EGU 2007, Vienna, Austria, April 15–20

The thermal forces and torques changing the orbits and spins

of small asteroids

M. Brož^{1,4}, D. Vokrouhlický¹, D. Čapek¹, W.F. Bottke², D. Nesvorný², A. Morbidelli³

¹ Charles University, Prague
 ² Southwest Research Institute, Boulder
 ³ Observatoire de la Côte d'Azur, Nice
 ⁴ mira@sirrah.troja.mff.cuni.cz

Table of contents:

(PART 0) theory of the Yarkovsky/YORP effect(PART 1) direct measurements of Yarkovsky/YORP(PART 2) applications to asteroid families(PART 3) meteoroids, NEA's and resonant asteroids

The thermal forces and torques...

Accelerations in the size-range:

$10\,\mathrm{cm}$ to $10\,\mathrm{km}$

• radial pressure vs. drag & long-term accumulated effect

 $\mathbf{2}$

What do we need to calculate Yarkovsky/YORP?

- orbit, size and shape, spin axis orientation and period, mass, density of surface layers, albedo, conductivity, ...
- \bullet often: thermal parameters as free & collective studies

Yarkovsky/YORP — state-of-the-art theory

- analytical spherical linearised solution of the HDE
- numerical 1-dimensional non-linearised approximation for irregular shapes \leftarrow not valid for small meteoroids!
- recent developments: analytical calculation of YORP for shapes slightly different from spheres (Nesvorný & Vokrouhlický, submitted)

also Scheeres (2007, in press): semianalytic YORP theory

future: full numerical 3-D solution of the HDE
 ⇒ YORP on small bodies, statistics for ≈ 100 shapes

PART 1

Direct measurement of Yarkovsky (Chesley *et al.*, 2003):

• radar ranging to (6489) Golevka \Rightarrow semimajor axis drift

- thermal conductivity $0.01 \text{ W/K/m} \leftarrow \text{ in agreement with}$ infrared photometry (Delbó *et al.* 2003)
- another case: long arc of 1992 BF (Chesley et al., 2006)

 $\mathbf{5}$

Direct measurement of YORP:

- lightcurves (or radar) \Rightarrow rotational phase shift
- Lowry et al. (2007), Taylor et al. (2007): (54509) YORP = 2000 PH₅, radar shape, size $100 \text{ m} \rightarrow 1 \text{ ms/yr}$
- Kaasalainen *et al.* (2007): (1862) Apollo, shape from LC inversion, size $1.4 \text{ km} \rightarrow \text{period change 4 miliseconds/yr}$

PART 3

Asteroid families:

(Bottke et al., 2001; Vokrouhlický et al., 2006)

- "Bracketing" by resonances
- "Crossing" weaker MMRs

 \rightarrow Eos family as an example

• "Trapping" in secular resonances

7

Bimodal obliquity distribution in Koronis family (Slivan *et al.*, 2003):

- \bullet prograde group: periods 7.5–9.5 h, obliquities 42°–50° and similar ecliptic longitudes within 40°
- retrograde group: $P < 5 \text{ h or} > 13 \text{ h}, \gamma \in (154^{\circ}, 169^{\circ})$
 - \Rightarrow collisions cannot produce this!

The thermal forces and torques...

Spin state model (Vokrouhlický et al., 2003):

• solar torques & YORP thermal torque

• prograde group: (I) YORP driven evolution to asymptotic state & (II) capture in spin-orbit resonance s_6 (precession rate $\simeq 26''/y = -s_6$) \Rightarrow paralelism in space

"Eared" families (Vokrouhlický et al., 2006):

- 'V'-shape in the (a, H) plane
- outliers \Leftrightarrow probable interlopers

 \bullet problem: unknown initial spread

• "eared family" (overdensity of small members at extreme values of the semimajor axis) \Leftarrow YORP effect fingerprint!

THE THERMAL FORCES AND TORQUES...

