
Description and Validation of the Boulder code

Alessandro Morbidelli

Observatoire de la Côte d’Azur
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1. Introduction

The Boulder code simulates the accretion and collisional fragmentation of a population

of planetesimals using a statistical, particle-in-the box approach. The planetesimals

are distributed over a range of semi major axes, which can be subdivided into multiple

concentric annuli. In each annulus, the planetesimal population is represented by a mass

distribution. The appropriate mass range is divided in logarithmic bins. The mean ratio

δm between the mean masses in adjacent bins is a free parameter of the code: in the runs

presented here it has been set equal to 1.4. The definition of the mass bins (both bin center

and bin width), however, evolves dynamically and adapts to the evolution of the population

(moving bin algorithm). The ratio between the mean masses of adjacent bins can become

as small as
√

δm or stretch up to (δm)3/2. When the mass ratio evolves outside of this

range, bins are joined (if too close) or new bins are created (if the original bins are too far

apart). See sect. 1.5 below for details. For each mass bin, we record the total number of

objects, their total mass and mean eccentricity and inclination. All these quantities evolve

in time according to algorithms accounting for accretion, collisional grinding and mutual

dynamical interactions, described below.

We list here briefly the sequence of operations executed by the code at each time-step.

Each operation is then detailed in a separate sub-section.

i For each pair of annuli and mass bins, the mutual intrinsic collision probability

(Wetherill, 1967) and the relative impact velocity are computed. Of two interacting

populations, the one with the smaller individual mass is considered to be the

population of ‘projectiles’, whereas the other one is the population of ‘targets’. If two

populations have the same individual mass, each is considered both as ‘projectiles’ and

‘targets’ and the intrinsic collision probability is divided by 2. This step also identifies

so-called ‘isolated bodies’ within each annulus. See sect. 1.1 for their definition. The
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intrinsic collision probability between pairs of isolated bodies is set equal to zero.

ii The intrinsic collision probability is multiplied by the square of the sum of the radii

of projectile and target, by the gravitational focusing factor, by the total numbers of

projectiles and targets and by the duration of the time-step, in order to obtain the

total number of collisions in the considered time interval. The number of collisions is

rounded to an integer number. This is done taking its fractional part f and

calling a random number generation routine: if the result of the call is

smaller than f , the number is rounded to the first higher integer; if the

result is larger than f , the fractional part is dropped.

iii For each collision, on the basis of state-of-the-art SPH simulations, we compute

the mass of the largest remnant and the mass of the largest fragment, relative

to the sum of the masses of projectile and target, as well as the exponent of the

power-law fragment size distribution. The fragment size distribution is assumed to be

continuous, from the size of the largest fragment down to the smallest recorded mass

bin. The exponent of the cumulative power-law fragment size distribution is assumed

to be equal to −2.5 for fragments smaller than some threshold size that is computed

according to the constraint of mass conservation. In this algorithm both accretion

and fragmentation are treated simultaneously.

iv Given the quantities computed at step iii, the largest remnant and the fragments

produced by the collision are distributed among the available mass bins. The total

mass and number of objects in each bin is updated at every collision. The mean

eccentricities and inclinations of the objects issued from a collision are assumed to be

equal to those of the target.

v After all collisions have been enacted, the eccentricities and inclinations in each mass

bin are evolved according to stirring-damping equations, detailed in sec. 1.4.
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vi Finally, the mass bins are re-defined. The new mass at the center of each bin is

recomputed by dividing the total mass by the number of objects in the bin population

(moving bin algorithm). New bins are introduced if adjacent bins separate too far

apart, or old bins are joined if they are too close. It is well known that if the size

distribution of the particles is truncated at some minimum mass, the collisional

grinding process produces spurious waves in the particles size distribution (Marzari

et al., 1995). Thus, denoting by m the minimum mass tracked self-consistently in

the algorithm, the code computes a size distribution for masses smaller than m by

extrapolation of the size distribution measured in the range m–103 ×m.

Steps i–vi are detailed below and validation tests are discussed as needed.

The Boulder code has an adaptive time-step. Step i computes the appropriate time

interval so that the individual collision probability of any target does not exceed a threshold

value, say 10%. Step iv computes the time interval so that none of the populations in

each mass bin decreases more than a threshold value, say 80%; in particular no population

can become negative. Step v computes the time interval so that the eccentricities and

inclinations in each mass bin do not change by more than some given quantity, say 10%.

If any of these three time intervals is smaller than the current time-step, the results

are discarded, and the calculation is repeated with a time-step equal to the smallest of

the computed time intervals. Otherwise, the step is considered successful and the next

iteration is done with a step size equal to the smallest of the three computed time intervals,

multiplied by a safety margin (say 70%). In this way, the time-step is kept small when the

system is evolving fast, and is stretched when the system has reached a quasi-steady state

situation (see sect. 1.4.8 for tests against a more sophisticated integration scheme).
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1.1. Step i: Collision probability calculation.

We follow the classical particle-in-the box approach for the collision probability

calculation (see Wetherill and Stewart, 1993, denoted WS93 hereafter). If particles i

(projectiles) and j (targets) belong to the same annulus1 the intrinsic collision probability

is defined as

Pint(i, j) =
αVrel(i, j)

4Ha(δa + 2ae(i))
, (1)

(see WS93), where Vrel(i, j) is the average collision velocity between targets and projectiles,

α is a coefficient ranging from 0.57 to 0.855 depending on Vrel (WS93), H is the symmetrical

mutual scale height (see eq. (4) below), a and δa are the semi major axis and width of the

annulus and e(i) is the mean eccentricity of the projectiles. With respect to formula (A1) in

WS93, eq. (1) is generalized for a non-zero eccentricity of the projectiles, which is assumed

to be not smaller than that of the targets. Denoting by VK the Keplerian circular velocity,

by I the particles’ inclination and by

h =

√
5

8
e2V 2

K , v =

√
1

2
(sin I)2V 2

K , (2)

the mean horizontal and vertical velocities of a particle (Kenyon and Luu, 1998), the

average collision velocity between particles i and j is:

Vrel(i, j) =
√

h2(i) + h2(j) + v2(i) + v2(j) . (3)

The symmetrical mutual scale height is defined as:

H =

√
2

Ω

√
v2(i) + v2(j), (4)

1All quantities in the code are two-dimensional vectors, one index referring to the annulus

and the other to the mass bin. In this text, for simplicity, we use only one index. Thus

particles i and j, if i 6= j may either be in two different annuli, or be in two different mass

bins, or both.
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(formula A2 in WS93), where Ω is the Keplerian angular velocity. The coefficient α

represents the difference between the collision frequency of bodies in Keplerian orbits and

that based on particle-in-the-box approach, and is given in Greenzweig and Lissauer (1992)

(also reported in appendix A of WS93).

When projectiles and targets do not belong to the same annulus, we compute the

fraction f of the targets that visit the volume spanned by the projectiles, accounting for

the eccentricities of both targets and projectiles, and we multiply eq. (1) by f . In eq. (4)

the angular velocity Ω is computed in correspondence of the mean value of the semi major

axes of the annuli of particles i and j.

