A six-part collisional model of the main asteroid belt

M. Brož¹, H. Cibulková¹, P. G. Benavidez²

¹ Charles University in Prague, Czech Republic
 ² Universidad de Alicante, Alicante, Spain

Motivation

- *new* data (albedos and diameters for 129,750 asteroids) from the WISE satellite (Masiero et al. 2011)
- test if a *single* scaling law can be used for the whole main belt (Benz & Asphaug 1999)
- to decide if asteroids are rather *monolithic* or *rubble-piles*? (simulations from Durda et al. 2007, Benavidez et al. 2012)
- we focus on the last ~3.85 Gyr *only* (i.e. post-LHB)!

Observational data from WISE

Observed asteroid families

- we use the list of 82 families from Brož et al. (2013), with a few additions (Walsh et al. 2013)
- essentially compatible with lists of Masiero et al. (2013), Nesvorný (2012)
- we need also *physical* parameters (D_{PB} , M_{LR}/M_{PB} ratio) to distinguish catastrophic disruptions (methods of Durda et al. 2007, Tanga et al. 1999)

Table 1. A list of asteroid families and their physical parameters.

cont. below↓

D	Designation	v _{cutoff}	Ν	p_V	Tax.	$D_{\rm PB}$	D _{Durda}	LR/PB	$v_{\rm esc}$	q_1	q_2	Age	Notes, references
	Tuno	50	440	0.250	c	222	2	0.000	120	4.0	2.2	<07	arataring Nacyarný at al. (2005)
5	Juno	50	449	0.250	3	235	: 	0.999	139	-4.9	-3.2	<0.7	cratering, Nesvorny et al. (2003)
4	Vesta	60	11 169	0.351w	V	530	425!	0.995	314	-4.5	-2.9	1.0 ± 0.25	cratering, Marchi et al. (2012)
8	Flora	60	5284	0.304w	S	150c	160	0.81-0.68	88	-3.4	-2.9	1.0 ± 0.5	cut by v_6 resonance, LL chondrites
10	Hygiea	70	3122	0.055	C,B	410	442	0.976-0.78	243	-4.2	-3.2	2.0 ± 1.0	LHB? cratering
15	Eunomia	50	2867	0.187	S	259	292	0.958-0.66	153	-5.6	-2.3	2.5 ± 0.5	LHB? Michel et al. (2002)
20	Massalia	40	2980	0.215	S	146	144	0.995	86	-5.0	-3.0	0.3 ± 0.1	
24	Themis	70	3581	0.066	С	268c	380-430!	0.43-0.09	158	-2.7	-2.4	2.5 ± 1.0	LHB?
44	Nysa (Polana)	60	9957	0.278w	S	81c	?	0.65	48	-6.9	-2.6(0.5	5) <1.5	overlaps with the Polana family
46	Hestia	65	95	0.053	S	124	153	0.992-0.53	74	-3.3	-2.0	< 0.2	cratering, close to J3/1 resonance
87	Sylvia	110	71	0.045	C/X	261	272	0.994-0.88	154	-5.2	-2.4	1.0-3.8	LHB? cratering, Vokrouhlický et al. (2010)
128	Nemesis	60	654	0.052	C	189	197	0.987-0.87	112	-3.4	-3.3	0.2 ± 0.1	
137	Meliboea	95	199	0.054	С	174c	240-290!	0.59 - 0.20	102	-1.9	-1.8	<3.0	old?
142	Polana (Nysa)	60	3443	0.055w	С	75	?	0.42	45	-7.0	-3.6	<1.5	overlaps with Nysa

The scaling law and fragment SFDs

scaling law expressed as:

$$Q_D^* = \frac{1}{q_{factor}} \left(Q_0 r^a + B \rho r^b \right)$$

we need also parametric relations describing outcomes of disruptions: largest fragment mass *M*_{LF} and SFD slope *q* vs *Q*/*Q*^{*}_D

Model, parameters, χ^2 metric

- Boulder code (Morbidelli et al. 2009), particle-in-a-box + SPH
- 36 free parameters: initial SFD slopes, ranges, normalization
- fit for SFD's @ $t_{end} = 4$ Gyr and the # of families: $syn, obs ... either N(>D) \text{ or } N_{fam}$ $\chi^2 = \sum_{i=1}^{N=96+6} \frac{(syn_i - obs_i)^2}{\sigma_i^2}$ weighting $w_{fam} = 10$

a wide range of Initial conditions (for simplex)

- 729 different SFDs * 300 iterations = 218,700 simulations
- convergence to a local minimum is difficult ← stochasticity!

disruptions of large PB depend on the random seed

Results for monoliths

sigma observed simulated

12

10

6

N_{fam}

• the best fit $\chi^2 = 613$, or 512 after a detailed analysis

Results for rubble-piles

and the same set of iniconds...

- the `best' fit $\chi^2 = 1602$ only, i.e. much worse than for monoliths!
- the main belt is not composed of (pure) rubble-piles?

Possible

Improvements of the model?

- use a longer SFD `tail'
 (D_{min} = 0.01 km)
- account for the Yarkovsky effect dynamical decay $N(t+\Delta t)=N(t)\exp\left(\frac{\Delta t}{\tau_{YE}}\right)$
- optimize *sequentially* the 6 parts of the MB
- none of these works!

a lot of Conclusions and future work

- indeed different scaling laws for different parts of the MB?
- improve the scaling of $D_{PB} = 100$ km disruptions?
- the evolution is too stochastic ($N \sim 10^{\circ}$) \rightarrow prescribe large disruptions (i.e. a deterministic model)?

- improve the YE model (using N-body simulations)?
- some of v_{imp} > 5 km/s → use a velocity-dependent scaling law?
 (e.g. Leinhardt & Stewart 2012)
- family lists are strongly biased? (Walsh et al. 2013)
- etc.?

