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Chapter 1

Introduction

1.1 Motivation and aims of our work

Phenomena produced by thermal radiation forces and torques have been extensively studied
during last 20 years, since they were recognized to be very important with respect to the dy-
namics of small Solar System bodies. A phenomenon which is known as the Yarkovsky effect
is able to secularly change the semimajor axis of an orbit, while the YORP effect affects the
rotation state of a body.

The Yarkovsky force and the YORP torque were previously calculated with many constrain-
ing assumptions like spherical shapes, circular orbits, small variations of the surface tempera-
ture, principal axis rotation, constant thermal parameters, etc. We developed a model of the
Yarkovsky/YORP effect without such simplifications. With this model we were able to study
thermal phenomena in more complex circumstances.

1.2 A brief review of our research

At first we focused on the YORP effect recently re-discovered by [Rubincam, 2000]. We stud-
ied the YORP effect on a sample of artificially generated shapes, roughly resembling Main
Belt asteroids, and also on several shapes of real asteroids [Capek and Vokrouhlicky, 2002],
[Vokrouhlicky and Capek, 2002]. These bodies were approximated by a polyhedral description,
we assumed that their surface has a zero thermal conductivity and their orbits were circular.

We then improved our model and took into account the finite thermal conductivity and
elliptical orbits. With this model we determined the Yarkovsky effect on asteroid (6489)
Golevka for the purpose of the direct detection of the semimajor axis drift [Chesley et al., 2003].
The same model was used for the more general investigation of influence of the finite ther-
mal conductivity on the YORP effect [Capek and Vokrouhlicky, 2004] and prediction of the
detection of the YORP effect on asteroid (25143) Itokawa. The subsequent improvement of
our model allowed to determine the Yarkovsky effect for tumbling asteroid (4179) Toutatis
[Vokrouhlicky et al., 2005a] and the binary system 2000 DP107 [Vokrouhlicky et al., 2005b].
The last modification of the model allowed us to incorporate the temperature and spatial de-
pendence of material parameters of an asteroid. It was used for the determination of Golevka’s
regolith parameters [Capek and Vokrouhlicky, 2005b].

As a result we have developed a sophisticated model which has following features: (i) it is
able to describe very complicated shapes of asteroids by polyhedral representation, with several
thousands surface triangular facets. (ii) It assumes arbitrary eccentric orbits. (iii) The rotation
of the body can be both regular or tumbling. (iv) The insolation term (necessary for the
determination of the surface temperature) is computed including mutual shadowing between
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different parts of the body’s surface. (In the case of binary systems it takes into account mutual
eclipses between the components.) (v) The surface temperature (needed for the evaluation of
the thermal force and torque) is solved numerically for each surface facet individually, using
one-dimensional heat diffusion equation without any linearization. This approach assumes the
body is larger than several tens of meters. (vi) Thermal parameters of the body can depend
both on the temperature and the depth.

1.3 Structure of the thesis

This thesis is divided to four chapters and five appendices. Chapter 2 is devoted to the com-
mon base of the thermal effects: forces produced by a radiation. Chapter 3 deals with the
YORP effect, while Chapter 4 discusses the Yarkovsky effect. There are brief summaries at
the end of both chapters. In the Appendices we present details about our numerical model
of the Yarkovsky/YORP effect: first, we deal with methods of solution of the heat diffusion
problem (Appendix A). Then we present the polyhedral representation of the asteroidal shapes
(Appendix B), the method for generation of artificial Gaussian shapes (Appendix C) and also
several examples of shapes resembling real bodies (Appendix D). Finally we present a list of
publications (Appendix E), with reprints of some of them (Appendix F).



Chapter 2

Radiation and corresponding forces

Let us suppose the situation in Figure 2.1, where the Sun illuminates the surface element of an
asteroid. The incident direct solar radiation (D) is partially reflected (R) and partially absorbed
(C). The surface with non-zero temperature emits thermal radiation (T'). Here we shall derive the
expressions for the forces that are applied on the surface element due to these three components
of radiation.

Figure 2.1: Direct (D), reflected (R) and thermally re-emitted (T) radiation from a surface
element of an asteroid.

2.1 Direct solar radiation

The energy dE of the solar radiation, hitting the oriented surface element dS during the time
dt can be expressed as

dE = & s-ndS dt,
or
dE =0,

if the Sun is below the local horizon. Here, ® denotes the solar energy flux (in W/m? units)
at the given distance from the Sun, s the unit vector aiming towards the Sun and n the outer
surface normal. The force dfs., produced by the solar radiation pressure’ is

!Note that the relationship between the momentum and the energy of a photon is p = E/c, where ¢ denotes
speed of light (e.g., [Swihart, 1971]).
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d
dfg, = ——ss-ndS, (2.1)
c

where c¢ is the speed of light. Integrating (2.1) over the surface 3 of a body we obtain the total
force fs, produced by the solar radiation pressure:

fsrp = / dfsrp .

X

Under normal circumstances, this force points directly from the Sun thus it is not able to
secularly change the semimajor axis of an orbit. For larger bodies it only effectively weakens
the solar gravitation, but it can even surpass the solar gravitation for particles with very small
mass-to-area ratio. This usually occurs for < 1pm dust particles, e.g. [Bertotti et al., 2003].
[Vokrouhlicky and Milani, 2000] showed that the direct radiation pressure (i.e., the absorbed and
reflected radiation together) can produce observable long-term orbital effects for non-spherical
bodies or for bodies with nontrivial albedo distribution. The total torque Ts, corresponding
to the direct radiation pressure, can be calculated as

Tsrp = /I‘ X lesrp )
%

where r denotes the radius vector. It is able to cause small variations of rotation during one
spin period; over longer time scale it completely vanishes. [Breiter et al., 2007] showed that the
torques produced by direct radiation pressure acting on spheroids are zero.

2.2 Reflected radiation

i/

Figure 2.2: Reflection of direct solar radiation on a surface element dS. Here @ is the flux of
the solar radiation, n is the unit outer normal to dS, the unit vector s points to the Sun and
the unit vector v parallel to the reflected radiation, is described by spherical angles € and ¢.

A part of incident photons is not absorbed but it is immediately reflected into the space
in the optical band. Let us suppose the situation in Figure 2.2 describing geometry of the
incident and reflected radiation. The direction of reflected radiation is characterized by the
unit vector v, which can be described by angles 0, ¢ with respect to the base (i, j, n) as
v = (sinf cos ¢, sin @ sin ¢, cos §). The intensity of the radiation reflected in the direction v can
be expressed as
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Ir(s,v) = @p(s,v),

where p(s,v) represents a reflectance (or scattering) function and ® the incident flux. Let us
introduce the hemispheric albedo Ay by the relation (see [Breiter et al., 2007]):

2T 7'1'/2
1
AH(COS 00) = m / / IR(S,V) v sinfdf dgb dS, (22)
$=0 6=0

where cos fp = s - n. The recoil force acting on the surface element dS is given by

2 71'/2
1
dfp = —— / / Ir(s,v) v cosf sinfdf do dS . (2.3)
c
=0 6=0

Assuming Lambert’s law of diffuse reflection, we can express the intensity of the reflected radi-
ation as (e.g. [Breiter et al., 2007]):

Ip=A0> 2 (2.4)
T

where A = const. With this approximation (which has been used in the whole text), the
resulting force acting on dS reads

240
dfp =~

s-nndS. (2.5)

c

Integrating (2.5) over the surface 3 of an asteroid we obtain the whole recoil force arising from

reflected radiation:
fr = / dfg .

b

Under normal circumstances, this force is not able to change the orbit of a body on a long time
scale (like the force caused by direct radiation). On contrary, the torque

TR = /I‘ X de (26)

3
of this reflected-radiation force does not vanish and it is able to change the rotation of the body.
In fact it is equal to the YORP with the assumption of zero thermal conductivity multiplied by

a factor A/(1 — A). For bodies with higher albedo, such as the E-type asteroids, it is necessary
to take this reflected-radiation torque into account.

2.3 Thermal radiation

Assuming isotropic emission, the intensity of a black body radiation can be expressed by
Stephan-Boltzmann’s law:
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€0 4
Bv) = (2.7)

™

where o = 5.67051 x 1078 W/m?/K* is the Stephan-Boltzmann constant, e the emisivity and T
is the temperature. Similarly as in Section 2.2, the recoil force due to the thermal radiation can
be expressed as

2T 7T/2
1
dfy, = —= / / B(v) v cosf sinfdf do dS, (2.8)
c
$=0 6=0
which is equal to
2e0T!
dfy, = _§€UC n ds, (2.9)

In the case of zero thermal conductivity (K=0), all absorbed solar energy is immediately re-
radiated and the resulting force on a non-shadowed facet can be expressed as

2(1 — A)®

dfE=0 = — >

s-nndS. (2.10)
For a shadowed facet dfflfzo = 0. In reality, even shadowed facets experience thermal recoil
force because their temperatures 7' are not zero, but this needs to be determined using heat
diffusion in the body.

The total thermal force acting on the asteroid is given by an integration of (2.9) over asteroid’s
surface:

fth :/dfth' (211)

by

This represents the thermal (Yarkovsky) force. It is able to secularly change the semimajor axis
of an asteroid’s orbit. This effect arises from an anisotropic temperature distribution (due to
the finite thermal inertia) across the surface?. The precise knowledge of the surface temperature
T is necessary (see Appendix A).

The total thermal torque acting on the asteroid is given by integration over it’s surface:

Tth = /I‘ X dfth . (212)
P

This thermal torque (or the YORP torque, Chapter 3) is able to change the spin rate and
obliquity of the body. The main difference between the YORP and the Yarkovsky effect is that
the YORP is strongly dependent on the shape of an asteroid (it affects only bodies with a certain
amount of “windmill” asymmetry®). The Yarkovsky effect is nonzero for rotating sphere but
vanishes for zero thermal inertia. On the other hand, the YORP effect is nonzero even for a
vanishing thermal conductivity (i.e., without any thermal lag).

2The thermal emission from irregularly shaped surface with zero thermal inertia is not able to change the orbit
on a long scale.
3For example, it does not affect spheroids [Breiter et al., 2007].
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Isothermal body

Our numerical results show that fi, = 0 and Ty, = 0 for an isothermal body of an arbitrary
shape. This is in accordance with an intuition but we shall prove it in a rigorous way. Let us
recall Gauss’ theorem in vector analysis:

}[a-dS:/V-adV, (2.13)
v

b

where the first integral is over the closed surface ¥, the second over the corresponding enclosed
volume V', a represents a general vector field. The Gauss’ theorem gives rise to the following
identities (e.g. [Sedldk and Stoll, 1993]):

fbds = /Vde, (2.14)

) v
?{dea = /andV, (2.15)
) v

where b is a general scalar field.
Let T, be a constant temperature of the body. The total thermal force is

2¢e0

fth:—g? T4dS:—§— V(T}) av =0. (2.16)
b)) 14

Here we used Equations (2.9), (2.11), (2.14) and the assumption of the constant temperature 7,
(i.e., VI, = 0). Similarly, the thermal torque can be expressed as

Tth:—ggTél?{ erS:ggTél/ VxrdV =0. (2.17)
3¢ 3¢
by |4

Here we used Equations (2.9), (2.12), (2.15) and the well-known relation V x r = 0. We can see
clearly, that neither thermal force nor thermal torque affect a body with a constant temperature.

2.4 Example: (1620) Geographos

Here we shall demonstrate the effect of the direct, reflected and thermal radiation on the as-
teroid (1620) Geographos. We assumed the following orbital parameters: semimajor axis a =
1.24547 AU, eccentricity e = 0.3354, inclination ¢ = 13.34°, argument of perihelion w = 277.8°,
longitude of ascending node = 337.3° and the pole of rotation A\ = 55°, B = —46°. The
rotation period is P = 5.22484 hours. We used the density of surface layers ps = 1.7 g/cm?, the
bulk density p, = 2.5 g/cm3, the thermal conductivity K = 0.02W/m/K, the thermal capacity
¢ = 680 J/kg/K and the Bond albedo 0.2. The shape was represented by a polyhedron with 4092
surface triangular facets according to [Hudson and Ostro, 1999]. (See also Appendix D.) We
used a numerical one-level scheme (see Appendix A) to model forces and torques corresponding
to the direct, reflected and thermal radiation.

The magnitude of radiative acceleration can be seen in Figure 2.3. The left plot shows
perturbations of the semimajor axis da/dt of the orbit during first 12 hours after the perihelion
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Figure 2.3: Perturbations of semimajor axis by the thermal radiation (solid curve), reflected
radiation (dashed curve) and direct radiation (dotted). Left: Perturbations during the first 12
hours after passage of perihelion. Right: Perturbations averaged over spin period during one
revolution about the Sun. The perihelion passage corresponds to ¢ = 0. The orbit-averaged
value of the semimajor axis drift (da/dt) produced by direct and reflected radiation is zero, but
thermally induced (da/dt) = —1.26 x 10~* AU/Myr.

passage and the right one shows these perturbations averaged over spin periods during one whole
revolution about the Sun.

The thermal acceleration is able to secularly change semimajor axis by a mean (i.e. orbit-
averaged) rate (da/dt) = —1.26 x 10~ AU/Myr. The variations caused by this force are shifted
with respect to the variations produced by the reflected radiation due to finite thermal inertia.
The reflected radiation is able to produce short-term perturbations but their orbit-averaged
value is zero (the actual value ~ 107 AU/Myr is due to minor numerical inaccuracies in our
model). Perturbations of semimajor axis produced by direct radiation are precisely symmetric
with respect to the perihelion. They can be the largest for a short term but their orbit-averaged
effect is also zero (~ 10~ AU/Myr due to numerical round-off errors).

We demonstrate how the radiative torques affect the spin rate in Figure 2.4. The left plot
shows perturbations of the spin rate dw/dt during 12 hours after passage of perihelion while the
right one shows the perturbations averaged over the spin period during the whole revolution
about the Sun.

The thermal torque produces both short-term and long-term perturbations of the spin rate,
with the orbit-averaged value ~ 2.4 x 10~ s72. These perturbations are somewhat shifted with
respect to the perturbations produced by reflected radiation which has a smaller amplitude. The
value of the orbit-averaged perturbations of reflected radiation is ~ 6 x 10720 s~2. The direct
radiation produces only short-term variations of the spin rate, but the orbit-averaged value is
zero (~ 10721 s72 due to numerical inaccuracies).

Note the resulting torque strongly depends on the shape model. See Section 3.4.2.
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Figure 2.4: Perturbations of the spin rate dw/dt by the thermal radiation (solid curve), reflected
radiation (dashed curve) and direct radiation (dotted curve). Left: The perturbations during
the first 12 hours after passage of perihelion. Right: The perturbations averaged over the spin
period during one revolution about the Sun. The perihelion passage corresponds to ¢ = 0. The
orbit-averaged value of perturbations of spin rate (dw/dt) produced by direct radiation is zero,
but thermally induced (dw/dt) = 2.4 x 10719 572,



Chapter 3

The YORP effect

3.1 Introduction

The rotation of small asteroids or meteoroids is modified especially by mutual collisions with
other small solar system bodies [Farinella et al., 1992] and by solar and planetary tides. More-
over, a dissipation of free-precession energy inside larger bodies (which are though to be rubble
piles) causes a principal-axis rotation [Burns and Safronov, 1973], [Efroimsky and Lazarian, 2000].

Aditionally, there are several non-gravitational effects caused by absorption, reflection or
reemission of the solar radiation, that can also change rotation. For example [Radzievskii, 1954]
showed that small (~ cm) body with a realistic albedo distribution across the surface can be spun
up by solar radiation to the disruption limit on a time scale of thousand years. [Paddack, 1969]
studied a possibility of destruction of small meteoroids and tektites due to the rotational fission.
His “windmill effect” is due to the reflection of sunlight from surface of body with an appropriate
shape. He estimated this effect is able to spin up a several cm long body, composed from tektite
glass, to the bursting limit in about 60000 years.

General properties of the YORP effect. Recently, [Rubincam, 2000] investigated spin-
ning up and down of small asteroids due to the infrared emission from their irregularly shaped
surfaces. He named this phenomenon the YORP effect as an acronym of Yarkovsky—O’Keefe—
Radzievskii-Paddack (four names of planetary scientists). Rubincam computed thermal torques
on bodies that were assumed to be (i) blackbodies with (ii) zero thermal conductivity on (iii) cir-
cular orbits around the Sun and (iv) rotating about the principal axis of inertia tensor. Their
shapes were described by (v) spherical harmonic expansion of the shapes of real asteroids. Ru-
bincam showed there are two important components of the YORP torque. The first one is able
to change the rotation rate and the second one the obliquity of the asteroid. Both components
depend on the obliquity. Rubincam’s conclusions are: (a) The YORP effect is able to spin up
or spin down an asteroid with 5-km radius during 10% years. (b) The YORP effect dominates
collisions in the inner Solar System for bodies with radius R smaller than 5km and it dominates
tidal encounters for bodies with R < 1km. (c¢) The YORP may be responsible for the observed
excess of slow and fast rotators among small asteroids. (d) Due to inevitable interplay between
the torque affecting rotation rate and torque affecting obliquity, a rotational bursting due to the
YORP effect actually happens very rarely. (e) The YORP effect may explain rotation states of
several NEAs.

[Vokrouhlicky and Capek, 2002] studied the YORP effect on 10 shapes of real bodies (8
asteroids and Phobos and Deimos) and also on a sample of 500 automatically generated shapes
corresponding to small Solar System bodies. They assumed the Rubincam’s approximation!

!i.e., asteroids are blackbodies with zero thermal conductivity on circular orbits around the Sun and rotating

10
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but used polyhedral description of shapes of asteroids instead. They classified the bodies into
four classes according to the dependance of the YORP effect on the obliquity. Most often the
obliquity is slowly driven to 0°/180° or 90° and the rotation is asymptotically decelerated. Only
a minority of the bodies is asymptotically accelerated. They also present several examples of the
spin-state evolution due to the YORP effect where also gravitational torques due to the Sun and
gravitational perturbations of the orbit by planets play an important role. They realized the
YORP effect may be important for driving the rotation into resonances between the precession
of the spin axis due to the solar torques and the precession of the orbital plane by planetary
perturbations. In the case of small members of the Themis family, the evolution due to the
YORP alone describes the evolution quite well whereas in the case of Flora family asteroids the
evolution of rotation is usually much more complicated.

[Capek and Vokrouhlicky, 2004] analyzed the influence of the surface thermal conductivity
K both on a sample of artificial shapes and on several real bodies for which the possibilities of
the YORP detection were also discussed. They found, unlike in the zero conductivity model,
the YORP effect preferentially drives the spin axis to be perpendicular to the orbital plane
(i.e., the obliquity 0° or 180°) for the realistic values of K. They also found a nearly complete
independence of the YORP component affecting the spin rate on surface thermal conductivity.
They showed that asymptotical spinning up and down are equally likely and (unlike the results
of [Rubincam, 2000]) the rotational bursting due to the YORP effect can be relatively common.

[Vokrouhlicky et al., 2007] eliminated the principal axis rotation constraint used in previous
studies and numerically integrated Euler’s equations for several bodies. They found several new
asymptotic states and analytically proved an onset of the tumbling caused by the YORP instead
of slow-rotation asymptotic state.

[Scheeres, 2007] derived linearized analytical equations describing evolution of spin rate and
obliquity of uniformly rotating asteroids due to YORP effect. (Non-zero thermal inertia was
involved by simplified “thermal lag”.) He also introduced several dimensionless parameters
dependent only on the shape and mass distribution across the body, which describe the strength
of YORP effect. He was able to analytically confirm a lot of results on general YORP properties
obtained previously by numerical studies.

[Breiter et al., 2007] derived an analytical expression for the YORP torque acting on spheroids
and proved the YORP does not contribute to the long-term evolution of their rotation.

The observation of the YORP effect in the Solar System. [Slivan, 2002] photometri-
cally observed rotation of several Koronis family members and found a surprising anisotropy of
their spin axes distribution. The prograde rotators have spin periods between 7.5 and 9.5 hours
and obliquities 42° — 50°. On the other hand, spin periods of retrograde rotators are < 5h or
> 13h and their obliquities are > 154°. Moreover, he found the longitudes of spin axes are
clustered. Such distribution can not be explained by mutual collisions.

[Vokrouhlicky et al., 2003] succeded to explain the non-random distribution of the obliqui-
ties and spin periods of the Koronis family asteroids as a consequence of the YORP effect.
They used a numerical model involving torques produced by reflected and thermal radiation
as well as gravitational effects of the Sun and planets. With a wide range of initial conditions
(shapes, spin periods and obliquities) they reproduced the observed distribution of the spin axes.
[Vokrouhlicky et al., 2003] found that the s spin — orbit resonance is important for the prograde
rotators resulting in the capture of the spin axes longitudes. Their research showed the YORP
effect may be more important to changing rotation state than collisions for bodies < 40km in
diameter.

[Vokrouhlicky et al., 2004] investigated a possibility of direct detection of the YORP effect

about the principal axis of the inertia tensor.
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on the asteroid (25143) Itokawa by precise measurement of its rotation period or rotation phase.
They used a generalized model of the YORP effect, taking into account a finite thermal con-
ductivity of asteroid’s surface, actual elliptical orbit and proper spin axis orientation. They
predicted an observable 1 — 3 hr delay of the lightcurve maximum in January, 2004. Unfortu-
nately their results were incorrect due to aninaccurate shape model and some other mistakes
also (see Section 3.4.2).