Finally, we set equal to zero the mutual intrinsic collision probability of ‘isolated bodies’

belonging to the same annulus. The idea is that the isolated bodies are those which have

enough room in the annulus to park themselves onto orbits with a mutual separation of a

few Hill radii from aphelion to perihelion. Consequently isolated bodies do not approach

each other and avoid mutual collisions. This behavior is seen in many numerical simulations

(see for instance Kokubo and Ida, 1995, 1996, 1998). Thus, following WS93 (see section

II.B.1 in that work), we identify ‘isolated bodies’ as follows. We sort the mass bins, and

index them from 1 to n from the smallest to the largest mass. We denote liso the minimal

index l such that:
n∑

i=l

N(i)Rg(i) < δa , (5)

where N(i) is the total number of bodies in mass bin i, Rg(i) = cHRHill(i) + 2ae(i), the

quantity RHill is the mutual Hill radius of the bodies in the mass bin, namely:

RHill(i) = a

(
2M(i)

3M�

)1/3

(6)

and cH is a parameter of the code, that we set equal to 2
√

3, following WS93. The

‘isolated bodies’ are those that belong to the bins liso, . . . , n. Isolated bodies accrete (only)

non-isolated bodies. As they grow, Rg grows as well, so that the condition (5) becomes
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more restrictive as time passes. Thus, the least massive of the isolated bodies eventually

become non-isolated. When this happens, they can be accreted by their former companions

of the ‘isolated’ group.

Notice that, if a body is massive enough, condition (5) might not be satisfied (the

width of the annulus may be too narrow compared to cHRHill). To correct for this, we also

consider ‘isolated body’ the most massive body in the annulus, provided that (a) it is alone

in its mass bin and (b) its Hill radius, multiplied by cH , exceeds the width of the annulus

where it resides. This will be important when evaluating the stirring effects of this body on

the smaller planetesimals (see sect. 1.4.4).

Numerical simulations show that isolated bodies in dynamically cold disks open gaps

in the planetesimal distribution and their accretion stalls. Thus, if j is an isolated body

and the projectiles i have e(i) < (M(j)/3M�)1/3, we set Pint(i, j) = 0.

1.2. Step ii: Gravitational focusing.

The total number of collisions between projectiles i and targets j in a time-step δt is

Nc(i, j) = Pint(i, j)N(i)N(j)Fg(i, j)(R(i) + R(j))2δt , (7)

where Pint(i, j) is given in eq. (1), N(i) and N(j) are the numbers of particles i and

j respectively of physical radii R(i) and R(j) and Fg(i, j) is the so-called gravitational

focusing factor. It accounts for the fact that objects have a gravitational field, and thus can

deflect the trajectories of the neighbors, thus enhancing their own geometrical cross-section.

We use the expression of the gravitational focusing factor given by Greenzweig and

Lissauer (1990, 1992):

Fg(i, j) = E

(
1 + b

V 2
esc(i, j)

V 2
rel(i, j)

)
, (8)
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where Vesc(i, j) =
√

2G[M(i) + M(j)]/[R(i) + R(j)] is the mutual escape velocity of bodies

i and j (M is their respective mass and G is the gravitational constant), while b and E are

coefficients depending on velocities and masses.

More specifically, b accounts for the fact that the eccentricities and inclinations for

which Vrel is computed are only mean values. In reality there is a distribution of values

of eccentricities and inclinations (typically a Rayleigh distribution), each with its own

focusing factor. The mean focusing factor is not the focusing factor computed for the mean

eccentricity and inclination (Greenzweig and Lissauer, 1992). Following WS93, we adopt

b = 2.7 for Vrel > 2VHill, b = 1 for Vrel < VHill and a linear interpolation between these two

extremes for VHill < Vrel < 2VHill. The Hill velocity VHill is defined as

VHill = VKRHill/a (9)

where RHill is the mutual Hill radius of particles i and j. Again, if particles i and j belong

to two different interacting annuli we adopt for a and VK the mean of the values of the

respective annuli.

The coefficient E is given in the appendix B of Greenzweig and Lissauer (1990). It

accounts for deviations of Fg from the classical ‘two-body’ gravitational focusing at low Vrel,

due to (a) limited thickness of the particle disk with respect RHill and (b) shepherding effects

in the three-body problem. Figure 1 gives an illustration of both effects. It shows (solid

curve) the value of Fg for a target whose physical radius is 4× 10−3RHill as a function of the

dispersion velocity of the field projectiles, here represented by the quantity IHill = I/RHill

under the assumption that e = 2I. The classical two-body gravitational focusing (i.e.

eq. (8) for E ≡ 1; line of slope −2) is shown with a dashed line, whereas a reference slope

of −1 is plotted with a dash-dotted line.

As one sees, Fg follows the classical two-body gravitational focusing formula down to

IHill ∼ 1. Below this value Fg follows for a while the slope -1; this is because the disk is
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Fig. 1— The solid curve shows the value of the gravitational focusing factor as a function of

the dispersion velocity of the projectiles, according to Greenzweig and Lissauer (1990). For

reference, the dashed and dash-dotted lines have slope equal to −2 and −1 respectively.

thinner than the gravitational radius of the target, so that it behaves as a two dimensional

system, with Fg ∝ Vesc/Vrel, instead of its square. Finally, for small enough velocity (low

value of IHill), Fg becomes essentially constant (see Greenberg et al., 1991, for a discussion).

This is due to shepherding effects: the extremely low velocity orbits are not more likely

to hit the target, but rather avoid it following a horseshoe-like trajectory in the target

corotating frame. Notice the curious ‘bumps’ that Fg exhibits when it branches from one

asymptotic solution to another. We stress that in a disk with IHill . 0.1 (e.g. in a disk whose

ddispersion velocity is kept low relative to the Hill velocity of the largest bodies by strong

gas-drag or collisional damping), runaway accretion does not occur because the Fg factor for

the largest bodies is proportional (Vesc/Vrel)
p, with p ≤ 1, and dM/dt ∝ M2/3Fg ∝ M (2+p)/3.
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1.3. Steps iii-iv: Collisional accretion & fragmentation.

The calculations described above tell us which fraction of the population experiences a

collision during a time-step, and with which relative velocity. The outcome of the collision

then depends on the mass of the projectile and the strength of the target. Fortunately we

now have a good insight of the collisional outcome from SPH numerical experiments.

Following Benz and Asphaug (1999), we define Q∗
D as the specific impact energy

(energy per unit target mass) required to disperse into space 50% of the target mass. The

quantity Q∗
D is a function of the target radius. Several Q∗

D functions are given in the

literature for different types of material. Here we use the function reported in Benz and

Asphaug (1999) for basalt at impact velocity of 5km/s.

The kinetic energy of the projectile per unit mass of the target is denoted by Q.

From the SPH experiments, Benz and Asphaug (1999) report that the mass of the largest

remnant after a collision can be fitted as a function of Q/Q∗
D as:

MLR =

[
−1

2

(
Q

Q∗
D

− 1

)
+

1

2

]
MT (10)

for Q < Q∗
D and

MLR =

[
−0.35

(
Q

Q∗
D

− 1

)
+

1

2

]
MT (11)

for Q > Q∗
D, where MT is the target mass. Whenever MLR in eq. (11) turns out to be

negative we assume that the target is fully pulverized and all its mass is lost below the

minimal mass threshold that our code can track.

In the Boulder code, in order to account for fragmentation and accretion at the same

time, following Stern (1996), in eq. (10) and eq. (11) we substitute MT with M(i) + M(j),

i.e. the sum of the masses of projectile and target. For consistency, we also compute Q∗
D

using an effective radius reff = [(M(i) + M(j))/(4/3πρ)]1/3, where ρ is the bulk density of

the planetesimals. Thus, for Q much smaller than Q∗
D, the mass of the largest remnant MLR
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Fig. 2— Left panel: The mass resulting from the collision of two Mars-mass bodies, nor-

malized to a Mars-mass, as a function of the impact speed relative to the mutual escape

velocity. The horizontal dashed line separates the accretional from erosive regime. Right

panel: reproduction of Fig. 1 of Agnor and Asphaug (2004), showing the same according to

SPH simulations, at various impact angles.

can be bigger than M(j), which results in effective accretion. As Q increases relative to Q∗
D

the accretion becomes progressively less effective and eventually it is smoothly turned into

a collisional erosion. This recipe for treating accretion and erosion simultaneously is very

close to that recommended by Stewart and Leinhardt (2009).

