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ABSTRACT

Context. In the past decade, more than one hundred asteroid models were derived using the lightcurve inversion method. Measured
by the number of derived models, lightcurve inversion has become the leading method for asteroid shape determination.
Aims. Tens of thousands of sparse-in-time lightcurves from astrometric projects are publicly available. We investigate these data
and use them in the lightcurve inversion method to derive new asteroid models. By having a greater number of models with known
physical properties, we can gain a better insight into the nature of individual objects and into the whole asteroid population.
Methods. We use sparse photometry from selected observatories from the AstDyS database (Asteroids – Dynamic Site), either alone
or in combination with dense lightcurves, to determine new asteroid models by the lightcurve inversion method. We investigate various
correlations between several asteroid parameters and characteristics such as the rotational state and diameter or family membership.
We focus on the distribution of ecliptic latitudes of pole directions. We create a synthetic uniform distribution of latitudes, compute
the method bias, and compare the results with the distribution of known models. We also construct a model for the long-term evolution
of spins.
Results. We present 80 new asteroid models derived from combined data sets where sparse photometry is taken from the AstDyS
database and dense lightcurves are from the Uppsala Asteroid Photometric Catalogue (UAPC) and from several individual observers.
For 18 asteroids, we present updated shape solutions based on new photometric data. For another 30 asteroids we present their partial
models, i.e., an accurate period value and an estimate of the ecliptic latitude of the pole. The addition of new models increases the
total number of models derived by the lightcurve inversion method to ∼200. We also present a simple statistical analysis of physical
properties of asteroids where we look for possible correlations between various physical parameters with an emphasis on the spin
vector. We present the observed and de-biased distributions of ecliptic latitudes with respect to different size ranges of asteroids as
well as a simple theoretical model of the latitude distribution and then compare its predictions with the observed distributions. From
this analysis we find that the latitude distribution of small asteroids (D < 30 km) is clustered towards ecliptic poles and can be
explained by the YORP thermal effect while the latitude distribution of larger asteroids (D > 60 km) exhibits an evident excess of
prograde rotators, probably of primordial origin.

Key words. minor planets, asteroids: general – thechniques: photometric – methods: numerical – methods: statistical

1. Introduction

The lightcurve inversion method (LI) is a powerful tool that
allows us to derive basic physical properties of asteroids (the
rotational state and the shape) from their disk-integrated pho-
tometry (see Kaasalainen & Torppa 2001; Kaasalainen et al.
2001, 2002). This photometry can be dense-in-time, which typi-
cally consists of tens to a few hundreds of individual data points

� Tables 3–6 are available in electronic form at
http://www.aanda.org

observed during one revolution. This is in contrast to sparse-in-
time, where the typical separation of individual measurements is
large compared to the rotation period. For sparse data, we usu-
ally have a few measurements per night, such as in the case of
astrometric sky surveys. In the following text, we use the terms
“dense lightcurves” and “sparse lightcurves”.

To obtain a unique spin and shape solution, we need a set of
at least a few tens of dense lightcurves observed during at least
three apparitions. Based on simulated photometric data and the
survey cadence of the Panoramic Survey Telescope And Rapid
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Response System (Pan-STARRS), Kaasalainen (2004) showed
that we can also use only sparse data for the inversion tech-
nique. In this case, a unique model can be derived from more
than about one hundred calibrated measurements observed dur-
ing 3−5 years if the photometric accuracy is better than ∼5%
(Ďurech et al. 2005, 2007). Sparse data available so far are
not that accurate. Nevertheless, for many asteroids with high
lightcurve amplitudes, it is possible to derive their models from
current sparse data (see Sect. 2 for more details). We can also
combine sparse and dense data to derive models. First results
from this approach were presented by Ďurech et al. (2009),
where sparse data from the US Naval Observatory in Flagstaff
(USNO) were used.

Currently (January 2011), there are 113 models of aster-
oids derived by the lightcurve inversion method; most of them
are stored in the Database of Asteroid Models from Inversion
Techniques (DAMIT1, Ďurech et al. 2010). Most of these models
were derived from dense lightcurves. Only 24 of them were com-
puted from combined dense and sparse data (Ďurech et al. 2009).
The AstDyS database (Asteroids – Dynamic Site2), which con-
tains data from astrometric projects, is another possible source of
sparse data. However, most of the data are not accurate enough
to be used for inversion alone. On the other hand, even noisy
sparse data in combination with a few dense lightcurves can give
us, in many cases, a unique solution (Ďurech et al. 2007). The
aim of our work was to gather these data, keep only those that
were useful, and then combine them with dense lightcurves in
the lightcurve inversion method.

Dense data are best used to define the rotational period and
constrain the period interval that must be searched during the
model computation (see Sect. 3.1 for more details). On the other
hand, sparse data usually cover a long time interval, typically
over several apparitions, and carry information about brightness
variations for different geometries, which constrains the pole di-
rections.

A priori information about rotational periods of asteroids
plays an important role in the process of model determination.
When an approximate period is known, we search for the so-
lution near this value (details in Sect. 3.1) and thus save con-
siderable computational time. We use the latest update of the
Minor Planet Lightcurve Database3 published by Warner et al.
(2009) to check for previously derived periods. For many as-
teroids, there are only a few sparse lightcurves from different
astrometric observatories available but no dense lightcurves. In
these cases, we must scan the whole interval of expected pe-
riod values (2–30 h). This approach is time-consuming and there
is no guarantee that the correct period will lie in the scanned
interval.

The knowledge of rotational states of asteroids is fundamen-
tal for understanding the history of the Solar System, specifi-
cally the accretion of planets or the collisional processes. For
example, it was presumed that due to collisional evolution, the
spin-vector distribution of main belt asteroids (MBAs) should be
nearly isotropic, possibly with a small excess of prograde spins
(Davis et al. 1989). Johansen & Lacerda (2010) performed a hy-
drodynamical simulation of the accretion of pebbles and rocks
onto protoplanets and speculated that the trend of prograde rota-
tors among the largest asteroids is primordial.

1 http://astro.troja.mff.cuni.cz/projects/asteroids3D
2 http://hamilton.dm.unipi.it/
3 http://cfa-www.harvard.edu/iau/lists/Lightcurve-
Dat.html

First statistical analyses of the spin-vector distribution were
presented by Magnusson (1986, 1990) and Drummond et al.
(1988, 1991), later by Pravec et al. (2002) and Skoglöv &
Erikson (2002). They all observed a lack of poles close to
the ecliptic plane. Kryszczyńska et al. (2007) used more ob-
jects in the analysis, finding that the distribution was strongly
anisotropic with a moderate excess of prograde spins in the lim-
ited size range from 100 to 150 km. Interpretation of this de-
population of poles close to the ecliptic plane is still unclear.
Probable candidates are selection effects, the role of inclination,
the YORP effect4 (Rubincam 2000; Vokrouhlický et al. 2003),
or a combination of these. The YORP effect acts only on small
bodies with D � 40 km. Asteroids with these sizes have non-
Maxwellian spin rate distribution (Pravec & Harris 2000) and
is particularly evident for asteroids with D < 14 km (Warner
et al. 2009). It is believed that the YORP effect is responsible for
this trend since it can either spin up or spin down an irregularly-
shaped asteroid on the timescale shorter than the typical time
between collisions and also affects the obliquity of spin axes
(Rubincam 2000; Bottke et al. 2006).

In the near Earth asteroids (NEAs) population, the lat-
itude distribution of poles is different from that of MBAs
(La Spina et al. 2004; Kryszczyńska et al. 2007), i.e., there is
a significant excess of retrograde spins probably caused by the
transport mechanism of MBAs to Earth-crossing space by grav-
itational resonances and the Yarkovsky effect5 (Morbidelli &
Vokrouhlický 2003). There is no statistically significant clus-
tering in the longitude of poles of either MBAs or NEAs
(Kryszczyńska et al. 2007).