[Scheeres et al., 2007] used a more precise shape, rotation pole and mass of Itokawa, deter-
mined by the Hayabusa mission ([Demura et al., 2006], [Gaskell et al., 2006], [Saito et al., 2006]),
and calculated how the YORP affects the asteroid’s rotation rate. They found Itokawa’s rotation
is decelerated so that doubling time is 50 000 — 90 000 years (see Equation (3.10)). They predict
the detection of the YORP effect for Itokawa during future apparitions. They also discussed the
distant-past rotation history of Itokawa and concluded, Itokawa’s rotation was accelerated. 100
— 180 Myr ago, spin period of Itokawa reached 6.5 hours, corresponding to the bursting limit.
Then the shape had been changed to the present state and it has been decelerated since that
time (However, they noticed the possibility that Itokawa had a close approach with the Earth
during this period, which could also change it’s shape.)

Recently, the YORP effect was directly detected for small (~ 57m) near-Earth asteroid
(54509) 2000 PH5 ([Lowry et al., 2007], [Taylor et al., 2007]). The acceleration of rotation (2.0+
0.2) x 10~* deg/day? was determined from radar and lightcurve data. This value corresponds
to the theoretical prediction by the YORP model calculated for the shape of (54509) 2000 PHS5,
simultaneously determined by photometry and radar.

In the same time, [Kaasalainen et al., 2007] analyzed (1862) Apollo’s photometric observa-
tions from 1980 to 2005. These authors concluded that Apollo’s spin behaviour is not consistent
with the assumption of a constant period of rotation. They found a change angular velocity
dw/dt = (5.3 £1.3) x 108 rad/day?. For the shape determined by photometry they calculated
corresponding YORP effect and found that it is consistent with observed dw/dt, such that they
interpret acceleration of Apollo’s rotation rate by effects of YORP.

Here we shall present some of our results concerning the YORP effect. In Section 3.2 we
derive expressions of YORP evolution of asteroid’s rotational state. Basic facts concerning
YORP effect are demonstrated on a simple example in Section 3.2.1. Following Section 3.3 is
devoted to study of YORP effect on large sample of artificial bodies. Section 3.3.1 is based
on our paper [Vokrouhlicky and Capek, 2002] and describes YORP dependence on obliquity,
while 3.3.2 is based on [Capek and Vokrouhlicky, 2004] and deals with the thermal conductivity
dependence of YORP. The YORP effect on the real asteroids is presented in 3.4, which is based
on [Capek and Vokrouhlicky, 2004]. In the case of asteroid Itokawa we corrected our results
from [Vokrouhlicky et al., 2004].

3.2 Theory of the YORP effect

The YORP effect changes spin state of an irregularly shaped body due to the thermal torque.
This torque is caused by a recoil force due to thermal emission from surface, heated by absorption
of sunlight. The thermal torque was expressed in previous chapter by Equation (2.12). The
torque arising from the reflected radiation also contributes to the total torque (see Section 2.2).
The torque T changes the angular momentum L of the body (with respect to the inertial frame)
according to the relation

dL

— =T 3.1

e (31)
If we assume that dissipation of the rotation energy inside the body is so rapid, that any non-

principal axis rotation is quickly damped and thus the body rotates around the shortest axis
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Figure 3.1: Three coordinate systems: Ecliptical system (X —Y — Z) defined bythe plane of
ecliptic and the vernal equinox X, the orbital system defined by orbital plane and perihelion
and finally the equatorial system defined by the base vectors e, 1, e, (the intersection of the
equatorial and the orbital plane) and e (parallel with the spin vector).

of the inertia tensor (corresponding the moment of inertia C'), the angular momentum will be
simply

L = Cwe, (3.2)

where w denotes the angular velocity and e corresponds to the unit vector of the spin axis. This
together with (3.1) leads to the expression

dw e T

The scalar product of this equation with the vector e allows us to express the change of the
angular velocity due to the torque?:
dw T-e 1T,

¢ C (34)

Substituting (3.4) back into (3.3), we obtain the expression for the change of the spin axis
direction:

de T—(T-e)e
de _T—(T-ele (3.5)
dt Cw

The spin vector direction e is usually characterized by the obliquity € which is the angle between
the spin vector and the normal to the orbital plane, and by the precession angle in longitude
1. The components of the unit vector e with respect to the inertial system connected with

the orbital plane of the body, where x— axis corresponds to the nodal line (see Fig. 3.1), are

*Here we use that € - e = 0, because d(e-e)/dt = 2¢e and e-e = 1.
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e = (sinesin(y + Q),sinecos(yp + Q),cose). The scalar product of (3.5) and the unit vector
N, perpendicular to the orbit of the body, leads to the expression for the change rate of the
obliquity e:

de_T-eLl . T6
dt -~ Cw  Cw’ (36)

where

e = w_ (3.7)

sin e

The rate of change of the precession angle 1) can be derived by a cross product of Equation (3.5)
and the vector N. After some algebra we have

dl/)_T-eJ_Q_qu
dt  Cw  Cuw’ (3:8)

where

N x e
sine

ey = (3.9)
So, the thermal torque T has three components (T, Ty, T;,) with respect to the system (e ,e 2, e)
which change the obliquity, the angle of precession and the angular velocity.

Useful quantities

The characteristic timescale of the YORP-driven evolution of the rotation rate can be described
by the quantity called doubling time [Rubincam, 2000]:

w Cw
(w) (1)
After the time t; the YORP effect increases the rotation rate w twice or decrease it to the half
value. This is because w(t) is quasilinear in time.
The quantity describing the windmill asymmetry - windmill factor - of the given shape can
be defined as

27
1 2m (2 2
Pu =5 -1+ 1+7T(+\/_)e-//6(r,s,2)rxs-nnd5’d¢ , (3.11)
$=0 ¥

where V' denotes volume of the body, e the unit vector of the spin axis, r the position vector of
the surface element dS, n the outer unit normal of dS and s the unit vector perpendicular to
spin axis. (In the body-fixed frame it can be expressed as s = (cos ¢, sin ¢, 0).) The integration
is realized over the surface ¥ of the body and over one revolution of s about the spin axis. The
“mutual shadowing” function d(r,s, ) is equal to 1 if half-line starting at r and propagating in
the direction s does not intersects the surface ¥ and it is equal to 0 in the opposite case.

This expression is established on the basis of computing the YORP effect for a simple body
composed of cylinder with two wedges, as described in following Section 3.2.1. The windmill
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z=Z z=Z

Figure 3.2: A simple test body. The small letters denote the axes of the body-fixed frame, while
the capital letters the inertial frame. The facets causing the non-zero torques are denoted by
“A” and “B” and ¢ represents the angle of rotation about Z-axis.

factor is a dimensionless parameter and it depends only on the shape of the body. In reality it
has value approximately from —0.15 to 0.15, but most frequently for usual asteroid-like shapes,
the absolute value |p| is about 0.015. The positive value indicates spinning up of the body and
the negative value indicates spinning down.

There is a simple relationship between the windmill factor ¢,, and the mean change of the
angular velocity caused by the YORP effect, under the assumption of a circular orbit, zero
thermal conductivity K, zero albedo A and zero obliquity e:

oy = 22 V2) @ pu(1 + ) m
B 3nec  d? p C’

(3.12)

where @ is the solar flux at the heliocentric distance d, p is the bulk density of the asteroid and
m its mass.

3.2.1 The YORP effect on a windmill shape

Here we shall explain the basic YORP efect properties, using an example of the artificial body
shown in Figure 3.2. It is composed from a cylinder with two wedges. This body rotates about
the z-axis and the Sun shines from the X —axis direction. At first, we express the thermal torque
acting on arbitrary surface element. Let us suppose that all incoming radiation is immediately
re-radiated as a thermal radiation. This means there is no thermal conductivity of the surface
material, no thermal lag. Assuming the thermal emission obeys Lambert’s law, the thermal
radiation pressure acting on i-th surface element S’ causes the force

2F .
_ SZ
3¢’

where E’ is the incomming solar energy (W/m?) and c¢ the speed of light. This force acting on
the arm r* results in a torque

£l =
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T =r' x f°.

The whole thermal torque acting on the body is the sum over all its surface elements:

T:ZTi.
7

The mean change of the angular speed w over the time is given by

where C' is the principal moment of inertia around the spin axis and (T3,) = fOP T, dt / P denotes
mean z—component of the thermal torque T.

Let us now compute the thermal torques applied on the windmill from Figure 3.2. The jacket
of the cylinder as well as its bases do not cause any torque, because any force acting on each
facet has a zero arm. The only facets that can cause a thermal torque are the inclined facets
denoted by A and the facets perpendicular to the xy—plane denoted by B. These facets have
the outer normals

—sing sin ¢
n“ = — cos ¢ , n°=\| —cos¢ |,

V2 0

the area S4 = ahv/2, SP = ah and the arms

L cos ¢
rd =18 = Brh sin ¢
2 0

The incomming solar energy (neglecting mutual shadowing) can be expressed as
A Oa ¢E<077T> B @SBnB'Sa (f)E(O,W),
E — A A E —
¢S nt-s, ¢e(m2m), 0, ¢e€(m?2m)

where @ is the solar flux at the asteroid’s orbit and s = (1,0, 0) is the direction toward the Sun.
Putting all these facts together we obtain a mean torque caused by one wedge:

22

Cc

(12) =

The principal moment of inertia can be approximated by the moment of inertia of the cylinder
part of the body:

O ah(R+ h).

1
C= a(wRQap)RQ.
Finally, the mean change of the angular velocity caused by the two wedges can be expressed as

_4(2 -V?2) g‘#’w(l + pw)

v) = N

where ®; = 1366 W/m? is the solar flux at 1 AU, d is semimajor axis of the orbit (in AU units)
and ¢,, the dimensional-less windmill factor, which can be expressed as ¢,, = h/R in this simple
case.
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Figure 3.3: Doubling time for the body from Figure 3.2 as a function of radius of the body. The
solid line corresponds to time necessary for double the rotation period due to YORP effect for
body with windmill factor ¢, = 0.014, bulk density p = 2.5 g/cm?® and orbit with semimajor axis
d = 2.5 AU. Period of rotation is assumed P[hr] = 0.01R[m]. Dashed line describes timescale
corresponding to reorientation of the spin axis due to collisions in the Main Belt.

Let us now estimate a characteristic timescale of the YORP acting on the body. Using (3.13)
and (3.10) the doubling time is:

o () () () ()

We can see the dependence of the doubling time on the radius of the body in Figure 3.3.
We used Equation (3.14) and assumed windmill factor® ¢,, = 0.014, period of rotation P[hr] =
0.01R[m] and bulk density p = 2.5g/cm®. The solid line corresponds to the semimajor axis
d = 2.5 AU. Dashed line denotes the timescale t., corresponding to complete change of the spin
axis due to collisions according to [Farinella et al., 1998]:

teor = 3.34 x 10%yr (£> .
1m

In the radius interval from 10 meters to 10 km, the YORP doubling time is smaller than typical
collisional reorientation time. Then the YORP effect predominates the collisions in the evolution
of spin axes for the bodies with assumed properties in the Main Belt.

Though expression (3.13) was derived for the body and situation described above, it can be
generalized and we can summarize the YORP effect dependance on several parameters:

e Our first simple model (i.e., the equation describing the long term evolution of the rotation
state) is valid only for bodies with sufficiently fast rotation which is strong enough to damp
any deviations from principal axis rotation via inelastic dissipation of energy inside the
body [Efroimsky and Lazarian, 2000]. If the spin period increases up to several hundreds
hours, the asteroid begins to tumble and the approach used here is unreliable. This slow
rotation limit has been studied by [Vokrouhlicky et al., 2007].

e The shape is the key property affecting the YORP effect. There are no thermal torques
acting on spheres, triaxial ellipsoids or other bodies with lack of “windmill asymmetry”
(The analytical proof can be found in [Breiter et al., 2007].) It can be roughly described
by the windmill factor ¢,,.

3The main belt asteroids have (|, |) ~ 0.015.
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e The YORP (i.e., mean change of angular velocity) decreases with square of the size of an
asteroid oc 1/R2. It is important only for bodies smaller than, say ~ 10km in diameter?

e The shape of the orbit, especially the semimajor axis is important. The YORP decrease
with square of the distace from the Sun oc 1/d.

e The YORP decreases with the bulk density of the body as 1/p.

This simple model does not describe the dependence of the YORP effect on mutual position
of the spin axis and the orbital position of the spin axis and the orbital plane, and also on thermal
behaviour of the surface material. The dependence of the YORP effect on these quantities is
discussed in Section 3.3

“On the other hand, the dissipation of the free-rotation energy does not operate for very small bodies and
moreover the temperature differences between the insolated and shadowed facets are minimal due to fast rotation
and effective heat transfer through the body. These facts are not included in this simple model.
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3.3 Statistical study of the YORP effect

Here we shall demonstrate the diversity of the YORP results with respect to various parameters.
By computing the YORP torge on several asteroids with known shapes we can conclude that
the shape of the body is the most important characteristic that determines the overall effect.
Since the YORP depends sensitively on shape, we decided to study this effect on a large sample
of Gaussian random spheres that sufficiently describe the shape characteristics of small asteroids
in the Main Belt (see Appendix C).

We use a polyhedral description of shapes which consists of a list of surface vertices and their
mutual identifications as triangular facets. This description allows us to determine the volume,
inertia tensor, surface area and self-shadowing of the surface in a simple way (see Appendix B).

We are interested in the long-term evolution of the spin state. Hence we discuss the torques
(T¢) and (T,,) averaged over rotation and revolution cycles.

3.3.1 Obliquity dependence — the YORP classification
This section is based on [Vokrouhlickyj and Capek, 2002]

A study of the dependence of the YORP on obliquity was performed for 500 Gaussian random
spheres orbiting on a circle with radius 2.5 AU. All bodies rotated about the shortest axis of
inertia tensor with a period P = 6 hr. The bulk density was ppux = 2.5g/cm? and the volume
corresponding to the sphere with radius 1km. The surface thermal conductivity was assumed
K = 0 and albedo A = 0. For each value of the obliquity (e goes from 0° to 180° with a 30°
step) the thermal force causing the YORP torque was determined according to (2.10) for all
surface facets in 250 000 points during the orbital period. The final YORP torque was given by
a sum over the whole body’s surface (2.12) and an averaging along the orbit.

According to the dependence of the YORP component (T¢) on obliquity € we can distinguish
four principal types. Their description follows. We also attempt to illustrate a typical evolution
of the spin axis of each type due to the YORP effect alone. We neglect influence of the grav-
itational torques due to the Sun and planets as well as meteoroid impacts. (These effects on
rotation state are discussed in [Vokrouhlicky and Capek, 2002].) We use the four-order Runge-
Kutta integrator with a timestep of 100 years. We compute the evolution of the spin axis for the
initial rotation period of 6 hours and various initial obliquities. Each integration was stopped
when the YORP effect increased the spin period to the value equal to the orbital period.

Type I. Figure 3.4a shows the averaged YORP torques (T¢)/C and (T,,)/C for one of Gaussian
random spheres. This type is characterized by positive values of (T¢)/C in the (0°,90°) obliquity
range and negative values for € € (90°,180°). This means (see Equation (3.6)) that obliquity
of such body will be driven to the “asymptotic obliquity” ey = 90°, i.e., the spin axis will be
parallel with the orbital plane. The torque affecting the rotation rate (7,)/C is negative for
e € (50°,130°), and consequently the rotation of the asteroid is decelerated in this obliquity
range and accelerated elsewhere. Type I is (together with Type II) the most probable YORP
type and represents approximately 40% of all cases for the zero thermal conductivity.

Figures 3.4b and 3.4c¢ show the evolution of obliquity and rotation rate during 50 Myr. We
assumed the initial rotation period to be 6 hours. Initial obliquities were chosen with a step of
10°. For example, an obliquity with initial value ¢g = 80° monotonously increases and after
~ 38.5 Myr reaches 90°. The corresponding rotation frequency monotonously decreases and
after the same time reaches zero. The rotation of bodies with smaller initial obliquities evolves
more slowly. If the initial obliquity is smaller than ~ 55°, the rotation rate initially increases
until this obliquity is reached. For instance, rotation of a body with ¢y = 10° is accelerated
during the first ~ 24.3 Myr.
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Figure 3.4: The YORP-type I: a) The dependence of (T,)/C (solid line) and (7,)/C (dashed
line) on the obliquity, b) the evolution of obliquity, ¢) evolution of rotation rate. For explanation
see the text.

The evolution of obliquities of bodies with €y > 90° is symmetric with respect to the value
of 90°. This means that obliquities monotonously decrease and finally reach 90° after the same
time as bodies with initial obliquity 180° — ¢y. Nevertheless, the rotation rates evolve in the
same way.

The rate of obliquity change depends also on angular velocity; if a body rotates slowly,
obliquity changes faster and vice—versa.

After the obliquity of a body reaches 90°, its rotation rate falls to zero. Our model is not
able to described the YORP effect during this slow rotation limit consistently. One of the basic
presumptions - principal axis rotation - is not valid in this state. [Vokrouhlicky et al., 2007]
studied this limit and realized onset of non-principal axis rotation of slow rotators due to the
YORP effect. The non—YORP effects (solar or planetary torques or meteoroid impacts) play an
important role during slow rotation state.

Type II represents just an opposite case to the Type I (see Figure 3.5b). Here, (T¢)/C is
negative in (0°,90°) and positive in the (90°,180°) obliquity range. Obliquity of this body will
move to e; = 0°, if the initial obliquity €g is less than 90°, or to e; = 180°, if the initial obliquity
€o is larger than 90°. The spin axis becomes perpendicular to the orbital plane. The spin rate
increases due to positive value of (T},)/C for € € (55°,125°) and decreases elsewhere. The Type
IT is (together with Type I) the most probable YORP-behaviour and represents approximately
40% of all cases for zero thermal conductivity.

Evolution of obliquity and rotation frequency can be seen in Figure 3.5b and 3.5¢c. The initial
conditions are the same as in the case of Type 1. Focusing on the curve with initial obliquity
80° we see that obliquity is decreasing to zero. Rotation rate increases during first ~ 20 Myr
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Figure 3.5: The YORP-type II: a) The dependence of (T¢)/C (solid line) and (7,,)/C (dashed
line) on obliquity, b) the evolution of obliquity, c) evolution of rotation rate. For explanation
see the text.

(obliquity is > 55° and (Ti,) > 0 here) and then decreases to zero. The zero rotation rate as
well as zero obliquity is reached after ~ 46 Myr.

Spin states of bodies with smaller initial obliquities evolve faster. Some of them do not
undergo a phase of acceleration of rotation frequency, because their obliquity has never been
larger then 55° and therefore (7,,) is always less than zero.

Bodies with €y > 90° have a similar evolution. In this case the obliquity increases up to 180°
and it is symmetrical to cases with €y, while the evolution of the rotation rate is the same.

For the slow rotation limit, see the discussion in the previous paragraph.

Type III represents a more complicated case than types I and IT discussed above (see Figure
3.6). There are two asymptotic obliquities: the first one in (0°,90°) obliquity interval and the
second one in (90°,180°). In the particular case of Figure 3.6 these asymptotic obliquities are
€y = 44° and ey = 136°. The spin axis will be tilt to the first one, if the initial obliquity is less
than 90°, and tilt to the second one, if initial obliquity is higher then 90°. The dependence of
(T,,)/C on e differs from case to case, but in the asymptotic obliquities it is always negative.
Type III represents less probable case of YORP behaviour (7%).

We can see from Figure 3.6b, that obliquities of bodies with €y < 90° are driven to the value
44°, but they reach this obliquity after longer time than 50 Myr. Obliquities € higher then 90°
evolve toward value of 136°. In each case the rotational speed is finally decelerated, but some
bodies undergo a phase of spinning up before deceleration (Figure 3.6c¢).

Type IV. There are three asymptotic obliquities for the type IV. The first one is e = 0° and
the spin axis tilt to this value if the initial obliquity is less than 42°. If ¢y is more than 138°, the
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Figure 3.6: The YORP-type III: a) The dependence of (T)/C (solid line) and (7},)/C (dashed
line) on obliquity, b) the evolution of obliquity, ¢) the evolution of rotation rate. For explanation
see the text.

spin axis is driven to ey = 180°. If initial obliquity lies inside (32°,138°) range, the asymptotic
obliquity will be e; = 90°. The behaviour of (T},)/C differs from case to case again.

The YORP effect drives obliquities of bodies with €y < 45° to final value 0°, while initial
obliquity greater than 135° is driven to € = 180°. If ¢y is between 45° and 135°, the obliquity
evolves toward 90°. The evolution of the spin rates is similar as in the previous cases. Initially
some bodies undergo a spin up but finally all of them are decelerated.

Symmetries

General dependence of averaged torques on obliquity can be described by these symmetries®:
(Te)(e) = —(Te)(180 —¢), (3.15)
(L)) = (T,)(180—e), (3.16)

Another symmetry stems from change of the spin axis orientation to the opposite one. This is
important in the situations when a body is decelerated to zero angular velocity and then spun
up in the opposite direction. Then:

e — 180 —c¢, (3.17)
(To)(e) — —(Te)(e), (3.18)
(T (€) — —(Tu)(e). (3.19)

Sderived from the geometry of the problem
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Figure 3.7: The YORP-type IV: a) The dependence of (T¢)/C (solid line) and (7},)/C (dashed
line) on obliquity. b) the evolution of obliquity, c) the evolution of rotation rate. For explanation
see the text.