The outcome of collisions between two Mars-mass objects at various relative velocities

and impact angles was computed with SPH techniques in Agnor and Asphaug (2004). The

left panel of Fig. 2 shows the result of our algorithm. It compares satisfactorily with the

SPH results for an impact angle of 0◦ (see the right panel of the figure). We notice however

that the results in Agnor and Asphaug (2004) show that accretion becomes ineffective for

impact angles larger than 30◦–45◦. This effect, however, has not yet been tested for a

variety of masses and mass ratios, so that we do not include it in our algorithm for the

moment. One should keep in mind, therefore, that our code might overestimate accretion,

although it is not clear the magnitude of this effect, given that most of the accretion of

massive bodies is due to collisions with small bodies, and not to collisions among massive
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bodies themselves (which appear in general as isolated bodies in our code, so that their

mutual collisions are prevented). To our knowledge, none of the statistical accretion codes

existing in the literature accounts for the -still poorly quantified- impact angle effect.

Concerning the size distribution of the fragments ejected from the collision, we

calibrated our algorithm using the SPH results in Durda et al. (2007). This work conducted

a large number of simulations of collisions of projectiles of various masses and velocities

upon 100 km targets. Except for highly catastrophic collisions, the results typically show

that the fragments have a continuous, steep power-law size distribution starting from a size

-that we call ‘size of the largest fragment’- that is well separated from the size of the largest

remnant, defined above. We have measured the mass of the largest fragment and the slope

of the power-law size distribution in each of the experiments in Durda et al. (2007), and we

have tabulated them as a function of the ratio Q/Q∗
D that characterized each experiment.

We found that the following laws provide reasonable empirical fits to the experimental data

(see Fig. 3):

MLF = 8× 10−3

[
Q

Q∗
D

exp
−

„
Q

4Q∗
D

«2]
(M(i) + M(j)) (12)

for the mass of the largest fragment and

q = −10 + 7

(
Q

Q∗
D

)0.4

exp
− Q

7Q∗
D (13)

for the slope of the cumulative power-law size distribution of the fragments.

Of course, size distributions with slopes as steep as given by eq. (13) would contain an

infinite mass. To avoid this problem, we assume that the fragment size distribution has a

cumulative slope q = −2.5 (Dohnanyi, 1969) below a turn-over radius rt. We compute rt

so that the mass integral of this two-slope power-law, from sizes ranging from 0 to the size

of the largest fragment is equal to the total ejected mass (defined as M(i) + M(j)−MLR).

The fragments generated according to the resulting size distribution are then distributed

into the mass bins of our code.
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Fig. 3— Left: The mass of the largest fragment as a function of Q/Q∗
D. Right: the

exponent of the power-law distribution of the fragments. Crosses denote the results of the

SPH simulations of Durda et al. (2007). The curve shows the empirical fit that we adopt in

the Boulder code.

In a collisional grinding regime, the collisional evolution of a population is ultimately

governed by the size distribution of the smallest objects. Unfortunately, a statistical code

can deal only with a finite number of mass bins, which imposes to truncate the population

distribution at some small size. This truncation can generate spurious waves in the resulting

size distribution of the overall population, even at large sizes (Marzari et al., 1995). To

avoid this problem, given the mass m of the smallest object that our code tracks (an

input parameter), we consider a tail of objects down to an individual mass µ < m, with

µ defined as the mass of the smallest object that can remove an object of mass m from

its own mass bin. The value of µ changes during the simulation, as the relative velocities

of the particles evolve. The evolution of the objects of masses between µ and m is not

calculated self-consistently (otherwise the problem of truncation would present itself again

at µ), but instead these objects are assumed to have a size distribution that extrapolates

that produced by the code for masses larger than m. More details on this are given when

describing step vi, below.

We have tested the collisional part of our code by comparing its results with those of
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the collisional evolution code CoDDEM of Bottke et al. (2005, 2005b). The comparison

experiment has been set up as follows. We have considered a size distribution of objects,

spanning from 3m to 200 km in size, with a power-law cumulative size distribution

characterized initially by exponent q = −4. The bulk density of the planetesimals is 1g/cm3.

The planetesimals evolve in an annulus centered at 2.5 AU, with a width of 0.5 AU. The

total mass is 1.46 × 1028g. The intrinsic collision probability and impact velocity among

the objects are set constant and equal to 4.87× 10−18 km−2y−1 and 8.7 km/s, respectively.

This experiment is not intended to mimic any realistic condition in the asteroid belt, but

just to set an extreme case for an intense collisional grinding and compare the performance

of the two codes.

For a quantitative comparison we have to take into account that CoDDEM uses a series

of approximations with respect to what we described above. In CoDDEM, all collisions

with Q > Q∗
D leave a largest remnant that has 50% of the mass of the target (independent

of Q/Q∗
D). Cratering events (Q < Q∗

D) are ignored. Moreover a unique fragment size

distribution is considered (Bottke et al., 2005), first shallow, then steep, then shallow again,

starting from the size of the largest remnant, downwards (so, according to our definition

above, the largest fragment coincides with the largest remnant).

We have matched the results of CoDDEM using equivalent simplifications (Fig. 4a).

The match is essentially the same even if eq. (11) is adopted and for a variety of values of

Q, provided that the mass of the largest fragment is ‘close’ (i.e. within 50%) of the mass of

the largest remnant. We understand this because barely catastrophic events are the most

frequent ones and because the equilibrium size distribution does not depend on the slope of

the fragment size distribution (Dohnanyi, 1969).

However, if cratering events are considered (i.e. eq. (10) is followed for Q < Q∗
D) the

size distribution that we obtain deviates from that of CoDDEM below a few kilometers
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Fig. 4— The dashed line shows the initial size distribution considered in the fragmentation

simulation. The solid curves show the size distribution after 6 My of evolution, according

to CoDDEM (thin line, the same in all three panels) and to our code (bold line). (a)

Top: simulation done neglecting cratering events and assuming that MLF = 0.5MLR and

MLR = 0.5M(j) when Q > Q∗
D. (b) Bottom left: simulation done accounting for cratering

events, that is assuming that MLR = 0.5M(j) for Q > Q∗
D and that MLR is given by eq. (10)

for Q < Q∗
D; in both cases we assume MLF = 0.5(M(i) + M(j) −MLR). (c) Bottom right:

simulation done using our nominal algorithm (all the formulae described in the text).

(Fig. 4b). The wave is more pronounced and there is a deficit of objects in the range 10m

– 1km. This is because, although cratering events excavate less mass than catastrophic

events, they are more numerous, so their overall effect is important.

Finally, if we introduce an important gap between the size of the largest remnant and
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that of the largest fragment (i.e. adopt eq. (12) and use the full set of equations described

above), we get an even more pronounced wave and a stronger deficit of ∼ 100m objects

(Fig. 4c). The reason for this is that objects in the range 100m–1km are the weakest

according to the Q∗
D prescription adopted. If the gap between the largest remnant and the

largest fragment is large, the objects in this size-range can be regenerated only in break-ups

of very large parent bodies, which occur very infrequently. Hence the population in the

100m–1km range is effectively annihilated, and the cumulative size distribution has a quasi

horizontal slope in this range.