As the number of asteroid models with known physical prop-
erties grows, we can have a better insight into the nature of in-
dividual objects and into the asteroid population as a whole. In
Sect. 2, we describe available dense and sparse photometric data
and the selection of astrometric observatories with quality sparse
data. In Sect. 3, we present new asteroid models derived from
combined photometric data sets or from sparse data alone, men-
tioning a few individual objects and define several procedures on
how to test the reliability of new models. In Sect. 4, we present
a statistical analysis of asteroid physical parameters that we de-
rived using the lightcurve inversion method or adopted from dif-
ferent sources (proper elements from the AstDyS database, di-
ameters from IRAS, . . . ). We also present results of a numerical
simulation that allowed us to estimate the bias in pole directions
of the lightcurve inversion method. Using these results, we then
corrected the observed pole distributions for this effect. Finally,
in order to explain the observed latitude distributions, we present
a simple theoretical model of the latitude distribution in Sect. 5.

2. Photometric data

The main source of dense photometric lightcurves is the Uppsala
Asteroid Photometric Catalogue (UAPC, Lagerkvist et al. 1987;
Piironen et al. 2001), where the lightcurves for about 1 000 as-
teroids are stored. We also used data from several individual ob-
servers (Table 6).

Sparse photometry was first used in combination with dense
data for lightcurve inversion by Ďurech et al. (2009). These
sparse data were from the USNO-Flagstaff station and had a
typical photometric uncertainty of ∼8−10%. Other sparse photo-
metric measurements are produced by many astrometric surveys,

4 Yarkovsky-O’Keefe-Radzievskii-Paddack effect, a torque caused by
the recoil force from anisotropic thermal emission.
5 A thermal force acting on a rotating asteroid.
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Table 1. Comparison of estimated characteristics of residuals for 13 selected observatories: mode, “FWHM” and median.

Obs NLC Mode FWHM Median NP Weight Observatory name
608 2459 0.26 0.20 0.27 37 0 Haleakala-AMOS
644 2567 0.22 0.22 0.24 36 0 Palomar Mountain/NEAT
683 218 0.18 0.25 0.20 39 0 Goodricke-Pigott Observatory, Tucson
689 1970 0.14 0.12 0.15 118 0.3 U.S. Naval Observatory, Flagstaff
691 1893 0.23 0.22 0.24 39 0 Steward Observatory, Kitt Peak-Spacewatch
699 546 0.17 0.11 0.18 33 0.1 Lowell Observatory-LONEOS
703 8350 0.17 0.16 0.19 54 0.15 Catalina Sky Survey
704 8333 0.42 0.17 0.42 311 0 Lincoln Laboratory ETS, New Mexico
950 80 0.14 0.11 0.15 180 0.15 La Palma
E12 1354 0.14 0.16 0.15 41 0.1 Siding Spring Survey
G96 1810 0.14 0.22 0.17 43 0.1 Mt. Lemmon Survey
H07 161 0.20 0.18 0.23 47 0 7300 Observatory, Cloudcroft
Hip 49 0.10 0.10 0.11 53 0.3 Hipparcos satellite

Notes. For each observatory, the table gives also the number of sparse lightcurves NLC, and the average number of data points for a single lightcurve
NP.

but mostly as a by-product. In most cases, asteroid magnitudes
are given to only one decimal place, i.e., the accuracy is 0.1 mag
at best. Whether or not this is sufficient for a unique shape
determination for reasonable number of asteroids can be de-
duced from asteroids lightcurve amplitude distribution. We used
lightcurve amplitude data for ∼2500 asteroids from the Minor
Planet Lightcurve Database (Warner et al. 2009) and found that
the mean lightcurve amplitude is ∼0.3 mag. For 19% of aster-
oids, the amplitude is ≥0.5 mag. This means that, in principle,
photometry with an accuracy of ∼0.1 mag carries sufficient in-
formation about rotational states and shapes for a significant
number of asteroids.

Our goal was to find out which observatories produce pho-
tometry suitable for lightcurve inversion and to use these data for
determining new asteroid models. Through to September 2009
(the time of the data download), data for more than 350 000
objects from almost 1500 observatories were archived on the
AstDyS server. Some of the observatories contributed with only
a few data points, while others contributed tens of thousands of
photometric measurements (e.g., large sky surveys such as the
Catalina Sky Survey, LONEOS, or Siding Spring Survey).

2.1. Data reduction

The quality of the sparse photometry archived on the AstDyS
varies significantly. We investigated the photometry carefully by
establishing criteria for its quality. Then, using those criteria, we
choose only those data that were useful for inversion.

For each observatory, we extracted photometric data for the
first 10 000 numbered asteroids if there were at least 30 data
points for a single lightcurve. We then transformed this pho-
tometry to the standard format used in lightcurve inversion: we
computed geometry of observation (astrocentric ecliptic coordi-
nates of the Sun and the Earth), corrected for light-time, normal-
ized the brightness to the distance of 1 AU from the Sun and the
Earth, and excluded clear outliers.

For further investigation, we selected 13 observatories that
fulfilled the condition of having data for more than ∼50 aster-
oids. This resulted in almost 30 000 sparse lightcurves for ∼9000
asteroids. In the next step, we estimated mean uncertainties of
individual observatories and, based on these uncertainties, we
assigned a relative weight to the data from each observatory. In
this process, we assumed that the brightness vs. solar phase an-
gle relation can be fitted with a simple relation for each sparse

lightcurve:

f (α) = cos2
(α

2

) [
a exp

(
−α

b

)
+ c α + d

]
, (1)

where α is the solar phase angle6 and a, b, c and d are free pa-
rameters. Then, we constructed a histogram of residuals (rms)
for each observatory comparing actual data against the model
given by Eq. (1). Four examples are plotted in Fig. 1. The
dispersion is caused by observational uncertainties and by the
amplitudes of the lightcurves. From these histograms, we esti-
mated the “FWHM”7 values and the most frequent residual (the
mode); median values of the residual distributions for each lo-
cation (Table 1) were computed. Observatories with a high me-
dian or “FWHM” value (�0.2 mag for both) are not suitable for
the lightcurve inversion (e.g. observatory 691 in Fig. 1). Data
from only seven observatories, listed in Table 1 with non-zero
weights, had sufficient accuracy and so could be used for mod-
eling. Based on the values of medians and “FWHMs”, we esti-
mated a weight for the photometric data from each observatory
relative to dense data, which has a unity weight (see Table 1).
We assumed that the typical accuracy of dense lightcurves is
∼0.02 mag.

The USNO in Flagstaff (MPC code 689) and the Hipparcos
satellite are clearly the best observatories with respect to photo-
metric accuracy. Other observatories are less accurate but they
still hold some information about rotational states and shapes
of asteroids. For any given asteroid, we have typically 2−4
sparse lightcurves from different observatories covering the last
∼10−15 years. Data from USNO were already used by Ďurech
et al. (2009). We updated those data along with adding another
20−30% of new data from the years 2008 and 2009 if there was
an apparition for the asteroid.

3. Results

3.1. Models of asteroids

Our lightcurve inversion (LI) method is based on the optimiza-
tion of unknown parameters of the shape (modeled as a convex
hull), the rotational state, and the scattering law (see Kaasalainen
& Torppa 2001; Kaasalainen et al. 2001). The parameter space
have many local minims. Since LI is a gradient-based method

6 The Sun-asteroid-Earth angle.
7 The width of the distribution in the half of its maximum.
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Fig. 1. Four histograms of residuals comparing actual data against the
model given by Eq. (1) of all sparse lightcurves belonging to the follow-
ing observatories: 689 USNO, 691 Steward Observatory, 703 Catalina
Sky Survey and E12 Siding Spring Survey. Number of bins is ∼√N,
where N is the total number of sparse lightcurves used for histogram
construction.

that converges to a local minimum near the initial choice of pa-
rameter values, it is critical to find the global minimum for the
data set and then do the modeling. Finding a global minimum
involves a systematic search through all relevant parameter val-
ues. Each model corresponding to a particular local minimum
is characterized by a single value χ2, which corresponds to the
quality of the fit.

A unique solution is defined as follows: (i) the best period
has at least 10% lower χ2 than all other periods in the scanned
interval; (ii) for this period, there is only one pole solution with
at least 10% lower χ2 than the others (with a possible ambiguity
for λ ± 180◦); and (iii) this solution fulfills our additional tests
(see Sect. 3.3).

