h
computed impacts for five angles of incidence measured fr
the surface normal: 0◦, 30◦, 45◦, 60◦, and 75◦. For each material
we have considered two impact velocities: for icy targets 0
and 3 km/s, and for basalt targets 3 and 5 km/s. In each c
Q∗D was computed from a parabolic fit to three different simu
tions in which only the impactor mass was modified. The ent
study therefore represents a total of 480 different simulatio
which were automatically handled by special “driver” softwar
As each simulation can take up to a few days of high perf
mance workstation time, this represents a significant body
computational effort.

Because of the statistical nature of this study, we had to li
ourselves to a relatively small number of particles. In all cas
we used 42,000 particles to model the target. This number
found in convergence-test comparisons between numerical
ulations and laboratory impact experiments (Benz and Asph
1994, 1995) to be sufficient to determine reliably the characte
tics (size, velocity, and rotation) of the largest fragment. Thus
all what follows, we shall concentrate only on the characterist
of the largest fragment.

The projectile was modeled using 800 particles for the 3 a
5 km/s impacts and 7000 for 0.5 km/s impacts since in this c
the impactor was much larger. (In fact, in the case of 100-
large icy targets and large incidence angles the required

jectile for a given value ofQ was sometimes bigger than the
target!) The simulations were carried out in time until no furth
UPTIONS REVISITED 9
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FIG. 1. In the strength-dominated regime, the largest remnant is a sin
intact fragment while in the gravity-dominated regime the largest remnant
gravitationally bound aggregate of fragments of various sizes.

significant changes occurred in the extent of damage endure
the target and in the velocity of the ejected particles.

4. RESULTS

4.1. Catastrophic Disruption Threshold Q∗D
For a given impact geometry, velocity and target (parent bo

material,Q∗D is determined by interpolation between three d
ferent simulations spanning a range of incident kinetic ene
per unit target mass (Q) chosen to yield largest remnant mass
( fmax=Mlr/Mpb) generally in the range 0.3–0.7. In the ex
pression above,Mlr represents the mass of the largest re
nant (including gravitational reaccumulation if applicable) a
Mpb the mass of the parent body (or target). A parabolic
( fmax=aQ2+ bQ+ c) to these results is computed andQ∗D de-
termined by solving forfmax(Q∗D)= 0.5. The results of these
calculations are shown in Figs. 2–5 for the various velocit
er
and material type. In these figures, each dot represents the value
of Q∗D determined from the parabolic fit. The dots corresponding
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e
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FIG. 2. Catastrophic disruption thresholds for a basalt target and 3 km
impact velocity. Each set of connected dots represent one projectile angl
incidence starting with 0◦ (bottom curve), 30◦, 45◦, 60◦, and 75◦ (top curve).

to the same angle of incidence of the projectile are connec
by a solid line.

We recover in these figures the well-known functional depe
dency ofQ∗D with target size, namely thatQ∗D decreases with

FIG. 3. Catastrophic disruption thresholds as described in the legend
Fig. 2, but for a basalt target and 5 km/s impact velocity.
/s
of

ted
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to

FIG. 4. Catastrophic disruption thresholds as described in the legend
Fig. 2, but for an icy target and 3 km/s impact velocity.

size for small targets while it increases with size for larger ta
gets. These two behaviors correspond to collisions occurring
a strength or gravity-dominated regime. The transition betwe
the two regimes occurs in the range 100 m≤ R≤ 1 km for both

FIG. 5. Catastrophic disruption thresholds as described in the legend
Fig. 2, but for an icy target and 0.5 km/s impact velocity.
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ice and basalt. We note that for a given target size,Q∗D is a strong
function of the projectile’s angle of incidence. Differences inQ∗D
between a head-on and a 75◦ impact reach about a factor 10.