Curiously, the asteroid belt does not show such a pronounced wave, and the results

of CoDDEM reproduce the waves of the asteroid belt population very well (Bottke et al.,

2005, 2005b). Why this is so is unclear at this stage. This may tell us that the physical

nature of 1–10 km asteroids is different from that of monolithic parent bodies used in the

SPH simulations of Durda et al. (2007) and Benz and Asphaug (1999). We also notice

that the difference between CoDDEM and our algorithm is exacerbated in the designed

experiment, because of the large collision velocities involved (almost a factor of 2 larger

than in the real belt). We will do further investigations on this issue. For the moment we

keep our nominal treatment of collisional fragmentation in the Boulder code, as the exact

shape of the wave in the 100m–1km range has probably negligible effect on the accretion of

large bodies, which is our primary focus.

1.4. Step v: Eccentricity and inclination evolution.

The evolution of eccentricities and inclinations is computed accounting for viscous

stirring, dynamical friction, collisional damping, gas drag, turbulent stirring, tidal damping.

We also distinguish between a large relative velocity and a low relative velocity case and

consider differently the effects of isolated bodies. We treat and test all these cases below, in
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sequence. Finally, we discuss the integration method used to solve these equations.

1.4.1. Viscous stirring

We follow the equations given in WS93, but with coefficients updated in Stewart and

Ida (2000; SI00 hereafter) (see discussion in section II.2 of that work). More precisely we

consider the following set of equations:

de2(i)

dt
=

∑
j

fij
Cij

8
(M(i) + M(j))e2(i)(Jr(β) + 4Jθ(β)) , (14)

dI2(i)

dt
=

∑
j

fij
Cij

8β2
(M(i) + M(j))I2(i)Jz(β) . (15)

Here β = [(I2(i) + I2(j))/(e2(i) + e2(j)]1/2 and the functions Jr, Jθ and Jz are given in

appendix A3 of Kenyon and Luu (1999). The coefficient fij is equal to 1 if the particles i

and j belong to the same annulus and otherwise it represents the fraction of particles i that

intersect the volume spanned by particles j (Kenyon and Bromley, 2001; KB01 hereafter).

For example, for a(i) < a(j) we use:

fij =
(a(i) + δa(i)/2)(1 + e(i))− [(a(j)− δa(j)/2)(1− e(j))−NHRHill]

2a(i)e(i) + δa(i)
(16)

where NH is a parameter equal to 2.4 if the j-bodies are non-isolated (KB01) and 6.5

otherwise (Ida and Makino, 1993), and RHill is the mutual Hill radius. The rationale behind

the NHRHill term is that it is not necessary to cross the orbit of a body to be stirred by it,

but just to pass within a few Hill radii. Finally, the coefficient Cij in eq. (14) is given by

WS93:

Cij =
16G2ρ(j)

V 3
K(e2(i) + e2(j))3/2

(log Λ + 0.55) , (17)

where G is the gravitational constant, VK is the Kepler velocity (computed for the

arithmetic mean between a(i) and a(j)), Λ describes the minimum two-body deflection
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Fig. 5— Left: The evolution of eccentricity (upper curve) and inclination (lower curve) in

the experiments with 800 planetesimals of 1024g described in the text. The time is measured

in years and e and I are expressed relative to the mutual Hill radius of the particles. Right:

reproduction of Fig.2 of SI00, showing the evolution of the rms. eccentricity and inclination

in N-body simulation.

angle (detailed in Wetherill and Stewart, 1989) and ρ(j) is the spatial density of particles

j. The spatial density, however, can become infinite if population j is in a thin layer with

vanishing orbital inclinations. This singularity is only apparent, though, because in this

case the particles i would spend an infinitesimal fraction of their orbital period passing

through the population j. To eliminate this singularity, following KB01, we compute

ρ(j) by considering that the torus spanned by the particles j has an effective height of
√

2 max[sin(I(j)), sin(I(i))]. Moreover, we assume that width of the torus is equal to the

width of the semi major axis bin occupied by particles j, extended at the inner and the

outer radius by a(j)e(j) + 2.4RHill. This choice is consistent with the definition of fij above.

We are aware that more modern formulations for the viscous stirring (and dynamical

friction, see below) have been given in the literature (see for instance SI00; KB01; Ohtsuki

et al., 2002; Ohtsuki, 2006a, 2006b), but we are seduced by the simplicity of eq. (14) and

the examples illustrated below show that it is sufficiently accurate for our purposes.

As a test of the viscous stirring equations, we have considered the experiment described
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in Fig. 2 of SI00 and Fig. 9 of KB01. The experiment consists in considering a population

of 800 planetesimals, each of mass 1024g, in an annulus centered at 1 AU with half-width

of 0.028 AU. The initial eccentricity is set equal to 2RH and the inclination equal to 1RH .

Fig. 5 shows the evolution of e and I over 20,000 y. The agreement with the results of SI00

and KB01 is good (compare the left and right panels in Fig. 5). By changing the individual

particle mass or surface density of the particle swarm we also recover the scaling law given

in equations (5.4) and (5.5) of SI00.

1.4.2. Dynamical friction

Again, we follow the formulation of WS93, with coefficients updated in SI00, namely:

de2(i)

dt
=

∑
j

fij
Cij

4
(M(J)e2(j)−M(i)e2(i))(Kr(β) + 4Kθ(β)) , (18)

dI2(i)

dt
=

∑
j

fij
Cij

4β2
(M(J)I2(j)−M(i)I2(i))Kz(β) , (19)

where the coefficients fij and Cij are the same as in eq. (14) and the functions Kr, Kθ and

Kz are given in appendix A3 of Kenyon and Luu (1999).

To test these dynamical friction equations (coupled with the viscous stirring equations

above) we have attempted to reproduce the experiment described in Fig. 9a of SI00. More

precisely, we have considered a bi-modal population of planetesimals made of 800 objects of

individual mass equal to 1024g and 200 objects of individual mass equal to 4× 1024g. The

annulus in which they evolve is centered at 1 AU, and has a half-width of 0.056 AU. The

initial eccentricities are 0.002 and the initial inclinations are 0.001 for both populations.

Fig. 6 shows the evolution of e and I of both populations, over 7,000 y. The result is in

agreement with that of SI00 (compare the left with the right panel in Fig. 6). We also

reproduced with comparable success the experiment illustrated in Fig. 9b of SI00.
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Fig. 6— Left: the solid curves show the evolution of eccentricity (upper curve) and inclina-

tion (lower curve) of the population of objects of 1024g. The dashed curves show the same

but for the population of objects of 4× 1024g. Right: reproduction of Fig.9a of SI00, where

the non-smooth curves show the result of the original numerical simulation.

1.4.3. Low eccentricity case

The equations (14), (15), (18) and (19) are applied in the dispersion regime, namely

when the eccentricities are larger than the non-dimensional quantity RHill/a, as it was the

case of the experiments illustrated in Fig. 5 and 6. In the opposite case, the stirring and

damping rates need to be reduced (Ida, 1990; WS93). We follow the recipe given in Kenyon

and Luu (1999). More precisely, we define

elv =

√
8

5
RHill/a ; (20)

then, for (e2(i) + e2(j)) < e2
lv we compute the coefficient

ε =

(
e2(i) + e2(j)

e2
lv

)
(21)

and we multiply the right hand side of eq. (14) by ε and those of eqs. (15), (18) and (19) by

ε2.