Note that all these symmetries are valid only for bodies with zero thermal conductivity on
circular orbits. An elliptic orbit and non—zero thermal conductivity lead to deviations from
symmetries mentioned above.

3.3.2 The non—zero conductivity of the surface material

This section is based on [Capek and Vokrouhlicky, 2004].

Here we discuss our statistical investigation of the influence of conductivity of the surface
material on the orbit-averaged YORP torques (T¢) and (7T,) for a sample of 200 Gaussian
random spheres. We assume three different values of surface conductivity: K = 0, 0.001 and
0.01 W/m/K. The thermal conductivity represents a very important quantity — it can vary by
several orders of magnitude for different materials. This is discussed especially in Appendix A
and Section 3.4.1.

We assumed that orbits are circular with ¢ = 2.5 AU and period of rotation are 6 hr. The
volume corresponded to a sphere with radius 1km, the bulk density was py,x = 2.5g/cm?, the
surface density was a bit smaller pg,,; = 1.7g/cm?, the thermal capacity was ¢ = 680 J/kg/K
and albedo A = 0.

The computation of surface temperature was performed by a one-level scheme (see Appendix
A), with a non-constant spatial step, increasing as a geometrical series with quotient ¢ ~ 1.0725,
and a time step At = 500s (it corresponds to ~ 8° of rotation). The temperature computation
along the orbit was made so many times, until the temperature difference between the last
two turns was less than 0.5 K. The lower boundary condition was put down in the depth 15/,
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where /4 represents the penetration depth of a seasonal temperature wave. For more details see
Appendix A.
We focused mainly on the following characteristics of the YORP effect:

1. An abundance of particular YORP-types.
2. A fraction of asymptotically accelerated bodies.

3. A strength of the YORP torque. An appropriate quantity describing the torque component
(T,,) (which affects the angular velocity) is the doubling time ¢4. The amplitude of (T)
torque component (in units degrees per Myr) was chosen a description of obliquity change.

Zero conductivity. We studied this quite unrealistic limit case at the beginning of our in-
vestigation, because it is simple to evaluate — it is not necessary to solve HDE in this case. The
thermal force (and torque) can be determined directly from insolation (see (2.10)). This allows
to compute YORP effect for relatively large number of bodies.

Figure 3.9 shows orbit averaged rate of change of the obliquity and Figure 3.9 shows orbit
averaged rate of change of the rotation speed. Among 200 Gaussian random spheres, there is
roughly the same number of type I and type II objects: 40.0% and 46.5%, respectively. This
means almost the same number of spin axes are driven to asymptotic obliquities 0°/180° and
90°. Among 500 Gaussian random spheres the difference between occurrences of these two types
is even smaller® A minority of cases is represented by type III (7%) and IV (6.5%). The rotation
of only 2% of all the bodies is accelerated in the asymptotic obliquity; all these cases correspond
to bodies of type III or IV. Strength of the YORP torque can be characterized by a median of
doubling times which is 14 Myr, and by a median of (de/dt) amplitude, which is 3°/Myr (see
Figure 3.11a,b).

Conductivity 0.001 W/m/K. We chose this value to describe a thermal behaviour of highly
particulated regolith-like surface. This is actually close to the lunar regolith value. The compu-
tation of the HDE is necessary here.

The balance between the YORP types I and II disappears completely in this case, as we can
seen in Figure 3.8. A lot of types I transform to types II: only 7% of bodies remain in the type I,
while 88% form type II. As a consequence the spin axes are driven with a higher likelihood to
the asymptotic obliquity 0°/180°. The spin rate affecting YORP torque is almost the same as
in the case of zero obliquity, as shown in Figure 3.8. This means that all types I transformed to
types II will be asymptotically accelerated (40% of al the bodies).

Type III is represented by 5% of objects and there is no type IV. The median of doubling
times is 13 Myr and the median of (de/dt) amplitude is 6 °/Myr (see Figure 3.11c,d).

Conductivity 0.0l W/m/K. This thermal conductivity value was chosen to describe surface
composed of a mixture of regolith and fresh rock.

The largest difference between abundance of types I (95.5%) and types II (3.5%) can be seen
in Figure 3.10. The number of asymptotically accelerated bodies as well as spin axes driven to
0°/180° is even higher than in the case of K = 0.001 W/m/K. Abundance of types III and IV is
the same - 0.5%. This corresponds to the most powerful YORP effect among among the studied
conductivities: The median of doubling times is 12 Myr and the median of (de/dt) amplitude is
9°/Myr (see Figure 3.11e,f).

® Abundance of type I, I, IIT and IV are 39.2%, 40.4%, 10.2% and 6.2%. The remaining 4% correspond to
cases with a more complicated evolution.
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thermal conductivity abundance of types de/dt tq # of accelerated
(W/m/K) I I~ It III IV | (deg/Myr) | (Myr) %
0.000 40 46.5 0 7 6.5 3.33 14.3 2
0.001 7 525 355 b 0 5.94 13.1 40
0.010 3.5 52 435 05 0.5 8.60 11.9 45

Table 3.1: Influence of surface conductivity on the abundance of different YORP-types and the
YORP evolution timescale among 200 (or 500 in the case of zero conductivity) gaussian random
spheres. The II— (II') denotes YORP type II with the asymptotic deceleration (acceleration)
of rotation.

3.3.3 Discussion

The study of the YORP effect on a large sample of artificial shapes, corresponding to small
Main Belt asteroids with the assumption of zero thermal conductivity, shows that shapes can
be divided according to the obliquity-affecting YORP component 7, into four principal groups.
The Type I is driven to the obliquity 90° and rotation is asymptotically decelerated. Type II
is characterized by driving the initial spin axis to obliquity 0° or 180° and asymptotic spinning
down again. Less frequent types III and IV have more complicated behaviour, but in most cases
they are also asymptotically decelerated.

The statistical study of YORP effect on a sample of Gaussian random spheres shows that
the surface thermal conductivity K strongly affects YORP component T, which changes the
obliquity, while spin rate affecting torque T, is nearly independent on the surface conductivity
K. Very low value of conductivity (zero limit) results in an equal likelihood of driving the spin
axes to the asymptotic obliquity 0°/180° and 90° and the rotation of the most of bodies is
asymptotically decelerated. More realistic values of conductivity (0.001 and 0.01 W/m/K) lead
to higher likelihood of driving spin axes to the obliquity 0°/180° and almost equal probability
of accelerating and decelerating rotation in the asymptotic states. The quantitative results are
summarized in Table 3.1.

We also found that the rotation of bodies with obliquity € ~ 55° and € ~ 125° is neither
accelerated nor decelerated.

The YORP evolution timescales are shorter than collisional timescales. The YORP effect
is then able to significantly accelerate the rotational speed (maybe up to a bursting limit) or
decelerate it (to the state of very slow tumbling rotators).

Our model is not able to describe the YORP effect in these two limit states. In the case of
very fast rotators it is because of very large CPU expenses and in the case of very slow rotators
(and also in case of bodies with size comparable to penetration depth of seasonal temperature
wave — i.e. meteodoids) due to possible non-principal axis rotation of such bodies and more
complicated heat diffusion inside of them.

Since the YORP component 7, does not depend on the surface thermal conductivity K, the
approximation of zero K can be used for modeling the short-time evolution of spin states due to
the YORP effect. For instance, it can be used for the prediction and subsequent direct detection
of the YORP effect. On the other hand, the T, depends on the thermal conductivity. The model
with the finite value of the surface thermal conductivity should be used for an investigation of
the long-time evolution of the spin states due to the YORP effect.
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Figure 3.8: The orbit averaged YORP effect as a function of obliquity for 200 Gaussian random
spheres for thermal conductivity K = 0.001 W/m/K. The figures in the left column represent
the orbit-averaged rate of change of the obliquity (de/dt), while the figures in the left column
represent the orbit-averaged change rate of angular velocity (dw/dt). The upper row describes
Type I objects, the lower one Type II. Here, the Type II is more likely. Type I produces
asymptotic deceleration while Type II produces both deceleration and acceleration of rotation.
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Figure 3.9: The orbit averaged YORP effect as a function of obliquity for 200 Gaussian random
spheres in case of a zero conductivity limit. The figures in the left column represent the orbit-
averaged rate of change of the obliquity (de/dt), while the figures in the left column represent
the orbit-averaged change rate of angular velocity (dw/dt). The upper row describes Type I
objects, the lower one Type II. Both cases are equally likely and both produce an asymptotic
deceleration of rotation.
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Figure 3.10: The orbit averaged YORP effect as a function of obliquity for 200 Gaussian random
spheres for thermal conductivity K = 0.01 W/m/K. The figures in the left column represent
the orbit-averaged rate of change of the obliquity (de/dt), while the figures in the left column
represent the orbit-averaged change rate of angular velocity (dw/dt). The upper row describes
Type I objects, the lower one Type II. A great difference between the number of Type I and
Type II bodies can be seen clearly. Type I produces asymptotic deceleration while Type II
produces both deceleration and acceleration of rotation.
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Figure 3.11: Histograms of statistical distributions of the characteristic timescales of the YORP
effect acting on sample of 200 Gaussian random spheres for conductivity K = 0 W/m/K (upper
row, a and b), K = 0.001 W/m/K (middle one, ¢ and d) and K = 0.01 W/m/K (lower row, e
and f). The left column shows the distribution of maximal obliquity change rate. Small lines
at the bottom of plots represent actual values and the arrow is the median value. Tn the right
column we present distribution of doubling time at the asymptotic values of obliquity.
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3.4 The YORP effect on individual bodies
This section is based on [Vokrouhlicky and Capek, 2002] and [Vokrouhlicky et al., 2004].

We chose several asteroids with available shape models and investigated how the YORP
effect acts on these bodies. We study both the YORP dependence on the thermal conductivity
for bodies on circular orbits [Capek and Vokrouhlicky, 2004] and how it affects angular veloc-
ity of asteroids in actual configuration including possible direct detection of the YORP effect
[Vokrouhlicky et al., 2004].

3.4.1 The YORP dependence on the surface thermal conductivity

The material properties, like the density p and thermal capacity ¢ of small Solar System bod-
ies can be roughly determined by laboratory measurement of its meteorite equivalents (e.g.
[Yomogida and Matsui, 1983]). In the case of the surface thermal conductivity K the situation
is more complicated. We do not know the composition and degree of porosity of surface material
and then have to assume some similar material measured in laboratory, or use measurements of
the lunar soil returned by Apollo missions (e.g. [Cremers, 1972])

Another way to determine K is to use data from infrared observations [Delbo et al., 2006],
[Delbo et al., 2007] or measurements of non-gravitational (Yarkovsky) semimajor axis drift which
is strongly dependent on asteroid’s surface thermal inertia [Chesley et al., 2003]. The value of
the thermal conductivity can vary by several orders of magnitude. For highly particulated re-
golith it can be K ~ 10~* W/m/K, while for fresh iron surface K ~ 80 W/m/K. Moreover,
[Delbo et al., 2007] discovered a dependence of thermal inertia on asteroids diameter. So, the
value of thermal conductivity of surface is the most uncertain quantity of all.

Here we present a study of the YORP effect dependence on the thermal conductivity K. We
used several bodies with precisely determined shapes and assumed they are on a circular orbit
about the Sun with semimajor axis a = 2.5 AU. Other important quantities are listed in Table
3.2. The surface thermal conductivity varies from 1072 W/m/K to 10 W/m/K.

semimajor axis 2.5AU
period of rotation 6 hours
bulk density 2.5g/cm?
surface density 1.7g/cm?
thermal capacity 680 J/kg/K
albedo 0.1
emissivity 0.9

Table 3.2: Orbital and physical parameters used for the study of the YORP K-dependence. The
orbit is assumed circular and the thermal conductivity in the range (107, 10') W/m/K.

The computation was performed by a one-level scheme with a non-constant spatial step which
is increasing as a geometrical series with a quotient ¢ = 1.0725, and a time step At = 500 (it
corresponds to ~ 8° of rotation phase). The computation of surface temperature along the
orbit was made several times, until the temperature difference between the last two turns was
less than 0.5 K. The lower boundary condition was applied in the depth 15/, where ¢, is the
penetration depth of seasonal temperature variations. For more details see Appendix A.
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Figure 3.12: The orbit averaged rate of change of the angular velocity w (left) and obliquity
e (right) due to the YORP effect for asteroid (433) Eros. Grey levels denote different surface
thermal conductivities from 107 W/m/K (darkest, corresponding to the Rubincam’s limit) to
10 W/m/K (lightest, corresponding to highly conductive material). For more discussion see the
text.

(433) Eros

The dependence of the YORP torque on the thermal conductivity for an Eros-shaped body is
shown in Figure 3.12. There is a orbit-averaged rate of change (dw/dt) of angular velocity and
a rate of change of the obliquity (de/dt) due to the YORP effect.

It can be seen that the component of the YORP affecting the speed of rotation w almost
does not depend on the thermal conductivity in the studied interval of K. On the other hand,
the YORP-induced obliquity change depends on the thermal conductivity K very strongly. Low
values of K lead to the type I of the YORP classification. This means the spin axis would evolve
toward the obliquity 90° and the rotation would decelerate. As K increases, the amplitude of
(de/dt) decreases. For the conductivity K ~ 5 x 10~* W/m/K, the YORP changes to the Type
II. In this case the spin axis is driven to 0° or 180° obliquity, but the rotation of the body will
be accelerated in these states because (dw/dt) remains unaffected by the thermal conductivity.
For higher K’s the amplitude of (de/dt) increases with thermal conductivity and reaches the
maximal value when K ~ 102 W/m/K. Subsequently, the amplitude decreases. Note that for
high conductivities the symmetry of (de/dt) with respect to e = 90° is broken.

(6489) Golevka

We can see (dw/dt) and (de/dt) for Golevka in Figure 3.13. Like Eros, the component of the
YORP effect changing the speed of rotation is nearly independent on the thermal conductivity
in the studied interval, unlike the YORP component affecting the obliquity. Low values of K
lead to the type IV of the YORP classification. As K increases, the amplitude of de/dt decreases
and also the node moves slightly from ¢ ~ 60° towards zero obliquity’. For the conductivity
K~5x10* W/m/K, the YORP changes to the type I. In this case, the spin axis is driven
to obliquity 90° but the rotation of the body will be accelerated in this state, because (dw/dt)
remains almost unaffected by thermal conductivity K. As K further increases, the amplitude
of (de/dt) increases, reaches the maximum value for K ~ 1072 W/m/K and then falls-off a
little. The symmetry of (de/dt) with respect to obliquity € = 90° is broken again for higher
conductivities.

"The node at 120° moves towards € = 180°.
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Figure 3.13: The orbit averaged rate of change of the angular velocity w (left) and obliquity €
(right) due to the YORP effect for asteroid (6489) Golevka. Grey levels denote different surface
thermal conductivities from 10~ W/m/K (darkest, corresponding to the Rubincam’s limit) to
10 W/m/K (lightest, corresponding to highly conductive material). For more discussion see the
text.

(243) Ida

Figure 3.14 shows the orbit-averaged rate of change (dw/dt) of angular velocity and rate of
change (de/dt) of the obliquity for asteroid (243) Ida. As in previous cases, (dw/dt) does not
depend on K, while (de/dt) does. The YORP type is II and increasing thermal conductivity
only changes its amplitude. Up to K ~ 1072 W/m/K the amplitude increases and for higher
conductivities decreases.

(25143) Itokawa

The dependence of the YORP effect on the surface thermal conductivity for asteroid Itokawa
can be seen in Figure 3.15. This is the same case as Eros. The YORP component (dw/dt) is
nearly independent on K, while (de/dt) belongs to the Type I for low conductivities and to the
Type II for high ones. The transition occurs for K ~ 5 x 1075 W/m/K.

1998 KY 26

Figure 3.16 shows the orbit-averaged rate of change of angular velocity (dw/dt) and the rate of
change of obliquity (de/dt) due to the YORP effect. Again, we can see nearly K-independent
YORP component affecting the speed of rotation and the YORP component changing the oblig-
uity strongly dependent on K. In this case increasing thermal conductivity does not change the
YORP type (which is I) but only decreases the amplitude of (de/dt).

Discussion

The study of the K-dependence of the YORP effect for several real shapes shows a strong
dependence of (T.) or (de/dt) on thermal conductivity in the range 107 to 10 W/m/K, like
in the case of the artificial shapes. In most cases the YORP for realistic values of K belongs to
the Type II. The YORP component (7,,) or (dw/dt) is nearly independent on K.
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Figure 3.14: The orbit averaged rate of change of the angular velocity w (left) and obliquity
€ (right) due to the YORP effect for asteroid (243)Ida. Grey levels denote different surface
thermal conductivities from 10~ W/m/K (darkest, corresponding to the Rubincam’s limit) to
10 W/m/K (lightest, corresponding to highly conductive material). For more discussion see the

text.

Figure 3.15: The orbit averaged rate of change of the angular velocity w (left) and obliquity €
(right) due to the YORP effect for asteroid (25143) Itokawa. Grey levels denote different surface
thermal conductivities from 107 W/m/K (darkest, corresponding to the Rubincam’s limit) to
10 W/m/K (lightest, corresponding to highly conductive material). For more discussion see the

text.
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3.4.2 The YORP effect for real objects and their orbits

We computed the YORP effect for several asteroids with known orbits, shapes and spin pa-
rameters. The list of bodies and their orbital and physical parameters can be found in Table
3.3:

Eros Geographos  Golevka Ida Itokawa 1998KY26
semimajor axis (AU) 1.45823 1.24547 2.5065 2.816276 1.32274 1.23215
excentricity 0.222891 0.335416 0.604317 0.04616 0.279475 0.201462
inclination (°) 10.83 13.342 2.277 1.138 1.728 1.481
arg. perihel. (°) 178.645 275.8 66.06 108.55 161.021  209.181
ascend. node (°) 304.404 337.3 211.502 32421 70.917 84.451
pole of rotation A, 8 (°) 17.2,11.3 55, -46 202, -45 262, -68 355, -84
obliquity (°) 89.1 150 134.6 157 172.3
period of rotation (h) 5.27 5.23 6.03 4.63 12.13 0.17837
precision of period determ. o 1x10~7 1.4x1077 1.7x107% 1.5x107% 5x107*  7x107°
thermal conductivity (W/m/K) 0.01 0.02 0.01 0.01 0.01 0.001
thermal capacity (J/kg/K) 680 680 680 680 800 680
bulk density (g/cm?) 2.5 2.5 2.7 2.7 25 25
surface density (g/cm®) 1.7 1.7 1.7 1.7 2.0 1.7
albedo 0.1 0.2 0.1 0.2 0.1 0.1
emisivity 0.9 0.8 0.9 0.8 0.9 0.9
At - first level (s) 222 87 500 192
At - second level (s) 4 5 10

Table 3.3: Orbital and physical parameters of asteroids used for our study of the YORP.
Orbital data was taken mainly from NeoDyS site http://newton.dm.unipi.it and Ast-
Dys http://hamilton.dm.unipi.it. Information about the spin state was taken from
[Miller et al., 2002] for Eros, [Hudson and Ostro, 1999] for Geographos, [Hudson et al., 2000]
for Golevka, [Davies et al., 1996] for Ida, [Kaasalainen et al., 2003] for Itokawa and
[Ostro et al., 1999] for 1998KY26.

The surface temperature along the orbit was computed by a two-level scheme. The timestep
was a few hundred seconds in the first level and several seconds in the second level (see Table 3.3).
The initial spatial step was chosen in order to fulfill the von Neumann stability criterion. The
precision of the surface temperature is typically better than 0.1 K. We computed components of
the YORP torque in equally spaced right anomalies.

A possible direct detection of the YORP effect was also studied. For this purpose the most
important quantity is the change of angular velocity w and, especially, the phase of rotation ¢.
These quantities are observable (while the change of the obliquity is too small). Moreover, (T,,)
is nearly independent on the surface thermal conductivity, which is not known accurately. The
angular velocity and the phase of rotation changes due to the YORP effect can be expressed as:

t

t
T,
wy (t) =wo + [ —=dt, by (t) = ¢o + [ wy(t)dt.

to

where wyq is the initial angular velocity at the time tg and the initial phase of rotation is assumed
¢o = 0. We can also express a fractional change of rotation period as (dP/dt)/P = —(T,,/C)/w.
Using the orbit-averaged value of T,,/C, the angular velocity will change linearly with time,
whereas the phase of rotation will change as a square of time (here we neglect an eccentricity of
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an orbit):

1., P-F 1 /T, 1 /T,
it =w(G) e (F0) 2o (E)r wo=wry ()
(3.20)

The phase ¢ is the most easily observable quantity that can be used for a detection of the
YORP effect. At least three measurements of ¢ with appropriate time delay are necessary for
a discovery of the quadratic time dependence of ¢, indicating the YORP effect. If we take into
account that the period of rotation Py can be initially determined with an error §P, then this
uncertainity propagates and causes apparent changes of w and ¢:

P— P
wsp(t) =wp + w U < 0> = +o, dsp(t) =wot = wy a 1 t, (3.21)

0
o+1’ 5P o

where o0 = §P/ P, is a relative period error. The detection of the YORP effect via a phase shift
is possible if it exceeds the effect of uncertainity. This happens after sufficient time interval:

2
t¢ [ wo

Y>6P T 5] 1,/C)’ (3.22)

Moreover, the phase shift produced by an uncertainity of the rotation period must be less than
180°. In other words, |psp — wot| < m. It corresponds to the time

P00+1

R

(3.23)

In the case of a detection by a change of the rotation period, the required time interval is

= 7 3.24
Y>oP (Tw/C) ( )

which is shorter than (3.22) by a factor (64 1)/2 and moreover there is no restriction like (3.23).