The most time-consuming part of the lightcurve inversion
method is scanning through all periods within a chosen interval,
which we determined by using the periods and reliability codes
given in the Minor Planet Lightcurve Database8. For each aster-
oid, we scanned an interval centered at the reported period value
P with a range of ±1%, ±5% and ±20% of P for reliability codes
4, 3 and 2, respectively. Half and double periods were tested later
on.

We combined relative lightcurves from the UAPC and from
individual observers together with sparse data obtained from the
AstDyS site to create a data set for each asteroid. This gave us
data sets for ∼2300 asteroids (in ∼900 cases there were only
sparse data available) to which we then applied the lightcurve
inversion method and then we ran the additional tests described
in Sect. 3.3. We derived 80 new unique models, 16 of which are
based only on sparse data. Basic characteristics of these models
are listed in Table 3. We estimated the uncertainty in the pole
direction as ±10–20◦ based on previous results with limited data
sets. As might be expected, the uncertainty seems dependent on
the number of dense and sparse photometric data. The longi-
tude uncertainty increases for higher latitudes because meridi-
ans on a (λ, β)-sphere are more dense with increasing latitude.
These uncertainties are discussed in more detail in Sect. 4.3. The

8 http://cfa-www.harvard.edu/iau/lists/Lightcurve-
Dat.html, there is also an explanation and more details about the
reliability codes too.

uncertainty of the rotational period depends on the time interval
covered by observational data and is of the order of the last dec-
imal place of period values P in Tables 3−5.

In some cases, we were able to determine a unique rota-
tional period, but we had multiple pole solutions with similar
ecliptic latitudes β. These models give us accurate period val-
ues and rough estimates of ecliptic latitudes β, which are also
important parameters. In Table 4, we present results for 30 par-
tial models, where β is the mean value for all different models
if the dispersion is smaller than 50◦. We defined a parameter
Δ = |βmax−βmin|/2 as being the estimated uncertainty of β, where
βmax and βmin are the extremal values within all β.

All new unique shape models are now included in DAMIT.

3.2. Comments to selected models

In DAMIT there are several solutions designated as “prelimi-
nary”. These models do not have a well-constrained pole so-
lution or are based on combined data sets. For 18 of those as-
teroids we derived updated model solutions based on additional
photometric data (see Table 5). The difference between the old
and new model for asteroid (1223) Neckar was significant. The
new model has a slightly different period, but the pole direc-
tions and shapes are nearly similar to the old model. The current
data suggest a period of P = 7.82401 h (previous value was
P = 7.82123 h).

The asteroid (4483) Petofi was recently observed by Brian
Warner. We derived a shape solution from three poor dense
lightcurves and one sparse lightcurve from Catalina Sky Survey.
Warner used these four lightcurves in combination with his new
observations and also derived the shape model of Petofi (Warner
2011a). His period of P = 4.3330 h and pole direction (90◦, 35◦)
are close to our solution of P = 4.33299 h and (107◦, 40◦).

The asteroid (832) Karin was also studied by Slivan &
Molnar (2010); their solution with P = 18.352 h and pole (51◦
or 228◦, 41◦) confirms our results, see Table 3.

In past decades, occultations of stars by several asteroids
were observed. These events give us additional information
about the shape and can help resolve which mirror solutions
of a model is the correct one. According to the recent work of
Ďurech et al. (2011), asteroid occultation measurements prefer
pole solutions of (122◦, −44◦) for (10) Hygiea, (347◦, 47◦) for
(152) Atala, (28◦, −72◦) for (302) Clarissa, (223◦, 67◦) for (471)
Papagena, and (296◦, 41◦) for (925) Alphonsina. Spin solutions
preferred by asteroid occultations appear in bold font in Tables 3
and 5.

3.3. Models and method testing

We constructed five additional tests to be sure that the new mod-
els are reliable. We performed the first two tests for all models.
For models derived only from sparse data, which are presented
for the first time, we performed three additional tests:

Inertia tensor of the shape model. The lightcurve inversion
method we use assumes that asteroids are in a relaxed rotational
state, which means that derived models should rotate around the
axis with a maximum moment of inertia. For each derived shape,
we computed principal moments using equations presented by
Dobrovolskis (1996) and checked if the rotation axis was close
to the principal axis of the maximum momentum of inertia. We
rejected those models for which the angle between the spin axis
and the axis with a maximum momentum of inertia was larger
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than ±30◦. However, this criterion is too strict for elongated
models with similar sizes along the rotational axis and the axis
that is both perpendicular to the rotational axis and is the min-
imal size of the model. In this case, the principal moments for
these two axes are similar. Under these circumstances, the angle
between the spin axis and the axis with a maximum momentum
of inertia can be large even for realistic shapes and so we allowed
these models to pass this test.

Half- and double-period models. In cases where we have only
a few dense lightcurves for a given asteroid, it is easy to confuse
the correct rotational period with its half or double value. When
the a priori period value in the Minor Planet Lightcurve Database
is uncertain, which corresponds to a low reliability code (see
Sect. 3.1), it is reasonable to check if the half and double period
value give a better fit. If the period was in doubt, we searched
for a solution also around 2P and P/2; if the χ2 was lower than
1.1χ2 of the solution with period P, we rejected the model as
unreliable.

Reduction of the number of sparse photometric data. In this
test, we used only the sparse data sets for modeling. For 63 as-
teroids, this led to unique shape and spin state solutions (after
performing the tests described above). For each solution, we
randomly reduced the original amount of observed sparse data
points to 90% and used these new limited data sets again in the
lightcurve inversion. Our expectation was that we would not get
a unique solution when using less data. This was true for five as-
teroids. These models, when using the full sparse data sets, are
not necessarily wrong, but the amount of available data is prob-
ably just at the level when a unique solution can be derived. The
important point of this test is that, for a given asteroid, we did not
find two different but formally correct solutions when using the
full versus reduced data sets. In Table 3, we present 16 models
successfully derived only from sparse data that passed this test.

Models from sparse data vs. DAMIT. Here, we used previously
derived models based only on relative photometry which are
stored in DAMIT. As can seen in the previous test, sparse data
are sometimes sufficient to produce a unique model of an aster-
oid. In 16 cases, we were able to derive a model for an asteroid
which was already included in DAMIT and thus a model based
on entirely different photometric data sets is available. These two
independent models can be then compared and should be similar.
We obtained similar resulting models for all 16 asteroids.

Models of “mock” objects. For each asteroid shape model de-
rived only from sparse data, we created a set of ten “mock”
objects of roughly the same appearance and spin state (see an
example of such shape in Fig. 2). For these synthetic objects,
we computed their photometric data using same epochs and ge-
ometries and with similar random noise level. These synthetic
photometric data sets were then used in the lightcurve inversion
method. A check that the original model using actual data is re-
liable is to be able to derive most of the models of the “mock”
objects. The dispersions between the periods and pole directions
of the “mock” objects represent the typical uncertainties of these
parameters. For all studied asteroids, we were able to derive
unique models for most of their “mock” objects. In all cases
when we did not get a unique solution for the “mock” object,
the best fit corresponded to the correct solution although other
solutions could not be ruled out. The typical uncertainty in pole
direction was ±10◦ and, for the period, ∼0.1 times the difference
between the two local minimums as determined by the period
value and the time span of the data.
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Fig. 2. Asteroid (810) Atossa: shape model (left panel) and an example
of a “mock” shape model (right panel).

4. An analysis of periods, poles and sizes
of asteroid models

Previous studies have been looking on spin state results using
different techniques, e.g. amplitude-epoch, lightcurve inversion
or radar methods. If there were multiple solutions for a given
asteroid, the most probable one or simply the weighted mean
was taken. However, this could cause systematic deviations. In
our study, we used only results based on the lightcurve inver-
sion method – i.e., unique and partial models presented in this
work and models from the DAMIT. Our sample consists of 221
asteroid models: 80 new models, 18 updates for models from
DAMIT, 30 new partial models, 84 models from DAMIT and
9 new models presented by Ďurech et al. (2011). Our sam-
ple consists of models for 206 MBAs, 10 NEAs, 3 Hungaria,
1 Trojan, and 1 Hilda and so a statistical study is only possible
for the MBAs. In many cases there is an ambiguity in the pole
direction since there are two, undistinguishable mirror solutions.
For our statistical analysis we randomly chose only one.