Again, we are aware that this is not the most modern recipe (see for instance KB01),

but its simplicity is attractive and the test below, from KB01, shows that it is probably
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Fig. 7— Left: The value of
√

e2 + I2/RHill as a function of semi-major axis at times 200y

(lower curve), 800y (middle curve) and 2,000y (upper curve), for a system of 805 particles

with mass 2× 1024g spread over the represented ring, and initial eccentricity and inclination

equal to 10−2RHill. RHill is in this case defined as the Hill radius of a 2×1026g body at 1 AU,

namely 0.003235 AU. Right: reproduction of Fig. 12 of KB01, showing the same evolution

according to the code in that work.

reasonable. The experiment, which also tests the capability of our code to work in a

multi-annulus regime, uses 805 planetesimals with individual masses equal to 2× 1024g, in

a ring from 0.9434 to 1.0566 AU, subdivided in 35 annuli. The initial eccentricity of the

particles, equal to the initial inclination, is 3.235×10−5, which is 27 times smaller than their

mutual Hill radius (so that, initially, the system is in the low-velocity regime). Fig. 7 shows
√

e2 + I2 at t = 200y, t = 800y and t = 2000y in each of the annuli. The figure compares

quite well with the results of KB01 (compare the left with the right panel in Fig. 7). Our

disk is slightly less excited than that in the simulation of KB01, and the bending of the

curves at the extremes of the disk is a bit less pronounced.
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1.4.4. Isolated bodies

In the evaluation of viscous stirring and dynamical friction, a somewhat different

treatment is followed when the population j is made of isolated bodies. For reference, the

definition of isolated body is given in sect. 1.1. Below we first describe how we account

for the effects of isolated bodies on non-isolated bodies and then of isolated bodies on

themselves.

(a) Effects on non-isolated bodies

Let’s consider the case where the particles i, interacting with the isolated bodies j, are

themselves non-isolated. Following WS93, we assume that the particles interact only with

one object, chosen at random in the list of isolated bodies in the annulus. The rationale

behind this is that, because the isolated bodies are separated from each other, a small body

can only interact closely with a single isolated body at a time.

In the computation of the effects of a single massive object, we encounter a problem.

The ‘spatial density’, which enters in eq. (17), has in principle no meaning in this case.

This issue is explicitly discussed in Ida and Makino (1993). After some tests, we decided

to compute an effective spatial density by considering that the mass of the object is

spread over an annulus of width ±2.4RHill around its orbit. As for the height of the torus,

again we consider the max[sin(I(i), sin(I(j))]. Numerical simulations (see for instance

Ida and Makino, 1993) also show that massive bodies are much more efficient in stirring

the eccentricities than the inclinations of the small bodies than eqs. (14) and (15) would

predict. For this reason, we divide the right hand side of eq. (15) by a factor of 6. For

reference, in the analytic formulation of Ida and Makino, the numerical coefficient in the

equation for the viscous stirring of the inclination is 20 times smaller than the one in the

equation for the viscous stirring of the eccentricity (in our case the above-mentioned factor
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Fig. 8— Left: the time evolution of the eccentricity (solid) and inclination (dashed) of the

particles with 1 − 5RHill < a < 1 + 5RHill, when a body of 2 × 1026g is taken introduced at

1 AU in the disk considered in Fig. 7. Center and Right: reproduction of Fig. 5 of Ida and

Makino (1993), where the non-smooth curves show the result of the N-body simulation in

that work.

of 6 is multiplied by [Jr(β) + 4Jθ(β)]/Jz(β), which is 1-3, depending on the value of β).

We test the effectiveness of this recipe by trying to reproduce the result of the

simulation reported in section III.2 in Ida and Makino (1993), which is also addressed in

KB01 (see Fig. 13 in that work). The experiment consists in considering a particle disk

as in the case of Fig. 7, but with a body of 2 × 1026g added at 1 AU. Fig. 8 shows the

time evolution of the eccentricities and inclinations of the particles in the region within

±5RHill of the massive body. Our result agrees satisfactorily with the result of the N-body

simulation in Ida and Makino (1993) (compare the left panel with the center and right

panels of Fig. 8).

Fig. 9 shows the excitation distribution in the disk at times 200, 800 and 2,000 years. It

also agrees quite well with what is measured in the numerical simulation of Ida and Makino

(1993) (compare the left with the right panels). Obviously, our aim here is not to reproduce

the fine structure showed in the histograms of the right panels of Fig. 9, but rather the

broad structure of the disk’s excitation, highlighted by the dashed lines in the right panels.
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Fig. 9— Left: the same as the left panel of Fig. 7, but a body of 2 × 1026g is taken into

account 1 AU. Right: reproduction of Fig. 4 of Ida and Makino (1993), showing the excitation

measured in the disk at times 800y and 2000y in the N-body simulation.

In conclusion, our treatment of the stirring effect of an isolated body on small bodies

seems to be reasonable for both what concerns the magnitude of the excitation and its

localization in the disk.
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Fig. 10— Solid curve: the value of Je ≡ Jr(β) + 4Jθ(β) as a function of β. Dashed curve:

the value of Jz(β).

(b) Effects of the isolated bodies on themselves.

In this case, we use essentially the same recipe that we followed for computing the

effects on the small bodies, but with some amendments. We consider that each isolated

body interacts (mainly) only with its closest neighbor. So, as for the small bodies, we

assume that each isolated body interacts only with a single object, chosen at random in

the list of the remaining isolated bodies in the annulus. If there are no remaining isolated

bodies (i.e. the isolated body in consideration is alone in its own annulus), we choose an

isolated body in the annulus with which the interaction is the strongest, according to value

of the coefficient fij defined in eq. (16). Moreover, because isolated bodies, by definition,

avoid close encounters with each other, in the interaction between two isolated bodies we

consider only the ‘distant effects’, as suggested by WS93. This is done by considering the

standard equations for viscous stirring and dynamical friction, but imposing Λ = 1 in

eq. (17).

In most applications, the isolated bodies tend to have very small eccentricities and

inclinations, because they are damped by the the dynamical friction exerted by the

planetesimal disk. Numerical simulations show that massive bodies on quasi-coplanar orbits
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tend to excite much more efficiently their own eccentricities than their own inclinations. In

our formulae this is reflected by the fact that, at low relative velocity, the right hand side of

eq. (14) is multiplied by ε (see eq. 21), whereas the right hand side of eq. (15) is multiplied

by ε2. However, according to eqs. (14) and (15) the eccentricities cannot be excited much

faster than the inclinations. In fact, if this were the case, the coefficient β (essentially

∼ I/e) would become small. But, as Fig. 10 shows, for β < 0.36 the term Jr(β) + 4Jθ(β)

is negative. Thus, eq. (14) would become a damping equation, preventing further growth

of the orbital eccentricity. In other words, the eccentricity has to ‘wait’ for the inclination

to grow, in order to be able to grow as well. This is in sharp contrast with what numerical

simulations show (see Fig. 11). To overcome this problem, whenever β decreases below 0.37,

we assume that it is equal to this value when computing Jr(β) + 4Jθ(β) in eq. (14). This

essentially decouples the evolution of eccentricity and inclination.

To test this recipe, we have done a N-body simulation of two systems of ‘planets’. The

first system is made of three objects with individual mass equal to 1027g, placed at 28.5,

30.5 and 32.5 AU. Their initial eccentricity is equal to 10−4 and their initial inclination is

half of this value. The angles M, Ω, ω have been chosen at random. The second system

is made of 10 objects with individual mass equal to 5.23 × 1026g, placed at 1 AU from

each other starting from 25.5 AU. Their initial eccentricity is equal to 3 × 10−4 and the

inclination is half of this value. Again, the orbital angles are chosen at random. We have

integrated both systems for 3,000 y. The time evolution of the rms. of their eccentricities

and inclinations are shown in Fig. 11 (solid curves). Notice how the rms. of the inclination

is constant in both simulations. We have then used the Boulder code to estimate the

growth of the eccentricities and inclinations in these systems. These simulations have been

done with a multi-ring approach, placing each planet as a single body in its own ring.