(433) Eros

Figure 3.17 shows the behaviour of the 7,,/C during one orbital period of Eros. The origin of
time is chosen at an instant of perihelion passage. The mean value (T,,/C) = —1.48 x 102052
corresponds to a doubling time 709 Myr. Eros’s rotation is decelerated.

With this YORP torque and NEAR/Shoemaker data, rotation period P = 5.27025547 hr,
o =1x10"7 ([Miller et al., 2002]), we have determined the change of rotational period and the
phase from 1900 to 2020 as can be seen in Figure 3.18. The origin was chosen on Jan 1, 2001. The
phase of rotation changed due to YORP effect by ~ 4° during 100 years, while the uncertainity
in rotation period makes phase shift ~ 7° after the same time. In terms of the period, the YORP
leads to a relative change of period (P — Py)/Py ~ —1.5 x 10~ in 1900, which is slightly higher
than uncertainity o.

[Durech, 2005] compared photometric data of Eros from years 1901 — 1931 with a synthetic
lightcurve derived from shape and rotation state obtained by NEAR/Shoemaker space probe.
He found that (dw/dt) cannot be higher than ~ 5 x 10720572, Tt is interesting, that the formal
fit gives the value (dw/dt) = —1.4 x 1072 s72, which corresponds well to the value predicted by
us, but the case is not statistically conclusive.
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Figure 3.17: The YORP component affecting the angular velocity of (433) Eros during one
revolution about the Sun. This was computed using data from Table 3.3.
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Figure 3.18: Left: The relative change of rotation period of Eros. Right: The corresponding
change of the rotation phase. The results are referred to the value Py =5.27 hr on Jan 1, 2001.
The dotted line corresponds to a change of period or phase of rotation due to an uncertain
determination of the initial period Py. The relative uncertainity is ¢ = 1 x 10~7. The solid one
corresponds to the orbit-averaged YORP effect. Note a linear growth of (P — Fy)/Py and the
corresponding quadratic dependence of phase O — C.

(6489) Golevka

The time dependence of the YORP component T,,/C that affects angular velocity of Golevka can
be seen in Figure 3.19. The orbit-averaged value is (T,,/C) = 2.04 x 10~'8s. This corresponds
to a doubling time of only 4.5 Myr, the asteroid’s rotation is accelerated in this state.

A possibility of a successful direct detection of the YORP can be seen in Figure 3.20: The
mean value of the fractional change of rotation period is ((dP/dt)/P) = —2.2 x 10~ yr~!. We
used data obtained during the close encounter with the Earth in 1995 from [Hudson et al., 2000]:
P =6.0289, 0 = 1.7 x 107>, and chose an origin of integration on Jan 2, 1995. It can be seen,
that the YORP (though relatively strong) does not exceed the effect of uncertainity of rotation
period. Unfortunately, no usable photometric data was recorded during the close approach in
2003. Next opportunities will be in 2007, 2011, 2015 and 2019. Due to the large YORP effect on
Golevka, the data from these future encounters may lead to a successful detection of the YORP.
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Figure 3.19: The YORP component T,,/C affecting the angular velocity for (6489) Golevka
during one revolution about the Sun. This was computed using data from Table 3.3.
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Figure 3.20: The same plots as in Figure 3.18 but for Golevka. The results are referred to the
value Py =6.02667 hr on Jan 2, 1995.

1998 KY 26

The asteroid 1998 KY26 has an unknown orientation of the spin axis. We can only scale the
results obtained in the previous section. We assumed values listed in Table 3.3 and zero obliquity.
Then the orbit-averaged YORP component changing the angular velocity is (7,,/C) = 1.52 x
10~'* and the doubling time t4 = 20400 yr. This corresponds to a mean fractional change of
rotation period {(dP/dt)/P) = 5x10~° yr 1. Thus, we expect the possible successful detection of
the YORP effect for this body during its next apparition is September 2013. (The determination
of the pole orientation is also probable during this apparition.) Even more probable YORP effect
detection will be during the close—Earth encounter in June 2024.

(243) Ida

We do not compute YORP effect for the actual orbital configuration as listed in Table 3.3, but
scaling the results from previous section, the orbit averaged component of YORP is (T¢/C) ~
3.5x1072! 572 and the doubling time t; ~ 3.4 Gyr. This is comparable to the age of the Koronis
asteroid family and might have caused the evolution of spins discussed by [Vokrouhlicky et al., 2003].
Nevertheless, for direct short-term detection, the YORP is too week.
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Figure 3.21: The YORP component affecting the angular velocity of (25143) Itokawa during one
revolution about the Sun. This was computed using data from Table 3.3.

(25143) Itokawa

[Vokrouhlicky et al., 2004] computed the YORP effect strength for this asteroid and predicted
the possible detection of the YORP effect by an observation of the ligtcurve maximum shift dur-
ing its close encounter in 2004. Unfortunately, this conclusion was wrong: (i) we underestimated
the uncertainity of the rotation period by a factor 27 and (ii) we used an incorrect component of
the YORP torque (T, or Ty, instead of T,) . This led to conclusion that the rotation of Itokawa
is accelerated and a fractional change of Itokawa’s rotation is (dP/dt)/P =~ 1.5—3x 10~% yr=%.
An attempt to detect it failed.

Using the correct data (see Table 3.3 and Appendix) we found that Itokawa’s rotation is
accelerated due to the YORP torque (T./C) = 6.6 x 10717572 and the value of the fractional
change of spin period is (dP/dt)/P = —1.45 x 10~° yr~!. This corresponds to the doubling time

2
tq ~ 69000 years. The phase shift due to the YORP effect then increases as A¢ = 1.89° (ﬁ)

and after three years it is ~ 17°. Note that we obtained these results using convex-hull shape
model of [Kaasalainen et al., 2003] based on radar and optical Earth-based observations.

Recently, [Scheeres et al., 2007] have used more reliable data of shape and rotation of Itokawa
from Hayabusa mission to Itokawa and with aid of semianalytical theory of YORP effect they
found Itokawa’s spin rate deceleration 2.5 —4.5 x 1077 s72, depending on the shape model used.
They also discussed strong dependence of strength and sense of YORP on the shape model.
Itokawa seems to be an exemplary case in this sense.

(1620) Geographos

Using data from Table 3.3 we computed the YORP effect on the asteroid (1620) Geographos.
In this case we faced a problem with the choice of the right shape model. Using the shape
model derived from combination of the radar and optical observations (available at the website
http://www.psi.edu/pds/asteroid/), we obtained the YORP torque (produced by thermal
and reflected radiation) changing the spin rate dw/dt = T,,/C = —4.4 x 10~ s72. In this model,
the z—axis does not correspond to the axis of the maximal moment of inertia.

Then we made rotation of the body-fixed frame (90° about the x—axis) to the system of
proper axes and achieved an agreement of z—axis orientation with the axis of maximal moment
of inertia and also with the position of “north pole” in [Hudson and Ostro, 1999] (see Figure
D.1). In this case, the change of spin rate is dw/dt = 3 x 10719572,

Another shape model derived by Durech (personal communication) from ligtcurve analysis
(see Figure D.2) gives a value dw/dt = 2.4 x 107'8 572, Here we used the pole of the spin axis
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Figure 3.22: The same as 3.18 but for Itokawa. The results are referred to the value 12.134 hr
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Figure 3.23: Left: Relative change of rotation period of (1620) Geographos. Right: Change of
the rotation phase. The results are referred to the value Py =5.23 hr on September 15, 1994.
The dotted line corresponds to the change of period or phase of rotation due to uncertain
determination of the initial period Py. The uncertainity of the spin period is o = 1.4 x 1077
(according to [Hudson and Ostro, 1999]). The dashed one corresponds to the orbit-averaged
YORP effect. Note linear growing of (P — Py)/Py and corresponding quadratic dependence of
phase O — C.

derived by Durech: A =51.5°, 8 = —57.3°. The volume Durech’s model was scaled to the same
volume as model of [Hudson and Ostro, 1999]. Also, we made rotation of body-fixed frame to
the system of principal axis of inertia tensor.

The possibility of detection of the YORP effect on (1620) Geographos is shown in Figure
3.23. Here we used the shape model of Durech. The next opportunity to observe Geographos
during its approach will be in 2008. The YORP effect produces a phase lag ~ 13° between 1994
and 2008. Thus, if the shape derived by Durech is the correct one®, we can expect the successful
detection in 2008.

Discussion

We have shown that the YORP component T, causes the changes of the angular velocity dw/dt
(or the phase shift), which can be measured directly. Moreover, the YORP component T, does

8The shape of [Hudson and Ostro, 1999] leads to phase lag ~ 1.3° between 1994 and 2008. This is not enough
to successful detection in 2008.
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not depend on thermal conductivity K. Thus the principal moment C of inertia and the bulk
density pp of the asteroid can be determined by measured dw/dt together with the YORP effect
model.

3.5

Summary

The YORP effect affects both the spin period and the obliquity of the asteroids with
certain amount of the windmill asymmetry. The shape and obliquity are the key quantities
affecting the YORP effect.

A typical YORP evolution timescales are shorter than collisional timescales (for asteroids
smaller than several tens of kilometers in the Main Belt). The YORP effect can double
the rotation period of 2km Main Belt asteroid in ~12 Myr.

The obliquity-affecting YORP component 7T, depends on the thermal conductivity K of
surface material, while the component 7;,, affecting the angular velocity, is almost K-
independent.

There is a wide variety of possible YORP evolution paths of the spin states. The most
probably, the spin axis is driven to be perpendicular with respect to the orbital plane.

The spin period can be both accelerated (maybe up to a bursting limit and possible
formation of binary asteroids) or decelerated (to the state of very slow tumbling rotators).

The spin period of bodies with obliquity € >~ 55° and € >~ 125° is not affected by the YORP
effect.

We computed the YORP effect for several asteroids, assuming their actual shape and or-
bital, rotational and physical configuration, and showed possibilities of a successful YORP
effect detection via change of the rotation period or a phase shift of the lightcurve. We
predict the successful direct detection of the YORP effect for (6489) Golevka, 1998 KY26,
(25143) Itokawa and (1620) Geographos in the near future.



Chapter 4

The Yarkovsky effect

4.1 Introduction

4.1.1 The principle of the Yarkovsky effect

The Yarkovsky effect is a relatively weak non-gravitational force arising from anisotropic thermal
emission from the surface of a body, which is heated by the absorption of the solar radiation.
The principle of the effect can be explained as follows: Let us assume an asteroid orbiting about
the Sun and rotating about the spin axis perpendicular to the orbital plane. The surface of the
body absorbs solar radiation' which heats it up. Due to the finite thermal inertia of the surface
material the temperature follows the insolation with some delay, as can be seen in Figure 4.1.
This causes the “morning” hemisphere is cooler and the “evening” one is warmer. The surface
emits thermal radiation which takes certain amount of momentum away. This causes a repulsive
thermal force, which direction is somewhat shifted from the direction opposite to the Sun due
to disbalance of temperature between the morning and evening hemispheres. The transverse
component of this force, parallel to the velocity vector of the asteroid, then causes (according to
the laws of celestial mechanics) a change of the semimajor axis of the orbit. If the body’s rotation
is prograde, its semimajor axis increases, if it is retrograde the semimajor axis decreases. (The
body spirals inwards or outwards.) The above described effect is called the Yarkovsky diurnal
effect (see Figure 4.2a). The strength of this effect depends on the distance from the Sun, the
diameter of the body, its mass, thermal parameters of the surface (the thermal conductivity K,
thermal capacity ¢, surface density ps), the speed of rotation and the obliquity.

Another component of the Yarkovsky effect is connected with the orbital motion about the
Sun and, consequently, it is called seasonal. It is independent on the rotation speed and always
leads to the semimajor axis decay. It is caused by the effect of thermal inertia during the
revolution about the Sun. The necessary condition is the obliquity not equal 0° or 180°. Let
us expect the Sun is shining on the northern hemisphere during the summer (see Figure 4.2b).
In the autumn equinox the Sun illuminates both hemispheres equally, but due to the thermal
inertia the northern one is warmer and then the resulting thermal force is shifted from the
direction opposite to the Sun and against the direction of motion. A similar situation occurs in
the spring equinox: The southern hemisphere is warmer than northern one and the thermal force
again aims against the velocity vector. In real situations, the Yarkovsky effect is a combination
of the above mentioned components.

!The momentum of this absorbed radiation together with the radiation reflected due to non-zero albedo give
rise to the solar radiation pressure. But this force has direction opposite to the direction towards the Sun and its
effect overall averaged over orbital period only decreases the solar gravitation force.

42
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Figure 4.1: The delay ¢ between the maximal insolation (dotted line) and the maximal temper-
ature (solid line) due to the thermal inertia of the surface material. The figure corresponds to
an equatorial surface element during one rotation cycle lasting 6 hours.

4.1.2 The Yarkovsky effect in the Solar System

The Yarkovsky effect plays an important role in the dynamics of meter to multi-kilometer sized
bodies in the Solar System. It helps us to explain many observed (and previously puzzling)
facts. Some of them we shall briefly mention here.

Delivery of meteorites to the Earth. The first application of the Yarkovsky effect was

an explanation of the meteorite transport from the Main Belt to the Earth’s vicinity (e.g.,
[Opik, 1951], [Peterson, 1976]). Recently the subject was studied for example by [Farinella et al., 1998]
and [Vokrouhlicky and Farinella, 2000]. According to the model of [Vokrouhlicky and Farinella, 2000],
the asteroidal fragments, ejected after the disruption of parent body, slowly spiral due to the
Yarkovsky effect. A typical semimajor axis drift rate da/dt is from ~ 10™* to ~ 1072 AU/Myr.

It depends mainly on diameters of fragments, densities and thermal parameters of the surface.

The obliquity also affects the strength and direction of Yarkovsky effect. During this stage (that

can take from several Myr up to several 10 Myr) the fragments may secondary undergo colli-
sions, causing changes of their spin axes or even further fragmentation. Finally the fragments
reach a powerful gravitational resonance (3:1 mean motion resonance with Jupiter or v4 secular
resonance), where they are captured and their excentricity rapidly increases up to 1. This stage

lasts only a few Myr. Most bodies then fall directly into the Sun and only less than 1% hit the
Earth. There is a good agreement between the calculated transport timescales and the observed
cosmic ray exposure times of various meteorite types (they differ for various materials), and it

is also possible to explain the observed total meteorite flux.

Delivery of small asteroids to the near Earth space. It was recognized that most of the
near-FEarth asteroids originate in the Main Belt from where they are delivered to the Earth’s
vicinity via powerful resonances. [Bottke et al., 2002] estimated that approximately 220 objects
per Myr with absolute magnitude H < 18 (i.e., with diameter D 2 1km) must escape from
the inner Main Belt in order the population of NEAs to be in steady state. Refilling of new
asteroids to the resonances can be explained by a semimajor axis drift caused by the Yarkovsky
effect. [Morbidelli and Vokrouhlicky, 2003] studied the transfer of bodies towards 3 : 1 and
Vg resonances, assuming random reorientation of spin axes due to collisions and the YORP
effect. Their model gives the same flux as derived by [Bottke et al., 2002]. Moreover, due to the
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Figure 4.2: The principle of Yarkovsky effect: (a) diurnal and (b) seasonal component. More
explanation in the text. (The autor of this figure is M. Broz)

Yarkovsky effect sensitivity on size, they are able to explain the difference between the cumulative
size distribution of main belt asteroids N(> D) oc D~ '3 and thet of the near-Earth asteroids
N(> D) o« D175, [La Spina et al., 2004] also noticed the dominance of the Yarkovsky effect
over collisions in injecting the bodies into resonances. They found that retrograde rotators?
among NEA’s are more numerous than the prograde ones. This is most probably caused by the
fact that the vg resonance transport route is more effective than the 3 : 1, and because the vg is
located inside the Main Belt, the bodies have to drift inwards (and thus have retrograde spins).

Evolution of asteroid families due to the Yarkovsky effect. Asteroid families originate
from a catastrophic collisions or cratering event of a parent body that produced fragments,
which we can observed today as clusters in the space of proper elements a,, ey, siniy; they
also exhibit similar spectral properties. Subsequent evolution is driven by the Yarkovsky effect,
mutual collisions of the fragments and planetary perturbations.

For example [Bottke et al., 2001] investigated the evolution of the Koronis family. They
explain the observed shape in (a, e, sin) space evolution in three steps. Firstly, the catastrophic
disruption produces multi-kilometer fragments with random orientation of spin axes. Next, their
semimajor axes evolve due to the Yarkovsky effect. The fragments also interact with numerous
weak resonances, which results in the changes in eccentricity. The most important of them is
the secular resonance g + 2g5 — 3¢gg, located at 2.92 AU, that typically increases the eccentricity
of passing asteroids, producing the separation of Koronis family into two parts. Finally, if the
body reaches the powerful resonances 5:2 or 7:3, its eccentricity and inclination rapidly increases,
causing an ejection from the Solar System, an impact on the Sun or a planet.

[Vokrouhlicky et al., 2006b] studied the structure of the Eos family. They found that after
the primary collision, a compact family arose and it consequently have evolved by the Yarkovsky
effect and by planetary perturbations. The fragments, which were driven by the Yarkovsky effect
to the smaller semimajor axes and encounter 7 : 3 mean motion resonance with Jupiter were

215 from 21 bodies with known obliquity rotates in a retrograde sense.
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removed. This explains the sharp boundary of the family located exactly at the above mentioned
resonance. On the other side the fragments driven outward from the Sun meet a bit weaker 9:4
resonance and only some of them pass it. By this scenario they are able to explain the asymmetric
distribution of the family members with respect to the 9:4 mean motion resonance with Jupiter.
They also estimated the age of this family to be 1.3:0):55 Gyr.

[Vokrouhlicky et al., 2006a] developed a method for determination of ages of asteroidal fam-
ilies on the basis of the Yarkovsky/YORP maturity. They determined the ages for families
Astrid, Erigone, Massalia and Merxia, as well as their initial dispersion velocities of fragments
after the primary collision.

Detection of the Yarkovsky effect. The first measurement of the Yarkovsky force was
achieved by observations of the drag of satellite Lageos from 1976 to 1987 (e.g., [Rubincam, 1990]).

[Vokrouhlicky et al., 2000] studied a possibility of direct detection of the Yarkovsky effect
via precise orbit determination of near-Earth asteroids. Since the Yarkovsky perturbation ac-
cumulates quadratically with time, they predicted a successful detection on several asteroids
(namely (6489) Golevka, (1620) Geographos, (1566) Icarus) with orbits determined by radar
ranging during their next apparitions. In May 2003 the radar ranging of (6489) Golevka was
made during its close encounter with the Earth and non-gravitational perturbation was de-
tected [Chesley et al., 2003]. This perturbation corresponds to the predicted shift due to the
Yarkovsky effect and allows to estimate the bulk density of Golevka as 2.7fg:é g/cm? and thermal
conductivity as 0.01 W/m/K.

Further detections of the Yarkovsky effect for more near-Earth asteroids are expected in the
near future [Vokrouhlicky et al., 2005a]. An interesting opportunity to detect the Yarkovsky
effect (both on the motion of centre of mass and on relative motion of components) appears in
the case of near-Earth binary asteroids [Vokrouhlicky et al., 2005b].

[Nesvorny and Bottke, 2004] studied the young Karin family, with age only 5.8+£0.2 Myr, and
on the basis of convergence of orbits they determined the Yarkovsky effect for its ~ 70 members.
The magnitude of the measured Yarkovsky orbital drift agreed with the theoretical predictions.
They also determine the surface conductivity of asteroidal fragments as ~ 0.1 W/m/K.

[Chesley et al., 2006] focused on the small near-Earth asteroid 1992 BF. Orbital calculations
based on the observations from 1992-2005 poorly fit the pre-discovery observations from 1953,
but with the Yarkovsky effect included into the force model they were able to fit the com-
plete observational arc 1953-2002. The resulting semimajor axis drift is da/dt = —(11 £2) x
10~* AU/Myr, which corresponds to the Yarkovsky effect with a retrograde spin axis orientation
with obliquity 120° — 180°.

4.1.3 The theory of the Yarkovsky effect

The computation of the Yarkovsky effect usually consists of the determination of asteroid’s
surface temperature, the computation of the corresponding thermal force and the final determi-
nation of its effect on asteroid’s orbit. The surface temperature 7' is calculated from the heat
diffusion equation (HDE for short) inside the body (see Appendix A)

pcaa—jt1 =V(K -VT), (4.1)

where the density p, the thermal capacity ¢ and the thermal conductivity K describe the thermal
properties of asteroid material. The HDE is connected with the surface boundary condition:

KVT -n+eT'=(1-A)E. (4.2)
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Here, n denotes the outer normal to the surface, € the emisivity, o the Stephan—Boltzmann
constant, A the albedo and &£ incident solar flux. This equation is essentially the energy conser-
vation law: The first term represents the energy conducted from the surface to the interior of
the body, the second one is the energy taken away by thermal radiation and the right hand side
term represents the absorbed solar energy. The thermal force fi,(¢) acting on a body can be
determined by Equation (2.11). Knowing the force we can obtain the change of the semimajor
axis a of asteroid’s orbit due to the Yarkovsky effect by Gauss equation

da 2 p(t) - vit), (4.3)

dt  n2am
where v(t) denotes the velocity vector of the asteroid, m its mass and n the mean motion.