18 17 16 • best-fit family 15 evolution model: H [mag] 14 13 12 T = 011 10 9 18 • initial dispersion 17 $\sim 1/2$ of observed 16 15 H [mag] 14 13 12 *T* = 238 My 11 10 9 2.7 2.72 2.74 2.76 2.78 2.8 a [AU]

2.7

2.72

$$-V = 24^{+6}_{-12} \text{ m/s}$$

- $c_{\text{YORP}} = 0.6^{+1.4}_{-0.4}$
- $T = 238^{+52}_{-23} \text{ My}$
- $K = 0.005 \text{ W/m/K}$

 \Rightarrow small ejection velocity

2.76

2.74

2.78

- \Rightarrow YORP important
- \Rightarrow young age
- \Rightarrow regolith

2.8

Convergence of angles in Karin cluster (Nesvorný & Bottke, 2004):

- both Ω , ϖ converge much better with Yarkovsky!
- another case: Veritas family 8.2 Myr ago \rightarrow dust bands and ³He in sea-floor sediments (Farley *et al.* 2006)

PART 3

Meteorite transport from the Main Belt:

(Farinella *et al.*, 1998; Vokrouhlický & Farinella, 2000; Bottke *et al.*, 2000) \leftarrow no YORP here!

• long Cosmic Ray Exposure ages of meteorites

• CRE's of iron meteorites $10 \times$ longer than of stones

Delivery of Near-Earth Asteroids (Morbidelli & Vokrouhlický, 2003):

- observations of NEAs:
- 1. removal rate: ~ 200 bodies (>1 km) per My
- 2. H distribution
- the same basic scenario as for meteorites:
- 1. Yarko/YORP flux into the resonances: 150–200 My⁻¹
- 2. slope change

The thermal forces and torques...

• La Spina *et al.* (2004): excess of retrograde NEAs \leftarrow consistent with Yarkovsky-driven transport from the MB via ν_6 and J3/1 resonances

Binaries and YORP?

 \bullet Ostro $et\,al.~(2006):$ radar imaging of (66391) 1999
 ${\rm KW}_4$

15

- equatoreal hill \leftarrow mass shedding?
- Kaasalainen *et al.* (2007): (1862) Apollo will reach critical $P \simeq 2$ hours within few Myr (maybe it already did in the past \Rightarrow its small moon)
- Pravec & Harris (2006): MB binaries are similar to NEAs \Rightarrow YORP induced fission (and not tidal encounters)?

Unstable resonant asteroids in the J2/1:

(Brož et al., 2005; Roig et al., 2002)

• short-lived (~10 Myr) \leftarrow neighbouring MB asteroids pushed by Yarkovsky towards the resonance:

16

 $n_{\rm TP}$ isosurfaces 100 and 1000 TPs / bin / 1 Gy

• confirmed by orbital evolution, lifetimes and SFDs

Stable resonant asteroids in the $J_2/1$ and $J_3/2$:

- \bullet simple Yarkovsky injection from the MB does not work
 - ⇒ more complex evolution with migration of planets due to planetesimal disc 30–50 M_{\oplus} similar to the 'Nice model' (Morbidelli *et al.*, 2005)

• ~ half of J2/1 orbits survive \Rightarrow might be primordial, but...

• almost no Hildas in the J3/2 survive Jupiter–Saturn 1:2 resonance crossing \Rightarrow must had been captured during the crossing or after (by resonance sweeping)

• Yarkovsky does not significantly destabilise the orbits during the following 4 Gyr evolution

Future work:

- routine Yarkovsky/YORP detection
- systematic ages of all asteroid families, including extremely young (like Datura) and old ones (like Koronis)
- calculation of YORP on small meteoroids
 → corresponding update of transport models
- measurement of thermal-related parameters (masses, sizes, shapes, albedos, conductivity)
- modelling of several subsequent YORP cycles