Our results are shown as dashed curves in Fig. 11. The eccentricity excitation agrees well

with what is observed in the numerical simulations. The Boulder code, though, predicts



– 27 –

Fig. 11— Solid lines: the evolution of the rms. of the eccentricities (upper curve) and of

the inclinations (lower curve) according to a N-body simulation. Dashed lines: the same,

but according to the Boulder code. The left panel refers to the system of 3 planets and the

right panel to the system of 10 planets.

some (small) excitation of the inclinations which is not seen in the N-body simulations on

this timescale. The reason is that, as the eccentricity grows β decreases, and this in turn

enhances the term Jz(β) in eq. (15), as showed in Fig. 10. So, the growth of the eccentricity

entails some growth of the inclination. We believe that this is not a serious problem. A

moderate stirring of the inclinations of an isolated body will not affect the velocity of

encounters with the planetesimals in the disk (which is dictated by the eccentricity of the

isolated body and the velocity dispersion of the planetesimals), nor the encounter rate and

the planetesimal stirring rate (because the volume density calculations in the respective

formulae are dominated by the inclination of the planetesimals, typically much larger than

that of the isolated body).

Notice also that we have chosen to do this comparison on a short timescale. On a longer

timescale, the evolutions in the N-body simulation and in the Boulder code inexorably

diverge. Planets can become unstable and very excited (this happens in the 10 planets

system at 250,000 y; up to this time the eccentricity excitation predicted by the Boulder

code still agrees quite well with the N-body simulation). Or the planets can be in a stable,
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quasi-periodic motion, in which case the rms. eccentricity and inclination stop growing (this

happens in the 3 planets system, after ∼ 3000 y). Both phenomena cannot be reproduced

by the Boulder code because of the very statistical nature of the code. We think, however,

that the reported tests are significant, because what is important is that the Boulder code

reproduces the initial stirring rates, from quasi-circular and co-planar orbits. In fact, in a

full system comprising isolated bodies and a planetesimal disk, the disk would tend to drive

the isolated bodies towards circular and co-planar orbits through dynamical friction; the

isolated bodies would fight against this damping through their self-stirring. The equilibrium

values of eccentricities and inclinations of the isolated bodies would then depend on their

self-stirring rates in the vicinity of e = I = 0, which are what we tested above.

Below, we will consider the evolution of the same systems of ‘planets’ in disks affected

by a strong collisional damping.

1.4.5. Collisional damping

For collisional damping we use formula (21) in Wetherill and Stewart, 1989), but with

the more intuitive coefficient taken from the recent work of Goldreich et al. (2004). In

practice our equations are:

de2(i)

dt
=

∑
j

Aij
M(j)(e2(i)− e2(j)) + 2M(i)e2(i)

(M(i) + M(j))2
, (22)

dI2(i)

dt
=

∑
j

Aij
M(j)(I2(i)− I2(j)) + 2M(i)I2(i)

(M(i) + M(j))2
, (23)

where Aij = N(j)M(j)Pint(i, j)Fg(i, j)(R(i) + R(j))2 and Pint and Fg are the intrinsic

collision probability and focusing factor defined in eq. (1) and eq. (8), respectively.

To test these formulae, we have compared our results with those of Levison and

Morbidelli (2007; LM07 hereafter), which presented a N-body code that self-consistently



– 29 –

Fig. 12— The time evolution of the eccentricity (solid) and inclination (dashed) of 1.4×1028

particles with a radius of 1cm and a mass of 4.18g, between 30 and 35 AU, due to their mutual

collsional damping. The bold curves illustrate the result from the Boulder code. The light

curves those from Levison and Morbidelli (2007). The light and bold solid curves almost

perfectly overlap, so that only one solid line is visible.

computes collisional damping. We repeated the experiment illustrated in Fig. 1 of that

work, which consists in considering a ring of 1-cm-sized planetesimals between 30 and 35

AU with initial eccentricity equal to 0.1 and initial inclination equal to 0.05. The total mass

of this planetesimal ring is 10 Earth masses; the bulk density of the particles is 1g/cm3.

Fig. 12 compares our result (bold curves) with that of LM07 (light curves). Solid curves

are for eccentricity and dashed curves for inclination. The evolution of the eccentricity in

our simulation is indistinguishable from that of LM07 (so, the reader sees only one solid

curve in the figure). The damping of the inclination is faster in our case than in LM07, but

not by too much. The e-folding time in our case is 265 y, whereas it is 360 y in LM07.

Two interesting experiments were also shown in LM07, concerning the systems of

planets considered in Fig. 11, embedded in particle disks undergoing strong collisional
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Fig. 13— The time evolution of the mean eccentricity (solid) and inclination (dashed) of

the system of 10 massive bodies embedded in a disk of 100 m bodies as in the simulation of

Fig. 3 of LM07. The initial set-up is discussed in the text. The upper curves refer to the

small bodies; the lower curves to the massive bodies. Compare with Fig. 3 of LM07.

damping. More precisely, the 10 planets system is embedded in a disk of 100 m bodies,

ranging from 20 to 40 AU, carrying cumulatively a mass of 3.39× 1028 g. The initial mean

eccentricity and inclination of the particles are 0.025 and 0.0125, respectively. Fig. 13 shows

the result of our simulation, obtained using 20 annuli, each of width equal to 1 AU. The

upper curves show the evolution of the mean eccentricity (solid) and inclination (dash)

of the planetesimals. The lower curves are the same but for the 10 massive bodies. The

excitation of the small bodies reaches ∼ 0.04 in eccentricity and ∼ 0.02 in inclination in

107 y. In the simulation of LM07 (see Fig. 3 in that paper) the final values are ∼ 0.035

and 0.018 respectively. In Goldreich et al. (2004), the expected eccentricity excitation

of the small bodies is also ∼ 0.04. As for the massive bodies, Goldreich et al. predict

mean e ∼ 0.008 and mean inclination that is half of this value. We find 0.010 and 0.0045

respectively. In the simulations of LM07, the results depend quite sensitively on the number

of tracers used to represent the particle disk. The values that we have found for the final

excitation of the planets are within the range spanned by those simulations, although the

run in LM07 with the largest number of tracers gives final excitations that are about half
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Fig. 14— The time evolution of the mean eccentricity of a system of 3 massive embryos

(dashed curve) embedded in a disk of 5 cm bodies (solid curve) as in the simulation of Fig. 4

of LM07. The initial set-up is discussed in the text. Compare with Fig. 4 of LM07.

of ours.

The second experiment in LM07 consists in embedding the 3 planets system considered

before in a 7 M⊕ disk of planetesimals spread from 27 to 33 AU. The size of the planetesimals

is 5 cm, and their bulk density is 1g/cm3. The initial eccentricities and inclinations are

1× 10−4 and 0.5× 10−4 respectively, for both embryos and small bodies. The results of our

simulations are shown in Fig. 14, obtained using 6 annuli, each of width equal to 1 AU. The

dashed curve shows the mean eccentricity of the embryos and the solid one shows that of

the small bodies. At the end of our 3,000 y simulation we find that the mean eccentricity

of the embryos is 3.2×10−4 and the one of the small bodies is 4 × 10−4. According to

Goldreich et al. (2004), these values should be 7 × 10−4 and 2 × 10−4. In the simulation

of LM07 (see Fig. 4 in that work), the final excitation of the disk is e ∼ 4 × 10−4. For

the embryos, again, there is a strong sensitivity on the number of tracers used to model

the disk in LM07. The simulations with the largest number of tracers give a final mean

eccentricity of 8–10×10−4. However, a visual inspection of the evolution of the planets and

planetesimals in the simulation of LM07 shows that the excess of excitation that the planets

get with respect to a simulation without the disk (left panel of Fig. 11) is due to the fact
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that the planetesimals, under their strong mutual collisional damping, clump in narrow

structures in the tadpole regions and in the mean motion resonances of the planets, and

then behave coherently almost as a unique massive body. This behavior, of course, cannot

be captured by the Boulder code, because phase mixing is an essential assumption behind

all the stirring/damping equations that we have used. In any case, the values obtained by

the Boulder code, by Goldreich et al. (2004) and LM07 are all in the same ballpark. Given

the extreme character of this experiment, we consider this to be a success of our code.