As mentioned in Section 4.1, the key phenomenon controlling the strength of Yarkovsky
effect is an anisotropic thermal radiation from asteroid’s surface caused by thermal lag due to
non-zero thermal inertia of the asteroid’s surface material. As we shall see, the Yarkovsky effect
is not so sensitive to the asteroid’s shape as the YORP effect.

The heat diffusion problem can be solved analytically or numerically. In analytical theories
the boundary condition is often linearized (e.g. [Vokrouhlicky, 1998a], [Vokrouhlicky, 1999]).
Moreover, the analytical theories assume (i) spherical objects, (ii) circular orbits, (iii) uniform
rotation, (iv) constant thermal parameters. Several attempts to remove these constraints were
made. For example [Vokrouhlicky, 1998b] took into account the effects of non-sphericity for
the Yarkovsky diurnal effect, [Vokrouhlicky and Broz , 1999] computed the seasonal effect as-
suming a regolith layer above the higher conductive core and [Vokrouhlicky and Farinella, 1999]
presented a semianalytical theory of seasonal effect which is able to involve elliptical orbits.

The numerical approach allows to eliminate all the above mentioned constraints, but it may
be very time-consuming (it depends on the precision and complexity of the model). The numeri-
cal model was used for prediction of Yarkovsky orbital drift of (6489) Golevka [Chesley et al., 2003].
In [Vokrouhlicky et al., 2005a] the Yarkovsky effect on irregularly shaped (1620) Geographos
and thumbling (4179) Toutatis was also computed numerically, as well as in the case of binary
asteroid 2000 DP107 [Vokrouhlicky et al., 2005b].
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4.2 Yarkovsky diurnal effect on irregularly shaped objects

This section is based on the poster [Capek and Vokrouhlicky, 2002] presented at the
ACM conference 2002 in Berlin.

Analytical theories of the Yarkovsky effect usually assume spherical objects and rely on linearized
surface boundary condition of the HDE. Our goal is to remove both simplifying assumptions by
solving the heat diffusion problem numerically for an arbitrarily shaped body. Here we present
the comparison of results obtained by an analytic theory and those of numerical model. We
proved that (i) the Yarkovsky effect is not very sensitive to the exact asteroid’s shape and (ii)
the linearized analytical theory is a good approximation.

4.2.1 Numerical model

Our approach can be briefly described in the following four steps:

1. For a body described by a polyhedron, with typically several thousands of triangular
surface facets, we determine the insolation of a given surface element, including effects of
self-shadowing between different surface elements (see Appendix B). The time step is 1s,
which corresponds to only 1’ of rotation phase.

2. With this insolation, we solve the one-dimensional HDE during one rotation cycle from
surface to depth of 15/, (see Appendix A). The initial condition is derived from the mean
insolation.

3. We repeat the previous scheme (with the initial condition corresponding to the temperature
determined in the previous turn), until the convergence of the HDE solution is attained.
Usually, we require the uncertainty of the surface temperature is less than 0.1 K.

4. With the converged solution we compute the corresponding mean Yarkovsky force acting
on each surface element according to Equation (2.9). The Yarkovsky force is then given by
a sum over all surface elements. The mean rate of change of the semimajor axis is given
by the corresponding Gauss’ equation

da 2
— =1y 4.4
dt n th* € (4.4)

Note that because of the assumption of zero eccentricity and obliquity, it is sufficient to
evaluate the Yarkovsky effect at a single point only during its revolution around the Sun.
Here, n denotes mean motion, e; the along-track vector of the orbit f;;, the Yarkovsky
force per unit mass.

4.2.2 Analytical vs. numerical approach for a sphere

As a test of our method, we first computed the diurnal Yarkovsky drift on a sphere, both analyt-
ically and numerically. We assume a circular orbit with semimajor axis a = 2.5 AU, the rotation
period 6h, the radius 1km, the bulk and surface density p = 2500 kg/m?, thermal capacity
¢ = 680J/kg/K and zero obliquity. Thermal conductivity of the surface regolith was varied
from 1079 to 10? W/m/K. Analytical model was adopted from [Vokrouhlicky, 1999]. Numerical
approach uses a “sphere” consisting of 1004 surface triangular facets.

The resulting Yarkovsky orbital drift as a function of the thermal conductivity, computed by
the analytical and numerical theory, can be seen in Figure 4.3. The most likely values of K (as
well as the peak of da/dt) inferred from infrared observations of small NEA’s are in the interval
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Figure 4.3: Left: The diurnal Yarkovsky orbital drift da/dt as a function of the thermal con-
ductivity K for a sphere with radius 1km and zero obliquity. The solid line corresponds to
the numerical solution of the HDE and the dashed line to the analytical one. Right: The ratio
between the Yarkovsky orbital drift computed numerically and analytically as a function of the
thermal conductivity for the same sphere.

0.001 —0.1 W/m/K [Delbo et al., 2006]. The results of numerical and analytical model is shown
in Table 4.1.

A comparison of Yarkovsky orbital drift da/d¢ computed numerically and analytically is
shown in Figure 4.3 right. It can be seen that the amplitude of ratio of numerical and analytical
results is decreasing with increasing thermal conductivity. This is caused by the fact, that due
to great thermal variations in the case of low conductivity, the analytical linearization of HDE
fails and produces wrong results. Nevertheless, the analytical results are only 1.6 times smaller
for conductivity 107 W/m/K. For the realistic values of thermal conductivity (K > 10~%) the
difference is less than 10%.

4.2.3 Irregularly shaped bodies vs. sphere

We tested the calculations of the Yarkovsky effect for irregular bodies on a sample of 100
Gaussian random spheres (see Appendix), all having the same mass as a sphere with radius
1km and density 2500 kg/m3. We computed the Yarkovsky orbital drift assuming the thermal
conductivity 1072 and 1072 W/m/K, keeping other parameters as above for the spherical body.
The resulting distributions of da/dt are shown in Figure 4.4.

The analytical result systematically overestimates the semimajor axis drift, both with respect
to the numerical solution for a sphere and with respect to the mean value over the Gaussian
spheres sample. Quantitative results are summarized in Table 4.1.

The analytical theory thus gives higher values by a factor of 1.25 or 1.19. Overall, however,

K (W/m/K) 103 102

numerical model (the mean value for GRS) 1.23x10~* 1.27x10~*
numerical model (sphere) 1.36x10~* 1.45x10~*
analytical model (sphere) 1.53x10=*  1.52x10~*

Table 4.1: The diurnal Yarkovsky semimajor axis drift da/dt in the units of (AU/Myr) computed by
numerical and analytical model. See the text.
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this difference is comfortably small so that the results of the linearized analytical theory can
be used for modelling statistical parameters of the meteorite transport, the origin of NEAs,
evolution of asteroid families and for simillar applications.
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Figure 4.4: The distribution of the diurnal Yarkovsky orbital drift computed for 100 Gaus-
sian random spheres with zero obliquity. Left plot corresponds to the thermal conductivity
0.01 W/m/K and right one to 0.001 W/m/K. The symbols at the bottom of the plot represent

actual individual values of da/dt.
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4.3 Yarkovsky effect on individual bodies

4.3.1 (6489) Golevka — the direct detection of the Yarkovsky effect

In the following text we describe our computations which were used for the prediction
and detection of the Yarkouvsky effect on asteroid (6489) Golevka ([Chesley et al., 2003]).

(6489) Golevka (1991 JX) is a ~ 500 m size Apollo-type object with an orbit close to the
3 : 1 mean motion resonance with Jupiter and also near to the 1 : 4 resonance with the Earth.
It was discovered during a close encounter with the Earth on May 10, 1991 [Helin et al., 1991].
A large international observing campaign during its apparition in 1995 allowed to determine the
spin vector, period of rotation, shape model and other physical properties, as well as precise
orbit [Mottola et al., 1997], [Hudson et al., 2000].

[Vokrouhlicky et al., 2000] investigated a possibility of detecting of the Yarkovsky effect via
precise orbit determination of near-Earth asteroids. They showed that such a detection is pos-
sible only using an accurate radar astrometry at several apparitions. The radar observations
must cover sufficiently long time span to accumulate Yarkovsky perturbations, which depend
quadratically on the time. In the case of Golevka they predicetd the Yarkovsky orbital drift
da/dt ~ —6x10~* AU/Myr (assuming thermal conductivity K = 0.01 W/m/K) and correspond-
ing displacement of 15.2 km, with respect to the purely gravitational model of orbital evolution,
during time interval between apparition in 1991 and 2003. On the basis of known astrometric
observations they determined the initial state vector and its uncertainity. Then they propagated
it using the pure gravity model and also the model that included the Yarkovsky force. For the
time of the close encounter in 2003 they determined 3o uncertainity ellipses in the range (R) vs.
range-rate (dR/dt) plane. (These quantities are directly observable by radar.) They showed that
the ellipsoids corresponding to standard and Yarkovsky-included model are shifted by ~ 15km
and are well separated. They concluded that the Yarkovsky effect could be dected by radar
ranging during 2003 approach.

On the basis of this prediction, Golevka was observed by radar facility of Arecibo on May
24, 26 and 27 2003 and the Yarkovsky semimajor axis drift effect was successfully detected
[Chesley et al., 2003]. In this case the Yarkovsky effect was modeled by our numerical method
for various thermal parameters as is described below. In the propagation of the uncertain-
ity ellipses, they took into account uncertainities of astrometric measurements, planetary and
small bodies masses and Yarkovsky modeling. The resulting 30 uncertainity ellipses were well
separated again. With the best fitting values of the surface conductivity and bulk density®
K = 0.01W/m/K, p, = 2.7g/cm?, the actual Arecibo astrometry of Golevka falls into the
ellipse corresponding to Yarkovsky model (the offset of ~ 15km in R and ~ 5 x 10 %km/s
in dR/dt). In what follows we give some more details about the Yarkovsky model used in
[Chesley et al., 2003].

The model

Unlike [Vokrouhlicky et al., 2000], we have used fully numerical model which is able to take
into account eccentric orbit, irregularly shaped surface of a body and precise solution of heat
diffusion problem without any linearization [Chesley et al., 2003]. Some specific features of our
model are described in detail in Appendices.

The shape model of Golevka represented by a 4092-hedron (see Appendix D) was taken from
[Hudson et al., 2000]. We determined the insolation of all surface elements along whole elliptical
orbit, including effects of self-shadowing between different surface elements (see Appendix B).

3K and p are fully correlated.
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With this insolation, we solved the one-dimensional HDE by a two-level scheme, during
one orbital period, from surface to depth of 15/, (see Appendix A). We usually made several
iterations until the surface temperature precision was better than 0.1 K. The timestep in the
first level was ~ 500s while in the second one only ~ 5s. The spatial steps increase with the
depth according to Az = Axgexp(0.1k). The initial spatial step was ~ 0.76 £; in the first level
and ~ 0.0076 ¢4 in the second one. Here ¢, represents penetration depth of diurnal temperature
variations.

K (W/m/K) 10°* 1073 1072 107!
{5 (cm) 42 131 415 1313
¢4 (mm) 05 17 54 173

Table 4.2: Penetration depths of seasonal (/) and diurnal (£;) temperature waves as functions of
the thermal conductivity K. The surface density was assumed 1.7 g/cm?, the thermal capacity
680 J/kg/K and the period of rotation 6 h.

With the converged solution of surface temperature we computed the corresponding Yarkovsky
force acting on each surface element according to Equation (2.9). The total Yarkovsky force fiy,
is then given by a sum over all surface elements (Eq. 2.11). The mean rate of change of the
semimajor axis is given by the corresponding Gauss’ equation (4.3).

We used the following orbital parameters: semimajor axis a = 2.5065 AU, excentricity e =
0.604317, inclination ¢ = 2.277°, argument of perihelion w = 66.06°, longitude of ascending
node Q = 211.502°. The pole of rotation was [ = 202°, b = —45° (ecliptical coordinates) and
corresponding obliquity € = 134°. Period of rotation P,., = 6.0264 h was slightly modified to
Prey ~ 6.02666 h in order the fraction Py, /P, to be an integer number?. The thermal capacity
was ¢ = 680 J/kg/K, the surface density® p, = 1.7 g/cm?, the bulk density p, = 2.5 g/cm?, Bond
albedo A = 0.1 and emisivity € = 0.9. We assumed the thermal conductivity K from 10™* to
107! W/m/K.

Results

For the given material parameters K, ¢ and p; we computed components of the Yarkovsky
thermal force with respect to the inertial frame and corresponding semimajor axis drift da/dt.
Figure 4.5 shows an example of da/dt behaviour during one orbital period for K = 0.01 W/m/K.
The orbit-averaged da/dt as a function of surface thermal conductivity is shown in Figure 4.6.
We also present results obtained by an analytical theory [Vokrouhlicky, 1999]. We can see
that both numerical and analytical approaches lead to almost the same averaged value of the
Yarkovsky orbital drift for Golevka.

Due to a priori unknown thermal conductivity of the surface material, we had to compute
the Yarkovsky orbital drift for a wide range of possible K’s from 10~* to 10! W/m/K (see the
discussion in Section 3.4.1).

“Tn this case Prcy/Porp = 5772. Such change of the period do not affect the results, but it allows to use a
simpler approach.
®We also made a few computation assuming the surface density 1 g/cm® and 2.5 g/cm?®.
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Figure 4.5: The Yarkovsky orbital drift as a function of the orbital phase (¢/P,). The origin of
time is chosen at the perihelion passage. The solid curve was computed for K = 0.01 W/m/K,
c = 680J/kg/K, p, = 1.7g/cm3. The dashed one represents the average value (da/dt) =
—5.5 x 10~* AU/Myr.
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——o©  1700kg/m®, numer.
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Figure 4.6: The Yarkovsky semimajor axis drift da/dt according to the numerical and analytical
theory as a function of the surface conductivity K. The solid line (with diamond symbols
indicating the actually determined values) represents da/dt determined by the numerical method,
expecting the density of the surface material 1.7 g/cm?. The dash-dotted line is computed by the
analytical theory, with the same density assumed. The dotted and dashed curves were computed
analytically, assuming the surface density 1g/cm?® and 2.5g/cm?® respectively. The square and
triangle symbols denote numerical results for densities 1 g/cm?® and 2.5 g/cm? respectively.
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4.3.2 (6489) Golevka — plausible constraints on its surface layer

This section is based on the poster [C'apek and Vokrouhlicky, 2005b] presented at the
conference ACM 2005 in Buzios, Brazil.

We improved our numerical model of Yarkovsky/YORP effect (which was used for example
in [Chesley et al., 2003]) by taking into account spatial and temperature dependence of the
thermal capacity ¢ and thermal conductivity K. As a result we can derive constraints on the
surface properties such as regolith thickness for this asteroid.

The model

We assumed the same spin, orbital and shape parameters of Golevka as in Section 4.3.1. The
main differences are in the thermal parameters: we assumed a the high-conductive core, com-
posed from fresh basalt covered by a layer with low thermal conductivity (“regolith”). More-
over, we allow for temperature dependence of thermal parameters. This is discussed in de-
tail in Section A.1.3. We adopt the temperature dependence of the thermal capacity ¢ from
[Urquhart and Jakosky, 1997] as

¢=(—0.037+1.19 x 10737 — 1.96 x 107572 + 1.24 x 1077 T3) x 4186.05 (J/kg/K),

where T' (in Kelvins) is the temperature. The thermal capacity for a given temperature is almost
the same for a wide range of stony materials. But due to the temperature dependence it can
vary from ~ 400 to ~ 800 J/kg/K at aphelion and perihelion of Golevka, respectively.

The temperature dependence of the thermal conductivity K was assumed as

K=A+BT?, (4.5)

where the term A corresponds to a heat transfer by conduction and B T2 represents a radiative
heat transfer. The second term is important in materials like regolith containing voids. In the
case of Golevka, the second term plays only a minor role.

The density is not affected by temperature variations. The thermal conductivity and density
of the core and regolith used in our model are summarized in Table 4.3.

A (W/m/K) B (W/m/K') ps (g/cm®)
regolith  0.001 — 0.1 2 x 10~ 1.7
core 2.5 0 2.5

Table 4.3: The thermal parameters used in our model of Golevka. The B term of regolith
corresponds to the lunar regolith (Table 1 in [Cremers, 1972]).

The solution of the heat diffusion equation was more difficult due to the dependence of
thermal parameters on the temperature. We had to modify the Crank-Nicolson scheme and
find an appropriate combination of spatial and time steps (see Appendix A). This scheme
is much more time consuming. We computed the Yarkovsky effect only for regolith depths
h = 1mm, 1cm, 10 cm and for conductivities A = 0.001, 0.01, 0.1 W/m/K. We again assumed
exponentially increasing spatial step (the initial one was 0.01 mm) and timestep 300s and used
polyhedral shape of Golevka (4092 surface elements).
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Results

Our results are summarized in Figures 4.7 and 4.8. Figure 4.7 shows the dependence of da/dt on
the regolith depth for three values of its conductivity® (K = 0.1, 0.01, 0.001 W/m/K). Focusing
on the right side panel we can see the Yarkovsky effect is similar for the three conductivity
values. For large regolith thickness (h > 10/4) the semimajor axis drift approaches the value
corresponding to infinite regolith depth, while for h small (compared to ¢;) it approaches the
zero regolith depth limit (=3 x 1074 AU /Myr corresponding to uniform composition with K =
2.5 W/m/K). There is transition zone between these two limit cases, characterized by a peak of
da/dt for h ~ 44, and local minimum at h ~ 1/2£,. The left panel shows the same dependence,
but the z—axis is in the metric units. We can notice the horizontal line corresponding to
measured orbital drift (da/dt) ~ 5.5 x 10~* AU/Myr. This measurement is consistent with our
model only for some particular combinations of the regolith depth h and the thermal conductivity
K: 1.3cm or 3cm for K = 0.01 W/m/K and 3c¢m or 13cm for K = 0.1 W/m/K.

More complex constraints on combination’s of the regolith’s depth h and the thermal con-
ductivity K can be inferred from Figure 4.8, where we plot a 2D function da/dt(h, K).

The measured value of da/dt for Golevka is —5.5 x 10~ AU/Myr ([Chesley et al., 2003]).
We assumed 10% uncertainity of this value (or our model) and marked the corresponding area
(upper right part of the figure) by dots. This area denotes plausible combinations of the regolith
depth A and its thermal conductivity K, which are consistent both with our model and with
measured value of non gravitational da/dt. We can conclude:

e If Golevka has a high-conductive (basalt) core, the thickness of the low-conductive surface
layer is larger than 1 cm and its thermal conductivity is larger then 0.004 W/m/K.

e The radiative term B7T? in the thermal conductivity (Eq. 4.5) has a negligible effect on
the resulting da/dt for Golevka.

Future improvements

In reality, many asteroids seems to be covered by both regolith and fresh rock. Recently we
took this fact into account and developed a model with thermal parameters dependent both
on depth under the surface and on the position on the asteroid’s surface. Only facets with the
slope” smaller than the angle of repose of regolith have a regolith layer above the fresh rock
core; others are assumed to be regolith-free fresh rock. (See Figure 4.9.)

For example, we assumed the angle of repose 30°. Regolith parameters were: depth A =1 mm,
thermal conductivity Kyegotith = (0.1 + 2 x 1071 T3) W/m/K and density pregolith = 1.7 g/cm?
and fresh rock parameters were: Ko = 2.5 W/m/K, procc = 2.5g/cm?® Other quantities were
the same as in [Capek and Vokrouhlicky, 2005b]. We obtained the semimajor axis drift —3.2 x
10~* AU/Myr. If we chose the regolith depth 100 times larger (0.1 m), we obtained the semimajor
axis drift (da/dt) = —5.4 x 1071 AU/Myr. Details of this model need to be developed in the
future work.

®In fact, it is the conductivity parameter A in Equation (4.5).
"defined as the angle between outer normal and vector of local gravity + centrifugal acceleration
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Figure 4.7: The Yarkovsky semimajor axis drift dependence on regolith depth for three values
of thermal conductivity. The dashed curve corresponds to K = 0.1 W/m/K, dotted one to
0.01 W/m/K and solid one to 0.001 W/m/K. The z-axis in the left panel represents the depth
of regolith in metric units and horizontal line indicates the actually measured da/dt on Golevka
by [Chesley et al., 2003]. The right panel has z-axis in the units of penetration depth of diurnal
temperature variations £;. See the text for discussion.
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Figure 4.8: The dependence of the Yarkovsky semimajor axis drift on the depth of the regolith
layer (z-axis) and its thermal conductivity (y-axis). The thick solid straight line represents
the penetration depth of diurnal temperature variations ¢4, while dashed ones correspond to
1/424 and 4£4. The thick contour corresponds to a value —5.5 x 1074 AU/Myr and dotted area
indicates a 10% interval of its uncertainity.
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Figure 4.9: Left: The abundance of slopes for the asteroid (6489) Golevka. Right: The distri-
bution of gravitational plus rotational acceleration across the surface of asteroid Golevka. The
short lines correspond to directions and the colors to magnitudes of accelerations on the surface.
(White color corresponds to the lowest value (gmin = 1.35 x 10~* m/s?) and blue color to the
highest value(gmax = 1.86 x 10~* m/s?).)
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4.3.3 (4179) Toutatis - an asteroid with non-principal axis rotation

This section s based on the investigation presented in [C’apek and Vokrouhlicky, 2005a]
and [Vokrouhlicky et al., 2005a].