In Fig. 3, we show (among other things to be discussed
later) the relation between the proper semi-major axis and the
proper eccentricity for asteroids in our sample and for all main
belt asteroids. It is obvious that the positions of studied aster-
oids strongly correlate with the MBAs population and so derived
models are not significantly biased with respect to orbits, e.g.
they do not lie in the inner main belt. Several asteroids in Fig. 3
with semi-major axis a > 3.3 AU belong to the Cybele group,
e.g. (121) Hermione.

4.1. Pole distribution analysis

In the following study of spin axis directions, we did not use the
Koronis family members because their spin states are correlated,
i.e., their spin vectors are clustered towards two values of the
obliquity (Slivan 2002). In Fig. 4a, we show the ecliptic latitude
distribution of our MBA sample. As in all similar plots, the width
of the latitude and longitude bins corresponds to equal surfaces
on the (λ, β)-sphere (bins are equidistant in sin β for latitudes
and in λ for longitudes). We confirmed the expectation that there
is a lack of asteroids with latitudes close to the ecliptic plane.
The latitude distribution is clearly not symmetric: about half of
the retrograde rotators have latitudes in the bin (−53◦, −90◦). On
the other hand, less than a third of asteroids with prograde spins
are in the corresponding bin (53◦, 90◦). Moreover, the remaining
prograde bins are more populated than the corresponding retro-
grade ones. From a detailed look at the plot we can see that there
are up to 10% more prograde rotators among the MBAs.

In Fig. 5, we show the dependence of the ecliptic latitude β
of the pole direction on the diameter D (most of the diameters
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Fig. 3. Relation between the proper semi-major axis and the proper eccentricity for asteroids in our sample and for the first 100 000 numbered
asteroids for comparison. Main resonances are shown by dotted lines. Prograde rotators are plotted with blue circles and retrograde rotators with
red squares. The horizontal lines represent for each asteroid its estimated past drift (i.e. where the asteroid came from) during the collisional
lifetime computed with Eq. (7). Proper elements are from the AstDyS database.

used are based on the IRAS data (Tedesco et al. 2002) or occulta-
tions profiles and have an uncertainty±10%). Even for diameters
D � 50 km, the clustering of the latitudes towards higher abso-
lute values, and conversely, the depletion close to the ecliptic
plane is obvious and markedly so for D � 30 km. Asteroids with
larger diameters have a more isotropic distribution of latitudes
and only a moderate excess of prograde. In Fig. 6, we plotted
the latitude and longitude distributions of asteroids with respect
to their diameters. Based on Fig. 5, we resolved three different
size groups: 0–30 km, 30–60 km and >60 km.

The latitude distribution for asteroids with D > 60 km
(Fig. 6a) is close to the uniform distribution for latitudes lower
than 11◦ and for larger latitudes it exhibits an evident excess
of prograde rotators. This is in agreement with theoretical argu-
ments presented by Davis et al. (1989) and recently by Johansen
& Lacerda (2010). On the other hand, the latitude distribution
for asteroids with D < 30 km (Fig. 6e) exhibits a strong de-
population of pole vectors close to the ecliptic plane (i.e. small
absolute values of latitudes β). The few asteroids with small lat-
itudes have diameters D > 25 km. The latitude distribution for
asteroids with intermediate diameters of 30–60 km (Fig. 6c) is
also somewhat clustered towards higher latitudes but the bins
for small latitudes are more populated. Therefor, it is probably a
transition region between the two distinct distributions.

It is evident that the depopulation concerns mainly objects
with diameters D � 30 km (the distribution for the intermedi-
ate size sample shows that the limit is probably ∼50 km). This
size roughly corresponds to the value, when the YORP effect
starts to act and hence it is a natural candidate for a physical ex-
planation. It is known from previous studies (Pravec & Harris
2000; Rubincam 2000) that the YORP effect is significantly
altering the periods and also spin vectors of these objects on
a timescale shorter than the typical collisional lifetime of these
objects (timescales are discussed in more details in Sect. 5). In
Fig. 7, we show the relation between the spin rate and the latitude
for the small (D < 30 km) and large (D > 60 km) groups of
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ity values of the χ2-tests (that the observed distributions are randomly
drown from a uniform distribution, see Table 2).
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asteroids. In concert with YORP theory, the spin up and spin
down and the simultaneous evolution of the latitudes towards
higher absolute values are evident in the small asteroid sample.
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Fig. 6. Histograms showing the observed latitude and longitude distri-
butions of MBAs (except Koronis cluster members) for different size
ranges. a) Shows the latitude distribution for asteroids with diame-
ters larger than 60 km, c) for asteroids with diameters in the range of
30−60 km, e) for asteroids with diameters smaller than 30 km, and sim-
ilarly b), d) and f) for longitudes. The width of bins in the latitude β and
longitude lambda λ corresponds to similar surfaces on the (λ, β)-sphere,
so the bins are equidistant in sinβ and λ. In the top right corners, there
are the probability values of the χ2-tests (that the observed distributions
are randomly drown from a uniform distribution, see Table 2).
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pole direction on the models spin rate, a) for asteroids with diameter
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Note that observed latitude and longitude distributions can
be biased by the convex inversion method and, therefore, this
bias should be taken into consideration. In general, models for
asteroids with higher amplitudes are more often successfully de-
rived than those asteroids with lower amplitudes. This is be-
cause, while the accuracy of the sparse photometry in both cases
is roughly the same, the signal-to-noise ratio is significantly bet-
ter for higher amplitude lightcurves. If we assume two bodies
with the same shapes and orbits and different ecliptic latitudes of
the poles, the body with higher absolute value of ecliptic latitude
usually has a higher amplitude. This effect is numerically inves-
tigated in Sect. 4.3.

Skoglöv & Erikson (2002) discussed the role of orbital
inclination in the observed distribution of latitudes. No indi-
cations of this effect were found in the asteroids sample of

Table 2. Test of the hypothesis that the observed pole distributions and
de-biased latitude distribution are drown from uniform distributions (a
χ2-test).

β λ βdeb

N = 9 N = 11 N = 9
Diameter χ2 % χ2 % χ2 %
all 63 10−9 5.9 88 39 10−3

>60 km 17 4.5 8.2 69 17 4.7
30−60 km 30 10−2 5.6 90 18 2.9
<30 km 59 10−7 20 4.8 37 10−3

Notes. N is the degree of freedom.

Kryszczyńska et al. (2007). We also did not find any indications
of such correlation in our sample and so we conclude that orbital
inclination does not affect the observed distribution of latitudes.

We are not aware of any other physical effects in the main
belt that could explain the non-uniform observed latitude distri-
bution of small asteroids (D < 30 km). Collisions are believed
to produce uniform spin distributions and close encounters with
planets are common only among NEAs.

There are many additional selection effects that influence the
properties of derived models, e.g. the role of amplitude, orbit,
time, accuracy and geometry of observations, among others. The
significance of this bias is unknown and cannot be easily deter-
mined. The main problem here is that for almost every asteroid,
the photometric data are from different observers with a differ-
ent number of measurements, quality, and purpose. The signif-
icance of this effect can be determined only from a comparison
of models derived from real and synthetic data of known prop-
erties. This may be possible in a few years when the photometry
from the Pan-STARRS is available, but not now. In the mean-
time, the role of the selection effects seems to be small and does
not significantly affect, for example, the latitude distribution.

The longitude distributions of the MBAs are plotted in
Figs. 4b and 6b, d, f. They are, contrary to the latitude distri-
butions, without any statistically significant features and have
very close to uniform distributions. The only exception are the
asteroids with D < 30 km, but the excess appears to be just a
random coincidence than a result of some physical process.

In all cases, we tested a hypothesis that the observed distri-
bution of latitudes or longitudes is uniform (using a χ2-test9).
The computed chi-squares and corresponding probabilities are
listed in Table 2. Higher χ2-values and lower probabilities mean
that the supposed hypothesis “the observed distribution is uni-
form” does not fit the observed data. If we assume a probability
of 5% or lower as statistically significant, we can say that the
latitude distributions for the whole sample and for asteroids with
D < 30 km and 30 < D < 60 km do not agree with a uniform
distribution. On the other hand, all longitude distributions are
consistent with uniform distributions. Latitude distribution for
the MBAs with diameters D > 60 km also disagrees with the
uniform distribution; this is because of the excess of prograde
rotators.