The increase ofQ∗D in the gravitational regime is due to tw
factors. The most important is the fact that even though b
ies exceeding 1 km in radius are almost entirely shattered
Section 4.3) in aQ∗D collision, the pieces do not all dispers
because their relative velocities are smaller than the escap
locity of the aggregate. Hence, for catastrophically disrupted
dispersed bodies larger than≈1 km, all the largest remnants a
found to be gravitationally bound aggregates of smaller fr
ments. The second effect is due to gravitational shielding of
central region of the target (see Section 3.2) but as we shall s
Section 4.3 this affects only the largest targets in our mass ra

In many studies, one is not interested in the outcome of a
ticular collision but rather in the collisional evolution of an enti
population. For these statistical studies, we can compute a
fective threshold which is independent of angle of inciden
namelyQ∗D(α) averaged over all possible impact geometries
at fixed relative velocity. For an isotropic distribution of incom
ing projectiles (at infinity), Shoemaker (1962) showed that
probability distribution for impacting with an angle betweenα
andα+ dα is given by

P(α) dα = 2 sin(α) cos(α) dα 0< α < π/2 (4)

regardless of a planet’s mass. Using this probability distribut
we define a mean catastrophic disruption thresholdQ̄∗D by

Q̄∗D =
∫ π/2

0
2Q∗D(α) sin(α) cos(α) dα. (5)

This integration is carried out numerically with a simple trap
zoidal method and using theQ∗D(α) determined from the simu
lations. The results are displayed in Fig. 6 for basalt targets
in Fig. 7 for icy targets.

In order to compare with disruption thresholds published
the literature and to allow these results to be used by others
fitted (by eye) an analytical curve tōQ∗D of the functional form

Q̄∗D = Q0

(
Rpb

1 cm

)a

+ Bρ

(
Rpb

1 cm

)b

, (6)

where Rpb is the radius of the parent body (or target),ρ the
density of the parent body (in g/cm3), andQ0, B,a, b constants
to be determined. This functional form is often encountered
scaling law approaches with the two terms representing the
distinct physical regimes dominating the dynamics: (1) mate
strength (first term on the right, witha< 0) and (2) self-gravity
(second term on the right, withb> 0). The values obtained fo
the coefficients are listed in Table III and the fits are represen
as lines in Figs. 6 and 7.

Note that the slopes in the gravity regime (b) are somewhat
different between basalt and ice, and even for ice the two slo

corresponding to the two velocities differ slightly. This coul
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FIG. 6. Mean catastrophic disruption threshold̄Q∗D for a random distribu-
tion of impact parameters (see text for details) in the case of basalt targets

be related to the fact that for equal mass targets, ice mat
is lifted from an initially higher potential (less negative p
tential energy) corresponding to the larger equal-mass ta
diameter. Alternatively, because the shock imparts differ
velocities to fragments according to different material charac
istics (the velocity field determines the subsequent gravitatio
reaccumulation), equation of state distinctions sensitive to b
material type and impact speed may be the culprit.

FIG. 7. Mean catastrophic disruption threshold̄Q∗D for a random distribu-

dtion of impact parameters (see text for details) in the case of icy targets.
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TABLE III
Fit Constants for Q̄∗D

vimpact Q0 B
Material (km/s) (erg/g) (erg cm3/g2) a b

Basalt 5 9.0 107 0.5 −0.36 1.36
Basalt 3 3.5 107 0.3 −0.38 1.36
Ice 3 1.6 107 1.2 −0.39 1.26
Ice 0.5 7.0 107 2.1 −0.45 1.19

Also note that in the gravity regime, faster impacts are le
disruptive than slower impacts of the same energy, for both ro
and ice. This is due to the greater efficiency of momentum co
pling for slower impacts. The governing factor for gravity regim
disruption is not shattering, but motion toward gravitational se
aration. For basalt, this trend continues into the strength regi
although that is coincidental, since the strength regime depe
on entirely different aspects of collisional physics (flaw ac
vation). For ice, the opposite is true: slower impacts (of t
same energy) result in less disruption. Evidently ice is eas
to fracture at high strain rates than at low strain rates, relat

to basalt. This is either because it has more flaws available atsimulations. However, besides the agreement on the size of the

ns
low activation energies (consistent with its Weibull distribution)

∗

weakest objects, our results (as well as all other determinatio
FIG. 8. Comparison between the mean catastrophic disruption thresh̄Q
determinations in the literature.
SPHAUG
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or because vaporization at high impact speed may contribut
fragmentation, which is not the case for the subsonic (500 m
collisions.