(4179) Toutatis, a body with dimensions ~ 4.6 x 2.4 x 1.9 km, is an Apollo-type asteroid in the
3:1 mean motion resonance with Jupiter and in the 1:4 mean motion resonance with the Earth.
During its frequent close encounters to the Earth, radar observations revealed its irregularly
elongated shape [Hudson et al., 2003], non-principal axis spin state [Hudson and Ostro, 1995]
and precisely determined its orbit.

[Vokrouhlicky et al., 2000] studied a possibility of the Yarkovsky effect detection on this
body, but several mistakes occurred in their calculations. [Vokrouhlicky et al., 2005a] corrected
the older results, taking into account the right shape, dimensions, the non-principal axis rotation,
and solved the HDE numerically. In the following text we shall briefly describe our method used
in [Vokrouhlicky et al., 2005a].

The model

We have used a reduced shape model determined by [Hudson et al., 2000]. This model consists
of 12796 surface facets (see Appendix D).

The main problem, we faced in this case, was the non-principal axis rotation of Toutatis.
In the body-fixed frame, the spin axis wobbles about the long principal axis with a period of
5.367 days and this axis precedes about the angular momentum axis with period 7.420 days
[Ostro et al., 1999]. The orientation of such a freely rotating body never exactly reaches the
initial orientation. It can pose a problem for the HDE solution, since we do not dispose with a
condition of its exact periodicity.

We first determined the orientation of Toutatis by a numerical solution of Euler equations
(see [Kryszczynska et al., 1999]):

Aws+ (C— B)wpwe = 0, (4.6)
Bd)B—l-(A—C)waA = 0, 4.7)
Cwc+(B—-—A)wawp = 0, (4.8)

w4 siny 4+ wp cos P

h = 4.9

¢ sin 6 ’ (4.9)
. 0

P = we— C?S (wasinty +wp cos ), (4.10)
sin 6

0 = wycost —wpgsiny, (4.11)

where ¢, ¥ and 6 denote Euler’s angles, A < B < C principal moments of inertia and w4, wp
and we are projections of spin vector to the principal axes (A is the longest axis and C' the
shortest one). The first set of equations solves for the spin axis vector with respect to the body
frame whereas the second one solves for the orientation of the body with respect to the inertial
frame.

We used the initial conditions listed in Table 4.4 and propagated them for one orbital period®.
Then we determined deviations of the body axes from the initial position as a function of time
and searched for the best agreement with the initial orientation. We found that Toutatis reaches

8The angles had been transformed due to a different orientation of our shape model.
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oo —103° | wy 20.7° /day
o ~134° | wp 31.3°/day
0y 97° | we 98.0°/day

Table 4.4: Initial conditions of the Toutatis’s rotation taken from [Ostro et al., 1999], Table VII.
The data corresponds to the date Dec 11, 1992, 9:21 UTC.
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Figure 4.10: Angular deviations of the x (thin solid curve), y (dotted curve), and z—axis (dashed
curve) from initial orientation in space as a function of time for asteroid (4179) Toutatis. Here
we show only a short segment of 20 days near one revolution period of the asteroid. The thick
solid curve denotes the maximal angular deviation. Almost the same orientation as the initial
one is reached after 1454.4 days, which is very close to the orbital period 1451.7 days, denoted
by the arrow.

a nearly identical orientation in the space with a period 1454.4 days, which is close to the orbital
period P,,, = 1451.7days (see Figure 4.10). This result is very surprising and we have no
explanation for this fact yet. In any case, this circumstance greatly helps the HDE solution
because we may use the near periodicity of Toutatis’ orientation in space as a boundary condition
in the time coordinate.

The semimajor axis of Toutatis’ orbit was then slightly changed in order the orbital period to
be exactly 1454.4 d (due to the periodic initial condition). We assumed these orbital parameters:
semimajor axis ¢ = 2.5123 AU, excentricity e = 0.64038, inclination ¢ = 0.466°, argument of
perihelion w = 276.2° and ascending node Q = 126.6°.

With known orientation in space, we determined the insolation of each facet. (Including
effects of self-shadowing between different surface elements — see Appendix B.) For the surface
temperature determination we chose the following thermal parameters: thermal capacity ¢ =
800 J/kg/K, surface density ps = 2g/cm?, bulk density p, = 2.6 g/cm?, Bond albedo A4 = 0.08
and the emisivity € = 0.92. We assumed values of the thermal conductivity K from 5 x 107 to
5x 107 W/m/K.
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Figure 4.11: The orbit averaged semimajor axis drift for asteroid (4179) Toutatis as a function
of the thermal conductivity. The thick solid line represents the result obtained by a precise
numerical method, while the other two curves correspond to simplified analytical approaches.
For more information see the text.

Thanks to Toutatis’ slow rotation, we can solve the one-dimensional HDE by a one-level
scheme, during orbital period, from the surface to the depth of 15/, (see Appendix A). We
made 5 iterations, leading to the temperature precision better than 0.009 — 0.04 K, depending
on the thermal conductivity. The timestep was 125s (62 s in the case of K = 5 x 10~* W/m/K).
The spatial steps increased with the depth according to Az, = Axgexp(0.1k), where the initial
spatial step was 1/200 ¢;.

With the converged solution of the surface temperature and the known orientation of the

body we computed the corresponding Yarkovsky effect by the same way as in the case of Golevka
(Section 4.3.1).

Results

The resulting orbit-averaged semimajor axis drift can bee seen in Figure 4.11. We compared
this result with an estimation by a simplified analytical method (solving the linearized HDE). In
the analytical approach, Toutatis was represented by a sphere of the same mass as real asteroid.
Moreover, we assumed regular rotation about the vector of Toutatis angular momentum which
has the pole £ = 180°, b = —52° in ecliptical coordinates. We chose two periods: 7.24d and
5.367 d. The result of the analytical method (solving linearized HDE) with the period 7.24d is
in a surprisingly good agreement with the more sophisticated numerical theory.

We predicted the range® offset +40 us between Yarkovsky and non-Yarkovsky orbit during
its encounter with Earth in October 2004, giving a good perspective of a second direct detection
of the Yarkovsky effect.

Unfortunately, the detection failed so far. The measurement of the range offset led to the

°The Range means the quantity 2AR/c, where AR is the distance from the Earth (radar) to the asteroid, and
c is the speed of light.
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value (—23.5 &+ 4) us. According to [Vokrouhlicky and Chesley, personal communication], this
was caused by several facts: (i) the Yarkovsky force was badly incorporated into the software
computing the orbit. The correct value of the Yarkovsky range offset should have been (416 +
5) pus (instead of +40us) on October 7th 2004. (ii) More importantly, the effects of asteroid
perturbers, and their poorly known masses, were not taken into account, though they are very
important. Thus the combination of the Yarkovsky and asteroidal perturbations leads to the
range offset (—41 £ 18) us. Then the observation (—23.5 & 4) us fits into the predicition but the
difference between the “Yarkovsky” and “non-Yarkovsky” models is not statistically significant
yet (due to the large uncertainities). It is yet to be determined if data from the 2008 radar
ranging will allow a clear detection of the non-gravitational signal.
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4.3.4 2000 DP107 — a binary system

The section is based on the investigation presented in [C'apek and Vokrouhlicky, 2005a]
and [Vokrouhlicky et al., 2005b].

Radar observations of 2000 DP107 ([Margot et al., 2002]) revealed this object is a binary sys-
tem consisting of a primary with diameter ~ 800 m and a secondary with diameter ~ 300 m. The
orbital period of the pair is P, = 1.755 day, the rotation period of the primary is P = 2.77536 h,
while the secondary has a synchronous rotation. [Margot et al., 2002] also estimated the pa-
rameters of the relative orbit: semimajor axis a = 2622 m, excentricity e = 0.01, inclination
1 = 17°, argument of perihelion w = 7° and ascending node = 10° with a large error in w due
to almost circular orbit. Binary nature of this body helped to determine the mass of the sys-
tem M = 4.6 x 10! kg and corresponding bulk density of the primary component as 1.7 g/cm?
(we expected the same density of the secondary). The heliocentric orbit of the whole system
is characterized by the semimajor axis a = 1.3662 AU, excentricity e = 0.376863, inclination
1 = 8.663°, argument of perihelion w = 289.687° and ascending node 2 = 358.829°.

We studied this system [Capek and Vokrouhlicky, 2005a], [Vokrouhlicky et al., 2005b] as an
example of the Yarkovsky effect influence on binary asteroid. In this cases the Yarkovsky force
affects both the motion of the center of mass (COM for short) of the system and the relative
motion of the components.

The model

Most parameters of the relative orbit and orbit of the COM were taken as above. The only
exception was the semimajor axis of the COM and primary’s rotation period that were changed'’
slightly, in order to the ratios between orbital period F,,; of COM, rotation period of secondary
P and rotation period of primary P} were integers: Py, : Po =332:1 and P, : PL = 5034 : 1.

Next we expected the spin axes of both components are perpendicular to the plane of mutual
motion. The corresponding pole in ecliptical coordinates is £ = 280° and b = 73°. We modeled
both components as spheres with appropriate diameters, which were approximated by regular
polyhedrons with 1004 triangular facets. In contrast to other studied bodies, the self shadowing
of the asteroid’s surfaces plays only a minor role here, but the mutual shadowing of both com-
ponents during the revolution about the COM is very important and we had to incorporate this
phenomenon into our model.

The thermal capacity was assumed ¢ = 800 J/kg/K, the bulk and surface density p, = ps =
1.7g/cm3, the albedo A = 0.1 and emisivity ¢ = 0.9. We computed the Yarkovsky effect for
thermal conductivities in the range from 0.001 W/m/K to 1 W/m/K.

We solved the HDE by a one-level scheme (see Appendix A) with an exponentially increasing
spatial step. The exponent was 0.1 and the initial step Azg = 0.36 £4 for the primary, and Azy =
0.18 ¢, for the secondary, where ¢; represents the penetration depth of diurnal temperature
variations. The lower boundary condition lied in the depth 15¢,, where £, is penetration depth
of the seasonal temperature variations. The time step was 50s for the primary and 200 s for the
secondary. We determined the Yarkovsky acceleration f; for primary and f; for the secondary
separately. The Yarkovsky acceleration of the whole system (COM) is given by

f1 M, + £2M,

f == 4.12
coM M + M, ( )

and the Yarkovsky perturbation of the relative motion is given by:

046 the values a = 1.365264 AU and P, ~ 2.7779 h.
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of =f — f). (4.13)

Results

Firstly, we focus on Yarkovsky perturbations of the COM motion. Figure 4.12 shows the orbit
averaged semimajor axis drift due to the Yarkovsky effect. We also computed the Yarkovsky
effect only for primary - both analytically and numerically. We can see that the contribution of
the secondary to the whole effect is negligible for low conductivities and its significance increases
with thermal conductivity. This can be explained by the fact that the Yarkovsky effect for the
primary decreases with increasing K more quickly than for the secondary due to the rapid
rotation of the primary, and thus vanishing diurnal temperature variations for high K. We can
also see the disagreement of the linearised analytical solution with the numerical one for low K,
due to higher temperature variations, causing the HDE linearization to fail.

The time dependence of the absolute value of Yarkovsky acceleration is shown in Figure
4.13. We can see deep minima of the secondary’s acceleration due to its eclipses. The eclipses
are total near the perihelion and apohelion and they are partial near the quadratures. Eclipses
of the primary are only partial and minima of the acceleration of this component are smaller.
After the main minimum we can observe oscillations with decreasing amplitude and a period
equal to the rotational period of the primary. This phenomenon is caused by the rotation of a
cold spot arose from the passage of the secondary’s shadow and its subsequent warming.

The Yarkovsky perturbation of the relative motion is caused by 0f. The most important
is the component parallel to the relative motion df;. In the long time scales this component
produces a linear increase of the mutual distance and a quadratic advance of the longitude in
the relative orbit. The orbit averaged (df) as a function of the surface thermal conductivity is
shown in Figure 4.14.

The time dependence of the along-track component is shown in Figure 4.15. During a
shadowing of the secondary, §f, temporarily increases. This is because the shadow at first
reaches the morning side of the secondary and then this side is colder than the evening one,
causing an increase of the along-track component of the Yarkovsky force. An opposite situation
occurs during an emersion from the shadow. Due to thermal relaxation after occulations, the
along-track component ¢ f, does not average to zero (like the solar radiation pressure) and can
produce observable effects [Vokrouhlicky et al., 2005b].

We demonstrated the Yarkovsky effect is able to produce both perturbations of a heliocentric
orbit of the COM and perturbations of a relative orbit of components about the common COM.
Both these effects can serve to a detection of the Yarkovsky effect, but in the case of 2000 DP107,
the effect on the relative motion is too small to be detected. Detection of Yarkovsky effect via
its influence on the COM motion can be successful in 2016 if radar observations in 2008 are
successful.

Our model is able to describe the Yarkovsky effect on binary asteroids but in this particular
case, the approach is very simplified. This is mainly due to unknown orientation of spin axes,
unknown shapes and due to an uncertain evolution of the rotational states and the relative orbit
by tides. In the future we plan an application to better characterized systems, such as (66 391)
1999 KW4 [Ostro et al., 2006].

4.3.5 Discussion

We are able to determine the Yarkovsky effect for a wide variety of asteroids: simple cases of
spherical bodies with semimajor axis rotation, as well as irregularly shaped bodies, tumbling
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asteroids or binaries. Our model realistically describes the thermal behaviour of the surface
material (the temperature and spatial dependence of the thermal parameters).

The knowledge of the Yarkovsky effect is necessary for the prediction of the asteroid’s orbit.
For instance, the precise knowledge of the orbit is important in the case of potential Earth
impactors.

The Yarkovsky and YORP effect can be also used for determination of the thermal conduc-
tivity of the asteroid’s surface and its bulk density p, and consequently the mass, porosity and
type of the surface material (the fresh rock, regolith or mixture of them).

The independent measurement of the bulk density via direct detection of the Yarkovsky effect
alone is not possible, because bulk density is coupled with the surface thermal conductivity K as
pp K. However, if the Yakrovsky and the YORP effect are measured together, the independent
determination of p, and K is possible. (See Chapter 3.)
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Figure 4.12: The orbit averaged semimajor axis drift da/dt for 2000 DP107. The solid line
represents numerical results for the whole system, while the dashed one is computed for the
primary alone. The dotted line corresponds to the analytical results for a solitary primary.
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Figure 4.13: The absolute value of the Yarkovsky acceleration of 2000 PD107 as a function of
time for the thermal conductivity K = 0.01 W/m/K. Lower figure shows the acceleration of the
primary (the curve with a smaller amplitude) and the secondary (the larger amplitude) during
one revolution about the Sun. Upper figures show in detail the situation near the perihelion
(left) and aphelion (right) during one revolution of the components about the COM. Here the
upper grey curve denoted by “2” represents the secondary, the lower denoted by “1” the primary
and the black curve corresponds to the acceleration of the COM (according to Equation (4.12)).
More explanation in the text.
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Figure 4.14: The orbit averaged along-track component f. as a function of the surface thermal
conductivity K.
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Figure 4.15: The long-track component of §f as a function of time. Left plot shows the depen-
dence during one revolution about the COM. The vertical lines correspond to the entry and exit
of occulations. The first is the occulation of the primary and the second the partial occulation
of the secondary. The dashed line denotes an effect of the solar radiation pressure, the solid
curve denoted by “1” corresponds to the thermal conductivity K = 1 W/m/K and the solid
curve denoted by “2” to K = 0.001 W/m/K. Right plot zooms the occulation of the secondary.
Dotted curves correspond to a situation when no occulations occur.
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4.4

Summary

Our numerical model was used succesfully for the prediction and the following detection
of the Yarkovsky effect on asteroid (6489) Golevka. It was the first direct detection of this
phenomenon effect on a natural body.

We also computed the Yarkovsky effect and estimated possibilities of the detection for
several other asteroids. We are able to describe highly eccentric orbits, non-principal axis
rotation (e.g., (4179) Toutatis), or mutual shadowing in components of binary systems
(e.g., 2000 DP107).

On the basis of the detected Yarkovsky orbital drift for (6489) Golevka and our model
involving depth and temperature dependence of thermal parameters, we estimated the
depth and thermal conductivity of the surface regolith layer.

We compared the results of the analytical theory with our sophisticated numerical model
and concluded that the analytical model mostly gives very similar results as the numerical
one.

In contrast to the YORP effect, where the shape plays a key role, we showed near complete
independence of the Yarkovsky effect on the detailed shape of the body.

As a by-product, we revealed an interesting agreement between the orbital period of the
tumbling asteroid (4179) Toutatis and the period needed to its return to the initial orien-
tation with respect to the inertial system (i.e., its “rotational” period).



Appendix A

The heat diffusion equation

This chapter deals with a problem of the determination of the asteroid’s surface temperature,
which is necessary for the calculation of the Yarkovsky force and the YORP torque. We will
assume that the asteroid is thermally relaxed, this means the temperature variations are caused
by insolation only. Neither radiogenic nor other sources of heat are taken into account.

A.1 Introduction

A.1.1 Derivation of the Heat Diffusion Equation

Any gradient of the temperature VT inside a body is connected with the heat flow q according
to Fourier’s law:

q=-KVT, (A.1)

where K [Wm~!s7!] is the thermal conductivity. This heat flow through the closed surface S
increases an energy of the enclosed volume V' of a body after time dt by

6Q:—y{q-det:/V-(KVT)dth, (A.2)
S v
The second law of thermodynamics is' (e.g. [Svoboda and Bakule, 1992]):
0s
0Q=Tds=T—dt
Q=Tds =17, di
and for the volume V:
0
5Q = / T2 dtav, (A.3)
v Ot

where s is density of entropy. Together with equation (A.2) we have (assuming there is no
deformation):

0s
Ta =V (KVT). (A.4)

If there are no heat sources, as a decay of radioactive elements, and no deformations (i.e.,
constant volume) we can write

0s(T)  0s0T ¢, 0T
ot _orot T ot
1We use the notation §Q instead of dQ, because Q depends on the integration path between initial and final
state, i.e., 0@ is not a total differential.

68
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where ¢, [Jkg ! K !] is the specific heat capacity? for constant volume. Finally, together with
(A.4) we can obtain the heat diffusion equation (HDE for short)

oT
pev g = V- (KVT), (A.5)

which is a second order partial differential equation of parabolic type for the temperature T'(r, t)
as a function of position r and time ¢. Due to simplicity, we are using the notation “c”, but it
always means “c,”.

A.1.2 Initial and boundary conditions

The uniqueness of the solution of the HDE requires additional equations constraining the tem-
perature field. These are called initial and boundary conditions.

An initial condition defines temperature field in a given time 7: T(t = 7,r) = fi(r);
alternately, the initial condition can be sometimes replaced by periodic boundary condition
T(t,r) =T(t + P,r), where P is the constant period.

boundary condition describes the behavior of the temperature at the boundaries of the body.
Here we list a few examples of the most common boundary conditions (e.g., [Isachenko et al., 1969],
[Vitdsek, 1987]).

e If the temperature is predefined at the boundary as a function of time, T'(t,r) = f2(¢,r)
for r € X, then it is called the Dirichlet condition.

e The Neumann condition specifies the gradient of the temperature at the boundary: VT'(t,r) =
fa(t,r) for r € 3 and actually represents a contact with a defined thermal flux.

e Another type of boundary condition describes a cooling or heating of the body by a
surrounding reservoir. Then the heat flux is proportional to heat-transfer coefficient «
(W/m?) and the difference between the temperature of the body’s surface T'(t,r € X) and
temperature of the reservoir 7, —KVT(t,r € ¥) = a(T(t,r € X) —T),). In fact, this is a
combination of Dirichlet and Newmann boundary condition.

All these boundary conditions are linear in the temperature. In the following sections we face
a more complicated non-linear boundary condition, which stems from the energy conservation
law on the surface, where the heat transfer by the radiation and the conduction occurs.

A.1.3 Thermophysical parameters

In a solid material with a non-zero porosity the heat is transferred by the conduction and by the
thermal radiation in the voids. The thermal conductivity K can be divided into the conduction
term K, and temperature-dependent radiative term K,T'3:

K =K, + K,T3. (A.6)

The typical values of both terms for various materials are shown in Table A.1.

The thermal capacity c also depends on temperature. This dependence is often approximated
by a power law. [Winter and Saari, 1969] derived a model, that is appropriate for a wide range of
materials (Ca-feldspar, magnesium silicate, quartz, basalt, diorite, granite) and for temperatures
from few tens to ~ 500 K:

o(T) = —0.034T"2 +0.008 T — 0.000273/2 (A7)

2Sometimes called thermal capacity.
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Material K, (W/m/K) K, (W/m/K?)
Moon’s regolith  0.001 —0.002  ~ 2 x 107!
Basalt powder  0.002 — 0.005 ~4x 10712
Fresh basalt 2.56 0

Table A.1: Typical thermal conductivities ([Urquhart and Jakosky, 1997])

[Urquhart and Jakosky, 1997] use another model for lunar materials in the range from 70K to
400 K:

¢(T) = —0.037 +4.98 x 1073 T —8.21 x 10 5T% +5.19 x 1077 T3, (A.8)

The thermal capacity ¢(T") for both models can be seen in Figure A.1.
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Figure A.1: Dependance of the thermal conductivity ¢ on the temperature according to
[Winter and Saari, 1969] (solid) and [Urquhart and Jakosky, 1997] (dashed).

