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Abstract:

The 2/1 mean motion resonance with Jupiter has attracted
attention of researches for tens of years. Today, the dynam-
ics in this resonance and the existence of both highly unstable
regions and stable islands is generally understood. We ob-
serve approximately 50 short-lived (unstable) asteroids, which
have been successfully interpreted as a steady-state Yarkovsky-
driven flow of objects from the neighbouring background pop-
ulation and the Themis family, or as dormant Jupiter-family
comets (Broz et al., 2005).
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However, we observe another 100 long-lived asteroids (tra-
ditionally called Zhongguos and Griquas), confined to the sta-
ble islands or their close surroundings. And there are several
contradictions with respect to them:

1. marginally stable Griquas cannot be primordial, because
they cannot survive 4.6 Gyr of orbital and collisional evolu-
tion, and no Griqua-like orbits were produced by the above
Yarkovsky-driven model;

2. Zhongguos might be remains of a protoplanetary disc, but
their size-frequency distribution (SFD) is too steep, not
collisionally relaxed;

3. Griquas have shallower SFD then Zhongguos, so they can-
not be interpreted as Zhongguos leaking due to Yarkovsky
effect, which always produces steeper SFD.

We present observed properties of Zhongguos and Griquas
and results of new simulations of orbital evolution spanning
4 Gyr. We discuss the long-term stability of resonant orbits
with respect to the Yarkovsky effect.

Definitions:

e dynamical lifetime ¢, n the time spent inside the J2/1

resonance, until the body is ejected from this zone; we
calculate it as a median value for the original orbit and
12 close-clones

e pseudo-proper resonant elements ay, e, I, — osculating
elements at the time when |o| < 5°A2S > 0A|w—w;| < 5°
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What is the asteroids classification wrt. 12 /1?

e long-lived: t;, /> 70 My

— stable (“Zhongguos”): t, n>1Gy

— marginally stable (“Griquas”): ¢, s (70, 1000) My

e short-lived (unstable): 5,/ < 70 My
— extremely unstable: ¢, /= 2 My

detailed list @ http://sirrah.troja.mff.cuni.cz/yarko-site/

Where are they located?
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What are their absolute magnitude distributions?
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What sizes are they? (If we assume albedo 0.05. .. )
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What is the lifetime ( jo /1) distribution upto 4 Gyr?
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Are small Zhongguos stable wrt. Yarkovsky effect?

e nominal sizes D multiplied by factors: 1, 0.1, 0.01 and 0.001
= Yarkovsky drift-rate scales as 1/D

e thermal parameters: ¢ = 1300kg/m3, K = 0.01 W/m/K
C' =680 W /kg/K (ie., C-type bodies), v € [0°, 180°]
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What is the dependence of escape on the obliquity?
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e obliquity v = 0° and 45° = outward (diurnal) drift
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e isosurfaces of particle density npp in log-colour scale
(for the case of sizes multiplied by 0.01)
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Why they cannot originate as MBA’s
pushed by Yarkovsky effect?

13

e asteroids pushed into the J2/1 resonance from neighbouring
MB zone do not visit locations of most Zhongguos and

Griquas:
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e ... and they have short lifetimes (corresponding rather to
unstable resonant asteroids):
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Why they cannot be primordial?

e The slope of SFD of Zhongguos seems to be too steep for
a primordial population.

e A capture of planetesimals in J2/1 MMR with Jupiter at
the end of the period when Jupiter and Saturn were in their
mutual 2/1 resonance (a mechanism which worked for the
Trojan region — Morbidelli et al. (2005)), does not produce
Zhongguos and Griquas. Maybe, another Jupiter—Saturn
resonant capture is responsible, or resonance sweeping?
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Conclusions:

e Zhongguos and Griquas cannot be simply divided by a cri-
terion based on dynamical lifetime, even on 4 Gyr time scale

e Yarkovsky-driven instability (at the time scale of 100 Myr)
occurs at sizes < 100 m

e small retrograde rotating asteroids are more unstable than
prograde ones
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