Now we compare our averaged dispersion threshold w
other published values in Fig. 8. In this figure, we reproduced
disruption thresholds obtained from either scaling laws or n
merical simulations in the strength- or gravitational-dominat
regime. For small targets, our estimate of the threshold agr
well with the determination of Holsapple (1994). The large
differences occur for large targets for which we predict that th
are significantly stronger (more difficult to disrupt and dispers
than previously estimated. This does not arise due to a sign
cant change of slope (notice our slope is close to that predic
by Holsapple 1994 or Melosh and Ryan 1997) but because
turnover from strength- to gravity-dominated targets occurs
smaller sizes.

We also display in Fig. 8 the recent determination ofQ∗D
by Durdaet al. (1998). Their curve is determined by requiring
that numerical models of the collisional evolution of the main
belt asteroids fit the observed size distribution of these obje
Interestingly, they obtain that objects of order 100–200 m
diameter are the weakest objects, a conclusion confirmed by
oldD (basalt targets,v= 3 km/s) determined in this work (heavy line) and other
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CATASTROPHIC DIS

of Q∗D) differ from the results of Durdaet al. by an order of
magnitude or more. The origin of this discrepancy is not cl
On one hand, we note that the values ofQ∗D determined by
Durdaet al.are not obtained from a simple fit to observed si
but assume an underlying collisional model which might no
predicting accurately collisional outcomes. On the other ha
it may also be possible that asteroidal material has mecha
properties very different than those of the material tested in
laboratory.

As already noticed by many (most recently by Ryan a
Melosh 1998), the efficiency at which the kinetic energy
transmitted from the impactor to individual fragments is e
tremely low. Since the largest remnants in collisions involv
targets larger than 1 km are gravitationally bound rubble p
(see Section 4.3) their mass is determined ultimately by the
locity distribution imparted to the fragments during the impa
A fragment will remain bound if its velocity remains below th
escape velocity of the aggregate of all slow moving fragme
This explains why targets as small as 1 km radius are alre
significantly strengthened by gravity against dispersal.

For a given material type, the radius of the weakest ob
Rweak is obtained by finding the radius for whichdQ̄∗D/d R= 0.
From Eq. (6) the value of the radius of the weakest objec
given by

Rweak=
(−Bρb

aQ0

) 1
a−b

. (7)

Table IV gives the values derived forRweak using the values o
the parameters listed in Table III. For both materials and imp
speeds,Rweak' 100–200 m.

These values are smaller than those derived in other stu
For example, Holsapple (1994) based on scaling laws gives
as the transition point between the two regimes. Melosh
Ryan (1997) as well as Love and Ahrens (1996) from numer
simulations give numbers in the range 200–400 m.

4.2. Largest Remnants

While a collision occurring atQ∗D leaves by definition the
largest remnant with mass equal to half the target mass, collis
occurring with differentQ leave remnants of different masse
We can therefore use all our simulations (whose intent wa
bracketQ∗D) to investigate how the mass of the largest remn

TABLE IV
Radius of the Weakest Object

vimpact Rweak

Material (km/s) (m)

Basalt 5 163
Basalt 3 117
Ice 3 102

Ice 0.5 213
UPTIONS REVISITED 13
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FIG. 9. Mass of largest remnant (in terms of original target mass) a
function of impact energy per gram of target material normalized toQ∗D for
icy targets and collisions occurring at (a) 0.5 and (b) 3 km/s. Different symb
correspond to different target sizes.

depends upon the incident kinetic energy per gram of ta
material (Q).

Figures 9 and 10 show the dependency of the mass of
largest fragment on the impact energy obtained in

FIG. 10. Mass of largest remnant (in terms of original target mass)
a function of impact energy per gram of target material normalized toQ∗D for

basaltic targets and collisions occurring at (a) 3 and (b) 5 km/s. Different symbols
correspond to different target sizes.
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∗
FIG. 11. The mass of the largest intact fragment (normalized to mass of the parent body) when the threshold critical disruption occurs (Q ) for basalt targets.
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When gravity goes to zero,Mlif goes to 0.5 by definition. The results for differ

simulations. To facilitate the interpretation of these results,
impact kinetic energy per gram of target material has been n
malized toQ∗D for each target size and projectile angle of i
cidence. All simulations (120) involving a given material typ
and impact velocity have been plotted on the same plot. T
different symbols correspond to targets of different sizes.