We shall demonstrate the importance of these variable thermal parameters on the example of
asteroid (6489) Golevka. In the perihelion (0.99 AU), the mean temperature at the equator (for
zero albedo) is approximately 297 K and the corresponding thermal capacity ¢ ~ 800 J/kg/K.
The mean temperature in the aphelion (4.01 AU) is 148 K, which corresponds to ¢ ~ 400 J /kg/K.
The value of the thermal capacity does not depend on the chemical composition of the material
and it changes solely due to temperature dependence by ~ £33%.

If we turn our attention to the thermal conductivity, we can see that its value depends
especially on the type of material, rather then on temperature. Material like Moon’s regolith
has K ~ 0.00106 W/m/K and 0.0015 W/m/K at the aphelion and perihelion respectively. For
different materials the value of K may differ by 3 orders of magnitude (see Table A.1).

We can conclude that the material dependence of the thermal conductivity is the most
important. The knowledge of surface material and especially its K is a crucial factor for correct
determination of the temperature and consequently the Yarkovsky/YORP effect.

Except for the laboratory measurements of lunar or terrestrial materials ([Cremers, 1972],
[Winter and Saari, 1969], [Urquhart and Jakosky, 1997]), we mention several more ways how to
estimate surface thermal properties of asteroids: laboratory studies of their meteorite equivalents
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[Yomogida and Matsui, 1983], direct measurements of the Yarkovsky effect [Chesley et al., 2003],
or infrared observations of asteroids [Delbo et al., 2007].

For the purpose of this section we shall to introduce very useful quantity describing the
thermal wave propagation, which is penetration depth of the temperature variations

0= ] —. (A.9)

Here w denotes a frequency of variations of the temperature®. In fact, this represents a depth,
where the amplitude of the surface temperature variations decreases by a factor 1/e.

A.2 One dimensional approach

[Vokrouhlicky, 1999] presented an analytical solution of the linearized HDE in three dimensions
for a spherical body. Unfortunately, the analytical solution of the HDE for irregularly shaped
objects is not known. Moreover, the numerical solution of the HDE in three dimensions is unac-
ceptably time-consuming (and computer’s memory-intensive) in our applications. Fortunately,
there are possibilities how to avoid the solution of the complete HDE (A.5).

If several conditions are fulfilled, the surface temperature of irregularly shaped asteroids can
be determined by separate solutions of one dimensional-HDE for each surface element individ-
ually. We assume the surface of an asteroid is approximated by a polyhedron composed of a
large number of triangular facets. Next we assume that

e the temparature of each surface element does not significantly affect its neighbouring
elements,

e depth of the layer thermally affected by solar radiation is much smaller than size of the
asteroid.

If this is fulfilled, we can determine the temperature of any surface elements separately, using
one-dimensional form of the HDE:

oT 0 0

where z coordinate represents depth below the surface?. This approach can be quantitatively

tested by means of penetration depth of seasonal temperature variations #,,, which corresponds
to Equation (A.9) with frequency equal to the mean motion n. The thermal variations must
occur only in a relatively thin layer close to the surface, which is thin compared to the dimension
of the asteroid.

Figure A.2 shows, how the depth /,, depends on surface thermal conductivity K. If a main
belt body (a = 2.5 AU) has a regolith layer with K = 0.001 — 0.01 W/m/K, then this depth is
several tens of cm. For s body with a fresh surface (K = 1 — 10 W/m/K), ¢, may be several
meters. The penetration depth of the diurnal temperature wave (assuming rotational period
6 hours) is about 100 times smaller than seasonal. So, our one-dimensional approach can be
used for regolith covered bodies larger than several meters and regolith free bodies larger than
several tens of meters.

The two boundary conditions complement the HDE. The first one arises from the energy
conservation at the surface (z = 0):

3Usually diurnal and seasonal frequency, i.e., rotation frequency or the mean motion about the Sun.
“Its value increases from the surface into the centre of the body.
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Figure A.2: The dependence of the seasonal temperature penetration depth on the thermal
conductivity. The upper line corresponds to the orbital period 3.95 yr, that is appropriate for
bodies with the semimajor axis ¢ = 2.5 AU. The lower one denotes the penetration depth of
daily temperature variations (P = 6 hr). The thermal capacity is assumed 800 J/kg/K and the
density 2500 kg/m3.

0T (t,0)
0z

Here 0 = 5.6697 x 107 8JK~* is the Stephan-Boltzmann constant, e the infrared emisivity,
A the Bond albedo and £(t) the insolation of the surface element. The first term on the
left hand side represents the energy conducted into core, the second term (which is usually
linearized in analytical theories) is the energy thermally radiated into space and the right hand
side term describes the absorbed solar energy. The second boundary condition corresponds to
the assumption of the isothermal core of the asteroid

lim oT(t, z) _

Z2—00 z

-K + eoT(t,0) = (1 — A)E(t) . (A.11)

(A.12)

We also use the periodic initial condition arising from the assumption that the body is thermally
relaxed:

T(t,z) =T(t+ P, z), (A.13)

where P is usually the orbital period.

A.3 Linearized analytical solutions

A.3.1 Infinite regolith depth

In this section we shall assume the case of material parameters K, ¢, p which depend neither on
depth nor temperature. Then the heat diffusion Equation (A.10) reads

or 0T

per = K 92 (A.14)
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We introduce new variables according to [Vokrouhlicky, 1998a], which are appropriate for solving
this equation. Instead of time ¢ we use { = exp (int), where n is a mean motion, and the depth
is replaced by z = z/{. Next we assume the temperature can be split into constant and variable
component and we express it in terms of mean temperature Ty as T' = T (1 + §7"). The mean
temperature T} follows from the balance between the emmited and the absorbed energy,

eoTt = (1 — A)E,,

where &, = (£(t)) is the mean value of the insolation at the given surface element. With these
variables, the heat diffusion equation (A.14) has a form

2

z'ga%a:r'(g,x) = %5T'(§,x). (A.15)

If 67" < 1 then T* = T (14+46T"+O(5T"%)) and we can linearize the surface boundary condition
(A.11), which now reads:

—HﬁéT’ +46T" +1=¢&', (A.16)
ox
where &' = £/&, and
pcKn
S o (A.17)
*

Note, that 6 is the only dimensional-less quantity left in the heat diffusion problem; it is often
called the thermal parameter (e.g. [Spencer et al., 1989]). The boundary condition (A.12) in the
core of an asteroid reads

lim 267" = 0. (A.18)

T—00 0T

If the insolation term can be written as a sum of Fourier coefficients

+oo
&= > fich, (A.19)

k=—00

and consequently the temperature variations will have simillar form

“+o00

0T (¢, ) = Y a(z)Ch. (A.20)

k=—00

Substitution these expressions to (A.15) and comparison of terms with the same power of { leads
to a set of second order linear differential equations

d? )
Wak(x) —ikag(x) =0, (A.21)

which has general solution

ap(x) = Ag exp(Vikz) + By, exp(—Vikz).
Since \/%i |k| = /|k]/2 (i £ 1), we have
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ag = Ap+ Byzx
arso(2) vexp (VIEI2 (i +1) @) + Biexp (—VIk/2 (i + 1) z)
ag<o(z) = Ajexp (\/W(z - 1)30) + By exp (—\/W(z - 1)30) .

The cases with k& # 0 can be collected into a single expression

apzo(r) = Ap exp(—ypx) + By exp(Ypz), (A.22)
where
b = /IEIJ2 (1 + i sgn k). (A.23)

The By, coefficients must be zero due to the constant temperature in the large depth (A.18). The
Ay, coefficients can be expressed by the substitution (A.22) and (A.20) into to surface boundary
condition (A.16):

+00 +oo I
—0 Y Aptpy exp(—pz) (" +4 D Ap exp(—ppa) 1= Y fr(h.

k=—o00 k=—00 k=—00

Comparison of the terms with the same power of ( leads to

Tk
A= ——
k 44 0y

for k # 0. Since Ag = (fo — 1)/4 and fo = 1 the coefficient Ay = 0. Finally, we have

+o0
T(t,z) =Ty (1 + Z 4_*_f7g¢k exp(—y % + zknt)) . (A.24)
k=—00

Since £’ is a periodic real function then f = f_j for k = 2l and fr = —f_) for k = 2] + 1.
Moreover fy; is a real number, while fo;11 is an imaginary number. After a little algebra we end
up with the expression for the temperature:

= k
T= T, 1+% Z fr exp (—\/;x> [(1 4+ Ag) cos ¢ + Mg sin ]

k=24,...
1 o0

+§ Z i fr exp (—\/§x> Ak cosdp — (1 + Ag)singg]| ,  (A.25)

k=1,3,...

where A\ = 0+/k/32 and ¢, = —\/k/2x + knt. From this expression we can conclude, that the
amplitude of the temperature variations decreases with increasing depth below the surface as

e~ VFk/22  There is also a thermal lag (given by the combination of trigonometric functions in

(A.25)).
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A.3.2 Finite regolith depth

Here we assume a more general model for a body which surface is covered by a regolith layer of
depth h, with the density p;, thermal capacity ¢; and thermal conductivity K;, while the core
has the material parameters ps, co, Ko. We also assume these constants do not depend on tem-
perature. (A similar model for a spherical body was derived by [Vokrouhlicky and Broz , 1999].)
Similarly as in the previous section we introduce new variables. In the regolith layer z; = z//;,
¢y = \/K1/(p1 cin) and temperature Ty = T, (140T7), in the core x5 = z/l2, lo = \/Ka/(p2 can)
and Ty = T, (1 4+ 07%). Then the heat diffusion Equation (A.14) has a form

.0 0?
158—C5T{(C,$1) = @(W{(C,xl) (A.26)
1
in the regolith layer and
O 9%
158—C5T2(C,$2) = 5,2002(C, 72) (A.27)
2

in the core. The surface boundary condition is similar to (A.16)

0

as well as the requirement of the constant temperature in large depth, corresponding to (A.18)

lim iéTz’ =0. (A.29)

T2—>00 $2

Compared to the case of homogeneous material, discussed in the previous section, here we have
two additional conditions on the regolith-core boundary. The first stems from the assumption
of the temperature continuity®

lim 07 = lim &7y, (A.30)

x1—>h1_ x2—>h2

and the second one corresponds to the thermal flux continuity

. 0 . 0
lim 018—5T1': lim 028—3325T2'. (A.31)

Ilﬂhl_ xl Iz%h;

Here hy = h/¢; and hy = h/l3. Using the same technique as in the case of homogeneous
material, we obtain the temperature in the regolith layer as

“+o00

0T{(Cm1) = > agl(z)CF, (A.32)

k=—00

where

5Note that z; — hl means that x; approaches h; from lower values of z; and z; — hi”' means that zi
approaches h; from higher values of ;.



APPENDIX A. THE HEAT DIFFUSION EQUATION 76

arx0(71) = Ag exp(—rz1) + Bi exp(rz1) (A.33)

and ag = Ag + By x1. Let us recall that 1 is defined by Equation (A.23). Temperature in the
core is

+0o0
0T5(C,ma) = Y bi(wa)CF, (A.34)
k=—00
where
bizo(wp) = Ck exp(—thrx2) + Dy exp(¢rz2) (A.35)

and by = Cy + Do z2. The four boundary conditions mentioned above can be used to express
the coefficients Ay, By, Cx and Dj. The assumption of constant temperature in the large depth
(A.29) can be satisfied only if Dy = 0 (but note that By # 0). At first, we discuss coefficients
with k£ # 0. The energy balance on the surface (A.28) leads to

(0191 + 4) Ak — (6190 — 4) B, = fi. (A.36)

The temperature continuity on the regolith-core boundary (A.30) reads

exp(—trh1) A + exp(rh1) By — exp(—tprha) Cr, = 0, (A.37)

and the thermal flux continuity on the same boundary (A.31) reads
o
— exp(—trh1) Ay, + exp(ihrh1) By + H_T exp(—txh2) Cp = 0. (A.38)

Putting these results together we obtain

4 = I (@ " 1) , (A.39)
ke 91
By = —g <% - 1) exp(—2vh1), (A.40)
2k 1
0
Ck = 2 2—’; e—j exp [¢k(h2 - hl)], (A.41)

where

- _ b —2ph ~ 2
2 = 9—1[91¢k<1+6 >+4<1—€ ):|
O (1= e ) (14 720 | (A.42)
For k = 0, the conditions (A.28), (A.30) and (A.31) lead to
—01By + 44g + 4By + 1 = fo,

Ay + Bohi = Cy + Dgha,
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01By = 0:Dy = 0,

and consequently
AOZB[]:C[):D[]:O.

Finally, in the regolith layer (z < h) we have

T-T, {1 4y frespttind) [(ZQ n 1) exp(— 1) — (Z—j - 1) exp(fyar — mhl)] } ,
D
(A.43)

and in the core (z > h)

T = { 0—2 ; xp[or (hy — by — z2) + zknt]} (A.44)

All the sumations are made from k = —oo to k = oo, without k£ = 0.

We can see, that these expressions for temperature inside a two-layered body approach the
expression (A.24), describing the temperature in a homogeneous body. In particular, (A.43)
approaches (A.24) when h — oo, (A.43) approaches (A.24) when h — 0 and both (A.43) and
(A.44) approach (A.24) when ¢; — ¢ and K; — Ky and p; — po.

A.4 A numerical method for constant material parameters

The linear analytical theories are valid when the temperature variations are relatively small;
for larger variations the linearization fails. Moreover, present analytical theories are derived on
the basis of several simplifications (e.g., the temperature independence of thermal parameters).
In this section we shall derive a numerical model that uses non-linearized boundary condition.
This model can be used even for cases with large temperature variations.

If the depth z is scaled by £, and time by orbital period P, then the heat diffusion equation
(A.14) has a form

or _ o*T
A.45
ot 0x2’ ( )
where t € (0, 1) and = z//,,. The energy conservation law on the surface (A.11) reads
oT'(t,0
—0 (éx’ ) + eoTH0,t) = (1 — A)E(t) (A.46)
and the lower boundary condition (A.12)
T (t
lim 2L _ g (A.47)

T—00 or

Derivatives must be expressed in terms of finite differences. We suppose constant time step
At = 1/L, where L is the number of time intervals. Time will be denoted by an upper in-
dex [ = 1...L. Since analytical theory predicts exponential decrease of amplitude of temper-
ature variations, we chose exponentially spatial step exponentially increasing with depth (like
[Hamilton and Matson, 1987]) as Az; = zj11 —2; = Azgexp(aj) with j =0... hpgee —1. Lower
index will denotes spatial coordinate. Then partial derivatives of the temperature according to
time or depth are
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! I+1 ! ! ! !
(8_T> G M| (‘9_T> i (A.48)
ot ) ; At oz ) ; Az

l l l [ l l
T _ 1 (0T _[or I S S e B R (A.49)

0z? A oz i ox i1 Az Az Azj g

Using these expressions, the HDE (A.45) reads

Tl+1 _ Tl 4 At T}+1 B ﬁ _ ﬁ B TJl.*l A 50
J — ij ij ij_l ’ ( ' )

which represents an explicit formula for the temperature at time [. Here j = 1...J — 1 and
[ =1...L. Selection of the time step and initial spatial step is restricted by von Newmann
stability criterion®

At/(Axp)? < 1/2.

The surface boundary condition (A.46) in terms of finite differencies is

4 K 1 1—A vpocKn 1
pean ! l P !
Tl) Lt T!) = 0. A51
( 0 + g€ A$0 0 ( g€ £ + o€ A$0 1) 0 ( g )

This equation needs to be solved numerically, for instance by the method of Laguerre (e.g.
[Press et al., 1992], online version http://www.nrbook.com/a/bookfpdf .php). Finally, lower
boundary condition reads

TG =T . (A.52)

These equations together with some suitable initial temperature allow to determine the temper-
ature in any time ¢ and any depth Zj.

Now we will briefly describe the algorithm how to compute the surface temperature of a
single facet of an asteroid.

1. Determine the insolation function £ of the given facet. This is discussed in (Appendix B).

2. Chose the initial temperature so that T]O = 4/(1 = A)(€)/(e0).

3. Chose the appropriate time step At and the spatial step Az in order the von Neumann
criterion of stability is satisfied: Axg = 2V At

4. Find the temperatures T]l using Equations (A.50), (A.51) and (A.52) for j = 0,...,J,
l=1,...,L, ie., during the whole orbital period.

5. The second choice of the initial temperature TJQ is done by averaging of the surface tem-
perature T} over the whole orbit (i.e., for [ = 1,..., L): TJQ = (T}). The temperature is
computed again according to 4.

5Since Az; > Axo for i > 0, then von Neumann stability criterion is fulfilled in all depths.
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Aty

Figure A.3: A “two-level scheme”: In the first level we solve the HDE with a longer timestep At
along the orbit and save the temperature profiles. In the second level we choose an appropriate
amount of time instants and solve the HDE with a shorter timestep Aty for several tens of
rotational periods. Here we use initial temperature profile determined in the first level.

6. The third and following choices of initial temperature are done by T]O = TjL and new tem-
perature is again computed according to 4. This is repeated until the required relaxation
of temperature is reached.

The time step At must be chosen small enough, in order the time delay between the maximal
temperature and the “noon” is sufficiently covered.

A problem arises, when the rotational period is small compared to the orbital period. In
this case, the necessary number of time steps is so high, that the requirements on computer’s
memory and computational time are unacceptable. We begin with a longer timestep and save
the temperature (their depth profiles) in an appropriate amount of time instants (usually 100).
Than we integrate temperature during several tens of rotational periods after these time instants
and we use the saved temperatures as the initial ones. The integration with the rough timestep
gives a sufficient determination of the sesonal temperature profile, whereas the integration with
the fine time step gives a precise diurnal temperature variations. We call this technique a
“two-level scheme”, whereas the former a “one-level scheme”. See Figure A.3.

A.5 Numerical method for non-constant material perameters

In this section we will deal with the case, when material parameters depend both on depth
and temperature. The dependance on depth follows namely from a possible existence of surface
regolith layer, which has several orders of magnitude lower thermal conductivity than a fresh
rock beneath.
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A.5.1 Modification of the Crank-Nicholson scheme

We can not use the explicit numerical scheme (A.50) here, because it would be very difficult to
fulfill the von Neumann stability criterion due to thermal dependence of material parameters.
So, we have to modify implicit Crank-Nicholson method which is unconditionally stable and
moreover it is of second order in At. The one-dimensional heat diffusion Equation (A.10) for
non-constant material parameters is

or 0K oT N o*T
C— = —— —.
PE% =~ 0z 0z ' 022
Expressing the partial derivatives in the terms of finite differencies, we obtain

l l l l
Kj+1 T Kj+1 4 Kj T + Kj Tl
Az, It Az; ' Azj )7 Azy,

At
ijpé-cg-

I+1 I _
T, =T =

! , (A.53)

which allows to solve the HDE explicitely with non-constant material parameters. If the partial
derivatives with respect the time are expressed in the time n + 1, instead of n, then we obtain
purely implicit scheme:

I+1 I+1 I+1 I+1
Tl _pl At Kj+1 I+1 Kj+1 Kj THL 4 Kj T+l (A.54)
J J ijp§+1c§_+1 ij Jj+1 ij ijil J Az J 1 ’
The sum of (A.53) and (A.54) gives
Tyl ey 1+ T =2 — oyt 057+ 0E0)] + T a0 =
=TT~ Ot T b T (4.55)
where :
g At K
J ijpécz- VA

for j = 0...J — 1. This, together with the lower boundary condition (bottom row), can be
expressed in the matrix notation

DT = R,
or
[+1 [+1 I+1 l [+1nl+1
S T = AT
A7 BT Gy T," R,
AH‘l BH—I Cl—l—l Tl+1 Rl
3 3 3 3 — 3 , (A.56)
I+1 I+1 +1 [+1 l
AJ 1 BJ 1 CJ 1 T{;% RJ*l
1 -1 ! 0
where
L 1l P Y B Y I il
A] = ajbj_l, B] = 2 a]b] (],]b]_l, C] = (J,]b],

I _ Ll I\l Ll
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Figure A.4: A typical example of slow convergence of surface temperature. The cross symbols
denote iterated temperatures (65 iterations), the solid curve is temperature computed analyti-
cally from the first four iterations. The limit temperature T is represented by the top margin of
the y—axis. It can be seen, that more than 200 iterations would be necessary for good relaxation
of the right value. Here, the analytical estimation of T, is needed.

for j=1...J—1. (A4, =1, Bl = —1.) The temperature in the time [ + 1 can be expressed
from the equation system (A.56) and the surface boundary condition:

K,
I+1\4 0 I+1 _ n+1 0 1] _
(T + DAD (L= A)Emt + 3T 0. (A.57)

I+1 1 Kl
o
System (A.56) represents a modified Crank-Nicholson scheme, which is unconditionally stable
and thus there are no restrictions on spatial or time step from the stability point of view.