The overall view on the model positions within the main
belt of asteroids, together with their estimated total drifts and
the information about whether they are prograde or retro-
grade rotators (Fig. 3), shows behavior consistent with the
Yarkovsky/YORP theory: there is an asymmetry of prograde and
retrograde rotators near the main resonances and prograde aster-

9 The results based on the χ2-test are also in agreement with the
Kolmogorov-Smirnov test.
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oids drift outwards from the Sun and can reach the resonance
only from the left. On the other hand, retrograde rotators drift
the opposite direction and depopulate the zone left of the res-
onance because the resonance prevents the entry of new retro-
grade asteroids. This creates an excess of prograde rotators. The
same mechanism works also in the zone right of the resonance,
except, in this case, only an excess of retrograde asteroids is now
created. This effect is obvious in the neighborhood of the ν6 and
3:1 resonances. The total drift from an asteroid’s original loca-
tion during the collisional lifetime computed with Eq. (7) are in-
versely proportional to the size of the asteroids. Larger asteroids
(D � 50 km) do not drift significantly while smaller asteroids
frequently drift ±0.05 AU. Note that small-sized asteroids are
found mainly in the inner or middle part of the main belt (due
to selection effect; they have high albedos and/or are closer to
the Earth). Asteroids drifting through the resonances during their
collisional lifetime are interesting from the point of the dynami-
cal evolution. These asteroids were either recently collisionally-
affected or their shape models are wrong. There seems to be
three such models, two near the 3:1 resonance and one near the
resonance 5:2.

4.2. The Koronis family members

The analysis of rotational state solutions for ten members of the
Koronis asteroid family revealed a clustered distribution of their
spin vectors (Slivan 2002; Slivan et al. 2003). This spin dis-
tribution was later explained by Vokrouhlický et al. (2003) as
the result of the thermal torques and spin-orbital resonances that
modify the spin states over time of 2−3 Gyr. The modeling sug-
gested an existence of two groups of asteroids: (a) low-obliquity
retrograde objects with rotational periods P < 5 h or P > 13 h,
and (b) prograde rotators with periods 4 < P < 7 h that be-
came trapped in a spin-orbit resonance with secular frequency
s6 and thus have similar spin obliquities (42−51◦) and also simi-
lar ecliptic longitudes in the range of (24−73◦) and (204−259◦).
All ten members of the Koronis family studied by Slivan (2002)
and Slivan et al. (2003) had the expected properties: periods for
prograde rotators were shifted only to higher values of 7−10 h.
Slivan et al. (2009) published spin state solutions for another
four members of Koronis family. Only the solution for (253)
Dresda was not in agreement with the theoretical expectation.

Here, we present three new models of asteroids belonging to
the Koronis family: (832) Karin, (1482) Sebastiana, and (1635)
Bohrmann, along with two partial models for (1350) Rosselina
and (1389) Onnie. Only the spin state solutions for Bohrmann
and Onnie fit the theoretical expectations. Rotational parameters
for Karin (P = 18.3512 h, λ = 242◦, β = 46◦) are outside both
groups. Asteroids Sebastiana and Rosselina are low-obliquity
retrograde rotators, but their periods (10.49 h for Sebastiana and
8.14 h for Rosselina) are in the middle of the “wrong” range
of P = 5−13 h. Karin is the namesake and largest member of
a small and young (∼5.8 My, Nesvorný & Bottke 2004) colli-
sional family that is confined within the larger Koronis family.
The spin state of Karin was thus likely affected during this catas-
trophic event and changed to a random state that disagrees with
the clustered distribution.

We are not able to give a satisfactory explanation for
the peculiar spin state solutions for Sebastiana and Rosselina.
Nevertheless, we are aware of two possible scenarios: (i) the
initial rotational state and shape did not allow being captured
in the resonance or (ii) the objects were randomly reoriented
by non-catastrophic collisions. The timescales of such colli-
sions (given by Eq. (7)) are for Sebastiana τreor ∼ 7.5 Gyr and

for Rosselina τreor ∼ 14.7 Gyr. This leads to the probability
of a collision during the Koronis cluster lifetime (estimated to
∼2.5 Gyr, Bottke et al. 2001) ∼1/3 for Sebastiana and ∼1/6 for
Rosselina, respectively, which means that random collisional re-
orientation of the spin axis is likely for at least a few of 19 aster-
oids in the Koronis cluster with known spin state solutions (most
of them have τreor � 20 Gyr).

4.3. Biases of the LI method

We developed a numerical algorithm to estimate the selection
effect of the lightcurve inversion method and used this approach
to de-bias the observed distribution of asteroid’s pole directions.
The algorithm was as follows:

1. for a model with a known shape, we randomly generated a
new pole direction (while the overall distribution of poles
was isotropic);

2. for each shape with a new rotational state but with the period
unchanged, we computed synthetic lightcurves for the same
epochs as observed ones;

3. to each data point i, we added the corresponding noise δi
given by:

δi =
Lobs

i − Lmod
i

Lmod
i

, (2)

where Lobs
i is ith brightness observed and Lmod

i is ith bright-
ness computed, both for the original model. This gave us
synthetic lightcurve data equivalent to the original observed
data, but for a new pole direction;

4. finally, we performed a lightcurve inversion the same way as
with the actual data and tried to derive a model;

5. we repeated steps 1–4 for 50 random poles for each asteroid
model.

In this simulation, we used 80 models derived from combined
dense and sparse data sets and 89 models from the DAMIT.

For each successfully derived model we have the generated
pole direction (λgen, βgen) and period Pgen, and also the com-
puted pole and period: λcomp, βcomp, Pcomp. We computed the
angular differences between the generated and derived ecliptic
latitude and longitude of the pole direction: βcomp − βgen and
(λcomp − λgen) cos βgen (the cosβgen factor is used for the correc-
tion of the different distances of meridians near the equator and
poles). In Fig. 8, we show the histograms of these differences in
a) ecliptic latitudes and b) ecliptic longitudes. We assumed that
the histograms can be described by a normal distribution and we
computed the mean and the standard deviation (μ; σ). We found
values of (−0.2; 10.2) for latitudes and (−0.2; 5.2) for longitudes.
The standard deviation σ is directly related to the typical uncer-
tainty that we can expect in pole determination by the lightcurve
inversion method, which is ∼5◦/ cos β in λ and ∼10◦ in β.

In Fig. 9a, we constructed a histogram of the latitude dis-
tribution for all successful models. The bins in β were again
equally spaced in sin β. The latitude distribution of all gener-
ated models was not exactly uniform, the amount of latitudes in
bins slightly differed. To remove this effect, we divided the lat-
itude distribution of successfully derived models by the latitude
distribution of all generated models normalized to unity. This
correction was also applied to latitude distributions in Figs. 10a,
c, e. It is obvious that the LI method is more efficient for aster-
oids with higher |β|. The amount of successfully derived models
with |β| ∼ 0◦ is about 30% lower than with |β| > 53◦.
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there is the probability value of the χ2-test (that the observed distribu-
tion is drown from a uniform one, see Table 2).

In Figs. 10a, c, e, we constructed the histograms of latitude
distributions for successfully derived models and distinguished
three size ranges. All three plots look very similar, except that
with decreasing size, the ratio between models with |β| ∼ 0◦ and
|β| > 53◦ goes down. This ratio is ∼75% for D > 60 km, ∼65%
for 30 < D < 60 km and ∼60% for D < 30 km.

The histograms in Figs. 9a and 10a, c, e define the bias in
latitude of the LI method and can be used for de-biasing the ob-
served latitude distributions presented in Figs. 4a and 6a, c, e.
The de-biased histograms of latitudes are plotted in Figs. 9b and
10b, d, f. The histograms changed only slightly and the conclu-
sions from Sect. 4.1 are still valid, i.e., the latitude distribution
differs significantly from a uniform distribution, and especially
so for D < 30 km. The distribution of latitudes for asteroids
with D > 60 has an evident excess of prograde rotators while
the distribution for a subsample with 30 km < D < 60 km shows
an enrichment of asteroids with large latitudes (|β| > 53◦). Other
bins have similar populations. We also performed a χ2–test in the
same way as for the observed distributions (see Table 2, Cols. 6
and 7).