1.4.6. Gas drag

From formula (23) of Wetherill and Stewart (1989), our equations for gas drag damping

on eccentricity and inclination are:

de2(i)

dt
= −16

5

V

V 2
K

0.5πρgV
2
g R2(i)

2M(i)(1 + 0.8β2)
, (24)

dI2(i)

dt
= −3.2β2 V

V 2
K

0.5πρgV
2
g R2(i)

2M(i)(1 + 0.8β2)
, (25)

where V = VK

√
(5/8e2(i) + 1/2I2(i)) is the velocity of the planetesimal relative to the

local Keplerian velocity and Vg =
√

V (V + δV ) is the gas velocity. The quantity δV , the

difference between the gas and the Kepler velocity, is assumed to be 60m/s for a < 5 AU

(see WS93). The volume gas density is denoted by ρg. We have tested these formulae

against a N-body code with gas-drag forces, obtaining identical results.

For the moment, we neglect in the Boulder code the radial migration of planetesimals

induced by gas drag, implicitly assuming that what moves away from an annulus is replaced

by new material coming in from further out.
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1.4.7. Turbulent stirring

It is now quite generally accepted that proto-planetary gas disks are turbulent due to a

Magneto Rotational Instability (MRI). For a few years, the dynamics of objects in turbulent

disks has been studied through very CPU-expensive magneto hydro-dynamical simulations

(see for instance Nelson et Papaloizou, 2004; Nelson, 2005). Turbulence turns out to have

two effects on solid bodies. It forces them to have a stochastic, random-walk migration in

semi major axis, and it also excites their eccentricity and inclination. A synthetic recipe

for implementing in a numerical code the stochastic torques exerted by a turbulent disk on

planetesimals and proto-planets was formulated in Laughlin et al. (2004). This recipe was

implemented in Ida et al. (2008) and from the numerical simulations, a simple formula was

deduced for the growth of the eccentricity in a turbulent regime. From that formula, we

derive an equation for de2/dt that we adopt in our code:

de2(i)

dt
= 0.01f 2

g γ2

(
1AU

a(i)

)1/2

, (26)

where fg is related to the surface density of gas Σg by the equation Σg = 2400fg(r/1AU)−3/2

(so that fg = 1 gives a density corresponding to 1.4 times the minimal mass solar nebula),

and γ is a non-dimensional parameter to represents the ‘strength of the turbulence’.

Reasonable values for γ are between 10−4 and 10−2, according to MRI simulations (Ida et

al., 2008).

The evolution of the inclination is not explicitly studied in Ida et al. (2008), but

considering that typically the inclination follows the evolution of the eccentricity in order

to keep a ratio e/I ∼ 2, we set:

dI2(i)

dt
= 1/4

de2(i)

dt
, (27)

where de2(i)/dt is given by eq. (26)
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Fig. 15— Comparison between the Euler method and the Shampine and Gordon ODE solver

for the eccentricity/inclination evolution equations. The black curves show the results of the

experiments already illustrated in Figs. 5 and 6 (Euler method). The red curves show the

results of the same experiments obtained with the Shampine and Gordon solver. The match

is so good that the black curves are barely visible.

1.4.8. Solution of the eccentricity/inclination equations

In all the experiments illustrated above, the eccentricity/inclination equations have

been solved using an Euler method, e.g. for each particle i

e2(t + dt) = e2(t) + dt
de2(i)

dt
(t) , I2(t + dt) = I2(t) + dt

dI2(i)

dt
(t) . (28)

The time-step dt is chosen in an adaptive manner, so that e and I for all particles do not

change more than a parameter value, which was set equal to 10% for all our simulations.

It may be of concern that the Euler method might not be accurate enough. To check

this, we wrote a modified version of the Boulder code, in which the differential equations

for the evolution of e2 and I2 are solved using a predictor-corrector integrator, known as

the Shampine and Gordon ODE solver (Shampine and Gordon, 1975). The absolute and

relative tolerance used in this integration method have been set equal to 10−10.

Fig. 15 compares the new results with those obtained with the Euler method, for the

experiments already illustrated in Figs. 5 and 6. The match with the previous solutions is
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essentially perfect. The reason for this is that the equations for the evolution of eccentricity

and inclination are not hyperbolic and the adaptive time-step used in the Euler-method

solution was set in a conservative way.

In the complete version of the Boulder code (e.g. in that accounting not only for

the eccentricity/inclination evolution, but also for coagulation and fragmentation) we

prefer to use the Euler method instead of a more sophisticated integration scheme for one

simple reason. The coagulation/fragmentation algorithm is not written in the form of

differential equations. Thus the evolution of the mass distribution cannot be computed

using a differential equations integrator. Using the simple Euler algorithm, we use the same

time-step for both the coagulation/fragmentation algorithm and the eccentricity/inclination

evolution equations. In this way the mass distribution is updated every time that the

right hand sides of the eccentricity/inclination equations are evaluated. If we used a more

sophisticated integrator for the eccentricity/inclination equations, the internal time-step

used by the integrator would be unrelated with that used in the coagulation/fragmentation

algorithm and the mass distribution wouldn’t be updated at each intermediate sub-step

that the integrator takes. This inconsistency could lead eventually to less accurate results.

1.5. Step vi: Dynamical definition and allocation of mass bins.

At the end of each time-step, after all the calculations described above, the Boulder

code proceeds to a re-arrangement of the mass bins. The first operation is the re-definition

of the mean value of the mass in each bin, by dividing the total mass by the total number

of objects. This operation is very important, otherwise objects could grow (shrink) only if

they accrete (shed) enough mass in a time-step to jump from one bin to another.

As bins are re-defined at the end of the time-step, four situations can occur:
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(i) the ordering of the bins is no longer monotonic in the mean bin mass. In this case, all

bins are re-sorted.

(ii) The mean mass of a bin can become smaller than the minimum mass m that is tracked

in the code. In this case the bin is deleted and we lose track of its population.

(iii) The mean masses of two bins can become too close to each other, so that their ratio

is less than
√

δm. In this case the two bins are joined. The populations in two bins are

summed up. For the eccentricity and inclination we adopt the mass weighted mean of the

values of the two bins.

(iv) The mean masses of two bins can become too far from each other, so that their ratio

is larger than (δm)3/2. In this case, one or several new bins are generated between the

two. If the mean mass of a new bin is ‘close’ to the minimal mass m, typically within a

factor of 10, we fill the new bin by interpolation of the quantities (total mass, number of

objects, eccentricity, inclination) carried by the neighboring bins. The populations in the

neighboring bins are reduced by an appropriate factor, in order to ensure the conservation

of mass and population number during this operation. We do this because it is dangerous

to have strong discontinuities in the tail of the population mass distribution. For instance,

when (if) bin # 1 is eliminated because it becomes smaller than the minimum tracked mass

m, bin # 2 is renamed bin # 1. If its content is very different from that of the former bin #

1, the extrapolation of the size distribution between masses µ and m, which is anchored to

bin # 1 (see below), would suffer a sudden change, with possible dramatic effects on the full

size distribution of the population. Conversely, we leave the bins empty if their mean mass

is much larger than m. This is important in case of runaway growth. When a single body

grows faster than the rest of the population, new bins need to be generated in between the

bin of the runaway body and the bins carrying the rest of the planetesimals. These bins

must be empty, otherwise the very nature of runaway growth would be modified.
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Fig. 16— Left: the cumulative mass distribution resulting from our simulation (solid lines)

and expected from analytic calculations (dashed curves). From left to right, the curves are

given for times t = 1 to t = 6, which correspond to η = 0.15 to 0.9. Right: the mass of

the largest (runaway) body as a function of time. The solid line represents the result of our

simulation and the dashed curve the analytic expectation. The units are arbitrary (see text).