A.5.2 Improvement of the convergence

The main trouble is that the matrix ID as well as the right hand side R depends non-linearly
on the unknown temperature T/, (Matrix D is expressed in the time [ + 1 and contains
coefficients Ag"’l, BZHrl and CZHrl which are functions of the temperature dependent material
parameters K and c¢. The same situation is in the case of right hand side R.) This problem can
be solved iteratively so that initially we determine I) and R using T' instead of T'*1. Then we
obtain the first iteration T!*!|y and use it again instead of T!*!. This would be repeated until a
difference between i-th and (i + 1)-th iteration will be smaller than a given precision. However,
our experience shows that sometimes a huge number of iterations is necessary to reach a right
value of T!*!. Thus we had to develop a technique which accelerates the convergence of T/t
and we describe it below.

Let T; denotes the i-th iteration of the temperature T/, We expect that iterations expo-
nentially approach a limit Th, which means that To, — T; = ysoa~*. We shall try to estimate
this limit from the first few iterations. (See Figure A.4.)

A difference between the zeroth and i-th iteration is y; = T; — Tp. Then y; = yoo(l — a™?)
and y; = yoo(1 — a™7). After some algebra we obtain y; — y; = y;a™ — y;a™". Assuming j = ki
and substituting t = ¢~ we have

yitt —yit + (y; — yi) = 0.

For k = 2 the solution is
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b Y E ly; — 2yl
2= """,
Yi

1

which leads to the single value” ¢ = (y; —y;)/y;. This means that® a = (ngﬁyl) "and yoo = Qyijl_yj ,

or by means of the temperature iterations
1 2
a:<Ti_T0>Z Yoo = (T; — To)
Ty —T;) T+ Ty — Ty

The limit temperature is then

(T; — Tp)?
2T; + Ty — Th;

If 4 = 2, the limit temperature can be determined from four iterations as

Too =Ty + (A.58)

Here, a special care must be taken if the denominator is zero or nearly zero. This indicates,
that temperature iterations converge too slowly and due to small differences between them they
seem to change linearly and not exponentially. In this case, we substitue + = 4, 8, 16, etc. until
the exponential convergence (or large number of iterations) is reached. Finally, we substitute
the limit temperature T, into (A.56) and verify it does not differ from T!*!.

Let us to estimate the number of iterations necessary to reach a good approximation of y..
Let p = 9;/Yoo. Then a=* =1 —p and i = —In(1 — p)/In(a). For example, if we want y; to be
99% of Yoo, we need roughly —In(0.01)/In(a) iterations.

A.5.3 The algorithm

Our algorithm for the computation of the surface temperature on a facet of an asteroid is the
following;:

1. Determine the insolation function £(t) for the given facet. This is discussed in (B).

2. Chose the initial temperature so that T]O = 4/(1 — A)(€)/(eo).

3. Chose appropriate initial time step Aty and spatial steps Az;. (See the example in Section
A6.)

4. Solve the temperature TJI-, during the whole orbital period, by equations (A.56), (A.57)
using method described in Section A.5.2.

5. The second choice of initial temperature T]O is given by the averaging of the surface tem-
peratures T} over the whole orbit (i.e., for [ = 1,...,L): T]O = (T}), and the temperature
is further computed? according to 4.

6. The third and following choices of the initial temperature are performed simply by TJQ = TjL
and the temperature is again computed according to 4. The time step can be smaller
and smaller in the subsequent turns. This is repeated until a satisfactory relaxation of
temperature is reached.

"rejecting the solution ¢ = 2
8The fraction is always positive because if y; > y; then y; > 0 and if y; < y; then y; < 0
9Optionally, with a smaller time step At;
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A.6 A simple example of temperature behaviour

Here we shall present an example of the temperature behaviour computed by different techniques
described before. Let us suppose the situation described in Figure A.5. The body is at a circular
orbit, 1 AU from the Sun. We shall focus on surface element dS at the equator. Its insolation
E(t) can be express as

| Asin2nt/P, t < P/2
£t) = { 0, t> P/2,

with the amplitude A = 1366 W/m? (corresponding to the flux at 1 AU distance from the Sun)
and period P = 6hr. The along-track component of the thermal force corresponding to the
temperature 1" is

2
£o(t) = ;T‘*(t) sin(2rt/P).
C
.. A
velocity
1500
N?E\ 1000; ;
3 L
g
o L J
3
2 5001 -
O 1 1 | |
0 1 2 3 4 5 6
time (h)

Figure A.5: Left: The insolation as a function of time. An amplitude is 1366 W/m?2. Right:
geometry of the problem. More explanation in the text.

In the following figures A.6—A.8 we present the solution of the surface temperature corre-
sponding to the insolation £(t),depicted in Figure A.5. A detailed discussion can be found in
the figure captions of particular figures.

In Figure A.6 we deal with a problem of the right choice of spatial and time steps (for
homogeneous body). We found that the results (temperature and the Yarkovsky force) are
almost independent on the time step (6 s — 600s). If the initial spatial step is less than Azy =~
0.144, the results do not depend neither on the spatial step.

In A.7 we show the dependence of temperature and the Yarkovsky force on the spatial step
and the regolith depth. We found the results are nearly independent on spatial step.

Finally, in Figure A.8, we compare the results (time dependence of the temperature, thermal
lag and the Yarkovsky force) of the analytical and numerical model.
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Figure A.6: The dependence of the numerically (modified Crank-Nicolson scheme) computed
Yarkovsky force and the surface temperature on chosen initial spatial step Axzg and time step At.
The upper row represents the resulting spin-averaged along-track component of the thermal
force in 108 N/m units. The middle row corresponds to the maximal surface temperature
and the lower one to minimal surface temperature in K. The left column is a countour plot
(here, the dashed line divides the figure to upper-left area, where the von-Neumann criterion
is fulfilled and lower-right one where it is not fulfilled) while the right one is a surface plot.
These results correspond to the insolation from Figure A.5. Here, we assume the thermal
parameters to be independent both on temperature and spatial coordinates (but the results
with temperature dependent material parameters are quite similar). The thermal conductivity is
assumed K = 0.01 W/m/K, the thermal capacity ¢ = 735 J/kg/K and the density p = 1.7 g/cm?.
We can see a near independence on time step in the range from 6 to 600s. However, the initial
spatial step is more important quantity. We found that Az should be smaller than ~ 0.14,4
or 0.014;. We can also see that the usage of the modified Crank-Nicolson scheme allows us to
prevent a very short time step < 6s which should be used in an explicit scheme together with
Az < 0.144 (due to von Neuman criterion of stability).
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Figure A.7: The Dependence of the numerically computed Yarkovsky force and the surface
temperature on the chosen initial spatial step Axg for various regolith depths. As in Figure A.6,
the upper row represents the resulting spin-averaged along track component of the thermal
force in 1078 N/m. The middle row corresponds to the maximal and the lower one to the
minimal surface temperature in K. The left column is a countour plot while the right one is
a surface plot. These results correspond to the insolation from Figure A.5. Here we assume
(unlike in Figure A.6) the thermal parameters dependent both on temperature and space: The
regolith layer is characterized by the thermal conductivity K = 0.01+2 x 10~'*(7/K)3 W/m/K
and the thickness from 1 to 100 mm, while the core has K = 2.6 W/m/K. The thermal capacity
(A.8) and the density p = 1.7g/cm? are the same for regolith and core. The results are again
nearly independent on a timestep. The dependence on Az is fortunately also weak, though it
is better to use Azy < 0.1¢4 again.
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Figure A.8: A comparison of results of the numerical theories (solid curves) and the analytical
theories (dashed curves, according to A.43) for various depths for regolith layer. Upper two
rows show the time dependence of the temperature for regolith thickness denoted in upper right
corner of each plot. It can be seen that there is quite well agreement between the numerical and
the analytical theory for small regolith depths. In this case the amplitude of the temperature
variations are small (due to highly conductive core) and the linearization in analytical theory
works well. The lower left figure shows the dependence of the angle §, between the direction
opposite to the Sun and the thermal Yarkovsky force. The lower right figure shows the de-
pendence of the along-track component of the thermal force on regolith depth. These results
again correspond to the insolation from Figure A.5. Here we assume thermal parameters de-
pendent both on the temperature and space: The regolith layer is characterized by the thermal
conductivity K = 0.013 W/m/K and the thickness from 0.01 to 100 mm, while the core has
K = 1W/m/K. The thermal capacity c¢ is the same for the core and the regolith layer. It is
(A.8) for the numerical method and 750 J/kg/K for the analytical method. The density of the
core and regolith is p = 1.7 g/cm3.



Appendix B

Shape representation

In our work, the shapes of all bodies (both artificial and real) are modeled by polyhedrons with
thousands of triangular facets. The bodies are represented by a list of vectors, describing the
vertices, and by a list of mutual identification (which of the vectors form a triangle). This
representation is able to describe complicated irregular shapes of small solar system bodies,
including craters, mountains or valleys on the surface (e.g., [Simonelli et al., 1993]).

For each polyhedron we need to know the volume V (mass), inertia tensor I (principal
moments A, B, C, eigenvectors of I) as well as centers r;, outer normal n; and areas S; for each
surface facet.

Moreover, we need to transform the coordinate system into the one having the origin in
the center of mass and with axes corresponding to the eigenvectors of inertia tensor (z-axis
corresponding to the longest axis of I, z-axis to the shorter one).

Here we present a procedure, how to determine these quantities and insolation (including
self-shadowing of the surface) of such a body.

Fortunately, any polyhedron (with triangular facets) can be divided into tetrahedrons (sur-
face triangular facet forms the base and some point inside the polyhedron represents vertex).
We use the procedure published by [Dobrovolskis, 1996] and generalize it slightly, in order to
describe the case of non-convex bodies (with respect to the origin of coordinate system). We
call the body as “non-convex with respect to the origin”, if there exist such a half-line going
from the origin, which intersects the surface in more than one point (see Figure B.1).

B.1 Basic characteristics of the polyhedron and its facets

Consider the vertices of tetrahedron, which can be described by four position vectors E;, F;, G;
and 0, which coincides with the origin of coordinate system (see Figure B.1 left). The center of
the surface triangular facet 7, defined by the vectors E;, F; and Gy, is

1
t;, = g(Fl-I-El—i-GZ) (B.1)

The center of mass of the tetrahedron is

1
r; = Z(El +F;+Gj). (B.2)

87
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E;
G,

Figure B.1: Left: The tetrahedron with the position vectors E;, F;, G; of the vertices, vector
pointing to the center of surface facet t; and the center of mass r;. Right: a body which is
non-convex with respect to the center of mass (denoted by the cross). This plot illustrates how
the sign of n; - t; depends on the number of intersections of t; with the surface (if the number
is odd, the dot product is negative).

Then we determine the number of intersections! of the line 0 — —t; with the surface. We denote
this number as v;. In the case of a body convex with respect to the origin, v; = 0.
The outer normal to the triangular facet is given by

n; = %(Fi —E;) x (G; — E)) (B.3)

and n; - t; > 0 must be fulfilled if v; is even while n; - t; < 0 if v; is odd (see Figure B.1 right).
The area of the facet can be expressed as S; = |n;| and the whole area of a body is

Szzsizznnﬂ (B.4)

The volume of the tetrahedron is given by

1 _
Vi=3(=D"[E; il (B.5)

Note that for v; odd the volume V; is negative. The whole volume can be expressed as

V=>"V, (B.6)

'In other words, we have to find a number of facets j # i which are intersected by the vector t;. This means

we solve the equation
Eja+F;b+Gjc=t;,

where the vectors Ej, F;, G; describe the j—th facet. If min (a,b,c) > 0, then the vector t; intersects the facet j.
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where the summation is made over all the tetrahedron volumes (both positive and negative).
Assuming a uniform density p, the center of mass of the whole polyhedron is given by

1
r= V; Vir;. (B.7)

Finally, the tensor of inertia of the tetrahedron can be expressed in cartesian coordinates as
(according to [Dobrovolskis, 1996)):

Iy = Py + P, I, =—-P, .8)
Iyy =P, + P:I;:I;u I, = — Py, (Bg)
L. = Py + Py, Iy = —Puy, (B.10)
where
v
F)jk = p2—0(2E'jE']C + 2F; F, + 2Gij + EjF, + ERFj + Eij + Eij + Fij + FkG]) (B.11)

Due to simplicity we do not write the index 7 of the tetrahedron. The inertia tensor of the whole
polyhedron is given by

I=) L. (B.12)

After the translation of the coordinate system into the center of mass (r = 0), we can proceed
with the determination of the principal moments of inertia A < B < C' and the corresponding
eigenvectors according to [Dobrovolskis, 1996].

B.2 Insolation and shadowing

Next we shall describe a procedure we use to determine the insolation & (W/m?) of a facet.
There are three possible cases:

Facet pointing away from the Sun. The facet 7 is in the shadow and the insolation is zero
when the outer normal n; and the direction to the Sun s fulfills the relation

s-n; <0. (B.13)

Sunward facet shadowed by another facet. The facet ¢ is pointing towards the Sun, if
s-n; > 0. (B.14)

However, even this sunward facet can be shadowed in case of non-convex shape of polyhedron.
We must test every surface facet j # i whether it casts shadow on the facet? i: The facet i is
shadowed by another facet j if the ray3, defined by the center of facet t; and the vector s, lies
inside a tetrahedron defined by vertices r;, E; —r;, F; —r; and G; — r;. This means that we
solve the set of 3 linear equations

%It is necessary for sunward facets only.
3This ray can be described as r; + gs, where g is positive.
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(Ej —ri)a—i—(Fj —I‘i)b—l- (G] —I‘i)C:S, (B15)

for three unknowns a, b, c. The facet ¢ is shadowed by the facet j if

min (a, b, c) > 0. (B.16)

Again, the insolation of this facet is £ = 0.

Non-shadowed sunward facet. If the facet 7 obeys (B.14) and moreover there is no facet
j # i that obeys (B.15) with (B.16), we can say the facet ¢ is insolated and its insolation is

& :(I)S-ni, (B17)

where @ is the solar flux.

This procedure is very CPU time consuming so we had to accelerate it somehow. We describe
vector s by spherical coordinates ¢ and ¢, conected with body-frame. For any ¢ = 0...360°
and ¥ = 4+90--- —90 (with a 1° step) we determined all sunward facets which are self-shadowed
and stored their indices into a file.

The computation of the insolation of a polyhedron along its orbit about the Sun is made in
several steps. At first we determine the position of the Sun s with respect to the body frame.
Then the insolation (B.17) is calculated for sunward facets (B.14). Finally, the insolation of
shadowed sunward facets corresponding to the vector s (described by ¢, 1), whose indices has
been stored in the file, is set to zero.



Appendix C

Gaussian random spheres

Due to a limited number of precisely determined shapes of asteroids we turn our attention to arti-
ficially generated shapes by the technique of Muinonen (e.g., [Muinonen, 1996], [Muinonen, 1998],
[Muinonen and Lagerros, 1998]). These shapes are called Gaussian random spheres. The radius
of such a body in the direction given by spherical angles # and ¢ may be expressed as

a

r(f,9p) = — exp|[s (0, , C.1

(0.9) = = expls (0.9 (€.1)

where a is the scaling factor and o is the variance of r. The “logradius” s(0,¢) is given by a
spherical harmonic development

oo /L
s(0,¢) = Z Z P (cos 0) (agm, cos me + by sinma) . (C.2)

Here the coefficients ag,, and by, are independent Gaussian random variables with zero mean,
and variance reading

Bim = (2= d10) % e, (C.3)

where 32 = In(1 + 0?) and &y is the Kronecker symbol. The model then depends on the scaling
factor a, the variance o of the distribution of surface heights, and a set of parameters ¢, from
Equation (C.3).

[Muinonen and Lagerros, 1998] analysed accurately known shapes of 14 asteroids and they
obtained best estimates of the parameters o and ¢, for their sample of asteroids. These param-
eters, determined for 7 smallest and 7 largest bodies, slightly differ. The most useful data for
our purpose are those for smallest bodies'. The standard deviation o of radius is then 0.245
and the coefficients ¢; are listed in Table C.1.

We used these parameters to generate a set of 1000 Gaussian random spheres. These bodies
are scaled to have the same volume as the sphere with radius 10km. Figure C.1 shows the
distribution of the dynamical ellipticity (C' — (A — B)/2)/C and triaxiality parameter A/B for
the set of 1000 Gaussian random spheres. The quantities A < B < C' denote the principal
moments of inertia. Diamond symbols in the figure denote the values for several real objects
(not used in Muinonen and Lagerros’ analysis).

"Namely: (4769) Castalia, (4179) Toutatis, (1620) Geographos, (915) Gaspra, Phobos, Deimos, (243) Ida.

91
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/ cy / cy

0 95431 x1073 | 6 6.7379 x 1073
1 21972x 1071 | 7 2.6938 x 1073
2 6.2665 x 10°" | 8 2.8687 x 1073
3 83670x107%2| 9 56931 x10°*
4 3.1648 x 1072 | 10 3.9023 x 10~
5 1.5512 x 1072

Table C.1: The coefficients ¢; from Equation (C.3). Adapted from table 5, column “Small” in
[Muinonen and Lagerros, 1998], computed for seven smallest bodies under study (see the text).
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Figure C.1: Shape characteristics for 1000 artificially generated Gaussian random spheres. Upper
left (a): Distribution of the dynamical elipticity (C' — (A + B)/2)/C. Upper right (b): triaxiality
parameter A/B. Lower figure (c): the windmill factor ¢,,. The arrow denotes the median of
absolute values, which is 0.014, and the diamond symbols indicate the values of these parameters
calculated for real objects.

Figure C.1c depicts the distribution of the absolute value of windmill factor (¢,,) defined by
Equation 3.11 within the set of 1000 Gaussian random spheres. (The windmill factor corresponds
to the strength of YORP effect and depends on the shape of body.) There are also values for
several real asteroids in the plot. The median of windmill factor is the value 0.014. The shapes
of 200 Gaussian random spheres can be seen in Figures C.2 - C.7.
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Figure C.6: Gaussian random spheres no. 141 ... 175
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Appendix D

Shape models of real asteroids

Here we shall to present the shape models of asteroids that were used for our study of the YORP

and Yarkovsky effect. All the bodies are represented by polyhedrons with typically several thou-

sands of surface triangular facets. Their axes coincide with the main axis of inertia tensor and

the origin is considered in the center of mass (assuming an uniform density). The shape models

of the following asteroids are available from http://www.psi.edu/pds/asteroid/: (433) Eros,

(1620) Geographos, (6489) Golevka, (25143) Itokawa, (243) Ida, 1998KY26, (4197) Toutatis.
For each asteroid there is a file with the following format:

v x1ylzl

v X2 y2 z2
v x3y3 z3
f i1 j1 ki
f i2 j2 k2
f i3 j3 k3

The first part of the file represents a vertex table, each row starts with the letter v and
contains x, y, z coordinates of one vertex. The second part is a facet table, containing the
linkages the vertices into facets. KEach triangular facet begins with the letter £. Note the
relationship between the number of facets n; and the number of vertices n, is ny = 2n, — 4 for
the body consisting of triangular facets. All important quantities, like volume, inertia tensor,
area of facets, etc., were determined by the technique described in Appendix B.

For all the bodies, which were used in our research of the Yarkovsky/YORP effect, we
computed the parameter ,,, describing the windmill asymmetry, see (Equation 3.11). (The
windmill factor is dimensionalless quantity which depends only on the shape of the body and
corresponds to the strength and “sense” of YORP effect.) The values for particular bodies can
be found in Table D.1. The shape models can be seen in Figures D.2 — D.8.

Golevka -0.0009 6053 -0.0064 Deimos -0.0121
Castalia 0.0031 Bacchus 0.0067 Eros 0.0219
Gaspra 0.0054 1998KY26  0.0080 Kleopatra -0.0354
Geographos  0.0054 Itokawa 0.0111 Ida -0.0436

Table D.1: Windmill factors ¢,, for 11 asteroids and Deimos.
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Figure D.1: The shape model of (1620) Geographos based on radar and optical observations.
Dimension of each box is 8000 m. ([Hudson and Ostro, 1999]).

z +vy +z
é}x

z + X
JD y
7 —X
ML :
Figure D.2: Another shape model of (1620) Gquraphos determined by the lightcurve inversion
method. Dimension of each box is 8000 m. (J. Durech, personal communication).
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Figure D.3: The 4092-facets model of (6489) Golevka. The dimension of each box is 800 m.
([Hudson et al., 2000])
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Figure D.4: The 4092-facets model of 1998 KY26. The dimension of each box is 30m.
([Ostro et al., 1999])
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Figure D.5: The model of (243) Ida composed from 4036 surface triangular facets. The dimension
of each box is 40km. ([Thomas et al., 1996])
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Figure D.6: The 12796-facet model of the asteroid (4179) Toutatis. The dimension of each box
is 6km. ([Hudson et al., 2003])
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Figure D.7: The model of (25143) Itokawa. The dimension of each box is 800 m. At present, a
more accurate shape model is available (e.g. [Demura et al., 2006]). Here we show the model
determined by [Ostro et al., 2004].
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Figure D.8: The 7790-facets model of (433) Eros. The same model with reduced number of facets
(1708 facets) was used for the study of the K influence on the YORP effect. The dimension of
each box is 40 km. ([Miller et al., 2002])
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