We did not find any significant correlation between the eclip-
tic longitude and the efficiency of the model determination.

5. A theoretical model of the latitude distribution

In order to understand observations of main-belt asteroids,
namely the de-biased distribution of their ecliptic latitudes β
(Fig. 9b), we constructed a simple model for spin evolu-
tion that contains the following processes: (i) the YORP ef-
fect, i.e., torques arising from the emission of thermal radi-
ation, (ii) random reorientations induced by non-catastrophic
collisions, and (iii) mass shedding after a critical rotational fre-
quency is reached.

On the other hand, we did not include gravitational torques
of the Sun, spin-orbital resonances, damping (dissipation of
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Fig. 10. Histograms showing the simulated and corrected (de-biased)
observed latitude distributions of MBAs for different size groups, ex-
cluding the Koronis cluster members. a) Shows the simulated latitude
distribution for asteroids with the diameters larger than 60 km, c) for
asteroids with the size in range of 30−60 km, e) for asteroids with di-
ameters smaller than 30 km. Similarly b), d) and f) show the observed
latitude distributions corrected by the bias of the LI method. The bins
are equidistant in sinβ. In the top right corners, there are the probability
values of the χ2-tests (that the observed distributions are drown from a
uniform distribution, see Table 2).

rotational energy), or tumbling. Even though individual aster-
oids may be substantially affected by these processes, our model
is for a large statistical sample of asteroids and the effect on the
overall latitude distribution is assumed to be only minor. For
example, gravitational torques and spin-orbital resonances usu-
ally cause large oscillations of β for prograde-rotating asteroids,
but they remain bound to a certain interval (Vokrouhlický et al.
2006). Moreover, we tried to account for these (rather random)
oscillations in our model as well (see below).

Our sample of 220 asteroids was the same as the observed
sample discussed in Sect. 4. This means that the orbits and sizes
correspond to real asteroids. The model for spin evolution was
similar to that of Brož et al. (2011), where it was used for studies
of the long-term evolution of asteroid families. We assumed the
following relations for the rate of the angular velocity ω and the
obliquity ε due to the YORP effect

dω
dt
= fi(ε) , i = 1 . . .200 , (3)

dε
dt
=
gi(ε)
ω
, (4)

where f - and g-functions were given by Čapek & Vokrouhlický
(2004) for a set of 200 shapes with mean radius R0 = 1 km, bulk
density ρ0 = 2500 kg/m3, located on a circular orbit with semi-
major axis a0 = 2.5 AU. We assigned one of the artificial shapes
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Fig. 11. Left panel: the distribution of the ecliptic latitudes β for the observed asteroids (thick line) and 100 synthetic samples (generated with a
different random seed) at time t = 0 (thin lines). Right panel: steady-state synthetic latitude distributions at time t = 4 Gyr (thin lines), evolved by
the YORP effect, collisions, mass shedding and spin-orbit resonances. We also applied an observational bias to it. The steady state was reached
already within �1 Gyr.

(denoted by the index i) randomly to each individual asteroid10.
We had only to scale the f - and g-functions by a factor

c = cYORP

(
a
a0

)−2 (
R
R0

)−2 (
ρbulk

ρ0

)−1

, (5)

where a, R, ρbulk are semi-major axis, radius, and density of
the simulated body, respectively, and cYORP is a free scaling pa-
rameter, which can account for an additional uncertainty of the
YORP model. Because the values of f ’s and g’s were computed
for only a limited set of obliquities (with a step Δε = 30◦) we
used interpolation by Hermite polynomials (Hill 1982) of the
data in Čapek & Vokrouhlický (2004) to obtain a smooth analyt-
ical functions for fi(ε) and gi(ε).

When the angular velocity approached a critical value (i.e.,
the gravity was equal to the centrifugal force)

ωcrit =

√
4
3
πGρbulk , (6)

we assumed a mass shedding event. We kept the orientation of
the spin axis and the sense of rotation but reset the orbital pe-
riod P = 2π/ω to a random value from the interval (P1, P2) =
(2.5, 9) h. We also altered the assigned shape since any change of
shape can produce a different YORP effect. We did not change
the mass, however.

The differential Eqs. (3) and (4) were integrated numeri-
cally by a simple Euler integrator. The usual time step was
Δt = 1000 yr. The time scale of the spin axis evolution for small
bodies (D � 10 km) is τYORP � 500 Myr. After � 3 times τYORP
most of these bodies have spin axes perpendicular to the ecliptic.

We also included a Monte-Carlo model for spin axis reorien-
tations caused by collisions11. We used an estimate of the time

10 We did not use the convex-hull shapes derived in this work for two
reasons: (i) the two samples of shapes are believed to be statistically
equivalent and it is thus not necessary to compute the YORP torques
again; (ii) the YORP effect seems sensitive to small-scale surface struc-
ture (Scheeres & Mirrahimi 2007) which cannot be caught by our shape
model. Nevertheless, the YORP torque remains of the same order, so
the random assignment of shapes seems reasonable.
11 Collisional disruptions are not important, since we are only interested
in the steady state. We can imagine that whenever an asteroid from our
sample is disrupted, another one with a randomly oriented spin axis is
created by a disruption of a larger body.

scale by Farinella et al. (1998)

τreor = B

(
ω

ω0

)β1
(

D
D0

)β2

, (7)

where B = 84.5 kyr, β1 = 5/6, β2 = 4/3, D0 = 2 m and ω0 corre-
sponds to period P = 5 h. These values are characteristic for the
main belt. After a collision, we reset the spin axis periods to ran-
dom values, using the interval (P′1, P

′
2) = (2.5, 9) h for the period.

Since the time scale is τreor � 3 Gyr for the smallest (D � 5 km)
bodies, reorientations are only of minor importance. However,
note that the probability of the reorientation is enhanced when
the YORP effect drives the angular velocity ω close to zero.

There were several free parameters in our model: the cYORP
parameter, thermal conductivity K, bulk density ρbulk, initial dis-
tribution of β and initial distribution of ω.

Our aim was to start with a simple β- andω-distribution, wait
until a steady state was reached, and then compare the resulting
synthetic to observed latitude distributions. We applied an obser-
vational bias derived in Sect. 4.3 to the synthetic distribution.

We partly accounted for spin-orbital resonances acting on
prograde asteroids by adding a sinusoidal oscillations to β with
a random phase and an amplitude �40◦, which are typically
induced by resonances. This procedure naturally decreased the
right-most bin (sin β = (0.8, 1)) of the synthetic distribution and
increased the next bin (sin β = (0.6, 0.8)).

We started with reasonable parameters of cYORP = 0.33, K =
10−2 W/K/m, ρbulk = 2500 kg/m3, a Maxwellian distribution
ofω, a uniform distribution of sin β (i.e., an isotropic distribution
of spin axes). We ran 100 such simulations with different random
seeds. A steady state was reached within �1 Gyr. The resulting
latitude distributions are shown in Figs. 11 and 12.

From these it can be seen that: (i) the observed distribution
of β for small asteroids seems compatible with our model; the
YORP effect is capable of creating such an uneven distribution
and (ii) there is a discrepancy for large asteroids (especially in
bins sin β ∈ (−1,−0.8) and (0.2, 0.4)), which can be explained as
a preference for prograde rotators in the primordial population
(see Davis et al. 1989; Johansen & Lacerda 2010). The results
regarding the spin rates agree with Pravec et al. (2008), so we do
not repeat the discussion here.