These figures clearly show that when normalized toQ∗D the
relative mass of the largest remnant is a well-defined, sim
function of Q and is independent of target size and/or angle
incidence. The dependence upon these parameters enters o
Q∗D! The increased scatter in the points for small mass fragme
is probably due to the inherent numerical difficulties in resolvi
these smaller objects (at fixed resolution).

This relationship is remarkable since the mass of the larg
remnant is not determined by a single process, but by eit
material strength or gravity depending on target size! In t
regard it is interesting to note that in the case of low-veloc
collisions on icy targets the correlation is significantly wors
especially for large targets (R≥ 3 km). It is unclear why this is
the case; however, in these cases it is worth pointing out
due to the low velocity, the projectile is sometimes as big as
target and that the relative velocity is significantly smaller th

sound speed, indicating that there might be a different disrupt
regime at low velocity.
D
ent angles of incidence are shown by using different symbols.
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Except for the case discussed above, we find that the re
tive mass of the largest remnant can be well represented by
following expression and that this single expression holds
targets ranging from 3 cm to 100 km and angles of inciden
between 0◦ and 75◦:

Mlr

Mpb
= −s

(
Q

Q∗
− 1

)
+ 0.5. (8)

These lines are drawn on the various figures and their slopes
remarkably similar: for basalts= 0.35 forv= 5 km/s,s= 0.5
for v= 3 km/s; and for ices= 0.6 forv= 3 km/s. The case for
ice atv= 0.5 km/s for some still unknown reason does not yie
such a tight relation. We have not attempted a real fit to the d
and only plot the line derived for thev= 3 km/s.

4.3. Largest Intact Fragments

We now determine the largestintact (unshattered) fragment,
M∗lif , in collisions occurring atQ∗D. Here by undamaged we mean
a fragment for which material strength still plays an importa
role in the cohesive properties of the object even though the fr

ionment may no longer have its original strength. We are looking
for the largest boulder in the final rubble pile.
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FIG. 12. The mass of the largest intact fragment (normalized to mass of the parent body) when the threshold critical disruption occurs (Q∗ ) for icy targets.
D
When gravity goes to zero,Mlif goes to 0.5 by definition. The results for different angles of incidence are shown by using different symbols.
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For each target radius and projectile angle of incidence,
obtain from the three simulations performed a parabolic rela
Mlif = f (Q). We determineM∗lif by settingM∗lif = f (Q∗D), where
Q∗D has been determined using the parabolic fit describe
Section 4.1. The values obtained for the mass of these la
intact fragments are displayed in Figs. 12 and 11 for both m
rial types and impact velocities.

Not surprisingly, for small targets (R≤ 100 m) the largest
undamaged fragment is equal to half the original target m
regardless of impact parameter. This is simply because in
strength-dominated regime the mass of the largest intact f
ment is equal to half the target mass by definition ofQ∗D. How-
ever, for targets larger than 300 m and regardless of material
and/or impact velocity, the mass of the largest intact fragm
drops rapidly even though the collisions occurred atQ∗D. This re-
flects the fact that collisions involving parent bodies this size
larger take place in the gravity-dominated regime. This reg
is therefore characterized by the fact that the largest rem
is not an intact fragment but a gravitationally bound aggreg
of fragments. Due to the precipitous nature of these curves
target radii larger than a few 100 m, we don’t expect any mo

lithic object of this size. On the other hand, we expect a w
variety of internal structures for objects in the range 30–300
we
ion
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te-
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rag-
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For the largest targets considered in this study we notic
marginal trend forM∗lif to rise again. This effect is due to grav
itational strengthening of the target discussed in Section
However, we stress that this effect is only of moderate imp
tance: the main role of gravity in this size range is to allo
for the formation of gravitationally bound rubble piles. Grav
tational strengthening appears also to be strongly depende
initial impact parameter. For example, in the case of an icy ta
of 100 km radius a grazing impact occurring atQ∗D and with an
incidence angle ofα= 75◦ leaves behind the largest undamag
fragment of≈0.015 Mpb while atα= 0◦ the same fragment is
smaller than 0.003Mpb.