To test the ability of our moving bin algorithm to follow the evolution of the mass

distribution of a planetesimal population, and runaway growth in particular, we have

considered the academic case in which the collision probability between two bodies of

masses M(i) and M(j) is simply 10−6M(i)M(j) (Wetherill, 1990; Kenyon and Luu, 1998).

The simulation starts with N1 =66,666 bodies of mass M1 =1.5 (the unit is arbitrary). This

model triggers runaway growth at a time t such that η = 10−6N1t = 1. For η < 1 there is

an analytic solution for the mass distribution of the population, reported in formula A35 of

Kenyon and Luu (1998). For η > 1 there is a formula for the mass of the runaway body,

reported in formula A36 of Kenyon and Luu (1998). Fig. 16 compares the result of our code

to these analytic solutions. The mass distribution of the population (solid curves) follows

the expected solution (dashed curves) quite well. Deviations can be seen at the low mass

range, due to the effects of bin discretization, and at the large mass range (due to small

number statistics on the populations of objects in the most massive bins), but the trend

of the evolution of the mass distribution is reproduced satisfactorily. The growth of the
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runaway body is also reproduced very well.

We finally discuss the issue of the generation of a distribution of objects with masses

between µ and m by extrapolation of the size distribution observed at masses larger than m.

We first compute the impact velocity among objects in the first bin of the mass distribution.

Given this speed, we compute the minimal mass of a projectile that is capable of disrupting

catastrophically a body in the first mass bin. µ is defined as a tenth of that minimal mass.

Then, we assume that the size distribution of bodies with masses between µ and m is

N(r)dr = N0r
−qdr . (29)

The exponent q is set equal to the one measured for the current size distribution between

bin # 1 (the closest to m) and a bin with a mean mass close to 103m. This choice is done

in order to span an order of magnitude in size, thus achieving a quite stable estimate of q

with respect to small fluctuations of the populations in the bins. If this is not possible (for

instance the population has not yet evolved to 103m, the exponent q is assumed to be equal

to 3.5, the value for the equilibrium size distribution in Dohnanyi (1969). Once q is set, the

coefficient N0 in eq. (29) is computed in such a way that the integral∫ rM (1)

rm(1)

N(r)dr = N(1) , (30)

where N(1) in the population number in bin # 1 and rm(1) and rM(1) are the minimum

and maximum radius defining the bin.

1.6. Testing the code as a whole.

Up to now we have tested individually single parts of the code. To test the performance

of the code as a whole, in all its complexity, we now consider the experiment described in

WS93. The experiment starts with a population initially made of 8.33× 108 planetesimals
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of individual mass equal to 4.8 × 1018g and bulk density equal to 3g/cm3, placed in an

annulus centered at 1 AU with width 0.17 AU, and a velocity dispersion relative to the

Keplerian orbit of 4.7m/s.

For a more direct comparison with the results of WS93, we have modified our code

to make it as similar as possible to the original code of WS93. In particular, we have

changed the coefficients of the viscous stirring and dynamical friction equations, we have

changed the threshold for transitioning from the small to the large velocity regime and the

treatment of the low velocity case. Moreover, because WS93 does not talk explicitly about

it, we understand that the volume density ρ(j) entering in the calculation of the coefficient

(17) of the viscous stirring and damping equations, was calculated in WS93 using as scale

height the sine of the inclination of the particles j, rather than max[sin(I(j)), sin(I(i))] (see

section on viscous stirring). So, we have done the same for this test. Finally, because the

treatment of fragmentation in our code is very different from the code in WS93, we have

not taken into account fragmentation, as in the simulation illustrated in Fig. 12 of WS93.

The top left panel of Fig. 17 shows our result. Several aspects are very similar to the

original result in WS93. The mass of the largest objects as a function of time is almost

identical. The shape typical of runaway growth, with a gap in mass between the group of

isolated bodies and the rest of the distribution, develops at 50,000 y in both simulations.

The total number of isolated bodies is also in agreement, as well as the number of the

smallest bodies. The most striking difference is that at the end of the simulation the gap in

mass between the isolated bodies and the rest of the distribution is one order of magnitude

larger in our case than in WS93. This is due to the fact that the velocity distribution in our

simulation presents a steeper anti-correlation with the mass of the bodies than in WS93,

for masses larger than 1022–1023g. This anti-correlation is due to dynamical friction, and

it is not clear to us why it was so shallow in WS93. Then, because the bodies with mass
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1022–1023g are on orbits that are more circular and less inclined than in WS93, they are

swallowed more easily by the isolated bodies, due to the enhanced gravitational focusing

factor. This results in the disappearance of these bodies in our simulation and hence in the

formation of a wider mass gap in the final distribution.

The top right panel of Fig. 17 shows the result of the same simulation, when our

nominal code is used (i.e. without the changes introduced to try to reproduce the code of

WS93, but still without fragmentation). Two effects occur with respect to the previous

simulations, that explain the differences in the results. First, because the transition from

the low velocity regime to the large velocity regime now occurs at smaller eccentricities, and

the treatment of the low velocity case is now less extreme than in WS93, the planetesimals

are excited faster. This in principle would slow down accretion. It would also reduce the

gap between the isolated bodies and the most massive non-isolated bodies because the

latter, more excited in eccentricity, would be less easily accreted by the isolated bodies.

Second, because in the definition of the volume density ρ(j) in eq. (17) we now account

also for the inclination of particles i, the stirring of the small bodies by the big bodies is

reduced relative to the previous simulation. This boosts accretion. The net result is that

accretion happens faster than in the previous simulations; the largest bodies produced in

150,000 y are now about twice more massive than before; there is almost no gap in mass

between isolated and non-isolated bodies, so that the final mass distribution is smoother

than before, although still very shallow in the 1024–1026g range. Curiously this last aspect is

in better agreement with that found in WS93 and, particularly, in Kenyon and Luu (1998).

The central panel of Fig. 17 shows the result of a simulation where fragmentation is

also taken into account. The scale on the abscissa is the same as in the top panels, to help

comparison, but the range of masses now spans a much larger interval, because bodies

smaller than the initial mass of 4.8 × 1018g are produced by collisional fragmentation.
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Fig. 17— The cumulative mass distribution at progressive times, starting from a population

of 8.33 × 108 planetesimals of 4.8 × 1018g, between 0.915 and 1.085 AU. Top left: our

result when we try to follow as best as we can the prescriptions in WS93; compare with

Fig. 12 of WS93 and/or Fig. 1 of Kenyon and Luu (1998); no fragmentation is taken into

account. Top right: the same, but with our preferred equations for the velocity evolution;

still no fragmentation is taken into account. Center: now accounting also for fragmentation.

Bottom: the same as the central panel, but the simulation is made dividing the systems in

two rings, instead of in a single-ring mode.
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Overall we find that the role of fragmentation is quite negligible for the accretion of the

largest bodies. A similar conclusion was also reached in WS93. The final mass distribution,

however, changes considerably in the range 1019–1021g, because bodies in this mass range are

effectively eroded by collisions, so that their number decreases relative to the distributions

at earlier times, rather than increasing as it does in the top panels.

The bottom panel of Fig. 17 shows the result of the same simulation, but performed

by subdividing the system in two annuli (in the previous simulations of this test we used a

single annulus approach). The differences with the results shown in the central panel are

negligible and probably just due to the moderately stochastic aspect of accretion. This

shows that the Boulder code as a whole works correctly also in a multi-annuli regime.
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