We also tested the sensitivity of our results with respect
to the free parameters. The thermal conductivity did not seem
important (we tested K = 10−3 W/K/m). A simulation with
cYORP = 0.66, ρ = 1300 kg/m3, and a uniform distribution of
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size ranges: D > 60 km (top), 30 km < D < 60 km (middle) and D <
30 km (bottom). The synthetic distributions are plotted by thin gray lines
while the observed distribution by a thick black line.

orbital periods P ∝ 1/ω produced almost the same resulting lat-
itude distribution. Nevertheless, a value of cYORP = 1.00 seems
too high because the extreme bins of the β-distribution were
overpopulated12. There is only a weak dependence of our results
on the period ranges that we used for resetting the orbital period
after a mass-shedding event (P1, P2) and collision (P′1, P

′
2). As

would be expected, the values P1, P2, P′1, P
′
2 significantly affect

the period distribution. The relatively weak dependence on the
free parameters likely stems from the fact that we presume the
steady-state. Even though the free parameters change, e.g., the
strength of the YORP effect and the evolution of spins is slower
and/or faster, after reaching a steady state, the basic characteris-
tics of the latitude distribution remain similar. The observed β-
distribution of small asteroids (D < 30 km) cannot be explained
by our simulation without accounting the YORP effect.

6. Conclusions

The results of this paper can be summarized as follows.
We used combined dense and sparse data to derive new aster-

oid shape models. We systematically gathered and processed all
available sparse photometry from astrometric surveys and em-
ployed valuable data from seven observatories (see Table 1) in
lightcurve inversion.

We derived 80 new unique models of asteroids, from which
16 are based only on sparse data. We also present 30 partial mod-
els with accurate rotational periods and estimated ecliptic lati-
tudes of the pole directions and 18 updated solutions based on
new data for asteroids already included in DAMIT.

In the future, quality sparse data sets will be produced by all-
sky surveys such as Pan-STARRS, the Large Synoptic Survey
Telescope (LSST), and the Gaia satellite. When these data are
available, we will be able to apply the same methods in order to
derive many more new asteroid models. These surveys will have

12 As an alternative hypothesis, we assumed the spin axis evolution
without a YORP effect (cYORP = 0). In this case, the initial β-
distributions (Fig. 11, left panel, thin lines) do not change significantly
in time.

one advantage over dense data: their selection effects (e.g., with
respect to the orbit) will be known. This will allow us to make a
more accurate analysis of the asteroid population.

As expected, the observed ecliptic longitude distribution of
asteroid spin vector is independent of diameter and is compati-
ble with a uniform distribution. Unlike the latitude distribution,
the observed ecliptic longitude distribution is not significantly
biased by the LI method. However, the effect of the LI bias is
only minor and the global features of the observed latitude dis-
tribution do not change. The observed (and de-biased) latitude
distribution for asteroids with diameters D > 60 km shows an
excess of prograde rotators in the latitude interval (11◦, 90◦).
This excess is probably primordial. On the other hand, the lati-
tude distributions for the entire sample and in particular for as-
teroids with D < 30 km, is strongly anisotropic.

The dynamical evolution of asteroid spins seems to be dom-
inated by the YORP effect and also by collisions and mass shed-
ding for asteroids with diameters D � 30 km. We calculate that
YORP (with a small contribution for the LI method’s bias) is ca-
pable of producing the observed depopulation of spin vectors for
small asteroids.

We are not yet able to study small asteroids in individual
families (small bodies at the outskirts of a family should have
extreme spins); this is an aim of future work.
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Table 3. List of new asteroid models derived from combined data sets or sparse data alone.

Asteroid λ1 β1 λ2 β2 P Nlc Napp N689 N699 N703 NE12 NG96 N950 NHip

[deg] [deg] [deg] [deg] [h]
10 Hygiea 312 −42 122 −44 27.6591 23 9 263 405 50
13 Egeria 44 21 238 11 7.04667 13 4 255 74 203 34
14 Irene 97 −22 268 −24 15.02991 20 8 250 48 161 45
37 Fides 270 19 89 27 7.33253 23 5 270 61 135 31
40 Harmonia 22 31 206 39 8.90848 19 6 210 48 255 102
42 Isis 106 40 302 28 13.58364 28 7 210 36 128 51
62 Erato 87 22 269 23 9.21819 1 1 164 48
68 Leto 103 43 290 23 14.84547 12 2 174 85 30 152
69 Hesperia 250 17 71 −2 5.65534 35 7 222 44 40
97 Klotho −1 30 161 40 35.2510 25 6 309 31 202
119 Althaea 339 −67 181 −61 11.46514 4 2 149 59 222
162 Laurentia 139 64 313 51 11.86917 4 2 166 31 40
174 Phaedra 94 36 266 14 5.75025 2 1 173 36
188 Menippe 32 48 198 25 11.9765 4 1 145 40
258 Tyche 224 −4 40 −9 10.04008 10 2 162 44
264 Libussa 157 18 338 −9 9.22794 19 3 129 39 49
291 Alice 69 51 249 56 4.316011 9 4 75 46
302 Clarissa 28 −72 190 −72 14.47670 8 2 102 104
310 Margarita 225 −35 42 −33 12.0710 27 1 88 31 51
312 Pierretta 82 −39 256 −58 10.20764 4 1 176 36 52
336 Lacadiera 194 39 37 54 13.69552 3 1 121 36 32
340 Eduarda 188 −43 18 −47 8.00613 2 1 117 76 31 36
354 Eleonora 144 54 4.277186 37 9 258 40 139 96
355 Gabriella 341 78 197 70 4.82899 4 1 128
367 Amicitia 203 38 21 32 5.05502 2 1 128 34
372 Palma 221 −47 44 17 8.58189 28 6 214 52 36
376 Geometria 239 45 63 53 7.71097 39 9 158 76
399 Persephone 36 63 9.14639 166 36
400 Ducrosa 328 56 158 62 6.86788 3 1 103
413 Edburga 202 −45 15.7715 2 1 148 43
436 Patricia 124 −30 339 −58 16.1320 4 1 97 53 91
440 Theodora 80 −88 4.83658 123 103 48
471 Papagena 223 67 22 18 7.11539 13 2 293 72 203 112
486 Cremona 227 59 31 30 65.151 1 1 127 55 35
499 Venusia 37 50 212 46 13.4871 4 1 122 39 31
544 Jetta 275 −84 31 −67 7.74528 3 1 139 60
573 Recha 74 −24 252 −48 7.16586 3 1 161 85
584 Semiramis 106 −56 315 −32 5.06893 24 6 150 59 49
590 Tomyris 273 −47 120 −46 5.55248 3 1 91 32
601 Nerthus 173 44 20 32 13.5899 139 94
606 Brangane 183 20 354 26 12.29067 2 1 108 70
629 Bernardina 40 33 236 48 3.76360 91 48
631 Philippina 183 −2 5.90220 6 2 171 38
685 Hermia 197 87 29 79 50.387 93 148
695 Bella 87 −55 314 −56 14.21900 8 1 184 90 30
753 Tiflis 5 36 199 57 9.8259 129 64
800 Kressmannia 345 37 172 34 4.460963 8 2 108 51
808 Merxia 26 54 192 57 30.630 4 1 158 87 32
810 Atossa 12 67 188 69 4.38547 99 71 60
825 Tanina 46 48 231 60 6.93981 2 1 114 40
832 Karin 242 46 59 44 18.3512 13 3 84 39
847 Agnia 341 18 162 13 14.8247 3 1 136
889 Erynia 187 −60 335 −74 9.8749 94 65
925 Alphonsina 296 41 147 22 7.87754 4 1 134 48 79
934 Thuringia 120 −52 8.16534 123 59
1002 Olbersia 220 35 16 54 10.2367 87 48 54
1087 Arabis 334 −7 155 12 5.79501 3 1 156 92
1102 Pepita 25 −34 231 −30 5.10532 147 47
1140 Crimea 12 −73 175 −22 9.7869 3 1 96 116
1148 Rarahu 148 −9 322 −9 6.54449 95 64
1207 Ostenia 310 −77 124 −51 9.07129 2 2 87 71
1291 Phryne 106 35 277 59 5.58414 2 1 129 72
1301 Yvonne 39 41 7.31968 78 56 33
1333 Cevenola 38 −86 220 −44 4.87932 3 1 104 91
1382 Gerti 268 23 87 28 3.081545 2 1 60 56 52
1419 Danzig 22 76 193 62 8.11957 1 1 135 87
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Table 3. continued.