Final objects in the range 1≤ Rpb≤ 100 km are found to be es
sentially gravitationally bound aggregates of smaller fragme
Whether observed asteroids and comets in this size range
indeed rubble piles depends upon whether they have suff
a Q∗D collision during their history. Further complications e
ist; for example, Asphauget al. (1998) have shown that targe
geometry (shape) and internal structure (prefracture) can
nificantly influence collisional outcome. The spherical homog
neous intact solids considered here may be idealized. A “con
ide
m.
binary” asteroid may for instance suffer catastrophic disruption
of its impacted lobe, with little or no disruption occurring on
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FIG. 13. Ejection velocities of largest remnant in 5 km/s collisions involving basalt targets. Different symbols correspond to different parent body sizes.In
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the lower panel, the velocities have been normalized to the parent body’s e

its unimpacted lobe. A target which isalready a rubble pile
may similarly be more difficult to disperse by impact, due to th
inefficient coupling of impact energy.

4.4. Ejection Velocity of Largest Remnants

For each target size, material type, and impact parameter
determined the ejection velocity of the largest mass remnan
each of the three simulations bracketingQ∗D. We note that this
velocity is not related in a straightforward manner to the usu
energy partitioning coefficient,fKE, namely the fraction of ki-
netic energy going into fragment kinetic energy. Given that t
kinetic energy isnot distributed uniformly over all fragments,
but rather carried away by a small amount of mass moving v
fast, we believe the coefficientfKE to be of little use to address
the dynamics of the largest fragments. We therefore focus ou
tention on determining the actual velocity of the largest fragme
or aggregate in each simulated collision, numerical resolut
preventing us from studying the smaller ones.

These ejection velocities as a function of normalized fragm
mass are displayed in Figs. 13–16 for both material types a

collision velocities. Velocity is measured relative to the cent
of mass of the original target.
scape velocity, and only the results for initial bodies withRpb≥ 1 km are shown.
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In each figure, the upper panel shows the actual ejection
locity. Each different symbol corresponds to a different initi
target size regardless of angle of incidence. The lower pa
shows the ejection velocity normalized to the target’s esc
velocity for initial targets greater that 1 km.

We note that for a given parent body size, larger remna
have lower ejection velocities regardless of angle of inciden
In fact, it is remarkable how little influence the impact parame
seems to have on the ejection velocity of the largest remn
For each target size, the ejection velocity of the largest remn
is to a good approximation a simple decreasing linear funct
of its fractional mass (in the domain 0.15≤Mlr/Mpb≤ 0.8). In
addition, we note that for the largest fragments, i.e., the one
which gravity is the dominant cohesion force, we can alm
remove the target size dependence by normalizing the ejec
velocity by the parent body’s escape velocity. In other wor
the outcome velocity of the largest fragment normalized to i
tial target escape velocity is (within some considerable scat
independent of target size and impact parameter. The fact
the velocity of the largest remnant is a relatively constant fr
tion of the target’s escape velocity is probably due to the a pr

errequirement that in the gravitational regime about half of the
initial mass must escape.
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. In t
FIG. 14. Ejection velocities of largest remnant in 3 km/s collisions involving basalt targets. Different symbols correspond to different parent body sIn
the lower panel, the velocities have been normalized to the parent body’s escape velocity, and only the results for initial bodies withRpb≥ 1 km are shown.

FIG. 15. Ejection velocities of largest remnant in 3 km/s collisions involving icy targets. Different symbols correspond to different parent body sizeshe
lower panel, the velocities have been normalized to the parent body’s escape velocity, and only the results for initial bodies withRpb≥ 1 km are shown.
17
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FIG. 16. Ejection velocities of largest remnant in 0.5 km/s collisions involving icy targets. Different symbols correspond to different parent body sizes. In the
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lower panel, the velocities have been normalized to the parent body’s esc

In order to gain insight regarding which collisions lead
the fastest moving largest remnants, we have analyzed how
ejection velocities depend upon the ratio of impactor to ta
size, Ri/Rpb. We stress again that because of numerical re
lution, we are able to analyze only the largest remnants
not the entire ejecta distribution. Thus, it is unrealistic from
data to determine the actual kinetic energy transfer efficie
fKE.