Asteroid λ1 β1 λ2 β2 P Nlc Napp N689 N699 N703 NE12 NG96 N950 NHip

[deg] [deg] [deg] [deg] [h]
1482 Sebastiana 262 −68 91 −67 10.48965 2 1 131 39 30
1514 Ricouxa 251 75 68 69 10.42468 3 1 68 56
1568 Aisleen 109 −68 6.67597 82 37
1635 Bohrmann 5 −38 185 −36 5.86427 8 1 108 47
1659 Punkaharju 259 −71 75 −22 5.01327 2 1 118 66
1682 Karel 232 32 51 41 3.37485 54 84 36
1709 Ukraina 165 −61 2 −40 7.30517 2 1 46 79
1742 Schaifers 198 57 47 55 8.53270 3 1 106
1747 Wright 227 31 5.28796 70 55
1889 Pakhmutova 22 −76 167 −40 17.5157 68 46 35
1930 Lucifer 32 17 211 −19 13.0536 6 1 106 43 66
2156 Kate 49 74 5.62215 4 1 44
3678 Mongmanwai 125 −65 4.18297 2 1 103 31
4483 Petofi 107 40 4.33299 3 1 36

Notes. For each asteroid, the table gives also the number of dense lightcurves Nlc observed during Napp apparitions and the number of sparse data
points for the corresponding observatory: N689, N699, N703, NE12, NG96, N950 and NHip. Pole solutions preferred by asteroid occultation measurements
(Ďurech et al. 2011) are emphasized by a bold font.
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Table 4. List of partial models derived from combined data sets.

Asteroid β Δ P Nlc Napp N689 N699 N703 NE12 NG96 N950 NHip

[deg] [deg] [h]
163 Erigone −60 14 16.1403 3 1 168 72
187 Lamberta −58 9 10.66703 9 2 159 52 53
233 Asterope 49 8 19.6981 13 3 184 80 165
272 Antonia −70 6 3.85480 5 1 109 60 36
281 Lucretia −54 11 4.349710 6 3 123 30 62
313 Chaldaea 33 18 8.38992 9 3 176 80
390 Alma −60 22 3.74116 2 1 109 34
510 Mabella −59 12 19.4304 6 2 145 60
550 Senta −63 13 20.5726 9 1 151 61
622 Esther −61 9 47.5042 5 1 120 60
692 Hippodamia −52 25 8.99690 3 1 114 78 32
733 Mocia 36 16 11.37611 2 1 175 44
746 Marlu −54 18 7.78887 3 1 133 47 34
784 Pickeringia 58 15 13.1699 1 1 188 67 32
823 Sisigambis 57 9 146.58 8 1 123 90
877 Walkure 53 12 17.4217 3 1 141 45 104 32
899 Jokaste −58 19 6.24812 3 1 140 43

1010 Marlene 46 7 31.066 8 1 104 52
1103 Sequoia −48 19 3.037977 2 1 111 36 30
1185 Nikko 46 12 3.78615 3 1 91 46 32
1188 Gothlandia −63 19 3.491820 2 1 129 33 67 41
1214 Richilde −59 15 9.86687 4 1 101 78
1282 Utopia −39 21 13.6228 4 1 116 72
1350 Rosselia −58 13 8.14011 1 1 114 48
1368 Numidia −50 14 3.640740 3 1 129 47
1379 Lomonosowa −62 17 24.4845 2 1 96 100
1389 Onnie −56 10 23.0447 2 1 85 33 47 32 40
1665 Gaby 49 17 67.905 1 1 81 80
1719 Jens −56 19 5.87016 2 1 78 48 40
2001 Einstein −51 22 5.4850 2 1 84

Notes. For each asteroid, there is the mean ecliptic latitude β of the pole direction and its dispersion Δ, the other parameters have the same meaning
as in Table 3.

Table 5. List of improved asteroid models that were originally designated in DAMIT as “preliminary”.

Asteroid λ1 β1 λ2 β2 P Nlc Napp N689 N699 N703 NE12 NG96 N950 NHip

[deg] [deg] [deg] [deg] [h]
73 Klytia 266 68 44 83 8.28307 21 7 131 36 98 47
82 Alkmene 164 −28 349 −33 13.00079 11 1 158 72 36 38 192
132 Aethra 326 67 5.16827 4 2 204 55
152 Atala 347 46 199 61 6.24472 2 1 101 32
277 Elvira 121 −84 29.6922 22 5 142 36 51
278 Paulina 307 31 118 38 6.49387 3 1 195 51
311 Claudia 214 43 30 40 7.53138 23 6 114 33 108 40
484 Pittsburghia 70 46 10.64977 2 1 100 52
516 Amherstia 254 22 81 54 7.48431 5 3 162 32
534 Nassovia 66 41 252 42 9.46889 16 6 151 64 32
614 Pia 348 48 162 27 4.57872 2 1 121 78
714 Ulula 224 −10 41 −5 6.99837 9 2 177 67
770 Bali 70 50 262 45 5.81894 2 1 131 52
915 Cosette 350 56 189 61 4.469742 1 1 106 32 35
1012 Sarema 45 67 253 63 10.30708 2 1 74 42
1022 Olympiada 46 10 242 52 3.83359 5 2 107 91
1088 Mitaka 280 −71 3.035378 1 1 104 39 41
1223 Neckar 252 28 69 30 7.82401 16 7 132 33 60 36

Notes. Pole solutions preferred by asteroid occultation measurements (Ďurech et al. 2011) are emphasized by a bold font.
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Table 6. Observations used for successful model determination that are not included in the UAPC.

Asteroid Date Observer Asteroid Date Observer
13 Egeria 2007.9−2009.3 Pilcher (2009) 808 Merxia 2003 1 26.8 Casullia

14 Irene 2007.11−2009.5 Pilcher (2009) 2003 1 28.8 Casullia

2008 2 3.7 Polishook 2003 2 7.0 Bernasconia

40 Harmonia 2008.12-2009.1 Pilcher (2009) 2003 2 8.0 Bernasconia

2010.5−2010.6 Pilcher (2010) 832 Karin 2003.8−2003.9 Yoshida et al. (2004)
68 Leto 2008 1 26.0 Pilcherb 2004.9−2004.9 Ito & Yoshida (2007)

2008 1 30.0 Pilcherb 899 Jokaste 2003.11−2003.12 Stephens (2004)
2008 2 6.1 Pilcherb 1010 Marlene 2005.1−2005.3 Warner (2005a)

264 Libussa 2005.2−2005.3 Pilcher & Cooney (2006) 1022 Olympiada 1999.6−1999.6 Warner (2005b)
2008.10−2008.12 Pilcher & Jardine (2009) 1087 Arabis 2003 2 23.0 Lehký

272 Antonia 2007.12−2008.1 Pilcher (2008) 1140 Crimea 2005.4−2005.4 Stephens (2005a)
310 Margarita 2010.3−2010.5 Pilcher & Oey (2010) 1185 Nikko 2004.11−2004.11 Stephens (2005b)
390 Alma 2004.8−2004.8 Stephens (2005c) 1282 Utopia 2000.11−2000.11 Warner (2011b)
400 Ducrosa 2005.1−2005.1 Warner (2005a) 1333 Cevenola 2002.2−2002.2 Warner (2002)
436 Patricia 2002.12−2003.1 Warner (2003) 1635 Bohrmann 2003.9−2003.10 Stephens & Warner (2004)
544 Jetta 2004.8−2004.8 Stephens (2005c) 1659 Punkaharju 2000.11−2000.11 Warner (2011c)
573 Recha 2001.1−2001.1 Warner (2011b) 1719 Jens 2000.9−2000.9 Warner (2011c)
714 Ulula 2005 9 23.8 Henych 1930 Lucifer 2003.10−2003.10 Warner (2005a)

2005 9 25.8 Henych 2001 Einstein 2004.12−2004.12 Warner (2005a)
2005 9 30.8 Henych 3678 Mongmanwai 2003.3−2003.3 Stephens (2003)
2005 10 1.8 Henych
2005 10 10.8 Henych

Notes. (a) Online at http://obswww.unige.ch/∼behrend/page_cou.html. (b) Online at http://aslc-nm.org/Pilcher.html
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