Figures 17 and 18 display the ejection velocity of the larg
remnants as a function ofRi/Rpb regardless of angle of inci
dence. The two different symbols correspond in each cas
the two different impact velocities. Apparent from these fi
ures is the fact that the ejection velocity rises withRi/Rpb in a
monotonic fashion. The “width” of the curve is mainly dete
mined not by scatter but by the relation between ejection velo
and remnant mass (see above). Thus, regardless of angle
cidence, collisions will give rise to fast moving remnants if t
size of the impactor becomes comparable to the size of the p
body.

In regard to the collisional origin of asteroid families, we no
that velocities of order 100 m/s are easily obtained for bas

targets provided the impactor size is at least about half the pa
body size.
pe velocity, and only the results for initial bodies withRpb≥ 1 km are shown.
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rentFIG. 17. Ejection velocities of largest remnant as a function of impactor
radius normalized to target radius in collisions involving basalt targets.
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CATASTROPHIC DISR

FIG. 18. Ejection velocities of largest remnant as a function of impac
radius normalized to target radius in collisions involving icy targets.

5. CONCLUSIONS

We have presented a self-consistent three-dimensional t
ment of impact disruption leading from the laboratory and
strength regime, where our SPH code has been exhaustively
ibrated and tested, all the way out to the gravity regime collisi
responsible for the formation of asteroid families and planet
accumulation. While some parameters (such as shape and
fragmentation and rotation) have yet to be fully explored (
for instance Asphauget al. 1998), the 480 runs summarize
here provide a robust constraint on the outcome of catastro
collisions.

In particular, we have demonstrated that bodies 100–200 m
dius (depending on impact speed and composition; see Tabl
are the weakest objects in the Solar System, with all bo
this size and larger being dominated by self-gravitational forc
rather than material strength, with regard to impact disrupt
This enhanced role of gravity is not due as usually assume
fracture prevention by gravitational compression. It is due to
difficulty of the fragments to escape their mutual gravitatio
attraction. Owing to the generally low efficiency of momentu
transfer in collisions, the velocity of larger fragments tends
be small, and more energetic collisions are needed to disp
them. Remarkably, the efficiency of momentum transfer (wh
still small) is found to be larger for larger projectiles. Thus, a
fixed collisional energy, a low-velocity high-mass projectile w
lead to a higher fragment velocity than a small-mass high-sp
projectile.
This increased role of gravity implies that the threshold for d
ruption is actually significantly larger than previously assume
UPTIONS REVISITED 19
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The upshot of this is that any catastrophic collisions leadi
to disruptionmustoccur at an energy far exceeding the thres
old for shattering the parent body. These necessarily high str
rate collisions imply by the nature of the fracturing process th
many cracks must grow to release the stresses, preventing
sizeable fragment from surviving. Thus, catastrophic collisio
of this nature can only result in the formation of gravitational
bound aggregates of smaller fragments.

We shall continue to examine the outcome of these sim
lations for information regarding angular momentum transf
during impact, and for anticipated cumulate structures for lar
fragments from large parent bodies, motivated by the possibi
of recreating the events which led to the formation of known a
teroid families (Benz and Michel, in preparation). As availab
computing power permits, a more detailed parameteric exp
ration (varying Weibull coefficients, shape, and internal stru
ture) is someday hoped for. As it stands, our chosen mater
(basalt and ice) represent broad-based choices, and the fact
both give similar results implies that catastrophic disruption
perhaps not very material dependent. If that is the case, then
simple and robust relations presented here, for the mass of
largest remnant in an impact event, and for the ejection veloc
of the largest remnant, are appropriate for a new generation
calculations modeling the collisional evolution of a swarm o
small bodies.
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